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Abstract. Seaweed, including various species of Ulva (e.g., Ulva intestinalis, U. fasciata, U. 

lactuca, and U. rigida), is essential for maintaining the balance of aquatic ecosystems. These algae 

are found worldwide and have a high growth rate in diverse habitats. This article analyzes the 

composition of these Ulva spp (including carbohydrates, proteins, lipids, and ash). It also 

investigates the environmental factors that affect their growth and composition, such as pH, 

temperature, water depth, salinity, and nutrient availability. Understanding the variations in 

composition and environmental influences among Ulva spp highlights the importance of studying 

their ecological impact and genetic diversity. 

 

1. Introduction 

Seaweed, encompassing a diverse range of macroalgae, plays a pivotal role in marine ecosystems, acting as a 

cornerstone for food provision, reproduction facilitation, and habitat creation for myriad marine organisms. 

Esteemed studies by Alavian et al. (2018), Schutt [1] et al. (2023), and van den Burg [2] et al. (2022) have 

underscored the indispensable ecological and biological significance of seaweed, highlighting its vital 

contribution to the overall stability and sustainability of marine ecosystems [3-8]. As a prolific source of 

dissolved organic carbon, seaweed significantly enriches coastal waters with essential nutrients, including 

carbohydrates, polysaccharides, nitrogen, and polyphenolic compounds. This nutrient-rich environment fosters a 

thriving biodiversity essential for ecological balance. 

Beyond their ecological contributions, seaweeds are heralded for their rich composition of bioactive 

compounds. Carotenoids, fiber, proteins, essential fatty acids, vitamins, and minerals found in seaweeds not only 

bolster marine life but also offer promising benefits for human health and industry. Pioneering research by Al-

Juthery et al. (2020), Dere et al. (2003), Fleurence (1999), and Polat et al. (2023) has illuminated the 

multifaceted applications of seaweeds, ranging from their use in pharmaceuticals to their role as sustainable 

fertilizers [9-15]. 

Recent scholarly interest has particularly focused on the Ulva species, known for their exceptional nutritional 

profile and ecological value. Ulva spp., such as Ulva intestinalis, Ulva fasciata, Ulva lactuca, and Ulva rigida, 

are celebrated for their dense concentrations of proteins, lipids, minerals, and vitamins—nutrients crucial for 

human well-being. Ananthi and Bagyalakshmi (2024), Elmosallamy et al. (2021), and Rasyid (2017) have 

contributed significantly to our understanding of the nutritional potential of Ulva spp., positing these algae as a 

sustainable food source amidst growing global food security concerns [16-32]. 

This article aims to comprehensively explore the compositional diversity of various Ulva species, 

scrutinizing the myriad factors influencing their growth and biochemical makeup. Through a detailed 

examination, we endeavor to shed light on the untapped potential of Ulva spp., advocating for their integrated 

management and conservation as a strategy to harness their ecological and nutritional benefits. 
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2. Ulva Biomass Composition and Nutrient Removal 

The provided table presents a comprehensive overview of the biochemical composition of several Ulva spp. 

macroalgae. Ulva intestinalis exhibits a protein content ranging from 10.4% to 26%, carbohydrates ranging from 

51.79% to 55.43%, and varying lipid levels, with ashes accounting for 18.81% to 19.95% of its dry weight. 

Similarly, Ulva fasciata displays protein concentrations between 13.13% and 27.09%, carbohydrates ranging 

from 30.82% to 65.19%, lipid content varying from 0.34% to 12.12%, and ash content spanning from 2.18% to 

34.15%. Ulva lactuca demonstrates protein levels from 8.46% to 23.2%, carbohydrate content ranging from 

17.2% to 58.4%, lipid concentrations varying between 0.19% and 4.05%, and ash percentages ranging from 

11.2% to 30.9%. Additionally, Ulva rigida displays protein levels between 6.64% and 17.8%, carbohydrate 

content spanning from 22% to 54.5%, lipid concentrations varying from 0.09% to 12%, and ash percentages 

ranging from 24% to 30.1%. These values highlight significant variations in protein, carbohydrate, lipid, and ash 

content among different Ulva spp., indicating the influence of various factors such as geographic location, 

seasonal variation, and physiological state on their biochemical composition. 

Table 1. Composition of Ulva biomass and nutrient removal [17, 33-49]. 

  Sampling Content % Dry weight 

Species References Date Location Proteins Carbohydrates Lipids Ashes 

U
lv

a
 i

n
te

st
in

a
li

s 

(Peasura et al., 

2015) 
July 2010 

Pattani Bay. 

Thailand 
16.95 55.43 low 19.95 

(Akter Tubril 

et al., 2023) 

(Tabarsa et al., 

2018) 

- 

St. Martine 

Island 
15.41 51.79 1.21 18.81 

Bangladesh 

(Bodin et al., 

2020) 

(Peasura et al., 

2015) 

- 

The coast 

Noor. 10.4 - - - 

Iran 

(Akter Tubril 

et al., 2023) 
- - 26 - - - 

U
lv

a
 f

a
sc

ia
ta

 

(Mofeed et al., 

2019) 

October Alexandria. 
17.35 30.82 2.4 34.15 

2016 Egypte 

(El-Gendy et 

al., 2023) 

August and 

October 

2022 

Alexandria 

Egypte 
13.13 44.85 3.27 21 

(Rao P et al. 

2015) 

Summer 

Visakhapatnam 

India 

24.75 55.58 7.14 12.53 

2006 

Monsoon 

2006 
24.01 65.19 7.87 2.79 

Post-

Monsoon 

2006-2007 

25.91 62.45 9.46 2.18 

Summer 

2007 
27.09 62.20 7.95 2.77 

2

BIO Web of Conferences 109, 01012 (2024)  https://doi.org/10.1051/bioconf/202410901012
WA2EN2023



 

 

Monsoon 

2007 
25.36 60.06 10.42 4.17 

Post-

Monsoon 

2007-2008 

23.69 56.02 12.12 8.17 

(Pádua et al., 

2004) 

December 

1995 Ilha do Mel 

Brazil 

13.30 53.31 1.94 20.61 

February 
16.13 56.47 0.34 17.75 

1996 

U
lv

a
 l

a
ct

u
ca

 

(Mofeed et al., 

2019) 

October Damietta. 
21.38 35.48 11.6 21.08 

2016 Egypte 

(Elmosallamy 

et al., 2021) 

(Pádua et al., 

2004) 

Aquaculture 
Alexandria 

Egypte 
22 - - - 

2017 

 

(Elmosallamy 

et al., 2021) 

oct-95 Guaraqueçaba 15.23 58.40 1.22 13.23 

February Brazil 
18.35 57.67 1.79 12.54 

1996  

(Pádua et al., 

2004) 

July Monastir 
8.46 - 7.87 19.59 

2007 Tunisia 

(Mohy El-Din, 

2019) 

Summer 

Alexandria 

Egypte 

20.3 19.5 3.76 24.5 
2016/2017 

Autumn 
18.2 18.4 3.2 21.5 

2016/2017 

Winter 
15.65 17.2 2.82 28.9 

2016/2017 

Spring 
23.2 18.9 4.05 28.33 

2016/2017 

(Castro-

González et 

al., 1996) 

Summer 

1994 

La Paz, BCS 
10.7 30.9 0.25 30.9 

Mexico 

(Tabarsa et al., 

2012) 

April Qheshm island 
10.69 - 0.99 18.03 

2008 Iran 

(Rasyid, 2017) - 
Pameungpeuk 

13.6 58.1 0.19 11.2 
Indonesia 

U
lv

a
 r
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a
 

(Taboada et 

al., 2010) 
- 

La Coruna 
17.8 54.5 0.09 28.6 

Spain 

(Satpati and 

Pal, 2011) 
- 

Chilka Lake 
6.64 22 12 24 

India 

(Cañedo-

Castro et al., 

2019) 
- 

Baja California 

Sur (BCS) 8.7 - - 30.1 

Mexico 

(Paiva et al., 

2017) 
April 2013 

Sao Miguel 

Island, 

Portugal 

15.78 16.74 1.02 20.60 
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(Latique et al., 

2021) 

Ocrobre 

2019 

Laâyoune city 
9.3 - 2.83 - 

Morocco 

(Balar et al., 

2019) 

November 

2014 to 

August 

2016 

109 samples 

4.14-26 16.63-65.93 
0.8-

3.1 
- 

India 

(Moreira et al., 

2021) 
May 2017 

Ria Formosa 11.13 - 

15.59 
55.23 1.14 32.50 

Portugal 

 

 

 
 

  
 

Fig. 1. Representative Images of Ulva Species: Ulva intestinalis (a), Ulva fasciata (b), Ulva lactuca (c) and Ulva 

rigida (d) (Source: AlgaeBase) 

3. Abiotic environmental factors affecting Ulva spp growth 

Abiotic environmental factors profoundly influence the growth and physiology of Ulva spp., shaping their 

ecological dynamics and productivity. These factors include pH, temperature, water depth, salinity, and nutrient 

availability, each playing a vital role in determining the success of Ulva populations in marine environments. 

Understanding the interplay between these abiotic factors and Ulva spp. responses is essential for effective 

management and conservation efforts in coastal ecosystems. 

− pH: The growth and composition of Ulva spp. are significantly influenced by the water's acidity, as shown 

by pH. Variations in pH can affect Ulva spp. growth and chemical production rates, among other functions. 

The ideal pH range for Ulva spp. growth is generally between 7.5 and 9.5 [50, 51].  

(a) 
(b) 

(c) 
(d) 
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Frost-Christensen and Sand-Jensen (1990) demonstrate that pH significantly affects Ulva lactuca, with 

growth remaining stable between pH 7.5 and 9, but sharply declining above pH 9 and approaching zero just 

above pH 10. This decline is attributed to direct pH effects on cell pH, reduced bicarbonate availability, and 

impaired carbon uptake. Overall, high pH levels inhibit Ulva lactuca growth due to physiological and 

carbon uptake mechanisms [50]. 

− Temperature: Temperature tolerance studies suggest a range of 6°C to 25°C for Ulva spp. [52]. 

Temperature exerts a significant influence on Ulva species, impacting various aspects of their physiology 

and growth. Optimal temperatures are crucial for promoting higher rates of photosynthesis, with Ulva 

prolifera showing peak photosynthetic activity at 23°C, while extreme temperatures can adversely affect 

this process [53]. Additionally, temperature plays a pivotal role in the growth rate of Ulva spp, with Ulva 

curvata exhibiting an optimum growth temperature of 23°C, and growth rates varying with temperature 

changes and nitrogen limitation interactions [54]. Physiological responses such as metabolic processes and 

adaptation mechanisms are also affected by temperature variations, with Ulva fasciata exhibiting 

adaptations like developing heat-resistant cells in response to temperature changes [55]. Moreover, 

temperature fluctuations can impact seasonal growth patterns and acclimation processes, with Ulva lactuca 

showing maximum growth rates between 12°C to 18°C, and differences observed in growth responses 

based on locality and seasonal changes [52]. Understanding these temperature-mediated impacts on Ulva 

spp is vital for predicting their ecological dynamics and responses to environmental changes. 

− Water depth: Water depth exerts a profound influence on the physiology, adaptability, and growth 

dynamics of Ulva spp., as elucidated by various studies. One study [56] delved into the physiological 

characteristics of Ulva mats at different depths, revealing a notable gradient in tissue nitrogen content, with 

lower layers harboring higher nitrogen levels attributed to light limitation and slower dilution of internal 

nitrogen resources. In addition, decomposition and anoxia at the bottom of the mats were identified as 

factors contributing to an upward nutrient flux. Surprisingly, despite challenges posed by reduced light 

availability in deeper subtidal zones (2-20 meters), Ulva spp. demonstrate remarkable adaptability, 

showcasing mobility and gentle drift due to turbulence  [57]. This adaptability is complemented by nutrient 

delivery from sediment, which supports their growth in such environments. In freshwater ecosystems, water 

depth emerges as a pivotal factor influencing Ulva mat development, with greater depths correlating 

positively with larger surface area and higher thalli density [58]. Moreover, a specific focus on Ulva 

lactuca underscored the significance of water depth in regulating tissue nitrogen content and growth 

dynamics (Pérez-Mayorga et al., 2011). Deeper deployments were found to exhibit substantially higher 

tissue nitrogen content, particularly on cooler days, indicative of the intricate interplay between 

environmental factors and Ulva physiology. These results emphasize the various ways that water depth 

affects Ulva species, highlighting how they survive and adapt in different water environments. 

− Salinity: Salinity is crucial for the physiological responses and growth patterns of Ulva spp [59]. Different 

types of Ulva have different salinity preferences, with some even thriving in freshwater (like U. limnetica) 

[59]. Too much or too little salinity can induce oxidative stress due to the accumulation of reactive oxygen 

species (ROS) [59, 60]. These substances can affect the photosynthetic efficiency and growth rates of Ulva. 

Low salinity (5-15 psu) can slow down metabolism and photosynthesis [53, 61], while high saltiness (26-32 

psu) can boost photosynthesis but also cause stress and reduce growth [53, 60, 62]. Overall, maintaining 

suitable salinity levels within the range of 15-25 psu promotes optimal growth and productivity in Ulva 

spp. 

− Nutrient availability: Nutrient availability, particularly nitrogen (N) and phosphorus (P), profoundly 

influences the growth and physiological responses of Ulva spp., as demonstrated in a study conducted by 

Buapet et al. 2008 [63]. Ulva reticulate, for instance, demonstrates a strong preference for nitrogen uptake, 

leading to rapid growth and increased biomass in response to elevated nitrogen levels [63]. Similarly, Ulva 

lactuca exhibits stimulation from ammonia (NH3) and phosphate (MPO4) additions, although excessive 

ammonia (NH3) concentrations can inhibit productivity [64]. Nutrient availability also impacts Ulva 

prolifera, with saturated nitrate (NO3
-) uptake and escalating phosphorus uptake influencing its growth and 

photosynthetic performance [65]. Moreover, Ulva spp possess a remarkable capacity to store nitrogen and 

phosphorus, with tissue concentrations reflecting surrounding water nutrient levels [66]. The biochemical 

composition and productivity of Ulva spp. are directly influenced by nutrient levels, particularly nitrate, 

which positively impacts protein content and phenolic composition [67]. To sum up, maintaining the 

balance of optimal nutrient conditions is crucial for maximizing the growth, biochemical properties, and 

productivity of Ulva spp in coastal environments. 
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4. Conclusion 

In summation, the analysis of biochemical composition across different Ulva species has elucidated notable 

disparities, underscored by an intricate interplay of geographic locale, temporal dynamics, and inherent 

physiological attributes. The data presented herein vividly highlight how environmental contingencies—ranging 

from pH levels and thermal conditions to aquatic depth, salinity gradients, and the availability of nutritive 

elements—exert profound influences on the phenotypic and genotypic expressions of Ulva spp. Such insights are 

indispensable for the informed management and exploitation of these algae, whose applications span the gamut 

from aquaculture innovations to the vanguard of environmental remediation strategies. 

The critical examination of environmental factors affecting Ulva spp. underscores the necessity for a nuanced 

understanding of these complex biological and ecological matrices. It is evident that the stewardship of Ulva 

spp., whether for the enhancement of marine biodiversity, the bolstering of aquaculture yields, or the 

advancement of green technologies, requires a holistic appreciation of their ecological roles and physiological 

demands. 

Future research endeavors should, therefore, pivot towards a more granular investigation of the symbiotic 

relationships between Ulva spp. and their habitats. This entails not only the refinement of current methodologies 

to assess environmental impacts on their growth and nutritional profiles but also the exploration of innovative 

biotechnological applications that leverage their unique properties. The sustainability and conservation of these 

pivotal marine assets hinge upon our capacity to elucidate and harness the dynamic interdependencies that define 

their existence within the broader marine ecosystem. 
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