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Abstract 

Different nanocomposites have been attained by in situ polymerization based on ultra-

high molecular weight polyethylene (UHMWPE) and mesoporous SBA-15, this silica 

being used for immobilization of the FI catalyst bis [N-(3-tert-butylsalicylidene)-

2,3,4,5,6-pentafluoroanilinato] titanium (IV) dichloride and as filler as well. Two distinct 

approaches have been selected for supporting the FI catalyst on the SBA-15 prior 

polymerization. A study on polymerization activity of this catalyst has been performed 
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under homogenous conditions and upon heterogenization. A study of the effect of 

presence of mesoporous particles and of the immobilization method is also carried out. 

Moreover, the thermal characterization, phase transitions and mechanical response of 

some pristine UHMWPEs and UHMWPE / SBA-15 materials have been carried out. 

Relationships with variations on molar mass, impregnation method of catalyst and final 

SBA-15 content have been established.  

Keywords: UHMWPE; nanocomposites; mesoporous SBA-15; FI catalyst; 

immobilization approaches. 
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1. Introduction 

Ultra-high molecular weight polyethylene (UHMWPE) is a very attractive thermoplastic 

polymer due to its remarkable physical and mechanical properties, such as high 

chemical and abrasion resistance, good corrosion performance, high impact 

toughness, resistance to cyclic fatigue, and resistance to radiation [1-3]. Moreover, it is 

widely used in medical device applications (e.g. hip and knee prostheses and joint 

replacements) because of its biocompatibility, high mechanical strength, low fatigue 

and wear characteristics [4, 5]. 

These comprehensive uses justify the ongoing demand for UHMWPE with tailored 

mechanical and/or thermal behavior and has urged the development of methods to 

improve its properties, for instance the blending of UHMWPE with other polymers, 

mineral particles, or the addition of reinforcement agents [6, 7]. Several studies have 

been made related to the incorporation of fillers, like CNTs [8, 9], carbon fibers [10], or 

even UHMWPE fibers, leading in this latter case to self-reinforced UHMWPE 

composites [11]. Relative small amounts (<3 wt.%) of inorganic particles, such as 

silica, titania, or calcium carbonate having dimensions in the nanometer scale, have 

been proven to increase both rigidity and toughness of several thermoplastics [12, 13]. 

As an example, an improvement in tensile modulus and impact strength was observed 

for high-density polyethylene (HDPE)/silica nanocomposite [14].  

Properties of nanocomposites depend, in general, on the nature and distribution of the 

nanofillers but also on the fabrication method. Polyethylene (PE) nanocomposites are 

mostly produced by the conventional method of physical blending. Nevertheless, one of 

the crucial drawbacks of UHMWPE is its extremely high melt viscosity, which hinders 

the use of these traditional processing techniques [15]. Due to its very high molecular 

weight and, consequently, entanglement density, the mobility of the UHMWPE chains 

is limited and the complete melting of the polymer during its processing is hardly 

achieved, leading to a heterogeneous final product with fusion defects and/or grain-
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boundaries. Furthermore, an effective dispersion of nanofillers throughout the 

UHMWPE polymeric matrix would turn out rather difficult by using those conventional 

methods, leading to poor mechanical and thermal properties in the resulting 

nanocomposites. 

An alternative approach for fabrication of homogenously dispersed nanocomposites is 

in situ polymerization where a good dispersion of the fillers can be obtained, as well as 

a more effective interaction between the filler particles and the polymer matrix [8, 16]. 

Kaminsky et al. [16] produced UHMWPE/multiwalled carbon nanotube (MWCNT) 

nanocomposites by using in situ polymerization with a metallocene catalyst, Sánchez 

et al. [9] reported the preparation of UHMWPE/MWCNT nanocomposite using a 

TpTiCl2(Et) system and Park and Choi [17] attained UHMWPE/MWCNT 

nanocomposites by using half-titanocene catalytic system.  

Ordered mesoporous silicas, such as MCM-41 and SBA-15, emerged in the 1990s and 

show a hexagonal arrangement of uniformly sized cylindrical pores, with a narrow pore 

size distribution and large surface area [18, 19]. They are well suited for the 

immobilization of several organometallic complexes. Compared to MCM-41, SBA-15 

possesses pores of larger diameter, typically 3 nm for MCM-41 and 7 nm for SBA-15. 

Moreover, these pores may act as polymerization nanoreactors and affect the pattern 

of monomer insertion and the polymer morphology. Research papers published in 

recent years demonstrate the ability of these mesoporous silicas to produce nanometer 

scaled PE through space confined polymerization [20-22]. Dong et al. produced PE 

nanofibers with Cp2ZrCl2 fixed on MCM-41 and SBA-15 where the later fibers possess 

larger diameters due to the higher SBA-15 pore diameter [23]. After supporting an 

iron(II)-bisimine pyridine catalyst on SBA-15, Xu et al. obtained polyethylene with 

higher molar mass than its homogeneous counterpart and fibrous morphology [24]. 

In situ supported ethylene polymerization on MCM-41 channels has been recently 

described as an effective route for the preparation of nanocomposites. Special 

interactions between the MCM-41 material and the polyethylene are developed [25] 
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under those confined synthetic conditions. The resulting self-reinforced HDPE/MCM-41 

nanocomposites revealed improved mechanical performance and easier degradability 

at the end of the life cycle [21, 25]. Attempts to improve dispersion of micro or 

nanosized mesoporous MCM-41 particles within HDPE matrix using the in situ 

polymerization methodologies were reported later on. These methodologies aimed to 

boost interfacial adhesion between components (HDPE matrix and MCM-41) and 

involved either the functionalization of HDPE chains by copolymerization with a polar 

monomer or the modification of MCM-41 surface by several modifying agents before 

polymerization [26, 27].  

Despite all these efforts, the manufacture of homogenously dispersed nanocomposites 

from UHMWPE is still a challenging task [8]. The present work aims the synthesis of 

high performance polyolefin nanocomposites, exhibiting an intimate mixing and 

combining the advantages of using the mesoporous silica SBA-15 with a single-site 

bis-(phenoxyimine) titanium dichloride catalyst, the bis [N-(3-tert-butylsalicylidene)-

2,3,4,5,6-pentafluoroanilinato] titanium (IV) dichloride (FI catalyst), able to produce 

UHMWPE. SBA-15 is selected as a suitable support due its large mesoporous 

channels that could facilitate the access of the titanium complex. Distinct immobilization 

methodologies and their effect on the polymerization activity are investigated. In 

addition, preliminary thermal characteristics and mechanical behavior of these 

nanocomposites are evaluated. The performance of these materials is discussed in 

terms of morphology and crystalline structure assessed by SEM and DSC. 

2. Experimental part 

2.1 Materials and chemicals 

All the chemicals for the synthesis of the SBA-15 particles, P-123 (poly(ethyleneglycol)-

block-poly(propyleneglycol)-block-poly(ethyleneglycol)), hydrochloric acid (37% aq. 
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sol.), TEOS (tetraethylorthosilicate), NaCl and ethanol, were purchased from Sigma-

Aldrich and used as received. 

All experiments for the SBA-15 modification and ethylene polymerization were carried 

out under dry nitrogen using standard Schlenk techniques. Ethylene and nitrogen (Air 

Liquide) were purified through absorption columns containing molecular sieves 4A and 

13X. bis [N-(3-tert-butylsalicylidene)-2,3,4,5,6-pentafluoroanilinate] titanium (IV) 

dichloride (FI catalyst, MCAT) and methylaluminoxane (MAO, 7 wt. % Al in toluene 

solution, AkzoNobel) were used as received. Toluene (VWR Chemicals) was dried by 

refluxing over metallic sodium under a dry nitrogen atmosphere, using benzophenone 

as indicator. 

2.2 Preparation and characterization of pure SBA-15 

The synthesis of pure SBA-15 support was carried out as follows: 13.2 g of P-123 were 

dissolved in 500 mL of water and kept stirring during the night, at room temperature. 

The temperature was raised to 40 °C and then 45 mL of hydrochloric acid (37% aq. 

sol.) and 30.8 g of TEOS were added. After ca. 2 h, 12.3 g of NaCl were added and the 

final mixture was kept under stirring at 40°C for m ore 22 h. Subsequently, the gel was 

aged at 100°C during 3 days in a polypropylene bott le. The product was recovered by 

centrifugation, washed with distilled water until pH 6-7 and dried overnight at 80 °C. 

The template was partially removed by extraction with 96% ethanol, at reflux 

temperature for 16h. The solid was further calcined under a flux of dry air (6L/g.h) at 

550 °C for 12 h. The temperature was increased from  20 to 550 °C at 5 °C/min.  

The powder XRD pattern was recorded on a Panalytical X’Pert Pro diffractometer using 

CuKα radiation filtered by Ni and an X’Celerator detector. Nitrogen adsorption isotherm 

was measured at -196 °C using ASAP 2010 Micromeriti cs equipment. Prior to the 

measurement, the sample was degassed at 350 °C for 3 h. 
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SEM images were obtained on a JEOL JSM-7001F equipment coupled with an Oxford 

EDX detector and TEM images were obtained on a Hitachi H8100 equipment. Samples 

were deposited in a Cu/polymer grid sample holder. 

Prior to use, SBA-15 was dried under a flux of dry air (4L/g.h) at 300 °C for 1 h. The 

temperature was increased from 20 to 300 °C at 5 °C /min. Then, the support was kept 

at this temperature during another 1 h under a nitrogen flow (4 L/g.h) and finally cooled 

to room temperature and stored under dry nitrogen in a Schlenk flask. 

2.3 Ethylene polymerizations  

Polymerizations were carried out in a 250 mL dried and nitrogen-flushed bottle for 

pressure reactions (Wilmad LabGlass LG-3921) magnetically stirred. The reactor was 

filled with 50 mL of toluene, the adequate amount of the co-catalyst MAO, the catalyst 

and ethylene. Polymerizations took place at 20 °C a nd 1.1 bar of ethylene. 

Temperature, pressure and ethylene consumption were monitored in real time and the 

data stored, enabling acquisition of kinetic profiles. The polymerization run until a given 

amount of ethylene was consumed allowing this way the preparation of HDPE 

nanocomposites with a given SBA-15 content. Polymerization mixtures were then 

quenched by the addition of methanol acidified with 5% HCl. The polymer was 

collected and washed twice with methanol before drying.  

2.4 Preparation of the supported catalysts 

Two different methods were used for the preparation of the supported catalysts as 

detailed below: 

2.4.1 Pretreatment of SBA-15 with MAO and impregnation of the FI catalyst on 

pretreated support (Method SBA-MAO) 

The SBA-15 was first treated with MAO in a Schlenk flask under nitrogen atmosphere 

at room temperature by addition of 1.75 mL of MAO to 1 g of support dispersed in 25 

mL of toluene. After 16 h stirring, the solid is washed three times with ca. 20 mL of dry 

toluene and dried at room temperature under vacuum overnight. The aluminum load on 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8 
 

the support, determined by elemental analysis, is 2.7 mmol Al/g support. The 

distribution of Al from MAO in SBA-15 was assessed by Energy dispersive X-ray 

spectroscopy, by obtainment of Si and Al maps.  

After drying, 100 mg of this MAO treated SBA-15 solid is contacted with 1.9 µmol of the 

FI catalyst in toluene (orange solution) and stirred for 4 min, complete discoloration of 

the toluene solution and transfer of color to the solid support was observed after this 

time, suggesting complete immobilization of the catalyst. Severn et al. also reported a 

transfer of color from the toluene solution to the solid support after complete 

immobilization of FI catalyst [28]. In order to confirm that all the FI catalyst is 

immobilized on the mesoporous solid, the catalyst suspension, obtained after 4 min of 

contact between the support and the catalyst solution, is allowed to decant. Then a 

small volume (~2 mL) of the clear supernatant liquid is tested in polymerization 

conditions, with further addition of MAO (same as used for polymerization runs). The 

polymerization test with this clarified solution does not exhibit any activity, confirming 

that no catalyst remained in the supernatant solvent [29]. Moreover elemental analysis 

of the supported catalysts showed the expected Ti content, corroborating the results of 

the clarified liquid test. Additional supported catalysts were prepared with higher 

impregnation times, in order to check the influence of this parameter on the 

polymerization activity.  

2.4.2 Impregnation of MAO pre-activated FI catalyst on SBA-15 (Method PA) 

The solution of FI catalyst in toluene is pre-activated with MAO (Al/Ti = 150) by stirring 

for 15 min at room temperature. After this time, the equivalent of 0.85 µmol of MAO 

pre-activated catalyst is mixed with 100 mg of the support in toluene and stirred for 90 

min. As in method SBA-MAO, upon immobilization no activity of the supernatant liquid 

is shown in polymerization conditions, confirming that there is no catalyst remaining in 

homogeneous solution.  
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2.5 Characterization of the polymers 

High temperature size exclusion chromatography (HT-SEC) analyses were performed 

using a Viscotek system (from Malvern Instruments) equipped with three columns 

(Polefin 300 mm x 8 mm I. D. from Polymer Standards Service, porosity of 1,000 Å, 

100,000 Å and 1,000,000 Å). 200 µL of sample solutions with concentration of 5 

mg·mL-1 were eluted in 1,2,4-trichlorobenzene using a flow rate of 1 mL·min-1 at 150 

°C. The mobile phase was stabilized with 2,6-di( tert-butyl)-4-methylphenol (200 mg·L-

1). Online detection was performed with a differential refractive index detector and a 

dual light scattering detector (LALS and RALS) for absolute molar mass measurement. 

The OmniSEC 5.02 software was used for calculations. 

Powders obtained after polymerization were processed as films by compression 

molding in a Collin P-200-P press between hot plates at 230 °C for 2.5 min without 

pressure, 3 min at a pressure of 5 bar, then 2 min at 10 bar. Cooling process was 

performed with cold water for 3 min at 10 bar.  

Wide-angle X-ray diffraction (XRD) patterns were used for characterizing the crystalline 

features, these profiles being recorded at room temperature in the reflection mode by 

using a Bruker D8 Advance diffractometer provided with a PSD Vantec detector (from 

Bruker, Madison, Wisconsin). Cu Kα radiation (λ = 0.1542 nm) was used, operating at 

40 kV and 40 mA. The parallel beam optics was adjusted by a parabolic Göbel mirror 

with horizontal grazing incidence Soller slit of 0.12° and LiF monochromator. The 

equipment was calibrated with different standards. A step scanning mode was 

employed for the detector. The diffraction scans were collected within the range of 2θ = 

1–43°, with a 2 θ step of 0.024° and 0.2 s per step. Crystallinity a t room temperature 

was evaluated for the neat polyethylene samples by decomposition of the X-ray profile, 

after their normalization, into the different crystalline diffractions and the amorphous 

contribution. On the other hand, crystallinity estimation in the nanocomposites involves 

firstly subtracting the weight contribution of the SBA-15 amorphous halo at the angular 

range analyzed before deconvolution of the resulting patterns into the distinct 

polyethylene crystalline diffractions and amorphous contribution. The error in the 

crystallinity determinations is estimated to be ± 0.04. 
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Thermogravimetric analysis (TGA) was performed in a Q500 equipment of TA 

Instruments under air or nitrogen atmosphere at a heating rate of 10 °C/min.  

Calorimetric analyses were carried out in a TA Instruments Q100 calorimeter 

connected to a cooling system and calibrated with different standards. The sample 

weights ranged from 3 to 5 mg. A temperature interval from -40 to 190 °C was studied 

at a heating rate of 10 °C/min. For the determinati on of the crystallinity, a value of 290 

J/g was used as the enthalpy of fusion of a perfectly crystalline material [30]. 

SEM and TEM micrographs were obtained as described above for the pure SBA-15. 

For the TEM analysis of PE nanocomposites films parallel cuts were prepared from 

different samples at -100ºC using a LEICA EM FC6 cryo-camera in order to attain thin 

sections (80nm) of the film surface by means of the LEICA EM UC6 ultramicrotome. 

Those cuts were picked up on cooper grids. 

Depth Sensing Indentation, DSI, experiments were performed at room temperature 

with a Shimadzu tester (model DUH211S) equipped with a Berkovich type diamond 

indenter. In all specimens, at least 10 indentations were performed at different regions 

of surface. The experimental protocol consisted in: a) the application of a load of 10 

mN at a loading speed of 1.46 mN/s; b) the maintenance of this constant load for 5 s, 

and c) the release of the load at an unloading speed equal than the one used along the 

loading stage. Finally, indentation depth was registered, additionally, for 5 s after 

reaching the minimum load (0.1 mN). Martens hardness, HMs, and indentation 

hardness, Hit, were calculated according to Oliver-Pharr method [31]. These two 

hardness values are given by the ratio of the maximum load to either the contact area 

under load or after releasing the indentor, respectively. Consequently, HMs is related to 

elastic, viscoelastic and permanent strains, whereas Hit only depends on viscoelastic 

and plastic strains. 

The strain-stress tests were performed at two different temperatures, at 25 °C in an 

Instron 3366 dynamometer with a load of 100 N and at 90 °C in a Minimat 2000 

dynamometer with a load of 20 N. Rate of uniaxial stretching was 1 mm/min at both 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 
 

temperatures. Specimens for these experiments were punched out from the polymer 

films. The dimensions of these strips were 10 mm long, 2 mm wide and around 0.15 

mm thick. All the samples were stretched until a final strain value of 350%.  

3. Results and discussion 

3.1 The support SBA-15 

The powder XRD pattern of the as-synthesized SBA-15 (Figure S1 of Supporting 

Information) shows the expected highly ordered two dimensional hexagonal structures, 

constituted by the arrays of uniform mesopores and identified by the three diffraction 

peaks that can be indexed as (100), (110) and (200) reflections associated with the 

p6mm hexagonal symmetry [32]. SEM and TEM micrographs of the SBA-15 

synthesized are depicted in Figure 1a and 1b, respectively, where the particle 

morphology and the well-defined channel structure with the hexagonal arrangement 

are evidenced.  

Also in the Supporting Information, Figure S2 displays the N2 adsorption isotherm 

obtained for the sample of SBA-15 and Table S1 summarizes the textural parameters 

calculated from this experimental isotherm, which are similar to others reported for this 

type of supports [33].  

Moreover, SBA-15 exhibits an N2 adsorption-desorption type IV isotherm with an H1 

hysteresis, characteristic of well-formed SBA-15 material [33] with the presence of a 

well-defined pore filling step with a narrow range of p/p0 (capillary condensation), 

demonstrating the fine organization of cylindrical pores of uniform size. 

EDX maps of Al and Si were recorded in order to evaluate the MAO distribution on the 

surface of SBA-15 after modification and show a homogeneous distribution of Al on 

SBA-15 (Figure S3 of Supporting Information). The retention of the ordered 

morphology after SBA-15 modification is also clearly seen by SEM. 
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3.2 Ethylene polymerization behavior of the homogeneous catalyst  

FI catalysts combined with appropriate activators exhibit very high catalytic activity and 

particularly Ti-FI catalysts possessing fluorine atom(s) ortho to the imine-N can induce 

highly controlled living ethylene polymerizations [34, 35]. The bis [N-(3-tert-

butylsalicylidene)-2,3,4,5,6-pentafluoroanilinate] titanium (IV) dichloride (represented in 

Scheme 1) was used as catalyst to produce UHMWPE under homogeneous 

conditions, as reported in former studies [36, 37].  

The effect of experimental parameters, such as Al/Ti ratio and polymerization time, on 

the behavior of this complex under homogeneous conditions was first investigated. The 

obtained results are summarized in Table 1 and Figure S4 (in the Supporting 

Information).  

Figure S4 shows the kinetic profiles obtained for several Al/Ti ratios at distinct 

polymerization times. It may be seen that quite stable profiles are obtained for 

polymerizations carried out for 6.5 min or 13 min but the activity decay is much more 

pronounced at longer polymerization runs. Accordingly, the average activity and 

productivity (see Table 1) show almost a two-fold increase when the polymerization 

time increases from 6.5 to 13 min, but this linear dependence is lost at the highest 

polymerization time of 26 min. The behavior exhibited at short reaction times is in 

accordance with the reported living character, whereas it starts to deviate from purely 

living characteristics as polymerization times become longer [38]. 

The analysis of the polymer molar masses shows however that the catalytic system is 

already deviating from a living character at low polymerization time, showing a 

polydispersity index, PDI, of 1.3, and this deviation is enlarged with time reaching a PDI 

of 1.6 after 26 min. Heterogenization of the catalyst and mass transport limitations 

within the growing polymer particles enclosing the active sites or a gradual deactivation 

of the catalyst by the growing polymer after a certain polymerization time have been 

proposed to account for this deviation [39, 40]. Accordingly and due to these 

phenomena, the dependence of the activity on the Al/Ti ratio only exhibits an 
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increasing trend for the runs at the shortest polymerization times. Although, data on the 

effect of Al/Ti over polymerization is scarce for this type of catalyst, a similar 

dependence has been described by other authors [41, 42]. On the other hand, a 

stronger decay of the instantaneous activity seems to occur at the highest Al/Ti ratios 

(Figure S4, right plot, in Supporting Information) therefore, the role that may play the 

increasing concentration of trimethylaluminum, invariably present in MAO, in 

deactivation of FI catalyst should not be neglected [43, 44]. 

Lemstra et al. reported that rising Al/Ti ratio results in an increase of the molar mass, 

arguing that the chain transfer to aluminum does not play a major role in their catalytic 

system [38]. In the present conditions, the values of Mw obtained for polymerizations at 

identical reaction time (6.5 min) FIHOM014, FIHOM008 and FIHOM005 indicate that 

molar mass barely increases with the Al/Ti ratio. This behavior may be explained by 

two different effects acting simultaneously: on one hand, the increase of the Al/Ti would 

promote the activation and stabilization of the catalytic species but, on the other hand, 

a detrimental influence is also expected with the rise of Al/Ti ratio due to the easy 

deactivation of the catalyst by the trimethylaluminum present in MAO. The balance of 

these two opposing effects will determine the catalytic behavior that, under the 

conditions here used, gives rise just to a slight increase in the polymer molar masses. 

On the contrary, at constant Al/Ti ratio an increase in the polymerization time 

significantly increases the polymer molar mass, as clearly deduced from Table 1. 

Nevertheless, the catalyst starts deviating from the living character at short 

polymerization times, as a non-linear Mn dependence on time is observed.   

3.3 Ethylene polymerization behavior of the supported catalyst  

Two different immobilization methods have been used in this work to perform the 

synthesis of UHMWPE nanocomposites by in situ supported polymerization. 

Methylaluminoxane (MAO) is needed in both for the FI catalyst to be immobilized on 

the SBA-15. The direct impregnation of FI catalyst on SBA-15 was also attempted in an 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 
 

early stage but it was proved to be ineffective. In fact, to the best of our knowledge, 

there is no reported data in open literature regarding the direct immobilization of this 

catalyst on any type of silica. Steric reasons may account, most probably, for this 

feature.  

The first approach used involves immobilization of the catalyst on SBA-15 formerly 

modified with MAO (SBA-MAO method), as displayed in Scheme 2. This is one of the 

most widely used techniques to support catalysts and comprises the treatment of the 

silica surface with MAO before incorporation of catalyst to form the catalytic complex 

with the surface-anchored MAO [45]. Other authors have used the same methodology 

to immobilize FI catalysts on silica. Cui et al. carried out ethylene polymerization with 

dried SiO2 firstly treated with MAO and then with a titanium complex that turned out in 

polymers with a higher molar mass, a higher melting temperature and a better 

morphology than the ones obtained with the corresponding homogeneous catalyst [46]. 

Carlini et al. anchored a nickel catalyst to MAO-treated silica and obtained a thermally 

stable nickel-heterogenized catalyst able to polymerize ethylene with higher 

productivity in comparison with its homogeneous counterpart [47]. The same procedure 

was applied to mesoporous silicas: a zirconium FI complex was immobilized on SBA-

15/MAO and nanofibrous polyethylene was produced [48]. Another zirconium-FI 

complex supported on MCM-41/MAO leaded to extended-chain polyethylene 

nanofibrils with diameters of about 10 – 100 nm [49].  

The second method implies the pre-activation of catalyst with MAO prior to its contact 

with SBA-15 (PA method). This route was applied before to metallocene catalysts and 

it was reported that the number of active sites was increased, leading to highly active 

catalysts. This method has also the benefit of simplifying the experimental set-up for 

immobilization (see Scheme 3).  

Both treatments were performed in a way that the final Al/Ti ratio is the same after the 

immobilization of the catalyst. The influence of these two routes on activity and polymer 

properties will be discussed now. Results listed in Table 2 indicate a significant 
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decrease of the activity upon FI immobilization on SBA-MAO, as compared with those 

values shown in Table 1 for neat polyethylenes achieved under homogeneous 

conditions. This is a common feature when catalysts are supported and it is generally 

attributed to catalyst deactivation pathways during immobilization. For the FI catalyst 

type, this aspect may be even more pronounced in the present conditions, since MAO 

has been used to immobilize the FI catalyst. 

It is well known from literature that titanium FI-catalysts are very sensitive toward 

trimethylaluminum (TMA), which is always present in the co-catalyst MAO [43, 44]. The 

proposed deactivation pathway is depicted in Scheme 4 [35]. In the presence of TMA, 

one of the ligands is abstracted from the cationic Ti species 2 with the consequent 

formation of the species 3. The resulting Al and Ti species are barely active for olefin 

polymerization. Indeed, in the case of ethylene polymerization promoted by the 

homogeneous FI catalyst it was observed a decrease of the activity of ca. 30% (from 

20380 to 13870 kgPE/mol Ti.h) when using a pre-activated catalyst (which was 

contacted during 15 min with MAO prior to polymerization) while maintaining the other 

experimental conditions identical to those used for the FIHOM008 homopolymer.  

The pre-treatment of the SBA-15 with MAO is expected to generate surface-bonded Si-

O-Al(Me)2 species [50] that may be involved as well in ligand transfer reactions and 

even enhance them relatively to those occurring with free TMA. Therefore, higher 

catalyst deactivation may be expected for the supported catalysts.  

In relation to this reasoning, the polymerization activity is significantly reduced by 

increasing the time of contact between the FI catalyst and the SBA-MAO support (from 

4 to 180 min), as observed when comparing the samples FISBA007, FISBA004 and 

FISBA003. It is also worthwhile to notice that a significant decrease of the molar 

masses and a broadening of the molar mass distribution are revealed when applying 

the SBA-MAO method for the immobilization of FI catalyst). This observation 

corroborates our assumption related to the significant enhancement under these 

conditions of the deactivation pathways inhibiting living propagation.  
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In the PA approach, the FI catalyst is pre-activated by the addition of MAO in a ratio of 

Al to Ti of 150:1 for 15 min, and then the FI-MAO system is contacted with the SBA 

support. During pre-activation, the orange catalyst turned brownish, which may indicate 

that certain amount of the catalyst could be decomposed, a fact that might contribute to 

the decrease in the polymerization activity observed. This is in agreement with the 

already mentioned decomposition of titanium FI catalyst by the presence of TMA [43]. 

An interesting feature is that by using the PA method the time necessary for 

immobilization significantly increases in relation to the previous method. Despite the 

longer impregnation time that is expected to promote the detrimental effect of TMA 

over FI catalyst, higher activities are surprisingly obtained. In this case, a fraction of the 

catalyst is deactivated during the catalyst pre-activation by action of free TMA, but the 

support has not been previously pre-treated with MAO and, accordingly, a lower 

amount of surface-bonded Si-O-Al(Me)2 species are expected. Therefore, the 

deactivation pathways that may involve these surface-bonded species are reduced. 

Consequently, at similar experimental conditions, the polymer molar mass obtained 

with the PA method is considerably higher than that achieved using SBA-MAO route. 

As a general trend the nanocomposites, independently of the immobilization method 

used for its synthesis, show a broadening of the molar mass distribution when 

compared to the values obtained for the neat polyethylene samples. 

In order to determine if significant diffusional aspects may be operating, the normalized 

kinetic profiles of representative homogeneous and supported catalytic systems are 

shown in Figure 2. 

It can be seen that all the curves exhibit a fast increase of the initial activity as well as 

short and similar induction periods, characteristic of the catalytic systems without 

significant diffusional constraints. It is worthwhile to notice that the homogeneous and 

the PA systems show analogous deactivation trends, while a slightly higher 

deactivation rate is observed for the SBA-MAO method. This may be related to the 
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presence of higher amounts of the surface-bonded Si-O-Al(Me)2 species, as already 

mentioned. 

Figure 3 shows the morphology found by SEM in powder samples, obtained directly 

from the reactor, for a neat polyethylene and two nanocomposites synthesized under 

the two distinct immobilization approaches. The formation of fibrils in the composites is 

well evident, while in the neat polyethylene these elongated fibrils are hardly observed. 

Moreover, it seems that the latter are more numerous and narrower in FISBA017 than 

in FISBA007 sample. 

3.4 Characterization of the polyethylene based materials 

3.4.1 Evidence of SBA-15 on the nanocomposites 

SBA-15 used as catalyst support for the synthesis of polyethylene was not removed at 

the end of polymerization stage. As the polymerization is expected to occur both in the 

external surface and within the mesoporous, the resulting materials can be considered 

nanocomposites comprising a polymeric matrix and the mesoporous SBA-15 particles 

as filler. XRD profiles do not provide information concerning the spatial distribution of 

the mesoporous material within the polymer matrix but it allows assessing the presence 

of SBA-15 in the final nanocomposite. Figure S5 in Supporting Information shows the 

X-ray pattern of SBA-15, a polyethylene homopolymer and a nanocomposite at the low 

angle region. The polyethylene (sample FIHOM014) does not show any diffraction 

peak at that low angle region (2θ < 5°). The presence of diffraction peaks in this region 

for the nanocomposites samples clearly indicates that SBA-15 retains its structural 

integrity during the polymerization process. This is corroborated by the TEM 

micrograph of FISBA017 sample at high magnification, where the regular pore 

structure of SBA-15 is clearly seen (see Figure S6 in Supporting Information). 

3.4.2 Thermogravimetric analysis  

Once different UHMWPE based materials, either neat polyethylenes or those 

incorporating SBA-15, have been synthesized through different methodologies, 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

18 
 

knowledge of some of their physical characteristics is required. The choice of the 

specimens to be characterized has been mainly made depending on the amount of 

UHMWPE based material produced and the amount required for a given experiment. 

Thermogravimetry allows learning about the thermal stability exhibited by specimens, 

the distinct decomposition processes involved depending on the atmosphere used and, 

the determination of the SBA-15 amount in the nanocomposites. It has been observed 

that the content estimated at a given specimen is rather independent of the 

environment used, mainly in those nanocomposites prepared by the approach where FI 

catalyst has been pre-activated with MAO before the further impregnation on SBA-15 

surface, labeled as PA. Average values obtained from inert and oxidative conditions 

are listed in Table 3. 

Figure 4 shows the thermogravimetry curves under inert and air environments for 

some of the different polymeric materials. Under inert conditions, a single primary stage 

of decomposition is observed in the temperature range from 200 to 650 °C for the 

pristine UHMWPE and the different composites, as represented in the upper plots on 

the left and right, respectively. Thermal decomposition of polyethylene has been 

reported to occur under these conditions through a random scission mechanism that 

turns out in the rupture of original polymeric chain into fragments of varying length. The 

mechanism describes a random generation of free radicals along the polymer 

backbone, followed by the scission of the chain that results in the formation of a 

molecule with an unsaturated end and another with a terminal free radical. Subsequent 

hydrogen chain transfer reactions transform the radical fragments into straight chain 

dienes, alkenes and alkanes [51]. 

Four different degradation processes are, however, noticeable at identical temperature 

interval when air is the environment used, as depicted in the bottom plots of Figure 4. 

It is well known that the initial reaction of the polyethylene thermal oxidation is the 

formation of alkyl radicals from polymeric chains followed by the reaction of alkyl 

radicals with oxygen to form hydroperoxides, which can decompose to alkoxyl radicals. 
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Then, the alkoxyl radicals abstract hydrogen from the chain and other alkyl radical 

forms. Finally, various carbonyl species are generated. 

Molar mass seems not to affect much the temperature at which decomposition reaches 

a 25 % loss of weight in the neat UHMWPE. However, it is clearly noticeable in Figure 

4 that presence of SBA-15 alters the thermal stability in the hybrids when compared 

with that presented by the neat UHMWPEs under inert conditions. The temperature at 

which the mass loss is 25 wt. % is shifted to lower values in the hybrids (with the 

exception of FISBA016 that presents the highest Mw, around 2 millions) in comparison 

with those found in the neat UHMWPE although decomposition process starts at 

similar temperatures. 

Moreover, it seems that the synthetic approach is important for the decomposition 

characteristics exhibited under oxidative conditions. In fact, the 5 % weight loss occurs 

at temperatures slightly higher in the SBA_MAO materials compared with the PA ones 

while still higher differences are found for T25%. These features point out a catalytic 

outcome of the presence of small amounts of SBA-15 in these PA samples. In fact, 

MCM-41, which is other mesostructured silica particle, is frequently used as 

degradation catalyst. An important shift to lower temperatures of the main degradation 

process under inert conditions has been reported with increasing MCM-41 composition 

[21] in nanocomposites prepared by in situ polymerization of mesoporous MCM-41 and 

ethylene, the former also acting as catalyst carrier and as nanofiller. The catalytic 

degradation mechanism implies an initial cracking of large hydrocarbon molecules into 

small C3–C5 olefins in the catalytically active sites, followed by oligomerization, 

cyclization and hydrogen transfer reactions that result in the formation of aromatics, 

light paraffins and olefins. 

3.4.3 Differential Scanning Calorimetry (DSC)  

The DSC results are summarized in Table 4 and Figure 5. Table 4 reports information 

on the first melting process of samples obtained either from the reaction powder or the 

corresponding processed films. As a general trend, independently of being synthesized 
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under homogeneous or supported conditions, there is a significant difference in 

crystallinity and melting temperature between both types of specimens: reactor 

powders and films. Crystallinity and melting temperature, this last one directly related to 

the size of crystalline entities, are considerable larger in the as-powder samples, 

because disentangled chains are able to crystallize during polymerization giving rise to 

rather chain-extended crystals with a very small proportion of amorphous regions. On 

the contrary, chains after melting, because of their large length and the high mobility 

degree that they possess at those high temperatures, are able to establish a great 

number of entanglements between them and crystal formation will be hindered during 

crystallization along the cooling process applied for films manufacture. Then, a 

significant reduction is observed in crystallinity and melting temperature of the 

crystallites generated during film processing. 

Moreover, results point out that the different homogeneous UHMWPE samples exhibit 

crystallinity values slightly higher than those in the supported specimens that 

incorporate SBA-15 (with the exception of FISBA004 that shows an analogous value in 

the as-powder sample and the highest one in the film,). This feature is a general trend 

since this lower crystallinity is evident in the as-powder sample as well as during first 

melting of films and their further crystallization. In addition, presence of SBA-15 

particles slightly inhibits UHMWPE crystallization. Nevertheless, transition 

temperatures (melting temperatures and crystallization temperatures) are not strongly 

affected by the SBA-15 presence.  

The trend in crystallinity values has been confirmed by their determination from X-ray 

measurements at room temperature. The crystallinity degrees obtained have been also 

included in Table 4 and the corresponding profiles can be seen in Figure S7 of 

Supporting Information. It is found that the neat polyethylene samples show 

crystallinities slightly higher than those exhibited by the nanocomposites, this fact 

corroborating the DSC results. 
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Figure 5b shows that there are some differences in the thermal behavior of the 

nanocomposites, at temperature ranging from 80 to 110 °C, depending on the synthetic 

approach used. At that interval, a small shoulder is observed in the specimens 

prepared by PA method while its presence is rather less evident in those SBA-MAO 

samples. That small endothermic peak is attributed to those UHMWPE crystallites that 

are developed inside the SBA-15 channels, similarly to evidences found in 

nanocomposites with MCM-41 [21]. Channel confinement prevents a further growth of 

the crystallites and, accordingly, these crystalline entities generated within SBA-15 

particles are of much smaller size than those that can grow at its surface and in the 

UHMWPE bulk. Then, melting temperature is much lower. Therefore, this feature 

seems to point out that there are none or a very small amount of crystallites within 

SBA-15 channels in samples synthesized by SBA-MAO approach. This may also be in 

relation to the earlier decomposition of samples obtained by PA method (where 

UHMWPE crystallites are developed inside the SBA-15 channels) compared to SBA-

MAO and UHMWPE samples.  

3.4.4 Stress-strain behaviour 

Left plot of Figure 6 depicts the stress-strain behavior at room temperature for two 

homopolymers, FIHOM004 and FIHOM002, and their comparison with two 

nanocomposites, FISBA004 and FISBA016 representative of the two immobilization 

methodologies used. Table 5 lists the different parameters obtained for the several 

samples at the two temperatures analyzed. The stress-strain curves for all these 

specimens are characteristic for ductile polymers. Results demonstrate that there are 

practically no differences between the two homopolymers neither in their mechanical 

parameters values nor in the whole deformation process, including cold drawing and 

strain hardening. These features are related to the similar molar mass of both 

UHMWPEs and, consequently, to analogous characteristics of their macromolecule 

entanglements, involving consequently, similar tensile strength and toughness. 
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The incorporation of SBA-15 particles leads, however, to stiffer materials with higher 

mechanical strength and toughness compared with those found in the neat 

homopolymers. Thus, the Young`s modulus, the σend and the value of the area under 

stress-strain curve are higher in FISBA004 and FISBA016 than in homopolymers 

FIHOM002 and FIHOM004. All these features are clearly deduced from the left plot of 

Figure 6. The best response is exhibited along the whole stress-strain curve for the 

FISBA016 nanocomposite. Therefore, it shows the higher mechanical parameters (E, 

σY, σend), these features being associated with its superior SBA-15 content and much 

higher molar mass. 

On the other hand, these two nanocomposites (FISBA004 and FISBA016) were 

prepared using two different methodologies. A straightforward correlation between the 

mechanical responses and the preparation approach cannot be undoubtedly 

established because, first of all, the final SBA-15 content is not identical in both of 

them. Secondly, analogous polymer-filler interactions are expected to be developed 

within these hybrids. Then, it seems that the most important factors that trigger 

deformation process in these nanocomposites are either the SBA-15 amount or further 

molar mass variations. The synthetic methodology may however play an indirect role 

as it might be responsible for obtaining materials with lower (those by SBA-MAO 

method) or higher (those by PA approach) molar masses or with a bigger or smaller 

proportion of PE chains within SBA-15 channels. Consequently, the FISBA016 hybrid 

exhibits the highest mechanical parameters (Young´s modulus, yield stress and tensile 

strength -as deduced from stress at the end of the experiment) compared with those 

shown by the homopolymers and by the other FISBA004 nanocomposite, which 

incorporates less SBA-15 amount and has lower Mw. Moreover, deformation process 

undergoes some changes from homopolymers to FISBA016 hybrid. Three stages are 

observed in the two homopolymers and the FISBA004: the initial elastic zone, a 

uniform region of cold-drawing and, finally, the strain hardening, which is more 

pronounced in the FISBA004 nanocomposite because of SBA-15 incorporation. Cold-
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drawing stage is very narrow in the FISBA016 and, then, strain hardening starts at 

much lower strains because of its high rigidity and extremely high Mw. This superior 

stiffness and chain length will impose higher constraints for disentangling UHMWPE 

macrochains in the FISBA016 and, then, tensile strength increases compared with that 

found in the FISBA004 nanocomposite. 

The effect of temperature is clearly deduced from the right plot in Figure 6 and results 

listed in Table 5. All of mechanical parameters (Young´s modulus, yield stress and 

tensile strength) are significantly reduced with respect to those obtained at a given 

specimen at 25 °C. Incorporation of SBA-15 particle s in the nanocomposite leads again 

to a stiffer material with high toughness. Differences in the mechanical parameters 

between the homopolymer and the nanocomposite are now more noticeable at this 

high temperature. 

3.4.5 Indentation experiments 

Indentation has been used as a fast and reliable mechanical test for the evaluation of 

the hardness, modulus and creep variations upon incorporation of the filler [52], in a 

way to get information on the rigidity and resistance of the materials to plastic 

deformation. The indentation results are depicted in Figure 7 for loading-maintenance-

unloading experiments performed in some of the homopolymers (left plot) and hybrids 

(right representation) under study. Significant variations are observed depending on the 

homopolymers molar mass and SBA-15 presence in the composites, both on the 

shape of curves and on the indentation depth reached. The FIHOM007 is the 

homopolymer with the highest Mw and, consequently, higher amount of entanglements; 

and the indenter cannot penetrate too much in its surface. The other two 

homopolymers, FIHOM004 and FIHOM002, exhibit a rather analogous Mw and indenter 

depth reached at identical load is larger, because both are softer than FIHOM007. 

Therefore, it seems that higher molar mass hinders indenter penetration under neat 

UHMWPE surface. Hardness is in agreement with this penetration hindrance and 
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values are very similar for FIHOM004 and FIHOM002 and lower than that found in 

FIHOM007. 

Right plot in Figure 7 proves the great influence that incorporation of SBA-15 particles 

exerts on these loading-maintenance-unloading processes. It is clearly seen that 

indenter can go more deeply into the material and, accordingly, depth attained is 

significantly enlarged in the FIHOM002 homopolymer compared with those achieved in 

the composites. Thus, SBA-15 acts as reinforcing agent and stiffer component and its 

content is in FISBA017 higher than in FISBA016. Nevertheless, Mw is just the opposite: 

in FISBA016 higher than in FISBA017. Results seem to indicate that for this 

mechanical measurement at composite surface the SBA-15 content is more crucial 

than a larger amount of entanglements. Consequently, depth reached at a given load is 

reduced in the FISBA017 nanocomposite, which contains the highest SBA-15 

composition, and hardness value is enlarged.  

Additional information can be deduced from the depth vs. indentation time 

representation, as displayed in Figure 8. The loading-maintenance-unloading 

processes are clearly observed as well as their dependence on molar mass and SBA-

15 content. Thus, deformability is reduced and, accordingly, depth is decreased along 

loading stage if molar mass is increased in the homopolymers (upper plot) and if SBA-

15 is incorporated. The maintenance at a constant load for 5 second allows learning on 

creep response of these materials. An increment of penetration depth is seen for all the 

specimens during this maximum load at 10 mN, Lmax, i.e., during the maintenance 

period (see both plots in Figure 8). This depth is dependent again on molar mass and 

presence of SBA-15 in the ultimate material. Accordingly, homopolymers become more 

compliant as molar mass is lowered and their creep resistance is lower compared with 

that exhibited by the hybrids.  

Figure 8 also displays that the unloading process is mainly dominated by the 

viscoelastic recovery of the different materials. Once experiment is over, a permanent 

deformation (plus a small amount of delayed elastic recovery) is attained in all the 
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specimens since they are not completely elastic. The softening process involves a very 

small rise of the amount in the plastic deformation in the samples with lowest molar 

masses. Moreover, a decrease in this viscous and non-reversible contribution is 

observed as SBA-15 content is raised. 

Properties in nanocomposites are usually highly dependent on minor component 

content and also on its distribution [53]. Figure S8 of supporting information shows the 

SEM images of the UHMWPE/SBA-15 materials and it allows learning about particle 

distribution and size of the agglomerates of the SBA-15 within the polyethylene matrix. 

SBA-15 is not uniformly dispersed within the UHMWPE matrix. Thus, the resulting 

nanocomposite turns out heterogeneous. The maximum SBA-15 content tested in the 

present work is 8.5 wt. % due to the known tendency of silica to agglomerate. 

Nanofiller loadings higher than 10 wt. % are frequently not considered because 

agglomeration starts to play a significant role and mechanical enhancement levels-off 

or even decreases. A 10% E increase was found upon addition of 5.0 wt.% raw 

MWCNTs to UHMWPE [54], ascribed to the poor nanofiller-matrix interface, the 

presence of voids and the nanotube waviness that limits the efficiency of the 

reinforcement. Figure S9 shows the TEM micrographs of two nanocomposites, 

FISBA007 and FISBA016, representative of each immobilization method used. No 

significant changes on overall morphology can be detected. 

4. Conclusions 

Different UHMWPE homopolymers have been synthesized using a FI catalyst with 

living character. Moreover, this catalyst has been immobilized by two different 

approaches onto SBA-15 particles giving rise to UHMWPE based composites.  

Very high activities in ethylene polymerization are obtained for the homogeneous FI 

catalyst, as expected from literature data. Moreover, the average activity and the 

productivity display almost a linear increase at those low times, although this linearity is 

lost at highest times. Dependence of molar masses on polymerization time shows 
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deviations from that expected living character even at low times in the polyethylenes 

prepared with the homogeneous catalyst. On the other hand, an increase in Al/Ti ratio 

seems not to affect significantly molar masses in the UHMWPE homopolymers. This 

behavior might be explained by the balance of two opposite effects acting 

simultaneously: promotion of the activation and stabilization of catalytic species and a 

detrimental deactivation of the catalyst by the presence of trimethylaluminum, TMA, in 

methylaluminoxane.  

An important decrease of the activity is observed upon immobilization of the FI catalyst 

by the SBA-MAO methodology. This reduction is more considerable than that 

undergone when FI catalyst is supported by the pre-activated approach in spite of the 

shorter impregnation time required by the former method. It is suggested that the 

deactivation pathways that may involve Si-O-Al(Me)2 surface-bonded species are 

lowered using the latest methodology. 

Decomposition characteristics exhibited under oxidative conditions seem to be affected 

by the synthetic approach used during preparation of UHMWPE/SBA-15 materials. 

Nevertheless, none specific trend is seen under inert environment. 

Very high crystallinity values are exhibited by the distinct UHMWPE samples in the 

form of as-powder from the reactor, either homopolymers or composites, in comparison 

with those estimated from films. Moreover, crystallinity from the first melting process is 

in the homopolymers generally higher than that in the hybrid materials independently of 

the approach used for their preparation. Nevertheless, transition temperatures (melting 

temperatures and crystallization temperatures) are rather independent of the SBA-15 

presence and of the method for supporting the FI catalyst. On the other hand, 

composite specimens prepared by PA show a weak but noticeable shoulder on heating 

from 80 to 110 °C, which is attributed to the melti ng of those UHMWPE crystallites 

developed inside the SBA-15 channels. 

The incorporation of SBA-15 particles leads to stiffer materials, as deduced from 

stress-strain and indentation measurements, with higher elastic modulus, mechanical 
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strength and toughness compared with those magnitudes found in the neat 

homopolymers. Moreover, it seems that the most important factor that triggers 

deformation process is, in these nanocomposites, the SBA-15 amount followed by 

molar mass variations. Homopolymers become more compliant as molar mass is 

diminished and their creep resistance is lower compared with that exhibited by the 

hybrids. 
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Scheme 2 
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Scheme 3 
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Scheme 4  
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Figure captions 

Figure 1: (a) SEM image (b) TEM micrographs of SBA-15. 

Figure 2: Normalized kinetic profiles for ethylene polymerizations.  

Figure 3: SEM micrographs for the FIHOM002 homopolymer and FISBA007 and 

FISBA017 composites at different magnifications. 

Figure 4: TGA curves of neat UHMWPE (left) and its nanocomposites (right) under 

inert (top) and oxidative atmosphere (bottom). 

Figure 5: DSC curves of the first melting (a and b) and subsequent crystallization 

processes (c and d) of neat UHMWPE and nanocomposites. Melting region of 

the small crystallites in the inset 

Figure 6. Stress-strain curves for different homopolymers and composites: at 25 °C 

(left) and 90 °C (right). 

Figure 7: Indentation curves of load-maintenance-unload vs. depth for some 

homopolymers (left) and composites (right). 

Figure 8: Indenter depth dependence on experimental time for some homopolymers 

(top curves) and composites (bottom curves). 

 

Table captions 

Table 1: Polymerization conditions, activities, productivities, molar mass and 

dispersities for the UHMWPE’s attained under homogenous conditions.  

Table 2: Polymerization conditions, activities, productivities, molar masses and 

dispersities obtained for the polymeric materials attained with the supported 

catalyst. 
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Table 3: Average SBA-15 wt. % content, characteristic decomposition temperatures 

under nitrogen and air atmospheres for neat UHMWPE specimens and 

nanocomposites (the temperatures of 5%, T5%, and 50%, T50%) and the SBA-

15 wt.% content at a specific environment. 

Table 4: SBA-15 wt.% content, crystallinity values of films from X ray experiments and 

DSC calorimetric data for neat UHMWPE and nanocomposites (films and 

powders from the reactor). 

Table 5: Mechanical parameters of different samples, analyzed at 25 °C and at 90 °C: 

Young’s modulus, E; average value. Eaverage; yield deformation, εY; yield stress, 

σY; final stress, σend. 

 

Scheme Captions 

Scheme 1: The FI catalyst used. 

Scheme 2: Impregnation of catalyst on SBA-15 previously modified with MAO. 

Scheme 3: Impregnation on SBA-15 support of pre-activated catalyst with MAO. 

Scheme 4: Proposed pathways for the reaction of the FI catalyst with MAO. Reprinted 

with permission from [35]. Copyright (2015) American Chemical Society.  
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Sample Al/Ti 

Reactio

n time 

(min) 

Average 

activity 

(kgPE/mol 

Ti.h) 

Productivity 

(kgPE/molTi) 

Mw 

(106 

g/mol) 

Mw/Mn 

 

FIHOM014 500 6.5 17660 2019 1.045 n.a 

FIHOM003 1500 6.5 19730 2140 - -- 

FIHOM004 1500 13 19150 4150 1.479 n.a. 

FIHOM008 2500 6.5 20380 2210 1.172 1.3 

FIHOM002 2500 13 19310 4180 1.359 1.5 

FIHOM018 2500 26 14580 6308 2.033 1.6 

FIHOM005 5000 6.5 21380 2316 1.197 1.4 

FIHOM007 5000 26 15150 6565 1.881 n.a. 
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Sample Method 

FI load 

in the 

support 

(10-6 

mol/g) 

Impreg-

nation 

time 

(min) 

Al/Ti 

Reaction 

time 

(min) 

Average 

activity 

(kgPE/ 

mol 

Ti.h) 

Produc-

tivity 

(kgPE/ 

molTi) 

Mw 

(106 

g/mol) 

Mw/Mn 

 

 

FISBA007 
SBA-

MAO 
19 4 2500 12 3160 632 0.541 2.2 

FISBA004 
SBA-

MAO 
19 60 5000 153 380 960 0.590 1.6 

FISBA003 
SBA-

MAO 
19 180 2500 146 220 696 0.339 2.6 

FISBA016 PA 8 90 1250 9 8120 1305 1.965 1.9 

FISBA017 PA 8 90 2500 15 5460 1364 0.838 2.5 
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Sample 

Average SBA-

15 wt.% 

content 

Inert atmosphere Oxidative atmosphere 

T5% T25% 

SBA-15 

 wt.% 

content 

T5% T25% 

SBA-15 

wt.% 

content 

FIHOM014 0 435 461 0 269 400 0 

FIHOM004 0 398 447 0 278 397 0 

FIHOM002 0 421 455 0 282 364 0 

FIHOM005 0 429 456 0 288 400 0 

FISBA007 5.8 415 442 5.6 290 407 6.0 

FISBA004 4.5 398 428 5.2 289 403 3.8 

FISBA016 6.9 437 461 6.8 273 364 7.0 

FISBA017 8.5 413 441 8.4 270 310 8.6 
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Sample 
SBA-15 

wt.%TGA 

Film  Powder 

fc
XRD fc

m Tm (ºC) fc
C TC (ºC) fc

m Tm (ºC) 

FIHOM014 0 0.60 0.51 130.0 0.55 116.5 0.82 140.5 

FIHOM004 0 0.56 0.52 131.5 0.54 118.0 0.82 140.0 

FIHOM002 0 0.58 0.53 131.0 0.54 118.0 0.83 140.5 

FIHOM005 0 0.59 0.51 131.5 0.56 117.5 0.82 140.5 

FIHOM007 0 0.51 0.48 131.5 0.51 118.0 0.81 141.0 

         

FISBA007 5.8 0.50 0.49 130.0 0.49 117.5 0.78 141.0 

FISBA004 4.5 0.44 0.57 133.0 0.56 118.5 0.82 142.0 

FISBA016 6.9 0.46 0.49 132.5 0.47 118.0 0.78 140.5 

FISBA017 8.5 0.48 0.49 132.5 0.46 118.5 0.77 139.5 
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Sample  
SBA-15 

wt.%  

Eaverage  

(MPa) 

εY 

(%) 

σY 

(MPa) 

σend 

(MPa) 

T = 25 °C at 1 mm/min  

FIHOM002 0.0 227 50 18.2 21.6 

FIHOM004 0.0 230 50 18.4 22.8 

FISBA004 4.5 262 48 19.9 31.3 

FISBA016 6.9 326 35 20.7 33.5 

T = 90 °C at 1 mm/min  

FIHOM004 0.0 60 42 5.5 8.1 

FISBA016 6.9 107 38 6.7 9.8 
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• Optimized immobilization methodology for FI catalyst on SBA-15 ordered 
porous silica allows attaining high polymerization activities and very high 
polymer molar masses. 

• UHMWPE/SBA-15 nanocomposites have been synthesized by in situ 
polymerization. 

• Stiffer materials are obtained with higher elastic modulus, mechanical strength 
and toughness compared with those found in the neat UHMWPEs. 

 
 
 

 
 

 

 

 


