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Editorial on the Research Topic

Deep learning approaches applied to spectral images for plant phenotyping
Introduction

Spectral Imaging, or imaging spectroscopy, is a widespread sensor technology used in

precision agriculture, horticulture and plant phenotyping. From cameras providing just a

few spectral bands on drones, to cameras with a large number of bands, often referred to

as hyperspectral cameras on field vehicles or in greenhouses. For reasons outlined in

(Polder and Gowen, 2020), in this editorial paper, we employ the term “imaging

spectroscopy and spectral imaging”; however, within this Research Topic (RT), it is also

denoted as hyperspectral imaging. Imaging spectroscopy enables plant scientists to quantify

the composition of agricultural products, such as biomass, leaf area, and chlorophyll

content and also detect plant stresses and diseases in an early stage.

Traditionally, analysis of spectral image data is performed using classical machine

learning on the spectral or image components or a combination of the two. Nowadays,

convolutional neural or deep learning networks are becoming immensely popular,

particularly for RGB color images. For RGB image data, using three input layers - a

large number of pre-trained networks are available. For spectral image data, with a large

number of input bands, these networks do not work out of the box and need to be adapted.

One of the main challenges is the large and complex datasets involved. Spectral images

typically contain hundreds or thousands of spectral bands, each capturing a different aspect

of the plant’s physiology. Pre-processing techniques such as dimensionality reduction and

feature extraction are often used to simplify these datasets and make them more amenable

to deep learning. Furthermore, there are no public networks pre-trained with spectral

images, and for all situations where more than three input layers are needed, the choice of

how to distribute the pre-trained weights across the input layers is an important

research question.

In contrast to adapting RGB-based neural networks to spectral images, research has also

recently been conducted to reconstruct spectral images fromRGB images (Zhang et al., 2022).

The main reason for this area of research is the usually expensive and very complicated
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hardware required for acquiring spectral images, hindering the

promotion of their application in consumer electronics. Recently,

many computational spectral imaging methods have been proposed

by directly reconstructing the spectral information from widely

available RGB images. These reconstruction methods can exclude

the usage of burdensome spectral camera hardware while keeping a

high spectral resolution and imaging performance, which for

affordable phenotyping would be a valuable tool, as already

presented for measuring tomato quality parameters (Zhao et al.,

2020), vegetation indices in maize and rice fields (Zhao et al., 2022)

and chlorophyll content of ginkgo tree leaves (Gong et al., 2023).

The challenge of generating spectral images from RGB images is

inherently difficult, presenting numerous potential solutions due to

its ill-posed nature. This arises from the task of inferring data in a

high-dimensional spectral band space from the constrained

information available in a three-dimensional RGB space. From

information theory, it is well known that information content, or

entropy, is limited by the amount of bits used for coding the data

(Shannon, 1948). For spectral images this entropy is clearly more

than for RGB images (Chen et al., 2018). However, with particular

considerations regarding lighting and the inherent characteristics of

natural environments, it becomes possible to achieve a workable

solution (Magalhaes et al., 2024). Still, it’s evident that adding extra

specific information to the model in this scenario can impede its

ability to generalize effectively. Moreover, the primary objective of

such analyses is typically the classification or regression of objects

within the image, rather than the generation of spectral images,

which inherently poses visualization challenges. Therefore, we

suggest that the research community focus directly on extracting

features from RGB data instead of taking the indirect route of

converting RGB images into spectral images.

In this Research Topic (RT), we have collected contributions

from scientists working on solutions for the application of existing

deep learning networks for spectral image data, and the new

development of deep learning networks for spectral imaging

applied to plant phenotyping. The RT comprises six experimental

papers. It is noteworthy that three out of six research papers are

devoted to disease detection for which imaging spectroscopy is

proven to be a valuable tool.

Zhang et al. explore the efficacy of terahertz imaging technology

and near-infrared imaging spectroscopy, particularly when

combined with convolutional neural networks, in swiftly and

accurately identifying bacterial blight–resistant rice seeds, offering

a promising alternative to the time-consuming process of

traditional breeding methods.

Wang et al. present an enhanced transfer neural network utilizing

bionic optimization to detect weed density and crop growth,

employing pre-trained AlexNet for transfer learning and

optimizing learning rates with particle swarm optimization and bat

algorithm to find the optimal, showcasing improved accuracy in

classifying RGB andmultispectral images alongside a self-constructed

CNN based on model-agnostic meta-learning, thus facilitating

precise plant density calculations and promoting the application of

variable herbicides for ecological irrigation district advancement.

Li et al. propose a method for apple disease recognition using

modified convolutional neural networks (MCNN), incorporating
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Inception, global average pooling (GAP) operators, and a modified

Softmax classifier to enhance recognition performance,

demonstrating its feasibility through experiments on apple disease

image datasets. This paper does not use spectral imaging data as

input to the network, but results show the lesions are segmented

with high accuracy, while the proposed algorithm did not use the

detour of creating artificial spectral images.

Jung et al. utilize hyperspectral imaging and convolutional

neural networks to develop an early diagnosis technology for gray

mold disease in strawberries, achieving a classification accuracy of

0.84 with 3D data, highlighting its potential as an on-site analysis

tool for rapid detection.

Farber and Kurouski highlight the utility of Raman spectroscopy in

diagnosing plant stresses, identifying species and varieties and assessing

seed properties, emphasizing the importance of chemometric analyses,

and provides insights into three key approaches —summary statistics,

statistical testing, and chemometric classification— demonstrated

through rose Raman spectra, to aid researchers in optimizing

spectral processing for desired outcomes and facilitating broader

research in plant spectroscopic analysis.

Cultivation is crucial for endangered species protection. Although

image analysis is common for economic crops, it remains

underutilized for endangered trees. Monitoring chlorophyll levels

allows for improved fertilization management. (Yuan et al.) proposes

a low-cost SPAD estimation method on Hopea hainanensis, using

machine learning adaptable to shade conditions. Their approach

reinforces the effectiveness of RGB and multispectral–based

vegetation indices for estimation of chlorophyll content.

Overall, deep learning approaches are a promising tool for

analyzing spectral images in plant phenotyping. As the field

continues to advance, we can expect to see even more powerful

and accurate deep learning models for plant phenotyping, leading

to new insights into the complex biological processes of plants and

their responses to environmental stressors.

We believe that this RT is an excellent representative sample of the

state of the art with respect to deep learning approaches for spectral

image data in plant phenotyping. We hope that readers will thoroughly

enjoy these articles and derive valuable knowledge from them.
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