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Abstract. The movement of solutions in waterless dry layers and the 
influence of irrigated rock on the radius the filtration flow and the nature of 
its saturation were established in the paper. The liquid flow curves were 
constructed for various distances from the source axis. The developed 
methodology of non-stationary filtration mode during underground leaching 
determined the filtration coefficients in laminar and turbulent modes. It is 
necessary to take into account the physical properties of both the rock mass 
and the filtered leaching solutions. Research has established that the shape 
of the spreading of solutions in the system of interaction between the 
injection and discharge wells (the edge boundaries of the streamline) must 
be considered as a rhombus, and the spreading angle is formed depending 
on the degree of clogging of the pore volume.  

1 Introduction 

Issues of the theory of the movement of liquids in drained productive layers, which could be 
used in engineering calculations of hydrodynamic parameters using the method of 
underground leaching, are still very poorly developed. 
In this regard, the choice of leaching parameters in the design and development of ore 
deposits is most often made without detailed scientific and technical justification based on 
empirical dependencies. 

A number of experts recommend using the work of V.V. for these purposes. Ivakin, in 
which a mathematical solution was obtained to the spatial problem of steady motion of a free 
flow in a homogeneous porous medium, directed from the center of a point source, taking 
into account the deforming force of gravity. 

As a result of the assumptions made, he was able to derive the depression curve equation 
and find an expression for the filter flow current function [1]. 

V.M. Nasberg, analyzing the theoretical conclusions of V.V. Ivakina, came to the 
conclusion that in the equation of the depression curve the pressures do not coincide with 
their geometric parameters above the reference plane, so he proposed his solution, in which 
the noticed shortcomings are eliminated by introducing a fictitious flow into the calculation 
schem. 
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2 Materials and methods 

Received by V.V. Ivakin and V.M. Nasberg's solutions provide mainly a qualitative 
characteristic of the depression surface of the infiltration flow. These authors proved that 
when water is injected into dry porous materials, the depression surface of the filtration flow 
has the shape of an ellipsoid of revolution, which at a certain depth passes from the source 
into a circular cylinder with a radius determined from the expression 

𝐑 ൌ ට 𝐐

𝛑𝐤
,                              (1) 

which Q – liquid consumption, m3/day; k – filtration coefficient, m/day. 
Our experiments showed that the calculated radius of the depression surface of the 

infiltration flow is significantly smaller than the experimental one, therefore formula (1) can 
only be used for approximate engineering calculations [2]. 

I.R. Richards and E.S. Childs extended Darcy's formula to an unsaturated flow, as a result 
of which they were able to describe the flow velocity q using the equation 

q ൌ KሺWሻgradηሺWሻ ൅ KሺWሻz,                       (2) 
η ൌ െPሺWሻஓ                          (3) 

which K – hydraulic conductivity, m2/day; 
W – saturation as a fraction of the porosity of the medium, %; 
η – capillary pressure, MPa; 
p – pressure MPa; 
γ – liquid density, g/cm3; 
z – a unit vector, parallel to the axis. 
The equation expresses a linear relationship between the specific fluid flow rate, averaged 

over a certain volume, and the hydraulic gradient, when the value of hydraulic conductivity 
depends on saturation. 

The work proposes a mathematical model that takes into account the movement of free 
and bound moisture, as well as the transition of the first to the second: 

డ௤೘
డ௬

൅ 𝛾ሺ𝑎 െ 𝑢ሻ ൌ
డ௨

డ௧
,                     (4) 

డ௤೒
డ௬

െ 𝛾ሺ𝑎 െ 𝑢ሻ ൌ
డௐ

డ௧
,                     (5) 

 
which qm, qg are, respectively, the specific consumption of bound and free moisture per unit 
area, m3/hour; 

W – respectively, the content of cohesive and free moisture in the soil, %; 
a – molecular moisture capacity, %; 
γ – moisture transfer coefficient;  
u – coordinate; 
t – time, hour. 
By some simplifications of the model proposed in the work, linear equations can be 

obtained that are suitable for studying the movement of moisture in rocks [3]. Thus, the 
linearized moisture transfer equation for the problem of intrasoil leaching from horizontal 
and spherical point drains under the condition of constant initial moisture content W0 and 
known flow rate on the drain 

Qሺtሻ ൌ Q଴ ൅ Qଵ expሺ െ λtሻ, ሺQଵ ൏ 0, λ ൐ 0ሻ,      λ ൌ β/2√D, 
which D – capillary diffusion coefficient; 

β –   constant coefficient determined experimentally. 
For Q1=0 these solutions give: 
1.Line source: 

4πDሺW െ W଴ሻ/Q଴ ൌ െEሺെrଶ/4Dtሻ.                (6) 
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2.Point source: 
4πDሺW െ W଴ሻ/Q଴ ൌ

ଵ

୰
erfcሺr/2√Dtሻ,                                (7) 

which D – average capillary diffusion coefficient; 
W – maximum possible content of cohesive moisture in the soil, %; 
W0 – initial humidity, %. 
r – distance from the source to the point at which humidity is measured, m. 
A numerical method for solving the equation of unsaturated flow in soil was developed 

by I.R. Philip. To estimate z in a vertical flow, he proposes a solution in the form 
𝑧 ൌ 𝑓𝑡ଵ/ଶ ൅ 𝑓𝑡 ൅ 𝜓𝑡ଷ/ଶ ൅ 𝜔𝑡ଶ൅. . . . . . . .൅𝑓௠𝑡௠/ଶ,                      (8) 

where φ,f,ψ,ω,fm  – functions of W. 
It should be noted that, despite the many solutions to problems of filtration at incomplete 

saturation proposed by different authors, there is still no method for determining irrigation 
parameters for the purposes of underground leaching, with the help of which it would be 
possible to make engineering calculations that meet the requirements of practice. 

All known methods contain, as a rule, one or more dimensionless deterministic 
parameters, the value and method of determination of which are unknown, which does not 
allow their use for practical purposes. As a result of research on large-scale laboratory 
installations, the main empirical patterns have been identified formation of infiltration flow 
in conditions that are as close as possible to natural ones, and the factors influencing it during 
ore leaching have been established. 

Thus, the filtration flow, which is formed during injection into dried horizons through a 
point source, as well as during complete filtration, has the shape of a cylinder limited at the 
top by a dome, and the latter is formed when the ore space is not completely saturated with 
liquid [3]. 

It is clear from the curves that the degree of saturation of the rock within the boundaries 
of the flow decreases with distance from its axis, approaching natural moisture. This suggests 
that the speed of the elementary flow at the source can even reach the filtration coefficient 
for a given medium, and near its outer boundary it decreases to minimum values. 

These curves also indicate that the magnitude of the linear velocity of elementary flows 
at any point inside the figure changes in direct proportion to the total volumetric flow rate. 
Consequently, with an increase in the latter, the radius (diameter) of the filtration flow will 
actually remain constant or change very slightly. 

 

 

1-100 cm3/min and 36%; 2-100 cm3/min, and 44%; 3-400 cm3/min and 36%; 4-150 cm3/min and 44% 

Fig. 1. Dependence of the speed of liquid movement in weakly watered ores on the distance to the 
axis of the liquid source at liquid flow and volumetric porosity of the rock mass. 
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As a result of the research, the influence of the size of the irrigated rock on the radius of 
the filtration flow and the nature of its saturation was established, on the basis of which the 
curves in Figure 1 were constructed. However, the structure of the flow changes and the 
liquid is more evenly distributed in the ore, which is more homogeneous in granulometric 
composition. In such ore, even a slight change in density affects the structure of liquid 
distribution inside the infiltration flow (Figure 2). 

1-0-5 mm, 2-5-10 mm 

Fig. 2. Dependence of the total fluid flow rate in the infiltration flow on the distance to its formation 
axis. 

 

1-0-5 mm, 2-3-10 mm 

Fig. 3. Dependence of total fluid flow in the infiltration flow from the distance to its formation axis. 
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The patterns of formation of filtration flow during the injection of solutions into non-watered rocks, 
revealed as a result of experimental studies, form the basis of the developed method [6]. 

The loss of hydraulic pressure of a solution when filtering it through a productive formation of a 
certain thickness m can be represented as the following analytical relationship [7]. 

          𝛥𝐻 ൌ 𝜆
௅

ௗ೎ೌ೙೙೐೗
⋅                                                        (9)  

which ∆H – the loss of pressure of the solution flow when filtering it through the formation, m;  
L – filtration path length, m; 
dchannel – averaged diameter of curved channels along the productive layer, m;  
ϑchannel – real (true) speed of movement of solutions in pore channels, m/s;  
λ – coefficient of hydraulic resistance. 
Let's transform the expression (9) in the form of parameters characterizing the solid constituent 

layer. 
Then the loss of pressure of the productive flow during filtration through the hydraulic radius of the 

pore channels in the zone. 

𝛥𝐻 ൌ 𝜆
௅

ସோ
⋅
ణchannel
మ

ଶ௚
,                                                (10) 

R – hydraulic radius of pore channels in the productive formation, m; 

                                  𝑅 ൌ
ఠ

ఒ
ൌ

ఠ⋅௅

௫⋅௅
ൌ

௏

௖
,                                              (11) 

which ω – the cross-sectional area of the flow along the pore layer, m2; 
η – wetted perimeter of pore channels, m; 
V – volume of the pore layer, m3; 
c – total area of the lateral surface of the pore channels, m2. 
The volume of the pore layer can be calculated from the dependence: 

𝑉 ൌ
௏బ⋅௛

ଵିఌ
,                                                         (12) 

which V0 – the volume of particles, the folded filtration layer, m3; 
h – number of particles in the pore layer: 
ε – porosity of the layer, fractions of units. 

𝛿 ൌ 𝜋 ⋅ 𝑑Т
ଶ ⋅ 𝑛                                                         (13) 

which dT – the diameter of the particles of the solid composing the zone, mm; 
δ – total area of the lateral surface of particles, m2. 
Combining expressions (9), (10) and (11), we obtain the dependence for the hydraulic radius of the 

pore (filter) channel 

𝑅 ൌ
௏

௖
ൌ

௏ೖ⋅௛⋅ఌ

గ⋅ௗт
మ⋅௛

ൌ
గ⋅ௗтయ

଺
⋅

ఌ

గ⋅ௗт
మሺଵିఌሻ

ൌ
ௗିఌ

଺ሺଵିఌሻ
,                      (14) 

or               

𝑑 ൌ 4𝑅 ൌ
2
3
𝑑Т ⋅ 𝜀
ሺ1 െ 𝜀ሻ

𝑓, 

which φ – the shape coefficient of the solid composing zone (according to experimental data for sand 
φ=0.88). The true velocity of the productive solution in the pore channel and the filtration rate are 
related as follows 

𝜗channel ൌ
ణ೑
ఌ

.                                     (15) 
According to Ergun’s experience, the coefficient of hydraulic resistance during filtration most 

accurately describing the filtration process is equal to 

𝜆 ൌ
ଵଷଷ

ோ௘೎೓ೌ೙೙೐೗
൅ 2,34,                       (16) 

which Rechannel – Reynold’s number for the pore channel; 

𝑅𝑒channel ൌ
ణ೎೓ೌ೙೙೐೗⋅ௗchannel

௏
.                        (17) 

Taking into account expressions (14) and (16), after some algebraic transformations, expression 
(17) will take the form 

Rechannel ൌ
ଶ

ଷ
⋅

୊

ଵିக
⋅
஬౜⋅ୢТ
஝

ൌ
ଶ

ଷ
⋅

୊

ଵିக
⋅ Re,                  (18) 

which ϑф – filtration rate (fictitious, used in hydrogeological calculations), m/s; 
      Re – Reynolds number for the filtered productive layer. 
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𝑅𝑒 ൌ
ణ౜⋅ௗ೅
ఔబ

,                                     (19) 

which ν0 – the kinematic viscosity of the productive solution, m2/s (for water ν=1.01∙10-6). 
When the volume changes [7] concentration of salts in the productive solution, kinematic viscosity 

is recalculated for the specific salt composition of the solution, can be determined in the expression 

𝜈ଵ ൌ 𝜈଴ ቂ1 ൅
ଶ⋅ହ⋅ெ

ଶሺଵିଵ,ଷହሻெ
ቃ
ଶ

,                                           (20) 

which M – the volumetric concentration of salts in the productive solution. 
For example, with an increase in the volume concentration of the solid to 30 g/l (M = 0,03), the 

kinematic viscosity of the productive solutions will be 

𝜈ଵ ൌ 𝜈଴ ൤1 ൅
2 ⋅ 5 ⋅ 𝑀

2ሺ1 െ 1,35 ⋅ 𝑀ሻ
൨
ଶ

ൌ 1,01 ⋅ 10ି଺ ൤1 ൅
2 ⋅ 5 ⋅ 0,03

2ሺ1 െ 1,35 ⋅ 0,03ሻ
൨
ଶ

ൌ 1,09 ⋅ 10ି଺мଶ/s. 

Taking into account expression (18), the value of the hydraulic resistance coefficient (16) will take 
the form. 

𝜆 ൌ
ସ

ଷ
ቀ
ଵହ଴ሺଵିఌሻ⋅ఔ

ణ౜⋅ௗТ⋅௙
൅ 1,75ቁ.                  (21) 

Next, using expressions (9) and (10), we obtain the equation for pressure loss during solution 
filtration through the productive formation, 

𝛥𝛨 ൌ 𝜆
ଷ

ଶ
⋅
ଵିఌ

ఌయ⋅థ
⋅

௅

ௗ೎೓ೌ೙೙೐೗
⋅
ణ೎೓ೌ೙೙೐೗
మ

ଶ௚
,               (22) 

or taking into account 

ΔΗ ൌ ቆ
2 ⋅ 150ሺ1 െ εሻଶ ⋅ ν
ϑ୤ ⋅ dТ ⋅ ϕଶ ⋅ εଷ

ቇ
L

d୘
⋅
ϑ୤
2g

൅ ቆ
2 ⋅ 1,75ሺ1 െ εሻ

ϕ ⋅ εଷ
ቇ

L
dТ
⋅
ϑ୤
ଶ

2g
, 

which the filtration coefficient: 
a) for laminar mode 

                𝐾ி௅ ൌ
ఌయ⋅ௗ೅⋅௙మ⋅௚

ሺଵିఌሻమ⋅ଵହ଴⋅ఔ
,                                                   (23) 

b) for turbulent mode  

              K୊୘ ൌ ට
கయ⋅ୢ౪⋅୊⋅୥

ሺଵିகሻ⋅ଵ,଻ହ⋅ଶ
.                                                  (24) 

Let's consider the spreading of a productive solution along a pore layer with a configuration of the 
outer boundaries of streamlines, which corresponds to a diamond-shaped shape (Figure 4).  

 

Fig. 4. Scheme of spreading of the edge lines of solution flow. 

Current filtration flow width (b) 

1. 𝑡𝑔𝛼 ൌ
ሺ஻ିଵሻ

ଶ
⋅

ଶ

௟౭౛ౢ
ൌ

஻ିଵ

௟౭౛ౢ
, 
௕ିଵ

௟
; 𝑏 ൌ 𝑙

஻ିଵ

௟೎ೝ೏
൅ 1; 𝑏 ൌ 𝑙 ⋅ 𝑡𝑔𝛼 ൅ 1; 
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2.                    𝜗ф ൌ
ொ౜
ఠ
ൌ

ொ౜
௕⋅௠

ൌ
ொ౜

൬௟൬
ಳషభ
೗౭౛ౢ

൰ାଵ൰⋅௠
, filtration speed,                        (25)    

3.                          
୼ு

௟
ൌ ൬

ଵହ଴ሺଵିఌሻమ⋅ఔ

ఌయ⋅ௗТ
మ⋅௙మ⋅௚

൰ ⋅ 𝜗௙ , (for laminar filtration mode).                        (26) 

Dependence of the pressure gradient on the hydrodynamic parameters of the productive layer 

ΔΗ ൌ ൬
ଵହ଴ሺଵିఌሻమ⋅ఔ

ఌయ⋅ௗТ
మ⋅௙మ⋅௚

൰ 𝑙 ⋅ 𝜗୤.                       (27) 

The absolute value of the pressure gradient during non-stationary laminar filtration: 

ΔΗ ൌ ൬
ଵହ଴⋅ሺଵିఌሻమ⋅ఔ

ఌయ⋅ௗТ
మ⋅௙మ⋅௚

൰ ⋅ 𝑙
ொ౜
ఠ

,                        (28) 

which ω – the cross-sectional area of the filtration flow in the volume of the productive layer, m2; 
m –thickness of layer, m. 

𝜔 ൌ 𝑏 ⋅ 𝑚 ൌ ቀ𝑙 ቀ
஻ିଵ

௟౭౛ౢ
ቁ ൅ 1ቁ ⋅ 𝑚,                            (29) 

𝛥𝛨 ൌ ൭
ଵହ଴ሺଵିఌሻమ⋅ఔ

ఌయ⋅ௗТ
మ⋅௙మ⋅௚

⋅
ொ೑
௠
׬

௟

௟൬
ಳషభ
೗ೢ೐೗

൰ାଵ
𝑑𝑙

௟೎ೝ೏/ଶ
଴

൱.                  (30) 

Let's consider the integral within 0 ÷ 𝑙௪௘௟/2, 

න
𝑙

𝑙 ൬
𝐵 െ 1
𝑙௪௘௟

൰ ൅ 1

௟ೢ೐೗/ଶ

଴
𝑑𝑙 ൌ ൬

𝑙௪௘௟
𝐵 െ 1

൰
ଶ

൤1 ൅
𝐵 െ 1
𝑙௪௘௟

⋅ 𝑙 െ 𝑙𝑛 ൬1 ൅
𝐵 െ 1
𝑙௪௘௟

𝑙൰൨ ൌ 

ቀ
௟ೢ೐೗
஻ିଵ

ቁ
ଶ
ቂ
஻ିଵ

ଶ
െ 𝑙𝑛 ቀ1 ൅

஻ିଵ

ଶ
ቁቃ,                                               (31) 

𝛥𝛨 ൌ 2 ⋅
ଵହ଴ሺଵିఌሻమ⋅ఔ⋅ொ೑

ఌయ⋅ௗТ
మ⋅௙మ⋅௚⋅ଷ଺଴଴⋅௠

⋅ ቀ
௟ೢ೐೗
஻ିଵ

ቁ
ଶ
⋅ ቂ
஻ିଵ

ଶ
െ 𝑙𝑛 ቀ1 ൅

஻ିଵ

ଶ
ቁቃ.                       (32) 

3 Results 

From the hydrodynamics of groundwater it is known that the steady-state regime of liquid 
filtration in the pore volume of a rock mass is characterized by continuity of flow; from the 
hydrodynamics of groundwater it is known that the steady-state regime of liquid filtration in 
the pore volume of a rock mass is characterized by continuity of flow. The research results 
are presented in Table 1. 

Table 1. Hydrodynamic parameters of solution filtration. 

∆H, m m, m l, m b, m 

ε,
 a

ve
ra

ge
 

va
lu

e 

ν,
 m

2 /
s 

D
ch

an
n

l m
 f 

q,
 m

3 /
 h

ou
r 

g,
 m

2 /
 s

ec
 

0.783068 10 50 15 0.4 0.000001 0.001 0.88 2 9.8 

1.127618 15 60 15 0.4 0.00001 0.001 0.88 3 9.8 

1.578796 20 65 15 0.4 0.00001 0.001 0.88 4 9.8 

1.873746 25 63 15 0.4 0.00001 0.001 0.88 5 9.8 

where 
l – current distance from the injection well to the pumping well, m; 
2 – maximum spreading width of the filtration flow, m. 
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For turbulent filtration of productive solutions through the formation, the expression for 
pressure loss during unsteady filtration will take the form: 

𝛥𝛨Т ൌ 2ට
ሺଵିఌሻ⋅ଵ,଻ହ⋅ଶ

ఌయ⋅ௗТ⋅௙⋅௚
⋅

ொ೑
ଷ଺଴଴⋅௠

⋅ ቀ
௟wel
௕ିଵ

ቁ
ଶ
⋅ ቂ
஻ିଵ

ଶ
െ 𝑙𝑛 ቀ1 ൅

஻ିଵ

ଶ
ቁቃ,                        (33) 

4 Conclusion  

The developed methodology of non-stationary filtration mode during underground leaching 
determined the filtration coefficients in laminar and turbulent modes; it is necessary to take 
into account the physical properties of both the rock mass and the filtered leaching solutions. 
Research has established that the shape of the spreading of solutions in the system of 
interaction between the injection and discharge wells (the edge boundaries of the streamline) 
must be considered as a rhombus, and the spreading angle is formed depending on the degree 
of clogging of the pore volume. 
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