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1. ABSTRACT 

 Cancer is one of the major causes of death worldwide, with Melanoma being the one of the ten most 

frequent malignancy in a number of countries. Melanoma is an extremely aggressive cancer and concomitant 

to this aggressiveness, patient prognosis is poor. As a result, novel therapies and cellular targets are 

desperately needed. Nowadays, the chemical compound BEZ235 has demonstrated significant potential as 

an anti-cancer agent. The PTEN/PI3K/AKT pathway constitutes an important signaling regulator of multiple 

biological processes such as apoptosis, metabolism, cell proliferation and cell growth. The PTEN is a dual 

protein/lipid phosphatase which most important substrate is the phosphatidyl-inositol-3,4,5-triphosphate 

(PIP3), the product of PI3K. An increase in PIP3 recruits AKT to the membrane where it is activated by 

other kinases also dependent on PIP3. TRIB2, a gene that has been reported to be up-regulated in some 

cancers, has also been implicated in the negative regulation of the FOXO signaling cascade, specifically the 

negative regulation of FOXO3a. Consequently TRIB2 has been implicated in Melanoma resistance to 

various classical chemotherapeutics, like DTIC, and to some PI3K inhibitors, like BEZ235. As the 

abrogation of FOXO function is a key feature of many tumor cells, regulation of FOXO factors is receiving 

increasing attention in cancer research. 

 BEZ235 is a potent inhibitor of PI3Ks that are constitutively active in many cancers, including 

Melanoma. This deregulation results in the inactivation of the FOXO family of transcription factors, critical 

regulators of the cell cycle and apoptosis. Here we investigate how TRIB2 mediates PI3K inhibitor 

resistance and the role(s) of FOXO3a in this response. Our finding implicate TRIB2 influencing apoptosis 

(although not the cell cycle) and that this occurs at the level of transcription. Our findings also indicate that 

the over expression of TRIB2 significantly attenuates BEZ235 induced apoptosis and confer resistance to 

p53-dependent chemotherapeutics that induce apoptosis. However, in contrast to BEZ235 exposure, we note 

that DTIC treatment stabilizes p53 in cells with an over expression of TRIB2. Our findings indicate that 

cellular balance between p53 and MDM2 is disrupted. Here we note also that TRIB2 transcription and 

protein expression is significantly higher in Melanoma patient samples compared to normal skin tissue. 

 Keywords: Cancer, Melanoma, TRIB2, FOXO3a, p53, BEZ235, Signaling 
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1.1. Resumo 

 O cancro é uma das maiores causas de morte em tudo o mundo e é causado por um série de 

alterações somáticas no DNA que, consequentemente, causam uma proliferação celular descontrolada. A 

grande maioria destas alterações são causadas por erros aquando da replicação, por defeitos no processo de 

reparação do DNA ou pela exposição a cancerígenas. Casualmente, as patologias cancerígenas podem ser 

causadas por uma alteração num gene dominante (oncogene), que estimula a que ocorra uma proliferação 

celular desregulada. Na sua grande maioria e, porventura, em todos os tipos de cancro que ocorrem nos 

humanos existem, como principais características dos mesmos, seis alterações essenciais à fisiologia das 

células: a autossuficiência no que diz respeito a sinais de crescimento, uma evidente insensibilidade a sinais 

inibitórios externos de crescimento, uma evasão à morte celular programada, um ilimitado potencial 

replicativo, uma angiogénese sustentada pela própria célula e uma capacidade metastática para outros 

tecidos do organismo.  

 O Melanoma é a forma mais agressiva de cancro que se desenvolve a partir dos melanócitos e, ainda, 

uma das mais frequentes patologias oncológicas em diversos países. É mais comum em pessoas com idades 

compreendidas entre os 30 e os 60 anos e, o aumento anual no seu número de casos nos últimos cinco anos, 

tem causado um consequente significativo aumento na taxa de mortalidade associada a este tipo de cancro. 

Os Melanomas podem desenvolver-se em pessoas com todo o tipo de cor de pele, contudo existe uma maior 

incidência deste tipo de tumor em pessoas que possuam uma pele mais clara. Sendo esta uma patologia 

heterogénea, a mesma apresenta diferentes e diversas alterações genéticas e, ainda, uma extensa variedade de 

subtipos histológicos. Este tipo de doença oncológica é extremamente agressivo, conferindo, aos pacientes, 

um prognóstico pessimista. Tendo em conta o referido anteriormente, é de extrema importância que sejam 

descobertos novos alvos celulares e novas terapias contra esta doença cancerígena. Desta forma, a 

investigação científica nesta área tem sido vasta, obtendo-se, através de estudos recentes, resultados que 

demonstram que sinalização da PI3K está desregulada na grande maioria dos Melanomas. Atualmente, o 

composto químico BEZ235 tem demonstrado ser detentor de um significante potencial como agente 

anticancerígeno.  

 A via de sinalização PTEN/PI3K/AKT é um importante regulador de diversos processos biológicos, 

como, por exemplo, o metabolismo, o crescimento celular, a proliferação celular e a apoptose. O PTEN é 

uma fosfatase com características de proteína e de lípido, e que tem, como principal substrato, o fosfatidil 

inositol 3,4,5-trifosfato (PIP3), que é o produto da PI3K. O aumento do níveis de PIP3 faz com que ocorra o 

recrutamento de AKT para a membrana, permitindo que o mesmo seja ativado por outras quinases que 

também são dependentes de PIP3.  
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 O TRIB2 é um gene que tem sido descrito como sendo um dos que demonstram possuir uma 

regulação superior em diversos tipos de cancro, inclusive em Melanomas, onde a sua sobre expressão 

proteica é um obstáculo à eficiência dos tratamentos aplicados a este tipo de patologia oncológica. Este 

mesmo gene, também tem sido implicado na regulação negativa da via de sinalização do FOXO, 

especialmente na regulação negativa do FOXO3a. Como consequência das características atrás 

mencionadas, o TRIB2 tem sido considerado como uma das causas para a resistência aos quimioterapêuticos 

clássicos (como o DTIC) e aos inibidores da PI3K (como o BEZ235), por parte de pacientes com Melanoma. 

Tendo em conta que a supressão da função do fator de transcrição FOXO é uma característica fundamental 

para inúmeras células tumorais, a regulação desses mesmos fatores tem sido, cada vez mais, uma das linhas 

de investigação mais seguidas contra o cancro. 

 O BEZ235 é um potente inibidor das PI3Ks, as quais se encontram desregulamente ativas nos mais 

variados tipos de cancro, incluindo no Melanoma. Esta desregulação, tem como consequência a inativação 

da família dos fatores de transcrição FOXO, os quais exercem funções como reguladores cruciais do ciclo 

celular e da apoptose. Neste trabalho, foi investigado o processo sobre como o TRIB2 medeia a resistência 

aos inibidores da PI3K e, também, qual a função do FOXO3a em resposta a esse mesma resistência. No 

decorrer da investigação inerente a este trabalho, foi constatado que o TRIB2 exerce uma determinada 

influência sobre a apoptose, a nível da transcrição, contudo o mesmo não acontece sobre o ciclo celular. 

Posteriormente, também foi verificado que a sobre expressão de TRIB2 atenua, significativamente, a 

apoptose induzida pelo inibidor da PI3K BEZ235, tendo sido observado que, após o tratamento com esse 

mesmo inibidor, as células onde a expressão de TRIB2 estava presente, demonstraram possuir níveis 

proteicos de Caspase-3 clivada inferiores e que essas mesmas células são, fenotipicamente, caracterizadas 

por uma redução significativa na população celular na fase Sub-G1, comparativamente às células que não 

sobre expressam TRIB2.  

 Neste trabalho, foi também verificado que a sobre expressão de TRIB2 confere resistência aos 

quimioterapêuticos, que induzem a apoptose, dependentes do supressor tumoral p53. Contudo, e em 

contraste com a exposição ao BEZ235, foi verificado que o tratamento com o quimioterapêutico 

convencional DTIC estabiliza o p53 nas células que sobre expressam TRIB2. Estes resultados indicam que o 

balanço celular proteico entre o p53 e o MDM2 está corrompido.  

 Todos as evidências atrás verificadas foram realizadas em amostras in-vitro. Contudo, aquando da 

realização deste projeto, foi possível ter acesso a amostras de Melanoma e a amostras normais ex-vivo. Nas 

amostras de pacientes com Melanoma, foi verificado um aumento significativo nos níveis de AKT 

fosforilada, comparativamente às amostras normais. De acordo com a ativação da via do AKT referida 
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acima, foi também verificado a existência de níveis altos de FOXO3a fosforilado nas células dos pacientes 

com Melanoma. Em concordância com as observações atrás mencionadas, foi verificado que as células 

normais expressam uma maior quantidade das proteínas reguladas pelo FOXO3a, FasL e BIM, 

comparativamente às células de pacientes com Melanoma. Estas observações podem ser devidas ao facto das 

células cancerígenas precisarem de evitar a apoptose, de forma a continuarem a divisão celular, 

particularmente no último estádio da doença. Por último, foi também constatado que, tanto a transcrição 

como a expressão proteica de TRIB2, estão ambas significativamente elevadas nas amostras de pacientes 

com Melanoma, comparativamente às amostras de células normais. 

 

 Palavras-chave: Cancro, Melanoma, TRIB2, FOXO3a, p53, BEZ235, Sinalização 
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2. INTRODUCTION 

 

2.1. Cancer. 

Cancer is caused by a series of somatic alterations in DNA and the consequence of these events is an 

uncontrolled cellular proliferation. The majority of these alterations are caused by replication errors, 

defective DNA repair processes or exposure to carcinogens
1,2

. However, occasionally cancers can be caused 

by an alteration in a dominant gene that drives uncontrolled cell proliferation. The genes that can promote 

cell growth when altered are often called oncogenes
3
. 

Most and perhaps all types of human cancers are characterized by six essential alterations in cell 

physiology: self-sufficiency in growth signals, insensitivity to growth-inhibitory signals, evasion of 

programmed cell death, limitless replicative potential, sustained angiogenesis, and tissue invasion and 

metastasis. These properties are exclusive from the cancer cell and are not found in the normal adult cell 

from which the tumor is derived
4
.  

 

2.2. Melanoma. 

 

2.2.1. General Issues. 

Pigmented lesions are among the most common findings on skin examination. The challenge is to 

distinguish Melanomas, which account for the overwhelming majority of deaths resulting from skin cancer, 

from the remainder, which with rare exceptions are benign
5
. Cutaneous Melanoma, is a form of aggressive 

cancer that develops from melanocytes (Figure 1.2.1.1). It is most common in people between 30 and 60 

years of age. This type of cancer is a heterogeneous disease that presents different genetic alterations and 

diversity of histological subtypes
6,7

. Having regarded what was referred before, the scientific investigation in 

this area has been vast. Recent studies have revealed that PI3K signaling is deregulated in a high proportion 

of Melanomas
8,9

. Despite all the research that has been done, Melanoma patients have only experienced a 

minor increase in life expectancy in stark contrast to other types of cancer. The rising number of cases per 

year has resulted in Melanoma mortality rising sharply over the along the last five decades
10

. 
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Figure 2.2.1.1: Schematic illustration of the process and development of Melanoma and its metastases (from A to 

D). 

 

2.2.2. Epidemiology. 

Melanomas can occur in adults of all ages (the median age at diagnosis is the late fifties), in people of 

all colors and men are affected slightly more than women (1.3/1). It is located on the skin and originates 

following the transformation of melanocytes, the pigment-producing cells in the neural crest that migrate 

mainly to skin, mucous membranes, upper esophagus and eyes
6,7

. The highest incidence rates occurs in 

white-skinned peoples living at low latitudes. Accordingly, the association between sun exposure and 

Melanoma have been explored. An important risk factor for Melanoma is UV irradiation upon sun 

exposure
10

.  

Melanoma primarily grows horizontally within the epidermis (Melanoma in situ) but in an advance 

stage it can grow in depth and penetrates into the dermis (invasive Melanoma)
8
. At this point, the patient 

prognosis is good, with surgical resection of the tumor conferring a 53-97% survival. However, if a distant 

metastasis is present, the patients exhibit a less than 5% survival independently of the therapeutic 

intervention. It is estimated that there were more than 1 million Melanoma survivors living in the USA as of 

January 1, 2014, and an additional 76 100 people will be diagnosed in 2014. Melanoma incidence rates have 

Melanoma 

A B 

C D 

Epidermis 

Dermis 

Subcutaneous 

tissue 

Melanoma 
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been increasing for at least 30 years. About 84% of Melanomas are diagnosed at a localized stage, when they 

are highly curable
7,11

. 

 

2.2.3. Treatment of Melanoma by Stage. 

 The stage of a Melanoma is a description of how widespread it is. This includes its thickness in the 

skin, whether it has spread to nearby lymph nodes or any other organs, and certain other factors. A staging 

system is a standard way to sum up how far a cancer has spread. The system most often used to stage 

Melanoma is the American Joint Commission on Cancer (AJCC) system
12,13

 (Table 1.2.2.1). 

 

Stage Description of Melanoma's Characteristics 

0 It is in the epidermis but has not spread to the dermis  

I It is smaller than 1.0 mm in thickness and has not been found in lymph nodes or distant organs 

II It is thicker than 4.0 mm and is ulcerated. It has not been found in lymph nodes or distant organs 

III It can be of any thickness, but it is not ulcerated. It has spread to 1 - 3 lymph nodes near the affected 

skin area (no distant spread) 

IV It has spread beyond the original area of skin and nearby lymph nodes to other organs such as the 

lung, liver, or brain, or to distant areas of the skin, subcutaneous tissue, or distant lymph nodes 

Table 2.2.3.1: American Joint Commission on Cancer (AJCC) system, which is used to stage Melanoma. 

 

 Surgery to remove the tumor and surrounding tissue is the primary treatment for most Melanomas. 

Less than 3% of all patients with Melanoma undergo radiation therapy. However, almost one-half (45%) of 

patients with metastatic disease who receive either chemotherapy or immunotherapy also receive radiation 

therapy
14,15

. Patients with stage III Melanoma are often offered adjuvant immunotherapy with interferon for 

about a year. However, this treatment has side effects that make it very difficult to tolerate. Treatment for 

patients with stage IV Melanoma has changed in recent years and typically includes immunotherapy or 

targeted therapy drugs. Patients with localized or regional metastatic disease are identified for surgical 

resection and could benefit from interferon-α adjuvant therapy, despite the significant toxicity associated 

with this treatment. In patients with distant metastasis, surgery is unlikely to be offered and the only 

therapeutic option available is systemic drug administration
12,15,16

.  

 

2.2.4. Conventional Chemotherapy . 

 Conventional chemotherapy is based on the use of alkylating agents such as Fotemustine 

(Muphoran), Dacarbazine (DTIC), and Temozolomide (Temodal) which trigger cytotoxic effects by 

blocking cell replication. However, these chemotherapy drugs promote only 10% of objective response with 
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no improvement of overall survival
15,17

. Since the major advance realized in 2011 with the FDA approval of 

Vemurafenib, for mutated BRAF Melanomas, these drugs are limited to patients harboring non-BRAF 

mutated Melanomas or for patients who developed resistance to previous treatments
18,19

. 

 It has been well documented that Melanoma is an immunogenic tumor but metastatic Melanoma cells 

have developed mechanisms to escape from immune surveillance in order to survive. The immune system 

involvement in protection against Melanoma is supported by the increased of Melanoma incidence under 

immunosuppression conditions
20

. In 1998, the first immunotherapy to be approved by the Food and Drug 

Administration (FDA) for treatment of advanced Melanoma was Interleukin-2 (IL-2) but, like Dacarbazine, 

response rates were low even at high-doses of treatment. Its use in clinical practice is limited by the severe 

toxic side-effects
21,22

. However, substantial advances in systemic cancer therapies have been reported since 

2009 and a new immunotherapeutic drug (anti-CTL4-4 antibody) Ipilimumab
23

. 

 

2.2.5. Novel Therapy. 

 The recent characterization of the molecular alterations in Melanoma leads to the development of 

targeted therapies in order to finish with the resistance to therapeutic agents, both chemical or biological, 

which remains the main problem in the management of the therapy in Melanoma. These treatments are 

designed to target tumors according to their molecular diversity and activated intracellular signaling 

pathways
24–27

. Advanced studies led to the development of inhibitors of PI3K which selectively target only 

the catalytic sites. The PI3K inhibitors, GSK2126458 and BEZ235, were evaluated in vitro showing an 

enhanced cell growth inhibition
28–30

.  

 The use of novel therapeutics should ideally be made following an immunological and genetic 

mutation screen of the patients tumor, in order to the treatment be specifically adapted based on mutations of 

a patient who have cancer. However, there are no currently available immunological biomarkers and those 

targeted agents for which mutations can be tested, frequently develop secondary resistance. New biomarkers 

could be useful for many different things like screening, early diagnosis, disease staging as well as for the 

identification of those patients who are in high risk of disease recurrence
31,32

. 

 

 

2.3. The AKT Pathway. 

 

2.3.1. General Issues 

 The AKT is a serine/threonine kinase downstream of PTEN/ PI3K, that exists as three isoforms in 

mammals (AKT1, AKT2 and AKT3) , which are encoded by three different genes. They are ubiquitously 
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expressed, but their levels are variable, depending upon the tissue type
33,34

. In Melanoma cells, AKT3 is the 

form preferentially expressed. The AKT3 activation is found in about 60% of sporadic Melanomas
35

. The 

AKT kinase regulates multiple biological processes including cell survival, proliferation, growth, and 

glycogen metabolism through phosphorylation of many physiological substrates
33

. A variety of growth 

factors (e.g. IGF-1), hormones (e.g. Thyroid Hormone T3), cytokines (e.g. IL-2) and certain oncogenes (e.g. 

Ras) activate AKT, by binding their cognate receptor tyrosine kinase (RTK) and triggering activation of the 

lipid kinase PI3K
36–39

. For instance, Ras activation of the AKT pathway confers protection from apoptosis in 

fibroblasts in response to DNA damage or oncogenic Myc. Although several AKT targets have been 

reported, it is not fully understood how AKT promotes survival
9,40,41

. 

 

 

Figure 2.3.1.1: 

General scheme of 

the 

PTEN/PI3K/AKT 

pathway. 

 

 

 

 

 

 

2.3.2. The Activation of AKT. 

The PTEN is a dual lipid and a protein phosphatase. Its primary target is the lipid 

phosphatidylinositol-3,4,5-triphosphate (PIP3), the product of the phosphatidylinositol-3-kinase (PI3K)
42,43

. 

The loss of function of the PTEN (which has been implicated in many human cancers), as well as the 

activation of the PI3K, results in accumulation of PIP3 triggering for the activation of its downstream 

effectors, PDK1, AKT and Rac1
44,45

. The activation of PI3K is induced by growth factors and insulin 

targeting by the catalytic subunit to the membrane where it is in close proximity with its substrate, mainly 
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PIP2. PDK1 contains a C-terminal pleckstrin homology (PH) domain, which binds the membrane bound 

PIP3 triggering PDK1 activation. Activated PDK1 phosphorylates AKT at Thr308 activating its ser/thr 

kinase activity and further activation occurs by PDK2 by phosphorylation at Ser473
46,47

. Activation of AKT 

results in the suppression of apoptosis induced by a number of stimuli including growth factor withdrawal, 

detachment of extracellular matrix, UV irradiation and cell cycle discordance
9
. Furthermore, the abnormal 

expression and activity of the PI3K/AKT pathway proteins has been shown to promote Melanomagenesis by 

inducing cell survival signaling in Melanoma cells. Therefore, members of this signaling cascade are 

attractive targets for inhibiting Melanoma
9
.   

 

2.3.3. The Importance of p53. 

 The PI3K-AKT pathway has recently been reported to inhibit the transcriptional activity of p53 and 

reduce the proapoptotic functions of it. The p53 is a tumor suppressor which plays a key role in the induction 

of apoptosis and cell cycle arrest in response to a variety of genotoxic stresses and to the activation of some 

oncogenes such as Myc, thereby preventing the propagation of damaged cells
48,49

. Its function is controlled 

by several mechanisms, including the regulation of p53 protein stability. Central to this process is MDM2, a 

ubiquitin ligase that targets p53 for ubiquitination and allows export of p53 from the nucleus to the 

cytoplasm, where p53 degradation by proteasomes takes place
50

.  

 Under normal circumstances, p53 is maintained at very low levels by continuous ubiquitination and 

degradation. Activation of p53 in response to cellular stresses is mediated partly by inhibition of MDM2 and 

rapid stabilization of p53 protein. The deregulated activation of mitogenic signals, caused by the oncogenic 

activation of Ras or Myc for example, leads to the activation of p53, which provides a mechanism to prevent 

the abnormal proliferation associated with tumor development
51,52

. However, this activation of p53 by 

mitogenic signals must be suppressed during normal cell proliferation to prevent p53 from inducing cell 

cycle arrest or apoptosis. Therefore, it appears reasonable to assume that mitogenic signals elicit both p53-

activating and -inactivating signals
53,54

. Recent studies have indeed shown that Ras can inhibit or activate 

p53, depending on the cellular contexts and the duration of Ras activation. The Raf/MEK/MAPK pathway 

has been shown to mediate Ras activation of p53. Therefore, it is possible that the PI3K/AKT pathway 

opposes the MAPK pathway in activation of p53. However, it has yet to be determined how AKT suppresses 

p53
55–57

.  
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2.3.4. The role of FOXO proteins. 

 As mentioned above, the AKT promotes cell survival directly by its ability to phosphorylate and 

inactivate several pro-apoptotic targets, like Bim, and the forkhead transcription factors (FOXO)
58

. The 

FOXO proteins (including FOXO3a) play an important role in longevity and tumor suppression by 

regulating a wide range of genes involved in stress resistance, metabolism, cell cycle arrest and apoptosis. 

Previous studies have shown that BEZ235 treatment of malignant Melanoma cells induces FOXO3a-

dependent gene expression following the inhibition of PI3K1. Activation of this pathway can directly result 

in phosphorylation of FOXOs and their subsequent cytoplasmic sequestration and/or degradation via the 

ubiquitin-proteasome pathway. When FOXO is activated by the inhibition of the PI3K/AKT pathway, 

FOXO’s promotes a wide range of effects including cell cycle arrest, cell differentiation, autophagy and 

apoptosis via various mechanisms
59,60

.  

 

Figure 2.3.4.1: General scheme of PTEN/PI3K/AKT pathway inhibition and FOXOs posphorilation, with FOXOs 

subsquent cytoplasmatic sequestration. 
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2.4. The Tribbles Pseudokinases Family. 

 The Tribbles (TRIB) pseudokinases family members are the human homolog of Drosophila tribbles 

protein, which regulates the cell cycle during oogenesis and morphogenesis, and influences proliferation, 

motility, metabolism, and oncogenic transformation. All three TRIB (TRIB1, TRIB2, and TRIB3) 

pseudokinases are associated with a variety of human malignancies, acting as adaptors in important cellular 

signaling pathways extending from mitosis and cell activation to apoptosis and modulation of gene 

expression
59

. The members of Tribbles family have been reported to interact and modulate the activity of 

signal transduction pathways, including the PI3K/AKT and the MAPK systems, and with various signaling 

molecules and transcription factors, including ATF4, p65, CtIP, MAPKK, AKT and COP1
60,61

.  

  The TRIB2 (and the others Tribbles proteins) are characterized by a central serine/threonine kinase-

like domain (KD) and a C-terminal binding site for E3 ubiquitin ligases. However, these proteins are 

considered to be catalytically inactive because they lack conserved residues from the characteristic 

adenosine triphosphate binding site and catalytic core motif within the KD
61

. Therefore, Tribbles probably 

function as adapter or scaffold proteins. Although the three members of Tribbles family proteins are highly 

homologous in the KD and in the C-terminal E3 ubiquitin ligase binding site, they show restricted similarity 

in the N- and C-terminal domains
62

. The TRIB2 domains responsible for protein binding or 

functional/oncogenic activity are unknown. On the other hand, the integrity of the KD domains is required 

for both of these activities, and a mutation of critical residues within the KD interferes with these activities. 

Additionally, the binding of COP1 to the TRIB2 C-terminus is essential for TRIB2-induced AML. In the 

nonexistence of COP1 binding, Leukemia does not occur
59,63,64

.  

 Furthermore, TRIB2 has been implicated in the negative regulation of FOXO3a. The restoration of 

FOXO proteins have been suggested as a promising strategy to treat various types of cancer and accordingly 

the forced expression of nuclear FOXO has been shown to induce apoptosis in a wide range of in vitro 

cancer cell line models
59,63

. Additionally, the TRIB2, which is highly expressed in metastatic Melanoma 

cells, has been implicated in the resistance of various cancers to a range of chemotherapeutics, including 

PI3K inhibitors that are under clinical trial. It is hypothesized that this resistance is due to the repression of 

FOXO family members
59,61,65

. 

2.5. Hypothesis. 

 Our group discovered that the kinase-like protein TRIB2 was highly expressed in metastatic 

Melanoma samples (and recently colon and pancreatic malignancies). Recent data within our laboratory 

revealed that the over expression of TRIB2 conferred drug resistance to a range of chemotherapeutic agents 
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and importantly conferred resistance to a number of phosphatidylinositol 3-kinases (PI3Ks) inhibitors that 

are being tested in Melanoma clinical trials.  

 These results indicate that TRIB2 confers chemotherapeutic resistance. Based on our laboratory 

research, the present work intends to elucidate some of the mechanism(s) of action about how TRIB2 

mediates PI3K inhibitor resistance and the role(s) of FOXO3a in this response.  

 In order to test our hypothesis, we need to confirm the inhibition effectiveness of our PI3K inhibitor 

and the cellular phenotype following TRIB2 over expression and to examine the recruitment of FOXO3a and 

the promoters of cell cycle arrest. 
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3. MATERIALS AND METHODS 

 

 

3.1. Cell Culture and Tissue Samples. 

The cell lines used for this work and their respective information are represented in Table 3.1.1. The 

cells were cultivated in DMEM (Sigma) with 10% heat inactivated FCS (Sigma) supplemented with 

Pen/Strep (Gibco) and within 35 mm plates. The U2OS and the 293T cell lines was previously transfected 

with a plasmid containing the TRIB2. The G361 and the SK-Mel28 cell lines was stably transfected with a 

TRIB2 shRNA expressing plasmid. We treated the cells with several 

chemotherapeutic drugs. The chemotherapeutic drugs and their 

respective concentrations are represented in Table 3.1.2. We did 

several drug time courses with the different chemotherapeutic drugs. 

 

Table 3.1.1: Cell lines used in this work and their origin. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1.2: Chemotherapeutics drugs used in 

this work and their respective concentrations. 

 

 

 

 

 

 

All used Melanoma and Normal tissue samples are represented in Table 3.1.3, and were provided by 

Dr Selma Ugurel (Julius-Maximilians-Universität Würzburg, Germany). They were sectioned for 

Immunohistochemistry (Faro Hospital) and the remaining tissue used for protein analysis. 

Cell Line Origin 

 U2OS Human Osteosarcoma 

293T Human Renal Cancer 

MCF-7 Human Breast Cancer 

MDA-489 Human Breast Cancer 

A375 Human Melanoma 

G361 Human Melanoma 

M14 Human Melanoma 

SK-Mel28 Human Melanoma 

UACC62 Human Melanoma 

Chemotherapeutic Drugs Concentration 

DTIC (Dizcarbacine) 100nm 

BEZ235 100nm 

BAYER COMPOUNDS (236; 439; 766; 931) 10nm 

Cyclohexamide 10ug 

Actinimycin D 10ug 

MG132 10ug/ml 
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Table 3.1.3: Melanoma and Normal tissue samples used in this 

work. 

 

 

 

 

 

3.2. Protein Extraction and Quantification. 

The protein extraction is the total protein that was extracted from each cell line or our tissue samples.  

For cellular extraction, the cells were collected from the culture plates by first removing the growth 

medium and to then scrape the cells in 1 ml of PBS. This suspension was then transferred into a clean 

Eppendorf and spinned at 1100 rpm for 5 min at 4ºC. The PBS was removed from the pellet and RIPA 

buffer (Tris-HCL ph 7.4, NaCl, 10% Nonidet P-40, 10% sodium deoxycholate, 100 mM EDTA, PIC, 200 

mM NA-F, 100mM Na3VO4 and protease inhibitors cocktail) was added to the pellet. The pellet was 

resuspended in this total lysis buffer and incubated on ice for 30 minutes. After 30 minutes the lysed cells 

were spun 15 minutes at 13000 rpm (maximum speed). The supernatant (containing our proteins) was 

collected and transferred to a fresh eppendorf prior to quantification.  

For protein extraction from our tissue samples, tissue sections were placed inside a manual 

homogenizer (Sigma) with 500 μL of the RIPA buffer (described above) and vigorously homogeneized. 

After homogenization samples were incubated on ice for 30 minutes. Lysed samples were spun at 13000 rpm 

and the supernatant transferred to a fresh eppendorf prior to protein quantification. For both extraction 

protocols all extracted proteins were stored at -80ºC until required. 

To determine the protein concentrations (protein quantification) in each sample we used the Quick 

Strat
TM

 Bradford Protein Assay (BioRad) and the NanoDrop 2000 UV-Vis Spectrophotometer 

(ThermoScientific) following the manufacturers guidelines. 

Melanoma Samples 
Normal 

Samples 

Stable 

Disease 

Complete 

response 

Progressive 

Disease 
  

CSM002 CSM066 CSM105 1274 

CSM178 CSM209 CSM108 1440 

CSM200 CSM203 CSM143 1454 

CSM214 CSM068 CSM060 1425 

CSM099 CSM006 CSM057 1408 

  
CSM027 1474 

  
CSM094 1412 

  
CSM038 1489 

  
CSM111 1428 

  
CSM213 1508 
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3.3. Western Blotting.  

Our extracted protein samples were diluted in to 2x lammeli loading buffer (containing β-

mercaptoethanol) and heatedat 95ºC for 5 minutes. Samples were loaded into our 10% SDS-PAGE gels. 

Separated proteins within each gel were transferred on to nitrocellulose membranes (Amersham) and were 

blocked with 5% BSA (in Tris-buffered-saline [TBS]) for 1 hour (preventing non-specific antibody binding). 

After blocking, membranes were immunoblotted with several primary antibodies (dilution of 1/1000 into 

BSA) overnight at 4ºC. The primary antibodies used in this work and their respective information are 

represented in Table 3.3.1.  

After incubation, membranes were washed (x3) with TBS 0.1% tween20. After washing, 

corresponding secondary antibodies were added (dilution of 1/5000 into BSA) at room temperature for 1 

hour. The secondary antibodies used in this work and their respective information are represented in Table 

3.3.2. The membranes were washed (x3) times with TBS 0.1% tween20 and visualized using ECL
+
. Images 

were obtained using a Molecular Imager® ChemiDoc™ XRS System (BioRad).  

 

 

 

 

 

Table 3.3.1: Primary antibodies 

used in this work and their 

respective information. 

 

 

 

 

 

 

Primary Antibodies Supplier and Information 

Total AKT C-20; sc-1618; Goat; Santa Cruz Biotechnology 

p-AKT Ser 473; sc-7985; Rabbit; Santa Cruz Biotechnology 

Total FOXO (FKHRL1) N-16; sc-9813; Goat; Santa Cruz Biotechnology  

p-FOXO (p-FKHRL1) Ser253; sc-101683; Rabbit; Santa Cruz Biotechnology 

TRIB2 Custom, Rabbit, Madrid 

Fas-L C-178; sc-6237; Rabbit; Santa Cruz Biotechnology 

MDM2 C-18; sc-812; Rabbit;Santa Cruz Biotechnology 

PTEN A2B1; sc-7974; Mouse; Santa Cruz Biotechnology 

P53 DO-1; sc-126; Mouse; Santa Cruz Biotechnology 

BIM H-191; sc-11425; Rabbit; Santa Cruz Biotechnology 

Total PRAS40 H-216; sc-67042; Rabbit; Santa Cruz Biotechnology 

p-PRAS40 Thr246; sc-32629; Rabbit; Santa Cruz Biotechnology 

Total p70S6K C-18; sc-230; Rabbit; Santa Cruz Biotechnology 

Actin I-19; sc-1616; Goat; Santa Cruz Biotechnology 

Caspase-3 E-8; sc-7272; Mouse; Santa Cruz Biotechnology 

Cleaved Caspase-3 h176; sc-22171; Rabbit; Santa Cruz Biotechnology 

Total PDK1 C-20; sc-7140; Goat; Santa Cruz Biotechnology 

p-PDK1 Ser241; #3061; Rabbit; Cell Signaling Technology 

14-3-3σ N-14; sc-7681; Goat; Santa Cruz Biotechnology 
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Table 3.3.2: Secondary antibodies used in this work and their 

respective information. 

 

 

 

 

 

3.4. Co-Imunnoprecipitation (Co-IP).  

 The cells were washed with medium. Trypsin was added to the plate with the cultivated cells and 

then the cells were scraped. The solution was collected to new Eppendorf tubes and centrifuged, and the 

supernatant was collected to new tubes. The protein A/G-agarose beads (Sigma) were washed for 2 times 

with PBS and a 50% protein A/G agarose working solution (in PBS) was made. Each indicated antibody was 

added to the beads for 1 hour. After 1 hour the beads were washed (x2) with PBS. 500 μg of total protein 

lysate was added to each set of beads and incubated overnight at 4ºC. Samples were centrifuged (max 

speed), the pellet was kept, and washed with pre-chilled PBS (x3). SDS-loading buffer was added to beads 

and the samples heated to 95ºC for 5 minutes. Samples were extracted and run on an appropriate percentage 

SDS-gel. 

 

3.5. JetPrime Transfection Protocol. 

 In order to transfect some of ours cell lines (see Table 3.1.1 from 3.1), we followed the JetPrime 

transfection Protocol. We started the protocol diluting 2 µg of our DNA into 200 µl jetPRIME® buffer and, 

after that, we mixed both by vortexing. Then, it was added 4 µl of jetPRIME® to the mix and then, the new 

mix, was vortexed for 10 seconds and, after that, spun down briefly. At that time, the mix was incubated for 

10 minutes at room temperature. Following the incubation, it was added 200 µl transfection mix (drop wise), 

per plate and evenly, onto the cells in serum containing medium. Finally, the plates was gently rocked and, 

then, placed into the incubator for 24 hours. 

 

Secondary 

Antibodies 
Supplier and Information 

Anti-rabbit IgG-HRP; sc-2004; Goat; 

Santa Cruz Biotechnology 

Anti-goat 
IgG-HRP; sc-2020; Donkey; 

Santa Cruz Biotechnology 

Anti-mouse 
IgG-HRP; sc-2314; Donkey; 

Santa Cruz Biotechnology 
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3.6. Chromatin Imunnoprecipitation (ChIP).  

 The plates were washed with medium, and a 1% formaldehyde/PBS solution was added to cross-link 

proteins to DNA. The solution was removed, and the plates were washed with ice cold PBS (x3). Cells were 

scraped from the plates with 1M Tris-HCl with 10mM DTT, and transferred to Eppendorf tubes. After 

centrifugation, the pellets were washed with Buffer I and II. After centrifugation, the pellet was resuspended 

in lysis buffer (made fresh with PIC). The cells were sonicated (6 times for 10 sec each sample) on ice, to 

shear DNA to an average fragment size of 200-500 base pairs. After centrifugation (at max speed for 15 

minutes) to pellet cell debris, the supernatant was transferred into a new Eppendorf. 300 μl of Buffer D and 

PIC were added to each sample. 100 μl input samples were removed at this stage. The input samples were 

heated overnight at 65°C.  

 To the remaining sample (after the inputs were removed), we added sheared salmon sperm DNA, the 

antibody of interest and protein G-fast flow beads (Sigma) and Buffer D. After incubation overnight at 4ºC, 

the beads were pulled down and washed with TSE I, II and III. Afterwards the beads were washed with ice 

cold TE. The DNA was extracted with three washes with a solution of NaCHO3 and SDS. Once extracted 

the samples were transferred to a fresh Eppendorf and heated overnight at 65ºC. Our input and the ChIP 

samples were loaded into Sigma-PCR clean-up columns and after washing our immunoprecipitated DNA 

eluted with 30 μl dH2O. Samples were stored at -20ºC  

 

3.7. Fluorescent Activated Cell Scanning (FACS).  

 For cellular extraction (after treatment), we first collected the growth medium and then transferred 

this into a clean 15 ml Falcon Tube. After that, we added 1mL of Trypsin to the cells and then we placed 

them in an incubator for 15 minutes. After 15 minutes we detached the cells by mixing up and down. The 

trypsinized cells were then added to the corresponding Falcon Tube and spinned at 1100 rpm for 5 minutes. 

The medium/trypsin was removed from the pellet and 1 ml of cold PBS was added to the pellet. The pellet 

was resuspended in the PBS and spinned at 1100 rpm for 5 minutes. The PBS was removed from the pellet 

and 1 ml of 70% Ethanol was added to the pellet. The pellet was resuspended in the 70% Ethanol and then 

was stored at 4ºC until required for FACS.    Samples were run on FACS after propidium iodide (2.5 mg 

mL-1) was added to the fixed, stained cells prior to analysis. 50,000 gated, total  events were scored per 

study from triplicate studies. Data was analyzed using FACS-express 3 (De Novo software). 



                                                                                                                                                                                             RESULTS 
 

Page 27 of 72 
 

 

 

 

 

 

 

 

CHAPTER 4 

RESULTS 

  



                                                                                                                                                                                             RESULTS 
 

Page 28 of 72 
 

4. RESULTS 

 

4.1. TRIB2 protein expression conferred resistance to classical chemotherapeutic modalities.  

Previous data from our laboratory demonstrated that the TRIB2 protein negatively regulated FOXO3a. 

However, the exact mechanism of this resistance remained elusive. Considering that forkhead transcription 

factors are important effector proteins following chemotherapeutic treatment, we hypothesized that elevated 

TRIB2 protein expression could confer resistance to a range of chemotherapeutic drugs. To test this 

hypothesis, we took matched cell lines (with either stable over expressed TRIB2-GFP or shRNA knocked 

down TRIB2). These cell lines are summarized in my materials and methods (Table 3.1.1, section 3.1, page 

22). Prior to examining cell line sensitivity, we confirmed each cell line TRIB2 protein expression level 

(Figure 4.1.1) 

 

 

Figure 4.1.1: A representative western blot showing the 

expression level of TRIB2 and actin in our isogenic cell lines. 

50 μg of total protein lysate was loaded per lane and separated 

on a 10% SDS-PAGE gel. 

 

 

 

 

Having confirmed that our cell lines had matched TRIB2 protein expression levels, we questioned if 

these isogenic lines show any significant viability difference when exposed to 20 μM dazcarbizine (DTIC), 

10 μM gemcitabine (Gem) or 50 μg/ml 5-fluorouracil (5-FU). We note that 72 hours post treatment, cells 

with increased TRIB2 protein expression were significantly more resistant to each chemotherapy modality 

that they were exposed to (Figure 4.1.2). 
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Figure 4.1.2: Cell 

viability was 

measured 72 hours 

post exposure to 

each indicated 

chemotherapeutic 

agent. The 

percentage of 

subG1 cells were 

measured by FACS 

analysis after 50,000 total events (N=3). P values are indicated for each isogenic cell line comparison and error bars 

are indicative of standard deviation. 

Recently, a wide range of PI3K inhibitors have been developed to treat Melanoma and in particular 

metastatic Melanoma that typically presents an extremely poor clinical prognosis. Considering the highly 

significant resistance to conventional chemotherapeutic modalities (including the standard Melanoma 

treatment agent DTIC), we next questioned if TRIB2 status conferred resistance to PI3K inhibitors. One of 

the most extensively tested agents is the PI3K inhibitor BEZ235 (Novartis) that, in combination with DTIC 

is the standard treatment regime.  

 

4.2. TRIB2 expression conferred resistance to the PI3K inhibitor BEZ235.  

We exposed our isogenic cell lines to 100 nM BEZ235 for 24, 48 and 72 hours. Prior to BEZ235 

exposure, there was no significant difference in terms of cell cycle distribution or proliferation rate between 

each isogenic cell line (data not shown). However, 48 hours post 100 nM BEZ235 treatment we note a 

number of highly significant differences. In cells that do not over express the TRIB2 protein there is an 

almost complete loss of the G2 (4N) population (white bars in Figure 4.2.1, 4.2.2 and 4.2.3) and a 

significantly increased sub-G1 population (the black bars shown in Figure 4.2.1, 4.2.2 and 4.2.3).  

In contrast, cell lines with increased TRIB2 protein expression display a more distinct G1 population 

(dark grey bars in Figure 4.2.1, 4.2.2 and 4.2.3). Furthermore the sub-G1 population is significantly lower, 

indicative of viable cells. Overall these results indicate that the over expression of TRIB2 conferred 

significant resistance to the PI3K inhibitor BEZ235 
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Figure 4.2.1, 4.2.2, 4.2.3: Cell viability following 100 nM 

BEZ235 treatment of U2OS, 293T or G361 isogenic cancer 

cell lines. Cells were measured after 24, 48 or 72 hours 

BEZ235 treatment. Using propidium iodide staining, cell 

cycle stage was determined (subG1, G1, S and G2 phase). 

50,000 total events were scored, N=3 and error bars are 

indicative of standard deviation averaged from triplicate 

samples over three independent studies. 

 

 

4.3. Increased TRIB2 expression significantly attenuates BEZ235 induced apoptosis.  

Our data indicated that high TRIB2 protein significantly increased cell line viability (hence a lower 

subG1 cell population) to both conventional as well as novel chemotherapeutics. However, we do not know 

if this resistance was due to a reduction in apoptosis (programmed cell death) or more generalized (such as 

necrosis). To address this question, we treated our U2OS-empty-GFP and U2OS-TRIB2-GFP isogenic cells 

with 100 nM BEZ or 20 µM DTIC, and evaluated the expression of caspase-3 and cleaved (active) Caspase-

3 up to 48 hours post-treatment (Figure 4.3.1).  

 

Figure 4.3.1: Representative immunoblots for 

caspase-3/cleaved Caspase-3, TRIB2 and actin 

following 100nM BEZ235 or 20 μM DTIC. For 

each SDS-PAGE gel, 100 μg of total protein was 

loaded. Antibodies were used as described in the 

materials and methods section.  
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In each cell line prior to treatment we observe little to no Caspase-3 cleavage consistent with healthy, 

non-apoptotic cells. In addition up to 48 hours post treatment (BEZ235 or DTIC) that there was no 

significant change in the total protein level of Caspase-3 (top band in Figure 4.3.1). However, strikingly 48 

hours post BEZ235 or DTIC treatment there was a significant accumulation of cleaved Caspase-3 (indicative 

of apoptosis induction). Strikingly, in cell lines with increased TRIB2 protein expression, there was reduced 

Caspase-3 cleavage and therefore less apoptosis (lane 2 and 4 compared to lane 6 and lane 8 in Figure 4.3.1). 

Taking into account that Caspase-3 cleavage is a critical process in both the classical and non-classical 

apoptotic cascade, we can conclude, consistent with cell morphology and detachment (observed under the 

microscope) that TRIB2 over expressing cells are significantly less apoptotic than isogenic cells with 

low/endogenous TRIB2 protein expression. Strikingly cells that over express TRIB2 show significantly 

reduced caspase-3 cleavage and that are consistent with the resistance to BEZ treatment (as well as other 

PI3K inhibitors).  

When we examined TRIB2 protein expression, we note a very interesting result. While the total level 

of TRIB2 protein did not change following DTIC treatment (Figure 4.3.1 middle panel, lane 3-4 and lane 7-

8), when cell lines were treated with the PI3K inhibitor BEZ235, the level of total TRIB2 protein 

significantly increased (Figure 4.3.1, lane 1-2 and lane 5-6). It is tempting to suggest that this increase in 

independent of TRIB2 transcription for a number of reasons. In the U2OS-TRIB2-GFP cells, TRIB2 

expression in under the control of a cytomegalovirus (CMV) promoter. Consequently, the transcription rate 

from this promoter is unlikely to change as it is already a high-expression promoter. We cannot rule out an 

increase in endogenous TRIB2 transcription in each cell line although considering that expression is already 

extremely high in U2OS-TRIB2-GFP cells, it is tempting to hypothesize that this increase in TRIB2 protein 

expression is independent of transcription and could be the result of post-translational modification(s). This 

is unexpected result is under intense investigation in our group. 

Our results so far have only examined one time point (48 hours) post chemotherapeutic treatment and 

while we note a striking difference in the amount of Caspase-3 cleavage between U2OS-empty versus 

U2OS-TRIB2 cells, we wanted to examine Caspase-3 cleavage over more time points (Figure 4.3.2).  
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Figure 4.3.2: Representative immunoblots for caspase-

3/cleaved Caspase-3, TRIB2 and actin following 100nM 

BEZ235. For each SDS-PAGE gel, 50 μg of total protein 

was loaded. Antibodies were used as described in the 

materials and methods section.  

 

 

 

Consistent with our previous Caspase-3 immunoblots, we note no significant difference between the 

levels of non-cleavage Caspase-3 over time in each cell line. In contrast however (and again consistent with 

Figure 4.3.1), we note that compared to matched isogenic cells, U2OS-TRIB2 cells show significantly lower 

Caspase-3 cleavage after BEZ235 exposure. Strikingly, by halving the amount of total protein per lane (50 

μg compared to 100 μg) that this difference is even more striking. Furthermore, it is now extremely difficult 

to detect endogenous TRIB2 protein expression in our U2OS-empty cell line (Figure 4.3.2 lane 2, 3 and 4). 

We note that in our U2OS-TRIB2 cells, that following BEZ235 exposure that as early as 12 hours post 

treatment that there was a noticeable increase in the total level of TRIB2 protein (compare Figure 4.3.2 lane 

5 versus lane 6). Considering that this increase can be seen as early as 12 hours post-BEZ235 treatment, it 

supports the hypothesis that the increase is independent of transcription as this is a short time point to 

consider a transcriptional response. In contrast, a post-translational response increasing the stability of 

TRIB2 is highly plausible. However, this aspect is still only a hypothesis and significantly more 

investigation is required at this point. Interestingly, cells treated with the chemotherapeutic DTIC show little 

to no TRIB2 stabilization after DTIC treatment (Figure 4.3.1). This suggests that the stabilization of TRIB2 

(whether a transcritional or post-translational) is PI3K-dependent. These results clearly shows that cell lines 

with significantly elevated TRIB2 have considerably lower Caspase-3 cleavage and that following PI3K 

inhibition that TRIB2 protein levels accumulate. Our actin immunoblot confirms an equivalent protein load 

per lane in our immunoblots. 
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4.4. In contrast to BEZ235 exposure, DTIC treatment stabilizes p53. 

We note that following DTIC or BEZ235 exposure cells that do not over express TRIB2 show 

significant apoptotic cell death compared to isogenic cells that have high levels of the TRIB2 protein. This is 

a striking observation as these chemotherapeutic agents have highly divergent mechanisms of action (as 

described in my introduction). As an alkylating agent, we questioned if the tumour suppressor p53 (a protein 

that is extremely similar to FOXO3a) was affected following the exposure to DTIC. We also included 

BEZ235 treatment hypothesizing that p53 would not be affected by PI3K inhibition (Figure 4.4.1).  

 

Figure 4.4.1: Representative immunoblots for 

total p53 (DO1) and actin following 100nM 

BEZ235 or 20 μM DTIC exposure. For each SDS-

PAGE gel, 50 μg of total protein was loaded. 

Antibodies were used as described in the materials 

and methods section. 

 

We note that U2OS-empty cells show a small increase in total p53 up to 48 hours post BEZ235 

(100nM) treatment that was not unexpected. U2OS-empty cells show robust induction of apoptosis at this 

time point (see Figure 4.1.2). Consequently, within this cellular environment, with approximately 30-40% of 

the cells inducing apoptosis, we would expect a slight accumulation of p53. However strikingly, we note that 

following DTIC treatment that there was a significant accumulation of p53 (Figure 4.4.1 lane 3-4 and lane 7-

8). Furthermore, in cell lines with high TRIB2 protein expression that p53 accumulation was lower 

compared to matched isogenic cell lines (see Figure 4.4.1 lane 4 versus lane 8).  From this result we can 

conclude that DTIC exposure leads to the robust accumulation of p53, that BEZ235 treatment does not 

trigger p53 accumulation and that importantly, cell lines with high TRIB2 expression show attenuated p53 

accumulation compared to control cells.   
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4.5. A role for p53? 

Based on our results described in 4.4, we hypothesized that DTIC would trigger the subG1 

accumulation and apoptosis in a p53-dependent manner. To address this question, we used the Vogelstein 

isogenic HCT-116 colon cancer cell line with matched p53 status. These cell lines were grown to 70% 

confluence and treated with 20 μM DTIC or 100 nM BEZ235. At 48 hours post exposure to either agent, 

cells were analyzed via FACS (Figure 4.5.1). 

 

 

Figure 4.5.1: Representative FACS profiles for p53
+/+

 

and p53
-/-

 HCT116 cell viability 48 hours following 20 

μM or 100 nM BEZ235 treatment. Using propidium 

iodide staining, cell cycle stage was determined (subG1, 

G1 phase, S and G2 phase). 50,000 total events were 

scored, N=3 

 

 

 

 

As we would have predicted based on our previous immunoblot analysis, we note that p53
+/+

 cells are 

highly sensitive to DTIC treatment (Figure 4.5.1 top left FACS plot). In contrast, p53
-/-

 HCT-116 cells are 

extremely resistant to DTIC (Figure 4.5.1 top right FACS plot). In contrast, BEZ235 treatment induced 

significant cell death/subG1 accumulation in a p53-independent manner (Figure 4.5.1 bottom left and bottom 

right FACS plots). The most striking aspect of the data we have accumulated suggests that increased TRIB2 

protein expression confers resistance to both DTIC (a p53-dependent chemotherapeutic) and BEZ235 (a 

PI3K inhibitor and likely FOXO3a-dependent chemotherapeutic). 

As a negative regulator of FOXO3a, our data unexpectedly raised the hypothesis that TRIB2 could 

confer resistance to p53-dependent chemotherapeutics. To investigate this further we carried out 

immunoblotting for total p53 and the E3-ubiquitin ligase (and negative regulator of p53) mouse double 

minute 2 homolog (MDM2) in our isogenic U2OS cell lines (Figure 4.5.2).  
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Figure 4.5.2: Representative immunoblots for 

MDM2, total p53 (DO1) and actin following 100nM 

BEZ235 exposure. For each SDS-PAGE gel, 100 μg 

of total protein was loaded. Antibodies were used as 

described in the materials and methods section. 

 

 

 

First we note that incontrast to U2OS-empty cells that U2OS-TRIB2 cells have a slightly higher level 

of MDM2 under non-treatment conditions (Figure 4.5.2. lane 1 compared to lane 6). Second, following BEZ 

exposure, U2OS-empty cells show a steady reduction in MDM2 protein levels (Figure 4.5.2 lane 2-5). 

Unexpectedly, U2OS-TRIB2 cells show a rapid decrease in MDM2 protein expression and then a rapid rise 

in MDM2 protein level, oscillating up and down. As we would predict, U2OS-empty cells show a steady 

increase in total p53 level consistent with MDM2 levels decreasing (Figure 4.5.2, middle panel, lanes 2-5). 

Strikingly, while U2OS-TRIB2 cells have p53, the accumulation of total p53 is significantly attenuated 

(Figure 4.5.2 lane 5 versus lane 10). We note that U2OS-empty cells show a gradual increase in total p53 up 

to 12 hours post BEZ treatment. In contrast, U2OS-TRIB2 cells show a significantly lower level of p53 

protein under non-treated conditions, an initial increase 60 minutes post BEZ exposure and then a noticeable 

decrease up to 12 hours post BEZ incubation. Strikingly, the exact opposite trend was observed for MDM2 

raising the hypothesis that in cells which over express TRIB2, the p53/MDM2 regulatory balance is 

disrupted.  

 

4.6. TRIB2 and MDM2 interaction. 

The next question we asked after observing the deregulated p53/mDM2 axis in TRIB2 over expressing 

cells was if TRIB2 and MDM2 could interact. This question is particularly important as very little is known 

regarding TRIB2 protein regulation although it has been reported that TRIB2 can be regulated by 

ubiquitination
66,67

. We carried out co-immunoprecipitation (co-IP) assays 12 hours post 100 nM BEZ235 

treatment or after mock-drug treatment in our isogenic U2OS cell line model, asking if TRIB2 would 

interact with MDM2, AKT or FOXO3a (Figure 4.6.1). 
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Figure 4.6.1: SDS-PAGE gel following IgG, 

MDM2, AKT or FOXO3a co-IP. Captured 

lysates were probed for TRIB2. 500 μg of total 

protein was captured per sample and run in each 

lane. 25 μg of total protein lysate was run on a 

separate SDS-PAGE gel and probed for actin to 

ensure equivalent protein loading N=3. 

 

 

Our co-IP studies indicate that TRIB2 and MDM2 interact, raising the hypothesis that MDM2 could, 

in principle regulate TRIB2. Overall, this result indicates that the TRIB2 and MDM2 interact and that the 

overexpression of TRIB2 perturbs the p53/MDM2 regulatory balance. This supports our previous data where 

unexpectedly, TRIB2 over expression confers cell line resistance to chemotherapeutics that induce p53-

dependent apoptosis (including gemcitabine and 5-FU).  

4.7. TRIB2 Expression and Stress Signaling. 

So far, our data indicates that DTIC induces a potent p53-dependent apoptotic response in contrast to 

BEZ235 that causes cell death independently of p53. This raised two questions, specifically “how does 

BEZ235 induce cell death?” and “would these drugs in combination significantly increase cell death?” To 

address these questions we used our isogenic U2OS and 293T cell lines. Each cell line was treated with 

either 100 nM BEZ235, 20 μM DTIC or both chemotherapeutics (representative of the combinational 

therapy used to treat malignant Melanoma) for 48 hours. Following this drug treatment, total cell lysates 

were collected and immunoblot analysis conducted for a number of key signaling proteins and downstream 

effector proteins from these signaling networks (Figure 4.7.1). 

 

 

Figure 4.7.1: Representative immunoblots 

for each indicated protein after 100nM 

BEZ235 or 20 μM DTIC exposure. 50 μg 

of total protein was loaded per lane. 

Antibodies were used as described in the 

materials and methods section. 

 

 

 



                                                                                                                                                                                             RESULTS 
 

Page 37 of 72 
 

We initially investigated the protein expression levels for TRIB2, total-PDK1, phospho-PDK1, PDK1, 

total p53, FasL, 14-3-3σ, PTEN and β-Actin in our matched U2OS and 293T cell lines. These proteins are 

key components of the PI3K and PI3KK signaling networks. In particular PDK1 and PTEN being key 

members of the AKT signaling cascade, p53 (as the “guardian of the genome”), FasL (as a critical effector 

protein of the pro-apoptotic FOXO cascade) and 14-3-3σ (a protein regulated by p53, directing cell cycle 

arrest and regulating FOXO localization).  

We note that in cell lines with low TRIB2 protein expression that BEZ235 exposure triggered the 

robust accumulation of FasL, a FOXO3a regulated gene. In contrast, DTIC did not induce any significant 

amount of FasL. Furthermore, BEZ235 exposure induced the de-phosphorylaion of PDK1, indicative of 

inhibiting PI3K signaling. As we would predict, DTIC treatment had no effect on PDK-1 phosphorylation 

indicating that the PI3K signaling pathway remains active in the presence of DTIC. PTEN protein 

expression remained constant regardless of chemotherapeutic exposure while 14-3-3σ protein expression 

also did not significantly change. When we look at these pathways in cells with increased TRIB2 expression, 

we see a striking observation; BEZ235 and dual DTIC/BEZ treated cells do not induce significant amounts 

of FasL, consistent with a lower overall sensitivity to these chemotherapies. This observation is very 

apparent in dual treated cells and while the lower protein accumulation is not as clear-cut in BEZ235 only 

TRIB2 over expressing cells, the accumulation of FasL is lower in both U2OS-TRIB2 and 293T-TRIB2 

cells compared to their matched controls. This result implied that the high level of TRIB2 was affecting at 

least FasL protein expression, consistent with our previously published work showing TRIB2-dependent 

inhibition of FOXO3a
59

. Interestingly, our immunoblots for p53 also indicate that in high TRIB2 expressing 

cells that there is a slightly lower accumulation of p53 following DTIC treatment.   

 

4.8. Implicating AKT and FOXO.  

Based on our initial screen in Figure 4.7.1, we noticed that following BEZ235 and dual BEZ235/DTIC 

treatment that there was reduced (or ablated) FasL expression. As FasL is regulated by FOXO3a and is a 

critical effector protein of apoptosis, we questioned if other components of the PI3K network were affected 

by TRIB2 status and was contributing to resistance to BEZ235. To address these questions, we treated our 

matched U2OS cells with 100 nM BEZ235 and via immunoblotting, examined key components of the AKT 

signaling cascade (Figure 4.8.1).  
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Figure 4.8.1: Representative immunoblots for 

each indicated protein after 100nM BEZ235 

exposure. 50 μg of total protein was loaded per 

lane. Antibodies were used and bands 

visualized as described in the materials and 

methods section. 

 

 

 

After conducting this protein expression and modification screen we note a number of important 

observations. First, consistent with the data we have shown previously, following BEZ235 exposure, the 

TRIB2 protein level accumulates (Figure 4.8.1 top panel). This is noticeable in both U2OS-empty cells (that 

have low TRIB2 protein expression) and in U2OS-TRIB2 cells (that have extremely high TRIB2 protein 

levels). Second, we note that regardless of TRIB2 status and irrespective of BEZ235 presence/absence that 

the total level of FOXO3a does not change (Figure 4.8.1 panel two). In contrast however we note that there 

are significant differences regarding phosphorylated FOXO3a (Figure 4.8.1 panel 3). In our U2OS-empty 

cells, treatment wth BEZ235 induced the rapid de-phosphorylation of FOXO3a (ser253) consistent with the 

inhibition of AKT. Strikingly, in the U2OS-TRIB2 cell line, there was a significantly higher level of ser253-

FOXO3a in non-treated cells (Figure 4.8.1 panel 3, compare lane 1 and lane 5). Furthermore, despite the 

robust inhibition of AKT, in U2OS-TRIB2 cells, at 12, 24 and 48 hours post BEZ235 treatment, there is still 

high levels of ser253 phosphorylated FOXO3a. In U2OS-empty cells FOXO3a phosphorylation is 

completely ablated at 48 hours. Concomitant to this observation, we note the same pattern regarding AKT 

with an even more prominent profile; the level of both total AKT and ser473 phosphorylated AKT is 

significantly higher in U2OS-TRIB2 cells compared to their matched empty control cells (Figure 4.8.1 panel 

4 and 5). The same profile was noted for total and phosphorylated PRAS40 (Figure 4.8.1 panel 6 and panel 

7). In contrast, there was no significant protein expression change regarding total p70S6K. Unfortunately at 

the time of writing, our lab has not received the phosphorylated p70S6K antibody. Finally we examined the 

expression of the key FOXO3a regulated proteins BIM and FasL (Figure 4.8.1 panel 9 and panel 10). We 

would hypothesize a similar expression profile to FOXO3a and PRAS40 as p70S6K is downstream target of 
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AKT. Based on these results, we can conclude that increased TRIB2 protein expression directly or indirectly 

increases and activates the AKT cascade. As a result, FOXO3a mediated cell cycle arrest and apoptosis 

following chemotherapeutic treatment (BEZ235) is significantly attenuated. 

In order to address this aspect further, we questioned what the cellular phenotype would be if we stably 

knocked FOXO3a expression down in both our U2OS-empty and U2OS-TRIB2 cell lines. We developed 

four different FOXO3a knockdown constructs and transfected these into our cell lines. Following 

transfection, they were selected and analyzed for FOXO3a knock down efficiency (Figure 4.8.2).  

 

Figure 4.8.2: Immunoblots for FOXO3a 

and TRIB2 after transfection of FOXO3a 

shRNA constructs. 100 μg of total protein 

was loaded per lane. Antibodies used are 

described in the materials and methods 

section. 

 

 

 

 

We note that each of our four FOXO3ashRNA expression constructs ablated FOXO3a protein 

expression. The stable knockdown of FOXO3a had no effect regarding the total level of TRIB2 in either our 

U2OS-TRIB2 or U2OS-empty cell lines.  

After generating a range of isogenic cell lines with FOXO3a knocked down with either high or low 

(endogenous) TRIB2 protein expression, we exposed these cell lines to 100 nM BEZ235 for up to 72 hours 

(similarly to the data shown in Figure 4.2.1, 4.2.2 and 4.2.3). 

Figure 4.8.3: Cell viability following 100 nM 

BEZ235 treatment of U2OS-empty-

FOXO3aKD or U2OS-TRIB2-FOXO3aKD 

cancer cells. Viability and cell cycle 

distribution was measured 24, 48 or 72 hours 

post  BEZ235 treatment. Using propidium 

iodide staining, cell cycle stage was 

determined (subG1, G1, S and G2 phase). 

50,000 total events were scored, N=3 and error 

bars are indicative of standard deviation 

averaged from triplicate samples over three 

independent studies. Construct #826 was used 

for these studies but the same data was noted 

for each of the other constructs. 

 



                                                                                                                                                                                             RESULTS 
 

Page 40 of 72 
 

Our previous data (shown in section 4.2) demonstrated that TRIB2 significantly increased cell line 

resistance to BEZ235. We note that when FOXO3a is stably knocked down that there is significantly 

increased cell line resistance to BEZ235 independent of TRIB2 status. Second, the knockdown of FOXO3a 

had no effect at all regarding cell cycle distribution in either U2OS-empty or U2OS-TRIB2 cells. Third both 

cell lines with FOXO3a knocked down are significantly more resistant to BEZ235 treatment than either the 

U2OS-empty or U2OS-TRIB2 cell lines. This indicates that BEZ235-mediated cell death is principally via 

FOXO3a. The data that we have presented at this stage suggest that TRIB2-dependent negative regulation of 

FOXO3a previously reported, rather than being direct, could be via the cellular master switch AKT. 

 

4.9. TRIB2 protein expression in primary clinical samples. 

All the results described previously were obtained from in in-vitro samples. We wanted to consider our 

findings in a clinical context. We initially obtained primary, colon and pancreatic patient samples. We 

extracted the total RNA and protein from these ex vivo samples. First of all we determined TRIB2 protein 

expression in our colon and pancreatic samples (Figure 4.9.1). Note that for each patient, the normal sample, 

is matched patient control tissue. 

 

 

 

Figure 4.9.1:  Immunoblots for TRIB2 

and actin in our primary ex vivo clinical 

samples. 100 μg of total protein was 

loaded per lane. Antibodies used are 

described in the materials and methods 

section. 

 

 

 

Strikingly we note that in both colon and pancreatic patient samples that there was noticeably higher 

TRIB2 protein expression, suggesting that the protein over expression of TRIB2 is a feature of these cancers.   

Having noted the significant over expression of TRIB2 in these colon and pancreatic cancer samples, 

we wanted to broaden this investigation to include primary Melanoma samples and examine if we see the 

TRIB2-dependent deregulation of the FOXO3a/p53 network. We obtained a range of primary metastatic 

Melanoma samples that have been extensive clinical history, including patient outcome (complete response, 
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stable disease or progressive disease). We processed these samples for total RNA and protein. Having 

obtained the total protein, we questioned if there was significantly higher TRIB2 expression (Figure 4.9.2). 

 

 
Figure 4.9.2: Immunoblots for TRIB2 and actin in our primary ex vivo Melanoma clinical samples. 100 μg of total 

protein was loaded per lane. Antibodies used are described in the materials and methods section. 

 

 

Similar to primary colon and pancreatic cancer samples, we note that in the Melanoma samples 

(complete response, stable disease and progressive disease samples) that TRIB2 protein expression was 

significantly higher than normal tissue samples. In contrast to our primary colon and pancreatic cancer 

samples, the normal tissue samples are not matched (i.e. normal tissue sample #1 and complete response 

sample #1 are not from the same patient). Overall, metastatic Melanoma patients have significantly higher 

TRIB2 protein compared to non-cancerous skin tissue from healthy donors.  

As a logical follow up to our studies shown in Figure 4.9.2, we questioned if in these primary samples, 

there was deregulated AKT/FOXO3a/p53 networks. We analyzed the protein expression for key components 

of these pathways in a similar manner to our in vitro studies shown in 4.7 and 4.8). The protein expression 

analysis is shown on the next page in Figure 4.9.3. 
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Figure 4.9.3: Immunoblots for each indicated protein and actin (from figure 4.9.2) in our primary ex vivo Melanoma 

clinical samples. 100 μg of total protein was loaded per lane. Antibodies used are described in the materials and 

methods section. 

 

Strikingly, in support of our in vitro observations, we see that Melanoma clinical samples have 

significantly higher levels of ser473 phosphorylated AKT in each Melanoma sample and that there is a 

concomitant increase in the level of phosphorylated FOXO3a, phosphorylated p70S6K. Furthermore, there is 

the suppression of both Bim and FasL protein expression in metastatic Melanoma samples whereas these 

proteins can be robustly detected in the normal tissue samples. Strkingly MDM2 protein expression is 

significantly higher in metastatic Melanoma samples (Figure 4.9.3 panel 7). AKT is known to activate 

MDM2 and thus can suppress the p53-response to chemotherapeutics. Interestingly, we note that the level of 

total p53 in the clinical samples (particularly the progressive disease samples) was higher than normal, 

complete response or stable disease lanes (Figure 4.9.3, panel 8). There are a number of reasons for this that 

are considered in more detail in the discussion, including tumour heterogeneity, hypoxic regions, normal cell 

infiltration as well as potential p53 function(s). Overall there is very good correlation between our in vitro 

results shown and to our clinical studies. 
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5. DISCUSSION  AND CONCLUSION 

Melanoma is one of the deadliest types of cancer that is due to late disease diagnosis and the lack of 

effective treatments once diagnosed at this stage. In addition to the lack of effective diagnostic tools, another 

major issue within the Melanoma field is the high molecular heterogeneity within Melanoma patients (and 

all cancers in general) compared to Melanoma cell lines. This results in a significant barrier for the effective 

development and testing of novel therapies and drug prior to their testing within the clinic, or indeed their 

successful testing within the laboratory (in vitro and in vivo) before failing in clinical trial. 

Previous work within our group indicated that there was increased expression of TRIB2 in malignant 

Melanoma (and suggested a pathogenic role in this type of cancer) and recent findings by our group and 

others has highlighted that a significant obstacle in the effective treatment of cancer is the over expression of 

the protein TRIB2 within tumors. How TRIB2 can direct this chemo-resistance is unknown although some 

of the work presented here has begun to address this important issue. 

In this project investigation we show that TRIB2 over expressing cells show clearly less caspase-3 

cleavage and are phenotypically characterized by a significantly reduced Sub-G1 population of cells 

following BEZ treatment compared to matched non-TRIB2 over expressing cells. Remarkably, our FACS 

analysis demonstrated that prior to BEZ exposure, there was no significant difference between all of TRIB2 

over expressing cells and our empty vector control cells. This results suggesting that the TRIB2 phenotype 

we have observed is independent of the cell cycle. In addition, we demonstrate that the BEZ treatment of 

TRIB2 over expressing cells resulted in an increase in the total level of TRIB2 protein.  

Another stimulating result was the fact that cells treated with the chemotherapeutic DTIC exhibited 

that TRIB2 is not stabilized after chemotherapeutic treatment. Oppositely, in cells treated with BEZ235 we 

note that TRIB2 levels were stabilized after treated with this PI3K inhibitor. These results let us conclude 

that TRIB2 conferred resistance to chemotherapeutics like DTIC, one of the most chemotherapeutics used 

nowadays in the treatment against Melanoma. This deductions show that the over expression of TRIB2 has 

no effect on the cell cycle, and promotes resistance to chemotherapy by the inhibition of PI3K, a key 

regulator of the transcription factor FOXO3a. Our evidence indicates that cells that over express TRIB2, 

following BEZ235 treatment has a significantly lower accumulation of both Bim and Fas-L (two key pro-

apoptotic proteins regulated by FOXO3a) compared to our matched control cell line.  

We confirmed in our cell line models that BEZ235 was functioning precisely, examining the 

expression and post-translational modifications of key proteins regulated by PI3K. BEZ235 treatment 

directed the loss of phosphorylated AKT, causing its inactivation, and since FOXO3a is a downstream target 
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of AKT, we note FOXO3a activation. This suggests that TRIB2 confers resistance to BEZ through the 

inhibition of FOXO3a mediated pro-apoptotic gene expression.  

Since p53 and FOXO3a are similar transcription factors controlling the same processes and the 

importance of p53 in many types of human cancer, we interrogated if TRIB2 and BEZ235 impacted the p53 

pathway. Therefore, p53 and MDM2 (the negative regulator of p53) were tested. We prove that in our non-

over expressing TRIB2 cell line, that there is an increase in the accumulation of p53, while TRIB2 cells 

display a deregulated p53 response, characterized by significantly elevated MDM2 and reduced overall p53. 

These results permit us to say that the PI3K inhibitor BEZ235 only has a insignificant effect on p53 and, in 

contrast, the chemotherapeutic DTIC induces p53. Once more, this highlights that the over expression of 

TRIB2 could promote chemo-resistance.  

All the results above were performed in in-vitro samples. Considering that our laboratory had access to 

Melanoma ex-vivo samples, we carried an immunoblotting with those samples for TRIB2 and β-Actin. We 

note that primary colon samples and primary pancreatic samples cells shows higher levels of TRIB2 then the 

Normal ones, respectively. All of the Normal and the Cancer cells of both kinds of samples express β-Actin. 

The over expression of TRIB2 in Melanoma cell lines was evident by our immunoblotting analysis 

compared to other cancer cell lines. Further, TRIB2 expression was analyzed in several ex-vivo tissue 

samples comparing the expression between normal and Melanoma tissue, which significantly supported our 

in vitro results. We observed some minor variation between normal and Melanoma clinical samples when 

we searched for total AKT with the Melanoma samples showing slighter higher levels compared to normal 

tissues. In contrast, Melanoma patient samples showed significantly greater levels of phosphorylated-AKT 

compared to normal samples.  

Consistent with this activated AKT pathway, we note the significantly higher level of phosphorylated-

FOXO3a. We also note that one of our normal samples showed highly phosphorylated FOXO3a. Consistent 

with this, we observe significantly higher protein levels of FasL and BIM in normal samples. Identical to 

AKT, we also note the elevated level of phosphorylated p70S6K in Melanoma samples. This could be due to 

cancer cells needing to evade apoptosis and constitutively drive cell division, particularly in the late stage of 

disease.  

Finally, based on these results, we propose two mechanisms as a result of this investigation: (Figure 

5.1) without TRIB2 over expression – PI3K inhibition and (Figure 5.2) following TRIB2 over expression. 
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Figure 5.1: Proposed 

mechanism for the 

PTEN/PI3K/AKT pathway, 

without TRIB2 over expression, 

due to PI3K inhibition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Proposed 

mechanism for the 

PTEN/PI3K/AKT pathway, 

with TRIB2 over expression 

and, consequently, the 

phosphorilation of FOXO. 
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5.1. Future Directions. 

There are numerous experimentations that could be performed to corroborate these findings. We will 

expand our studies in order to investigate more PI3K inhibitors, testing more potent and newly developed 

compounds, and in order to understand thoroughly how TRIB2 is regulated. Considering that, currently, we 

have data which demonstrate that TRIB2 is stabilized through PI3K inhibition, in the future the direction of 

our investigation will be in order to study the protein stabilization of TRIB2 and its mRNA's half life. 

Additionally, we want to study if and how  the TRIB2 is degraded in the proteossome. This is very 

interesting because the TRIB2 binds to an E3 ubiquitin ligase, which is an enzyme that targets specific 

protein substrates for degradation by the proteossome. 

On the other hand, we want to investigate more and profoundly how the TRIB2 affects the AKT 

pathway and signaling. In order to do that, we will have to study different pathways, like the PI3K and the 

mTOR pathways, and to study if TRIB2 affects AKT directly and/or it acts by deregulating PTEN. The 

clarification of how TRIB2 affects the AKT pathway will bring, hopefully, answers that will allow us to 

investigate novel therapies in order to overcome drug resistance. The main objectives from now on will be 

investigate: novel therapeutic methods to overcome drug-resistance, personalized methods of predicting 

when patients would benefit most from treatment with PI3K/AKT pathway inhibitors and the optimization 

of treatments and clinical trial design by the differentiation of patients in terms of drug effectiveness for 

disease treatment 

Another line of investigation that also need to be expanded, in order to allow us understand how it 

happens, is the deregulated promoter recruitment displayed by FOXO3a and p53. This is extremely 

interesting for our group and will continue being very studied in our lab. Our work will also be expanded to 

include additional Melanoma cell lines and to evaluate FOXO3a and p53 promoter binding from ex vivo 

clinical samples. Thus, further investigation into the role of TRIB2 in the pathogenesis of Melanoma lesions 

may provide new therapeutic insights into this most aggressive form of skin cancer resistant to all standard 

anticancer therapies.  
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Figure A. 1: Datasheet of Total Akt antibody (http://www.scbt.com/). 
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Figure A. 2: Datasheet of phospho-Akt antibody (http://www.scbt.com/). 
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Figure A. 3: Datasheet of Total FOXO antibody (http://www.scbt.com/). 
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Figure A. 4: Datasheet of phospho-FOXO antibody (http://www.scbt.com/). 
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Figure A. 5: Datasheet of Faz-L antibody (http://www.scbt.com/). 
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Figure A. 6: Datasheet of MDM2 antibody (http://www.scbt.com/). 
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Figure A. 7: Datasheet of PTEN antibody (http://www.scbt.com/). 
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Figure A. 8: Datasheet of P53 antibody (http://www.scbt.com/). 
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Figure A. 9: Datasheet of BIM antibody (http://www.scbt.com/). 
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Figure A. 10: Datasheet of Total PRAS40 antibody (http://www.scbt.com/). 
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Figure A. 11: Datasheet of phospho-PRAS40 antibody (http://www.scbt.com/). 
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Figure A. 12: Datasheet of Total p70S6K antibody (http://www.scbt.com/). 
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Figure A. 13: Datasheet of Actin antibody (http://www.scbt.com/). 
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Figure A. 14: Datasheet of Caspase-3 antibody (http://www.scbt.com/). 
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Figure A. 15: Datasheet of Cleaved Caspase-3 antibody (http://www.scbt.com/). 
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Figure A. 16: Datasheet of Total PDK1 antibody (http://www.scbt.com/). 
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Figure A. 17: Datasheet of p-PDK1 antibody (http://www.cellsignal.com//). 
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Figure A. 18: Datasheet of 14-3-3s antibody (http://www.scbt.com/). 


