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ABSTRACT 

Breast cancer is the most common cancer among women and it is the most frequent 

cause of cancer death in women. In its aetiology are involved non-genetic and genetic 

factors. However, the current knowledge of breast cancer genetic risk cannot explain as 

much as two-thirds of familial cases. All common risk polymorphisms identified by GWAS 

and functionally analysed are cis-regulatory. Therefore, we hypothesise that the remaining 

risk-associated common polymorphisms are likely to also be cis-regulatory. The major 

challenges in the post-GWAS era include identification of the casual variant of risk-loci and 

to understand their link to disease aetiology. The present work aims to validate cis-

regulatory variants for breast cancer, identified in a previous differential allelic expression 

(DAE) study. We also suggest a new approach to prioritise GWAS candidate risk loci for 

further functional characterization and validation. 

Initially, DAE ratios for ten DAE and four non-DAE SNPs were validated in breast tissue 

samples from healthy controls, using allele-specific real-time PCR. We confirmed DAE in ten 

SNPs and non-DAE in one. Discordant results are being further analysed. 

Subsequently, the DAE data was integrated with published breast cancer GWAS data 

according to genomic location and linkage disequilibrium (LD). This allowed us to identify 

several loci that contain both risk-associated SNPs and DAE SNPs, in strong LD. The two top 

candidate loci (17q22 and 12q24) were selected for functional characterisation. We have 

found evidences that support a cis-regulatory role for these risk-associated loci. 

In this study we report a large overlap between GWAS and DAE data, confirming that cis-

regulatory variants are indeed major players in breast cancer susceptibility, and that DAE 

studies are a good approach for identifying new susceptibility loci for breast cancer, including 

prioritising candidate GWAS for functional analysis. 

 

Keywords: breast cancer; single nucleotide polymorphisms; cis-regulatory variants; 

differential allelic expression. 
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RESUMO 

O cancro da mama é uma das patologias oncológicas mais comuns, e causa de morte 

mais frequente entre as mulheres. Trata-se de uma doença complexa com fatores genéticos 

e não genéticos envolvidos na sua etiologia. Até ao momento, o conhecimento adquirido 

acerca do risco genético não explica mais do que dois terços dos casos de cancro familiares 

permanecendo ainda por explicar cerca de 65% a 70%. Com os recentes avanços na 

tecnologia de microarrays e nos estudos de associação realizados a nível de genoma inteiro 

(genome-wide association studies, GWAS), têm surgido evidências que sugerem que as 

variantes cis-reguladoras podem ser importantes para o risco de cancro da mama. Variantes 

cis-reguladoras são polimorfismos que regulam a expressão de genes. Podem-no fazer 

através da modificação de elementos reguladores como, por exemplo: afetando a ligação de 

fatores de transcrição em promotores e elementos intensificadores Essas variantes são 

frequentes na população e contribuem para a variabilidade intra e inter -espécies.  

Com base nestas evidências, a nossa hipótese consiste em que a maioria dos 

polimorfismos comuns e associados a risco ainda por identificar podem ser também cis-

reguladores. Deste modo, a procura para a restante suscetibilidade genética do cancro da 

mama deve centrar-se nas variantes com maior potencial cis-regulador. As variantes cis-

reguladoras podem ser identificadas de diferentes formas, como por exemplo através de loci 

de características quantitativas de expressão (expression quantitative trait loci, eQTL) e 

análises de expressão diferencial alélica (differential allelic expression, DAE) em indivíduos 

heterozigóticos. DAE é uma abordagem que compara os níveis relativos de expressão dos 

dois alelos do mesmo gene em indivíduos heterozigóticos, utilizando um SNP transcrito 

(tSNP). Esta técnica tem revelado ser bastante eficaz, uma vez que compara os níveis de 

transcritos dos alelos dentro do mesmo contexto celular e de haplótipos, pelo que a 

influência de efeitos trans é eliminada (por exemplo concentração de fatores de transcrição 

no núcleo). 



 

 

 

 

V 

Este trabalho teve dois grandes objetivos: o primeiro, a validação da dos resultados de 

DAE nos polimorfismos cis-reguladores identificados num estudo anteriormente realizado 

pela Prof. Ana Teresa Maia; o segundo, a identificação de novos loci envolvidos no risco para 

o cancro da mama. 

No estudo para validação da DAE, foi medida a quantidade relativa da expressão dos 

dois alelos de 10 SNPs, previamente identificados como apresentando DAE (rs2526935; 

rs10503416; rs10513376; rs7600326; rs6494466; rs10016; rs13265801; rs9250; rs8097892; 

rs1384) e de 4 SNPs sem DAE (rs2834653; rs710945; rs1477017 e rs10521). Foram utilizadas 

18 amostras de tecido mamário de indivíduos saudáveis e os níveis da DAE foram 

determinados utilizando a técnica de PCR em tempo real específica alélica. As distribuições 

de DAE foram comparadas aplicando um Teste t de Student (t-test), o qual compara as 

médias da distribuição de rácios de DAE. No total dos 10 SNPs com DAE validámos 6 SNPs 

que eram consistentes com os resultados observados anteriormente. Apenas um de quatro 

SNPs sem evidências da DAE mostrou consistência com os resultados anteriores.  

Para o estudo de identificação de novos loci foi aplicada uma abordagem inovadora, a 

qual consiste no cruzamento de dados para cancro da mama publicados nos GWAS com os 

nossos dados de DAE. Esse cruzamento de dados é feito de acordo com a localização 

cromossómica, distância física (janelas de ±250kb a partir da variante com DAE) e padrões 

de desequilíbrio de ligação (linkage disequilibrium, LD). Com este exercício pretendemos 

testar se esta abordagem pode ajuda a priorizar os loci candidatos de GWAS para validação 

e posteriores análises funcionais. Este cruzamento de dados permitiu identificar vários loci 

que contêm SNPs associados com risco para cancro da mama e SNPs com DAE. Para uma 

análise inicial selecionaram-se dois loci: 17q22 (TOM1L1/COX11/STXBP4) e 12q24 (AACS), 

com base nos cenários de DAE, LD entre o tSNP de DAE e o SNP do GWAS. Esses dois loci 

foram inicialmente analisados para potenciais elementos reguladores e evidência funcional 

(promotores, intensificadores e ligação de fatores de transcrição) nos locais onde se 

encontram os candidatos a variantes cis-reguladoras. Para essa análise foram utilizadas uma 

base de dados, RegulomeDB, e um navegador de informação genómica, Genome Browser, 
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que contêm informações sobre hipersensibilidade à desoxirribonuclease (DNAse), TFBS, e 

regiões promotoras, evidências obtidas em estudos in silico e/ou in vitro para variantes 

codificadoras e não codificadoras.  

No locus 17q22, foram encontrados 12 SNPs em sobreposição com regiões que 

contêm marcadores para elementos funcionais, tais como promotores e intensificadores. 

Sugerindo que esses podem possivelmente ter um efeito funcional através da regulação da 

expressão do gene. Posteriormente, analisaram-se os SNPs para a estrutura de LD nessa 

região e para identificação dos haplótipos na população os quais podem ser responsáveis 

pelo aumento ou diminuição na expressão dos genes. Foram identificados quatro haplótipos 

comuns associados com diferenças nos níveis de expressão. 

 No locus 12q24, o tipo de análises realizadas foram as mesmas descritas para o outro 

locus. Para o locus 12q24 foram encontrados 13 SNPs em sobreposição com regiões 

contendo elementos reguladores o que sugere um possível efeito funcional na regulação da 

expressão dos genes. Todos SNPs foram também analisados para a estrutura de LD e 

identificação de haplótipos. Com base nessa análise, foram identificados quatro haplótipos 

comuns associados com as diferenças nos níveis de expressão. Essas variantes candidatas a 

serem cis-reguladoras foram selecionadas com base em análises in silico, utilizando 

ferramentas para a previsão de potenciais locais de ligação de fatores de transcrição. 

Posteriormente, 3 SNPs foram analisadas funcionalmente in vitro, numa linha celular de 

cancro da mama (HCC1954).  

Como os genes presentes em cada um dos loci mostraram evidências para a presença 

de variantes cis-reguladoras, decidiu-se validar os níveis de DAE em tecido de mama normal 

e compará-las com os níveis de DAE no sangue. Para essa análise usou-se um tSNP para cada 

gene (rs17817901 no COX11 e rs7138557 no AACS). Validaram-se os resultados da DAE, no 

tecido da mama, e para o AACS e observou-se que esses não são comparáveis com os níveis 

da DAE no sangue. Os nossos resultados não suportam, portanto, o uso de sangue em 

estudos de DAE em substituição para o tecido da mama, na aplicação futura em estudos de 

predisposição ao cancro da mama. Para averiguar se a DAE em ambos os loci está realmente 
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associada com o risco de cancro de mama, foi realizado um estudo de caso-controlo. Foi 

encontrada uma associação significativa neste estudo, o que sugere que DAE em ambos os 

loci deve ser futuramente explorado como instrumento de previsão de risco para cancro da 

mama.  

Futuramente, uma análise mais aprofundada da regulação destes genes poderá levar 

também à compreensão da biologia de predisposição ao tumor e contribuir para o 

desenvolvimento de terapias futuras, especialmente na área da medicina personalizada. 

 

Palavras-chave: cancro da mama; polimorfismos de nucleóticos únicos; variantes cis-

reguladoras; expressão diferencial alélica. 

  



 

 

 

 

VIII 

INDEX OF CONTENTS  

AGRADECIMENTOS ....................................................................................................... I 

ABSTRACT .................................................................................................................... III 

RESUMO....................................................................................................................... IV 

INDEX OF FIGURES ....................................................................................................... XI 

INDEX OF TABLES ..................................................................................................... XIII 

INDEX OF ANNEX ....................................................................................................... XIV 

LIST OF ABREVIATIONS .............................................................................................. XV 

CHAPTER 1 – INTRODUCTION ...................................................................................... 1 

1.1  Cancer ............................................................................................................... 1 

1.2  Breast cancer..................................................................................................... 2 

1.2.1 Epidemiology.............................................................................................. 2 

1.2.2 Histological, molecular and functional classification ................................. 2 

1.2.3 Risk factors ................................................................................................. 5 

1.2.3.1 Breast cancer genetic susceptibility ................................................... 5 

1.2.3.1.1 High-risk mutations ..................................................................... 6 

1.2.3.1.2 Moderate-risk mutations ............................................................ 6 

1.2.3.1.3 Common low-susceptibility alleles ............................................. 7 

1.3  Single nucleotide polymorphisms (SNPs) ......................................................... 7 

1.4  Cis-regulatory variants ...................................................................................... 8 

1.4.1 Differential allelic expression (DAE)......................................................... 10 

1.5  Previous work – DAE map in normal breast tissue ......................................... 11 



 

 

 

 

IX 

CHAPTER 2 - AIMS ...................................................................................................... 15 

CHAPTER 3 - MATERIALS AND METHODS ................................................................. 16 

3.1  Samples studied .............................................................................................. 16 

3.2   Reverse transcription Polymerase Chain Reaction (RT-PCR) ......................... 16 

3.2.1 Preparation of samples by RT-PCR .......................................................... 17 

3.3  Real Time quantitative reverse transcription PCR (qRT-PCR) ......................... 17 

3.3.1 qRT-PCR to genotype all samples ............................................................ 19 

3.3.2 qRT-PCR to quantification of differential allelic expression .................... 20 

3.4 Statistical analysis ........................................................................................... 20 

3.5  Selection of SNPs for DAE study validation .................................................... 21 

3.6  Expression quantitative trait loci (eQTL) analysis ........................................... 22 

3.7 Linkage disequilibrium (LD) and haplotype analysis ....................................... 22 

3.8 Analysis of regulatory potential ...................................................................... 23 

3.9 Transcription factor prediction ....................................................................... 24 

3.10 Electrophoretic mobility shift assay (EMSA) ................................................... 24 

3.10.1 Description of the assay ........................................................................... 24 

3.10.2 Labelling oligonucleotides ....................................................................... 25 

3.10.3 DNA-protein binding ................................................................................ 26 

CHAPTER 4 – RESULTS ................................................................................................ 27 

4.1 Selection of top SNPs in DAE map based on p-value ...................................... 27 

4.1.1 Genotyping of normal breast tissue ........................................................ 28 

4.1.2 DAE analysis in normal breast tissue ....................................................... 29 

4.2 Crossing of GWAS and genomic DAE information .......................................... 31 



 

 

 

 

X 

4.2.1 Analysis of breast cancer risk locus 17q22 - TOM1L1/COX11/STXBP4 ... 32 

4.2.1.1 Characterisation of regulatory landscape ........................................ 33 

4.2.1.2 LD and haplotype analysis ................................................................ 36 

4.2.2 Analysis of breast cancer risk locus 12q24 – AACS .................................. 37 

4.2.2.1 Characterisation of regulatory landscape ........................................ 38 

4.2.2.2 LD and haplotype analysis ................................................................ 41 

4.2.2.3 Prediction of transcription factor binding sites (TFBS) .................... 42 

4.2.2.4 Identification of DNA-protein interaction ........................................ 44 

4.2.3 DAE validation of COX11 and AACS ......................................................... 47 

4.2.4 Expression quantitative trait loci (eQTL) analysis  ................................... 48 

4.2.5 Comparison of DAE between breast tissue and blood ............................ 49 

4.2.6 Case – control association study .............................................................. 51 

CHAPTER 5 – DISCUSSION .......................................................................................... 53 

5.1 Validation of DAE microarray data using allele-specific Taqman ..................... 53 

5.2 Crossing GWAS data and DAE data ................................................................... 53 

5.2.1 Validation of DAE in COX11 and AACS ..................................................... 55 

BIBLIOGRAPHY ........................................................................................................... 57 

ANNEX 1 ...................................................................................................................... 66 

ANNEX 2 ...................................................................................................................... 69 

ANNEX 3 ...................................................................................................................... 75 

ANNEX 4 ...................................................................................................................... 77 

 

  



 

 

 

 

XI 

INDEX OF FIGURES 

Figure 1.1 Histological classification of breast cancer .................................................. 3 

Figure 1.2 Molecular classification of breast cancer .................................................... 4 

Figure 1.3 Characterization of breast cancer genetic susceptibility. ........................... 6 

Figure 1.4 Allelic expression in heterozygous through cis-regulatory variants ........... 9 

Figure 1.5 Map with the location of cis-regulatory SNPs across the genome. .......... 11 

Figure 1.6 Schematic summary of the experimental design. ..................................... 12 

Figure 1.7 DAE scenarios for the different LD structures between the cSNP and rSNP

 .................................................................................................................... 14 

Figure 3.1 Real-time PCR detection of product in exponential phase ....................... 18 

Figure 3.2 Representation of probes labelled with different fluorochromes. ........... 19 

Figure 3.3 Illustration to EMSA method. .................................................................... 25 

Figure 4.1 Genotyping in normal breast tissue DNA samples by qRT-PCR ................ 28 

Figure 4.2 Results from the validation of the DAE map SNP. ..................................... 31 

Figure 4.3 Genomic view of the 17q22 locus ............................................................. 35 

Figure 4.4 Linkage disequilibrium plot for the analysed SNPs in 17q22 locus. .......... 36 

Figure 4.5 Haplotype blocks and haplotype frequencies in 17q22 locus. .................. 37 

Figure 4.6 Genomic view of the 12q24 locus ............................................................. 40 

Figure 4.7 Linkage disequilibrium plot for the analysed SNPs in 12q24 locus ........... 41 



 

 

 

 

XII 

Figure 4.8 Haplotype blocks and haplotype frequencies in 12q24 locus ................... 42 

Figure 4.9 Labelling efficiency .................................................................................... 45 

Figure 4.10 in vitro DNA-protein binding studies  ...................................................... 46 

Figure 4.11 Results from DAE validation in AACS and COX11 .................................... 48 

Figure 4.12 Comparison of DAE between normal breast tissue and blood from healthy 

individuals.. ................................................................................................ 50 

Figure 4.13 Case – control association study. ............................................................ 52 

  



 

 

 

 

XIII 

INDEX OF TABLES 

Table 1.1 Cis-regulatory SNPs associated with breast cancer risk ............................. 10 

Table 1.2 Total number of SNPs across the genome  ................................................. 12 

Table 4.1 List of SNPs chosen to validate DAE map ................................................... 27 

Table 4.2 Summary of genotyping results for DAE validation  ................................... 29 

Table 4.3 DAE average values for the validation SNPs in normal breast tissue  ........ 30 

Table 4.4 RegulomeDB scores for the selected SNPs in 17q22 locus ........................ 34 

Table 4.5 RegulomeDB Scores for the selected SNPs in 12q24 locus  ....................... 39 

Table 4.6 TRANSFAC Results  ...................................................................................... 43 

Table 4.7 SNPs in COX11 and AACS used to assess DAE in breast tissue samples. .... 47 

Table 4.8 Summary of genotyping results for the validation SNPs in breast tissue 

samples ....................................................................................................... 47 

Table 4.9 DAE average values for the validation SNPs in normal breast tissue ......... 48 

Table 4.10 Summary of genotyping results in blood. ................................................. 49 

Table 4.11 Comparison of normalised DAE between breast tissue and blood for AACS 

and COX11 .................................................................................................. 50 

Table 4.12 Summary of genotyping results for the SNPs (in COX11 and AACS) from 

blood cancer samples ................................................................................. 51 

Table 4.13 DAE distributions in controls and cases  ................................................... 52 



 

 

 

 

XIV 

INDEX OF ANNEX 

Annex 1.1 Scores RegulomeDB according the functional evidence  .......................... 66 

Annex 1.2 Sequences obtained in dbSNP for both alleles of each SNP ..................... 67 

Annex 1.3 Oligonucleotide sequences designed for EMSA   ...................................... 68 

Annex 2.1 DAE SNPs reported in previous results obtained in microarray. .............. 69 

Annex 2.2 Non DAE SNPs reported in previous results obtained in microarray ........ 71 

Annex 2.3 Genotyping of DNA from normal breast tissue sample ............................ 72 

Annex 3.1 DAE scenarios observed for the 3 marker SNPs (COX11). ........................ 75 

Annex 3.2 DAE scenarios observed for the 3 marker SNPs (AACS) ............................ 76 

Annex 4.1 Genotyping of DNA from normal breast tissue and blood samples ......... 77 

Annex 4.2 Correlation between COX11, TOM1L1 and STXBP4 expression in normal 

breast and blood with the genotype of a SNP ........................................... 78 

Annex 4.3 Correlation between AACS expression in normal breast and blood with the 

genotype of a SNP ...................................................................................... 80 

Annex 4.4 . Genotyping of DNA from patient cancer samples .................................. 81 

  



 

 

 

 

XV 

LIST OF ABREVIATIONS 

AACS – acetoacetyl-CoA synthetase 

COX11 – cytochrome-c oxidase assembly protein 11 

DAE – differential allelic expression 

DNA – deoxyribonucleic acid 

dbSNP – database of single nucleotide polymorphism 

FRET - fluorescent Resonance Energy Transfer 

FGFR2 – fibroblast growth factor receptor 2 

GWAS – genome wide association studies 

LD – linkage disequilibrium  

mRNA – messenger ribonucleic acid 

RNA – ribonucleic acid 

RNase – ribonuclease 

SD – standard deviation 

SNP – single nucleotide polymorphism 

STXBP4 – syntaxin binding protein 4 

TOM1L1 – target of myb1 (chicken)-like 1 

cSNP – coding SNP 

rSNP – regulatory SNP 

tSNP – transcribed SNP 

Ct – cycle threshold  

 



 

 

 

 

1 

CHAPTER 1 – INTRODUCTION 

1.1  Cancer 

Cancer is characterized by an abnormal growth and uncontrolled proliferation of cells, 

generated by the loss of response mechanisms to many of the signals controlling cellular growth 

and death. This loss of control results from an accumulation of genetic alterations that can occur 

in the germline, resulting in hereditary predispositions to cancer, or in somatic cells, resulting in 

sporadic tumours (Strachan & Read 1996; Garraway & Lander 2013).  

These alterations will confer six fundamental properties that are acquired during the 

multistep progression of cancer and which are required for the development of a malignant 

tumour (Hanahan & Weinberg 2011):  

1) Sustaining proliferative signalling;  

2) Evading growth suppressor; 

3) Resisting cell death; 

4) Enabling replicative immortality; 

5) Inducing angiogenesis; 

6) Activating invasion and metastasis. 

Genetic alterations can occur in three types of genes that are important in making a cell 

cancerous (Garraway & Lander 2013): oncogenes (genes that promote the cell growth and 

survival); tumour suppressor genes (that are involved in inhibition of cell growth and survival); 

and stability genes or caretakers (that are involved in mechanisms for maintaining DNA) 

(Vogelstein & Kinzler 2004; Ashworth et al. 2011).  

The most common genetic alterations that result in oncogene activation are mutations, 

chromosomal translocations or gene amplifications, but other alterations can also occur in 

tumour suppressor genes such as deletions and allelic loss. In the case of caretaker genes, when 

mutated, lead to genomic instability and enhanced mutation acquisition. 

 In addition to genetic alterations, epigenetic events have been emerging as key 

mechanisms involved in the cancer development. These epigenetic events are defined as 
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heritable changes in gene expression and chromatin structure without changes in DNA sequence. 

Epigenetic inheritance includes DNA methylation (hyper methylation and hypo methylation), 

histone modification, loss of imprinting (LOI) and relaxation of X-chromosome inactivation.  These 

epigenetic changes also affect the same types of genes as genetic alterations (Sadikovic et al. 

2008; You & Jones 2012).  

 

1.2  Breast cancer  

1.2.1 Epidemiology 

Breast cancer is the second most common cancer in the world and the most frequent among 

women, with an worldwide estimation of 1.67 million new cancer cases diagnosed in 2012 (25% 

of all cancers). It is also the most frequent cause of cancer death in women (521 817deaths, 14.7% 

of all cancers) (http://globocan.iarc.fr/Default.aspx).  

In Portugal, breast cancer is the most frequent cancer in woman with an incidence of 6088 

cases per 100,000 people (85.6%). Approximately 4500 new cases of breast cancer are detected 

annually, and 1570 (18.4%) women die of this disease. It has been estimated that the prevalence 

within 5 years is of 24284 per 100,000 people (http://eu-cancer.iarc.fr/EUCAN/). 

Nevertheless, breast cancer can affect both genders, but the male breast cancer incidence 

is much lower than for females, accounting for less than 1% of all breast carcinomas (about 349 

cases of breast cancer) (http://www.cancerresearchuk.org/cancer-

info/cancerstats/types/breast/incidence/uk-breast-cancer-incidence-statistics).  

 

1.2.2 Histological, molecular and functional classification 

Breast cancer is a genetically and clinically heterogeneous disease. There is a high degree 

of diversity between and within tumours as well as among patients (Kelsey & Berkowitz 1988; 

Polyak 2011). These diversities have served as the basis for disease classification. There are 

several approaches that can be used to classify breast cancer, namely histological, molecular and 

functional (Malhotra et al. 2010).  
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Histological classification is the most commonly used in the clinical practice and is based on 

the histological aspects of the primary lesion, having no molecular basis. At the histological level, 

breast cancer can be divided into two major groups: in situ carcinoma and invasive carcinoma 

(Figure 1.1). Based on growth patterns and cytological features the breast carcinoma in situ can 

be further sub-classified in ductal or lobular. Ductal carcinoma in situ (DCIS) is more common than 

lobular carcinoma in situ (LCIS). DCIS can be sub-classified based on the architectural features of 

the tumour in five subtypes: comedo, cribiform, micropapillary, papillary and solid. Similar to 

DCIS, invasive carcinomas are divided into several histological sub-types: infiltrating ductal, 

invasive lobular, ductal/lobular, mucinous (colloid), tubular, medullary and papillary carcinomas 

(Figure 1.1). Of these, infiltrating ductal carcinoma (IDC) is the most common accounting for 70-

80% of all invasive lesions (Malhotra et al. 2010).   

 

Figure 1.1 Histological classification of breast cancer. This classification is based on growth patterns and 
architectural features (Malhotra et al. 2010). 

 

Molecular classification is based on gene expression profiling and combines molecular 

markers (such as expression of oestrogen receptor (ER), progesterone receptor (PR), v-erb-b2 

avian erythroblastic leukemia viral oncogene homolog 2 (ErbB2 also known as Her2/neu)) and 
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protein 53 (p53)) with the clinical outcome measures. At the molecular level, breast cancer can 

be classified as: claudin low, basal-like, ErbB2+, normal breast like, luminal subtype A and luminal 

subtype B (Figure 1.2). Each of these subtypes exhibits differences in incidence, response to 

treatment, risk of disease progression and preferential sites of metastases. For example, patients 

with basal-like/triple-negative subtype (ER-/PR-/ErbB2-) have a shorter survival. Furthermore, this 

classification allows the stratification of the ER+ patients population into several subtypes, that 

shows differences in  survival (Malhotra et al. 2010; Polyak 2011). 

 

Figure 1.2 Molecular classification of breast cancer. This classification is based on gene expression profiling identified 
by microarray analysis (Malhotra et al. 2010). 

 

It is important to clarify that combining both histological and molecular classifications 

results in significantly better predictive value than either one alone (Malhotra et al. 2010; Polyak 

2011).  

Concerning functional classification, this is yet an emerging area of research. This 

classification attempts to use one or more of the breast cancer stem cells (CSCs) markers (for 

example CD44/Lin) to quantify the percentage of CSCs in a patient’s tumour. However, until now 

no specific molecular marker has been identified, because the markers used to identify normal 

mammary stem cells (MASCs) are the same as those used to identify CSCs. So, is still not possible 

to differentiate between the stem and the non-committed progenitor cells markers. Therefore, 

there is no conclusive markers to differentiate between stem and non-committed progenitor cells 

(Malhotra et al. 2010). 
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The development of these classification systems is of major importance since they 

represent a tool used in both prognosis and treatment.   

 

1.2.3 Risk factors 

Breast cancer is a complex disease with both genetic and non-genetic risk factors involved 

in its aetiology. The non-genetic factors are relatively well characterized and include lifestyle and 

environmental factors such as gender (feminine), age (65 years or more), obesity, early age ate 

menarche, late age at menopause, late age at first birth, use of hormones replacement therapy 

after menopause, alcohol consumption and radiation exposure(Oldenburg et al. 2007; Mavaddat 

et al. 2010).  

The most important risk factor is the familiar history of disease indicating that genetic 

factors are important determinants of breast cancer risk (Antoniou & Easton 2006). 

Approximately 15-30% of breast cancer cases are attributed to hereditary factors. (Apostolou & 

Fostira 2013; Ghoussaini et al. 2013). However, the genetic factors are less well described than 

the non-genetic factors. 

 

1.2.3.1 Breast cancer genetic susceptibility 

The genetic components of breast cancer risk can be classified according to relative risk they 

confer and to the risk allele frequency (Figure 1.3). (Garcia-Closas & Chanock 2008; Apostolou & 

Fostira 2013; Ghoussaini et al. 2013). 
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Figure 1.3 Characterization of breast cancer genetic susceptibility. This classification is based in relative risk (risk 
conferred)  and risk allele frequency (Ghoussaini et al. 2013). 

 

1.2.3.1.1 High-risk mutations 

High risk mutations include mostly germline mutations in the genes BCRA1 and BCRA2. 

(Walsh & King 2007), although TP53 and STK11/LKB1 mutations carriers also develop rare 

syndromes that predispose to cancer (Apostolou & Fostira 2013). These mutations are rare in the 

population but confer high lifetime risk of breast cancer (>50%) (Figure 1.3) (Ghoussaini et al. 

2013) and explain approximately 20% to 25% of familial cases (Venkitaraman 2002; Cipollini & 

Tommasi 2004; Garcia-Closas & Chanock 2008; Mahdi et al. 2013) .Usually these types of 

mutations in familial cases are identified by twins studies, pedigree linkage analysis and studies 

of phenotypes associated with breast cancer risk (Antoniou & Easton 2006). 

 

1.2.3.1.2 Moderate-risk mutations 

These include mutations in CDH1, PTEN, ATM, PALB2, BRIP1 and CHECK2 genes  that confer 

a lifetime risk of breast cancer of approximately 20% (Figure 1.3) and they account for <3% of the 
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familial risk (Garcia-Closas & Chanock 2008; Apostolou & Fostira 2013; Ghoussaini et al. 2013; 

Mahdi et al. 2013). 

 

1.2.3.1.3 Common low-susceptibility alleles 

Susceptibility alleles are common in the population (minor frequency allele >5%) and these 

have been associated with a smaller decrease or increase in risk to breast cancer (relative risk of 

<1.5) (Figure 1.3). This increase in risk accounts for 10-20% of lifetime risk. Most of these common 

low risk alleles have been identified through genome wide association studies (GWAS) that have 

contributed with more than 70 new risk loci for breast cancer alone, including genes like MAP3K1, 

FGFR2, LSP1,  TNRC19, H19 and CASP8 (Ghoussaini et al. 2013). 

However, these only account for approximately 14% of the genetic component of breast 

cancer risk. Together with the previously known risk factors accounting for 15-30%, such as the 

rare high-risk mutations in BRCA1 and BRCA2 amongst others, there is still two thirds of the 

genetic burden to be determined (Ghoussaini et al. 2013). 

Furthermore, the majority of variants identified in GWASes lie outside of genes, in either 

intronic and intergenic regions or gene deserts (Varghese & Easton 2010). It is therefore likely 

that protein altered functions is not the mode of action of these loci, as it was for the mutations 

in BRCA1 and BRCA2, for example. 

 

1.3  Single nucleotide polymorphisms (SNPs) 

Millions of genetic variations (polymorphisms) with a minor allele frequency >1% in the 

human population make an important contribution to disease (Buckland 2006). Common 

polymorphisms include tandem repeated segments (minisatellite and microsatellite), large (copy 

number variations) and small deletions/insertions/duplications, and single nucleotide 

polymorphisms (SNPs) (Wang et al. 2005; Chorley et al. 2008).  

SNPs are changes of a single base in genomic DNA (gDNA) and several studies report that 

SNPs account for 90% of human sequence variations – occurring in 100-300 base pairs in the 



 

 

 

 

8 

human genome (Brookes 1999; Wang et al. 2005; Chorley et al. 2008). The majority of SNPs are 

functionally neutral and some have functional effects. These SNPs with functional effects are 

associated with inter and intra-population diversity, susceptibility to diseases and individual 

response to therapeutic treatment or to environmental exposure (Wang et al. 2005).  

SNPs occur throughout the genome in several sites such as coding regions (cSNPs) and non-

coding regions (Gray et al. 2000; Mahdi et al. 2013). Variations in coding regions can be non-

synonymous and synonymous, depending on whether they have or not an effect on phenotype 

at the level of protein sequence (Gray et al. 2000; Rockman & Wray 2002a). cSNPs have been 

extensively studied in disease since they can cause amino-acid codon alterations resulting in 

changes in the structure and biological properties of the encoded protein that may have 

important clinical consequences. Non-coding SNPs are mostly considered as non-functional, 

nevertheless, this type of alterations can includes those that can regulatory elements of the gene 

(rSNPs) (Gray et al. 2000; Rockman & Wray 2002a; Mahdi et al. 2013). 

 

1.4  Cis-regulatory variants 

Genetic, epigenetic and environmental factors contribute to gene expression control, acting 

in cis and trans (Stranger et al. 2007). Cis-regulatory variants are polymorphisms that regulate 

gene expression on the same chromosome and are mostly located immediately upstream or 

downstream of the gene, but can also be found in close proximity to the gene that they regulate, 

as well as in introns containing regulatory elements (Xiao & Scott 2011).  

Cis-regulatory variants are frequent in the human genome affecting 20-60% of autosomal 

genes (Rockman & Wray 2002b) and are responsible for most of the phenotypic variability intra 

and inter species (Cheung et al. 2005; Stranger et al. 2007). These variants can be found in 

regulatory elements such as promoters and enhancers (Figure 1.4) and as well as in silencers and 

insulators (Jones & Swallow 2011; Pastinen et al. 2006). 

The cis-regulatory variants contribute to the adaptation of populations to the 

environmental changes leading for example to the development of resistance (immune 
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responses) and susceptibility to diseases (Lappalainen & Dermitzakis 2010; Jones & Swallow 2011; 

Worsley-Hunt et al. 2011; Vernot et al. 2012). 

 

Figure 1.4 Allelic expression in heterozygous through cis-regulatory variants. SNP in a promoter (a) or enhancer (b) 
can affect the binding affinity of transcription factors altering the level of expression of the alleles (marker SNP is 
shown in black and white dots) (Jones & Swallow 2011).  

 

However, the mechanisms by which these variants affect the phenotype are yet not totally 

understood. For example, mutations and polymorphisms in these elements can disrupt or 

increased the binding affinity of transcription factors (TF) (Jones & Swallow 2011) linked to one 

of the two alleles, thus altering the rate or efficiency of transcription and causing unequal levels 

allelic transcripts (Pastinen et al. 2006).  

In fact, work performed by my supervisor Prof. Ana Teresa Maia and others has revealed 

that indeed most variants identified by GWAS for multiple cancers are cis-regulatory (Table 1.1) 

(Easton et al. 2007; Thomas et al. 2010; Fletcher et al. 2011; Chen et al. 2013; Michailidou et al. 

2013; Turnbull et al. 2013).  
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Table 1.1 Cis-regulatory SNPs associated with breast cancer risk (identified in GWAS). In the table are shown the 
SNPs located locus/nearest gene, region, per allele odds ratio (OR), risk allele frequency and date when it was 
reported. 

Best 
GWAS tag 

Locus Nearest Gene Region OR 
Risk Allele 
Frequency 

Date 

rs3757318 6q25 ESR1 Intronic 
1.16 (1.12-1.21) 

1.30 (1.17-1.46) 
0.07 

2013 

2010 

rs13281615 

rs1562430 
8q24 

MYC 
 Intergenic 

1.09 (1.07-1.12) 

1.16 (1.11-1.22 

0.41 

0.60 

2013 

2011 

rs2981582 

rs2981579 
10q26 

FGFR2 
 Intronic 

1.26 (1.23-1.30) 

1.43 (1.35-1.53) 

0.38 

0.42 

2007 

2010 

rs614367 11q13 
CCND1/FGFs 

MYEOV 
ORAOV1 

Intergenic 
1.21 (1.18-1.24) 

1.15 (1.10-1.20) 
0.15 

2013 

2010 

rs12443621 

rs3803662 
16q12 TOX3/LOC643714 

Intronic 

 

1.11 (1.08–1.14) 

1.14 (1.10-1.18) 

0.46 

0.267 

2007 

2013 

 

 

As 66% genetic risk remains unidentified and all common risk polymorphisms identified by 

GWAS and functionally analysed were cis-regulatory, we hypothesise that the remaining risk-

associated common polymorphisms are likely to also be cis-regulatory. 

Cis-regulatory variants can be identified in different ways such as expression quantitative 

trait loci (eQTL) and differential allelic expression (DAE) analysis. eQTL analysis is an approach that 

looks for the association between variations in gene expression and individual genotypes (Serre 

et al. 2008; Nica et al. 2013). DAE is an approach that compares the relative expression of the two 

alleles from the same gene in an heterozygous individual (Serre et al. 2008). For the work 

developed under the context of this thesis we used the DAE analysis approach. 

 

1.4.1 Differential allelic expression (DAE) 

DAE identifies individual differences in the expression of the two copies of one gene (Serre 

et al. 2008). This approach compares the relative expression of the two transcribed alleles in 

complementary DNA (cDNA) from the same heterozygous samples using transcribed SNPs as 
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allelic markers (marker SNP) (Pant et al. 2006; Serre et al. 2008; Xiao & Scott 2011; Jones & 

Swallow 2011). 

This approach allows to control for environmental and trans-regulatory factors that affect 

the expression of both alleles, because each transcribed allele serves as an internal standard for 

the other (Verlaan et al. 2009; Jones & Swallow 2011; Xiao & Scott 2011). This approach can also 

detects epigenetic effects such as imprinting or random monoallelic expression (Jones & Swallow 

2011; Verlaan et al. 2009). 

 

1.5  Previous work – DAE map in normal breast tissue 

In previous work, Maia et al performed a DAE scan of the entire genome in normal breast 

tissue samples using microarrays and obtained a whole genome map of the cis-regulatory SNPs 

in breast tissue (Figure 1.5).  

 
Figure 1.5 Map with the location of cis-regulatory SNPs across the genome. Results of the DAE scan in normal breast 
tissue samples using microarrays (Unpublished, Maia et al). 
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For this experiment (Figure 1.6) samples were genotyped and evaluated for allelic 

expression using Illumina Exon510S-Duo arrays. These contain approximately 500K SNPs with a 

predominance of coding SNPs. 

 

Figure 1.6 Schematic summary of the experimental design. This scheme shows the samples and arrays used to 
genotype and to evaluate allelic expression. 

 

Maia and colleagues found that 7000 of approximately 33000 informative (21%) SNPs 

showed DAE. These mapped to about 4000 (26%) genes. Among the SNPs that showing DAE, 

approximately 6000 had a bidirectional distribution and 700 had a unidirectional distribution. 

They also identified five SNPs in two genes that showed allele-specific (mono-allelic expression) 

(Table 1.2). 

 

Table 1.2 Total number of SNPs across the genome identified by Maia and colleagues. 

 SNPs Genes 

Total number of SNPs 511350  

Informative SNPs 33816 16507 

DAE 7011 (21%) 4258 (26%) 

Bidirectional DAE 6268 3846 

Unidirectional DAE 743 681 

Allele-specific 5 2 

 

The different distribution patterns of the DAE SNPs identified by Maia and colleagues was 

consistent with the scenario 1, 2 and 3 presented by Xiao and Scott (Xiao & Scott 2011). These 
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different scenarios result from different levels of linkage disequilibrium (LD) (based in r2 and D’ 

measures) between the cSNP and rSNP.  

LD is the non-random association of alleles at two or more loci reflecting haplotypes. The 

LD between two markers can be measured, being the most frequent measures the D’ and r2 that 

compare the observed frequencies of haplotypes with the frequencies expected (VanLiere & 

Rosenberg 2008). (Jorde 2000; Reich et al. 2001) 

In Scenario 1, the rSNP is in complete LD (r2≈1 and D’≈1) with the cSNP and all heterozygotes 

for the cSNP show DAE. This happens because there is no recombination between the cSNP and 

the rSNP, and therefore all heterozygous individuals for the cSNP will also be heterozygous for 

the rSNP. Also only two haplotypes exist in the population (rc and RC, for example) (Figure 1.7 A). 

In Scenario 2, there is strong, but not complete, LD between the cSNP and the rSNP (r2<1 and 

D’≈1). Therefore, the heterozygous individuals for the cSNP may be heterozygous or homozygous 

for one of the rSNP alleles, and there are three possible haplotypes in the population (for 

example, rc, RC, cR). So the distribution of DAE ratios seems unidirectional (from 0 upwards, or 

downwards) (Figure 1.7 B). In Scenario 3, r2<1 and D’<1 the rSNP and cSNP are in linkage 

equilibrium, therefore four haplotypes exist in the population and we can observed a DAE 

distribution centred around 0: samples with one allele preferentially expressed, and others with 

the other allele being preferentially expressed. (Figure 1.7 C) (Xiao & Scott 2011). 
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Figure 1.7 DAE scenarios for the different LD structures between the cSNP and rSNP. All samples are heterozygotes 
for the cSNP. SNP genotype for the samples is displayed on the x-axis. Percentage of allele of the transcribed SNP is 
displayed on the y-axis. Scenario 1, scenario 2 and scenario 3 represent the LD measures. 
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CHAPTER 2 - AIMS 

The DAE map described before can be a useful tool in the search for cis-regulatory variants 

that affect genes associated with breast cancer susceptibility. It is also possible to cross the data 

in this map with the list of candidate SNPs obtained by GWAS in order to prioritise loci for 

functional validation. 

 

Therefore, in my thesis project, I set up to: 

1) Validate DAE polymorphisms found to be cis-regulators in a previous study using 

microarrays (unpublished data). 

 

2) Identify new susceptibility loci for breast cancer by combining results of DAE 

mapping with results of breast cancer GWAS, and performing functional analysis.  
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CHAPTER 3 - MATERIALS AND METHODS 

3.1  Samples studied 

In this work we studied a total of 290 samples. Eighteen four samples were of normal breast 

tissue, were extracted from women submitted to reduction mastectomy, for reasons not related 

to cancer. Normal breast tissue was collected at Addenbrooke’s Hospital, Cambridge, United 

Kingdom. A total of 150 samples were of Human B cells (blood) extracted from anonymous blood 

donors and 56 samples were extracted from cancer patients B cells (blood). These samples were 

collected in the Blood Centre at Addenbrooke’s Hospital.  

Blood and normal breast tissue samples were collected with approval from the 

Addenbrooke’s Hospital Local Research Ethics Committee (REC reference 04/Q0108/21 and 

06/Q0108/221, respectively). 

DNA and total RNA was previously extracted from all samples using a conventional 

SDS/proteinase K/phenol method and TRizol® method, respectively, in the University of 

Cambridge. All samples were used for DAE analysis. 

 

3.2   Reverse transcription Polymerase Chain Reaction (RT-PCR) 

For cDNA synthesis we used the SuperScriptTM III First-Strand Synthesis System for RT-PCR. 

In a first step this system synthesizes the first-strand cDNA from purified poly (A) and/or total 

RNA – selected RNA primed with oligo(dT), random primers. SuperScriptTM III Reverse 

Transcriptase include a RT Enzyme Mix. This enzyme is a version of M-MLV RT and is used to 

synthesize cDNA at a temperature between 42–60°C. This enzyme has advantages compared to 

other reverse transcriptase, because provides increased specificity, higher yields of cDNA, and 

more full-length products (http://www.lifetechnologies.com).  
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3.2.1 Preparation of samples by RT-PCR 

We prepared cDNA from RNA extracted from 18 samples of normal breast tissue and 10 

samples of blood B cells. cDNA was prepared from 0,5μg of total RNA per 20μl reaction using 

Reverse Transcriptase kit (SuperScriptTM III First-Strand Synthesis SuperMix for qRT-PCR, 

Invitrogen), according to the manufacturer’s instructions. For run the RT-PCR reaction was used 

the BioRad C100 Touch™ Thermal Cycler. At the end, the reaction was diluted in a final volume of 

100μl. 

 

3.3  Real Time quantitative reverse transcription PCR (qRT-PCR) 

Real time quantitative PCR allows detection and measurement of amplification products 

generated during each cycle of PCR process. Amplification is monitored by the detection and 

quantification of a fluorescent reporter signal. This amount of fluorescence is registered at each 

cycle and is measure during the exponential phase of the reaction because in this phase it is 

assumed that intensity of the signal increases in direct proportion to the amount of PCR product 

in the reaction (Green & Sambrook 2012). In the exponential phase it is also calculated the 

threshold line and the cycle threshold (Ct). Threshold line is the level of detection at which a 

reaction reaches a fluorescent intensity above the calculated baseline. Ct is the point in which 

occurs the intersection between the amplification curve and the threshold line (Heid et al. 1996; 

Green & Sambrook 2012) and is a relative measure of the concentration of the target product in 

the PCR reaction (Figure 3.1).  
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Figure 3.1 Real-time PCR detection of product in exponential phase. The standard deviation is determined from the 
data points collected from the base line of the amplification plot. Ct values are calculated by determining the point 
at which the fluorescence exceeds a threshold limit (usually 10 times the standard deviation of the base line) (Heid 
et al. 1996). 

 

There are several types of detection chemistries utilized in qPCR: DNA-binding dyes (most 

common fluorophore used is SYBR Green), quenched dye primers (example: Amplifuor and LUX 

fluorogenic primers) and probe-based chemistries (most common used is TaqMan). In this study 

we used the TaqMan probes that contain a fluorophore reporter (in the 5’end of the probe) and 

a quencher (in 3’end of the probe) dye. While the probe remains intact, the reporter and 

quencher dyes are close. This proximity reduces the fluorescence emitted of the reporter dye 

through fluorescence resonance energy transfer (FRET). During the PCR, the probe anneals and 

when the Taq polymerase extends the primers, their 5’ exonuclease activity degrade the probe 

separating the reporter and quencher. This process interrupts the FRET allowing the emission of 

fluorescence (Green, M. R. & Sambrook, 2012, M. J. Espy et al, 2006).  

In this study we aim to quantify differential allelic expression and to genotype and therefore 

it was necessary detect the signal for each allele. For this, each qPCR reaction contains a primer 

pair targeting the region surrounding the marker SNP, two probes that differ by a single 

nucleotide and are complementary to each of the SNP alleles. The probes are labelled with 
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different fluorochromes (HEX and FAM), designed to anneal specifically to either of the alleles of 

each SNP, generating two signals for each sample during the real-time PCR samples (Figure 3.2).  

 
Figure 3.2 Representation of probes labelled with different fluorochromes. A) Probe labelled with HEX generating 
signal for one allele. B) Probe labelled with FAM generating signal for the other allele. 

 

3.3.1 qRT-PCR to genotype all samples 

Taqman® Genotyping assays were designed for 16 SNPs (rs7600326; rs10016; rs9250; 

rs10503416; rs13265801; rs10513376; rs1384; rs7138557; rs2526935; rs6494466; rs17817901; 

rs8097892; rs10521; rs710945; rs1477017; rs2834653) using the following criteria: SNP located 

within 100bp intronic flanking region and non-presence of other SNPs in amplification region. 

For the amplification process was used approximately 5ng of genomic DNA in 5μl PCR 

reaction constituted by master mix (Kapa Probe Fast universal qPCR Kit (2x), Applied 

Biosystems™), assay (TaqMan® SNP Genotyping Assays (40x), Applied Biosystems™) and H2O 

(DNase/Rnase free, gibco®by life technologies). To ensure a good quality of genotyping were 

included triplicates and no template controls (NTC). 

The reaction mixture was initially incubated for 3 minutes at 95ºC (sufficient time for 

enzyme activation) and then submitted to 40 cycles including in each one denaturing (3 seconds 

at 95ºC) and annealing/extension (20 seconds at 60ºC) steps. The real time PCR was performed 

using the BioRad CFX384 Real-time System C100 Touch™ Thermal Cycler. The Ct values for each 

allele and for each sample were exported by Bio-RAD CFX Manager Software in the end of 

reaction. 
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3.3.2 qRT-PCR to quantification of differential allelic expression 

Allele specific levels of gene expression were determined in normal breast tissue 

heterozygous cDNA samples (n=18), peripheral blood B cells heterozygous cDNA samples (n=12) 

and in blood heterozygous cDNA samples from cancer patients (n=12) using Taqman® technology 

in a 384-well plate. 

Triplicate samples and NTCs were included in the analysis to ensure a good quality of 

reaction. To perform normalisation of DAE values both DNA and cDNA matching samples were 

included in the assays.  Additionally for the case-control association study a standard curve was 

included in the assays, generated using a serial dilution (1, 1:2, 1:10, 1:20, 1:100, 1:1000 and 

1:10000). This samples was from DNA and heterozygous for the quantified SNP, serving as a 

reference for the 50:50 allelic ratio.  

All experiments contained replicates for each sample, and were repeated two times in 

different days. Real time PCR conditions were the same as used for genotyping and run on a 

BioRad CFX384 Real-time System C100 Touch™ Thermal Cycler. Ct values were obtained from Bio-

RAD-CFX Manager Software by the same way used for genotyping. A gene was considered 

expressed if the PCR yielded Ct values lower than 40 cycles. 

 

3.4 Statistical analysis 

Data obtained by Real-time PCR were analysed on Microsoft® Excel® 2013 software. For 

each sample (DNA and cDNA) were calculated the mean of Ct values for HEX and FAM. The 

percentage of variation between replicates was calculated by dividing the standard deviation by 

the mean of the triplicates for each sample (%var=[SD/Mean]).  

DAE values was determined by calculating the ratio of expression of one allele versus the 

other (as the Log2 of the allelic-expression ratio) by following formula: 
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The quantity of each allelic transcript was calculated from the Ct values using a threshold 

of 40. The normalised DAE values were calculated using the DAE values obtained for DNA and 

cDNA samples of the same individual by applying the formula:  

 

The samples for which it was not possible to calculate the normalised DAE, were excluded 

from the analysis. We considered that there was DAE when the absolute normalised DAE values 

were above 0.58. One sample t Student test (t-test) was applied to compare the differences 

between the mean of the DAE distributions. Variance-test (var-test) was also to compare the 

differences between the variance of the DAE distributions. For both tests was used a confidence 

level of 0.05. 

All the statistical analysis and graphics were performed using the R free software ((R Core 

Team 2014) (URL: http://www.R-project.org/)). 

 

3.5  Selection of SNPs for DAE study validation 

Data from different published GWA studies (Easton & Eeles 2008; Ahmed et al. 2009; 

Thomas et al. 2010; Kim et al. 2012; Michailidou et al. 2013; Turnbull et al. 2013; Couch et al. 

2013; Low et al. 2013; Chen et al. 2013; Couch et al. 2014) was crossed with the DAE map and 

further SNPs were selected according to the following criteria. 

1) Alignment of GWAS SNPs and the DAE map SNPs according to chromosome location; 

 

2) Definition of clusters of loci with at least one GWAS associated SNP and one DAE 

SNP located in a window of ±250Kb 

 

3) Analysis of LD patterns between the DAE SNP and the GWAS SNP in each cluster. 

Selection of clusters with at least one GWAS and one DAE SNP in LD (r2≥0.8).  
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3.6  Expression quantitative trait loci (eQTL) analysis 

We performed eQTL analysis to test the associations between total level of expression of the 

genes (Illumina HT12 data) and genotype of a SNP (Affymetrix® SNP 6 data) using available data 

from the microarray experiments performed previously by my supervisor. 

Two statistical tests were applied: analysis of variance (ANOVA) and Kruskal-Wallis test to 

assess if there were significant statistical differences (p-value<0.05) between the expression 

levels across the genotype groups.  

All graphics and statistical analysis were performed using the R free software ((R Core Team 

2014) (URL: http://www.R-project.org/)).  

 

3.7 Linkage disequilibrium (LD) and haplotype analysis 

SNP Annotation and Proxy Search (SNAP) web portal (Johnson et al. 2008, 

https://www.broadinstitute.org/mpg/snap/ldsearchpw.php) were used to test Pair-wise LD 

analysis and identify proxy (nearby SNPs in LD with a candidate SNP that can represent the signal 

from the candidate.) SNPs. These are pre-calculated based on phased genotype data using the 

Caucasian (CEU) population from the International HapMap Project (v3) and 1000 Genomes Pilot 

1 projects. Proxy SNPs search was performed based on LD measurements (r2≥0.8) and distance 

limit of ±250kb.  

HapMap is a catalogue of common human genetic variants. It contains information on 

location and population distribution of these genetic variants. HapMap release #27, phaseII+III, 

Feb09, on NCBI B36 assembly, dbSNP 126 (http://www.hapmap.ncbi.nlm.nih.gov/) was accessed 

to download the genotyping data of the area of interest around the TOM1L1/COX11/STXBP4 

(chromosome: 17; start: 50323kb and end: 50608kb) and in AACS locus (chromosome: 12, start: 

12411kb and end: 12419kb). Haploview software (Barrett et al. 2005), 

http://www.broadinstitute.org/haploview) was used to analyse the pair-wise LD and haplotype 

structure (genotyping data from HapMap).  
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3.8 Analysis of regulatory potential 

All SNPs and their proxies were examined for potential regulatory functions using UCSC 

Genome browser (http://genome.ucsc.edu/) and RegulomeDB free software ((Boyle et al. 

2012)(URL: http://Regulomedb.org)).  

RegulomeDB is a database with functional annotation of SNPs. The data sources are GEO 

(Gene Expression Omnibus), ENCODE Project Consortium (2012), NCBI Sequence Read Archive, 

and other resources (published literature). It is free and publicly accessible. In this database the 

non-coding query variants are classified into one of four categories with scores ranging from 1 to 

6 (Annex 1.1). These scores are assigned according with the functional evidence of regulatory 

potential and the lower numbers represent the greatest evidence. These provide different types 

of information such as eQTL; chromatin immunoprecipitation sequencing (ChIP-seq); DNaseI 

hypersensitive sites (DHSs), chromatin interaction and TF-binding motifs. (Boyle et al. 2012) 

UCSC Genome Browser, besides sequence data, contains several functional data such as: 

histone modifications, DNase hypersensitivity sites and transcription factors binding sites. The 

functional information from UCSC was complemented with additional data from collaborators 

(H3K4me1 ChIP-seq data from Dr. Jason Carroll, University of Cambridge) and freely available 

DNase hypersensitivity data (Dr Myles Brown laboratory in Harvard) (He et al. 2012). Histone 

modifications regulate chromatin structure and function by processes such methylation and 

acetylation. These types of modifications are markers of regulatory elements such as promoters 

and enhancers. DHSs reflect areas of chromatin open indicating the presence of active chromatin 

and have also been associated with regulatory elements such as: promoters, enhancers, silencers, 

insulators (Bannister & Kouzarides 2011; Hon et al. 2009; Wang et al. 2012). We used the version 

Human Feb. 2009 (GRCh/hg19) and version Human Mar. 2006 (NCBI36/hg18) Assembly from 

UCSC Genome Browser (that contain different and complementary features) to analyse the region 

covering our selected SNPs. 
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3.9 Transcription factor prediction 

For the prediction of transcription factor binding sites (TFBS) we analysed 30 bps of DNA 

sequence around each SNPs for both alleles (Annex 1.2) using  TRANSFAC® software 

(collaboration with Dr. Shamith Samarajiwa, University of Cambridge). 

TRANSFAC is a professional database that analyses the binding affinity of a TF based in the 

core and matrix scores. These scores correspond to the quality of a match between the DNA 

sequence and the TF binding matrix and the core sequence of a matrix, respectively (Wingender 

et al. 2000). 

Transcription factors were selected according to the following criteria: TF binding site 

overlap to the SNP location, difference between alleles in terms of presence/absence of binding 

and cut-off of ≥0.9 for both matrix and core scores.  

 

3.10 Electrophoretic mobility shift assay (EMSA) 

3.10.1 Description of the assay 

This approach allows to detect protein-nucleic acid interactions. The method is based in the 

electrophoretic mobility of the protein-nucleic acid complex, through a non-denaturing 

polyacrylamide gel (Hellman & Fried 2007; Holden & Tacon 2011).  

A double-strand oligonucleotide containing a putative or known binding sequence is 

labelled with a radioactive or fluorescent marker (Biotin) and then is added to nuclear extract 

allowing the formation of a DNA-protein complex. If protein binds to the labelled sequence, the 

DNA-protein complex migrates slowlery through the gel creating a shift compared to the unbound 

oligonucleotide. In the reaction can also be added a non-labelled sequence (competitive) which 

will test the binding specificity of a protein to the target sequence. In a last step, antibodies that 

recognize epitopes of the protein are added and generate a lower mobility of the DNA-protein 

complex resulting in a supershift on the gel (Figure 3.3) (Hellman & Fried 2007; Chorley et al. 

2008; Holden & Tacon 2011). 
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Figure 3.3 Illustration to EMSA method. The gel shift assay consists of three key steps: 1) binding reactions; 2) 
electrophoresis; 3) probe detection (Thermo Scientific, URL: http://www.piercenet.com/method/gel-shift-assays-
emsa). 

 

3.10.2 Labelling Oligonucleotides 

Oligonucleotides with 15bp of DNA sequence region surrounding the SNPs (rs7307700; 

rs12581512 and rs7133614) were designed (Annex 1.3) and two oligonucleotides previous 

reported were used as controls (FGFR2 and HMGI(Y)). 

The first step was to label the complementary oligonucleotides separately that were then 

annealed. Labelling process and labelling efficiency (dot blot using hand spotting) was performed 

following the manufacturer’s instructions (Biotin 3' End DNA Labelling Kit, Thermo Scientific). 

Chemiluminescent Nucleic Acid Detection Module (Thermo Scientific) was used to detect the 

spotted standards and double-strand oligonucleotide.  
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3.10.3 DNA-protein binding  

EMSA was performed with Light®Shift Chemiluminescent EMSA Kit (Thermo Scientific) 

following the manufacturer’s instructions. A 6% polyacrylamide gel (Bio-Rad) was used to run the 

reactions of EMSA.  

Binding reactions were performed for each allele of the SNPs (double-strand 

oligonucleotide) and for Biotin-EBNA control DNA following the manufacturer’s instructions with 

exception of the adding of complete Protease Inhibitors and dithiothreitol (DTT). At the end of 

electrophoresis, the binding reactions were transferred onto a nylon membrane in a Trans-Blot 

SD Semi-Dry Transfer Cell (Bio-Rad) at 20V for 40 minutes. Crosslink and detection were 

performed following the manufacturer’s instructions.  
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CHAPTER 4 – RESULTS 

4.1 Selection of top SNPs in DAE map based on p-value 

Based on t-test p-values, ten of the most significant unidirectional DAE SNPs (rs2526935, 

rs10503416, rs10513376, rs7600326, rs6494466, rs10016, rs13265801, rs9250, rs8097892 and 

rs1384) and four non DAE SNPs (rs2834653, rs710945, rs1477017 and rs10521) obtained in DAE 

map using microarrays (Annex 2.1 and Annex 2.2) (Unpublished, Maia et al) were chosen to be 

validate by Taqman qRT-PCR. Selected SNPs are located in either coding, introns or untranslated 

regions from different genes and serve as marker SNPs in genotyping and assessment of DAE 

ratios (Table 4.1).  

 

Table 4.1 List of SNPs chosen to validate DAE map. In the table are shown the SNPs located gene, function (Status), 
chromosome (Chrom), minor allele frequency (MAF) in the CEU HapMap population and direction of Differential 
allelic expression (DAE) observed in the microarray study. 

SNP Gene Chrom Status Alleles MAF DAE 

rs2526935 DPF3 14 3’UTR A/C A = 0.437 Unidirectional DAE 

rs10503416 XKR6 8 5’UTR C/T C = 0.310 Unidirectional DAE 

rs10513376 DAB2IP 9 Flanking_5’UTR C/T C = 0.189 Unidirectional DAE 

rs7600326 CNRIP1 2 Flanking_3’UTR C/T C = 0.434 Unidirectional DAE 

rs6494466 CSNK1G1 15 Coding A/G A = 0.378 Unidirectional DAE 

rs10016 LOC92196 2 3’UTR A/G A = 0.478 Unidirectional DAE 

rs13265801 WDYHV1 8 Intron A/G G = 0.384 Unidirectional DAE 

rs9250 SENP6 6 Coding A/G G = 0.165 Unidirectional DAE 

rs8097892 MPPE1 18 Intron C/T T = 0.478 Unidirectional DAE 

rs1384 LYZ 12 3’UTR C/T T = 0.473 Unidirectional DAE 

rs2834653 RUNX1 21 Intron A/C C = 0.493 Non DAE 

rs710945 ZNF140 12 Coding A/G A = 0.484 Non DAE 

rs1477017 MMP2 16 Intron A/G G = 0.365 Non DAE 

rs10521 NOTCH1 9 Coding A/G G = 0.417 Non DAE 

UTR – untranslated region. 
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4.1.1 Genotyping of normal breast tissue 

This 14 SNPs were first genotyped in 84 normal breast tissue samples in order to identify 

informative heterozygous samples. For all SNPs we identified the presence of the three genotype 

groups (as shown for rs8097892 in Figure 4.1), as expected since all SNPs were common in the 

studied population (reported frequencies>10% in the HapMap CEU population) (Table 4.1). The 

repeated samples used as controls gave consistent genotypes and the negative controls did not 

amplify (black dots in Figure 4.1). All genotyping results are represented as supplementary 

material in Annex 2.3. 

 
Figure 4.1 Genotyping results for rs8097892 in normal breast tissue DNA samples by qRT-PCR. The x-axis indicates 
the fluorescence intensity of Allele 1 emitted by probe FAM and the y axis indicates the fluorescence intensity of 
Allele 2 emitted by the probe HEX. The blue squares represent homozygous samples for Allele 2, orange circles 
represent samples homozygous for Allele 1 and the green triangles represent heterozygous samples. The black 
diamonds are representative of NTCs (no fluorescent signal). 
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The 14 SNPs showed heterozygosity values between 18-50% (Table 4.2) that is in agreement 

with the allelic frequency data described for the European population in the database dbSNP 

(http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi). Based on these results, we chose 

different sets of heterozygous samples for each SNP to be used in DAE quantification. 

Table 4.2 Summary of genotyping results for DAE validation. In the table are shown the 14 genotyped SNPs and the 
percentages of undetermined genotypes, heterozigosity and allelic frequency for each SNP in the 84 normal breast 
tissue DNA samples genotyped.  

SNP Gene Undetermined (%) Heterozygosity (%) 
Homozygosity 

Allele 1 (%) Allele 2 (%) 

rs2526935 DPF3 13.33 48.33 (A/C) 11.67 (C) 26.67 (A) 

rs10503416 XKR6 14.46 48.19 (C/T) 21.69 (T) 15.66 (C) 

rs10513376 DAB2IP 25.30 31.33 (C/T) 40.96 (T) 2.41 (C) 

rs7600326 CNRIP1 16.87 40.96 (C/T) 27.71 (T) 14.46 (C) 

rs6494466 CSNK1G1 20.48 37.35 (A/G) 34.94 (G) 7.23 (A) 

rs10016 LOC92196 14.46 44.58 (A/G) 4.82 (G) 36.14 (A) 

rs13265801 WDYHV1 13.26 38.55 (A/G) 9.64 (G) 38.55 (A) 

rs9250 SENP6 12.05 44.58 (A/G) 9.64 (G) 33.73 (A) 

rs8097892 MPPE1 10.85 48.19 (C/T) 15.66 (T) 25.30 (C) 

rs1384 LYZ 10.85 53.01 (C/T) 15.66 (T) 20.48 (C) 

rs2834653 RUNX1 28.92 34.94 (A/C) 15.66 (C) 20.48 (A) 

rs710945 ZNF140 24.10 38.55 (A/G) 28.92 (G) 8.43 (A) 

rs1477017 MMP2 12.05 28.92 (A/G) 15.66 (G) 43.37 (A) 

rs10521 NOTCH1 10.85 38.55 (A/G) 37.35 (G) 13.25 (A) 

 

4.1.2 DAE analysis in normal breast tissue 

Eighteen of the heterozygous matching cDNA samples were selected for quantification of 

allelic transcript levels in the 14 SNPs using allele-specific Taqman qRT-PCR. For all SNPs the 

samples replicates revealed a low percentage of variation ([mean allelic ratio/standard deviation], 

smaller than 1-5%). For each SNP a variable number of samples (1-17) failed quantification, in 

either cDNA or DNA samples, and were excluded from the analysis (Table 4.3).  
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Table 4.3 DAE average values for the validation SNPs in normal breast tissue. In the table are shown the 14 DAE 
SNPs, its gene location, the number of heterozygous in the successfully quantified samples, the DAE average values 
observed, the standard deviation (SD), the minimum and maximum values of DAE distribution (Min-Max) and the p-
value for the one sample t-test. 

SNP Gene 
Heterozygous 

with DAE 

DAE 

average 
SD Min-Max t-test 

(p-value) 

rs2526935 DPF3 7/7 3.08 0.46 2.49 – 3.95 1.69E-06 

rs10503416 XKR6 1/9 0.09 0.35 -0.33 – 0.85 2.19E-01 

rs10513376 DAB2IP 4/8 -0.29 0.30 -1.03 – 0.25 6.10E-02 

rs7600326 CNRIP1 6/13 -0.68 0.77 -2.19 – 0.40 4.24E-03 

rs6494466 CSNK1G1 5/8 -0.05 1.05 -1.77 – 1.20 4.76E-01 

rs10016 LOC92196 11/17 0.67 0.53 -0.53 – 1.45 2.08E-04 

rs13265801 WDYHV1 4/8 -0.53 1.06 -1.91 – 1.85 2.52E-01 

rs9250 SENP6 3/8 0.29 1.25 -0.38 – 2.78 5.91E-02 

rs8097892 MPPE1 11/11 1.53 2.22 -4.10 – 4.54 4.22E-02 

rs1384 LYZ 7/11 0.64 0.52 -0.22 – 1.60 2.66E-03 

rs2834653 RUNX1 8/11 3.39 1.71 -0.31 – 4.03 5.31E-04 

rs710945 ZNF140 8/8 -0.33 2.60 -2.62 – 3.44 9.52E-01 

rs1477017 MMP2 3/10 -0.23 0.51 -0.97 – 0.84 2.86E-01 

rs10521 NOTCH1 0/7 0.34 0.35 -0.18 – 0.92 5.01E-02 

 

Concerning, the 10 SNPs that have shown DAE in previous data, we observed in all 

statistically significant DAE (mean DAE distribution smaller or greater than -0.58 or 0.58, 

respectively). Five SNPs (rs2526935, rs10503416, rs6494466, rs10016 and rs13265801) showed a 

consistent direction in the DAE distribution comparing with the previous results. Regarding, the 

four SNPs that did not show DAE in the original report, we observed significant DAE in three of 

these SNPs (rs2834653, rs710945, rs1477017) and no evidence of DAE in only one SNP (rs10521) 

(Figure 4.2). 



 

 

 

 

31 

 
Figure 4.2 Results from the validation of the DAE map SNPs. x-axis indicates the name of SNPs and the y axis 
indicates the normalised DAE ratio obtained. Heterozygous individuals are represented as dots and are blue and red 
for the SNPs originally reported as having DAE or non DAE, respectively. The numbers in parentheses are the numbers 
of individuals in which the DAE was quantified in our validation. Dotted lines delimit the cut-off of preferential allelic 
expression ratio [log2(1.5)=0.584]. 

 

4.2 Crossing of GWAS and genomic DAE information 

One of the main objectives from this thesis project is identify new susceptibility loci for 

breast cancer. To this end, we first collected the data on loci associated with breast cancer risk 

from all public available original GWAS and meta-analysis studies (Easton & Eeles 2008; Ahmed 

et al. 2009; Thomas et al. 2010; Kim et al. 2012; Chen et al. 2013; Couch et al. 2013; Low et al. 

2013; Michailidou et al. 2013; Turnbull et al. 2013). These data were crossed with the DAE map 

established previously by Prof. Ana Teresa Maia, using both LD and physical distance as a criteria. 

Firstly, we selected GWAS SNPs which were within 250kb (on either side) of the DAE SNPs. Then, 

we selected from this list all DAE SNPs which were in strong LD (r2≥0.8) with the GWAS SNPs. The 
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rationale behind the LD analysis was because both the DAE as the GWAS SNPs are markers for 

the actual cis-regulatory risk variant, with whom they should be in moderate to strong LD. 

Therefore, applying as a criteria to follow up genes/loci that have GWAS and DAE associated SNPs 

in LD we maximize our chances of identifying the true risk variant. 

From this list we selected two regions to study: the 17q22 and the 12q24 loci. These regions 

were selected based on: DAE values and scenario consistent with the observed LD between the 

transcribed SNP (where the DAE was measured) and the GWAS associated SNP, and ranking of 

the GWAS associated variant in the original study and/or meta-analysis. After selecting these two 

loci, we searched for potential regulatory functions using the database RegulomeDB, Genome 

Browser and several histone modifications data files. Putative transcription factor binding sites 

(TFBS) were also searched within the sequences containing the candidate SNPs using Alibaba2 

and TRANSFAC®. 

 

4.2.1 Analysis of breast cancer risk locus 17q22 - TOM1L1/COX11/STXBP4 

We found three SNPs with DAE in the 17q22 locus: rs7643 that is located in the 3’UTR of 

COX11; rs17817901 that is located in the intronic or 3’UTR region of TOM1L1, depending on the 

transcript and that also co-localizes to the 3’UTR region of COX11 gene; and rs2628315 that is 

located in a intronic region of STXBP4,). DAE analysis showed that rs7643 and rs17817901 had a 

DAE pattern consistent with Scenario 1 (Annex 3.1- A and B, respectively), indicating that all are 

in complete LD (r2≈1, D’≈1) with the rSNP. rs2628315 shows a DAE pattern consistent with 

Scenario 2 (r2<1, D’≈1) (Annex 3.1 - C). 

In GWAS studies, rs6504950, an intronic variant in the STXBP4 gene, has been consistently 

associated with breast cancer risk, having been ranked second (per-allele OR = 0.95, 95% CI = 

0.92–0.97, P = 1.4E-08) in the report by Ahmed et al (Easton et al. 2007). rs6504950 has also been 

reported as being associated with breast cancer risk in several studies with the minor allele always 

being associated with decreased risk (meta-analysis OR = 0.92, 95% CI = 0.88–0.96, P = 1E-04) 

(Ahmed et al. 2009; Antoniou et al. 2011; Bhatti et al. 2010; Campa et al. 2011; Loizidou et al. 

2011; Tang et al. 2012). 
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LD analysis showed that one DAE SNPs (rs17817901) is in strong, not complete, LD (r2=0.830 

and D’=1; distance=17.7 kb) with the GWAS associated SNP, suggesting that this DAE SNP and the 

GWAS associated SNP are stronger markers for the true disease risk variant(s). 

 

4.2.1.1  Characterisation of regulatory landscape 

Proxy SNPs (r2>0.8 and D’=1) for rs17817901 and rs6504950 were searched and a total of 

138 unique SNPs were identified (data not shown). Both rs1781901 and rs6504950 and their 

proxies were analysed for functional evidence on RegulomeDB. Six SNPs were chosen for further 

analysis (Table 4.4), there was eQTL evidence for COX11 in monocytes (rs7222197, rs2628305, 

rs2787481, rs244317, rs12949538 and rs9902718), having one of these six SNPs also functional 

evidence in breast cancer cell lines (rs7222197). rs7222197, a proxy for the GWAS SNP rs6504950 

(r2=1 and D’=1), had ChIP-seq evidence for GATA3 binding in T47D cells (luminal ER+ breast cancer 

cell line) and evidence of higher chromatin structure from FAIRE experiments in MCF-7 cells 

(another luminal ER+ breast cancer cell lines). The remaining six did not have any data available 

in RegulomeDB were selected for further analysis: rs17817901 and rs7643 because they show 

DAE, rs6504950 because it was associated in several GWAS and rs12951898, rs12165058, 

rs3087650 because not having information available does not exclude the possibility of them still 

having a functional role. 
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Table 4.4 RegulomeDB scores for the selected SNPs in 17q22 locus. 

TOM1L1/COX11/STXBP4 

Scores SNPs 

1f 

rs7222197 

rs2628305 

rs2787481 

rs244317 

6 
rs12949538 

rs9902718 

No data 

rs12951898 

rs12165058 

rs3087650 

rs17817901 

rs7643 

rs6504950 

 

Subsequently, this locus was analysed using the UCSC Genome Browser. Six SNPs 

(rs17817901, rs12949538, rs7222197, rs9902718, rs2628305 and rs6504950) were found to 

overlap regions containing possible regulatory elements (Figure 4.3). rs17817901 overlaps a 

region containing H3K4me1 (observed in BT474 cell lines, a ER+ human breast cell line), a marker 

for enhancers and promoters. rs12949538 and rs6504950 were also found to overlap with a 

region containing both H3K4me1 and DNase hypersensitivity clusters (a marker for both 

promoters and enhancers, and protein binding). rs9902718 and rs2628305 lie in a region with 

evidence of H3K4me1 mark, but not in a breast cancer cell line. The rs7222197 overlaps a region 

containing the marks H3K4me1, H3K4me3 (marker for promoter) and H3K27Ac (marker marks 

active regulatory elements) and DNase hypersensitivity clusters, indicating a possibility of an 

active promoter (Figure 4.3). This data suggests that these six SNPs can possibly exert a functional 

effect by modulating the gene expression regulation. 
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Figure 4.3 Genomic view of the 17q22 locus with functional regulatory evidence. From the top to the bottom of the 
figure are shown the candidate proxy SNPs, DAE and GWAS SNPs, the RefSeq genes mapped to the area of interest 
around the locus (TOM1L1, COX11 and STXBP4), information about additional data from collaborators (Dr. Jason 
Carroll, University of Cambridge and Dr Myles Brown (He et al. 2012), histone modifications, DNase clusters, 
transcription factors and LD structure according to the Genome Browser (http://genome.ucsc.edu/). 
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4.2.1.2 LD and haplotype analysis 

Our data suggested that the cis-regulatory variation responsible for DAE in 12q24 locus can 

be located in the same haplotype block as rs17817901, rs7643 and rs2628315. Therefore, we 

further analysed LD in this region to define the haplotype structure in order to identify the 

haplotype block containing the risk cis-regulatory variants. In this exercise we aimed to identify 

the haplotypes responsible for decreased or increased gene expression. rs17817901 and 

rs6504950 had no genotype information available in HapMap, therefore we analysed two proxies 

in complete LD (r2=1, D’=1) with each one of these SNPs. rs17817901 and rs6504950 in the 

haplotype analysis are thus represented by rs12936860 and rs2628315, respectively (Figure 4.4). 

 
Figure 4.4 Linkage disequilibrium plot for the analysed SNPs in 17q22 locus in 30 CEU (CEPH population of Utah 
residents with ancestry from northern and western Europe). The SNP ID is displayed along the top of the diagram. 
This plot was obtained in Haploview using the r2 colour scheme (black indicating r2 =1, with different shades of grey 
indicating 0 < r2 < 1). In addition, values in the plot indicate r2 values for pairwise comparisons between the SNPs. 
Blocks were defined using the confidence interval method. Black triangles denote the two haplotype blocks.  The two 
SNPs used as marker SNPs for the rSNP in this analysis are shown in green. 
(http://www.broadinstitute.org/haploview). 
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Two main haplotype blocks were identified: Block 1 included three haplotypes and block 2 

included two haplotypes in the European population. In block 1, the minor allele of rs12936860 

(proxy for rs17817901) belongs to haplotype 2 and the minor allele of rs7643 belongs to 

haplotypes 2 and 3. In block 2, the minor allele of rs2628315 belongs to haplotype 5 (Figure 4.5). 

In our DAE analysis SNPs rs17817901, rs7643 and rs2628315 always showed the minor 

alleles preferentially expressed (A allele). Therefore, the haplotypes in our population that are 

more likely to be associated with preferential expression are haplotype 2 and 3 in block 1 and 

haplotype 5 in block 2, and both haplotype 1 and 4 are associated with decreased expression 

(Figure 4.5). 

 
Figure 4.5 Haplotype blocks and haplotype frequencies in 17q22 locus. The haplotype frequencies are shown to the 
right of each haplotype. The SNP numbers in the top of the haplotypes correspond to those in the LD plot (Figure 
4.4). The three SNPs used as marker SNPs for the rSNP in this analysis are shown in green. Haplotypes preferentially 
expressed are shown in red. This plot was obtained in Haploview using genotype information from 30 CEU 
(http://www.broadinstitute.org/haploview). 

 

4.2.2 Analysis of breast cancer risk locus 12q24 – AACS 

We found three SNPs with DAE (rs7138557, rs12581512 and rs2291248) located in the 

12q24 locus, all located in introns of AACS (acetoacetyl-CoA synthetase). All three SNPs showed 

a DAE pattern consistent with Scenario 2 (Annex 3.2 – A, B, C respectively), indicating that they 

are in strong, not complete, LD with the rSNP (r2<1, D’=1), as explained previously in section 1.5. 

Easton et al (2007) reported an association with breast cancer risk at the same locus, tagged 

by rs7307700 (OR = 1.02; 95% CI = 0.99-1.05; p-value = 2E-03]. Another SNP, rs2291248, was 
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associated by the same group in the same report but did not reach genome-wide significance and 

therefore was not reported (preliminary p-value = 7.49E-04, Dr D. Easton, personal 

communication). Interestingly, rs2291248 was identified both in GWAS and our DAE study. 

LD analysis showed the DAE SNP rs7138557 is in LD with the GWAS hit rs7307700 (r2=0.846 

and D’=1, distance=0.4 Kb) and the DAE SNP rs12581512 is in LD with rs2291248, shared by DAE 

and GWAS (r2=0.869 and D’=1, distance=2.9 Kb). This result suggests that these four DAE SNPs 

are markers for the true disease-causing variant(s). 

 

4.2.2.1 Characterisation of regulatory landscape  

We looked for proxy SNPs (r2>0.8 and D’=1) for the four SNPs in LD, in order to identify the 

true cis-regulatory risk variant. A total of 123 proxy SNPs were identified (data not shown). On 

searching RegulomeDB we found functional evidence in breast cancer cell lines for 11 SNPs, and 

another two did not have any data (rs12581512 and rs7307700) (Table 4.5). 

rs7133614, a proxy for the DAE SNP rs12581512 (r2=0.965 and D’=1) had evidence of higher 

chromatin structure, from DNase-seq analysis, in T47D cells.  rs7137742, a proxy for the DAE SNP 

rs12581512, had a binding motif evidence for two transcription factors, MAX and USF, from 

Footprinting experiments in MCF-7 cells. rs10846834, a proxy for the DAE SNP rs7138557 had 

ChIP-seq evidence for STAT3 binding in MCF10A-Er-Src cells, a normal breast epithelial ER- cell 

line. rs7138790, rs35428999, rs7138557 and rs7304979 only had evidence of higher chromatin 

structure, from DNase-seq, in MCF-7 and T47D cells. rs7138405, had ChIP-seq evidence for MYC 

binding in MCF-7 cells and had evidence of histone modifications (H3k04me3 and H3k4me3) from 

ChIP-seq also in MCF-7 cells.  

The two SNPs without functional evidence (rs12581512, rs7307700) on RegulomeDB were 

included in further analysis, as there was no information supporting their exclusion. 
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Table 4.5 RegulomeDB Scores for the selected SNPs in 12q24 locus. 

AACS 

Scores SNPs 

1f rs7133614 

2a rs7137742  

2b 

rs10846832 

rs58416336 

rs7138790 

rs35428999 

3a 

rs10846834 

rs7138405 

rs7304979 

4 rs2291248 

5 rs7138557 

No data 
rs12581512 

rs7307700 

 

Subsequently, this locus was analysed using the UCSC Genome Browser. All SNPs were 

found to overlap regions containing binding sites for several transcription factors (Figure 4.6) and 

containing evidence of DNase hypersensitivity clustering. Some of these SNPs showed additional 

evidence of being located in a regulatory region: rs7138405, rs7137742, rs7138790 and 

rs10846834 overlap regions containing evidence of histone marks such as H3K4me1 (marking 

enhancers and promoters), H3K4me3 (marking promoters), and H3K27Ac (active regulatory 

elements); rs7138557, rs7307700, rs10846832 and rs58416336 also overlap regions containing 

evidence of one histone mark, such as H3K4me1; rs10846832 and rs58416336 had evidence of 

histone mark H3K4me1 observed in SK-BR-3 cell lines (human breast cell line that overexpresses 

the Her2 gene) (Figure 4.6). This information suggests that all these 13 SNPs are putative cis-

regulatory SNPs. 
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Figure 4.6 Genomic view of the 12q24 locus with functional regulatory. From the top to the bottom of the figure 
are shown the candidate proxy SNPs (red) and the DAE and GWAS SNPs (green), the RefSeq genes mapped to the 
area of interest around the locus (AACS gene), additional data from collaborators (Dr Jason Carroll, University of 
Cambridge and Dr Myles Brown (He et al. 2012), information about histone modifications, DNase clusters, 
transcription factors and LD structure according to the Genome Browser (http://genome.ucsc.edu/). 
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4.2.2.2 LD and haplotype analysis 

Our data suggested that the cis-regulatory variation responsible for DAE in 12q24 locus can 

be located in the same haplotype block as rs7138557, rs12581512, rs7307700 and rs2291248 

(Figure 4.7). Therefore, we looked at the LD structure in this region in order to identify the 

haplotypes responsible for decreased or increased gene expression.  

 
Figure 4.7 Linkage disequilibrium plot for the analysed SNPs in 12q24 locus in 30 CEU. The SNP ID is displayed along 
the top of the diagram. This plot was obtained in Haploview using the r2 colour scheme (black indicating r2 =1, with 
different shades of grey indicating 0 < r2 < 1). In addition, values in the plot indicate r2 values for pairwise comparisons 
between the SNPs. Blocks were defined using the confidence interval method. Black triangles denote the two 
haplotype blocks.  The two SNPs used as marker SNPs for the rSNP in this analysis are shown in green. 
(http://www.broadinstitute.org/haploview). 

 

Two main haplotype blocks were identified: Block 1 included four haplotypes and Block 2 

included three haplotypes in the European population (Figure 4.8). rs7138557 belongs to block 1 

in which haplotypes 2 and 4 contain the minor allele. rs7307700 also belongs to block 1 in which 
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haplotypes 2 and 3 contain the minor allele. rs12581512 is in block 2 and its minor allele is in 

haplotype 6. rs2291248 is also in block 2 and its minor allele corresponds to haplotypes 6 and 7. 

Our DAE results showed that all minor alleles of the DAE SNPs were preferentially 

expressed. Therefore, in block 1 haplotype 2 is the most likely to be preferentially expressed, only 

because haplotype 4 is very rare, and could not justify the frequency of DAE we observed. In block 

2, haplotypes 6 and 7 are the ones associated with preferential expression although haplotype 6 

is probable contributing more to the DAE signal in our results because it is more frequent (Figure 

4.8). 

 
Figure 4.8 Haplotype blocks and haplotype frequencies in 12q24 locus. The haplotype frequencies are shown to the 
right of each haplotype. The SNP numbers in the top of the haplotypes correspond to those in the LD plot (Figure 
4.7). The three SNPs used as marker SNPs for the rSNP in this analysis are shown in green. Haplotypes preferentially 
expressed are shown in red. This plot was obtained in Haploview using genotype information from 30 CEU 
(http://www.broadinstitute.org/haploview). 

 

4.2.2.3 Prediction of transcription factor binding sites (TFBS) 

Next our best 13 candidate SNPs (rs7133614, rs7137742, rs10846832, rs58416336, 

rs7138790, rs35428999, rs10846834, rs7138405, rs7304979, rs2291248, rs7138557, rs12581512 

and rs7307700) were analysed to predict transcription factor binding sites (TFBS). Results for each 

SNP were selected based in the criteria described in section 3.9 (Materials and Methods). The 

results are presented in Table 4.6. In short, we selected the predictions with good core and matrix 

scores, and differences between the two alleles of each SNP, as described in Materials and 

Methods. 
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Table 4.6 TRANSFAC Results for all SNPs (continuation of the table on page 42). In the table the position of minor 
and common allele is represented in red. Minor allele is shown first and the common allele is shown second. Matrix 
identifier corresponds to the transcription factors that can binding in the sequence containing the allele. 

SNP Allele 
Matrix 

identifier 
Sequence 

Core 

match 

Matrix 

match 

rs7133614 

T --------- --------- --------- --------- 

C 
V$GEN_INI3_B 

V$CAP_01 

gcaCAGTC 

ACAGTcct 

0.996 

0.989 

0.962 

0.988 

rs7307700 
G --------- --------- --------- --------- 

A V$HMGIY_Q6 GTAAAag 0.964 0.906 

rs12581512 
A 

V$HES1_Q2 

V$CAP_01 

tacccCACAAgctga 

CCACAagc 

0.989 

0.964 

0.934 

0.959 

G V$CBF_01 gatacCCCGCaagctg 0.982 0.95 

rs7137742 

A --------- --------- --------- --------- 

G 

V$CMYC_02 

V$STRA13_01 

V$USF_02 

V$TFE_Q6 

V$EBOX_Q6_01 

V$CBF_01 

V$AHRHIF_Q6 

V$KID3_01 

agtcACGTGgtt 

cagtcACGTGgtta 

cagtCACGTggtta 

tCACGTgg 

agtcACGTGg 

agtcACGTGg 

cACGTGgtt 

CGTGG 

1 

1 

1 

0.95 

1 

0.978 

0.982 

1 

0.953 

0.935 

0.993 

0.959 

0.998 

0.962 

0.955 

1 

rs10846832 

C V$CBF_01 ctccctGCGGGgtcct 0.982 0.952 

G 

V$CHCH_01 

V$SPZ1_01 

V$LRF_Q2 

TGGGGg 

cctGGGGGgtcctgg 

cctGGGGGgtcctgg 

0.986 

0.998 

1 

0.986 

0.946 

0.983 

rs58416336 

T 

V$CBF_01 

V$CAP_01 

V$KID3_01 

tccctgGTGGGtcctg 

cctGGTGG 

GGTGG 

0.96 

0.971 

1 

0.947 

0.964 

1 

G 

V$CHCH_01 

V$LRF_Q2 

V$MOVOB_01 

TGGGGg 

GGGGGtcct 

tgGGGGG 

0.986 

1 

1 

0.986 

0.983 

0.96 

rs7138790 
G V$CBF_01 tccctGCCGCtaatca 0.981 0.965 

C V$CHCH_01 gCCCCT 0.985 0.978 

rs35428999 
A 

V$GEN_INI3_B 

V$MSX1_01 

V$CAP_01 

V$KID3_01 

cgcCACTC 

cACTCActc 

CCACTcac 

CCACT 

0.989 

0.865 

0.984 

0.991 

0.968 

0.831 

0.982 

0.991 

G V$CBF_01 tgcacGCCGCtcactc 0.981 0.949 

rs10846834 
A 

V$GEN_INI3_B 

V$CAP_01 

CACTGatt 

GCACTgat 

0.984 

0.987 

0.944 

0.98 

G --------- --------- --------- --------- 
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rs7138405 
T --------- --------- --------- --------- 

C V$AHRHIF_Q6 ctgCACGTt 0.982 0.964 

rs7304979 

A --------- --------- --------- --------- 

G 

V$CHCH_01 

V$LRF_Q2 

V$AHRHIF_Q6 

CGGGGc 

GGGGCcact 

cgcCACGGg 

1 

0.943 

0.93 

0.993 

0.937 

0.91 

rs2291248 
T 

V$EN1_01 

V$KID3_01 

GTGGTgt 

TGTGG 

0.926 

0.995 

0.906 

0.995 

C --------- --------- --------- --------- 

rs7138557 
C 

V$USF_02 

V$GEN_INI3_B 

V$LMO2COM_0 

V$EBOX_Q6_01 

V$CBF_01 

V$CAP_01 

cttcCACTTggggt 

ttcCACTT 

ttccACTTGggg 

ttccACTTGggg 

gatctTCCACttgggg 

CCACTtgg 

0.915 

0.986 

0.901 

0.98 

0.972 

0.984 

0.901 

0.937 

0.91 

0.949 

0.959 

0.978 

T --------- --------- --------- --------- 

 

4.2.2.4 Identification of DNA-protein interaction 

We have started in-vitro analysis of these predictions on three SNPs: rs7307700, 

rs12581512 and rs7133614. First, oligonucleotides containing the SNPs of interest, and control 

competition oligonucleotide (HMGI(Y)) for rs7307700 were labelled with Biotin.  

Spot intensities of the seven double-strand oligonucleotides were compared with the 

Biotin-EBNA Control DNA within the kit to determine the labelling efficiency, which we found to 

be approximately 75% for all oligonucleotides (Figure 4.9). Based on this we used a concentration 

of 50nM for the EMSA analysis.  
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Figure 4.9 Labelling efficiency for Biotin-EBNA Control DNA and for all oligonucleotides annealed. The blot includes 
the dilution for each of the standards of the Procedures for Estimating Labelling Efficiency (A), as well as the labelling 
control of the kit and seven different test oligonucleotides (B), ATM38/39 correspond to HMGI(Y), ATM40/41 and 
ATM42/43 correspond to G and A alleles (rs7307700), ATM44/45 and AMT46/47 correspond to A and G alleles 
(rs12581512) and ATM48/49 and ATM50/51 correspond to T and C allele (rs7133614). 

 

EMSA was performed using nuclear protein extract previously prepared from HCC1954 

breast cancer cell line and for the extraction was used the NE-PER™ Nuclear and Cytoplasmic 

Extraction Reagents (Thermo Scientific), following manufacturer’s instructions. Biotin-EBNA 

Control DNA, Biotin-EBNA Control DNA+ EBNA Extract and HMGI(Y) and FGFR2 were also included 

as positive controls (Figure 4.10).  HMGI(Y) (ATM38/39) and FGFR2 were included because these 

oligonucleotides have been reported to show binding in EMSAs using nuclear extracts from breast 

cell lines (Klein-Hessling et al. 1996; Reeves et al. 2001; Meyer et al. 2008).  

We performed a first experiment in which we observed shift for the positive controls (Figure 

4.10). Nevertheless, the signal was very weak and the shift was not complete (the majority of 

oligonucleotide was unbound). This result suggests that the protein extract were in good 

condition, but that the quantity of protein used was probably too low to form a strong binding 

between protein and DNA. Further experiments will be carried out to optimise these conditions. 

Afterwards, all 11 SNPs will be analysed by this method. 
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Figure 4.10 in vitro DNA-protein binding studies. This analysis was performed using HCC1954 nuclear extract. Biotin-
EBNA Control DNA, Biotin-EBNA Control DNA+ EBNA Extract and FGFR2-13 and HMG I(Y) were included as positive 
control. rs7307700; rs12581512 and rs7133614 were the oligonucleotide previously chosen for the initial test. 
ATM38/39 correspond to HMGI(Y), ATM40/41 and ATM42/43 correspond to G and A alleles (rs7307700), ATM44/45 
and AMT46/47 correspond to A and G alleles (rs12581512) and ATM48/49 and ATM50/51 correspond to T and C 
allele (rs7133614). Arrow indicate specific bands for DNA-protein interactions. *: represent the oligonucleotides 
labelled. 
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4.2.3 DAE validation of COX11 and AACS 

Since both COX11 and AACS loci showed evidence functional regulatory potential in the in 

silico analysis we also decided to validate the DAE levels in normal breast tissue, for one SNP in 

each gene. We chose rs7138557 for AACS and rs17817901 for COX11 (Table 4.7). 

 

Table 4.7 SNPs in COX11 and AACS used to assess DAE in breast tissue samples. In the table are shown the 2 
located gene, function (Satus), chromosome (Chrom), minor allele frequency in the CEU HapMap population (MAF) 
and direction of DAE observed in the microarray study. 

SNP Gene Chrom Status Alleles MAF DAE/scenario in microarrays 

rs17817901 COX11 17 3’UTR A/G G = 0.165 
Unidirectional 

(Scenario1) 

rs7138557 AACS 12 Intron C/T C = 0.398 
Unidirectional 

(Scenario2) 

 

As explained previously, we first genotyped DNA samples from 84 normal breast tissue. The 

genotyping for both SNPs was well succeeded and 18 heterozygous samples were chosen for DAE 

assessment. All genotyping results are represented as supplementary material in Annex 4.1. SNPs 

showed a frequency of heterozygosity between 20-50% (Table 4.8). For rs17817901, the allelic 

frequencies observed were in agreement with what is described for the European population but 

for rs7138557 we observed a higher frequency of the C allele and this was reported has being the 

minor allele in the European population. 

 

Table 4.8 Summary of genotyping results for the validation SNPs in breast tissue samples. In the table are shown 
the 2 genotyped SNPs and the percentages of undetermined genotypes, heterozigosity and allelic frequency for each 
SNP in the 84 normal breast tissue DNA samples genotyped. 

SNP Gene Undetermined (%) Heterozygosity (%) 
Homozygosity 

Allele 1 (%) Allele 2 (%) 

rs17817901 COX11 8.43 28.92 (A/G) 12.05 (G) 50.60 (A) 

rs7138557 AACS 7.23 42.17 (C/T) 20.48 (T) 30.12 (C) 

 

For rs17817901 (COX11) we did not observed DAE for any sample and therefore this result 

was not consistent with the original microarrays findings. For rs7138557 (AACS) we observed 
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statistically significant DAE (p-value=8.76E-03) (Table 4.9 and Figure 4.11), with a pattern 

consistent with Scenario 3, a pattern not consistent with the original microarrays findings. 

 

Table 4.9 DAE average values for the validation SNPs in normal breast tissue. In the table are shown the 2 DAE 
SNPs, the number of heterozygous in the successfully quantified samples, the DAE average values observed, the 
standard deviation (SD), the minimum and maximum values of DAE distribution (Min-Max) and the p-value for the t-
test. 

SNP Gene 
Heterozygous 

with DAE 

DAE 

mean 
SD Min-Max t-test 

(p-value) 

rs17817901 COX11 0/9 -0.16 0.16 -0.49 – -0.01 1.68E-02 

rs7138557 AACS 4/11 0.03 0.72 -1.15 – 1.22 8.76E-03 

 

 

Figure 4.11 Results from DAE validation in AACS and COX11. x-axis indicates the name of SNPs and the y axis 
indicates the normalised DAE ratio. Heterozygous individuals are represented as blue dots. The numbers in 
parentheses are the numbers of individuals in which the DAE was quantified in our validation. Dotted lines delimit 
the cut-off of preferential allelic expression ratio [log2(1.5)=0.584]. 

  

4.2.4 Expression quantitative trait loci (eQTL) analysis 

We also checked our samples of breast tissue and blood eQTL evidence in the two loci 

(17q22 and 12q24), as several variants seem to show eQTL in RegulomeDB. We used the data 

from previously microarray studies in breast already referred and also available data from blood 

for the same samples. For 17q22, we had genotyping data for SNPs rs244317, rs2628315, 
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rs2628305 and rs2787481. For 12q24 we had genotyping data for rs7307700. For 17q22 and 

12q24 loci, we found no significant eQTL evidence (Annex 4.2 and Annex 4., respectively). 

Therefore, no relationship was observed between the gene total expression levels with the SNPs 

genotype. 

 

4.2.5 Comparison of DAE between breast tissue and blood  

To understand whether DAE pattern is similar between blood and breast tissue and to see 

if it is possible to use blood as a suitable substitute for DAE quantification in breast, we performed 

DAE analysis in blood samples for COX11 and AACS.  

We began by genotyping rs17817901 (COX11) and rs7138557 (AACS) in 150 blood samples 

from healthy individuals (Annex 4.1) and found a frequency of heterozygosity of 41% and 38%, 

respectively (Table 4.10). For rs17817901, the allelic frequencies observed were in agreement 

with what is described for the European population and for rs7138557 was again discordant. 

 

Table 4.10 Summary of genotyping results in blood. In the table are shown the 2 genotyped SNPs and the 
percentages of undetermined genotypes, heterozigosity and allelic frequency for each SNP in the 150 genotyped 
blood sample. 

SNP Gene Undetermined (%) Heterozygosity (%) 
Homozygosity 

Allele 1 (%) Allele 2(%) 

rs17817901 COX11 6.00 40.67 (A/G) 6.00 (G) 47.33 (A) 

rs7138557 AACS 14.00 38.67 (C/T) 14.00 (T) 33.33 (C) 

 

Subsequently, 18 heterozygous blood samples for both SNPs were chosen for DAE analysis. 

For rs17817901, two blood samples showed DAE but no breast samples and the DAE distribution 

showed a pattern consistent with Scenario 2. For rs7138557, four breast samples and one blood 

sample showed DAE, and the DAE distribution had a pattern consistent with Scenario 3 and 2, 

respectively (Figure 4.12). 
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Figure 4.12 Comparison of DAE between normal breast tissue and blood from healthy individuals. Breast samples 
are represented as blue dots and blood samples are represented as green dots. Vertical lines separate each SNP. 
Dotted lines delimit the cut-off of preferential allelic expression ratio [log2(1.5)=0.584]. 

  

We found a significant difference between the two DAE distributions means for rs17817901 

(p-value= 1.77E-04), but not for rs7138557 (p-value=3.17E-01). Nevertheless, detected significant 

differences between the DAE distribution variances for rs7138557 (p-value=1.43E-02) but not for 

rs17817901 (p-value= 2.84E-01) (Figure 4.12 and Table 4.11). Therefore, this analysis suggests 

that DAE in breast tissue and blood is different. 

Table 4.11 Comparison of normalised DAE between breast tissue and blood for AACS and COX11. In the table are 
shown the 2 DAE SNPs, the number of heterozygous in the successfully quantified samples, the DAE average values 
observed, the standard deviation (SD), the minimum and maximum values of DAE distribution (Min-Max). 

SNP/Gene Samples Heterozygous 

with DAE 

Mean 

DAE 
SD Min-Max 

t-test 

(p-value) 

var-test 

(p-value) 

rs
1

7
8

1
7

9
0

1
 

(C
O

X
1

1
) Breast 0/9 -0.16 0.16 -0.49 – -0.01 

1.77E-04 2.84E-01 

Blood 2/10 0.29 0.24 -0.06 – 0.61 

rs
7

1
3

8
5

5
7

 

(A
A

C
S)

 

Breast 4/11 0.03 0.72 -1.15 – 1.22 

3.17E-01 1.43E-02 

Blood 1/9 -0.23 0.28 -0.64 – 0.18 
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4.2.6 Case – control association study 

To understand if DAE in both loci is truly associated with breast cancer risk, we performed 

a small case-control study. 

Samples from healthy individuals (Controls) and from patients with breast cancer (Cases) 

were analysed for DAE in COX11 and AACS. We began by genotyping rs17817901 and rs7138557 

in 56 blood samples from cases of cancer (Annex 4.) since the controls had been already 

genotyped. Heterozygosity frequencies were 30% and 39% (Table 4.12), respectively. rs17817901 

in concordance with European allelic frequency and rs7138557 was again discordant for the allelic 

frequency. 

 

Table 4.12 Summary of genotyping results for the SNPs (in COX11 and AACS) from blood cancer samples. In the 
table are shown the 2 genotyped SNPs and the percentages of undetermined genotypes, heterozigosity and allelic 
frequency for each SNP in the 56 genotyped blood cancer samples. 

SNP Gene Undetermined (%) Heterozygosity (%) 
Homozygosity 

Allele 1 (%) Allele 2(%) 

rs17817901 COX11 1.79 30.36 (A/G) 7.14 G (G) 60.71 (A) 

rs7138557 AACS 14.00 38.67 (C/T) 14.00 (T) 33.33 (C) 

 

Subsequently, 10 heterozygous samples from cases and controls were selected and 

analysed for DAE in both SNPs. For rs17817901, three controls showed DAE but no cases and the 

DAE distribution showed a pattern consistent with Scenario 2. For rs7138557, four controls and 

two cases showed DAE and the DAE distribution had a pattern consistent with Scenario 2 (Figure 

4.13).  
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Figure 4.13 Case – control association study for rs7138557 (AACS gene) and rs17817901 (COX11 gene) in blood. 
Controls are represented as green dots for cases are represented as red dots. Dotted lines delimit the cut-off of 
preferential allelic expression ratio [log2(1.5)=0.584]. 

 

A significant difference was found for the variances of the two populations for both SNPs 

(rs17817901: p-value= 1.22E-03 and rs7138557: p-value= 3.94E-02), but no significant difference 

was found for the DAE distribution means (rs17817901: p-value= 3.74E-01 and rs7138557: p-

value= 2.04E-01) (Figure 4.13 and Table 4.13).  

 

Table 4.13 DAE distributions in controls (healthy individuals) and cases (patients with breast cancer). In the table 
are shown the 2 DAE SNPs, identification of the two groups of samples, the number of heterozygous in the 
successfully quantified samples. 

SNP/Gene Samples Heterozygous 

with DAE 

Mean 

DAE 
SD Min-Max 

t-test 

(p-value) 

var-test 

(p-value) 

rs
1

7
8

1
7

9
0

1
 

(C
O

X
1

1
) Controls 3/10 0.22 0.49 -0.41 – 1.00 

3.74E-01 1.22E-03 

Cases 0/10 0.12 0.14 -0.17 – 0.29 

rs
7

1
3

8
5

5
7

 

(A
A

C
S)

 Controls 4/10 -0.46 0.76 -2.08 – 0.37 

2.04E-01 3.94E-02 

Cases 2/10 -0.35 0.38 -0.90 – 0.51 
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CHAPTER 5 – DISCUSSION 

5.1  Validation of DAE microarray data using allele-specific Taqman 

The first aim in this study was to validate the DAE results obtained previously by microarray 

technology. For this purpose, 14 candidate tSNPs were analysed for DAE in heterozygous samples 

from normal breast tissue, using allele-specific real-time PCR. These SNPs were located in either 

coding or non-coding regions, because total RNA (including unspliced primary transcripts) was 

used in the analysis and therefore it is possible to measure the DAE levels for SNPs located in 

introns.  

According to the previous findings, we expected to observe DAE for 10 SNPs and no DAE for 

4 SNPs. We confirmed that four SNPs (rs10503416, rs6494466, rs10016 and rs13265801) showed 

DAE pattern and scenario consistent with the previous results. According to the scenario, the 

regulatory variant (rSNP) is in strong LD with the assayed cSNP. Regarding the non-DAE SNPs, we 

observed that only one (rs10521) was consistent with the results in the previous work. Therefore, 

six out of 14 SNPs were validated. The remaining SNPs showed DAE distributions, but discordant 

patterns with the previous results. Therefore, the percentage of SNPs reported to have allelic 

imbalances in gene expression differs between approaches. 

We need to confirm these results in order to understand the cause of disparity and to insure 

a good quality of validation. A possible solution can be to design new primers, to perform 

convectional PCR followed by Sanger sequencing, and to compare the sequencing traces between 

gDNA with the cDNA (semi-quantitative sequencing). Another will be to perform RNA-seq allelic 

expression quantification. 

 

5.2  Crossing GWAS data and DAE data 

The second aim of this project was to identify new susceptibility loci by crossing DAE data 

with published breast cancer GWAS top hits. We selected two loci 17q22 

(TOM1L1/COX11/STXBP4) and 12q24 (AACS) to perform in silico analysis, in search of potential 

functional evidence in order to identify risk associated cis-regulatory variants. 
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In 17q22 we observed the presence of one DAE SNP (rs17817901) in strong LD with a GWAS 

associated SNP (rs6504950), suggesting that the rs17817901 is a marker for the cis-regulatory 

variant. This led us to investigate the region around these SNPs for histone modifications, DNase 

clusters and transcription factors binding sites. We observed that this is a very active region with 

multiple evidence for regulatory elements. Six investigated SNPs (proxies from the GWAS and DAE 

SNPs) overlap some of these elements and therefore are candidates to be cis-regulatory SNPs and 

risk-causing. We found that the minor allele of rs17817901, rs7643 and rs2628315 is associated 

with an increased expression. The next logical step will be to search for TFBS within the sequences 

containing the candidate rSNPs to understand if these alter the binding affinity of TFs and are 

likely to affect gene regulation. Further functional studies will follow. Nevertheless, we believe 

that there is already data supporting a cis-regulatory role for this breast cancer susceptibility 

locus. 

In the 12q24 locus, we found three DAE SNP (rs7138557 and rs12581512) in strong LD with 

two GWAS associated SNP (rs7307700 and rs2291248, respectively). Interestingly, rs2291248 has 

both been identified in DAE studies and GWAS. Our in-silico analysis has produced 12 strong cis-

regulatory candidates, which we are currently being tested by EMSA, for in vitro DNA-protein 

binding. 

Of these, the common A allele of rs7307700 has one possible TFBS for HMGI(Y). HMGI-Y is 

a member of the mammalian high-mobility group I (HMGI) and has been shown to play an 

important role in the regulation of cell proliferation and differentiation (Klein-Hessling et al. 1996; 

Giannini et al. 2000; Reeves et al. 2001; Melillo & Pierantoni 2001). For rs12581512 both alleles 

had possible TFBS (minor A allele had two possible bindings for HES1 and CAP, and the common 

G allele had one possible binding for CBF). Hairy and enhancer of split homolog-1 (HES1) is 

involved in the maintenance of certain stem cells and progenitor cells. This TF has an important 

role in the tumourigenesis and some studies showed that it can modulate the therapeutic 

resistance in breast cancer (Murata et al. 2005; Gao et al. 2014). Catabolite activator protein (CAP) 

is involved in the active transcription of a several promoters, which directs operons involved in 

catabolite metabolism (signal for transcription initiation) (Zhou et al. 1993; Lawson et al. 2004). 
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CBF (also known as NF-Y) is a CCAAT-binding protein and is involved in the regulation of several 

genes and is also required for cell proliferation (Bhattacharya et al. 2003; Cagliari 2011). 

rs7133614 the common C allele had two possible TFBS for GEN_INI3_β and CAP. GEN_INI is a 

general initiator sequence (viral + cellular) and a component of the DNA replication machinery 

that recognizes and recruits factors necessary to initiate of replication (Stenlund 2003). All these 

TFs have been reported to be involved in cancer, which further supports the link between cis-

regulation in this locus and susceptibility to breast cancer. 

To investigate whether the sequence surrounding these candidate rSNPs can bind to the TF, 

the protein-DNA interactions were analysed through EMSA. We performed two experiments, but 

did not detect any shift, for our oligonucleotides. However, FGFR2-13 and HMGI(Y), used as 

positive controls, showed a faint shift. There are different possible explanations for these results: 

there is no interaction between TFs and our oligonucleotides, therefore these SNPs are not cis-

regulatory; or the TF can bind to our oligonucleotides but the quantity of protein used was 

probably too low to form a strong binding. The last is the most plausible as the controls, which 

worked well before, show the need for optimisation. If the protein-DNA binding occurs we will 

use specific antibodies against the predicted TFs. This type of analysis indicates which variants 

candidates bind to TFs and how the allele change in the SNP affects the binding. Subsequently, 

chromatin immunoprecipitations will be carried out to study this interaction in vivo.  

 

5.2.1 Validation of DAE in COX11 and AACS  

We used a marker SNP for each loci (rs17817901 in COX11/TOM1L1 gene and rs7138557 in 

AACS gene) to validate the previous DAE results. We observed that COX11 did not show DAE and 

AACS showed a bidirectional DAE distribution. These results confirmed the presence of DAE in 

one gene but are discordant in terms of DAE pattern. The same discussion as before applies. 

Our study comparing DAE between two different tissues (breast tissue and blood) showed 

that there are significant differences in the DAE distributions. Therefore, these data suggest that 

it is not feasible the use blood as surrogate for breast tissue for DAE quantification.  
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In the case-control study for both genes, we observed different DAE distributions between 

cases and controls. In COX11 we observed that in the control samples there was preferential 

allelic expression and this can be associated with a protection to breast cancer in this group. In 

AACS we observed a preferential allelic expression of the same allele in both groups (cases and 

controls). In this case it may be inferred that individuals with more extreme DAE may be protected 

from breast cancer. Nevertheless, these results require further validation in a larger set of 

samples. 

Ours results suggest that DAE can be a good method to perform association studies and 

understand the susceptibility of an individual to a complex disease. 

Integrating GWAS data with our DAE map information proved to be a good approach for 

identifying new susceptibility loci for breast cancer, including prioritising candidate GWAS for 

functional analysis. We identified so far two risk-loci that could be under the influence of cis-

regulatory variants. However, we have a long candidate list of loci that contain risk-associated 

SNPs and DAE SNPs. Therefore, further analysis is needed to understand if these loci could also 

be under the influence of cis-regulatory variants.  

In the future, further analysis will contribute to a better understanding of the biology 

underlying breast cancer risk and contribute to the development of future therapies, especially 

in the personalized medicine area. 

 

  



 

 

 

 

57 

BIBLIOGRAPHY 

Ahmed, S. et al., 2009. Newly discovered breast cancer susceptibility loci on 3p24q and 17q23.2. 
Nature genetics, 41(5), pp.585–590. Available at: 
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748125/. 

Antoniou, a C. & Easton, D.F., 2006. Models of genetic susceptibility to breast cancer. Oncogene, 
25(43), pp.5898–905. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16998504 
[Accessed January 7, 2014]. 

Antoniou, A.C. et al., 2011. Europe PMC Funders Group Common breast cancer susceptibility 
alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers : implications 
for risk prediction. Cancer Research, 70(23), pp.9742–9754. 

Apostolou, P. & Fostira, F., 2013. Hereditary breast cancer: the era of new susceptibility genes. 
BioMed research international, 2013, p.747318. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3618918&tool=pmcentrez&re
ndertype=abstract. 

Ashworth, A., Lord, C.J. & Reis-Filho, J.S., 2011. Genetic interactions in cancer progression and 
treatment. Cell, 145(1), pp.30–8. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/21458666 [Accessed July 9, 2014]. 

Bannister, A.J. & Kouzarides, T., 2011. Regulation of chromatin by histone modifications. Cell 
research, 21(3), pp.381–95. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3193420&tool=pmcentrez&re
ndertype=abstract [Accessed July 9, 2014]. 

Bhatti, P., Doody, M. & Rajaraman, P., 2010. Novel breast cancer risk alleles and interaction with 
ionizing radiation among US radiologic technologists. Radiation Research, 173(2), pp.214–
224. Available at: http://www.rrjournal.org/perlserv/?request=get-
abstract&doi=10.1667%2FRR1985.1 [Accessed September 22, 2014]. 

Boyle, A. et al., 2012. Annotation of functional variation in personal genomes using RegulomeDB. 
Genome Research, 22((9)), pp.1790–1797. Available at: 
http://genome.cshlp.org/content/22/9/1790.short [Accessed August 31, 2014]. 

Brookes, a J., 1999. The essence of SNPs. Gene, 234(2), pp.177–86. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/10395891. 



 

 

 

 

58 

Buckland, P.R., 2006. The importance and identification of regulatory polymorphisms and their 
mechanisms of action. Biochimica et biophysica acta, 1762(1), pp.17–28. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/16297602 [Accessed May 30, 2014]. 

Campa, D. et al., 2011. Interactions between genetic variants and breast cancer risk factors in the 
breast and prostate cancer cohort consortium. Journal of the National Cancer Institute, 
103(16), pp.1252–63. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3156803&tool=pmcentrez&re
ndertype=abstract [Accessed September 22, 2014]. 

Chen, F. et al., 2013. A genome-wide association study of breast cancer in women of African 
ancestry. Human genetics, 132(1), pp.39–48. Available at: 
http://link.springer.com/article/10.1007/s00439-012-1214-y [Accessed September 10, 
2014]. 

Cheung, V. et al., 2005. Mapping determinants of human gene expression by regional and 
genome-wide association. Nature, 437(7063), pp.1365–1369. Available at: 
http://www.nature.com/nature/journal/v437/n7063/abs/nature04244.html [Accessed 
June 20, 2014]. 

Chorley, B.N. et al., 2008. Discovery and verification of functional single nucleotide 
polymorphisms in regulatory genomic regions: current and developing technologies. 
Mutation research, 659(1-2), pp.147–57. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2676583&tool=pmcentrez&re
ndertype=abstract [Accessed May 30, 2014]. 

Couch, F.J. et al., 2013. Genome-wide association study in BRCA1 mutation carriers identifies 
novel loci associated with breast and ovarian cancer risk. PLoS genetics, 9(3), p.e1003212. 
Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3609646&tool=pmcentrez&re
ndertype=abstract. 

Couch, F.J. et al., 2014. NIH Public Access. , 45(4), pp.392–398. 

Easton, D., Pooley, K. & Dunning, A., 2007. Genome-wide association study identifies novel breast 
cancer susceptibility loci. Nature, 447(7148), pp.1087–1093. Available at: 
http://www.nature.com/nature/journal/v447/n7148/full/nature05887.html%3Freferer=w
ww.clickfind.com.au7?message=remove&referer=www.clickfind.com.au7 [Accessed 
September 9, 2014]. 



 

 

 

 

59 

Easton, D.F. & Eeles, R. a, 2008. Genome-wide association studies in cancer. Human molecular 
genetics, 17(R2), pp.R109–15. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/18852198 [Accessed September 10, 2014]. 

Fletcher, O. et al., 2011. Novel breast cancer susceptibility locus at 9q31.2: results of a genome-
wide association study. Journal of the National Cancer Institute, 103(5), pp.425–35. Available 
at: http://www.ncbi.nlm.nih.gov/pubmed/21263130 [Accessed September 4, 2014]. 

Garcia-Closas, M. & Chanock, S., 2008. Genetic susceptibility loci for breast cancer by estrogen 
receptor status. Clinical Cancer Research, 14(24), pp.8000–8009. Available at: 
http://clincancerres.aacrjournals.org/content/14/24/8000.short [Accessed June 22, 2014]. 

Garraway, L. a & Lander, E.S., 2013. Lessons from the cancer genome. Cell, 153(1), pp.17–37. 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/23540688 [Accessed July 12, 2014]. 

Ghoussaini, M., Pharoah, P.D.P. & Easton, D.F., 2013. Inherited genetic susceptibility to breast 
cancer: the beginning of the end or the end of the beginning? The American journal of 
pathology, 183(4), pp.1038–51. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/23973388 [Accessed January 7, 2014]. 

Gray, I.C., Campbell, D. a & Spurr, N.K., 2000. Single nucleotide polymorphisms as tools in human 
genetics. Human molecular genetics, 9(16), pp.2403–8. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/11005795. 

Green, M.R. & Sambrook, J., 2012. Molecular Cloning Fourth. J. Inglis, A. Boyle, & A. Gann, eds., 
John Inglis. 

Hanahan, D. & Weinberg, R. a, 2011. Hallmarks of cancer: the next generation. Cell, 144(5), 
pp.646–74. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21376230 [Accessed 
November 6, 2013]. 

He, H.H. et al., 2012. Differential DNase I hypersensitivity reveals factor-dependent chromatin 
dynamics. Genome research, 22(6), pp.1015–25. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3371710&tool=pmcentrez&re
ndertype=abstract [Accessed September 12, 2014]. 

Heid, C. a et al., 1996. Real time quantitative PCR. Genome Research, 6(10), pp.986–994. Available 
at: http://www.genome.org/cgi/doi/10.1101/gr.6.10.986 [Accessed July 9, 2014]. 

Hellman, L.M. & Fried, M.G., 2007. Electrophoretic Mobility Shift Assay (EMSA) for Detecting 
Protein-Nuclec Acid Interaction. NAt Protoc., 2(8), pp.1849–1861. 



 

 

 

 

60 

Holden, N.S. & Tacon, C.E., 2011. Principles and problems of the electrophoretic mobility shift 
assay. Journal of pharmacological and toxicological methods, 63(1), pp.7–14. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/20348003 [Accessed July 19, 2014]. 

Hon, G., Wang, W. & Ren, B., 2009. Discovery and annotation of functional chromatin signatures 
in the human genome. PLoS computational biology, 5(11), p.e1000566. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2775352&tool=pmcentrez&re
ndertype=abstract [Accessed September 22, 2014]. 

Johnson, A.D. et al., 2008. SNAP: a web-based tool for identification and annotation of proxy SNPs 
using HapMap. Bioinformatics (Oxford, England), 24(24), pp.2938–9. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2720775&tool=pmcentrez&re
ndertype=abstract [Accessed July 11, 2014]. 

Jones, B.L. & Swallow, D.M., 2011. The impact of cis-acting polymorphisms on the human 
phenotype. The HUGO journal, 5(1-4), pp.13–23. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3238023&tool=pmcentrez&re
ndertype=abstract [Accessed January 30, 2014]. 

Jorde, L.B., 2000. Linkage Disequilibrium and the Search for Complex Disease Genes. Genome 
Research, 10(10), pp.1435–1444. Available at: 
http://www.genome.org/cgi/doi/10.1101/gr.144500 [Accessed September 10, 2014]. 

Kelsey, J.L. & Berkowitz, G.S., 1988. Breast Cancer Epidemiology Breast Cancer Epidemiology. , 
pp.5615–5623. 

Kim, H. et al., 2012. A genome-wide association study identifies a breast cancer risk variant in 
ERBB4 at 2q34: results from the Seoul Breast Cancer Study. Breast cancer research : BCR, 
14(2), p.R56. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3446390&tool=pmcentrez&re
ndertype=abstract [Accessed September 10, 2014]. 

Klein-Hessling, S. et al., 1996. HMG I(Y) interferes with the DNA binding of NF-AT factors and the 
induction of the interleukin 4 promoter in T cells. Proceedings of the National Academy of 
Sciences of the United States of America, 93(26), pp.15311–6. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=26401&tool=pmcentrez&rend
ertype=abstract. 

Lappalainen, T. & Dermitzakis, E.T., 2010. Evolutionary history of regulatory variation in human 
populations. Human molecular genetics, 19(R2), pp.R197–203. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/20876617 [Accessed June 2, 2014]. 



 

 

 

 

61 

Loizidou, M. a et al., 2011. Replication of genome-wide discovered breast cancer risk loci in the 
Cypriot population. Breast cancer research and treatment, 128(1), pp.267–72. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/21210208 [Accessed September 22, 2014]. 

Low, S.-K. et al., 2013. Genome-wide association study of breast cancer in the Japanese 
population. PloS one, 8(10), p.e76463. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3797071&tool=pmcentrez&re
ndertype=abstract [Accessed September 10, 2014]. 

Mahdi, K., Nassiri, M. & Nasiri, K., 2013. Hereditary genes and SNPs associated with breast cancer. 
Asian Pac. J. Cancer Prev, 14, pp.3403–3409. Available at: 
http://www.apjcpcontrol.org/paper_file/issue_abs/Volume14_No6/3403-3409 5.24 
Mohammad Mahdi Kooshyar.pdf [Accessed June 23, 2014]. 

Malhotra, G.K. et al., 2010. Histological, molecular and functional subtypes of breast cancers. 
Cancer Biology & Therapy, 10(10), pp.955–960. Available at: 
http://www.landesbioscience.com/journals/cbt/article/13879/ [Accessed July 17, 2014]. 

Mavaddat, N. et al., 2010. Genetic susceptibility to breast cancer. Molecular oncology, 4(3), 
pp.174–91. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20542480 [Accessed 
November 15, 2013]. 

Meyer, K.B. et al., 2008. Allele-specific up-regulation of FGFR2 increases susceptibility to breast 
cancer. PLoS biology, 6(5), p.e108. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2365982&tool=pmcentrez&re
ndertype=abstract [Accessed September 21, 2014]. 

Michailidou, K. et al., 2013. Large-scale genotyping identifies 41 new loci associated with breast 
cancer risk. Nature …, 45(4), pp.353–361. Available at: 
http://www.nature.com/ng/journal/v45/n4/abs/ng.2563.html [Accessed June 23, 2014]. 

Nica, A.C., Dermitzakis, E.T. & B, P.T.R.S., 2013. Expression quantitative trait loci : present and 
future Expression quantitative trait loci : present and future. , (May). 

Oldenburg, R. a et al., 2007. Genetic susceptibility for breast cancer: how many more genes to be 
found? Critical reviews in oncology/hematology, 63(2), pp.125–49. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/17498966 [Accessed November 13, 2013]. 

Pant, P.V.K. et al., 2006. Analysis of allelic differential expression in human white blood cells. , 
pp.331–339. 



 

 

 

 

62 

Pastinen, T., Ge, B. & Hudson, T.J., 2006. Influence of human genome polymorphism on gene 
expression. Human molecular genetics, 15 Spec No(1), pp.R9–16. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/16651375 [Accessed May 29, 2014]. 

Polyak, K., 2011. Review series introduction Heterogeneity in breast cancer. The Journal of Clinical 
Investigation, 121(10), pp.3786–3788. 

R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org/. 

Reeves, R., Edberg, D. & Li, Y., 2001. Architectural transcription factor HMGI (Y) promotes tumor 
progression and mesenchymal transition of human epithelial cells. Molecular and cellular 
biology, 21(2), pp.575–594. Available at: http://mcb.asm.org/content/21/2/575.short 
[Accessed September 25, 2014]. 

Reich, D.E. et al., 2001. Linkage disequilibrium in the human genome. Nature, 411(6834), pp.199–
204. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11346797. 

Rockman, M. V & Wray, G. a, 2002a. Abundant raw material for cis-regulatory evolution in 
humans. Molecular biology and evolution, 19(11), pp.1991–2004. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/12411608. 

Rockman, M. V & Wray, G. a, 2002b. Abundant raw material for cis-regulatory evolution in 
humans. Molecular biology and evolution, 19(11), pp.1991–2004. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/12411608. 

Sadikovic, B. et al., 2008. Cause and consequences of genetic and epigenetic alterations in human 
cancer. Current genomics, 9(6), pp.394–408. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2691666&tool=pmcentrez&re
ndertype=abstract. 

Serre, D. et al., 2008. Differential allelic expression in the human genome: a robust approach to 
identify genetic and epigenetic cis-acting mechanisms regulating gene expression. PLoS 
genetics, 4(2), p.e1000006. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2265535&tool=pmcentrez&re
ndertype=abstract [Accessed May 21, 2014]. 

Strachan, T. & Read, A.P., 1996. Human Molecular Genetics B. S. P. Limited, ed., 

Stranger, B. et al., 2007. Population genomics of human gene expression. Nature …, 39(10), 
pp.1217–1224. Available at: http://www.nature.com/ng/journal/v39/n10/abs/ng2142.html 
[Accessed June 20, 2014]. 



 

 

 

 

63 

Tang, L. et al., 2012. Association of STXBP4/COX11 rs6504950 (G>A) polymorphism with breast 
cancer risk: evidence from 17,960 cases and 22,713 controls. Archives of medical research, 
43(5), pp.383–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22863968 [Accessed 
September 21, 2014]. 

Thomas, G. et al., 2010. A multi-stage genome-wide association in breast cancer identifies two 
novel risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nature genetics, 41(5), pp.579–584. 
Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928646/. 

Turnbull, C. et al., 2013. Europe PMC Funders Group Genome-wide association study identifies 
five new breast cancer susceptibility loci. Nature genetics, 42(6), pp.504–507. 

VanLiere, J. & Rosenberg, N., 2008. Mathematical properties of the r2 measure of linkage 
disequilibrium. Theoretical population biology, 74(1), pp.130–137. Available at: 
http://www.sciencedirect.com/science/article/pii/S0040580908000609 [Accessed 
September 21, 2014]. 

Verlaan, D., Ge, B. & Grundberg, E., 2009. Targeted screening of cis-regulatory variation in human 
haplotypes. Genome …, pp.118–127. Available at: 
http://genome.cshlp.org/content/19/1/118.short [Accessed June 20, 2014]. 

Vernot, B. et al., 2012. Personal and population genomics of human regulatory variation. Genome 
research, 22(9), pp.1689–97. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3431486&tool=pmcentrez&re
ndertype=abstract [Accessed June 2, 2014]. 

Vogelstein, B. & Kinzler, K.W., 2004. Cancer genes and the pathways they control. Nature 
medicine, 10(8), pp.789–99. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15286780 
[Accessed July 11, 2014]. 

Walsh, T. & King, M.-C., 2007. Ten genes for inherited breast cancer. Cancer cell, 11(2), pp.103–
5. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17292821 [Accessed November 7, 
2013]. 

Wang, X. et al., 2005. Single nucleotide polymorphism in transcriptional regulatory regions and 
expression of environmentally responsive genes. Toxicology and applied pharmacology, 
207(2 Suppl), pp.84–90. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16002116 
[Accessed May 30, 2014]. 

Wang, Y.-M. et al., 2012. Correlation between DNase I hypersensitive site distribution and gene 
expression in HeLa S3 cells. PloS one, 7(8), p.e42414. Available at: 



 

 

 

 

64 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3416863&tool=pmcentrez&re
ndertype=abstract [Accessed September 22, 2014]. 

Wingender, E. et al., 2000. TRANSFAC: an integrated system for gene expression regulation. 
Nucleic acids research, 28(1), pp.316–9. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=102445&tool=pmcentrez&ren
dertype=abstract. 

Worsley-Hunt, R., Bernard, V. & Wasserman, W.W., 2011. Identification of cis-regulatory 
sequence variations in individual genome sequences. Genome medicine, 3(10), p.65. 
Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3239227&tool=pmcentrez&re
ndertype=abstract. 

Xiao, R. & Scott, L.J., 2011. Detection of cis-acting regulatory SNPs using allelic expression data. 
Genetic epidemiology, 35(6), pp.515–25. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/21769929 [Accessed May 6, 2014]. 

You, J.S. & Jones, P. a, 2012. Cancer genetics and epigenetics: two sides of the same coin? Cancer 
cell, 22(1), pp.9–20. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3396881&tool=pmcentrez&re
ndertype=abstract [Accessed July 9, 2014]. 

 

 



 

 

 

 

66 

ANNEX 1 

Annex 1.1 Scores assigned by RegulomeDB according the functional evidence 

Category scheme 

Category Description 

Likely to affect binding and linked to expression of a gene target 

1a eQTL + TF binding + matched TF motif + matched DNase footprint + DNase peak 

1b eQTL + TF binding + any motif + DNase footprint + DNase peak 

1c eQTL + TF binding + matched TF motif + DNase peak 

1d eQTL + TF binding + any motif + DNase peak 

1e eQTL + TF binding + matched TF motif 

1f eQTL + TF binding/DNase peak 

Likely to affect binding 

2a TF binding + matched TF motif + matched DNase footprint + DNase peak 

2b TF binding + any motif + DNase footprint + DNase peak 

2c TF binding + matched TF motif + DNase peak 

Less likely to affect binding 

3a TF binding + any motif + DNase peak 

3b TF binding + matched TF motif 

Minimal binding evidence 

4 TF binding + DNase peak 

5 TF binding or DNase peak 

6 Motif hit 
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Annex 1.2 Sequences obtained in dbSNP for both alleles of each SNPs. The sequences were analysed in TRANSFAC. 
This sequence is in forward strand (FW). The minor and common alleles are represented in red. All sequences had a 
total of 61bp. 

SNPs 
Minor 
allele 

Common 
allele 

Sequence for the two alleles 

rs7138557 C (FW) T (FW) 
TCCTGCGGGGAAGTAGGCCTCTGGATCTTCCACTTGGGGTCACTCAGAGAATTTTAGAAGT 

TCCTGCGGGGAAGTAGGCCTCTGGATCTTCTACTTGGGGTCACTCAGAGAATTTTAGAAGT 

rs2291248 T (FW) C (FW) 
ACCCCTGGGACTTGCTTCACTCCAGAGCTGTGGTGTGGCCCTGACCTCTTCTCTCTTTCCA 

ACCCCTGGGACTTGCTTCACTCCAGAGCTGCGGTGTGGCCCTGACCTCTTCTCTCTTTCCA 

rs12581512 A (FW) G (FW) 
CATTTGCATTGCTTACAAAACGGATACCCCACAAGCTGACAGAAGCTGCTGTGTGTGTGTG 

CATTTGCATTGCTTACAAAACGGATACCCCGCAAGCTGACAGAAGCTGCTGTGTGTGTGTG 

rs7307700 G (FW) A (FW) 
ACATCTTCCTTGGCTTTTCTGACATTTGTAGAAGAATAAGCCACATGTTTTGTGTACCCAA 

ACATCTTCCTTGGCTTTTCTGACATTTGTAAAAGAATAAGCCACATGTTTTGTGTACCCAA 

rs10846832 C (FW) G (FW) 
TGGACTACGTGCTCTGAGCCAAGCTCCCTGCGGGGTCCTGGGGGCCACACAGCAGCGACCA 

TGGACTACGTGCTCTGAGCCAAGCTCCCTGGGGGGTCCTGGGGGCCACACAGCAGCGACCA 

rs10846834 A (FW) G (FW) 
GTAGCTAGGCACTTCTGAAGCTGTGTGTGCACTGATTCATTCACCCAGTGACTCACAGCCT 

GTAGCTAGGCACTTCTGAAGCTGTGTGTGCGCTGATTCATTCACCCAGTGACTCACAGCCT 

rs58416336 T (FW) G (FW) 
GGACTACGTGCTCTGAGCCAAGCTCCCTGGTGGGTCCTGGGGGCCACACAGCAGCGACCAG 

GGACTACGTGCTCTGAGCCAAGCTCCCTGGGGGGTCCTGGGGGCCACACAGCAGCGACCAG 

rs7133614 T (FW) C (FW) 
TTTTGTGGCAAGAGGCATGCGGGGCAGGCATAGTCCTCGTGATGCTGTCTCAGTGCCTCTG 

TTTTGTGGCAAGAGGCATGCGGGGCAGGCACAGTCCTCGTGATGCTGTCTCAGTGCCTCTG 

rs7137742 A (FW) G (FW) 
CCGCCTTTTTCGGGCAAATTACAGTCACGTAGTTACAAAAGCTTGGAAGAGGACCCAGGCA 

CCGCCTTTTTCGGGCAAATTACAGTCACGTGGTTACAAAAGCTTGGAAGAGGACCCAGGCA 

rs7138405 T (FW) C (FW) 
AGAGGCCCCTTTGAGTGGCTGGAGGCACTGTACGTTCCGAAGCTAAGGCACCTGAACTAGC 

AGAGGCCCCTTTGAGTGGCTGGAGGCACTGCACGTTCCGAAGCTAAGGCACCTGAACTAGC 

rs7138790 G (FW) C (FW) 
GAAGGGGCTGCGCCAGCACATTTCCCTGCCGCTAATCACAAATGCCCTGGGCCCCTCCACC 

GAAGGGGCTGCGCCAGCACATTTCCCTGCCCCTAATCACAAATGCCCTGGGCCCCTCCACC 

rs35428999 A (FW) G (FW) 
CAGACTTCTCCTCGCTCTGCAATGCACGCCACTCACTCCCTCCCTCATTCAGCCTTCCACT 

CAGACTTCTCCTCGCTCTGCAATGCACGCCGCTCACTCCCTCCCTCATTCAGCCTTCCACT 

rs7304979 A (FW) G (FW) 
AGAGCCGTGCCTGGCTGGGGCTGTCGCCACAGGGCCACTACAAGGCAGGCCGTGGAGCAGG 

AGAGCCGTGCCTGGCTGGGGCTGTCGCCACGGGGCCACTACAAGGCAGGCCGTGGAGCAGG 
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Annex 1.3 Oligonucleotide sequences designed for EMSA. In the table are represented the three selected SNPs to 
analyse. Minor allele is shown first and the common allele is shown second. This table also show the sequences 
designed for both alleles of each SNP and the name the name we gave him (Primer). 

SNP Alleles Strand Sequence Primer 
rs

7
3

0
7

7
0

0
 

 
G 

FWD TTCTGACATTTGTAGAAGAATAAGCCACATG ATM40 

REV CATGTGGCTTATTCTTCTACAAATGTCAGAA ATM41 

A 
FWD TTCTGACATTTGTAAAAGAATAAGCCACATG ATM42 

REV CATGTGGCTTATTCTTTTACAAATGTCAGAA ATM43 

rs
1

2
5

8
1

5
1

2
 

 

A 
FWD CAAAACGGATACCCCACAAGCTGACAGAAG ATM44 

REV CTTCTGTCAGCTTGTGGGGTATCCGTTTTG ATM45 

G 
FWD CAAAACGGATACCCCGCAAGCTGACAGAAG ATM46 

REV CTTCTGTCAGCTTGCGGGGTATCCGTTTTG ATM47 

rs
7

1
3

3
6

1
4

 

 

T 
FWD CATGCGGGGCAGGCATAGTCCTCGTGATGCTG ATM48 

REV CAGCATCACGAGGACTATGCCTGCCCCGCATG ATM49 

C 
FWD CATGCGGGGCAGGCACAGTCCTCGTGATGCTG ATM50 

REV CAGCATCACGAGGACTGTGCCTGCCCCGCATG ATM51 
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ANNEX 2 

Annex 2.1 DAE SNPs reported in previous results obtained in microarray (Maia et al, unpublished). These are the 
10 DAE SNPs that we chose to validate. In a x-axis indicates the genotype (A/B-heterozygous) and the y-axis indicates 
the normalised DAE ratio obtained. Dotted lines delimit the cut-off of preferential allelic expression ratio 
[log2(1.5)=0.584].  
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Annex 2.1 (Continuation of results of previous table – DAE SNPs reported in previous results obtained in 
microarray) (Maia et al, unpublished) 
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Annex 2.2 Non DAE SNPs reported in previous results obtained in microarray (Maia et al, unpublished). These are 
the 4 DAE SNPs that we chose to validate. The x-axis indicates the genotype (A/B-heterozygous) and the y-axis 
indicates the normalised DAE ratio obtained. Dotted lines delimit the cut-off of preferential allelic expression ratio 
[log2(1.5)=0.584]. 
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Annex 2.3 Genotyping of DNA from normal breast tissue samples by Taqman qRT-PCR. 10 DAE SNPs and 4 non DAE 
SNPs chose to validate. x-axis indicates the fluorescence intensity of Allele 1 emitted by probe FAM and the y axis 
indicates the fluorescence intensity of Allele 2 emitted by the probe HEX. The blue squares represent homozygous 
samples for Allele 2, orange circles represent samples homozygous for Allele 1 and the green triangles represent 
heterozygous samples. The black diamonds are representative of NTCs (no fluorescent signal) and red crosses are 
undeterminate samples. 
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Annex 2.3 (Continuation of results of previous table – Genotyping of DNA samples from normal breast tissue by 

Taqman qRT-PCR). 
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Annex 2.3 (continuing the above results –  Genotyping of DNA samples from normal breast tissue by Taqman 

qRT-PCR). 
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ANNEX 3 

Annex 3.1 DAE scenarios observed for the 3 marker SNPs (COX11). The x-axis indicates the genotype (A/B-
heterozygous) and the y-axis indicates the normalised DAE ratio obtained. Dotted lines delimit the cut-off of 
preferential allelic expression ratio [log2(1.5)=0.584].Scenario represent the linkage disequilibrium between the 
cSNP and rSNP. r2 and D’ are measures of linkage. 
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Annex 3.2 DAE scenarios observed for the 3 marker SNPs (AACS). The x-axis indicates the genotype (A/B-
heterozygous) and the y-axis indicates the normalised DAE ratio obtained. Dotted lines delimit the cut-off of 
preferential allelic expression ratio [log2(1.5)=0.584].Scenario represent the linkage disequilibrium between the 
cSNP and rSNP. r2 and D’ represent the measures of linkage. 
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ANNEX 4 

Annex 4.1 Genotyping of DNA from normal breast tissue (A) and blood samples (B) by Taqman qRT-PCR. Results of 
genotyping for the 2 DAE SNPs chose to validate in COX11 and AACS.  
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Annex 4.2 Correlation between COX11, TOM1L1 and STXBP4 expression in normal breast and blood with the 
genotype of a SNP. The y-axis indicates the expression total level of expression of the genes and the x-axis indicate 
the genotype of a SNP.  
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Annex 4.2 (continuing the above results – Correlation between COX11, TOM1L1 and STXBP4 expression in normal 
breast and blood with the genotype of a SNP). 
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Annex 4.3 Correlation between AACS expression in normal breast and blood with the genotype of a SNP. The y-
axis indicates the expression total level of expression of the genes and the x-axis indicate the genotype of a SNP. 
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Annex 4.4 Genotyping of DNA from patient cancer samples by Taqman qRT-PCR. Results of genotyping for the 2 
DAE SNPs chose to validate in COX11 and AACS.  

 

 


