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Abstract

This thesis intended to study the feasibility in applying an innovative approach to esti-

mate the temperature propagation during thermal therapies, in a non invasive way. The

standard reference in this field is imposed by the temperature resolution obtained with

MRI techniques, 0.5 oC/cm3. It was proposed to estimate the temperature evolution us-

ing predictive models using b-splines neural networks evolved by the ASMOD algorithm.

Initially the data used to construct the models was characterized to provide the reader

the possibility to assess if the data is trustworthy and representative of the physical

phenomena intended to model. The modelling environment complexity was gradually

increased which resulted in three different models typologies: SPSI, MPSI, MPMI. For

each one of the different typologies the relevant features to be taken as input variables

were defined along with the network structures associated with the typology.

Ensembles of neural networks were also studied in an attempt to enhance the prediction

accuracy of the system. Three methods were assessed: Simple average (SA), where the

average of the individual predictions is taken as the final prediction. An evolutionary

strategy (ES) was also applied. Again the average of the individual predictions is taken

as the final input however each individual network Ni is affected by a weight ωi. The

weight vector ω was evolved by using a evolutionary strategy. A different combination

mechanism was proposed in this thesis, neural dynamic ensemble optimization (NDEO),

which introduces a second layer formed by a b-spline network takes all the individual

predictions as inputs, o1 . . . oN where N is the ensemble size and generates an output

of , which is taken as the final prediction.

A clear division was made between the heating and cooling dynamics involved in a typ-

ical thermal therapy. This division resulted in the creation of two distinct models that

model the two different dynamics observed. Two experiments were always considered

regarding the data used for training, validation and testing: a) Uncorrupted data. This

data set is composed of the original data collected in the conditions exposed in this work;

b) Corrupted data. After a contamination process, where Gaussian noise was added to

the original set, the corrupted data was used to train and validate the models.
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Using corrupted data to train and validate the models provides two different analysis

perspectives. For one side the robustness of the system was assessed and it helps the

designer to ascertain if the structure modelling power is in adequate level for the task.

This last assessment is possible by observing the model behaviour in the test set. Ideally

the model should only learn the dynamics of the phenomena intended to model and filter

all external dynamics derived from the various possible noise sources. On the other side

it alleviates the need for acquiring high quality data, which can only be captured using

an invasive technique. A reliable temperature estimation method can be used to collect

all the data needed to create models of complex environments.

Several models were developed for estimating the temperature curves in a non invasive

way. We found that the modeling approach applied was capable of providing highly

accurate predictive models. This observation holds in the experiments using Gaussian

contaminated data, which evidences the robustness of the approach. A second crucial

observation is that the performance figures obtained remain comparable when the mod-

eling environment complexity is increased, suggesting a modelling approach with the

desirable scalability.

The performance figures were obtained using relatively simple models, which might be

crucial for applications with scarce resources or that require real time responses. It

was observed the average model complexity evolved at a slow pace with the modelling

environment complexity, which means the system complexity can be managed as the

environment approaches ideal conditions.

Combining BSNNs by forming neural network ensembles creates a potential perfor-

mance enhancement mechanism, if the designing is appropriated. However we noted

that a great deal of effort by the designer is needed to create the favorable conditions

on which combining individual forecasting entities might pay off.

When compared to the state of art, the BSNN structures over-perform the maximum

absolute error obtained using MRI, which is a very impressive result. Obviously the en-

vironments on which MRI operates are far more complex than the ones studied in this

work. However we observed a modelling approach with very good indicators concern-

ing scalability in response to increases in the complexity of the modeling environment.

Together with neural network ensemble methods the systems can be forced to be more

accurate and robust. We conclude that the approach followed in this thesis is feasible,

and future research is highly recommended.
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Resumo

Este tese pretende estudar a possibilidade de aplicar um uma abordagem inovativa para

estimar a propagação de temperatura em tecidos durante termoterapias, num paradigma

não invasivo. A referência do estado da arte é imposta pela uso de técnicas de ressonância

magnética (MRI), onde são obtidas resoluções de temperatura com erros absolutos in-

feriores a 0.5 oC/cm3. Propõe-se estimar a evolução da temperatura através do uso

de modelos preditivos, baseados em redes neuronais b-spline, evolúıdas pelo algoritmo

ASMOD.

Inicialmente os dados utilizados foram caracterizados de forma a que o leitor possa

avaliar se os dados em questão são representativos e adequados do fenómeno f́ısico que

se pretende modelar. Gradualmente a complexidade do ambiente visado na modelação

foi aumentada, resultando em três diferentes tipologias de modelo: SPSI, MPSI e MPMI.

Para cada uma das tipologias as variáveis de interesse foram indentificadas bem como

as estruturas de rede mais adequadas para o tipologia em questão.

Conjuntos combinados de redes neuronais foram também alvo de estudo numa tentativa

de melhorar a eficácia nas predições dos modelos. Três métodos foram alvo de estudo:

Média simples (SA), onde trivialmente a média do conjunto é tida como a predição final.

Uma estratégia evolutiva (ES) foi também considerada, resultando assim numa média

ponderada onde cada predição individual de cada rede neuronal Ni vem afectadad de um

peso ωi. Um terceiro mecanismo foi proposto nesta tese, neural dynamics ensemble

optimization (NDEO), que introduz uma segunda camada activa na arquitectura do

sistema. Esta é constitúıda por uma rede neuronal que recebe como entrada todas as

predições individuais yi, combinando-as de uma forma activa para uma solução final.

A metodologia de modelação preveu uma separação clara entre a fase de aquecimento e

arrefecimento, devido ao distanciamento existente entre a correspondente dinâmica de

subida e descida. Esta divisão resultou na criação de pares de modelos, referentes às

duas distintas fases da terapia. Duas experiências foram sempre consideradas: a) Dados

não contaminados. Este conjunto de dados corresponde ao original, não modificado e

cujas condições de captura estão expostas neste trabalho. b) Dados contaminados. O

conjunto original é contaminado por um processo aditivo Gaussiano. Este conjunto cor-

rupto é usado para treino, validação e teste. O uso de conjuntos de dados contaminado

vem afectado de duas motivações. por um lado fornece um claro teste à robustez do
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sistema e ajuda o designer a averiguar se a estrutura possui o potencial adequado ao

problema. Por outro lado alivia a necessidade de recolha de dados de alta qualidade,

que apenas poderão ser recolhidos utilizando procedimentos invasivo.

Vários modelos foram desenvolvidos para estimar as curvas de temperatura de uma forma

não invasiva. Observou-se que a metodolgia aplicada foi capaz de construir modelos

predictivos de alta exactidão.
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1
Introduction

1.1 Motivation

The field of thermal therapy has been growing tenaciously in the last few decades. Ther-

mal medicine can be defined as the manipulation of the body (or tissue) temperature

for the treatment of disease. The application of heat to living tissues is being researched

intensely for medical applications, particularly for treatment of solid cancerous tumors

using image guidance. Nevertheless thermal therapies are extensively applied in phys-

iotherapy, for the treatment of muscle-skeletal problems. Recently the application in

oncology has received an increasing attention by the scientists. Oncologic hyperthermia

is a technique where the temperature of tumours is raised to values between 43 and

45 oC. Hyperthermia can be applied alone or in conjunction with traditional methods,

such as the radiotherapy and chemotherapy [10].

1
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A main aspect concerning the application of thermal therapies is the monitoring of tem-

perature in the time and space sense, during treatment. A quantitative assessment of

temperature is of extreme relevance for both patient security, and for the efficacy of the

therapy. Initial approaches make use of invasive measurements, [11] and [12], where the

temperature was measured directly at the temperature site. Although it is a precise

temperature measurement (the quality of the measurement is highly dependent on the

sensor accuracy), this modality suffers from serious problems. Only a limited number

of sensors can be placed because there is tissue damage at each sensor placement and in

even certain regions it is impossible to place sensors. An insufficient number of sensors

can result in a poor spatial resolution.

It has also been pointed that only the methods based on magnetic resonance imaging

(MRI) reached the desired resolution for hyperthermia untill now. The referred resolu-

tion is a maximum absolute error of 0.5 oC/cm3 [13]. Naturally, the major drawback of

this approach is the cost associated with MRI instrumentation.

This work proposes a non-invasive approach to monitor the evolution of the temperature

during a thermal therapy. Biomedical instrumentation to estimate the temperature

in a non-invasive way can benefit from the use of intelligent models to estimate the

temperature, by dramatically reducing the costs associated with the practice. This

works studies the feasibility of creating predictive models that can estimate, and hence

monitor, the tissue’s temperature evolution during a thermal therapy.

1.2 Proposed goals

The main goal of this thesis resides on the creation of predictive models based on B-

splines neural networks, which allows to predict the necessary therapy time and the

intensity of the ultrasound (most common heating source), according with the charac-

teristics of the region intended to heat. Therefore it is needed to:

• Identifying temperature-dependent signal and ultrasonic system features and de-

termine the most relevant ones to the system, i.e. which input information should

the system have that allows it to accurately estimate the temperature. Increasing
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the number of input variables would result in more complex models, therefore a

variable should just be introduced as an input if the increase in the prediction

performance is justifiable.

• Create predictive b-splines neural network models based on the identified features.

These models should be able to effectively estimate the temperature curve evo-

lution on the region of interest, i.e. time and space. The benchmark reference

is always the MRI standard of 0.5 oC/cm3, which provides a comparison of the

results obtained with the current state of art.

• Enhance the system prediction accuracy by applying neural network ensembles

methods. Biomedical applications are naturally subject to the most strict con-

strains regarding the accuracy of the systems used in the practice of medicine.

Therefore any performance enhancement mechanism that can be applied should

be studied.

1.3 Thesis outline

This chapter describes the motivation of the work based on main background readings,

the proposed goals and summary of the main contributions of this thesis.

Chapter 2 covers all background theory that supports the work developed in this thesis.

It starts by defining and representing the problem of predicting temperature propagation.

Following this section b-splines are introduced and the structuring of these function to

be used as neural networks is also given. We justify why this problem can be solved using

such structures. The chapter ends exposing the theory behind neural network ensembles.

Chapter 3 exposes the experimental set-up used in the data acquisition process, which

is also characterized. Furthermore this chapter provide a measure of the validity of the

data used to construct the models, and it can be used to discuss about how close the

environments considered resembles the real, ideal human tissue characteristics.
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The modelling methodology and the detailed structure of the models is presented in

Chapter (4). This chapter exposes the different temperature predictive models applied

in this work. An approach of gradually increasing model complexity was taken while

modeling the dynamics of the process. We start by considering models for single-point

and single-intensity estimation. Then gradually the complexity of the models is in-

creased towards multi-point and multi-intensity estimation. The motivation behind this

methodology is due to the interest we have in study and develop insight concerning the

feasibility of using BSNN to predict the temperature propagation, in the environments

characterized in Chapter(3).

Chapter (5) exposes all of the results obtained Chapter (6) concludes this thesis by

providing a global assessment of the predictive models performance. Neural networks

ensembles methods are also evaluated in this chapter. Personal thoughts from the au-

thor about artificial intelligent field are also presented and the chapter is concluded by

pointing out some future research guidance.

1.4 Publications

Currently two publications based on this thesis are being developed, which we leave here

for future reference:

• Ferreira, R, Ruano, M.G, Ruano, A.E, Intelligent non-invasive modelling of ultrasound-

induced temperature in tissue phantoms. Annals of Biomedical Engineering, Springer,

http://www.springer.com/biomed/journal/10439

• Ferreira, R, Ruano, M.G, Ruano, A.E, b-splines neural networks non-invasive mod-

elling of ultrasound-induced temperature in tissues. 4th IFAC International Con-

ference on Intelligent Control and Automation Sciences (ICONS 2016). http://icons2016.univ-

reims.fr/



2
Background theory

2.1 Introduction

The application intended to develop under the light of this work can be abstracted and

crafted in its general form. Going up one abstraction layer, we see from an engineering

perspective, a well known problem, namely a time series predicting problem, character-

ized in Section(2.2). Section (2.3) deals with the representation of curves, whose study is

fundamental to understand basis splines, introduced in Section (2.3.1). In Section (2.4)

the problem is observed from a wider context, where the predictive control architecture

is introduced. Neural networks (NN) are introduced in Section (2.4.2), with special at-

tention to associative memory networks (AMN), Section (2.4.2.1). These structures have

a specific organization, on which b-spline neural networks (BSNN) are included, Section

(2.4.2.2). The ASMOD algorithm is studied in Section (2.4.2.3). The performance cri-

teria applied in this work to assess and compare the predictive models are exposed in

5
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Section (2.5). The optimization of the global predictive system was forced by the use of

neural network ensembles, whose theory is covered in Section (2.7) and (2.8).

2.2 Prediction

Generally, the process of prediction can be seen as the forecasting side of information

processing, which can be seen as a filtering process. The term filter refers to a device,

or an algorithm, that can be used to extract information about a prescribed quantity of

interest, from a set of noisy data. Concerning prediction, the aim is to derive information

about how the quantity of interest will be like at some time n + N , with N > 0, using

data (information) measured up until time n. Observe that the process of prediction is

based on experience or knowledge of the process that is required to predict. Essentially

a forecast can be obtained by:

1. purely judgmental approaches.

2. causal or explanatory (regression) methods.

3. extrapolative (time series) methods.

4. any combination of the above

We are interested in time series methods, since the available source of information are

samples from a process behavior acquired over time.

Predictive modeling is a wide area of study, therefore it is of our interest to develop

insight about process to predict, without loss of generality regarding time series. Notice

that the propagation of the temperature on a tissue inherently depends on time, hence

it can be thought as a time series, thus we are dealing with a time series forecasting

(TSF) problem, whose goal consists in learning patterns from historical data in order

to predict the behavior of the system, and not how it works.

A time series is defined as a sequence of vectors (or scalars) which depend on time t.

[x(t0), x(t1), . . . , x(ti−1), x(ti), x(ti+1), . . .] (2.1)
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It is pretended to predict the output x(t), of a given process P . The phenomena behind

the process may be of discrete or continuous nature. If t is real valued, we are in the

presence of a continuous time series, therefore the process needs to be sampled accord-

ingly.

With the time series available, we intend to estimate the output of the process P , at

some point in the future:

x̂[t+ h] = f(x[t], x[t− 1], . . .) (2.2)

We define h as the prediction horizon. For h = 1, the prediction is called one step ahead

prediction. If h = n, with n ≥ 2, the prediction is called n step ahead prediction.

An important observation is that the problem of prediction can be thought as a function

approximation problem [14]. A general predictive system is illustrated in Figure (2.1).

Figure 2.1: One step ahead estimation, based on T past values of the process.
Adapted from [1].

With respect to the above figure, observe that T delay operations (z−1) are needed,

which translates in the need of T storage locations.
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Furthermore, the nature of the process must be defined. The process P may be governed

by linear dynamics. If so, the problem is in the domain of Digital Signal Processing.

The operations carried out on the time series are then be implemented by filters, where

two basic architectures are possible: the well known IIR and FIR. However, if the

process is governed by non linear dynamics, the problem is a study case of others fields.

One of those fields, and the support of this work, consists on Artificial Neural Networks

(ANN), structures that provide powerful tools to predict the output of a non linear pro-

cess. ANNs are introduced in Section(2.4.2).

As noticed on [14], a forecasting problem can be formulated as a function approximation

problem. First of all, the function has to be represented. This can be done in wide variety

of formulations. Thus, the mathematical tools for representation of the function must

be chosen in accordance with the problem specifications. The definition of this functions

is done in the following section.

2.3 Representations of curves

The representation of a curve is a subject of the numerical analysis field, with an exten-

sive use in various applications. B-Splines (BS) allow the representation of polynomial

parametric curves and have been used in: curve (surface) fitting [15], geometric model-

ing [16], identification of non linear [17] systems, control applications [18] and naturally,

extensively used in computer graphics applications and CAD systems. Another possible

representation of curves can be achieved using Bezier curves [19]. However, B-splines

are equipped with more attractive properties as we will see. A parametric representation

consists in representing a curve as a function of one (or more) parameter(s):

y(t) : R→ Rn, n = 1, 2, 3, . . .

It would be convenient that the function y(t) is as simple as possible, otherwise the

evaluation of such function can be computationally expensive. Ideally we are interested

in a class of functions which are simple as possible, yet diverse enough to represent a

wide variety of curves. To a large extent, polynomial functions satisfy this requirements.

A general polynomial function is represented by:
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y(t) =
n∑
i=0

ait
i (2.3)

where n is the degree of the polynomial and ai the coefficients.

The diversity of curves that one can obtain using polynomials functions is highly depen-

dent on the maximum allowed degree. Naturally, the higher the degree, the greater is

the flexibility regarding the shape of the curve.

An inflection point is defined as the point on a curve, in which its curvature (second

order derivative), changes its signal. A polynomial P (x) of degree n exhibits, at most,

n − 1 inflection points. However this high flexibility comes with a cost. The first,

and most obvious, relies on the computational complexity, which scales as the degree

increases. However, it is also important to observe that the higher degree of a curve, the

less controllable it is, in the sense that small changes in coefficients are likely to result in

large changes in the shape of the curve, which is a non desirable effect. A small change

in a coefficient should, ideally, have its consequences locally constrained, since a local

control of the curve is desired in order to have a robust system. To summarize, some

commonly desirable properties of curves are:

• C2 continuity: The curve should be C2 continuous at all points. Notice that a

function f(x) is said to be of class Ck if the first k derivatives of f(x) exist and

are continuous. This can be seen as a smoothing condition of the curve.

• Interpolation: Should interpolate all of the control points.

• Local control: The modification of a particular control point should modify the

curve only locally.

2.3.1 B-Splines

A possible solution to represent curves that meet the previous requirements is to use

b(asis)-splines (BSs). BSs were first introduced by Schoenberg in [20]. Originally B-

spline basis functions were calculated using a divided difference formula, introduced by
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DeBoor in 1978. However the numeric stability of this process sufferd from some restric-

tions. Later an important contribution was given by Cox [21], where the author derived

an efficient recurrent relationship to evaluate basis functions, which is numerically stable.

To appreciate the usefulness of BSs, notice that any spline function of order k, defined

by a set of control points, can be expressed by a linear combination of BSs of the form:

Sk,t(x) =
∑
i

αiBi,k(x) (2.4)

Where k represents the order of the spline function, and αi is the associated set of

control points. Bik defines the polynomial pieces, that can be derived by the recursion

algorithm presented on [21]. Note that a linear combination of BSs allows for a flexible

construction of curves with a high number of inflection points, showing a smooth and

robust behavior to changes of control points. This is done by piecing together several

polynomials, as illustrated in Figure (2.2).

Figure 2.2: Piecing polynomials. [2]

However note that the pieces should join continuously at the break point in compliance

with the desirable conditions of a curve.

In order to define a BS we need to start with a knot sequence. This sequence should

be a non decreasing sequence t := (ti):

ti ≤ ti+1, all i (2.5)
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Then the BSs of order 1 for this knot sequence, are the characteristic functions of this

sequence:

Bi1(t) =

 1 ti ≤ t < ti+1

0 otherwise
(2.6)

The only constraint is that these B-splines should form a partition of unity:

∑
i

Bi1(t) = 1, all t (2.7)

Basically, this property assures the invariance of the BS shape under translation and

rotational operations. This property is very attractive for geometric applications, which

in mathematics is known as affine invariance.

From these first-order BSs, one can obtain high order B-splines by recurrence [21]:

Bi,k = ωi,kBi,k−1 + (1− ωi+1,k)Bi+1,k−1 (2.8)

with:

ωik(t) =


t− ti

ti+k−1 − ti
if ti 6= ti+k−1

0 otherwise

(2.9)

Thus, a second order BS is given by:

Bi,2 = ωi,2Bi,1 + (1− ωi+1,2)Bi+1,1 (2.10)

Observing the nature of this recurrent algorithm, one can conclude that a BS of order

k consists of polynomial pieces bj,k of exact order k − 1. Note that the second order

BS previously defined, consists of two linear pieces that join continuously to form a

piecewise linear function that vanishes outside the interval [ti, . . . , ti+2). Thus, a BS of

order k has support along the interval [ti, . . . , ti+k). Support refers to the region of

the input space where the function assumes non zero values. The number of internal

knots must be greater or equal to k − 1. For any interval [ti, . . . , ti+k) at most k of Bi,k
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are non zero. This property is illustrated in Figure (2.3), where we can observe three

non zero Bi,3 over the interval [tj , . . . , tj+k).

Figure 2.3: Three BS or order 3. Notice the three non zero Bi,3 over the interval
[tj , . . . , tj+k). Adapted from [2]

If in the knot sequence, exists a knot with multiplicity higher than one, the contin-

uous condition might be violated in that knot. As an example, consider a BS of order

2. If in the knot sequence exists a knot with double multiplicity, e.g., ti = ti+1, but

still ti+1 < ti+ 2, then Bi2 consists of just one piece and fails to be continuous at the

double knot. This is illustrated in Figure (2.4)b), in contrast with a BS of order 2 in

which the knot sequence is monotonically increasing, i.e., a sequence just with simple

knots, Figure (2.4)a). It is also important to notice that we desire the influence of a

control point to be maximum at regions of the curve close to that point, and it should

ideally decrease as we move away along the curve, eventually disappearing. Increasing

the multiplicity of a knot reduces the continuity of the curve at that knot, i.e., the curve

looses smoothness. Generally, a curve its (k− p− 1) times continuously differentiable at

a knot with multiplicity p, given that p < k, being k the order of the polynomial. Thus
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at that knot, the curve belongs to the class of Ck−p−1 continuity. We can then con-

clude that a knot with multiplicity p = k, indicates C−1 continuity, i.e. a discontinuous

curve, situation that is not acceptable. The choice of the knot sequence is of major

importance in the design phase.

Figure 2.4: BS of order 2 with (a) simple knots, (b) a double knot. Adapted from [2]

For instance consider a B-spline of order 3. A simple knot would mean two smoothness

conditions, i.e., continuity of function and first derivative, while a double knot would

only leave one smoothness condition, i.e. just function continuity, and a triple knot

would leave no smoothness condition, i.e. even the function would be discontinuous.

This leads us to the following rule for calculating the order k of the basis function:

k = knot multiplicity + condition multiplicity (2.11)

The following notation can be used to empathize the function dependency on its knot

sequence t:

B(.|ti, . . . , ti+k) := Bi,k (2.12)
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Any smooth piecewise polynomial function is called a spline. If the spline is represented

on its B-form, then the spline is described as a linear combination of B-splines:

n∑
j=1

Bj,kaj (2.13)

Therefore a univariate (function of just one variable), spline f , is specified by its non

decreasing sequence knot sequence t and by its coefficient sequence ak, which are called

the control points for the curve. The length of the knot sequence t should respect the

following rule:

length(t) = n+ k (2.14)

Where k is the order and n is the number of B-splines that form the spline function.

Furthermore, the order of a BS can be given by:

k = length(t)− na (2.15)

Where na represents the number of control points (coefficients).

Thus the free parameters are the control points and the order of the BS, which pro-

vides a B-splines based system a wide flexibility in the design. In contrast with Bezier

curves, BS offers a much more localized control, a higher degree of freedom. In Bezier

curves a change applied in one point creates a chain of global changes in the whole curve.

Also note that the latter offers a less number of free parameters [22], which translates

in less flexibility in the system design. Furthermore, the degree of the BS is logically

independent of the number of control points. This means the we can use lower degree

curves and still maintain a large number of control points.

A more intuitive example can be given in order to better visualize the process behind the

construction of a B-spline. Consider a single B-spline of order k = 4 (cubic function),

with knot sequence t = [0 1.5 2.3 4 5], a sequence with a length of 5, since we are

considering a single B-spline n = 1 of order k = 4 (length(t) = n + k). The graphical

representation of the building blocks that constitute the B-spline is shown in Figure

(2.5). This figure was generated for illustrative purposes.
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Figure 2.5: B-spline of order 4 with knot sequence t = [0 1.5 2.3 4 5]. Each interval,
with the respective color, represents one piece of the basis function. Figure generated

with MATLAB, using the Curve Fitting Toolbox [3]

.

The knots are represented by the gray vertical lines. Separation between blocks has

been made to empathize the piecing process. Four polynomials of order k − 1 (3) are

used in the construction of the basis function, represented by the green, red, violet and

black curves. For each interval, formed by two adjacent elements in the knot sequence,

a piece (portion) of one of the four k− 1 polynomials is used to form the basis function.

In Figure (2.6) a 6th order BS with the six polynomials of order 5 is presented, which

selected pieces (intervals) make up the B-spline.

This figure clearly illustrates the nature of the process behind the constructing of a BS.

For a B-spline of order k, specific intervals of order k − 1 polynomials are selected. All

of these pieces are joined continuously to form the BS.

Once the basis functions are defined, linearly combining them, weighted by a control

point vector ak, gives rise to a spline in its B-form. The short-hand:

f ∈ Sk,t (2.16)

indicates that f is a spline or order k with knot sequence t, i.e, a linear combination of

B-splines of order k for the knot sequence t.
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Figure 2.6: A 6th order B-spline and the six 5th order polynomials whose selected
pieces make up the B-spline. Knot sequence t = [0 1 2 3 4 5 6]. Each piece of the basis
function is represented in a different color. Figure generated with MATLAB, using the

Curve Fitting Toolbox [3]

.

The process of constructing a spline by combining basis functions is illustrated in Figure

(2.7). This example was constructed to develop insight concerning the local nature of

these B-splines.

Figure 2.7: Spline function of order 3, constructed by linearly combining three B-
splines of order 3. The blue lines indicate the position of knot, the gray dashed lines
represent the B-splines, and the solid black line shows the resulting spline function.
Control points employed a = [4 0.3 2.3]. Figure generated with MATLAB, using the

Curve Fitting Toolbox [3]

.
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Constructing of the spline function S was done by defining a knot sequence t = [1 1.5 2.5 3 3.5 4.1],

with control points a = [4 0.3 2.3]. With three control points and k = length(t)−na = 3,

three B-splines of order 3 form the building blocks of the spline function. The output

of each basis function is affected by a weighting term aj . Thus, by linear combining the

basis functions, the output of S is directly given by:

S =

n∑
j=1

Bjkaj = B1,3(x|t1, t2, t3, t4)a1 +B2,3(x|t2, t3, t4, t5)a2 +B3,3(x|t3, t4, t5, t6)a3

(2.17)

To prove that B-splines are robust to changes in control points, lets make a change in

the control vector a : a3 = 2.3 → 1, resulting in the new control vector a = [4 0.3 1].

The resulting spline function from this change is illustrated in Figure (2.8).

Figure 2.8: Spline function of order 3 resulting from changing the control vector. The
blue lines indicate the position of knot, the gray dashed lines represent the B-splines,
and the solid black line shows the resulting spline function. Figure generated with

MATLAB, using the Curve Fitting Toolbox [3]

.

Contrasting Figure (2.7) with Figure (2.8), it is obvious that the alteration performed

on the control vector, had just a local consequence, concerning the third basis function.

The changes were not propagated throughout all the function. This provides the de-

signer local control over the entire function range.

Lets evaluate computational efficiency of the recursion method for evaluating B-splines.

The number of operations to evaluate a set of k non-zero BSs or order k can be calculated.
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We can denote this functions as N j
k , N j−1

k , . . ., N j+k−1
k . This process is illustrated in

Figure (2.9).

Figure 2.9: Triangular array used for evaluating k BSs of order k. [4]

In [6] the number of arithmetic operations for evaluating a set of k B-splines of order k

was proven to be:

• k(k − 1) floating point multiplications.

•
k(k − 1)

2
floating point divisions.

Which can be done with a reasonable computational cost, since the order of the BSs is

usually kept low.

Another possible way of defining B-splines is using convolution operation, an alter-

native approach to characterize B-splines functions that is derived in Appendix(A).
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All the previous analysis was derived assuming univariate B-splines basis functions. A

wide variety of applications of interest requires a bigger dimensional space. A gener-

alization of the B-spline curve design method to surfaces requires an extension of the

B-splines basis to higher dimensions. Note that the generalization of the univariate BSs

should admit arbitrary knot configurations while preserving desirable features.

Multivariate basis functions are constructed by taking the tensor product of the uni-

variate basis functions. This construction is made with the following relation:

Rn → R : (x1, x2, ..., xn)→ f(x1)g(x2)...h(xn) (2.18)

The tensor product idea is very simple. If f is a function of x (f(x)), and g a function

of y (g(y)), then their tensor product:

p(x, y) := f(x)g(y) (2.19)

is a function of x and y, a bivariate function.

Therefore, a multivariate basis function of dimension n is formed from the product of n

univariate basis functions, one for each input axis. An example of a multivariate basis

function is shown in Figure (2.10).

For example, a trivariate spline in its B-form, is given by:

U∑
u=1

V∑
v=1

W∑
w=1

= Bu,k(x|si, . . . , si+h)Bv,p(y|ji, . . . , ji+n)Bw,m(Z|gi, . . . , gi+r)au,v,w (2.20)

This spline is of order k in x, of order p in y, and of order m in z. au,v,w defines the

control points for the spline, and g = [g, . . . , gi+r], j = [j, . . . , ji+r], and s = [s, . . . , si+r],

defines the knot sequence of each univariate basis function.

However notice that this increase in dimensionality comes with a cost. The complexity

of the system scales exponentially with the input dimension n. From Figure (2.10), ob-

serve that at each point 32 basis functions are active, in contrast to 31 active functions
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Figure 2.10: Two-dimensional multivariable basis functions formed with order 3 uni-
variate basis functions. Adapted from [4].

that would be active for an unitary input dimension. This is known as the curse of

dimensionality. Some works have been developed to break or at least to minimize this

curse [23].

The tensor product construct just defines one possible way to generalize basis functions

to higher input spaces. This approach requires that the data comes in tensor product

form, i.e., on a (hyper)rectangular grid. Naturally this construction rises some concerns.

Is the proper multivariate version of an interval (for the univariate case), a (hyper) rect-

angle? Another constructions have been made concerning multivariate basis functions,

which are not supported by the tensor product. C. de Boor proposed an alternative in

[24].
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2.3.2 Approximating functions with B-splines

As mentioned on the previous section, a forecasting problem can be formulated as a

function approximation problem. Therefore, it is of our interest to study the B-spline

capabilities to approximate a function. We start by providing an important theorem,

the universal approximation theorem [25]. This can be used to support the prove that

B-splines can approximate any continuous functions with an arbitrary precision on a

compact set. The universal approximation theorem, for a nonlinear input-output map-

ping, may be stated as:

Let ϑ(.) be a nonconstant, bounded, and monotone-increasing continuous function. Let

Im0 denote the m0 dimensional unit hypercube [0, 1]m0. The space of continuous func-

tions on Im0 is denoted by C(Im0). Then, given any function f ∈ C(Im0) and ε > 0,

there exist an integer M and sets of real constants αi, bi and ωij, where i = 1, . . . ,m1

and j = 1, . . . ,m0, such that we define:

F (x1, . . . , xm0) =

m1∑
i=1

αiϑ(

m0∑
=1

ωijxj + bi) (2.21)

as an approximate realization of the function f(.), that is:

|F (x1, . . . , xm0)− f(x1, . . . , xm0)| < ε (2.22)

for all x1, x2, . . . , xm0 that lie in the input space.

As previously referred, spline functions can be represented as piece wise polynomial

functions. The classic Weierstrass approximation theorem [6], states that any contin-

uous function over a closed interval on the real axis can be expressed in that interval

as an absolutely and uniformly convergent series of polynomials. This assures us that

polynomial approximation can get arbitrarily close to any continuous function as the

polynomial order is increased. The universal approximation theorem may be viewed as

a natural extension of the Weierstrass theorem. As so, spline functions are universal

approximators.
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Polynomials are then the approximating functions of choice when a smooth function is to

be approximated locally. A smooth function refers to a function that changes gradually,

without discontinuities. Temperature propagation in tissues when applying relatively

low beam intensities, governed by the laws of thermodynamics, can be assumed to be a

smooth process, with no abrupt changes. However if the function is to be approximated

on a large interval, the degree of the approximating polynomial may have to be chosen

unacceptably large. B-splines provide an alternative to subdivide the whole interval

[a..b] of approximation into sufficiently small intervals [xi . . . xi+1] so that, on each such

interval, a polynomial pi of relatively low degree can provide a good approximation of the

function. Therefore we conclude that B-splines provide a suitable tool for the prediction

of the time series that this work focus on.

2.4 Process control

As stated in the previous chapter, the ultimate goal of the wider project, in which

this work is included, is to design and implement an intelligent instrumentation control

system which controls the therapy time as well as the ultrasound intensity, in a efficient

and secure way. The process we intend to control is the temperature propagation in the

patient tissue. We can identify four key elements that enable a control application to

be considered intelligent [5]:

• Performance function for evaluating the state of the process.

• Learning to construct a predictive model.

• Exploration of different control strategies.

• Remember previous control actions.

These elements can be translated to a control architecture shown in Figure (2.11).

The learning control elements must generate the best possible control strategy which

can track the desired response of the system. The aim of this work is to derive the plant

model. This model should be a predictive model that estimates the output of the plant.

Optimization routines search the space of possible control actions, evaluating the per-

formance of the control of the plant model. Once a satisfactory control action has been
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Figure 2.11: Predictive control architecture. Adapted from [5]

calculated, it is applied to the plant and used to train the learning control module. In

the environment of this project, the plant consists in the therapy ultrasound instrument

that is being applied to the patient. The plant output its given by the real temperature

of the tissue, on the spatial points considered.

2.4.1 Modeling the temperature propagation

The process we are dealing with (temperature propagation), can be thought as a time

series. In order to predict behavior of this process, its dynamics need to modeled. One

possible solution is to derive an analytic model of the process. These mathematical mod-

els have a closed form solution. A set of equations describing the changes in a system

must be found. The solutions to these equations can then be expressed as mathemat-

ical analytic functions. However, analytics solutions describing complex processes can

often become very complicated. These analytics models can give information about the

system’s behavior in a very direct way. An attempt to model the temperature propa-

gation in some phantoms, simulating human tissue, was made in an early stage of this

project [7]. Using the least square principle, a squared polynomial was fitted to the

data measured in the two distinct phases of the process, i.e, the heating phase and the
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cooling phase. The measured temperature and the estimation, given by the square an-

alytic model, are almost overlapped. However, this analytics models are constructed

concerning a very specific spatial location, therapeutic intensity and phantom consid-

ered. This models don’t have the ability of generalizing, i.e. interpolate and extrapolate

to unseen data. Ideally, we want a model that is capable of learning from the data,

though a learning process, provided that the data represents well the dynamics of the

process. Making the model intelligent allows it to learn the process dynamics. If data

is available, construction of a data driven model is possible. Regarding our particular

application suppose that a set of data was collected, considering a set of spatial points

(sensors) S as well as a set of therapeutic intensities I (I × S operating points). This

data is used to train a model M . After the model learns from the data, we expect from

it to have learned the process dynamics, so it can generalize to input conditions that

were not directly leaned, i.e, different spatial points, different therapeutic intensities

and possibly different phantom conditions. This intelligence, embedded in the model’s

structure through the learning process, is not present in the analytic models.

Neural Networks (NN) provide the means to build these models, and are used in this

project to model the dynamics of the process considered. In terms of prediction, NNs

models have a significant advantage over analytic models, though, because they require

only history as input, no assumptions are considered. Using data history, the neural-

network model automatically develops its own internal model of the process and predicts

future behavior.

Neural-network approaches develop models that can be relatively complex. However this

models can be refined to obtain the most simple model with the required performance.

The model complexity can be automatically adjusted to the complexity of the process,

an important advantage of using these networks. In contrast, analytic models can be

simple and their complexity is fixed. A work that compares the two models paradigms

can be found in [26].
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2.4.2 Neural Networks

Neural networks (NN) are a computational metaphor inspired by studies of the brain and

nervous system in biological organisms. They are an (very naive) attempt to model the

biological leaning mechanism, which consist of highly idealized mathematical models of

how we understand the essence of these nervous systems. To achieve good performance,

neural networks employ a massive interconnection of simple computing cells referred

to as neurons or processing units. NN are data-driven, self-adaptive, non-parametric,

nonlinear methods that do not require specific assumptions about the underlying model.

This modeling approach has the ability to learn from experience, which can be very use-

ful for many practical problems since it is often easier to have data than to have good

theoretical guesses about the underlying laws governing the systems from which data

are generated.

The procedure used to perform the learning process is called a learning algorithm, whose

function is to modify the synaptic weights of the network in an orderly fashion to attain

a desired design objective. A supervised learning paradigm is used in this work . This

paradigm considers that the learning is achieved by the help of a teacher, which owns

knowledge about the behaviour of the process. This paradigm is illustrated in Figure

(2.12).

Figure 2.12: Block diagram of a learning process with a teacher. Adapted from [6]
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The teacher is masked through the available measured data of the process (environ-

ment), and is used to train the model. The learning process allows the network to learn

from the environment. Various learning algorithms exist based on [6]. In this work we

are interested in error correction learning methods. Once having available the desired

output of the system the error can be calculated.

The previous discussion over B-splines revealed the approximation capabilities of this

functions. Therefore, in this work, a decision was made to consider neural networks

based on BSs. An overview about these networks follows.

2.4.2.1 Associative Memory Networks

B-splines neural networks (BSNNs) are members of a class of NNs, called Associative

Memory Networks (AMNs). This class of networks have desirable properties which can

be used for adaptive non linear modeling [22]. The function approximation capabilities

of AMNs are of great interest to modeling and control purposes. Their architecture is

fixed and consists of three logical layers, as shown in Figure (2.13).

Figure 2.13: Associative memory network structure. Adapted from [4].

The first layer normalizes the original input space. The normalization process consists

on defining a n- dimensional lattice on the input space. The basis functions are defined

over this lattice, which consist of a very simple strategy with some desirable charac-

teristics. The construction of the lattice is simple: an axis for every input dimension.
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Prior knowledge of the process, with respect to a certain input, can be introduced when

structuring the lattice, hence biasing the model. Finally, the procedure to find the region

(cell) where the input lies in the lattice, can be done in a computational efficient way.

The main potential disadvantage of lattice-based AMN resides on the curse of dimen-

sionality, which results in the network’s memory requirements being exponentially de-

pendent on the input space dimensions. The knot sequence discussed before in Section

(2.3.1), defines the partition of the lattice. Thus, one knot sequence is needed for each

input dimension.

Going back to Figure (2.13), we observe that the second layer is constituted by the basis

functions, which represents the associative cells. These functions are defined on the

normalized input space. We define the receptive field (support) of a basis function to be

the domain in the input space for which the basis function’s output is non-zero. A basis

function has a bounded support when its support is smaller than the network’s domain,

which is generally true. The size, shape and overlap of the basis function determine how

the network generalizes and also its complexity.

Lastly, the output layer of an AMN is formed from a linear combination of the outputs

of the basis functions. It is required for this output to be continuous, so the network can

predict smooth processes. The linear coefficients, wi, are the adjustable weights of the

networks and, because the output is linearly dependent on the weight vector, learning

consists in a linear optimization problem. The update of the weight vector can be done

by a error gradient descent method.

Important is to retain that AMNs perform two mappings. From the input xi to the

output of the basis function ai, xi → ai the network performs a fixed, non linear map-

ping, assuming that the network structure is maintained fixed. Posteriorly the network

processes an adaptive linear mapping, from ai to the network’s output y, ai → y. Thus,

the adaptation (learning) is performed only in the last layer, which has the advantage

that the output is linear with respect to the weights wi. An obviously drawback of NNs

is that the interpretation of the knowledge stored in the weights cannot be accomplished
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in a direct way, which is something that analytic models provide.

For any input to a B-spline AMN, the number of active basis functions (non-zero),

is always a constant, called the generalization parameter, which we denote by ρ. In

response to an input, ρ basis functions contribute to the output. The ρ basis functions

that contribute to the output can be organized into ρ sets, where one and only one basis

function in each set is active. The union of the supports in each set forms a complete

and non-overlapping n-dimensional overlay. For a two dimensional case, with ρ = 3, the

formed overlays are illustrated in Figure (2.14).

Figure 2.14: A two dimensional AMN with ρ = 5 and ri = 5 interiors knots for each
input. Figure taken from [4].

With ri being the number of interior knots for each input dimension, for each axis there

are ri+1 intervals, which might be empty if coincident knots exist, and p =
∏n
i=1(ri+1)

n-dimensional cells in the input lattice. The total number of basis functions p is then ex-

ponentially dependent on the input space dimension n, hence the curse of dimensionality.

For a given input, a small number of weights is expected to contribute to the network’s

output. In this case, ρ weights. Hence only these parameters should be updated when

the network is trained. With this in mind, note that the non linear transformation from
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the first layer to the second layer, is topology conserving, meaning that similar inputs

map to similar sets of active basis functions. This provides the network with local leaning

capabilities, where the knowledge is stored locally, which is a very desirable feature. In

this way, learning in one area of the input lattice space does not interfere with learning

in another distinct region. A discussion about the learning interference for B-splines

networks can be found on [27], where the results suggest that the interference slightly

increases with the order of the B-splines. Note that this data driven models require an

uniformly distributed set of data through all the input domain, in order to construct an

useful model, i.e., a complete data set in the sense that it contains a sufficient amount

of information from all interesting operating conditions and system variables.

Concerning the robustness of an AMN network, when summing all of the basis functions

outputs, a constant result is a desirable characteristic for an AMN:

ρ∑
i=1

ai(x(t)) = k (2.23)

Where x(t) represents the input vector, of which ai depends on. If a network possesses

this property, it is said to form a partition of unity or a constant field strength. As

previously discussed, B-splines endue this property. With this sum being constant, any

variation in the network’s surface is solely due to the weights in the network. Otherwise

the network response dynamics may vary according to the position of the input or the

size of the magnitude of the field strength. The variance of the field strength increases

with the input dimension, unless the network forms a partition of unity, which enhances

the robustness of the network. Another important aspect of this property is observable

in the smoothness of the network, which generally is much higher in networks that form

a partition of unity. However, if the network does not hold this property, it can be

artificially forced, as derived on [28].

2.4.2.2 B-splines neural networks

As demonstrated in Section (2.3.1), B-splines functions are simply piecewise polynomi-

als mappings, formed from linear combinations of basis functions, and the multivariate
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basis functions are defined in a lattice. Thus, a B-spline can be considered as an ele-

ment belonging to the class of lattice AMNs. The second mapping performed by these

networks is adaptive, hence the weights in the last layer must incur into an adaptation

process, the training phase, which can be done in an online or offline way. If the weight

adjustment is only performed after a complete set of patterns has been presented to

the network, the process is denoted as offline learning. On the other hand, if upon the

presentation of each pattern there is always a weight update, we can say that we are in

the presence of an online learning or instantaneous learning. The latter is more common

for adjusting the weight vector, generally using instantaneous LMS1 algorithms. As the

knowledge is stored locally, the LMS rule at each iteration modifies just a small set of

weights, the ones for which the basis functions are active and contribute to the output.

If there is plenty of data available, sampled from the process to be modeled, an offline

learning algorithm is more adequate, adapting the weights either by pseudo-inverting

the auto-correlation matrix or using a gradient-type algorithm.

Following the previous discussion on AMNs, by using B-splines of order k we expect to

have kn active (non-zero) functions contributing to the output of the network. Therefore

for this class of AMNs we have a generalization parameter of ρ = kn. The structure of

this networks mimics the general AMNs structure, shown in Figure (2.13). Hence the

output of the B-spline network is given by:

y(t) =

ρ∑
i=1

ai(t)ω(t− 1) (2.24)

Where ωi is the weight corresponding to the ith basis function, and ai is the output of

the ith basis function, which depends on the input vector x(t).

With respect to these networks, observe that the designer has the liberty of hard wiring

discontinuities into the network. Recall that for r coincident knots in the knot sequence,

the basis functions (and hence the network output) have (k − (r + 1)) discontinuous

derivatives at this point. For instance, an a priori information, about a discontinuous

behavior by the process at a single point p, can be introduced in the model defining

basis functions of order k, in an interval which contains k coincident knots. Regarding

1Least Mean Squared (LMS).
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the network output, note that the univariate basis functions defined for each input axis

are piecewise polynomials of order k, therefore the output of a BSNN is also a piecewise

polynomial of order k. A priori knowledge about the process can then have a great

deal of importance, once the designer can bias the order of the output of the BSNN to

interpolate the dynamics of the process.

With respect to the network, we expect it to have the capability of generalize correctly

outside itsr training domain. Weight convergence is essential if the BSNN is expected

to generalize. This convergence is highly dependant on the conditionality of the model,

i.e. if the model is well conditioned, which in turn is given by the condition number of

the basis functions. Considering a univariate BSNN, where the output y = a(x(t))w is

defined on the interval [omin, omax], the condition number of the basis function is defined

as [29]:

C(a) =
M

m
(2.25)

Where M and n are two positive numbers, given by:

m = minω
||y(x)||
||w||

(2.26)

M = maxω
||y(x)||
||w||

(2.27)

and the following condition holds:

m||w|| ≤ ||y(x)|| ≤M ||w|| (2.28)

The condition number of the basis functions can then be used to infer information

about the convergence of the free parameters of the model. Thus, information about

the bounds of the condition number are useful to ensure a proper generalization of the

model. An important work by C. de Boor [30], proved that the condition number of

a set of B-splines is bounded, independently of the underlying knot sequence. In [31],

the same author estimated the worst possible condition number of a B-spline of order
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k, with respect to the p norm, is given by:

Ck,p < k9k (2.29)

This condition number grows with 2k:

Ck,p ∼ 2k (2.30)

In the work, the author derived that the extreme case occurs for a knot sequence without

interior knots.

Therefore we can conclude that the order of the basis functions should be sufficiently

high that the desired function can be modelled adequately, but it should be as small as

possible to keep the basis well conditioned.

2.4.2.3 BSNN internal structure

Besides the adaptation of the weights in the network, it is also possible to evolve and

optimize the internal structure of the model, the network’s input (number and type)

and also the number, position and shape (order) of the B-spline. If the model’s internal

structure is not adequate, the performance of the network can be compromised and the

output may not converge to the desirable region. As a consequence, the model might

not successfully learn the dynamics of the process.

One heuristic taken when constructing the internal structure of the network postulates

that the simplest acceptable network performs the best. For a multivariate B-spline

with l univariates basis functions of order k, defined on each axis of the input dimension

n, it is required ln storage locations, and each input presented to the network activates

kn basis functions, producing a model of the form:

y = f(x0, x1, . . . , xn) (2.31)
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Increasing the model complexity results in higher conditions numbers, which hampers

the learning process. We can see that expanding the model to higher dimensions can

result in a growth of the number of parameters to impractical levels, thus methods must

be found to reduce the complexity of the models. One extensively used method is the

B-spline Adaptive Spline Modelling Of Observation Data (ASMOD) [32]. The ASMOD

algorithm uses B-splines for representing general nonlinear models of several variables.

It attempts to solve the curse of dimensionality by adapting the model structure to the

dependencies (coupled or decoupled) that are observed in the data.

However this algorithm assumes that the desired function can be additively decomposed,

such that it can be modelled from a linear combination of, more simple subnetworks.

This decomposition is shown in Figure (2.15).

Figure 2.15: Additive decomposition of the network.

This figure illustrates the extreme case, where each submodel si is associated with an

input dimension xi. However, this addictive decomposition also agrees with the linear

combination of multivarite subnetowrks. The memory requirements are thus dramat-

ically reduced. In contrast to ln storage locations, for the extreme decomposition we

have:

Memloc =
n∑
i=1

l = n× l (2.32)

For any input the number of active functions is:

Nactive =
n∑
i=1

k = n× k (2.33)
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From this requirements it is obvious that the complexity of the model lowers by a con-

siderable amount.

Thus in the ASMOD algorithm the output variable is modelled as a sum of several low

dimensional submodels where each submodel only depends on a small subset of the input

variables. The decomposition of the high dimensional input space into low dimensional

additive subspaces makes the model more transparent to the user and at the same time

the complexity number of parameters of the model is dramatically reduced. This process

can be classified as an empirical modelling.

A complete overview over the algorithm is out of the scope of this work, we leave [33]

as a reference. However, we highlight just the main mechanisms by which the ASMOD

algorithm enhances a B-spline network. These operations are:

• Introducing a new input variable.

• Modelling input dependencies, which are found by combining the univariate

and multivariate submodels to form new tensor product multivariate submodels.

• Introducing new basis functions. This step consists in the refinement of a

representation of a certain input variable. This occurs when a new knot is intro-

duced in the axis, to enhance the behavior of the model with respect to an input

dimension.

However this refinement process increases continuously the network complexity. There-

fore it is often necessary to prune the model by removing knots or splitting a sub network

into sub models, thus simplifying the structure.

The major drawback of this approach relies on the high dependency that this algorithm

exhibits in respect to the initial model considered. Furthermore, if the search space of the

internal structure of the network is wide, i.e. extensive set of input candidates variables,

knot sequences, shape of the basis functions, and biasing the model is not possible due

to the lack of a priori knowledge about the process, more intelligent strategies need

to be considered, concerning model structure optimization. Evolutionary Computing
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(EC) provide solutions for optimizing the structure of a model, following an intelligent

trajectory through the search space. Regarding EC, we make a special reference to

Genetic Programming, an emerging study field that allows the evolution of more complex

structures than the ones evolved by the traditional Genetic Algorithms. An example of

such a work can be found on [34].

2.5 Model performance evaluation

Once a model is constructed, it has to be evaluated over a set of data. For this purpose

we need a performance criterion, that provides a measure of the behavior of the model

when presented with some set of data. A wide used criterion consists in using the Mean

Square Error (MSE), given by:

MSE =
1

n

n∑
i=1

e2i (t) (2.34)

Which basically is the sum of squared errors over the set of data. Notice that this

assumes a supervised paradigm, whose desired output should be avaiable for each input

pattern. Another frequently used measure of the quality of the model (or estimator), is

the Mean Square Relative Error (MSRE), expressed by:

MSRE =
1

n

n∑
i=1

|
e2i (t)

y(i)
| (2.35)

Where y(i) is the observed value.

Despite the simplicity of this criteria, they do not provide information about the com-

plexity of the model, which may be critical for real time applications, where the resources

can be limited. This rises the need for more detailed indicators, that balance accuracy

and complexity. Three criteria are usually employed:

• Bayesian information criterion (BIC)

K = Lln(J) + pln(L) (2.36)
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• Akaike’s information criterion (AIC)

K = Lln(J) + p (2.37)

• Final prediction error

K = Lln(J) + L
L+ p

L− p
(2.38)

Where K is the performance measure, p the size of the current model, J the MSE and L

the number of patterns pairs used to train the network. BIC is a more conservative cri-

terion when compared to AIC, insisting on a greater improvement in fit before accepting

a more complex model, thus we decided to adopt the first criterion (BIC) to assess the

models constructed in this work, since simple models are demanded for an embedded

system application.

Concerning only the complexity of the model, the linear weight norm (LWN) was cal-

culated for each model, providing a complexity descriptor, given by:

LWN =

√√√√ n∑
i=1

αi + b2 (2.39)

Where {αi}ni=1 represents the number of neurons and b is the bias value. Models with

a high LWN are bad conditioned models. They are usually specialized in the training

data, and when considering other data sets they tend to exhibit large errors. BSNN do

not admit a bias as input to the network and hence the last equation is reduced to:

LWN =

√√√√ n∑
i=1

αi (2.40)

2.6 Model validation and stopping the training

Ultimately, the essence of learning consists in encoding an input-output mapping into

the synaptic weights and structure of the model, with the hope that the network becomes

so well trained that it learns enough about the past so it can estimate future behaviour.



Chapter 2. Background theory 37

A model validation methodology tries to assess how the network will generalize to inde-

pendent data, i.e. data that was not used for training. Thus this technique provides an

estimation about the performance of a predictive model with respect to unseen data.

Firstly, the available data set is randomly partitioned into a training set and a test set.

The former is used to train the network, i.e. to compute the error gradient and update

the network weights, while the test set is used only for testing the final solution in

order to confirm the actual predictive power of the network. The training set is further

partitioned into two disjoint subsets:

• Training set, used to train the model, though a learning mechanism.

• Validation set, used to validate the model.

The motivation here is to validate the model on a data set different from the one used

for parameter adaptation.

The importance of these techniques comes from the possibility that a model overfits the

training set. A model may present the best performance indicators in a set of models

considered, but it might not be able to generalize to new data, due to overtraining, which

means that the model became specialized on the training set and has lost its capability

of generalization. Instead of learning the true dynamics of the process, the model also

learns dynamics from external sources which do not consist in the core of the process.

Overtraining a model can result in a network that has also learned the noise dynamics,

inherent in data acquired by practical sensors. This is a highly non-desirable effect once

we want to abstract the presence of noise in the data, so that the model can just learn

the dynamics of the process.

To overcome this problem a method for stopping the training is needed, to force the

model to learn what is intended. An extensively used procedure is referred to as the

early stopping method of training. Using this method, the estimation subset is used to

train the network in the usual way. However, the training session is stopped periodically,

and the network is tested on the validation subset after each period of training. This

works as follows [6]:
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• After a period of estimation (training), the synaptic weights of the network are

all fixed. The validation error is thus measured for each example in the validation

subset.

• When the validation phase is completed, the estimation (training) is resumed for

another period, and the process is repeated.

This procedure is conceptualized in Figure (2.16). By observing it we conclude that the

error over the training subset exhibits a monotonic decreasing behavior. However, peri-

odically testing the model in the validation set shows that the error in the validation

phase has a quadratic behavior and so it has one global minimum. Theoretically stop-

ping the training at this point provide the most capable model of generalizing properly.

Training beyond this point, translates into a overtrained model.

Figure 2.16: Illustration of the early-stopping rule based on cross-validation. [6].

2.7 Enhancing forecasting

Although it has been shown theoretically that a B-spline model has an universal func-

tional approximating capability, and can approximate any nonlinear function with ar-

bitrary accuracy, no universal guideline exists when choosing the appropriate model

structure for practical applications. We already had seen that BSNNs follows a fixed

three logical layers organization. However, the number of inputs of the model (lags),
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lacks of theoretical result suggesting the best number of lags for a nonlinear forecast-

ing problem. Thus, a trial-and-error approach or cross validation experiment is often

adopted to help finding the best model.

Another problem arises after the training phase is complete. By this time, typically

a large number of neural network models are available, which were evolved during the

training phase. Thus, is is necessary to select the final model, which will be used in the

application. Again, this model selection phase lacks of theoretical background to support

the decision of the winner. A commonly followed heuristic designates the best model

as being the one with the best performance in the validation set, the others are discarded.

Naturally this keep-the-best (KTB) approach suffers from limitations. The most obvious

one resides in the fact that this network ultimately may not be the optimum model, due

to the number of factors that affect network training and model selection, which can

include network architecture and structure, training algorithm and data normalization.

Regarding BSNNs, the number of inputs (lags) used can condition the performance of

the model. Furthermore, the data-driven nature of neural networks might have a great

impact in the model being selected. Different data sampling of a stationary process can

have a significant effect in individual model selection and prediction. As a result, KTB

approach can limit the generalization ability of the model. Time series forecast relies

completely in this one KTB forecasting entity and hence is susceptible to abnormalities

present in the model. One possible solution to this problems is to combine multiple

neural networks for the time series forecasting problem.

2.8 Combining forecasts

”In combining the results of these two methods,one

can obtain a result whose probability law of error

will be more rapidly decreasing.”

— Laplace, 1818

Combining several forecasting entities to enhance forecasting accuracy of the predictive

system has been widely studied over the years. A survey of the work and bibliography
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in this area can be found at [35], where the author points to the agreement observed in

this line of research that forecast accuracy can be substantially improved through the

combination of multiple individual forecasts. Another important conclusion states that

simple combination methods often work reasonably well relative to more complex combi-

nations. Besides alleviating the model selection phase, combining networks outputs can

in fact contribute to increase the robustness of the predictive system, producing more

stables forecasts and reducing the probability of incurring into catastrophic predictions.

This paradigm is illustrated in Figure (2.17).

Figure 2.17: Weighted combination of forecasts.

As so, the output of the ensemble network is given by:

y(t+ 1) = y1(t+ 1)ω1 + y2(t+ 1)ω2 + . . .+ yn(t+ 1)ωn =
n∑
i=1

yi(t+ 1)ωi (2.41)

Although with some constraints on the weights, to insure numerically stability:

∑
i

ωi = 1 (2.42)

ωi ≥ 0, alli (2.43)
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2.8.1 Theory behind neural networks ensembles

The implications of making the right choice are extremely important both from a theo-

retical standpoint and in practical terms. Small improvements in forecasting accuracy

can result in considerable savings. The foundations of the theoretical background in

this area can be found at [35]. Contributions from psychology are also worthy of men-

tioning, the theory of group processing information (GPI) can establish a motivational

background to the employment of this techniques. Often real world decisions rely on

information from a panel of experts (council). Understanding how a panel of experts pro-

cesses information and formulates a consensus might greatly improve our use of expert

information. The motivation behind these techniques is justified largely by empirical

results in opposition to theory. The authors in [36] term this empirical methodologies

as romantic as opposed to classic. The classic style is theory driven that contrasts with

empiric nature of the romantic style.

Fortunately, the construction of good forecasting ensembles is often possible. One of the

strongest fundamentals is statistical. Assuming that an accurate group of forecasting

entities is available, different choices among the group may lead to similar accurate re-

sults in the predictions. Constructing an ensemble out of all of these accurate entities,

by averaging their outputs, enhances the prediction performance. Another strong rea-

son is representational. In most neural network applications, the true function f might

not be satisfactorily approximated by the KTB approach. By forming weighted sums

of predictions, it may be possible to expand the space of representable functions. This

contradicts the observation made over the universal approximator nature of B-spline

functions. However, we are dealing with finite training sets, thus the learning algo-

rithms will explore only a finite set of functions.

Works have shown that in practice there is no interest in combining models that have

their outputs correlated. The performance enhancement obtained by combining fore-

cast entities is naturally inversely proportional to the correlation between the forecasting

entities. Although network ensembles can effectively improve model variance and im-

prove the network generalization ability, the effectiveness is largely limited if the errors

generated by the different models are correlated [37]. The idea of combining forecast
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implicitly assume that different models are able to capture different aspects of the in-

formation available for prediction. In the well-known M-competition [38], the results of

combining the models led to robust predictions, since the group of entities performed

well for most of the various type of series. An important work in this area can be found

at [39], where the authors introduce the concept of ambiguity. For an individual network

i, its ambiguity is defined by:

ai(x) = (Vi(x)− V (x))2 (2.44)

Where ai(x) is the ambiguity of the network i on input x, Vi(x) the output of network

i, and V (x) is the ensemble output to the same input.

Thus the ensemble ambiguity may be expressed as:

a(x) =
∑
N

ωiai(x) =
∑
N

ωi(Vi(x)− V (x))2 (2.45)

Assuming an ensemble of N networks. The last expression consists of the variance

presented in the weighted ensemble, around the weighted mean and hence it gives a

measure over the disagreement among the networks to the input x. Assuming that f(x)

is a real function, the quadratic individual and ensemble error are, respectively, given

by:

εi(x) = (f(x)− Vi(x))2 (2.46)

e(x) = (f(x)− V (x))2 (2.47)

Substituting (2.46) and (2.47) in (2.45) , yields:

e(x) =
∑
N

e(x)− a(x) (2.48)

Where e(x) is the weighted average of the individual errors. Averaging all the terms

in (2.48) over the input distribution, i.e, Y =
∫
p(x)y(x)dx, we reach to the ensemble

generalization error :

E = E −A (2.49)
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Where E is the weighted average of the individual generalization errors and A the

weighted average of ambiguities. This last expression dictates that the generalization

error of the ensemble network has two independent terms. One that only depends on

the generalizations errors of the individual networks and a second term that isolates the

correlations between networks. Equation (2.49) shows that the ensemble generalization

error is always smaller then the weighted average of the ensemble errors. It is important

to highlight the need to increase the ambiguity among the ensemble, as the authors

clearly demonstrated. The networks should disagree.

Further theoretical works still needs to be done in this area. However the empirical work

has proven the success of this approach and thus it is employed in this work. If several

different models can be combined to obtain a better forecast, it should theoretically be

possible to construct a single model that makes optimal use of the different kinds of

information used by the forecasts pieces in the combination. Nowadays we can point

two main directions of forecast combination that can be found in literature [40]: com-

bining for adaptation and combining for improvement. The first one targets the best

individual performance among the pool of forecast candidates. The second one aims at

significantly outperforming each individual forecast candidate. In this work we intend

to combine to achieve improvement.

Neural ensembles have been well studied and applied for pattern classification problems,

by using boosting and bagging voting classification algorithms [41], few applications have

been reported in forecasting applications. At [42], the improvement of time series fore-

casting performance, using neural networks assembles, was assessed in comparison with

the traditional KTB approach. The methods were applied to the problem of exchange

rate forecasting, and the results show a consistent increase in performance in the test

set, suggesting an improvement of the generalization capability of the overall system.

2.8.2 Designing the ensemble

A parallel system whose individual decisions are combined by some system of weighted

or unweighted voting is an ensemble classifier. From last section it is important to retain

two ideas. Firstly, the correlation among predictions is the bigger limitation factor to the
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success of the network ensemble and hence it should be minimized. Secondly empirical

results show that simple combining schemes generally work better when compared to

complex forecast combining methods.

In this work we shall begin to consider the traditional KTB approach. The performance

of this methodology serves as comparison to assess the performance of the forecast en-

semble. In a first phase a trivial combination of the estimates is employed, where a

simple average with equal weights is evaluated. This method adds little effort to the

system and is backed-up by strong empirical results in this line of research. After this,

at the cost of extra complexity, more advanced techniques can be applied to enhance

the predictions of the system.

We shall consider a group of 4 forecasting entities (models). When a large number of

candidates to the network ensemble is verified, [43] suggests an genetic algorithm (GA)

to choose a suitable subset among the whole space of candidates.

Training and validating all the models with the same data sets generally leads to a high

correlation levels among the predictions. Due to the lack of abundant data of the process

intended to model, the reduction of the harmful correlation is forced by randomizing the

data that constitutes each set (training, validation and test). This approach is justified

by the unstable nature of neural networks, as noted in [44]. which means that it is not

necessary that, for a trained neural network, small changes in the input translate to

small changes in the output. Therefore one should expect major changes in the output

function, encapsulated in the network, in response to small changes in the training set.

Randomizing training sets can indeed act as a decorrelation agent between the models

and hence increase the ensemble ambiguity.

Furthermore, results have shown the expected observation that the number of lags in

the neural network model largely determines the autocorrelation structure of a time se-

ries. Therefore if the neural networks models are built using the same number of inputs,

the predictions will be highly correlated and, consequently, also the errors. Thus, the

effectiveness of the ensemble method is reduced. In such a situation the group does not
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benefit from a wide variety of opinions and hence the errors can not be compensated by

a distinct individual. To diminish the autocorrealtion of the time series, each one of the

four models is built with a distinct lag input number, from 2 to 5. By doing this, the

ensemble as a whole should have the benefit of reduced correlation and increased mod-

elling power. If the data was abundant, completely distinct, non-overlapping sets could

be employed for the construction of the models, forcing decorrelation among forecasts

even further. Adding more input variables (lags) to the network does not rise serious

concerns due to the employment of the ASMOD algorithm, which breaks complex mul-

tivariable models into additive, more simple, submodels, thus allowing us to relax the

curse of dimensionality present in BSNNs.

After the trivial solution, the forecast combining method can be made more complex.

In [45] the authors tried a variety of methods for combining time series forecasts, and

the results have demonstrated that better results are achieved by calculating combing

weights on the basis of relative precision, ignoring any known correlation between the

models in estimating combining weights. This suggestion is followed in this work. The

natural extension to the trivial solution consists on revising the weighted combination.

There is no analytical solution for the optimum weights, thus they should incur into

an optimization process. A least square solution, that minimizes the error using the

validation and the training set, by finding the optimum weight vector ω that minimizes

an error criterion can be found, although in a non-trivial way. However, ordinary least

squares methods often do not provide satisfactory results in real applications due to the

variability of weight estimations.

2.8.2.1 Evolving the ensemble

Network ensemble theory suggests a weighted combination of forecasting networks in

such a way to minimize the ensemble generalization error:

E = Ê − Â (2.50)
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Some insight can be developed by trying to minimize the last equation in order to the

weights,
dE

dωi
= 0 (2.51)

Which admits the following solutions:

(εi −Ai) = E ∨ ωi = 0 (2.52)

Ideally the difference between the generalization error and its ambiguity should be identi-

cal among the networks. In [43] this work was extended, and the ensemble generalization

error was represented using correlations between the individual networks:

E =

N∑
i=1

N∑
j=1

ωiωjCij (2.53)

Where Cij is the correlation between yi(x) and yj(x), expressed by:

Cij = E[(f(x)− yi(x))(f(x)− yj(x))] (2.54)

Where f(x) represents the desired output to the input x, yi(x) and yj(x) represent the

output of network i and j, respectively, when the input x is applied. Equation (2.53)

emphasizes the need to avoid correlations among the networks to minimize the final

ensemble generalization error.

Then a method for an optimum weight solution, in theory, was derived. This vector

minimizes the expected prediction error of the ensemble by making use of an estimation

of the error correlation matrix. However the calculation of this correlation matrix might

not be straightforward, due to ill-conditioned or even an irreversible correlation matrix.

Instead an evolutionary strategy (ES) was chosen as the process to optimize the weight

vector, which ideally would be:

ω̂ = arg min(
N∑
i=1

N∑
j=1

ωiωjCij) (2.55)

The ensemble weights are evolved by minimizing the expected error in the joint validation

sets of the four models. In section (4.4.3) details about the ES implementation are
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briefed.

2.8.2.2 Increasing the ambiguity

In a second experiment, the simulations are repeated but this time we propose to delib-

erately degrade the available data set, by adding Gaussian noise. This methodology is

motivated by three reasons. Firstly, by doing so the robustness of the models is tested,

and the adequacy of BSNN to the problem is assessed. Secondly it can also be used

to assess the model ability to be integrated in a biomedical instrumentation system,

together with a temperature estimation method, which will inevitably produce some er-

rors. A more detailed explanation for this second point is given in Section (4.4). Lastly

by randomly adding noise to an original, noise free data set, it is possible to train multi-

ple networks with completely different data sets, thus broadly increasing the ambiguity

among the networks.

Nevertheless, it is crucial that the model’s structure has just the right amount of func-

tion approximating power, when noise is added. If the network is too much powerful

it may incur in learning the noise dynamics, which constitutes a scenario that we are

not interested. Therefore, the network structure should be biased to learn just the real

process dynamics and ignore the noise.

Negative correlation learning (NCL) [46] approaches complete the state-of-art concerning

neural networks ensembles. This methods add a penalty term to the cost function,

enforcing a weak relationship among the entities of the ensemble, work that was extended

in [47]. The goal of this penalty term is to measure the error correlation between the ith

network output and the rest of the ensemble. The error correlation Pi(n) is obtained by

doing:

Pi(n) = (Fi(n)− F (n))
∑
j 6=i

(Fj(n)− F (n)) (2.56)

Assuredly the purpose of this methods focus on decreasing the correlation between the

individual errors, thus increasing the ambiguity. Under the NCL paradigm, all the

networks are trained simultaneously and interactively using the same data set. Therefore
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the errors of the individual networks are being forced to be uncorrelated at the training

phase.

2.8.2.3 An ensemble of degraded networks

The addition of noise to the data set does not, however, guarantee a network ensemble

with uncorrelated errors. Increasing the noise strength can compromise the learning

process, thus other alternatives must be available to enforce uncorrelated errors among

the ensemble. In [48] the authors propose the creation of an ensemble of degraded neu-

ral networks. In a first phase a single accurate network is trained, the base network,

then the neural network ensemble is formed by degrading the base network, adding con-

trolled noise to its parameters. The results shown suggests that such an ensemble can

improve the performance of the base network. Another major advantage is the time re-

quired to construct the ensemble, since it is only needed to train a single (base) network.

By degrading the base network, we expect the degraded networks that compose the

ensemble to have their errors weakly correlated. Let N(W ) be a neural network trained

using the training set L, the base network. W is a vector containing all learnable pa-

rameters of the network, w = (ω1, ω2, . . . , ωp). Causing a small perturbation in this

vector will generate a different network, whose performance would still be comparable

with the base network. An ensemble of this degraded networks is created, which then is

combined to form the final prediction.

A degraded version of N(W ) can be obtained by adding a zero mean Gaussian noise to

each of its learnable components. Thus, if w = (ω1, ω2, . . . , ωp) is the parameter vector

of the base network N(W ) and W d = (ωd1 , ω
d
2 , . . . , ω

d
p) is the parameter of a degraded

version of N(W ), then:

ωdi = ωi + ei, ∀i = 1, 2, . . . , p (2.57)

Where ei∼N (0, σ), i.e. ei is a random number drawn from a normal distribution with

zero mean and variance σ. Furthermore, to generate each component of the parameter

vector of a degraded network, ei is drawn independently from its previous values. Thus

the amount of degradation is controlled by σ, the degradation parameter. Let ε be the
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training error of the base network N(W ) on the training set L and let εd be the error

committed by the degraded network N(W )d on L. N(W )d is considered a valid candi-

date if εd ≤ t× ε, where t is an user-defined threshold, the selection threshold. Therefore

by setting t = 1.05 we are assuming a degraded network to be a valid candidate if the

error committed by it on the training set is within 5% of the base network.

This work was originally derived for multilayered perceptrons (MLPs), hence the param-

eters vector contains all of the weights and bias, which are the learnable components of

a MLP. The general network structure of an associative memory network, which BSNNs

falls into, was presented in Figure (2.13). We will extend the degraded neural networks

ensemble work to BSNNs. The learnable layer of AMNs is the third one, which contains

the weight vector that linearly combines the output of the basis functions. However

we propose to also degrade the fixed basis function layer of AMNs, in order to try to

decorrelate even more the degraded versions. The middle fixed, non adaptive AMN layer

performs a non linear mapping, from the input xi to the output of the basis function ai,

xi → ai. In Section (2.3.1) we defined a spline f in its B-form as:

f =
n∑
j=1

Bj,kaj (2.58)

Also it was shown that a B-spline is dependant on its knot sequence t and the order k.

B(.|ti, . . . , ti+k) := Bi,k (2.59)

Thus f is a spline of order k with knot sequence t, i.e, a linear combination of B-splines

of order k for the knot sequence t.

From the study of B-splines it was noticed that one of the major advantages of BS is

the robustness of this function to changes in the control points, illustrated in Figures

(2.7) and (2.8). In general the structure of BSNNs, Figure (2.13), the control points

are represented by the last layer, in the form of the adaptive weight vector. BSs offers

a localized control, which means that a perturbation in a control point, i.e. a weight

in the last layer, causes just a local consequence, i.e the changes are not propagated
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throughout all the functions. Therefore degrading just the adaptive weight vector of

the BSNN base network might not be sufficient to create an uncorrelated ensemble of

degraded networks, due to the localized control of BSs, hence instead of just degrading

the control points we propose to also degrade the non linear mapping performed in the

second layer. It seems intuitive that deforming the non-linear process performed by the

basis functions will lead to a more distinct network. Let f(k, t) be a spline of order

k with knot sequence t. Notice that by applying the ASMOD algorithm it is possible

that the BSNN is composed of multiple additive splines. However we assume one spline,

without loss of generality. A degraded version of the base spline f(k, t) can be obtained

by perturbing each one of the knot sequences ti that form the B-splines Bi,k that, when

linearly combined, form the spline f(k, t). Thus we define the base knot vector as:

tb = (t1,1, t1,2, . . . , t1,p1 , t2,1, t2,2, . . . , t2,p2 , . . . , tn,1, tn,2, . . . , tn,pn) (2.60)

Where n is the number of basis function that form the spline f and pi is the length of

the knot sequence of basis function i, Bi,k.

A degraded spline fd is formed by degrading the base knot vector, where the degradation

of each knot is made by adding noise in a controlling way:

tdi = ti + ei, ∀i = 1, 2, . . . , pi (2.61)

Where ei∼N (0, σ).

Therefore we have two degradations parameters:

1. weight degradation parameter σw.

2. knot degradation parameter σt.

Both can be chosen independently. In the original work [48] is suggested to select σ

in the range of [0.001,0.002]. Degrading the base knot sequence must be done in a

constrained way, since this sequence should be a non decreasing sequence:
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ti ≤ ti+1, all i (2.62)

Despite this expansion of the degraded network ensemble concept to deal with B-splines,

we decided to not apply it in this work, due to the extensive contours that this work

is moving to. Nevertheless we leave the proposed adaptation of the methodology to

B-splines for future research.

2.8.3 Neural dynamic ensemble optimization (NDEO)

Ensemble learning involves two stages: training the networks and combining their out-

puts. Most of the effort is being done to find an optimal weight vector ω̂ that minimizes

some criterion. Naturally training methodologies to increase the ambiguity, as well as

optimization methods to select the best candidates to form an ensemble, are crucial.

Nevertheless the way these individuals networks are combined is also vital to the system

performance. In neural forecasting applications this last combing step is traditionally

made using an (optimized) weight vector.

Adding intelligence to the combination of the individual networks seems a reasonable

idea. A vector of weights lacks of flexibility, it is not adaptive and does not take into con-

sideration the current region of the process domain. This linear combination scheme may

not explore the individuality of each model, thus we suggest a non-linear combination.

This mechanism should combine the networks in a dynamic way, taking into account

current information about the process. More importantly, this mechanism should gen-

eralize the best possible way of combining information from different sources, having

current information about the process dynamics. This paradigm of ensemble output

combination is done in an active way, in contrast to the passive traditional weighted

sum. We believe this paradigm can provide means to enhance the knowledge present in

each network, as well as mask the individual flaws and attenuate them.

The proposal consists in arranging a combination of the individual networks by means

of a second-layer neural network, that acts as an optimization agent, combining the
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information from all the different sources. A process we call neural dynamic ensemble

optimization (NDEO), illustrated in Figure (2.18).

Figure 2.18: Purposed architecture for a neural ensemble system, employing NDEO.

The purposed 2-layered architecture comes in opposition to the traditional, weight com-

bining, architecture shown in Figure (2.17). The goal of the second layer is to expose

the outputs of the individual networks to a dynamic, adaptive optimization process.

Note that last network admits additional information (ai) to the optimization process,

which might be crucial to the process. A BSNN is to be placed in the second layer,

thus caution is needed concerning the number of inputs to this last network. If a high

number of individuals is needed to compose the ensemble, a different typology of NNs

should be employed in the second layer.

Furthermore it should be noticed that an intelligent ensemble combination inherently

increases the system complexity and demands a higher effort in the modeling project.

However, if the ambiguity can be forced to satisfactory levels, NDEO can be used to

explore and enhance the particularities of each individual network. As so, the system

should be able to dynamically decide the best arrangement of the outputs to construct

the prediction. The second layer output is given by:
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y(t+ 1) = f(y1(t+ 1), y2(t+ 1), . . . , yn(t+ 1), a1(t), a2(t), . . . , am(t)) (2.63)

Where yi(t) represents the individual next-step prediction of network i, and ai(t) con-

sists of additional information up to moment t, that may guide the network towards an

optimal combining of yi(t). f(. . .) is the underlying function to the NN, performing a

non linear mapping Rn+m → R. We expect this mapping to minimize the generalization

error. However it should be clear that this minimization is just useful if the individual

networks are highly uncorrelated, i.e. high ambiguity, providing that the individual net-

works are admitted to be accurate.

Albeit more intelligent, this combining mechanism introduces more load into the system,

which can be problematic in some real time applications and embedded system with

scarce resources. However, after the training of the second layer network, this is added

to the network and should not add a significant delay if properly designed. Nevertheless

NDEO can only be justified by large gains in performance, which we intend to assess in

this work.



3
Experimental set-up and data acquisition

3.1 Introduction

Three steps are involved in developing a neural network to achieve a reliable prediction:

specifying a suitable network architecture, choosing the training data, and training the

network. In the last chapter the architecture of the network was discussed. Associative

Memory Networks, a class on which BSNN are embedded, provides a suitable architec-

ture for the prediction of a time series. The next step is to collect the data needed for

training the model, which we discuss in this chapter. In Chapter(4) the specification of

the methodologies used to train the network (the last step) are presented.

The performance of data-driven models is highly dependent on the quality of the cap-

tured data. This data should represent all the domain of the process aimed to model.

It is generally difficult to incorporate prior knowledge into a neural network, therefore

the network can only be as accurate as the data used to train the network. Therefore

54
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we reserve the following chapter to fully characterize the experimental environments

constructed to extract the data used in this work. More details can be found on the

original work [7] where that data was acquired. Furthermore this chapter provide a

measure of the validity of the data used to construct the models, and it can be used to

discuss about how close the environments considered resembles the real, ideal human

tissue characteristics.

An overview about the materials used is present in Section (3.2), and the hardware and

software configurations are explained in Section (3.3). The development of the sequential

of experimental setups assumed an increased complexity along the work. Homogeneous

phantoms were considered. The experimental setup developed is presented in Section

(3.3), where the temperature propagation in a homogeneous phantom was measured.

The experimental procedure approach is explained in Section (3.6).

3.2 Materials

In order to simulate human tissue, a matrix solution studied in [49] was used. Mim-

icking solutions are named phantoms, a material exhibits similar characteristics found

in human tissue. The basic composition of the solution is shown is Table (3.1).

Material % Mass

Water 86.5
Glycerol 11

Agar 2.5

Table 3.1: Composition of the constructed solution used to resemble human tissue.

In order to adjust the attenuation coefficient graphite powder was added. Ultrasonic

phantoms are created as to respect biologic tissue properties such as sound speed, acous-

tic impedance and attenuation coefficient.

Justifications regarding the solution composition are present in the original work.
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3.3 Experiment configurations

In order to force the results obtained to be reliable, efforts have been made to assure a

fault-tolerant hardware configuration, with respect to noise, coupling of the transducers,

connection, and other possible flaws.

For the localized heating of the phantoms, a therapeutic ultrasound device (TUS),

Sonopulse Generation 2000, Ibramed, was used. It contains a two-face transducer, i.e.

two nominal effective radiation areas (ERAs), one with 1cm2 and another with 3.5cm2.

The biggest face allows for the use of frequencies (1MHz and 3MHz). The ERA level

of 3.5cm2 was employed, otherwise the focused heating area would be too small. Fur-

thermore, the therapy goals considered in this work focus in deep areas of the tissue, as

is the case of cancer treatments. Thus the use of 1MHz frequency is recommended, as

longer waves are less attenuated then short waves, enabling deeper penetration in the

tissue. The T device has two operation modes, continuous and pulsed. The later was

applied in this work. Intensities from 0 to 2W/cm2 with increments of 0.1W/cm2 can be

transmitted to the media, using any of the transducer faces. Further characterization of

the device is shown in Figure (3.1), where the acoustic pressure distribution of the TUS

is presented .

This profile was taken assuming a room temperature of 24 oC, employing a 1MHz

frequency. Analyzing this pressure profile, it is possible to conclude that the transducer

has it natural focus at 42mm, i.e. its near field length (NFL) is 42 mm. Furthermore, the

acoustic pressure applied by the TUS is approximately uniformly distributed in space,

as shown in Figure (3.2), where the spatial pressure field is illustrated on a plan parallel

to the face of the transducer at 48mm distance.

Temperature at the spatial points (inside tissue) under study was measured using type-

K thermocouples, connected to a compensation module (80TK, Fluke, Everett, WA,

USA). This module is then connected to a digital multimeter (2700/7700, Keithey),

which digitalises the temperature and makes it available to a general purpose PC. These

temperature values were transferred to the PC via a GPIB bus (GPIB-USB-B, National

Instruments). The acquisition of the data was handled by an open-source application,

Echotherm [50], which was specially developed for this type of experiments.
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Figure 3.1: Pressure profile across the axis of the therapeutic transducer. Figure
taken from [7].

Figure 3.2: Pressure field of the therapeutic transducer measured in a plan parallel
to the face and at 48mm distance. Figure taken from [8].

3.4 Setting-up

The temperature propagation was measured in an invasive way, inside the prepared so-

lutions. The assembly of the experiment to collect the data is detailled in the following
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section.

For the experiment a simple homogeneous phantom was considered. The setup is illus-

trated in Figure (3.3).

Figure 3.3: Schematic diagram of the experiment setup used in the first environment,
homogeneous phantom. Figure adapted [7].

A parallelepiped phantom holds five thermocouples (device 3, in Figure (3.3)), connected

to the multimeter, that invasively measures the temperature inside the phantom. In one

exterior side of the phantom, the therapeutic ultrasound device was positioned (device

1, in Figure (3.3)). Samples were taken from the sensors and processed by the Ecotherm

software.

3.5 Sensor positioning

This section is reserved to briefly explain the positioning of the sensors inside the phan-

tom. As previously mentioned, the natural focus of the TUS device is at 42mm. There-

fore, the sensors were positioned already outside the near-field, in the far-field Figure

(3.1), 50mm away from the transducer face, forming a parallel line to it. In the exper-

iment, five sensors were considered, Figure (3.4). The thermocouples are spaced with

5mm intervals.
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Figure 3.4: Thermocouple positioning in relation to the TUS device. Figure adapted
[7].

The thermocouples were placed after the natural focus because after this point the beam

geometry is more well-behaved, being spread as the axial distance increases (in the far-

field) the energy is more and more spread. From the spacial distribution of the acoustic

pressure, Figure (3.2), it is expected a more energetic TUS transducer central line,

therefore the heating, experienced by the sensor placed over this line, is also expected

to be the most significant one. The acoustic pressure should then decay as we move

through the rest sensors, away from the TUS transducer central beam.

3.6 Experimental procedures

Each experiment trial has a 45 minute duration, divided in three phases. The first 5

minutes serve as a reference for future measurements, in following 20 minutes a heating

process occurs, provoked by switching on the TUS transducer. The last 20 minutes are

reserved for the phantom to experience a natural cooling process, where the the TUS

device was turned off. Temperature samples, measured by the sensors, were taken each

10 seconds. Therefore, for each trial N = 6 × 45 = 270 temperature data points are
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available.

Four beam intensities were considered: 0.5, 1.0, 1.5 and 1.8 W/cm2. Each trial assumed

a different beam intensity which, in turn, led to a data file. In all of the experiments, a

1MHz frequency was employed.

3.7 Experimental results

In this section the data obtained in the experiments[7] are presented. Results are shown

in a graphical form. Namely, the signals measured by the thermocouples, connected to

the multimeter, are shown for each trial considered. It is intended the reader to get fa-

miliarized with the process we want to model. The shown results constitute the basis for

discussion in respect to the quality of the data used to build the posterior BSNNs models.

Following the experimental schematic as shown in Figure (3.3), four beam intensities

were applied to the simple homogeneous phantom. Figures (3.5) and (3.6) present the

temperature registered by each sensor, considering the four cases of beam intensities.

Figure 3.5: Temperature recorded by the temperature sensors in the experiment de-
scribed in Section (3.3), considering a beam intensity of: a) 0.5W/cm2 and b) 1.0Wcm2.

The highest temperature, in all trials, is naturally registered by sensor 1, once it is posi-

tioned on the TUS transducer central beam axial line. The behavior of the temperature

for each spatial position, as shown by the temperature progress recorded by the sensors,
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Figure 3.6: Temperature recorded by the temperature sensors in the experiment de-
scribed in Section (3.3), considering a beam intensity of: a) 1.5W/cm2 and b) 1.8Wcm2.

is justified by its position relatively to the center of the TUS face.

As mentioned before, each 45 minute trial starts with a 5 minute long interval, where

the phantom does not suffer any intervention, its temperature remains almost constant.

After this interval, the TUS transducer is turned on and the heating process begins,

which provokes a raise in temperature at the focused and surrounding regions. After

20 minutes, the external energy source is turned off, the phantom cools in a natural

way, and the temperature is recorded by another 20 minutes interval. We observe that,

despite the beam intensity considered, temperature curves behave is similar. Naturally

a more intense beam is translated into higher temperature values experienced in the

phantom. Nevertheless, process dynamics remains the same.

3.7.1 Final remarks

Observing the plots illustrated in Figures (3.5) and (3.6), we can state some particular-

ities of the data. The most sensitive area of the data domain resides at temperatures

experienced at sensors close to the TUS transducer central beam axial line, which is

highly aggravated if a strong intensity is being applied. Abrupt temperature variations

are observed under this circumstances, which assuredly will constitute challenging areas

to be modeled. As we move away from the TUS transducer central beam axial line,
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temperature variations tend to be smooth, with smaller thermal amplitude during the

course of the therapy session.



4
Applied estimation models

4.1 Introduction

This chapter exposes the different temperature predictive models applied in this work.

An approach of gradually increasing model complexity was taken while modeling the

dynamics of the process. We start by considering models for single-point and single-

intensity estimation. Then gradually the complexity of the models is increased towards

multi-point and multi-intensity estimation. The motivation behind this methodology is

due to the interest we have in study and develop insight concerning the feasibility of

using BSNN to predict the temperature propagation, in the environments characterized

in Chapter(3). Separating between the complexity of the predictive models is made in

order to clearly observe the ability of BSNNs to generalize . Firstly specific environ-

ments are considered, on which the temperature propagation is considered regarding a

single-intensity at a specific point, and then we gradually move towards a more generic

therapeutic environment, where the process is modelled concerning a discrete region

63
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(multi-point), and all the intensities are considered.

The chapter starts by presenting the pre-processing methods applied to the data col-

lected from the experimental setups presented in Chapter(3). The overall pre-processing

ends with data selection for the different model construction phases, i.e cross validation.

Then follows some network design considerations concerning the B-spline design cycle

employed. The algorithms involved in structure selection and network training are pre-

sented. Some a-priori knowledge about the process is also forced into to the network.

Section (4.3) exposes some considerations about the modelling scheme to be applied in

this work.

4.2 Modelling methodology

4.2.1 Data preparation

For modelling purposes, we make the distinction between to phases of the temperature

propagation.

• Heating phase.

• Cooling phase.

After a heating period, the TUS device is turned off and the phantom is let to cool in a

natural way. These to distinct phases can be observed in the example shown in Figure

(4.1), where the two cycles are marked.

Following the two different cycles of the complete process, two models are always con-

sidered, one for each phase. The reasoning behind this approach is due to the fact that

the dynamics of the two phases are governed by different rules. The heating experienced

in the phantom is forced by the TU, applying sound waves of different intensities. On

the other hand, once the device is turned off, the phantom cools down in a natural way,

following the laws of thermodynamics, without an external source doing work on the

system.



Chapter 4. Applied estimation models 65

Figure 4.1: Two distinct phases can be observed in the temperature propagation.
Firstly the temperature rises due to the ultrasound being applied to the phantom.

After some time, the device is turned off and the phantom cools down naturally.

The data is divided into two subsets, one for each cycle of the process. Each one of

the subsets are used to construct a model. Furthermore, the results and conclusions

concerning a scenario of modelling are presented considering always the two models.

Due to the inherent noise present on the experimental set-up and consequently on the

sensor’s measurements, the peak value of temperature in each experiment usually does

not coincide with the time instant where the TUS device was turned off, thus indicating

the start of the cooling process. Furthermore, all the experiments assumed an initial

five minutes interval on which the TU was still not active. This stationary interval can

be observed in Figure (4.1). Therefore the data must be processed before being used

to train the model. The starting point of the heating phase, as well as the one that

marks the start of the cooling phase, must be found. A Moving Average (MA) filter was

employed to obtain a more noiseless version of the data. An example is shown in Figure

(4.2).
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Figure 4.2: Noise reduction using an 8-point moving average filter. In the figure, data
taken from the homogeneous phantom experiment, with a TUS intensity of 1.0W/cm2,

exhibits noisy variations in the temperature.

From this last figure, it is obvious that the moving average filter employs a smoothing

effect over the data, thus reducing the noise. As the name implies, the moving average

filter operates by averaging a number of points from the input signal to produce each

point in the output signal. It was employed a 8-point MA filter which, in equation form,

is given by:

yMA[i] =
1

8

7∑
j=0

x[i+ j] (4.1)

The number of points used by the filter was obtained empirically, following a trial and

error scheme.

Once the data as been smoothed, the starting points for each phase are found, using

gradient methods. A high positive value of the derivative of the signal marks the be-

ginning of the heating process, whereas a negative slope informs about the start of the

cooling phase.

Temperature evolves with a fast gradient in the first initial moments, after the TUS

device is applied. This effect is more noteworthy when the TUS intensity considered

is 1.8W/cm2. However, despite this fast temperature evolution, the data acquisition
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frequency was always constant through all the experiment. This fact is highlighted in

Figure (4.3).

Figure 4.3: Data set collected from the homogeneous phantom experimental setup.
TUS Intensity:1.8W/cm2. Sensor: 1. The initial moments clearly exhibit a deficit of

data, which can compromise the model learning potential over this region.

Data observation reveals a serious lack of information in two distinct moments: the

initial moments right after the switch of the TUS device, present in the heating phase;

and a second moment coincident with device shutdown, at the start of the cooling phase.

This lack of knowledge at this areas, despite of being short in time, can compromise the

model learning process and lead to erroneous predictions. This data deficit derived from

the fixed data acquisition frequency, which should had been dynamic, providing a higher

sampling rate in rapidly changing regions. Nevertheless, models should be capable of

performing well through all the rest of the data set, since the data in those regions

is capable of providing a higher quantity of knowledge about the process dynamics to

the model. Furthermore, this two swift regions are translated to just about one or two

data points, which corresponds to a fast transient state in the therapy of about 10 or

20 seconds, respectively, with a data acquisition sampling period of 10 seconds. Figure

(4.4) provides an example of the effects of this lack of data. A disproportionated error

occurs in the first moments of both phases (heating and cooling), in comparison with

the predictions that follow, consequence of the lack of information in that area.
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Figure 4.4: Results comparison between a model prediction and desired observed
values. TUS Intensity:1.0W/cm2. Sensor: 1. The green line represents the absolute
error evaluated through all the data set. The effects of the lack of data points are

visible, in the initial moments when the temperature is rising rapidly.

This issue has to be addressed if satisfactory models are to be achieved. It is crucial

to mask this lack of information in the data set, otherwise the models will not know

how to behave in those two regions. Interpolation of the data points seems to be the

most reasonable approach, since we assume to know the real behavior of the system in

those areas. Switching the TUS device on causes a fast transient temperature rising. In

contrast, switching off the device provokes a fast transient temperature downward.

Concerning the interpolation methods employed, it should be noticed that some parame-

ters should be submitted to an optimization phase: number of data points to interpolate;

sampling frequency of the interpolation frequency; and order of the interpolation. By

adapting this parameters to each data set, the approximation error can be minimized.

The scope of the interpolation method naturally covers the whole data set, otherwise

the time relation between the data points is incoherent. The interpolation was made

using cubic spline functions, belonging to C2 continuous class. Using the data from

Figure (4.3), which exhibits a high temperature gradient as function of time, the set was

interpolated using a cubic spline, by sampling the function with a 1s period. The result

is shown in Figure (4.5).
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Figure 4.5: Interpolation result, applied to the data illustrated in Figure (4.4). The
results exhibit a more robust and compact data set, assigning more knowledge about

the process to the deficient areas.

Observing the interpolated data we can assume that the lack of information issue was

addressed with realistic and approximate assumptions. By doing so, we expect models

to be able to extract information in the transient temperature propagation phase.

Following this interpolation scheme, each two consecutive points, originally spaced by

10 seconds, are interpolated by a cubic spline, which then is sampled each 1 second.

As a result the whole data set consists on temperature values separated by 1 second.

Therefore each trial now consists of N = 10 × 270 = 2700 temperature data points.

Using this set to construct a model, reduces the prediction horizon from 10 seconds to 1

second, since we are considering one step ahead prediction. On the other hand, we are

also increasing the volume of available data, which may induce an over-training effect

in the models or cause them to learn the dynamics of the noise. Employing the early

stopping method we expect to retract both of this undesirable effects. This prediction

horizon is increased later to test the robustness of the forecasting networks.

4.2.2 Model validation

Concerning the model validation, discussed in Chapter (2), the selection of the data

was not done in contiguous blocks. Instead, the subsets were constructed by randomly
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choosing input/output pairs from the data set. With this, we expect to improve the

generalization power of the models because the model is tested in the test set, using

unseen data. This forces the generalization performance of the model to be evaluated,

not just on a restricted area. The stopping criteria employed was the early stopping

method, discussed on Chapter(2). Partitioning of the data set is usually performed

using the following ratios:

• 70 % for training (estimation) subset.

• 20 % for validation subset.

• 10 % for test set.

If nothing is said about the division ratios, the partitioning ratios just mentioned are

used. Accordingly the first subset is the training (estimation) set, which is used for

computing the gradient and updating the network weights. The second subset is the

validation set, which is not directly used to train the network. The error on the vali-

dation set is then monitored during the training process. The validation error normally

decreases during the initial phase of training, as does the training set error. However,

when the network begins to overfit the data, the error in the validation set typically

begins to rise and hence the performance of the network begins to deteriorate. The

network weights are saved when the validation set error is minimized.

In practice, the test set error is not used during training, but it is used to compare differ-

ent models, in their ability to generalize. A heuristic for optimal neural network training

says that, if the error on the test set reaches a minimum at a significantly different it-

eration number than the validation set error, this might indicate a poor division of the

data set. Such a situation suggest that a revision on the split ratio should be considered.

The order by which the observations (input patterns), comprising the training set, are

presented to the network, also requires discussion. Observations can be applied to the

network following a randomized arrangement or by a natural ordered arrangement. The

former is strongly preferable when an on line learning method is employed. However, as

discussed in Chapter(2), when the whole data set is available, a batch (offline) training
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is preferable. For this reason the data is presented to the network in a ordered arrange-

ment, since shuffling the data has no effect in batch learning.

The number of past lagged observations lacks of theoretical result suggesting the best

number of lags for a general nonlinear forecasting problem. However, this number should

be minimized, which is justified by the need to construct simple, yet accurate models.

Section (4.3) explores the most suitable number of past lagged observations concerning

each model typology. If the performance is not satisfactory, this number will be revised.

However a preference is naturally given to simpler models, targeting real time applica-

tions support. Models are constructed with this parameter being varied between 2 − 6

lags.

4.2.3 Network designs, structure selection and algorithms

Most modelling schemes consider a given model structure or a fixed set of given model

structures and estimate parameters in these structures. However due to the curse of

dimensionality problem, exposed in Chapter (2), this is not feasible when the input

space has a high dimension. In this work the ASMOD algorithm, Section (2.4.2.3), was

intensively used to select the most proper model structure according to a performance-

complexity balance. Therefore, an interactive model construction algorithm was em-

ployed, where B-spline networks are grown by iteratively refining of a very simple model.

This process is illustrated in Figure (4.6).

Figure 4.6: B-spline network design cycle.



Chapter 4. Applied estimation models 72

Concerning this work, the design started from an initially empty network. However,

the initial model might be biased to include a small number of relevant subnetworks.

As the networks considered in this work are relatively simple, there is no need to bias

the initial model. During the design cycle, this base model is gradually enhanced, by

including new inputs, identifying cross-product terms and by representing each input

in a better way, i.e, changing the knot sequence associated with a certain input axis.

At each iteration, a number of possible ways by which the network can be made more

flexible is assessed, i.e. the performance is calculated. The algorithm then chooses the

optimum refinement step and applies it to the current model. B-spline networks evolved

by the ASMOD algorithm hold a great synergy, because any enhancement to the current

model, triggered by any refinement step, generates a more complex model, which is ca-

pable of exactly reproducing the previous model [28]. This is due to B-splines modelling

capabilities robustness in respect to changes in the knot sequence. Nevertheless, the

ASMOD algorithm does not take into account refinements concerning the number of the

basis functions, otherwise the refined model may not be capable of exactly reproduce

the previous one. Hence, the order of the splines which represent each univariate input

must be determined before the learning begins.

After an initial model structure has been specified, model structures are identified ac-

cording to the following algorithm:

Algorithm 1 General ASMOD algorithm.

1: Let the initial model structure be the current model structure.
2: Let i = 0, and let the stop refinement criterion be FALSE.
3: while the stop refinement criterion is FALSE, do: do
4: Let i = i+ 1
5: From the current model structure generate a set M = {M1,M2, . . . ,Mn} of

candidate model structures grown and/or pruned.
6: Estimate the parameters in each model structure in Mi. Denote the estimated

parameter vectors by ci,j j = 1, . . . , Ni.
7: Compute a criterion function g(M) for all candidate model structures.
8: Select the model structure with the smallest value of the criterion function g(M)

as the new current model structure. Denote this model structure by M̂i and denote
the corresponding parameter vector from c by ĉi.

9: Compute the stop refinement criterion.
10: end while
11: The identified model structure M̂ is the one which gives the minimum value of

g(M̂j) j = 1, . . . , i, and the identified model within this structure is given by the
corresponding parameter vector ĉ.
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Here i represents the iteration number in the refinement procedure. The last step per-

formed by the algorithm selects from among the model structures the one that gives the

minimum value of the performance criterion.

Concerning the input space limits, the inferior and superior knot values, for each input

dimension, are always set to be the maximum and minimum value present in the training

set, respectively.

Following the discussion on B-splines, in the context of neural networks, the predictive

models are constructed using basis functions of relatively low order 1−4. The motivation

behind this choice comes from the quadratic nature observed in the processed data, when

the two distinct phases are separated, as shown in Figure (4.7). Note that by observing

the data we are able to introduce a-priori knowledge in the networking by biasing the

order of the splines considered.

Figure 4.7: Data measured by all sensors in the homogeneous phantom with carotid
artery experience (1.5W/cm2).

Despite of the spatial location, the temperature propagation process seems to be gov-

erned by quadratic dynamics, both in the heating and cooling phase. This figure also

suggests that the order of the dynamic is affected by the presence of an artificial artery

present in the experiment environment. Being the network generalization one of the

main objectives of the predictive model, it can be forced by using a network that is

complex enough to provide an adequate fit. The larger network complexity, the more
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complex the functions the network can create, therefore giving rise to the possibility of

learning the noise present in the data. Using a simple network, it will not have enough

power to overfit the data. A very complex model tends to have a small bias towards the

process being modelled, thus not having a powerful learning ability to approximate the

underlying data generating process. However the complexity provides the model a large

variance, which measures the generalization capability. In contrast, a simple model may

have a large bias but suffer from a small variance. The balance is inclined towards model

bias in order to avoid noise interference in the core of the network.

4.2.4 Adapting the free parameters

The BSNN architecture admits a fixed middle layer, on which the input suffers a non-

linear transformation performed by the basis functions. Then follows the adaptive

layer, where the weights of the network are adapted by means of a linear optimization

method. Concerning the adaptation, the least square solution (optimum weight values),

was found using a pseudo-inverse solution, where the optimum weight vector is given

by:

ŵ = (ATA)−1AT t (4.2)

Where A is a matrix of size (m x n), whose mth row is composed of the transformed

input vector for the mth input, assuming the network is built using n basis functions in

the second layer. t is the vector of desired outputs of length m and ŵ is the optimal

weight vector.

This method directly provides an analytic solution for the optimum weight values of

the network, given a training set and a set of defined basis functions that transform the

input vectors. Thus is used on this work.

4.3 Estimation models

Once fully characterized all of the network designing steps, the predictive networks are

in conditions to be built. We shall consider one-step ahead predictions. As mentioned
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before, a gradually increasing complexity approach was followed. We start by considering

models for single-point and single-intensity estimation. Then gradually, the complexity

of the models is increased towards multi-point and multi-intensity estimation. Three

typologies of models were admitted:

• single-point, single-intensity (SPSI)

• single-point, multi-intensity (SPMI)

• multi-point, multi-intensity (MPMI)

4.3.1 Network design structures

This section explores the network structures applied to each model typology. The struc-

ture should be suitable for the network purpose and, as we are dealing with BSNN, the

number of inputs must be forced to its minimum, admitting only crucial non-redundant

inputs.

By considering more complex scenarios, more input variables must enter the network

structure. This extra variables provide the indispensable information needed to guide

the network predictions, thus the variables and their numerical representation must be

properly chosen.
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4.3.1.1 Single-point, single-intensity (SPSI)

A simple model that just admits a single point and a single TUS intensity, just needs to

have as input m past temperature values, with m being the number of considered lags.

This is the only information that the network needs to estimate the temperature one

step ahead. We shall consider 2− 5 lags as previously discussed. The network structure

used in this typology is shown in Figure (4.8).

Figure 4.8: Network structure used in SPSI typology models.

The input space consists only of past temperature values T (k), which are the only infor-

mation needed by the network. z−1 is the unit delay operator. Figure (4.8) illustrates

a generic BSNN structure, composed by additive sub-models. The connection arrange-

ment between the input space and the next layer is merely demonstrative. Since this

arrangement, as well as the decomposition in sub-models, is done by the ASMOD algo-

rithm. Each input connects only to one sub-model. T̂ (k+1) denotes the one step ahead
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temperature value estimated by the network. As discussed before four models are to be

created, each one with a different number of inputs lags, ranging from 2− 5.
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4.3.1.2 Single-point, multi-intensity (SPMI)

The next step is to allow the network to accept different TUS intensities, albeit with

all the action still happening at a single point. Since the spatial location is fixed, i.e.

only one point is considered, the network does not need information about the spatial

location because it simply does not vary. The model is just forecasting the temperature

curve in a single point, thus spatial input to the network is unnecessary. However the

same cannot be said about the TUS intensity, which is varied. As so, the network needs

to have information about the intensity at each pattern. So the structure presented in

Figure (4.8), is now extended to the one shown in Figure (4.9).

Figure 4.9: Network structure used in SPMI typology models.

This structure admits a SPMI model typology, provided by the additional input I(k),
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denoting the TUS beam intensity at instant k. The numerical representation is straight-

forward, a real number with one decimal point, admitting the following possible values:

I(k) = {0.5; 1.0; 1.5; 1.8} (4.3)

Which correspond to TUS beam intensity values for each data is available. However

this input is only constrained to be positive I(k) ≥ 0 (since a beam intensity cannot be

negative), any positive real number is admitted to this input.

4.3.1.3 Multi-point, multi-intensity (MPMI) (1D)

Towards a gradual more complex scenario, the model should now admit a dynamic 1−D

spatial behaviour. Thus MPMI 1−D typology models assuredly require an additional

input that provides information about the current spatial location of the input pattern.

As so, the network structure is naturally extended to the one illustrated in Figure (4.10).
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Figure 4.10: Network structure used in MPMI 1−D typology models.

P (K) represents the spatial location of the input pattern, in the virtual line formed by

the temperature sensors, Figure (3.4). In order to numerically represent this input, the

location of the sensor closest to the TUS device (sensor 1 in Figure (3.4)) was taken as

the the origin of the referential. A vertical line, centered in compliance with the center

of the TUS face, is drawn orthogonally to the horizontal line formed by the sensors The

angle θ illustrated in Figure (4.11) was applied as an input, in degrees.

Since the sensors are separated by 5mm, the angle θ is trivially given by:

θi = arctan

(
D

Ni ∗ 5mm− 5mm

)
(4.4)

Where Ni is the number of the operating sensor and D is the distance from the line

formed by the array of sensors which is parallel to the face of the transducer. D was set

to D = 50mm, since this typology is trying to model just the 1−D space formed by the
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Figure 4.11: The angle θ formed between the operating sensor and the TUS central
line was chosen to numerically represent the spatial location of the sensor in the 1−D

line.

array of sensors. The 5mm is an offset to take the position of sensor 1 as the reference:

arctan

D
0

 = arctan(∞) = π (4.5)

Therefore P (k) admits the following set for the data available:

P (k) = {90; 84.29; 78.69; 73.3; 68.2} (4.6)

Again it should be notice that the former set correspond to the numeric values that will

be used during training, validation and test. However, this input is just constrained to

be positive P (k) ≥ 0.

The motivation for the angular numerical representation of this input to the network is

justified by the resulting distinguished dynamics concerning I(k) and P (K). Note that

I(k), the TUS device beam intensity is a linear input, whereas P (K) is governed by

the dynamics of the hyperbolic tangent function. This two distinct dynamics allows the
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network to distinguish more clearly the current operation point.

Gradually hardening the model forecasting task, provides an overview about how feasible

it is to the predict temperature propagation using BSNNs, by measuring the scalabil-

ity that the biomedical instrumentation system model shows, in terms of performance,

when the environment is made more complex. If the systems responds well when the

environment complexity is scaled, then we might assume that such a system, using a

BSNN temperature predictive model, is achievable and suitable.

4.3.2 Adding noise

Motivated by the reasons briefed in Section (2.8.2.2), another experiment took place,

consisting of deliberately adding Gaussian noise to the original data, in order to assess

the model robustness and adequacy. We also expect the ambiguity between the ensem-

ble to increase and hence minimize the ensemble generalization error (or test error).

It should also be emphasized that the data used in this work was collected in an invasive

way, using thermocouples placed inside a phantom. Our biomedical instrumentation sys-

tem should operate under the watch of a data-driven model. Thus, it is crucial to have

available the largest amount of datapossible, in order to have represented a large set of

temperature evolution dynamics, highly dependent on the unique characteristics present

on the tissue region focused for hyperthermia/diathermia purposes. A high spatial res-

olution is desirable. Unfortunately invasive methods for temperature measurement are

highly unpractical in real living tissues, plus a quantitative assessment of temperature is

of extreme relevance for both patient security, and for the efficacy of the therapy, which

requires a large number of sensors to be place into the tissue, increasing the impractical-

ities of this approach. Nevertheless, instead of directly measuring, it is possible to derive

a temperature estimation method, by which the temperature is estimated indirectly, in

a non-invasive way.
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Ideally a thermal therapy system should have besides the heating source, a precise and

effective time-spatial non-invasive temperature estimator. The estimator reliability must

be maximized, so it can be used to provide an efficient therapy control, which would

then result in the correct application of pre-defined heating patterns, preventing un-

desired effects and improving effectiveness. For hyperthermia/diathermia applications,

the accepted maximum absolute error is of 0.5 oC/cm3 [51], that constitutes the gold

standard resolution, only admittedly achieved by using magnetic resonance imaging

(MRI) methods, a very expensive technology, when compared to other instrumentation.

A lot of research has been made on non-invasive temperature estimation. Published

works are based on electrical impedance tomography (EIT) [16], microwave thermome-

try [52], magnetic resonance imaging [53], and backscattered ultrasound (BSU) [54]. We

leave a special reference to ultrasound based techniques, which consist on a very cheap

technology when compared to MRI. Several methods have been reported, based on the

extraction of temporal-echo shifts [54], frequency shifts [55], changes on the attenuation

coefficient [56], and changes on the backscattered energy [57].

Lets assume a reliable (according to the MRI standard), practical, and non-invasive tem-

perature estimation method is employed to obtain a large set of data, i.e. a big database

of temperature curves, taken from a set of patients with diversified characteristics. If

the patients are chosen in a way that the data represents knowledge over diverse types

of tissues with diverse characteristics, then the only question to be answered is: can a

model learn the dynamics of the process, masked under a noisy set of data (because the

temperature estimator would certainly introduce error), and still have the power to gen-

eralize accordingly? We are admitting a reliable temperature estimation technique, i.e.

noise magnitude is bounded by 0.5/cm3 (MRI gold standard). This would mean that we

have available a large data base of reliable data. Thus one could argue that a sufficient

amount of knowledge, about the temperature evolution on human tissues, is available.

If so, equally reliable models can be constructed that make use of this abundant data.

The assessment of this question can be partially provided by introducing additive noise

to the set of data collected by the experimental setup exposed at Chapter(3). This noise

represents the inherent error associated with the temperature estimation method. The

noisy data can then be used to train and validate the network using the same method-

ologies described early in this chapter. By doing so we are challenging our system to
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learn the dynamics of temperature space-time propagation in a non-invasive way. Again,

when the environment complexity is scaled, the system should respond accordingly and

perform well. If so, it might become practical to obtain a large data set to be used to

train a reliable temperature predictive model.

Concerning the additive noise, we assume the error over a large set of temperature

estimations can be considered as normally distributed, with zero mean µ = 0 and a

standard deviation σ = 0.15. Such a distribution is shown in Figure (4.12).

Figure 4.12: Gaussian distribution with µ = 0 and σ = 0.15.

With a probability density function given by:

f(x, µ, σ) =
1

σ
√

2π
e−(x−µ)

2/2σ2
= 2.65962e−22.2222x

2
(4.7)

Therefore, the probability of the error being lower than 0.45 is P (error < 0.45) = 99.7%.

Regarding the addition of the noise, the same methodology is always applied. The

addition of Gaussian noise is made on a point-to-point basis. This means each temper-

ature value in a curve is independently contaminated with a real number drawn from

a Gaussian distribution, ei ∼N (0, σ). Also it should be mentioned that every a noisy

contaminated temperature curve is used to create and test a model, the noise addition
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is repeated. It should be emphasized that all the additions are uncorrelated.

For exemplification purposes, Figures (4.13) and (4.14) show the temperature evolution

of the homogeneous phantom experiment, with and without the addition of Gaussian

noise, correspondingly.

Figure 4.13: Temperature evolution measured by sensor 2, on the simple homoge-
neous phantom experiment (1.0W/cm2). The plot illustrates the noise free version of
the signal, in contrast with Figure (4.14), where Gaussian noise was added to the signal.

Figure 4.14: Gaussian noise was added to the previous signal, taken from a normal
distribution with µ = 0 and σ = 0.15.
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The noisy version of signal naturally constitutes a more challenging task to the model

learning process. By adequately designing the network we can minimize the trade off

between ease of data acquisition and model correctness, since increasing the noise con-

currently increases the probability of the noise dynamics being learned by the network.

Design considerations must be aware of this fact, in order to create networks immune to

noise. This addition gives rise to construction of models based on simulated non-invasive

estimations. Furthermore, adding noise will force a disagreement among the individual

networks that constitute that ensemble, thus one can expect uncorrelated individual

errors, which means that high ambiguity levels are present in the ensemble.

In order to prevent the network of learning the noise dynamics, we need to limit their

power. Ideally, the network should be designed with just enough function approximation

power to learn the process dynamics. Thus, hindering the network from learning the

noise dynamics can be achieved by imposing a limit in the orders of the splines that

form the BSNN. Initially the maximum allowed order was set to four. However, as

previously noted the high TUS intensity may induce fast abrupt temperature changes,

which possibly need a higher order to be approximated. The maximum allowed oreder

should be revised if such situation is encountered.

4.4 Modelling approaches

This section is reserved to expose the approaches taken when modelling the temperature

evolution. We intend to characterize in detail the methods employed during the differ-

ent experiments done in this work. All the approaches taken are independent of the

model typology being considered. In a compact form, we propose to apply the following

methods:

1. keep-the-best (KTB)

2. simple average ensemble

3. ensemble optimized with an evolutionary strategy

4. ensemble optimization with NDEO
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It is intended to apply the four methods always two times: one using the original data;

and a second time with the random Gaussian noise corrupted data set. In experiments

using the original data, it’s expected that the ensemble methods don’t return satisfactory

performance gains, when compared with KTB, due to the high correlation present among

the networks. Randomization of the patterns that constitute the data sets (validation,

training and test), should not be sufficient to achieve the desired levels of ambiguity.

Nevertheless the results are shown to confirm or refute the expectations.

However using noisy data to train and validate the models one can expect a high increase

in the ambiguity levels of the ensemble, since the addition of random noise to the data

acts as an decorrelation agent in the ensemble. Once the desired ambiguity levels are

achieved, the system can incur into network output combination that should decrease

the generalization error as desired. By adding Gaussian noise to the data, the whole

complete set of original noise-free data can be used in the test set, which is useful to

assess the performance and robustness of the system. The four listed approaches are

described next.

4.4.1 Keep-the-best (KTB)

Firstly the traditional KTB approach is considered. The architecture of the predictive

system employing this simple approach is illustrated in Figure (4.15).

Four models are constructed for each experiment. Each network has a specific num-

ber of lags, ranging from 2 − 5, for comparison purposes. The selection of each one of

the four models follows the traditional KTB scheme, i.e. the model that best performs

in the validation set is chosen. Creating networks with different number of input lags

provides means of comparison between the best number of inputs to use and also acts

as a decorrelation agent amid the ensemble, albeit most likely not sufficient to justify

ensemble approaches when using the original data.

All the following approaches consider a network ensemble, hence more overhead has to

be introduced. The simple architecture presented in Figure (4.15) has to be modified.
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Figure 4.15: Predictive system architecture employing the traditional KTB method.

4.4.2 Simple average ensemble

In this approach the four models with distinct number of input lags are combined to

forge a prediction. The architecture employed is illustrated in Figure ((4.16).

The final output consists in a weighted sum all the individual predictions. The output

is given by:

T (k + 1) =
1

N

N∑
i=1

ωiTi(k + 1) (4.8)

By considering a simple average scheme, each individual output is equally weighted:

ωi =
1

N
for all i (4.9)

This represents the most basic network ensemble scheme. Nevertheless if the models are

sufficiently uncorrelated, this approach is expected to outperform the KTB approach.

Hereafter the weight vector can be optimized for better results. A evolutionary strategy

was chosen to optimize the weight vector.
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Figure 4.16: Predictive system architecture employing a neural network ensemble.

4.4.3 Ensemble optimized (ES)

A standard ES with uncorrelated mutations and n step sizes [58] was employed to

optimize the weight vector, present in Figure (4.16). The mutation operator in ES is

based in a Gaussian distribution, characterized by two parameters: the mean µ and the

standard deviation σ. Then the basic mutation is done applying the following change:

xt+1
i = xti +N(µ, σ) (4.10)

With N(µ, σ) given by:

N(µ, σ) =
1

σ
√

2π
e−(x−µ)

2/2σ2
(4.11)

The mean was set to µ = 0 and the standard deviation to σ = 1. x is a n dimensional

vector to be optimized (n = 4 for optimization process). An uncorrelated mutation



Chapter 4. Applied estimation models 90

optimization with n step sizes, admits the following mutation mechanism:

σt+1
i = σtie

τ1N(0,1)+τ2Ni(0,1) (4.12)

xt+1
i = xti + σiNi(0, 1) (4.13)

τ1 is the global learning rate, given by:

τ1 =
1

2
√
n

(4.14)

And τ2 the individual learning rate:

τ2 =
1√
2
√
n

(4.15)

τ1, τ2 and σi form the strategy parameters. σi is mutated as in equation (4.12).

Initially the step sizes σi are initialized to 0.001 and the weights are randomly initialized

between 0.1 and 0.4. The justification for the initial step size is empirical following the

tests that were done. The weight initialization intended to not assign a priori a wide

preference to a network, since the weight vector has to respect the following constrains:

xi ≤ 1 for for all i (4.16)

and
n∑
i=1

xi = 1 (4.17)

The population size was set to µ = 15 and the offspring size to λ = 6µ = 90. The

optimization process runs for 100 generations and the best individual (weight vector) is

chosen.

The minimization is done just in the validation set used to train the model. Hence the

cost function forces the minimization of the MSE in the validation set.

ω̂ = arg min(MSEv) (4.18)
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Lastly, the NDEO approach was employed, which we discuss next.

4.4.4 Neural dynamic ensemble optimization (NDEO)

As discussed in Section (2.8.3) we propose a new paradigm for combining the ensemble

outputs. This solution employs a neural network as the optimization mechanism. The

proposed two layered architecture is shown in Figure (2.8.3).

Figure 4.17: Predictive system architecture employing NDEO.

The second layer adds intelligence to the combination mechanism, thus we expect a con-

siderable return in performance gains. The additional inputs to the second layer network

(I(k) and P (K)) are model typology dependant. This extra knowledge about the cur-

rent input pattern should allow the network to dynamically optimize the arrangement

of outputs, enhancing the best particularities learned in each one of the models, having

in consideration the current intensity-spatial information.

The large additional overhead introduced by this optimization mechanism is just justi-

fied in ensembles with small correlations levels. Otherwise, this overhead does not return
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benefits in performance, i.e not an advantageous trade-off. Nevertheless, by adding ran-

dom Gaussian noise the original data set before training the networks, we expect to

create suitable opportunities to explore and assess the NDEO approach.

All the results and discussions are exposed in Chapter (5).



5
Results and discussion

5.1 Introduction

The data gathered from the experimental setups, presented in Chapter (3), was subse-

quently used to derive predictive models, whose performance we expose at this chapter.

The methodologies followed to design and construct the models are stated in Chap-

ter (4). As referred, four model typologies were considered (SISP, SIMP, MIMP), and

the complexity of the environments being modelled was increased in a gradual fashion.

Following the methodology detailed in Section (4.2.1), two models are considered for

each operation environment and model typology, one for each thermal phase, heating

and cooling. A division is made between the results of each phase, but are presented

together. An operation environment is characterized by its model typology as well as

the operating points (data) used to construct the models.

93
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Concerning model performance descriptors, the MSE and MSRE, Section (2.5), were em-

ployed as error performance criteria. We present the error evaluated through all the data

sets. The maximum absolute error in all the the subsets is also indicated. Model com-

plexity was assessed calculating the linear weight norm (LWN), which is an important

criterion, since it provides a descriptor with information about the model specialization

to the training data, which we highly want to avoid. Furthermore, the balance between

these two indicators was done by using the bayesian information criterion (BIC), that

takes in consideration both error and complexity indicators. This criteria are detailed

in Section (2.5). The stopping reasoning is also pointed: n for normal stopping; and e

for a stop due to early stopping method. Normal stopping is triggered after the achieve-

ment of satisfactory performance conditions. Listing all the model descriptors in a more

compact form:

• bayesian information criterion BIC.

• mean square error in the training set MSE.

• mean square relative error in the training set MSRE.

• mean square error in the validation set MSEv.

• mean square relative error in the validation set MSREv.

• mean square error in the test set MSEt.

• mean square relative error in the test set MSREt.

• maximum absolute error though all the data set Mae.

• linear weight norm LWN .

• training stopping reason SR.

Graphical illustrations contrasting the original data with the one predicted by the mod-

els are thoroughly shown, together with tables constructed from the performance figures.

We shall consider predictive models based on invasive measurements, as well as pre-

dictive models based on simulated non-invasive estimations, by considering additive

Gaussian noise over the original data, and repeating the modeling activity and compare

the results, i.e. assess the robustness of the models to corrupted data.
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5.2 Single-point single-intensity (SPSI)

We begin the presentation of the obtained results by first considering the simplest model

typology, SPSI. By being the simplest environment, good performance indicators are ex-

pected in this section. The experimental arrangements, detailed in Chapter (3), were

subject to the applied models, taking into account the various spatial points and intensi-

ties applied. A reference is made to Section (4.3.1.1), where the general network designs

employed for this typology are briefed.

This section makes use of the data acquired using the experimental setup presented in

Section (3.3). Just a few SPSI predictive models results are presented with graphical

illustration support, due to the extensive number of models applied.e

Model environment: TUS Intensity (1.0W/cm2), Sensor (1)

We begin by considering a model to predict the temperature evolution experienced

at the closest sensor to the TUS device, Figure (3.4), with a TUS beam intensity of

1.0W/cm2. Using the original data shown in Figure (5.1), 70% was used for training,

20% for validation and 10% for testing. The pattern splitting was random as opposed

to contiguous.
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Figure 5.1: Unaltered data set used for SPSI model training, validation and test. Col-
lected from the homogeneous phantom experimental setup. TUS intensity: 1.0W/cm2.

Sensor 1.

As discussed in the previous chapters, four different models were constructed, each one

with a different number of input lags, ranging from 2 − 5. Table (5.1) presents the

performance descriptors calculated for each one of the four models considered.
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Table 5.1: Performance descriptors obtained concerning models with different number
of input lags. The models presented were selected using the KTB approach. SPSI,

Sensor 1 (1.0 W/cm2). Used data: uncorrupted

Model 1(2 lags) Model 2(3 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -9248 -8826 BIC -8859 -7861

MSE 2.4055e-05 2.4349e-05 MSE 2.1325e-05 9.7163e-05

MSRE 8.8628e-07 9.5225e-07 MSRE 7.7766e-07 3.6108e-06

MSEv 7.1255e-04 1.4595e-03 MSEv 2.1609e-04 6.9510e-04

MSREv 2.5453e-05 5.6024e-05 MSREv 7.5944e-06 2.7347e-05

MSEt 9.1783e-04 3.4404e-04 MSEt 5.8617e-04 3.2529e-04

MSREt 3.2229e-05 1.3986e-05 MSREt 2.0520e-05 1.3312e-05

Mae 0.2890 0.3603 Mae 0.0878 0.3194

LWN 7 16 LWN 7 7

SR e e SR e e

Model 3(4 lags) Model 4(5 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -8449 -8398 BIC -9595 -10000

MSE 3.6447e-05 5.4516e-05 MSE 8.6044e-06 1.1740e-05

MSRE 1.3700e-06 2.0085e-06 MSRE 3.0504e-07 4.6166e-07

MSEv 4.0105e-04 4.8289e-04 MSEv 1.3824e-04 5.2748e-04

MSREv 1.4156e-05 1.9033e-05 MSREv 4.8266e-06 2.0850e-05

MSEt 3.8191e-04 5.1135e-04 MSEt 8.7054e-04 4.1142e-04

MSREt 1.3326e-05 2.0758e-05 MSREt 3.0425e-05 1.6794e-05

Mae 0.1650 0.1836 Mae 0.1207 0.2195

LWN 11 11 LWN 11 12

SR e e SR e e

Despite the distinct number of input lags all the models learned the process dynamics

and performed well in the generalization (test) set. The training phase was always
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stopped due to early stopping method. The models exhibit maximum absolute errors

Mae always below 0.35 oC, which constitutes a small error in a process that shows a

3 oC variation in less then 20 seconds. Decision about which model to plot took into

consideration the best average (heating and cooling) validation error . Therefore, Figure

(5.1) shows the behaviour of model 2 in training, validation and data set.

Figure 5.2: Behaviour of model 2 through the whole data set, selected using the KTB
approach. The blue line represents the desired behaviour and the model’s training
output is given by the black line. The error line is red, circle and cross markers repre-
sents the model’s validation and test output respectively. SISP,homogeneous phantom

experimental setup. TUS intensity: 1.0W/cm2. Sensor 1. Used data: uncorrupted

Observing the model output, it is clear that the network learned the process dynamics

and follows the output.

Following the construction of the four models, the ensemble approaches were employed

and assessed. Table (5.2) shows the results obtained for all the methods applied. On

average the generalization error was improved, in both heating and cooling phases,

albeit not substantially. These results are better appreciated observing Table (5.3),

which compares the error obtained in the test set from all approaches applied. When

the generalization error comparison between the paradigms is performed, three figures

are assessed: in the heating phase; in the cooling phase; and a last which takes the

simple average between the two phases (Average comparison).
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Table 5.2: Performance comparison between all methodologies employed (KTB and
ensemble methods). SPSI, Sensor 1 (1.0 W/cm2). Used data: uncorrupted

Model 1 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 7.1255e-04 9.1783e-04 0.2890 1.4595e-03 3.4404e-04 0.3603

Ensemble (SA) 6.8421e-04 8.3069e-04 0.2900 1.2982e-03 3.0665e-04 0.3413

Ensemble optimized (ES) 7.1179e-04 8.3775e-04 0.2900 1.3059e-03 2.9457e-04 0.3413

NDEO 6.9808e-04 8.5217e-04 0.2900 1.1479e-03 3.0232e-04 0.3407

Model 2 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.1609e-04 5.8617e-04 0.0878 6.9510e-04 3.2529e-04 0.3194

Ensemble (SA) 2.0145e-04 5.3277e-04 0.0847 6.6896e-04 2.9166e-04 0.3189

Ensemble optimized (ES) 2.0779e-04 5.2247e-04 0.0864 6.7441e-04 2.9574e-04 0.3142

NDEO 2.2283e-04 5.9415e-04 0.0810 6.6396e-04 3.0266e-04 0.3131

Model 3 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 4.0105e-04 3.8191e-04 0.1650 4.8289e-04 5.1135e-04 0.1836

Ensemble (SA) 5.1782e-04 4.0567e-04 0.2278 5.2533e-04 5.0317e-04 0.1868

Ensemble optimized (ES) 4.1018e-04 3.9166e-04 0.1670 4.7881e-04 5.1068e-04 0.1834

NDEO 4.0102e-04 3.8182e-04 0.1650 4.6776e-04 5.0624e-04 0.1805

Model 4 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 1.3824e-04 8.7054e-04 0.1207 5.2748e-04 4.1142e-04 0.2195

Ensemble (SA) 1.4380e-04 7.0261e-04 0.1275 5.9516e-04 4.2069e-04 0.2481

Ensemble optimized (ES) 1.4987e-04 6.6091e-04 0.1191 5.3924e-04 4.0676e-04 0.2326

NDEO 1.4163e-04 7.7495e-04 0.1198 5.2096e-04 4.0461e-04 0.2234
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Observing the generalization error comparison table one can conclude the generaliza-

tion performance of the ensemble was enhanced by a small amount, with the Ensemble

optimized (ES) exhibiting consistent improvement results. The NDEO approach suffers

from deficient ambiguity levels to justify the overhead introduced in the system. The

results obtained applying this method are worst then one obtained with the simple av-

erage (SA) ensemble.

Table 5.3: Generalization error obtained with the ensemble approaches in comparison
with the KTB model selection. SPSI, Sensor 1 (1.0 W/cm2). Used data: uncorrupted.
Notice that a negative value means mitigation of the performance, i.e. the performance

got worst.

Model 1 (2 Lags) Heating Cooling Average comparison

Ensemble (SA) 9.49 % 10.87 % 10.18 %

Ensemble optimized (ES) 8.72 % 14.38 % 11.55 %

NDEO 7.15 % 12.13 % 9.64 %

Model 2 (3 Lags) Heating Cooling Average comparison

Ensemble (SA) 9.11 % 10.34 % 9.72 %

Ensemble optimized (ES) 10.87 % 9.09 % 9.98 %

NDEO -1.36 % 6.96 % 2.80 %

Model 3 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) -6.22 % 1.60 % -2.31 %

Ensemble optimized (ES) -2.55 % 0.13 % -1.21 %

NDEO 0.02 % 1.00 % 0.51 %

Model 4 (5 Lags) Heating Cooling Average comparison

Ensemble (SA) 19.29 % -2.25 % 8.52 %

Ensemble optimized (ES) 24.08 % 1.13 % 12.61 %

NDEO 10.98 % 1.66 % 6.32 %

The results just presented made use of the uncorrupted data to construct and validate

the model. Then Gaussian noise is added to the data, where the addition is repeated

four independent times, one for each of the four models. More specifically this means
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that the uncorrupted data set was taken as the base set. Then this set was corrupted

four independent times. Each time admits a independent point-to-point contamination,

as detailed in Section(4.3.2). So each point xi, belonging to the original data set S, is

corrupted by doing:

xi = xi + ei∼N (0, σ)

This process is repeated four times to create four independent corrupted data sets Cj ,

with j = 1, 2, 3, 4, that are used to construct four models. By using this scheme, both the

training and validation sets employed in the construction of each network are completely

differently, which hopefully will translate in highly uncorrelated models as pretended.

An illustrative data set used to train, validate and test the next four models is plotted

in Figure (5.3). This time the models are to be constructed using corrupted data.

Figure 5.3: Data after the addition of random Gaussian noise. The noisy data is
used for training and validation. The unaltered, noise free data is used to test the
model. Collected from the homogeneous phantom experimental setup. TUS intensity:

1.0W/cm2. Sensor 1.

A 70/30 data splitting scheme was applied for the training and validation set respectively.

Concerning the data test, the whole unaltered, uncorrupted data set was used to assess

the generalization ability model. This provides a complete and robust assessment of the

network, which ideally should not learn the noise dynamics and hence perform well in

the test set. Table (5.4) exposes the performance figures calculated.



Chapter 5. Results and discussion 102

Table 5.4: Performance descriptors obtained concerning models with different number
of input lags. The models presented were selected using the KTB approach. SPSI,

Sensor 1 (1.0 W/cm2). SPSI, Sensor 1 (1.0 W/cm2). Used data: corrupted

Model 1(2 lags) Model 2(3 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -2748 -2935 BIC -2913 -3062
MSE 4.1291e-02 3.7153e-02 MSE 3.2146e-02 3.3540e-02
MSRE 1.4387e-03 1.5170e-03 MSRE 1.1191e-03 1.3708e-03
MSEv 4.7449e-02 4.0248e-02 MSEv 3.2683e-02 2.7664e-02
MSREv 1.6614e-03 1.6436e-03 MSREv 1.1342e-03 1.1335e-03
MSEt 2.5462e-03 2.2165e-03 MSEt 9.8486e-04 8.8478e-04
MSREt 8.9262e-05 9.0777e-05 MSREt 3.5378e-05 3.5631e-05
Mae 0.2501 0.1254 Mae 0.3924 0.1903
LWN 7 9 LWN 10 12
SR n n SR n n

Model 3(4 lags) Model 4(5 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -2937 -3048 BIC -3005 -3188
MSE 2.8745e-02 2.9837e-02 MSE 2.7276e-02 2.8771e-02
MSRE 9.9828e-04 1.2236e-03 MSRE 9.4835e-04 1.1812e-03
MSEv 3.0809e-02 3.1125e-02 MSEv 2.8545e-02 2.7145e-02
MSREv 1.0739e-03 1.2737e-03 MSREv 9.9020e-04 1.1123e-03
MSEt 7.0740e-04 1.1927e-03 MSEt 5.7017e-04 7.7317e-04
MSREt 2.5086e-05 4.6561e-05 MSREt 2.0246e-05 3.1034e-05
Mae 0.2227 0.3632 Mae 0.1481 0.1489
LWN 16 16 LWN 20 20
SR n n SR n n

The maximum absolute error Mae was calculated admitting only the errors obtained in

the test set. Naturally the errors obtained concerning a noisy pattern do not provide

information about the network’s fulfillment of learning the process dynamics, hence we

decided to just consider the test set to derive the Mae. By doing so we enhance the

value of this performance criterion. The model’s behaviour over the test set is plotted

in Figure (5.4). The chosen model this time was the one who performed better in the

test set (model 4).
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Figure 5.4: Behaviour of model 4 in the test set, selected using the KTB approach.
The blue line represents the desired behaviour and the model’s test output is given by
the black line. The error line is red. SISP, homogeneous phantom experimental setup.

TUS intensity: 1.0W/cm2. Sensor 1. Used data: corrupted

The generalization error was always kept under 0.2 oC, a result that suggests a consis-

tency. The network has proven to have learned the process dynamics in a robust way,

i.e. immune to the additive noise.

We now present the results obtained regarding the network ensembles approaches. Table

(5.5) assesses the performance of the network ensemble methods, and Table (5.6) pro-

vides a comparison between the later methods with the traditional KTB model selection

scheme.

The SA and ES ensemble schemes exhibit a very unstable behaviour, as can be observed

by the comparison table. This two methods just seem to justify if the models are trained

with just two input lags, and their performance deteriorates as the number of lags is

increased. However, as expected, the NDEO method outperforms all of the other ap-

proaches in a consistent way. With highly uncorrelated models, due to the presence of

noise, the NDEO approach combines the individual outputs in an active, proficient way.

Concerning SPSI typology models, five additional environments were considered, corre-

sponding to five different operating points:
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Table 5.5: Performance comparison between all methodologies employed. SPSI, Sen-
sor 1 (1.0 W/cm2). Used data: corrupted

Model 1 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 4.7449e-02 2.5462e-03 0.2501 4.0248e-02 2.2165e-03 0.1254
Ensemble (SA) 2.9488e-02 1.1367e-03 0.3183 2.6414e-02 1.0905e-03 0.1739

Ensemble optimized (ES) 2.9119e-02 1.1797e-03 0.3183 2.5781e-02 7.4995e-04 0.1739
NDEO 3.0180e-02 2.2287e-04 0.3130 2.6448e-02 8.7589e-04 0.4370

Model 2 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 3.2683e-02 9.8486e-04 0.3924 2.7664e-02 8.8478e-04 0.1903
Ensemble (SA) 2.4170e-02 1.0837e-03 0.3183 2.2605e-02 1.0888e-03 0.1739

Ensemble optimized (ES) 2.4177e-02 1.1267e-03 0.3183 2.1939e-02 7.4800e-04 0.1739
NDEO 2.3749e-02 2.4885e-04 0.3375 2.3391e-02 2.0987e-04 0.2134

Model 3 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 3.0809e-02 7.0740e-04 0.2227 3.1125e-02 1.1927e-03 0.3632
Ensemble (SA) 2.2382e-02 9.9712e-04 0.2476 2.5498e-02 1.0837e-03 0.1739

Ensemble optimized (ES) 2.2276e-02 1.0402e-03 0.2476 2.5450e-02 7.4259e-04 0.1739
NDEO 2.1932e-02 4.1210e-04 0.2488 2.5755e-02 3.2995e-04 0.1457

Model 4 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.8545e-02 5.7017e-04 0.1481 2.7145e-02 7.7317e-04 0.1489
Ensemble (SA) 2.2637e-02 9.4498e-04 0.1870 2.1699e-02 1.0597e-03 0.1317

Ensemble optimized (ES) 2.2537e-02 9.8807e-04 0.2056 2.0871e-02 7.1835e-04 0.1073
NDEO 2.2970e-02 5.3478e-04 0.1063 2.1659e-02 2.8762e-04 0.1057

• 1.8W/cm2, Sensor 1

• 0.5W/cm2, Sensor 2

• 1.5W/cm2, Sensor 3

• 1.8W/cm2, Sensor 4

• 1.0W/cm2, Sensor 5

The results obtained admitting the listed operating points are exposed at Appendix(C)

so we can move forward to more complex scenarios, modeling different operating envi-

ronments.
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Table 5.6: Generalization error obtained with the ensemble approaches in comparison
with the KTB model selection. SPSI, Sensor 1 (1.0 W/cm2). Used data: corrupted

Model 1 (2 Lags) Heating Cooling Average comparison

Ensemble (SA) 55.36 % 50.80 % 53.08 %
Ensemble optimized (ES) 53.67 % 66.16 % 59.92 %

NDEO 91.25 % 60.48 % 75.87 %

Model 2 (3 Lags) Heating Cooling Average comparison

Ensemble (SA) -10.04 % -23.06 % -16.55 %
Ensemble optimized (ES) -14.40 % 15.46 % 0.53 %

NDEO 74.73 % 76.28 % 75.51 %

Model 3 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) -40.96 % 9.14 % -15.91 %
Ensemble optimized (ES) -47.04 % 37.74 % -4.65 %

NDEO 41.74 % 72.34 % 57.04 %

Model 4 (5 Lags) Heating Cooling Average comparison

Ensemble (SA) -65.74 % -37.06 % -51.40 %
Ensemble optimized (ES) -73.29 % 7.09 % -33.10 %

NDEO 6.21 % 62.80 % 34.50 %

5.2.0.1 Results discussion

This section dealt with the simplest model typology considered, a single intensity ap-

plied on a single spatial point. Nevertheless considering KTB approach, the models

revealed to be consistently accurate, with maximum absolutes errors far below the MRI

standard of 0.5 oC. These results were independent of the addition of Gaussian noise to

the training and validation set which exposes the robustness of the models constructed.

Fast, abrupt temperature evolutions consist in the biggest challenges that the predictive

networks need to deal with. The sensors closer to the TUS transducer face experienced

this sharp variations of temperature, while the further sensors presented smooth, slow

temperature variations, dynamics that the models can predict without a significant ef-

fort.

Concerning the ensembles approaches, the SA method proved itself to be an unreliable

method due to an unstable behaviour, exhibiting oscillatory performances figures. Re-

garding the ES approach, considerable performance gains were achieved applying this



Chapter 5. Results and discussion 106

method. It demonstrated the particularity of enhancing the predictions even in condi-

tions with low ambiguity, i.e. models trained with the original data. Constructing the

models with noisy data, i.e. forcing uncorrelated models, the NDEO approach outper-

formed all the others combination schemes, due to the addition of a second intelligent

layer in the ensemble system architecture.

The predictive models complexity is now increased to admit multiple intensities, at a

single spatial point. The results are presented in the following section.

5.3 Single-point multi-intensity (SPMI)

This section presents the results obtained with respect to SPMI models which, in addi-

tion to the previous model typology, now admit multiple intensities at a single spatial

point, thus allowing for the creation of more complex models. The models were struc-

tured following the strategies explained in Section(4.3.1.2).

Due to the extensive amount of data needed to be present in this work, we chose to just

deal in this section with models trained with noisy corrupted data. We assume that if

satisfactory models can be built with this corrupted data, the same condition is true if

they are trained with the original data, since the former consists of a more complex task.

Concerning the ensembles approaches we are interested to ascertain if their predictive

performance enhancement is scaled as the models complexity is increased, i.e. if it is

feasible to assume that performance gains obtained with the ensemble approaches in

simple environments would exhibit a comparable counter part when the environment

complexity is scalable.

Model environment: Sensor (1), all TUS intensities

Analogous to the previous model typology, sensor 1 is firstly considered, the more closest

one to the TUS device face. This time the models were built using all of the data available
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for this point: 0.5W/cm2, 1.0W/cm2, 1.5W/cm2 and 1.8W/cm2. Figure (5.5) depicts

this data after the addition of Gaussian noise.

Figure 5.5: Data after the addition of random Gaussian noise. The noisy data is
used for training and validation. The unaltered, noise free data is used to test the
model. Collected from the homogeneous phantom experimental setup. The top curve
corresponds to the strongest intensity. TUS intensity (from the shortest curve to the

tallest curve): 0.5W/cm2, 1.0W/cm2, 1.5W/cm2 and 1.8W/cm2. Sensor 1.

Data collected at 0.5W/cm2, 1.0W/cm2 and 1.8W/cm2 was used for training and data

collected at 1.5W/cm2 was used for validation. The whole complete noise free data

set was used for testing. By doing so, the test set is capable of providing a complete

assessment of the model. Four models with different number of input lags were built

and the performance descriptions are calculated in Table (5.7).

Regarding the SPMI model typology, the data collected at sensor 1 undoubtedly repre-

sents the most difficult learning task, due to the more accentuated abrupt temperature

changes. At 1.8W/cm2 the temperature rises from below 24 oC to 31 oC in a matter of

seconds. Nevertheless, the models proved to have learned the process dynamics, even by

just having available noisy data. Model 1 and 2 just needed information from two and

three past observations (input lags), respectively, to predict the temperature evolution

through all the test set (complete unaltered data set) within a maximum absolute error

threshold of 0.5 oC. The unaltered data of 1.5W/cm2 was also part of the test set, pro-

viding an evaluation about the interpolation ability available in the networks. This is

true since their parameters have not been adapted in compliance this data (1.5W/cm2).
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Table 5.7: Performance descriptors obtained concerning models with different number
of input lags. The models presented were selected using the KTB approach. SPMI

(Sensor 1). Used data: corrupted.

Model 1(2 lags) Model 2(3 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -11670 -12347 BIC -12068 -12794
MSE 3.4370e-02 3.3361e-02 MSE 3.0288e-02 2.9174e-02
MSRE 1.1796e-03 1.3571e-03 MSRE 1.0440e-03 1.1880e-03
MSEv 3.2934e-02 3.0774e-02 MSEv 3.4142e-02 3.1575e-02
MSREv 1.0475e-03 1.2247e-03 MSREv 1.0877e-03 1.2512e-03
MSEt 8.3782e-04 1.0303e-03 MSEt 1.1708e-03 7.2136e-04
MSREt 2.9493e-05 4.0939e-05 MSREt 4.1357e-05 2.8036e-05
Mae 0.2997 0.2227 Mae 0.4559 0.2891
LWN 11 12 LWN 15 16
SR e n SR e e

Model 3(4 lags) Model 4(5 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -12200 -13104 BIC -12164 -12882
MSE 2.8805e-02 2.6549e-02 MSE 2.9016e-02 2.7875e-02
MSRE 9.9212e-04 1.0790e-03 MSRE 1.0019e-03 1.1316e-03
MSEv 3.0790e-02 2.9344e-02 MSEv 2.7253e-02 2.8519e-02
MSREv 9.8403e-04 1.1640e-03 MSREv 8.6871e-04 1.1302e-03
MSEt 1.5028e-03 6.8125e-04 MSEt 1.4677e-03 6.8226e-04
MSREt 5.2962e-05 2.5494e-05 MSREt 5.1484e-05 2.5676e-05
Mae 0.5575 0.3049 Mae 0.5740 0.3552
LWN 19 19 LWN 19 23
SR e e SR e e

Model 1 with just two input lags had the best performance once it has predicted the tem-

perature evolution, concerning all intensities, within an error threshold of 0.3 oC.Figures

(5.6), (5.7), (5.8) and (5.9) depict the actual output of model 3 through all the test set.
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Figure 5.6: Behaviour of model 3 in the test set (Sensor 1 0.5W/cm2), selected using
the KTB approach. The blue line represents the desired behaviour and the model’s test
output is given by the black line. The error line is red. SIMP, homogeneous phantom

experimental setup. Used data: corrupted.

Figure 5.7: Behaviour of model 3 in the test set (Sensor 1 1.0W/cm2), selected using
the KTB approach. The blue line represents the desired behaviour and the model’s test
output is given by the black line. The error line is red. SIMP, homogeneous phantom

experimental setup. Used data: corrupted.



Chapter 5. Results and discussion 110

Figure 5.8: Behaviour of model 3 in the test set (Sensor 1 1.5W/cm2), selected using
the KTB approach. The blue line represents the desired behaviour and the model’s test
output is given by the black line. The error line is red. SIMP, homogeneous phantom

experimental setup. Used data: corrupted.

Figure 5.9: Behaviour of model 3 in the test set (Sensor 1 1.8W/cm2), selected using
the KTB approach. The blue line represents the desired behaviour and the model’s test
output is given by the black line. The error line is red. SIMP, homogeneous phantom

experimental setup. Used data: corrupted.

Assuredly the process dynamics were learned by the model since it performed well

through all the test set, covering all TUS intensities experienced at sensor 1. Table

(5.8) depicts the ensemble approaches performance while Table (5.9) compares the gen-

eralization ability with the KTB scheme.
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Table 5.8: Performance comparison between all methodologies employed. SPMI (Sen-
sor 1). Used data: corrupted.

Model 1 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 3.2934e-02 8.3782e-04 0.2997 3.0774e-02 1.0303e-03 0.2227
Ensemble (SA) 2.3309e-02 1.2209e-03 0.4718 2.2110e-02 7.1536e-04 0.2851

Ensemble optimized (ES) 2.2391e-02 6.3881e-04 0.3462 2.1911e-02 8.3465e-04 0.2963
NDEO 2.2202e-02 1.2414e-04 0.4842 2.1852e-02 2.0014e-04 0.3915

Model 2 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 3.4142e-02 1.1708e-03 0.4559 3.1575e-02 7.2136e-04 0.2891
Ensemble (SA) 2.6831e-02 1.2145e-03 0.4718 2.4366e-02 6.9943e-04 0.2851

Ensemble optimized (ES) 2.5813e-02 6.3188e-04 0.3462 2.4207e-02 8.1881e-04 0.2963
NDEO 2.5244e-02 3.5702e-04 0.1141 2.4025e-02 1.5968e-04 0.1473

Model 3 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 3.0790e-02 1.5028e-03 0.5575 2.9344e-02 6.8125e-04 0.3049
Ensemble (SA) 2.4268e-02 1.1959e-03 0.4718 2.2951e-02 6.8680e-04 0.2851

Ensemble optimized (ES) 2.3148e-02 6.1281e-04 0.3462 2.2835e-02 8.0628e-04 0.2963
NDEO 2.2749e-02 1.0355e-04 0.1121 2.2444e-02 3.9783e-05 0.1054

Model 4 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.7253e-02 1.4677e-03 0.5740 2.8519e-02 6.8226e-04 0.3552
Ensemble (SA) 2.2825e-02 1.1586e-03 0.4718 2.3741e-02 6.6876e-04 0.2851

Ensemble optimized (ES) 2.2104e-02 5.7500e-04 0.1681 2.3516e-02 7.8834e-04 0.2963
NDEO 2.1364e-02 1.1089e-04 0.0827 2.3381e-02 1.5531e-04 0.1666

The ES method managed to achieve a stable performance improvement around 20% in

all Models. However it couldn’t keep up with the enhancement levels achieved when

NDEO is applied. This performance is comparable with the performance improvements

obtained using NDEO in the previously model typology (SPSI). This suggests that

NDEO performance can scale along side with the models complexity, a highly desirable

feature.

The study of SPMI typolgy models proceeds further in Appendix(D), where the following

operating points are covered. We move forward MPMI model typolgy.
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Table 5.9: Generalization error obtained with the ensemble approaches in comparison
with the KTB model selection. Used data: corrupted.

Model 1 (2 Lags) Heating Cooling Average comparison

Ensemble (SA) -45.73 % 30.57 % -7.58 %
Ensemble optimized (ES) 23.75 % 18.99 % 21.37 %

NDEO 85.18 % 80.57 % 82.88 %

Model 2 (3 Lags) Heating Cooling Average comparison

Ensemble (SA) -3.73 % 3.04 % -0.35 %
Ensemble optimized (ES) 46.03 % -13.51 % 16.26 %

NDEO 69.51 % 77.86 % 73.69 %

Model 3 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) 20.42 % -0.82 % 9.80 %
Ensemble optimized (ES) 59.22 % -18.35 % 20.43 %

NDEO 93.11 % 94.16 % 93.64 %

Model 2 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) 21.06 % 1.98 % 11.52 %
Ensemble optimized (ES) 60.82 % -15.55 % 22.64 %

NDEO 92.44 % 77.24 % 84.84 %

• Sensor 2, all TUS beam intensities (0.5W/cm2, 1.0W/cm2, 1.5W/cm2, 1.8W/cm2)

• Sensor 3, all TUS beam intensities (0.5W/cm2, 1.0W/cm2, 1.5W/cm2, 1.8W/cm2)

• Sensor 4, all TUS beam intensities (0.5W/cm2, 1.0W/cm2, 1.5W/cm2, 1.8W/cm2)

• Sensor 5, all TUS beam intensities (0.5W/cm2, 1.0W/cm2, 1.5W/cm2, 1.8W/cm2)

5.3.0.2 Results discussion

The model complexity was increased to deal with single point environments admitting

all TUS intensities considered. The models constructed have shown satisfactory results,

again with errors thresholds below the MRI standard of 0.5 oC. All the networks were

constructed using data contaminated with noise which explicits the robustness of the

modelling approaches applied. Albeit the increased environment complexity, it was not

necessary to increase the BSNNs modelling power, i.e. the maximum allowed spline

order was kept at 4. Yet the highest errors occur using data collected at Sensor 1. Due

to abrupt temperature variation the network exhibits some difficulties to follow the fast

temperature rise.
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Regarding the ensembles approaches, the SA method couldn’t perform well and contin-

ues to present an oscillatory behaviour in compliance with the results from last typology.

The ES approach achieved consistent generalization performance improvements though

the environments, although there was a reduction in the enhancement margins. Con-

cerning the NDEO, the results were similar to the ones obtained for the last typology,

making this approach more robust than the ES. Until now the results are indicating

that a non-linear combination of the individual outputs might compensate the overhead

introduced in the system.

Furthermore the results suggest that scaling the environment complexity, and hence the

forecasting task, do not compromise the performance figures obtained for the models,

which remain, to a large extent, comparable with the results obtained regarding the

previous model typology (SPSI). This is a good indicator concerning the robustness of

the modelling approach employed and creates confidence in the results as we move to

our last model typology.

5.4 Multi-point multi-intensity (MPMI) 1−D

Having obtained satisfactory results in previous models typologies we expect to extend

the same line of results in this section. Being this the last typology considered, we shall

enquire and test the limits of the approach regarding the prediction horizon h. Given

the importance of this parameter in any predictive model, we increased it to 7 seconds

(h = 7s), which provides a more comfortable margin. This increased prediction horizon

scenario is covered in Appendix(E), where the results prove themselves, in a large extent,

highly comparable to the results obtained so far, concerning the performance criteria

applied, which is a positive indicator about the scalability of the solution being derived

in this work, providing great insight regarding the robustness of the model approach.

Once having reached to this point with satisfactory results, it would be interesting to

further increase the prediction horizon, hardening the forecasting task. We propose to

extend it to 1 minute, h = 60 seconds. Therefore the data set should be highly shortened.

The trials briefed in Chapter (3) consists in 45 minutes each trial, hence approximately
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20 data points for each phase (heating and cooling) will be used. The challenge is to

assess if such a reduced amount of information about the process is sufficient for the

network to learn the dynamics of the process. Figure (5.10) provides a glimmer about

the amount of data to be used in each trial.

Figure 5.10: An example of a trial consisting of 40 temperature data points, divided
between heating and cooling phase. Sampling period T = 60 seconds. Collected from

the homogeneous phantom experimental setup.

From the above plot one can note that the amount of data has been dramatically reduced.

Again we constructed four distinct models using the uncorrupted data exposed in Figure

(5.11). However, for this Model we consider numbers of input lags ranging from 3 − 6,

due to the hardening of the forecasting task, an additional input lag was introduced. The

maximum allowed spline order was kept at 5, and the data was splitted in compliance

with the division exposed in Appendix (B), Model 2.

Table (5.10) reflects the performance criteria obtained for all models.

Even dramatically reducing the amount of data, i.e. the information about the process,

the performing figures calculated are to a great extent, comparable with the line of re-

sults that we have been presenting. Regarding all models, the maximum absolute error

Mae was consistently kept below 0.1 oC through all the data sets (test included). This

results emphasize and highlight BSNNs approximation power and ability to interpolate

and extrapolate data with precision.

We chose to provide a graphical representation of the output in a distinct way. Instead

of providing one plot for each trial, we decided to present a global overview over the

entire data universe. We divided this representation between the heating and cooling
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Figure 5.11: Unaltered data set used for MPMI model training, validation and test.
Collected from the homogeneous phantom experimental setup. Data used: uncorrupted.

phase. Thus we present in a single plot the complete model’s behaviour in the heating (or

cooling) phase, regarding all sensors and intensities. Figures (5.12) and (5.13) provide

this overview in respect to the heating and cooling phase respectively. The results reflect

the behaviour of model 3 in the training set.

Figure 5.12: Top view from the output of model 3 concerning training set (heating
phase), selected using the KTB approach. The blue line represents the desired be-
haviour and the model’s test output is given by the black line. homogeneous phantom
experimental setup. The sensors labels just serve as a guidance. The model was con-
structed using the data illustrated in Figure (E.1). Data division during the model

constructed followed thes scheme exposed in Appendix(B), Model 2.
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Table 5.10: Performance descriptors obtained concerning models with different num-
ber of input lags. The models presented were selected using the KTB approach. MPMI.

Data used: uncorrupted

Model 1(3 lags) Model 2(4 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -1785 -2056 BIC -1759 -1952
MSE 5.4081e-04 3.0614e-04 MSE 3.8854e-04 3.2060e-04
MSRE 2.0504e-05 1.2510e-05 MSRE 1.4625e-05 1.3089e-05
MSEv 4.9297e-04 5.1184e-04 MSEv 3.2829e-04 1.9759e-04
MSREv 1.9065e-05 2.0483e-05 MSREv 1.2879e-05 8.0907e-06
MSEt 9.5985e-04 4.8647e-04 MSEt 5.7796e-04 4.5521e-04
MSREt 3.7932e-05 1.9477e-05 MSREt 2.2625e-05 1.8260e-05
Mae 0.0741 0.0636 Mae 0.0712 0.0615
LWN 24 23 LWN 23 18
SR n n SR n n

Model 3(5 lags) Model 4(6 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -1684 -1868 BIC -1581 -1775
MSE 3.7283e-04 2.4673e-04 MSE 3.3990e-04 2.4266e-04
MSRE 1.3648e-05 1.0005e-05 MSRE 1.2508e-05 9.9022e-06
MSEv 2.1692e-04 2.3333e-04 MSEv 2.5806e-04 3.7787e-04
MSREv 8.6492e-06 9.5787e-06 MSREv 9.9980e-06 1.5366e-05
MSEt 5.9423e-04 2.9731e-04 MSEt 2.0359e-04 1.2971e-04
MSREt 2.4316e-05 1.2482e-05 MSREt 8.3812e-06 5.4384e-06
Mae 0.0518 0.0474 Mae 0.0451 0.0501
LWN 17 23 LWN 18 18
SR n n SR n n

Figure 5.13: Top view from the output of model 3 concerning training set (cooling
phase), selected using the KTB approach. The blue line represents the desired be-
haviour and the model’s test output is given by the black line. homogeneous phantom
experimental setup. The sensors labels just serve as a guidance. The model was con-
structed using the data illustrated in Figure (5.11). Data division during the model

constructed followed thes scheme exposed in Appendix(B), Model 2.
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The above figures, despite confusing and hard to read, are capable of providing a top

view over the network performance, which is important to globally assess the model’s

learning process. The sensor’s labels merely give some information about the region and

were not strictly positioned. The results clearly show that, for both heating and cool-

ing phases, the networks completely learned how the temperature evolves with respect

to the TUS beam intensity and spatial location of the operating point. Note that in

the two previous plots the areas reserved to Sensor 1 one reveal four bumps (curves),

whereas areas regarding Sensors 2, 3 and 4 exhibit 3 bumps, and finally Sensor 5 with 2

noticeable curves. This fact is due to the data division exposed in Appendix(B), Model

2. The curves depict only the results obtained for the training set.

Figures (5.14) and (5.15) illustrates the output of the same model (3), but now consid-

ering two operating point embedded in the test set, Sensor 3 0.5W/cm2 and Sensor 4

1.8W/cm2, respectively.

Figure 5.14: Output curve of model 3, selected using the KTB approach, in two op-
erating points embedded in test set (sensor 3, 0.5W/cm2). The blue line represents the
desired behaviour and the model’s test output is given by the black line. homogeneous
phantom experimental setup. The sensors labels just serve as a guidance. The model
was constructed using the data illustrated in Figure (5.11). Used data: uncorrupted.

Assessing this hard tests one can visualise a noticeable trend from the model output

dynamic to follow the real dynamic, and it does it with errors below 0.1 oC.
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Figure 5.15: Output curve of model 3, selected using the KTB approach, in two op-
erating points embedded in test set (sensor 4, 1.8W/cm2). The blue line represents the
desired behaviour and the model’s test output is given by the black line. homogeneous
phantom experimental setup. The sensors labels just serve as a guidance. The model
was constructed using the data illustrated in Figure (5.11). Used data: uncorrupted.

The natural extension to the line of work being done consists of adding noise to the

original, scarce data. We now propose to contaminate the temperature evolution infor-

mation and see how the models react while keeping the 1 minute prediction horizon.

Figure (5.16) illustrates a contaminated data set (single point, single intensity), admit-

ting a 60 seconds sampling period, thus around 40 temperature data points are available

for each trial.

Figure 5.16: An example of a trial consisting of 40 temperature data points con-
taminated with Gaussian noise, divided between heating and cooling phase. Sampling
period T = 60 seconds. Collected from the homogeneous phantom experimental setup.

The above plot illustrates the destruction of information about the process dynamic
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caused by the addition of Gaussian noise ei∼N (0, σ). This disruption of information is

now dramatically amplified since the data is scarce. Therefore one can allege that such

an scenario provides an ultimate robustness assessment test to the modelling approach,

since we are considering scarce data with low quality. Using the noisy data shown in

Figure (5.17) four models were again built. Data division was the same as in the previous

Model, with the difference that the test set was merged into the validation set. However

note that this merge only occurs in this experiment and not the previous one, the test

set will now be the uncorrupted data, to asses the learning process robustness. In

compliance with this last remark, the uncorrupted data universe was used to assess the

generalization ability of the network (test set). The performance descriptors concerning

all models are shown in Table (5.11).

Figure 5.17: Data after the addition of random Gaussian noise. The noisy data is
used for training and validation. The unaltered, noise free data is used to test the

model. Collected from the homogeneous phantom experimental setup.

All the models achieved interesting and appreciable performance figures. Despite the

harsh conditions of the learning process, whose available data was scarce and of low

quality, the performance descriptors are still comparable with the results obtained with

the first considered prediction horizon of 1s. The amount of data used was dramatically

reduced by a factor of K = 1/60 and still the results are similar, with maximum absolute

errors kept below 0.3 oC, which evince the robustness of BSNNs when the forecasting

task difficulty is scaled. Figures (5.18) and (5.19) provide a top view over the complete

behaviour concerning the output curve of Model 4 over the heating and cooling phase,
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Table 5.11: Performance descriptors obtained concerning models with different num-
ber of input lags. The models presented were selected using the KTB approach. MPMI.

Data used: corrupted.

Model 1(3 lags) Model 2(4 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -860 -1024 BIC -789 -963
MSE 3.2440e-02 2.2087e-02 MSE 3.4553e-02 1.9626e-02
MSRE 1.2343e-03 9.0177e-04 MSRE 1.3007e-03 8.0298e-04
MSEv 3.3205e-02 3.5442e-02 MSEv 4.2219e-02 2.1593e-02
MSREv 1.2755e-03 1.4263e-03 MSREv 1.6236e-03 8.6601e-04
MSEt 6.0667e-03 2.5653e-03 MSEt 8.5161e-03 2.0860e-03
MSREt 2.2874e-04 1.0514e-04 MSREt 3.1937e-04 8.4590e-05
Mae 0.4539 0.1505 Mae 0.5220 0.1949
LWN 13 13 LWN 13 19
SR n n SR n n

Model 3(5 lags) Model 4(6 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -740 -880 BIC -710 -853
MSE 3.1031e-02 2.1269e-02 MSE 2.9993e-02 1.9412e-02
MSRE 1.1766e-03 8.7002e-04 MSRE 1.1254e-03 7.9900e-04
MSEv 2.5197e-02 2.1947e-02 MSEv 2.7696e-02 2.9739e-02
MSREv 9.7181e-04 8.8626e-04 MSREv 1.0726e-03 1.2069e-03
MSEt 4.8442e-03 2.6515e-03 MSEt 4.1604e-03 2.1082e-03
MSREt 1.8186e-04 1.0760e-04 MSREt 1.5499e-04 8.6064e-05
Mae 0.2928 0.3047 Mae 0.2629 0.2151
LWN 17 19 LWN 14 17
SR n n SR n n

respectively. Note that all of the data present in these figures is part of the test set, that

consists of the original, unaltered data, concerning all intensities and spatial locations.

This figures, albeit not very specific, provide a quick assessment of the learning process

the networks were incurred. Note also that now all the different areas concerning the

various sensors all have the same amount of data. This is because the test set comprises

all the available uncorrupted test, whereas the model training and validation was done

using the corrupted data.
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Figure 5.18: Top view from the output of model 3 through all the test set (heat-
ing phase), selected using the KTB approach. The blue line represents the desired
behaviour and the model’s test output is given by the black line. homogeneous phan-
tom experimental setup. The sensors labels just serve as a guidance. The model was
constructed using the data illustrated in Figure (E.4). Data division during the model
constructed followed thes scheme exposed in Appendix(B), Model 2. Data used: cor-

rupted

Figure 5.19: Top view from the output of model 3 through all the test set (cooling
phase), selected using the KTB approach. The blue line represents the desired be-
haviour and the model’s test output is given by the black line. homogeneous phantom
experimental setup. The sensors labels just serve as a guidance. The model was con-
structed using the data illustrated in Figure (5.17). Data division during the model
constructed followed thes scheme exposed in Appendix(B), Model 2. Data used: cor-

rupted

Observing the figures we get a quick indicator that the learning process was successful

and the process dynamics were understood by the BSNNs. Using scarce corrupted data,

with a different number of input lags in each model, one can infer an ensemble with
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uncorrelated models, or at least not strongly correlated. Thus the ensemble approaches

were applied and the assessment can be made in Table (5.12). Table (5.13) reflects the

comparison between the ensemble and the KTB paradigm, in the test set.

Table 5.12: Performance comparison between all methodologies employed. MPMI.
Data used: corrupted

Model 1 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 3.3205e-02 6.0667e-03 0.4539 3.5442e-02 2.5653e-03 0.1505
Ensemble (SA) 2.6175e-02 6.5921e-03 0.4539 2.6675e-02 1.9205e-03 0.1383

Ensemble optimized (ES) 2.6205e-02 6.8850e-03 0.4539 2.6015e-02 1.9975e-03 0.1383
NDEO 3.1347e-02 1.0638e-02 0.5186 2.6607e-02 5.0165e-03 0.6551

Model 2 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 4.2219e-02 8.5161e-03 0.5220 2.1593e-02 2.0860e-03 0.1949
Ensemble (SA) 4.0581e-02 4.7687e-03 0.3898 2.0823e-02 1.6091e-03 0.1217

Ensemble optimized (ES) 3.9585e-02 5.0152e-03 0.3898 1.9507e-02 1.6623e-03 0.1217
NDEO 4.7837e-02 8.8094e-03 0.5255 1.9385e-02 6.7776e-01 15.1535

Model 3 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.5197e-02 4.8442e-03 0.2928 2.1947e-02 2.6515e-03 0.3047
Ensemble (SA) 1.8996e-02 3.2280e-03 0.2595 2.1598e-02 1.5086e-03 0.1208

Ensemble optimized (ES) 1.8225e-02 3.5600e-03 0.2595 2.0720e-02 1.5953e-03 0.1115
NDEO 2.5223e-02 4.8420e-03 0.2925 2.2003e-02 2.7599e-03 0.3414

Model 4 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.7696e-02 4.1604e-03 0.2629 2.9739e-02 2.1082e-03 0.2151
Ensemble (SA) 2.5603e-02 2.2882e-03 0.1912 2.7698e-02 1.3309e-03 0.1208

Ensemble optimized (ES) 2.4527e-02 2.6439e-03 0.2270 2.8442e-02 1.4233e-03 0.1115
NDEO 2.7241e-02 3.3818e-03 0.1858 2.9719e-02 2.0975e-03 0.2149

The results demonstrate a poor performance using the NDEO approach, while the SA

approach, whose performance usually was the worst, appears as the top performance

booster. We deduce these results comes from the fact that due to the scarcity of data,

NDEO fails to develop insight about how to combine to enhance the final output. Note

that in NDEO combining learning phase, just the training and validation phases are

used, which in this Model are contaminated and moreover and most importantly, scarce.

On the contrary, the simple SA method spreads the combination more widely, and
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Table 5.13: Generalization error obtained with the ensemble approaches in compari-
son with the KTB model selection. Data used: corrupted

Model 1 (2 Lags) Heating Cooling Average comparison

Ensemble (SA) -8.66 % 25.13 % 8.24 %
Ensemble optimized (ES) -13.49 % 22.13 % 4.32 %

NDEO -75.35 % -95.55 % -85.45 %

Model 2 (3 Lags) Heating Cooling Average comparison

Ensemble (SA) 44.00 % 22.86 % 33.43 %
Ensemble optimized (ES) 41.11 % 20.31 % 30.71 %

NDEO -3.44 % -323.03 % -161.74 %

Model 3 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) 33.36 % 43.10 % 38.23 %
Ensemble optimized (ES) 26.51 % 39.84 % 33.17 %

NDEO 0.05 % -4.09 % -2.02 %

Model 2 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) 45.00 % 36.87 % 40.94 %
Ensemble optimized (ES) 36.45 % 32.49 % 34.47 %

NDEO 18.71 % 0.51 % 9.61 %

its therefore less prone to overfitting. The ES method also provided very satisfactory

results, albeit it has also been evolved using noisy data. The difference might reside on

the fact that ES approach evolves its weights considering only the validation set, while

the NDEO uses both, which may be the cause poor performance. Nevertheless these

methods provided a further boost in the accuracy of the predictions, which can be used

to generally decrease the errors.

5.4.0.3 Results discussion

Concerning MPMI 1−D model typology we started by considering a prediction horizon

of 1 second which was further increased to 7 seconds and at a second experiment to 60

seconds. It was observed comparable results among all modelling prediction horizons.

This observation is crucial to assess the robustness of the models, which already had

given satisfactory responses to increases in the environment complexity. Furthermore

the models demonstrate to be robust to several increases in complexity of various na-

tures, which is essential to the forecasting activity. The observations are analogous when

the information present in the data was disrupted by the addition of noise, with errors

kept below a threshold, within a satisfactory margin, 0.5 oC . Also important its the fact
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that this performance figures are possible with really simple networks, whose average

linear weight norms (LWN) were about 20. Therefore, nearly 20 neurons are sufficient to

model a 1−D line of 5 sensors admitting four models intensities (20 operating points),

which suggests this approach is highly scalable to more complex environments.

The maximum allowed spline order was set to 5. However, this increased is just needed

for regions with abrupt temperature changes. Just the data collected by sensor 1 at high

TUS intensities fall into this category, therefore one might argue that this increased or-

der is not necessary, and order 3 or 4 splines could get the job done with the same

performance figures in all the others areas, with more robustness to noisy data. Another

solution to address the problem would be to reserve a specific model that just deals with

data from sensor 1, and another model for the rest of the non-sensitive data regions.

Concerning the ensemble approaches, the NDEO method demonstrated that it doesn’t

has available enough data to combine the outputs in a proficient way, it does not provide

a robust combing scheme in the presence of scarce data, fact that is aggravated when the

data is contaminated. Combining neural forecasts is not an easy task and some meth-

ods are just applicable in certain situations. Furthermore we saw that simple methods

like the SA resulted in high performance boosts of the predictive activity, around 30%,

which are excellent results since ensembles with just four individuals were considered,

reinforcing the idea that simple combining methods are efficient. One can conclude that

the problem with complex combining methods comes from the lack of robustness that

this methods may exhibit, when they are subject to different and unexpected conditions.

The whole combination mechanism (when complex) needs to be ascertained and revised

to comply with the new encountered scenario, whereas a simple approach like the simple

average (SA) combination scheme, has the robustness needed to perform reasonable well

under changes in the modelling approach. Thus, complex methods demand more work

and caution in the designing phase in order to maximize the performance boost that

this methods can introduce in the forecasting activity, a trade-off between overhead in

the designing phase and robustness



Chapter 5. Results and discussion 125

Chapter (6) concludes this work with an analysis and discussion of the results obtained

in the present Chapter and some guidelines to future research.



6
Final discussion and future work

6.1 Introduction

Chapter (5) revealed good indicators about the feasibility of the modelling approach

assessed in this work. Hopefully after more research we can bring such a system to

reality to assist the real biomedical instrumentation practice. This chapter finishes this

work giving an overview of the work derived as well as pointing guidelines for future

research. Section (6.2) provides a detailed assessment of the most relevant performance

criteria for each one of the models typologies considered. Section (6.2.4) focus on the

results obtained when the ensemble methods were applied and tries to develop insight

regarding the use of these techniques. In Section (6.4) some personal thoughts and

observations are shared regarding artificial intelligence, more concretely in the field of

neural networks. Section (6.3) sums up the main conclusions of this work and Section

(6.5) suggest some directions of possible future researches.

126
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6.2 Global assessment of the performance criteria

In a general way the results regarding all models typologies considered were satisfac-

tory. However a deeper inspection can develop more insight for current improvement

and guide future researches.

6.2.1 Mean Square Error

The Mean Square Error, Section (2.5), exposes the general prediction performance of

the network. Such a performance figure gives the designer a initial clue over the success

of the constructed model. Table (6.1) reveals the average MSE obtained for each model

typology, with the models built using uncorrupted and contaminated data. Please note

that these values only concern the MSE calculated in the test set, where the network

generalization ability is tested.

Average MSEt

Typology uncorrupted corrupted

SPSI 6.1011e-04 1.7883e-04

SPMI 1.5329e-03 5.6790e-05

MPMI (7) 1.3007e-04 1.3007e-04

MPMI (60) 2.0359e-04 2.0359e-04

Table 6.1: AverageMSE (regarding heating and cooling phases) in test set, calculated
for all models typologies, using uncorrupted and Gaussian contaminated data. Section

(2.5) briefly explains this performance figure.

A quick glance at the these calculated figures suggests a successful modelling at all stages

of the work. Despite this initial observation we should study how the performance of the

system scales when the modelling environment complexity is also scaled. Note that a

distinction has been made regarding the MPMI model typology, where we differentiate

two different cases, with respect to the two different prediction horizon h considered, 7

and 60 seconds, linking to MPMI (7) and MPMI (60) respectively. Figure (6.1) provides

a second view of these results.



Chapter 6. Final discussion and future work 128

Figure 6.1: Graphical illustration of the average MSE (test set) calculated for all
models typologies, using uncorrupted and Gaussian contaminated data. Solid line:
values obtained with uncorrupted data; Dashed line: vales obtained with corrupted

data.

Observe that for the first two model typologies (SPSI and SPMI) the generalization

test exhibits better performance figures when the models were built using a Gaussian

contaminated (corrupted) data set. Obviously a higher performance was expect from

a model whose training set consists if high quality data (uncorrupted), however we are

observing the opposite in this phase. These values are explained when we add to the

equation the performance boost that appears when we successful combine four networks

to form an ensemble. By doing so, we registered great significant improvements by lin-

early combining the networks in the ensemble (SA and ES) or by using more complex

combination mechanisms (NDEO). Assuredly this performance enhancements justify

the overhead introduced both at the designing phase and in the network’s generalization

ability. Naturally this enhancements can only come attached with a cost, as the ensem-

ble total LWN1 will also scale, although in a linear way, since the ensemble is formed by

adding networks to the ensemble. A more detailed study is done more ahead at Section

(6.2.2).

In the two following typologies (MPMI: 7 and 60) is observable that the models built

with corrupted data can’t follow with the performance achieved when training a network

with the original data. Before digging into this point we make an important observa-

tion that notes the similar figures obtained concerning the MPMI model typology with

1Linear Weight Norm, Section (2.5).
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two different predicting horizons using uncorrupted data. The fact that this value is

piratically constant suggests a highly robust approach to variations in the prediction

horizon. We justify the robustness classification since moving from a prediction hori-

zon of 7 seconds to 60 seconds, is translated in a data volume decrease by a factor of

approximately k =
1

10
and the performance figures obtained were similar.

With respect to the figures obtained for these typologies, now using corrupted data, is

also possible to derive some illations. Regarding the scenario where we considered a

prediction horizon of 7 seconds it’s noticeable a performance mitigation in comparison

with the equivalent case using uncorrupted data. We justify this decrease by the lack

of sufficient ambiguity levels, a necessary condition for the ensembles approach make an

impact. We can then infer from the results that just contaminating the data set with

random noise is not sufficient to create proper conditions for ensembles approaches to

bloom its enhancements, i.e. the networks composing the ensembles were positively cor-

related. To solve this, more sophisticated mechanisms should be employed to negatively

correlate the ensemble. Using different network structures can be a starting point. This

effect is even more aggravated when the prediction horizon is extended since the quality

of the data has been dramatically reduced, 20 contaminated data points for each operat-

ing point, i.e. a TUS beam intensity measured at a single sensor for each phase (cooling,

heating). Nevertheless, despite of the mitigation of the ensemble methods performance,

the performance criteria obtained are always kept under satisfactory thresholds.

6.2.2 Linear Weight Norm

The LWN, see Section (2.5), measures the network complexity, which ideally should be

kept simplest as possible, admitting that the structure is powerful enough to have the

job done, i.e. we should use the minimum resources possible to meet the requirements

inherent to the task. This way the designer tries to enforce a protecting barrier in the

learning process that filters the noise dynamics from being learned by the network pa-

rameters.

Table (6.2) exposes the average network complexity as dictated by the ASMOD algo-

rithm used to create and evolve the structures. This figure reflects the computational
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costs associated with each network (or ensemble) when making a prediction. Higher

LWN are translated in more heavy computational time, which in an embedded system

application with limited resources must be considered.

LWN
Typology uncorrupted corrupted

SPSI 09.0 39.2
SPMI 18.2 67.9

MPMI (7) 63.0 33.0
MPMI (60) 18.0 16.0

Table 6.2: Average linear weight norm obtained at each stage of the typology universe,
regarding models built both with the original and corrupted data sets.

The evolution of the average complexity is better illustrated in Figure (6.2).

Figure 6.2: Graphical illustration of the average LWN calculated for all models typolo-
gies, using uncorrupted and Gaussian contaminated data. Solid line: values obtained

with uncorrupted data; Dashed line: vales obtained with corrupted data.

The dashed line (uncorrupted) exhibits a continuous increasing the in linear weight norm

as we move towards the most complex typology (MPMI). It should be mentioned that

the first two typology admitted a prediction horizon of h = 1 second, while in the first

MPMI typology considered this horizon was extended to by a factor of seven to h = 7

seconds. This means the data sets forming the dynamics of each operating point were

reduced seven times accordingly. Still as the designing passed from SPMI to MPMI with

h = 7 the average LWN experienced a sharp increase. A further increase in the predic-

tion horizon to h = 60 alleviates, in a large extension, the number of resources needed

by the structure to accommodate the knowledge embedded in the data set, which is now

dramatically reduce by approximately a factor of 10. Curiously by doing so, we land
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near the complexity levels calculated for the initial models typology. This is a very good

indicator, since it gives the designer the possibility to further increase the complexity

(reality) of the modelling environment, i.e. the approach is scalable to variations with

respect to the modelling environment, a highly desirable feature.

With the same resources, i.e. structures of similar complexity, thus similar computa-

tional cost, we were able to model the most simple model typology as well as the more

complex typology considered, which naturally was submitted to a data reducing (pre-

diction horizon extension), but nevertheless with comparable performance figures. A

LWN of 18 means that with only 18 neurons (basis functions in the BSNNs scope), it

was possible to learn 20 different operating points (5 sensors × 5 TUS beam intensities),

having 40 data points each.

Noticeable is also the intimate relation existing between the LWN and the data volume

size, where the non parametric nature of neural networks is well exposed. Increasing

the data volume comes with a similar increase in the linear weight norm of the network,

i.e. more parameters to adapt in the learning process, which can sentence the feasibility

of the implementation.

Concerning the results obtained for the models trained with corrupted data (solid line in

Figure 6.2), one can observe in the first two typologies more complex network structures

which are result of the ensemble formation, which linearly adds the individually LWNi

regarding each network Ni that composes the ensemble. This is the price to pay to

embrace the performance boosts brought in using the ensembles methods. Trivially

for a network ensemble composed of N networks, the average additional complexity

introduced when using these methods would be of N ×µLWN , where µLWN is the linear

weight norm of an average network that enters the ensemble. Here it is also visible

the decay in the ensemble methods performance when the model typology advances to

MPMI with h = 7 seconds. A single KTB2 model was chosen instead of the ensemble,

since it didn’t worth the additional overhead.

2Keep-the-best
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6.2.3 Maximum Absolute Error

Another crucial specification error bounding in our forecasting network. Biomedical ap-

plications often require strict bounds that need to be strictly fulfilled if the system is

to be used with real patients. Thus we should study the maximum absolute errors ob-

tained and conclude if they are in compliance with the norms required by the biomedical

organizations, which currently classify the MRI3 has the gold standard with 0.5 oC/cm3

of temperature resolution. Table (6.3) exposes the maximum absolute errors obtained

in this work for all typologies.

Maximum absolute error oC

uncorrupted corrupted

Typology Average Max Average Max
SPSI 0.1212 0.3230 0.0831 0.3039
SPMI 0.1379 0.3252 0.0564 0.1666

MPMI (7) 0.0460 0.0477 0.3004 0.3264
MPMI (60) 0.0475 0.0510 0.2345 0.2629

Table 6.3: Average maximum absolute error obtained at each stage for each model
typology, regarding models built both with the original and corrupted data sets.

The results show the maximum absolute errors were consistently kept under 0.33 oC,

which results in a very comfortable margin, thus we can trust in the forecasting provided

by the network, i.e. the system is reliable. Is also interesting to note that, as far as the

environment complexity was increased, we detected no increase in the maximum errors

registered. This is a very meritorious indicator that suggests the reliability of the system

can scale along side with the modelling environment complexity.

6.2.4 Ensembles methods

A great deal of effort was indeed projected on various attempts to enhance the per-

formance of the models created. In any biomedical application the designing hierarchy

always has the patient as the first concern, followed by the actual technical implemen-

tation feasibility. We deeply believe that any improvement can help the usefulness of

the application, creating more impact in the patient. Our efforts on this point reflected

these beliefs.

3Magnetic Resonance Imaging
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uncorrupted (%) corrupted(%)

typology SA ES NDEO SA ES NDEO
SPSI -2.86 -0.12 -13.1 -98.8 30.1 58.7
SPMI 1.86 -3.31 -3.20 -76.6 54.3 72.2

MPMI (7) 4.96 5.67 0.01 4.98 3.27 6.64
MPMI (60) -17.56 -2.71 4.42 8.24 4.34 -160

Table 6.4: Average performance enhancements obtained when the various ensemble
methods were applied. Note that these results are obtained in comparison with the
KTB approach, i.e. the best trained single model. Note that a negative value means
a deteoration in the performance, i.e. the performance got worst when compared with

the KTB approach,

Moving on to the actual results obtained, Table (6.4) exposed the enhancements expe-

rienced through the typologies, in both experiments considered. As we saw previously

the contamination of the data definitely impacts the enhancements, so it would be con-

venient to analyze both experiments separately.

The results obtained aren’t, by any means, outstanding ones at first glance but neverthe-

less they shouldn’t be neglected, they form a starting point suggesting the enhancements

are possible, and we can use them to redirect focus to the key points involved in com-

bining the results of an ensemble.

Starting with the uncorrupted data experience, the three methods applied are visually

better confronted in Figure (6.3).

Using uncorrupted data means that all the models were trained with the same data sets.

Even though one could make changes regarding the data division into training, valida-

tion and test sets, the training examples were too much similar for two consequent built

models to be uncorrelated. Consequently, any ensemble created with models positively

correlated lacks the sufficient ambiguity levels that allow the ensemble methods to boost

the accuracy of the predictions. These thoughts are reflected Figure (6.3), where we

see that no method at any instant was able to achieve the 10% mark. Actually the

plotting gives the feeling that the average is situated around the 0% line. This clearly

suggests that the ensemble mechanism are completely useless under such circumstances

and are there merely adding unjustified overhead to the system. Despite creating the

models with a different number of input lags, the results were not satisfactory and an-

other mechanisms need to be applied in order to force a negative correlation among the
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Figure 6.3: Ensemble methods performance enhancements of the various methods
when compared with the KTB paradigm, regarding experiences where the models were
build using uncorrupted data. SPSI and SPMI model typology both set 5 discrete
points in the plot, whereas MPMI typologies just have one point. This is due to the
fact that for the last typology all of the data universe had to be used, resulting in just

one possible operating point: all sensors at all TUS beam intensities.

ensemble.

A second experience consisted in contaminating the data used to train the model using

samples from a Gaussian process (Gaussian noise), following the methodology detailed in

Section (4.3.2). Training models with independently contaminated data sets can act as a

negative correlation agent in the ensemble and, at the same time, assess the robustness of

the modeling approach. The results regarding the performance enhancements obtained

from the use of the various ensemble methods are illustrated in Figure (6.4).

Regarding the first two models typologies (SPSI and SPMI) the enhancements obtained

using NDEO and ES were surprisingly high, while the SA kept walking an oscillatory

path, exhibiting a curve with contants negative performances. However concerning the

last model typology considered (MPMI), all methods fail to provide any kind of per-

formance enhancement. This observation is partly explained by the increased modeling

task complexity when we join the spatial dimension together with the TUS beam in-

tensity dimension. As a consequence, the volume of data available was increased, which

in turn migrates the decorrelation effect brought to the ensemble by the contamination

process. Increasing the volume of the data weakens this decorrelation agent, whose abil-

ity to increase the ambiguity levels among the ensembles is highly affected. Another
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Figure 6.4: Ensemble methods performance enhancements of the various methods
when compared with the KTB paradigm, regarding experiences where the models were
build using uncorrupted data. SPSI and SPMI model typology both set 5 discrete
points in the plot, whereas MPMI typologies just have one point. This is due to the
fact that for the last typology all of the data universe had to be used, resulting in just

one possible operating point: all sensors at all TUS beam intensities.

consequence of hardening the modeling task is success rate that one can consistently

build good models. It was studied in Chapter (2) that for an ensemble to be success-

ful, two conditions must be met: the individuals performances of the models must be

comparable and similar; and the ambiguity level among the ensemble must be high,

i.e. the models should be uncorrelated. Hardening the modelling task makes it more

difficult to consistently build comparable models. This last fact partly explains the per-

formance mitigation observed in the last model typology. Figure (6.4) shows that the

enhancements performances dropped to the 0% line, a result consistent with the previ-

ous observations, since a 0% performance basically means the method is doing nothing

in the system, besides introducing unjustified overhead in the system.

Combining models indeed consists of a hard task that requires a great deal of effort and

art from the designer. this methods should only be applied if the consequent performance

improvements justify the additional effort.
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6.3 Concluding remarks

This thesis intended to study the feasibility in applying an innovative approach to esti-

mate the temperature propagation during thermal therapies, in a non invasive way. As

indicated, the reference in this field is imposed by the temperature resolution obtained

with MRI techniques, 0.5 oC/cm3. It was proposed to estimate the temperature evo-

lution using predictive models using b-splines neural networks evolved by the ASMOD

algorithm.

Initially the data used to construct the models was characterized to provide the reader

the possibility to assess if the data is trustworthy and representative of the physical

phenomena intended to model. The modelling environment complexity was gradually

increased which resulted in three different models typologies: SPSI, MPSI, MPMI. For

each one of the different typologies the relevant features to be taken as input variables

were defined along with the network structures associated with the typology.

Ensembles of neural networks were also studied in an attempt to enhance the prediction

accuracy of the system. Three methods were assessed:

• Simple average (SA). The average of the individual predictions is taken as the final

prediction.

• Evolutionary strategy (ES). Again the average of the individual predictions is taken

as the final input however each individual network Ni is affected by a weight ωi.

The weight vector ω was evolved by using a evolutionary strategy.

• Neural dynamic ensemble optimization (NDEO). This thesis proposed an alter-

native method to combine the individual predictions by altering the combining

mechanism. A second layer formed by a b-spline neural network takes all the indi-

vidual predictions as inputs, o1 . . . oN where N is the ensemble size and generates

an output of , which is taken as the final prediction.

A clear division was made between the heating and cooling dynamics involved in a typical

thermal therapy. This division resulted in the creation of two distinct models that model



Chapter 6. Final discussion and future work 137

the two different dynamics observed. Two experiments were always considered regarding

the data used for training, validation and testing:

• Uncorrupted data. This data set is composed of the original data collected in the

conditions exposed in this work.

• Corrupted data. After a contamination process, where Gaussian noise was added

to the original set, the corrupted data was used to train and validate the models.

Using corrupted data to train and validate the models provides two different analysis

perspectives. For one side the robustness of the system was assessed and it helps the

designer to ascertain if the structure modelling power is in adequate level for the task.

This last assessment is possible by observing the model behaviour in the test set. Ideally

the model should only learn the dynamics of the phenomena intended to model and filter

all external dynamics derived from the various possible noise sources. On the other side

it alleviates the need for acquiring high quality data, which can only be captured using

an invasive technique. A reliable temperature estimation method can be used to collect

all the data needed to create models of complex environments.

Several models were developed for estimating the temperature curves in a non invasive

way. We found that the modeling approach applied was capable of providing highly

accurate predictive models with maximum absolute errors in the test case less than

0.33 oC, this is, below the 0.33 oC threshold. This observation holds in the experiments

using Gaussian contaminated data, which evidences the robustness of the approach. A

second crucial observation is that the performance figures obtained remain comparable

when the modeling environment complexity is increased, suggesting a modelling ap-

proach with the desirable scalability.

The performance figures were obtained using relatively simple models, which might be

crucial for applications with scarce resources or that require real time responses. It

was observed the average model complexity evolved at a slow pace with the modelling

environment complexity, which means the system complexity can be managed as the

environment approaches ideal conditions.
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Combining BSNNs by forming neural network ensembles creates a potential perfor-

mance enhancement mechanism, if the designing is appropriated. However we noted

that a great deal of effort by the designer is needed to create the favorable conditions

on which combining individual forecasting entities might pay off.

When compared to the state of art, the BSNN structures over-perform the maximum

absolute error obtained using MRI, which is a very impressive result. Obviously the en-

vironments on which MRI operates are far more complex than the ones studied in this

work. However we observed a modelling approach with very good indicators concern-

ing scalability in response to increases in the complexity of the modeling environment.

Together with neural network ensemble methods the systems can be forced to be more

accurate and robust. We conclude that the approach followed in this thesis is feasible,

and future research is highly recommended.

6.4 Reflections about the solution derived and AI

Over the last years artificial intelligence has been extensively to solve problems from a

wide diversity of areas. Biological mimicry like neural networks (NN) or evolutionary

computing (EC) are attractive concepts. However, one should bear in mind that despite

the attractiveness present in these concepts, they are very naive attempts to model hu-

man biological mechanisms. We do not fully comprehend the deep essence behind the

learning ability of our brains, neither we understand how evolution works at molecular

level. As a result both NN or EC consists of bulldozer forms of intelligence, i.e. they

work by brute force. Lately we observe a tendency to extensively apply this techniques

to a variety of problems and test it if the mechanism is suitable to the problem, which

consists of a bad practice. From an engineering perspective, the methodology applied

when solving a problem should start by formulating a proper problem definition followed

by the derivation of a suitable representation, so then we can approach the problem by

deriving an algorithm or a mechanism to solve it. During this work we tried to follow

this methodology, an effort was made to define and represent the problem in an conve-

nient way, then we proposed an approach to solve the TSF problem4.

4Time Series Forecasting (TSF)
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Also important when facing a successfully approach, is to be able to see where the credit

lies. Were neural networks the key ingredient in this work? Assuredly not. The credit

relies almost entirely on the properties of B-splines and their amazing function approx-

imating power. These mathematical constructions coined by Isaac Jacob Schoenberg,

make use of their local control to fit curves with a great deal of flexibility. Concerning

neural networks, one can argue that NN were useful in proving a suitable structure for

the adaptation of the control points of the splines (weights) to approximate the temper-

ature propagation function. A typical hill climbing problem, which could be solved by

a variety of mechanisms. Nevertheless neural networks undoubtedly are a powerful tool

with a wide range of potential applications. Note that the models were built without

any knowledge about the underlying physics that govern the phenomena of temperature

propagation, which was allowed by the learning paradigm conceptualized in neural net-

works.

As a final remark over AI, personally I believe that we should address the question:

”What if God was an engineer?”. After all humans have a remarkable good problem-

solving ability. By deeply understanding the steps involved when we solve a particular

problem, it is possible to model our intelligence and create powerful algorithms. There-

fore I believe the future of AI will move away from bulldozer intelligence, moving towards

to resemble and mimic the incredibly efficient algorithms used by our brain in a more

intimate way.

6.5 Future research

To conclude this work a few future research guide lines can be pointed out. We believe

the feasibility of the modelling approach has been proved to an extend that is reasonable

to classify it as appropriate for the problem at hand. The next steps include:

• Increase the modeling environment complexity, where ideally the environment con-

ditions match perfectly the human tissue ones.

• Apply the ensemble decorrelation method, that was derived but not employed, in

Section (2.8.2.3).
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• Use a different medium to acquire data, besides from the homogeneous phantom

exposed in Chapter (3). Ideally real living tissues should be used.

Data extraction should be done in environments that resemble the conditions found on

human tissue in a more intimate way. This will result in more realistic models that can

indeed be used in biomedical instrumentation practice. Regarding the neural network

ensembles techniques we suggest applying the work derived in Section (2.8.2.3), which

we believe that can be used to further increase the ambiguity levels among the ensemble.

Furthermore different temperature estimation methods can be tested.

Nevertheless we believe the extension of the models typologies to 2−D and 3−D spatial

dimensions should be the immediate step. These models with an increased complexity

would provide the last assessment regarding the feasibility of the intelligent modelling

approach proposed to estimate the evolution of temperature during thermal therapies.

This extension requires one more additional input to the network, for a 2 − D model

typology, and two additional inputs in the 3 − D case. In Chapter(4) we derived the

following expression to calculate the input variable that informs the network of the

operating position in the 1−D space, formed by the line of sensors:

θi = arctan

(
D

Ni ∗ 5mm− 5mm

)

Where Ni is the number of the operating sensor and D is the distance from the line

formed by the array of sensors which is parallel to the face of the transducer. The

extension to a 3 −D space can trivially be done by using spherical coordinates, Figure

(6.5).

After structuring these models typologies, their generalization ability should be assessed.

If the results are satisfactory we can proceed to gather an extensive amount of real data

that would be used to train 3 − D typology models that biomedical applications can

benefit from.
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Figure 6.5: Spherical coordinates (r, θ, ϕ) as commonly used in physics: radial dis-
tance r, polar angle θ (theta), and azimuthal angle φ (phi). Taken from [3]



A
B-splines under the light of the convolution

operation.

We define the convolution of two functions f(t) and g(t) as:

(f ∗ g)(t) =

∫ ∞
−∞

f(s)g(t− s)ds (A.1)

Let us define also a base function as a rectangular window given by:

base(t) =

 1 0 ≤ t < 1

0 otherwise
(A.2)

Which is analogous to the first order b-spline Bi,1, defined in Chapter (2). Any piecewise

constant function can be given by the following linear combination:

p(t) =

∞∑
i=−∞

pibase(t) (A.3)
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With pi ∈ R being the control points.

A B-spline basis function of degree n can be obtained by convolving a BS of degree n−1

with the rectangular function base. To exemplify this process, consider the case of a BS

of order 2, given by:

B2 =

∫ ∞
−∞

base(s)base(t− s)ds (A.4)

This operation is illustrated in Figure(A.1).

Figure A.1: Defining a BS of order 2 through the use of convolution operation.
Adapted from [9]

The remarkable property of convolution is that each time a function is convolved with

a base function, its smoothness increases. This process can then be seen as a moving

average operation.

This definition of B-splines agrees with the properties derived before:

• Bk(t) is a piecewise polynomial of order k. Each convolution increases the degree

by 1.

• Bk(t) has a support of length k.
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• Bk(t) is Ck−1 continuous. Note that base(t) is C0 continuous, each convolution

increases the smoothness by one unit.

Constructing B-splines basis functions using this procedure can be useful to derive in-

sight about the construction process and properties of this curves. However, for practical

implementations Cox [21] algorithm is used.



B
Data division concerning MPMI model typology.

This appendix characterizes the data division scheme applied in the construction of

models belonging to MPMI typology.

Case 1:

Model 1 (2 lags):

• Test: Sensor 3 1.5W/cm2, Sensor 5 1.8W/cm2.

• Validation: Sensor 2 1.5W/cm2, Sensor 4 0.5W/cm2, Sensor 4 1.5W/cm2, Sensor

5 1.5W/cm2.

• Training: the remainder.

Model 2 (3 lags):

• Test: Sensor 2 1.5W/cm2, Sensor 5 1.8W/cm2.

145
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• Validation: Sensor 2 1.0W/cm2, Sensor 3 0.5W/cm2, Sensor 3 1.5W/cm2, Sensor

4 1.5W/cm2.

• Training: the remainder.

Model 3 (4 lags):

• Test: Sensor 2 0.5W/cm2, Sensor 5 0.5W/cm2.

• Validation: Sensor 3 1.0W/cm2, Sensor 4 1.5W/cm2, Sensor 5 1.0W/cm2, Sensor

5 1.8W/cm2.

• Training: the remainder.

Model 4 (5 lags):

• Test: Sensor 3 0.5W/cm2, Sensor 5 1.8W/cm2.

• Validation: Sensor 2 1.0W/cm2, Sensor 3 1.0W/cm2, Sensor 3 1.5W/cm2, Sensor

4 1.5W/cm2.

• Training: the remainder.

Case 2:

Model 1 (3 lags):

• Test: Sensor 3 1.5W/cm2, Sensor 5 1.8W/cm2.

• Validation: Sensor 2 1.5W/cm2, Sensor 4 0.5W/cm2, Sensor 4 1.5W/cm2, Sensor

5 1.5W/cm2.

• Training: the remainder.

Model 2 (4 lags):

• Test: Sensor 2 1.5W/cm2, Sensor 5 1.8W/cm2.

• Validation: Sensor 2 1.0W/cm2, Sensor 3 0.5W/cm2, Sensor 3 1.5W/cm2, Sensor

4 1.5W/cm2.
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• Training: the remainder.

Model 3 (5 lags):

• Test: Sensor 2 0.5W/cm2, Sensor 5 0.5W/cm2.

• Validation: Sensor 3 1.0W/cm2, Sensor 4 1.5W/cm2, Sensor 5 1.0W/cm2, Sensor

5 1.8W/cm2.

• Training: the remainder.

Model 4 (6 lags):

• Test: Sensor 3 0.5W/cm2, Sensor 5 1.8W/cm2.

• Validation: Sensor 2 1.0W/cm2, Sensor 3 1.0W/cm2, Sensor 3 1.5W/cm2, Sensor

4 1.5W/cm2.

• Training: the remainder.



C
Extended results obtained with respect to SPSI

typology models.

This appendix covers the remaining modeling environments regarding SPSI typology

models, extending the results exposed in Section(5.2). The following operating points

are covered:

• 1.8W/cm2, Sensor 1

• 0.5W/cm2, Sensor 2

• 1.5W/cm2, Sensor 3

• 1.8W/cm2, Sensor 4

• 1.0W/cm2, Sensor 5

Model environment: TUS Intensity (1.8W/cm2), Sensor (1)
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We advance to model the dynamics concerning the data collected at Sensor 1, with

a TUS beam intensity of 1.8W/cm2. Note that this environment holds the temperature

curve with the highest slope, since this sensor was the closest to the TUS device and

1.8W/cm2 is the stronger beam intensity considered.

Using the original data, plotted in Figure (C.1), four distinct models were created. The

70/30/10 data division scheme was one more applied. Four models with a number of

lags ranging between 2 and 5 were built, whose performance descriptors are presented

in Table (C.1). The output of the top performer model in the validation test (model 3),

is shown in Figure (C.2).

Figure C.1: Uncorrupted original data set used for SPSI model training, validation
and test. Collected from the homogeneous phantom experimental setup. TUS intensity:

1.8W/cm2. Sensor 1.
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Table C.1: Performance descriptors obtained concerning models with different number
of input lags. The models presented were selected using the KTB approach. SPSI,

Sensor 1 (1.8 W/cm2). Data used: uncorrupted.

Model 1(2 lags) Model 2(3 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -6791 -6446 BIC -7221 -7017
MSE 2.2471e-04 6.7879e-04 MSE 1.7294e-04 2.5843e-04
MSRE 7.8987e-06 2.2620e-05 MSRE 6.0751e-06 8.6586e-06
MSEv 2.0730e-03 3.6516e-03 MSEv 6.4084e-04 2.4284e-03
MSREv 6.5780e-05 1.2737e-04 MSREv 1.9587e-05 8.5608e-05
MSEt 2.3620e-03 2.2251e-03 MSEt 1.8174e-03 9.8672e-04
MSREt 7.2190e-05 8.4658e-05 MSREt 5.4516e-05 3.8387e-05
Mae 0.4954 0.4899 Mae 0.1686 0.4785
LWN 7 9 LWN 7 13
SR e e SR e e

Model 3(4 lags) Model 4(5 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -6760 -8761 BIC -8863 -7076
MSE 2.5599e-04 3.2923e-05 MSE 1.9477e-05 2.1771e-04
MSRE 9.3108e-06 1.1814e-06 MSRE 6.1079e-07 7.0953e-06
MSEv 7.1296e-04 5.9979e-04 MSEv 3.9683e-04 9.8528e-04
MSREv 2.1932e-05 2.2135e-05 MSREv 1.2028e-05 3.5972e-05
MSEt 2.1568e-03 5.0391e-04 MSEt 1.1031e-03 8.0515e-04
MSREt 6.5406e-05 1.9619e-05 MSREt 3.3125e-05 3.1135e-05
Mae 0.2806 0.2686 Mae 0.1347 0.3230
LWN 7 11 LWN 11 11
SR e e SR n e

Figure C.2: Output curve of model 3 through the whole data set, selected using the
KTB approach. The blue line represents the desired behaviour and the model’s training
output is given by the black line. The error line is red, circle and cross markers repre-
sents the model’s validation and test output respectively. SISP,homogeneous phantom

experimental setup. TUS intensity: 1.8W/cm2. Sensor 1. Data used: uncorrupted.
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The model’s output curve exhibits a behaviour close to desired in the three data sets.

The region where the error is more accentuated is concentrated in the starting region

of the cooling model. This could be explained due to the clipping temperature fall reg-

istered in this zone, a more challenging dynamic for the model to learn. Nevertheless a

7 oC fall was registered in this zone, thus errors around 0.38 oC are assuredly reasonable

under this conditions.

The application of the ensemble methods followed the KTB paradigm. The four previous

models were combined using three different methods, as discussed in Section (4.4). The

performance criteria obtained using this combination schemes are reflected in Table

(C.2), whereas Table (C.3) compares this previous results with the KTB approach.

From this results exposed in this tables we can observe that the results resemble the

ones obtained in the previous model environment. The ES optimized ensemble method

managed to increase the generalization performance when a high level of correlation

is present in the ensemble, due to the similarity among the training data sets used to

construct the models. Howsoever, a KTB model with 5 lags outperforms any of the

ensemble approaches, making the ensemble overhead in the system unjustified.

Following this results the data set was once more corrupted, Figure (C.3), and the

experience was repeated.

70% of the noisy data was used in the training phase and 30% in the validation phase.

The complete original uncurrupted data set was used for testing. The four KTB models

constructed performed in compliance with Table (C.4), and Figure (C.4) illustrates

model’s 1 performance through all the data sets. Observe that even with the presence of

noise the models managed to learn the process dynamics. Model 2 kept the error under

0.3 oC in both phases.

Moving to the ensembles approaches, the generalization error is presented in Table (C.5)

and comparison with KTB models is done in Table (C.6).

Inspecting the KTB comparison table it is clear that the NDEO approach outperformed

all of the other ensembles methods consistently as expected. The coherency of this

results should be assessed during the analysis of the next modelling environments.



Extended results obtained with respect to SPSI typology models. 152

Table C.2: Performance comparison between all methodologies employed. SPSI,
Sensor 1 (1.8 W/cm2). Data used: uncorrupted.

Model 1 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.0730e-03 2.3620e-03 0.4954 3.6516e-03 2.2251e-03 0.4899
Ensemble (SA) 2.0406e-03 2.1188e-03 0.4954 2.9760e-03 1.7309e-03 0.5816

Ensemble optimized (ES) 2.0251e-03 1.9398e-03 0.4954 2.8938e-03 1.6796e-03 0.5801
NDEO 2.0352e-03 1.7070e-03 0.4927 3.0915e-03 1.7240e-03 0.5390

Model 2 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 6.4084e-04 1.8174e-03 0.1686 2.4284e-03 9.8672e-04 0.4785
Ensemble (SA) 5.9821e-04 1.6223e-03 0.1701 2.2143e-03 9.7272e-04 0.4867

Ensemble optimized (ES) 5.7131e-04 1.4663e-03 0.1738 1.9611e-03 9.8346e-04 0.4867
NDEO 5.5763e-04 1.2953e-03 0.1758 2.4271e-03 9.8698e-04 0.4783

Model 3 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 7.1296e-04 2.1568e-03 0.2806 5.9979e-04 5.0391e-04 0.2686
Ensemble (SA) 6.3139e-04 1.9486e-03 0.4021 4.7517e-04 5.1349e-04 0.1351

Ensemble optimized (ES) 6.3751e-04 1.7850e-03 0.3184 3.7418e-04 4.9101e-04 0.1234
NDEO 7.1579e-04 2.1577e-03 0.2770 5.9968e-04 5.0371e-04 0.2685

Model 4 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 3.9683e-04 1.1031e-03 0.1347 9.8528e-04 8.0515e-04 0.3230
Ensemble (SA) 4.5530e-04 1.3270e-03 0.1456 8.8166e-04 8.1418e-04 0.3252

Ensemble optimized (ES) 4.2602e-04 1.2131e-03 0.1408 6.7043e-04 7.7236e-04 0.4045
NDEO 4.0233e-04 1.1350e-03 0.1339 1.8668e-03 8.6399e-04 0.3824
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Table C.3: Generalization error obtained with the ensemble approaches in comparison
with the KTB model selection. SPSI, Sensor 1 (1.8 W/cm2). Data used: uncorrupted.

Model 1 (2 Lags) Heating Cooling Average comparison

Ensemble (SA) 10.29 % 22.21 % 16.25 %
Ensemble optimized (ES) 17.88 % 24.52 % 21.20 %

NDEO 27.73 % 22.52 % 25.12 %

Model 2 (3 Lags) Heating Cooling Average comparison

Ensemble (SA) 10.73 % 1.42 % 6.08 %
Ensemble optimized (ES) 19.31 % 0.33 % 9.82 %

NDEO 28.73 % -0.03 % 14.35 %

Model 3 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) 9.65 % -1.90 % 3.88 %
Ensemble optimized (ES) 17.24 % 2.56 % 9.90 %

NDEO -0.04 % 0.04 % -0.00 %

Model 4 (5 Lags) Heating Cooling Average comparison

Ensemble (SA) -20.30 % -1.12 % -10.71 %
Ensemble optimized (ES) -9.97 % 4.07 % -2.95 %

NDEO -2.89 % -7.31 % -5.10 %

Figure C.3: Corrupted data after the addition of random Gaussian noise. The noisy
data is used for training and validation. The Uncorrupted, noise free data is used to
test the model. Collected from the homogeneous phantom experimental setup. TUS

intensity: 1.8W/cm2. Sensor 1.
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Figure C.4: Behaviour of model 1 in the test set, selected using the KTB approach.
The blue line represents the desired behaviour and the model’s test output is given by
the black line. The error line is red. SISP,homogeneous phantom experimental setup.

TUS intensity: 1.0W/cm2. Sensor 1.
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Table C.4: Performance descriptors obtained concerning models with different number
of input lags. The models presented were selected using the KTB approach. SPSI,

Sensor 1 (1.8 W/cm2). Data used: corrupted.

Model 1(2 lags) Model 2(3 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -2670 -2918 BIC -2987 -3173
MSE 5.0467e-02 3.7290e-02 MSE 3.1574e-02 2.9984e-02
MSRE 1.5235e-03 1.4579e-03 MSRE 9.5135e-04 1.1697e-03
MSEv 5.7721e-02 3.6602e-02 MSEv 3.6938e-02 3.6449e-02
MSREv 1.7917e-03 1.4361e-03 MSREv 1.1221e-03 1.4192e-03
MSEt 1.3214e-03 1.5154e-03 MSEt 4.9403e-04 7.9429e-04
MSREt 4.4962e-05 5.9574e-05 MSREt 1.6678e-05 3.0305e-05
Mae 0.6046 0.1516 Mae 0.3039 0.1633
LWN 7 10 LWN 11 13
SR n n SR n n

Model 3(4 lags) Model 4(5 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -2870 -3128 BIC -2964 -3137
MSE 2.9364e-02 2.8613e-02 MSE 2.7338e-02 2.5822e-02
MSRE 8.8425e-04 1.1199e-03 MSRE 8.2509e-04 1.0125e-03
MSEv 3.3262e-02 3.2984e-02 MSEv 2.8911e-02 2.9427e-02
MSREv 1.0029e-03 1.2897e-03 MSREv 8.7105e-04 1.1492e-03
MSEt 1.0691e-03 6.1345e-04 MSEt 3.9962e-04 7.6348e-04
MSREt 3.6781e-05 2.0903e-05 MSREt 1.3465e-05 2.5392e-05
Mae 0.3352 0.4173 Mae 0.2092 0.5751
LWN 16 15 LWN 20 20
SR n n SR e n
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Table C.5: Performance comparison between all methodologies employed. SPSI,
Sensor 1 (1.8 W/cm2)

Model 1 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 5.7721e-02 1.3214e-03 0.6046 3.6602e-02 1.5154e-03 0.1516
Ensemble (SA) 4.2733e-02 9.6271e-04 0.6046 2.3128e-02 5.9889e-04 0.1763

Ensemble optimized (ES) 4.1223e-02 9.7371e-04 0.6046 2.2774e-02 6.4189e-04 0.2395
NDEO 4.8945e-02 7.2289e-04 0.5208 2.3533e-02 8.7936e-04 0.3325

Model 2 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 3.6938e-02 4.9403e-04 0.3039 3.6449e-02 7.9429e-04 0.1633
Ensemble (SA) 2.7269e-02 6.4787e-04 0.3688 2.5973e-02 5.8052e-04 0.1763

Ensemble optimized (ES) 2.6456e-02 6.5888e-04 0.3688 2.5459e-02 6.2356e-04 0.2395
NDEO 3.0951e-02 6.2310e-04 0.3594 2.5291e-02 5.7101e-04 0.4638

Model 3 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 3.3262e-02 1.0691e-03 0.3352 3.2984e-02 6.1345e-04 0.4173
Ensemble (SA) 2.6018e-02 5.3087e-04 0.2856 2.5681e-02 5.7890e-04 0.1763

Ensemble optimized (ES) 2.6224e-02 5.4189e-04 0.2856 2.5167e-02 6.2196e-04 0.2395
NDEO 2.5770e-02 7.1164e-04 0.2532 2.5263e-02 4.2762e-04 0.3669

Model 4 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.8911e-02 3.9962e-04 0.2092 2.9427e-02 7.6348e-04 0.5751
Ensemble (SA) 2.2154e-02 4.6079e-04 0.2238 2.3771e-02 5.5384e-04 0.1390

Ensemble optimized (ES) 2.1988e-02 4.7182e-04 0.1364 2.3794e-02 5.9695e-04 0.2395
NDEO 2.3049e-02 3.5993e-04 0.1465 2.5410e-02 2.5918e-04 0.3496
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Table C.6: Generalization error obtained with the ensemble approaches in comparison
with the KTB model selection. SPSI, Sensor 1 (1.8 W/cm2). Data used: corrupted.

Model 1 (2 Lags) Heating Cooling Average comparison

Ensemble (SA) 27.15 % 60.48 % 43.81 %
Ensemble optimized (ES) 26.31 % 57.64 % 41.98 %

NDEO 45.29 % 41.97 % 43.63 %

Model 2 (3 Lags) Heating Cooling Average comparison

Ensemble (SA) -31.14 % 26.91 % -2.11 %
Ensemble optimized (ES) -33.37 % 21.50 % -5.94 %

NDEO -26.13 % 28.11 % 0.99 %

Model 3 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) 50.34 % 5.63 % 27.99 %
Ensemble optimized (ES) 49.31 % -1.39 % 23.96 %

NDEO 33.43 % 30.29 % 31.86 %

Model 4 (5 Lags) Heating Cooling Average comparison

Ensemble (SA) -15.31 % 27.46 % 6.08 %
Ensemble optimized (ES) -18.07 % 21.81 % 1.87 %

NDEO 9.93 % 66.05 % 37.99 %
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Model environment: TUS Intensity (0.5W/cm2), Sensor (2)

It is unpractical to present here in graphical/table form, the results obtained for all

the environments considered (SISP, 5 sensors, 4 intensities, 5 × 4 = 20 environments).

Therefore just one intensity for each sensor is presented to not over strain the reader.

This section now deals with the data collected at Sensor 2, with a TUS beam intensity

of 0.5W/cm2, the weakest intensity used.

Again the first experiment deals with the original data, shown in Figure (C.5). Due

to the weak intensity waves (0.5W/cm2), one can observe a short temperature range

during the session. The temperature evolution was smooth, without abrupt changes. It

is expected the model’s output to follow the desired behaviour without difficulties due

to the smooth dynamics present in the target data.

Figure C.5: Uncorrupted data set used for SPSI model training, validation and
test. Collected from the homogeneous phantom experimental setup. TUS intensity:

0.5W/cm2. Sensor 2.

In Table (C.7) the performance figures are shown for each one of the models considered.

Even with relatively simple models (model 1, LWN below 10) the performance descrip-

tors obtained are satisfactory. The actual output of model 1 is confronted with the

desired output in Figure (C.6).
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Table C.7: Performance descriptors obtained concerning models with different number
of input lags. The models presented were selected using the KTB approach. SPSI,

Sensor 2 (0.5 W/cm2). Data used: uncorrupted.

Model 1(2 lags) Model 2(3 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -9683 -9841 BIC -9974 -9943
MSE 8.3907e-06 1.0153e-05 MSE 4.8377e-06 9.9041e-06
MSRE 3.3908e-07 4.2321e-07 MSRE 1.9576e-07 4.1187e-07
MSEv 8.3087e-05 2.0447e-04 MSEv 2.8040e-04 1.7870e-04
MSREv 3.3540e-06 8.4180e-06 MSREv 1.1450e-05 7.3778e-06
MSEt 3.9231e-04 3.1247e-04 MSEt 2.9018e-04 3.5948e-04
MSREt 1.5896e-05 1.3004e-05 MSREt 1.1697e-05 1.4986e-05
Mae 0.1261 0.1079 Mae 0.1141 0.1078
LWN 8 7 LWN 11 7
SR n n SR n n

Model 3(4 lags) Model 4(5 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -9508 -9449 BIC -9805 -9744
MSE 6.3819e-06 1.1046e-05 MSE 4.6846e-06 1.0216e-05
MSRE 2.5920e-07 4.6035e-07 MSRE 1.8938e-07 4.2586e-07
MSEv 1.3821e-04 2.1642e-04 MSEv 1.8043e-04 1.9783e-04
MSREv 5.6219e-06 8.9162e-06 MSREv 7.3163e-06 8.1850e-06
MSEt 3.0584e-04 2.2076e-04 MSEt 3.5063e-04 2.8460e-04
MSREt 1.2368e-05 9.2289e-06 MSREt 1.4166e-05 1.1857e-05
Mae 0.0916 0.0935 Mae 0.0883 0.0998
LWN 11 7 LWN 11 7
SR n n SR n n

The ensemble methods performance criteria are calculated in Table (C.8) and compared

with the KTB approach in Table (C.9).

The observations resemble the previous ones concerning the original data experience.

The ensemble optimized (ES) outperforms the others methods, and for this environ-

ment it even outperformed the KTB model with 5 lags, which was not verified in the

last two environments. The ensemble optimized by an evolutionary strategy seems to

appear as a very robust combination scheme when the ambiguity among the ensemble

for some reason can’t be forced to reasonable levels.
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Figure C.6: Behaviour of the model 1 through the whole data set, selected using the
KTB approach. The blue line represents the desired behaviour and the model’s training
output is given by the black line. The error line is red, circle and cross markers repre-
sents the model’s validation and test output respectively. SISP,homogeneous phantom

experimental setup. TUS intensity: 0.5W/cm2. Sensor 2. Data used: uncorrupted.

Passing to the second experience, the original data was corrupted, Figure (C.7), and

used in the constructions of the models. One more the uncorrupted original data was

left to be used to assess the generalization error of the models.

Figure C.7: Data after the addition of random Gaussian noise. The noisy data is
used for training and validation. The Uncorrupted, noise free data is used to test the
model. Collected from the homogeneous phantom experimental setup. TUS intensity:

0.5W/cm2. Sensor 2.
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Table C.8: Performance comparison between all methodologies employed. SPSI,
Sensor 2 (0.5 W/cm2). Data used: uncorrupted.

Model 1 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 8.3087e-05 3.9231e-04 0.1261 2.0447e-04 3.1247e-04 0.1079
Ensemble (SA) 9.5170e-05 4.2876e-04 0.1172 2.0348e-04 3.1160e-04 0.1079

Ensemble optimized (ES) 8.1716e-05 3.8777e-04 0.1232 1.8871e-04 2.9605e-04 0.1079
NDEO 1.0896e-04 4.7972e-04 0.1134 2.0447e-04 3.1274e-04 0.1080

Model 2 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.8040e-04 2.9018e-04 0.1141 1.7870e-04 3.5948e-04 0.1078
Ensemble (SA) 2.6794e-04 2.6002e-04 0.1301 1.7813e-04 3.5917e-04 0.1076

Ensemble optimized (ES) 2.4644e-04 2.3305e-04 0.1301 1.6682e-04 3.3563e-04 0.1060
NDEO 2.8040e-04 2.9018e-04 0.1141 1.7884e-04 3.5990e-04 0.1078

Model 3 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 1.3821e-04 3.0584e-04 0.0916 2.1642e-04 2.2076e-04 0.0935
Ensemble (SA) 1.3240e-04 2.8259e-04 0.0962 2.1681e-04 2.2146e-04 0.0936

Ensemble optimized (ES) 1.2942e-04 2.7634e-04 0.0962 2.0833e-04 2.0658e-04 0.0924
NDEO 1.3820e-04 3.0584e-04 0.0916 2.1631e-04 2.1975e-04 0.0941

Model 4 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 1.8043e-04 3.5063e-04 0.0883 1.9783e-04 2.8460e-04 0.0998
Ensemble (SA) 1.5779e-04 3.0122e-04 0.0907 1.9899e-04 2.8494e-04 0.1002

Ensemble optimized (ES) 1.4051e-04 2.4495e-04 0.0927 1.8555e-04 2.6678e-04 0.0959
NDEO 1.8028e-04 3.5067e-04 0.0882 1.9782e-04 2.8459e-04 0.0998

To speed up the results presentation we omit the individual performance descriptors of

each one of the four models, however an individual KTB model’s output is presented

Figure (C.8), which clearly shows a model capable of consistently keeping the error

below 0.16 oC. Table (C.10) depicts the performance of all the approaches, KTB and

ensemble, whereas Table (C.11) compares the ensemble generalization performance with

the single model approach.



Extended results obtained with respect to SPSI typology models. 162

Table C.9: Generalization error obtained with the ensemble approaches in comparison
with the KTB model selection. SPSI, Sensor 2 (0.5 W/cm2). Data used: uncorrupted.

Model 1 (2 Lags) Heating Cooling Average comparison

Ensemble (SA) -9.29 % 0.28 % -4.51 %
Ensemble optimized (ES) 1.16 % 5.25 % 3.21 %

NDEO -22.28 % -0.09 % -11.18 %

Model 2 (3 Lags) Heating Cooling Average comparison

Ensemble (SA) 10.39 % 0.09 % 5.24 %
Ensemble optimized (ES) 19.69 % 6.63 % 13.16 %

NDEO 0.00 % -0.12 % -0.06 %

Model 3 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) 7.60 % -0.32 % 3.64 %
Ensemble optimized (ES) 9.65 % 6.42 % 8.03 %

NDEO -0.00 % 0.46 % 0.23 %

Model 4 (5 Lags) Heating Cooling Average comparison

Ensemble (SA) 14.09 % -0.12 % 6.99 %
Ensemble optimized (ES) 30.14 % 6.26 % 18.20 %

NDEO -0.01 % 0.00 % -0.01 %

Figure C.8: Model’s behaviour in the test set, selected using the KTB approach. The
blue line represents the desired behaviour and the model’s test output is given by the
black line. The error line is red. SISP,homogeneous phantom experimental setup. TUS

intensity: 0.5W/cm2. Sensor 2. Data used: corrupted.

Both NDEO and ES approach provided an interesting increases in the generalization

ability of the predictive system, albeit the NDEO results were more noticeable. Never-

theless the major difference resides in the fact the the NDEO presented consistent and
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Table C.10: Performance comparison between all methodologies employed. SPSI,
Sensor 2 (0.5 W/cm2). Data used: corrupted.

Model 1 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 3.5841e-02 2.9191e-03 0.2343 3.3888e-02 3.2803e-03 0.1580
Ensemble (SA) 2.3659e-02 1.2563e-03 0.2343 2.2021e-02 1.4065e-03 0.1580

Ensemble optimized (ES) 2.3391e-02 1.9272e-04 0.2343 2.1709e-02 7.5176e-04 0.1580
NDEO 2.2994e-02 1.5556e-04 0.2041 2.1657e-02 1.3158e-04 0.0791

Model 2 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.7263e-02 1.3652e-03 0.1093 3.3331e-02 1.3292e-03 0.1628
Ensemble (SA) 2.0816e-02 1.2096e-03 0.1629 2.5912e-02 1.3872e-03 0.1558

Ensemble optimized (ES) 1.9834e-02 1.4508e-04 0.1629 2.5749e-02 7.3191e-04 0.1558
NDEO 1.9903e-02 2.7594e-04 0.0664 2.5457e-02 2.6231e-04 0.1506

Model 3 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.7125e-02 8.5288e-04 0.0506 2.7821e-02 8.4833e-04 0.1310
Ensemble (SA) 2.2336e-02 1.1875e-03 0.1042 2.3003e-02 1.3684e-03 0.1408

Ensemble optimized (ES) 2.0912e-02 1.2208e-04 0.1042 2.2829e-02 7.1257e-04 0.1408
NDEO 2.0560e-02 1.4694e-04 0.1212 2.3454e-02 2.3622e-04 0.0906

Model 4 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.8055e-02 4.9664e-04 0.0514 2.9124e-02 8.9033e-04 0.1326
Ensemble (SA) 2.4454e-02 1.1791e-03 0.0847 2.5940e-02 1.3532e-03 0.1312

Ensemble optimized (ES) 2.3008e-02 1.1271e-04 0.0276 2.5483e-02 6.9686e-04 0.1160
NDEO 2.3016e-02 7.4112e-05 0.0261 2.5007e-02 1.3858e-04 0.1034

similar results in both heating and cooling phases, whereas the ES results were more

oscillatory. The SA method lacked intelligence when combining the individual model’s

output and hence has failed to improve the generalization ability of the system. This

last method continues to exhibit a highly oscillatory behaviour.
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Table C.11: Generalization error obtained with the ensemble approaches in compari-
son with the KTB model selection.SPSI, Sensor 2 (0.5 W/cm2). Data used: corrupted.

Model 1 (2 Lags) Heating Cooling Average comparison

Ensemble (SA) 56.96 % 57.12 % 57.04 %
Ensemble optimized (ES) 93.40 % 77.08 % 85.24 %

NDEO 94.67 % 95.99 % 95.33 %

Model 2 (3 Lags) Heating Cooling Average comparison

Ensemble (SA) 11.40 % -4.36 % 3.52 %
Ensemble optimized (ES) 89.37 % 44.94 % 67.15 %

NDEO 79.79 % 80.27 % 80.03 %

Model 3 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) -39.23 % -61.30 % -50.27 %
Ensemble optimized (ES) 85.69 % 16.00 % 50.84 %

NDEO 82.77 % 72.15 % 77.46 %

Model 4 (5 Lags) Heating Cooling Average comparison

Ensemble (SA) -137.41 % -51.99 % -94.70 %
Ensemble optimized (ES) 77.30 % 21.73 % 49.52 %

NDEO 85.08 % 84.44 % 84.76 %
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Model environment: TUS Intensity (1.5W/cm2), Sensor (3)

The environment that follows concerns the data collected at sensor 3, while appyling a

TUS beam intensity of 1.5W/cm2. Starting with the uncorrupted data experiment, the

data is presented in Figure (C.9) and the models assessment is made in Table (C.12).

The output calculated for model 4 was chosen to be confronted with the target output,

Figure (C.10).

Figure C.9: Uncorrupted data set used for SPSI model training, validation and
test. Collected from the homogeneous phantom experimental setup. TUS intensity:

1.8W/cm2. Sensor 1.
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Table C.12: Performance descriptors obtained concerning models with different num-
ber of input lags. The models presented were selected using the KTB approach. SPSI,

Sensor 3 (1.5 W/cm2). Data used: uncorrupted.

Model 1(2 lags) Model 2(3 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -8849 -9131 BIC -8892 -9372
MSE 1.2578e-05 1.1339e-05 MSE 1.3840e-05 1.2625e-05
MSRE 4.9196e-07 4.5182e-07 MSRE 5.4051e-07 5.0342e-07
MSEv 5.2066e-04 2.6519e-04 MSEv 3.1580e-04 2.0304e-04
MSREv 2.0656e-05 1.0423e-05 MSREv 1.2405e-05 8.0318e-06
MSEt 8.5115e-04 5.6234e-04 MSEt 1.4739e-03 6.2714e-04
MSREt 3.3523e-05 2.2224e-05 MSREt 5.7685e-05 2.4858e-05
Mae 0.1847 0.1085 Mae 0.2047 0.0995
LWN 8 7 LWN 7 7
SR n n SR n n

Model 3(4 lags) Model 4(5 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -9122 -9301 BIC -8967 -8748
MSE 9.6193e-06 9.5467e-06 MSE 1.0870e-05 1.4025e-05
MSRE 3.7757e-07 3.7755e-07 MSRE 4.2529e-07 5.5754e-07
MSEv 2.4512e-04 2.9941e-04 MSEv 2.6030e-04 1.9462e-04
MSREv 9.5317e-06 1.1859e-05 MSREv 1.0222e-05 7.7023e-06
MSEt 9.9152e-04 6.9524e-04 MSEt 6.9525e-04 5.4587e-04
MSREt 3.8679e-05 2.7411e-05 MSREt 2.7085e-05 2.1667e-05
Mae 0.1886 0.2012 Mae 0.1313 0.0725
LWN 11 11 LWN 11 7
SR n n SR n n

Figure C.10: Behaviour of the model through the whole data set, selected using the
KTB approach. The blue line represents the desired behaviour and the model’s training
output is given by the black line. The error line is red, circle and cross markers repre-
sents the model’s validation and test output respectively. SISP,homogeneous phantom

experimental setup. TUS intensity: 1.5W/cm2. Sensor 3.
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Table C.13: Performance comparison between all methodologies employed. SPSI,
Sensor 3 (1.5 W/cm2). Data used: uncorrupted.

Model 1 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 5.2066e-04 8.5115e-04 0.1847 2.6519e-04 5.6234e-04 0.1085
Ensemble (SA) 4.9962e-04 7.2831e-04 0.1847 2.5833e-04 5.4071e-04 0.1079

Ensemble optimized (ES) 4.9814e-04 7.1582e-04 0.1847 2.5703e-04 5.3684e-04 0.1078
NDEO 4.9746e-04 7.0383e-04 0.1845 2.8227e-04 5.7111e-04 0.1066

Model 2 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 3.1580e-04 1.4739e-03 0.2047 2.0304e-04 6.2714e-04 0.0995
Ensemble (SA) 3.0433e-04 1.3555e-03 0.2057 1.9490e-04 6.1836e-04 0.0999

Ensemble optimized (ES) 3.0543e-04 1.3448e-03 0.2058 1.9314e-04 6.1934e-04 0.0999
NDEO 3.2595e-04 1.3475e-03 0.2068 2.0879e-04 7.0691e-04 0.1002

Model 3 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.4512e-04 9.9152e-04 0.1886 2.9941e-04 6.9524e-04 0.2012
Ensemble (SA) 2.2064e-04 9.4997e-04 0.1890 2.6643e-04 6.5813e-04 0.2030

Ensemble optimized (ES) 2.1917e-04 9.3224e-04 0.1882 2.6617e-04 6.5446e-04 0.2028
NDEO 2.4512e-04 9.9152e-04 0.1886 2.9943e-04 6.9526e-04 0.2012

Model 4 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.6030e-04 6.9525e-04 0.1313 1.9462e-04 5.4587e-04 0.0725
Ensemble (SA) 2.1240e-04 7.0022e-04 0.1339 1.9029e-04 5.1807e-04 0.0709

Ensemble optimized (ES) 2.1273e-04 6.9135e-04 0.1325 1.8929e-04 5.1173e-04 0.0703
NDEO 2.6030e-04 6.9525e-04 0.1313 2.0788e-04 5.4489e-04 0.0722

The ensemble approaches assessment, and generalization ability comparison with the

KTB scheme are presented in Table (C.13) and (C.14), respectively.

The observations previously noted related to the uncorrupted data experience are now

reinforced. The ES approach seems to be the only ensemble approach that returns a

performance gain in situations with low ambiguity levels, as is the Model of models

training with similar data like this one. Despite the ideal Model being the one where

the designer can force a presence of high ambiguity levels in the ensemble, this is not

always true. Designing situations arise where models cannot be uncorrelated, and the

ES is proving itself to be a possible reasonable choice in such a situation.
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Table C.14: Generalization error obtained with the ensemble approaches in com-
parison with the KTB model selection. SPSI, Sensor 3 (1.5 W/cm2). Data used:

uncorrupted.

Model 1 (2 Lags) Heating Cooling Average comparison

Ensemble (SA) 14.43 % 3.85 % 9.14 %
Ensemble optimized (ES) 15.90 % 4.54 % 10.22 %

NDEO 17.31 % -1.56 % 7.88 %

Model 2 (3 Lags) Heating Cooling Average comparison

Ensemble (SA) 8.03 % 1.40 % 4.72 %
Ensemble optimized (ES) 8.76 % 1.24 % 5.00 %

NDEO 8.58 % -12.72 % -2.07 %

Model 3 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) 4.19 % 5.34 % 4.76 %
Ensemble optimized (ES) 5.98 % 5.87 % 5.92 %

NDEO 0.00 % -0.00 % -0.00 %

Model 4 (5 Lags) Heating Cooling Average comparison

Ensemble (SA) -0.72 % 5.09 % 2.19 %
Ensemble optimized (ES) 0.56 % 6.25 % 3.41 %

NDEO 0.00 % 0.18 % 0.09 %

Concerning the corrupted data experiment, Figure (C.11) illustrates the contamination

process. The assessment of the four constructed networks is reflected in Table (C.15).

Figure C.11: Data after the addition of random Gaussian noise. The noisy data is
used for training and validation. The Uncorrupted, noise free data is used to test the
model. Collected from the homogeneous phantom experimental setup. TUS intensity:

1.8W/cm2. Sensor 1.
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Table C.15: Performance descriptors obtained concerning models with different num-
ber of input lags. The models presented were selected using the KTB approach. SPSI,

Sensor 3 (1.5 W/cm2). Data used: corrupted.

Model 1(2 lags) Model 2(3 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -2637 -2788 BIC -2689 -2943
MSE 3.8926e-02 3.9419e-02 MSE 3.5113e-02 3.1417e-02
MSRE 1.5084e-03 1.5679e-03 MSRE 1.3579e-03 1.2531e-03
MSEv 4.8054e-02 3.6015e-02 MSEv 3.2671e-02 3.6800e-02
MSREv 1.8570e-03 1.4382e-03 MSREv 1.2645e-03 1.4740e-03
MSEt 1.6145e-03 1.7407e-03 MSEt 5.8995e-04 7.5874e-04
MSREt 6.1732e-05 6.8998e-05 MSREt 2.2693e-05 3.0253e-05
Mae 0.1200 0.1734 Mae 0.0751 0.0965
LWN 8 7 LWN 11 11
SR n n SR n n

Model 3(4 lags) Model 4(5 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -2781 -2953 BIC -2898 -3098
MSE 2.9788e-02 2.8236e-02 MSE 2.6102e-02 2.4820e-02
MSRE 1.1551e-03 1.1278e-03 MSRE 1.0115e-03 9.8993e-04
MSEv 2.9115e-02 2.6645e-02 MSEv 2.7539e-02 3.3844e-02
MSREv 1.1240e-03 1.0659e-03 MSREv 1.0635e-03 1.3559e-03
MSEt 3.0563e-04 4.1026e-04 MSEt 2.5606e-04 4.5118e-04
MSREt 1.1784e-05 1.6447e-05 MSREt 9.9510e-06 1.8058e-05
Mae 0.0578 0.0559 Mae 0.0580 0.0604
LWN 15 17 LWN 19 19
SR n n SR n n

The behaviour of model 2 was chose to be plotted through all the test set, Figure (C.12).
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Figure C.12: Model’s behaviour in the test set, selected using the KTB approach.
The blue line represents the desired behaviour and the model’s test output is given by
the black line. The error line is red. SISP,homogeneous phantom experimental setup.

TUS intensity: 1.5W/cm2. Sensor 3. Data used: corrupted.

Again the absolute errors were kept under a satisfactory threshold (0.07 oC). The

ensemble results are shown in Table (C.16) and the comparison with the KTB scheme

is highlighted in Table (C.17).

NDEO held the top performance place concerning generalization ability increase. How-

ever, the ES method also achieved very satisfactory and consistent results with ones

previously obtained. By this time it is becoming obvious that the SA method is com-

pletely outperformed by both ES and NDEO methods. The lack of intelligence in the

combination of the individual predictions gives rise to an unstable method that oscillates

between high performance gains and drops.



Extended results obtained with respect to SPSI typology models. 171

Table C.16: Performance comparison between all methodologies employed. SPSI,
Sensor 3 (1.5 W/cm2). Data used: corrupted.

Model 1 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 4.8054e-02 1.6145e-03 0.1200 3.6015e-02 1.7407e-03 0.1734
Ensemble (SA) 2.3705e-02 5.9379e-04 0.0825 2.2412e-02 7.5503e-04 0.1734

Ensemble optimized (ES) 2.3579e-02 2.0074e-04 0.0825 2.2509e-02 3.7683e-04 0.1734
NDEO 2.3596e-02 1.3958e-04 0.0563 2.2716e-02 1.2519e-04 0.1197

Model 2 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 3.2671e-02 5.8995e-04 0.0751 3.6800e-02 7.5874e-04 0.0965
Ensemble (SA) 2.2022e-02 5.8814e-04 0.0772 2.7843e-02 7.2973e-04 0.1327

Ensemble optimized (ES) 2.2202e-02 1.9473e-04 0.0690 2.7278e-02 3.5120e-04 0.1327
NDEO 2.2401e-02 1.0990e-04 0.0212 2.6322e-02 2.3520e-04 0.0255

Model 3 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.9115e-02 3.0563e-04 0.0578 2.6645e-02 4.1026e-04 0.0559
Ensemble (SA) 2.2418e-02 5.8435e-04 0.0772 2.1759e-02 7.1514e-04 0.0941

Ensemble optimized (ES) 2.1940e-02 1.9058e-04 0.0593 2.1509e-02 3.3629e-04 0.0941
NDEO 2.1866e-02 3.9712e-05 0.0176 2.1489e-02 7.6532e-05 0.0292

Model 4 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.7539e-02 2.5606e-04 0.0580 3.3844e-02 4.5118e-04 0.0604
Ensemble (SA) 2.2948e-02 5.8167e-04 0.0772 2.7960e-02 7.0811e-04 0.0838

Ensemble optimized (ES) 2.2515e-02 1.8755e-04 0.0447 2.7559e-02 3.2893e-04 0.0446
NDEO 2.2964e-02 2.4210e-04 0.0399 2.7506e-02 2.7054e-04 0.0587
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Table C.17: Generalization error obtained with the ensemble approaches in compari-
son with the KTB model selection. SPSI, Sensor 3 (1.5 W/cm2). Data used: corrupted.

Model 1 (2 Lags) Heating Cooling Average comparison

Ensemble (SA) 63.22 % 56.62 % 59.92 %
Ensemble optimized (ES) 87.57 % 78.35 % 82.96 %

NDEO 91.35 % 92.81 % 92.08 %

Model 2 (3 Lags) Heating Cooling Average comparison

Ensemble (SA) 0.31 % 3.82 % 2.06 %
Ensemble optimized (ES) 66.99 % 53.71 % 60.35 %

NDEO 81.37 % 69.00 % 75.19 %

Model 3 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) -91.19 % -74.31 % -82.75 %
Ensemble optimized (ES) 37.64 % 18.03 % 27.84 %

NDEO 87.01 % 81.35 % 84.18 %

Model 4 (5 Lags) Heating Cooling Average comparison

Ensemble (SA) -127.17 % -56.95 % -92.06 %
Ensemble optimized (ES) 26.75 % 27.10 % 26.93 %

NDEO 30.45 % 40.04 % 35.425 %
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Model environment: TUS Intensity (1.8W/cm2), Sensor (4)

Passing to the fourth sensor, a 1.8W/cm2 TUS beam intensity was considered. This

consists on the fastest propagation experienced in this sensor. Starting with the un-

corrupted data from Figure (C.13), the usual 70/20/10 data set division was employed,

and four models constructed that gave rise to the performance figures present in Table

(C.18).

Figure C.13: Uncorrupted data set used for SPSI model training, validation and
test. Collected from the homogeneous phantom experimental setup. TUS intensity:

1.8W/cm2. Sensor 4.

From the results shown it is obvious that the results are in compliance with the previous

environments. The test error was sustained under reasonable results. The output curve

illustrating the dynamic exhibit by the simplest model (2 input lags) is depicted in

Figure (C.14). The error one again was kept under a strict low threshold (0.19 oC).
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Table C.18: Performance descriptors obtained concerning models with different num-
ber of input lags. The models presented were selected using the KTB approach. SPSI,

Sensor 4 (1.8 W/cm2). Data used: uncorrupted.

Model 1(2 lags) Model 2(3 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -8840 -10169 BIC -9317 -9806
MSE 1.7185e-05 9.6939e-06 MSE 1.3847e-05 8.0165e-06
MSRE 6.7235e-07 3.7831e-07 MSRE 5.4468e-07 3.1057e-07
MSEv 3.5428e-04 2.2367e-04 MSEv 3.7732e-04 2.1936e-04
MSREv 1.3991e-05 8.6654e-06 MSREv 1.4768e-05 8.5130e-06
MSEt 9.6507e-04 7.9555e-04 MSEt 8.3145e-04 3.8587e-04
MSREt 3.7596e-05 3.1075e-05 MSREt 3.2449e-05 1.5243e-05
Mae 0.1299 0.1835 Mae 0.1372 0.0963
LWN 7 7 LWN 7 11
SR n n SR n n

Model 3(4 lags) Model 4(5 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -9491 -9533 BIC -9680 -9724
MSE 9.6204e-06 1.1763e-05 MSE 8.5730e-06 9.7665e-06
MSRE 3.7784e-07 4.5908e-07 MSRE 3.3542e-07 3.8153e-07
MSEv 3.8591e-04 1.5094e-04 MSEv 2.9307e-04 1.3316e-04
MSREv 1.5142e-05 5.8703e-06 MSREv 1.1453e-05 5.2093e-06
MSEt 5.9893e-04 3.5579e-04 MSEt 6.4724e-04 4.1889e-04
MSREt 2.3193e-05 1.3956e-05 MSREt 2.4965e-05 1.6414e-05
Mae 0.1359 0.0820 Mae 0.1037 0.1623
LWN 11 7 LWN 11 7
SR n n SR n e

Figure C.14: Behaviour of the model through the whole data set, selected using the
KTB approach. The blue line represents the desired behaviour and the model’s training
output is given by the black line. The error line is red, circle and cross markers repre-
sents the model’s validation and test output respectively. SISP,homogeneous phantom

experimental setup. TUS intensity: 1.8W/cm2. Sensor 4. Data used: uncorrupted.
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Ensemble approaches performed as shown in Table (C.19). The generalization ability of

this ensembles methods is confronted with the test error calculated for KTB models in

Table (C.19).

Table C.19: Performance comparison between all methodologies employed. SPSI,
Sensor 4 (1.8 W/cm2). Data used: uncorrupted.

Model 1 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 3.5428e-04 9.6507e-04 0.1299 2.2367e-04 7.9555e-04 0.1835
Ensemble (SA) 3.3474e-04 8.6056e-04 0.1263 2.0814e-04 7.6898e-04 0.1830

Ensemble optimized (ES) 3.3513e-04 8.6610e-04 0.1263 2.0304e-04 7.7762e-04 0.1828
NDEO 3.6319e-04 8.5947e-04 0.1261 2.1875e-04 8.6067e-04 0.1827

Model 2 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 3.7732e-04 8.3145e-04 0.1372 2.1936e-04 3.8587e-04 0.0963
Ensemble (SA) 3.6729e-04 6.8989e-04 0.1366 1.9731e-04 3.3727e-04 0.1167

Ensemble optimized (ES) 3.6659e-04 7.0011e-04 0.1366 1.9977e-04 3.3853e-04 0.1167
NDEO 5.1389e-04 6.5189e-04 0.1604 2.1898e-04 3.8426e-04 0.0967

Model 3 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 3.8591e-04 5.9893e-04 0.1359 1.5094e-04 3.5579e-04 0.0820
Ensemble (SA) 3.6284e-04 6.3373e-04 0.1359 1.4329e-04 3.4095e-04 0.0835

Ensemble optimized (ES) 3.6050e-04 6.4558e-04 0.1359 1.4064e-04 3.3823e-04 0.0846
NDEO 3.8590e-04 5.9892e-04 0.1359 1.5317e-04 3.7540e-04 0.0875

Model 4 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.9307e-04 6.4724e-04 0.1037 1.3316e-04 4.1889e-04 0.1623
Ensemble (SA) 2.7141e-04 7.0879e-04 0.1082 1.2650e-04 4.1121e-04 0.1621

Ensemble optimized (ES) 2.7158e-04 7.2467e-04 0.1087 1.2407e-04 4.1667e-04 0.1617
NDEO 2.9307e-04 6.4724e-04 0.1037 1.3574e-04 4.7759e-04 0.1608

Focusing in the fourth Model (Model 4), the results show that no method was capable

of returning substantial performance gains. The generalization ability of the ensemble

was always worst than the individual test set performance of model 4.

Figure (C.15) exhibits the Gaussian contamination process of the original data. This

corrupted was split following a 70/30 ratio into training/validation data sets. The Un-

corrupted data was used to assess the model generalization ability.
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Table C.20: Generalization error obtained with the ensemble approaches in com-
parison with the KTB model selection. SPSI, Sensor 4 (1.8 W/cm2). Data used:

uncorrupted.

Model 1 (2 Lags) Heating Cooling Average comparison

Ensemble (SA) 10.83 % 3.34 % 7.08 %
Ensemble optimized (ES) 10.26 % 2.25 % 6.25 %

NDEO 10.94 % -8.19 % 1.38 %

Model 2 (3 Lags) Heating Cooling Average comparison

Ensemble (SA) 17.03 % 12.59 % 14.81 %
Ensemble optimized (ES) 15.80 % 12.27 % 14.03 %

NDEO 21.60 % 0.42 % 11.01 %

Model 3 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) -5.81 % 4.17 % -0.82 %
Ensemble optimized (ES) -7.79 % 4.93 % -1.43 %

NDEO 0.00 % -5.51 % -2.76 %

Model 4 (5 Lags) Heating Cooling Average comparison

Ensemble (SA) -9.51 % 1.83 % -3.84 %
Ensemble optimized (ES) -11.96 % 0.53 % -5.72 %

NDEO 0.00 % -14.01 % -7.01 %

Figure C.15: Data after the addition of random Gaussian noise. The noisy data is
used for training and validation. The Uncorrupted, noise free data is used to test the
model. Collected from the homogeneous phantom experimental setup. TUS intensity:

1.8W/cm2. Sensor 4.

As before, four models were built. Their performance criteria are calculated in Table

(C.21).
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Table C.21: Performance descriptors obtained concerning models with different num-
ber of input lags. The models presented were selected using the KTB approach. SPSI,

Sensor 4 (1.8 W/cm2). Data used: corrupted.

Model 1(2 lags) Model 2(3 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -2722 -2933 BIC -2855 -3071
MSE 4.1759e-02 4.0239e-02 MSE 3.4336e-02 3.4695e-02
MSRE 1.6158e-03 1.5854e-03 MSRE 1.3264e-03 1.3692e-03
MSEv 4.6206e-02 3.1819e-02 MSEv 3.2198e-02 2.7293e-02
MSREv 1.7932e-03 1.2578e-03 MSREv 1.2429e-03 1.0749e-03
MSEt 1.7511e-03 1.7319e-03 MSEt 5.6628e-04 7.4621e-04
MSREt 6.7297e-05 6.8271e-05 MSREt 2.1708e-05 2.9507e-05
Mae 0.1394 0.2170 Mae 0.0897 0.1015
LWN 8 8 LWN 10 11
SR n n SR n n

Model 3(4 lags) Model 4(5 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -3133 -3172 BIC -2941 -3159
MSE 2.6828e-02 2.6636e-02 MSE 3.0080e-02 2.8557e-02
MSRE 1.0357e-03 1.0529e-03 MSRE 1.1624e-03 1.1261e-03
MSEv 3.4918e-02 2.4605e-02 MSEv 2.7302e-02 2.6530e-02
MSREv 1.3458e-03 9.7299e-04 MSREv 1.0530e-03 1.0476e-03
MSEt 2.5131e-04 3.7529e-04 MSEt 2.7102e-04 4.8167e-04
MSREt 9.6362e-06 1.4830e-05 MSREt 1.0530e-05 1.9008e-05
Mae 0.0450 0.0800 Mae 0.0485 0.1112
LWN 16 16 LWN 20 19
SR n n SR n n

The output curve of model 4 is confronted with the desired dynamic in the test set

(complete original data set) in Figure (C.16). Once again, the error curve revealed a

small magnitude through all the test. Ensemble methods performance is shown in Table

(C.22) and the usual comparison with the KTB models is done in Table (C.23).
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Figure C.16: Model’s behaviour in the test set, selected using the KTB approach.
The blue line represents the desired behaviour and the model’s test output is given by
the black line. The error line is red. SISP,homogeneous phantom experimental setup.

TUS intensity: 1.8W/cm2. Sensor 4. Data used: corrupted.

Both ES and NDEO generalization performance gains are considerable, however more

accentuated in the later approach, whereas the simplest method (SA) still couldn’t break

from the oscillatory road it has been walking. We suspect this is due to the fact that

the method does not possesses resources to differentiate the models. However it can be

used as an assessment tool of ambiguity levels that are present in the ensemble.
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Table C.22: Performance comparison between all methodologies employed. SPSI,
Sensor 4 (1.8 W/cm2). Data used: corrupted.

Model 1 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 4.6206e-02 1.7511e-03 0.1394 3.1819e-02 1.7319e-03 0.2170
Ensemble (SA) 2.3016e-02 5.8406e-04 0.1394 1.8935e-02 7.8281e-04 0.2170

Ensemble optimized (ES) 2.2775e-02 2.3583e-04 0.1394 1.8983e-02 2.1496e-04 0.2170
NDEO 2.3142e-02 1.3573e-04 0.0884 1.9402e-02 9.1294e-05 0.1503

Model 2 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 3.2198e-02 5.6628e-04 0.0897 2.7293e-02 7.4621e-04 0.1015
Ensemble (SA) 2.2720e-02 5.6778e-04 0.1112 2.0135e-02 7.4481e-04 0.1508

Ensemble optimized (ES) 2.2862e-02 2.1925e-04 0.1112 1.9858e-02 1.7649e-04 0.1508
NDEO 2.2623e-02 3.3615e-05 0.0231 2.0038e-02 1.3917e-04 0.0242

Model 3 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 3.4918e-02 2.5131e-04 0.0450 2.4605e-02 3.7529e-04 0.0800
Ensemble (SA) 2.5410e-02 5.5758e-04 0.0700 2.0148e-02 7.2674e-04 0.1184

Ensemble optimized (ES) 2.5342e-02 2.0874e-04 0.0700 1.9944e-02 1.5796e-04 0.1184
NDEO 2.5602e-02 1.5233e-04 0.0956 1.9870e-02 4.2096e-05 0.0194

Model 4 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.7302e-02 2.7102e-04 0.0485 2.6530e-02 4.8167e-04 0.1112
Ensemble (SA) 2.2721e-02 5.5382e-04 0.0665 2.2223e-02 7.1581e-04 0.1080

Ensemble optimized (ES) 2.2349e-02 2.0469e-04 0.0398 2.1771e-02 1.4656e-04 0.0367
NDEO 2.2054e-02 3.6352e-05 0.0189 2.1681e-02 5.7144e-05 0.0526
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Table C.23: Generalization error obtained with the ensemble approaches in compari-
son with the KTB model selection. SPSI, Sensor 4 (1.8 W/cm2). Data used: corrupted.

Model 1 (2 Lags) Heating Cooling Average comparison

Ensemble (SA) 66.65 % 54.80 % 60.72 %
Ensemble optimized (ES) 86.53 % 87.59 % 87.06 %

NDEO 92.25 % 94.73 % 93.49 %

Model 2 (3 Lags) Heating Cooling Average comparison

Ensemble (SA) -0.26 % 0.19 % -0.04 %
Ensemble optimized (ES) 61.28 % 76.35 % 68.82 %

NDEO 94.06 % 81.35 % 87.71 %

Model 3 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) -121.87 % -93.65 % -107.76 %
Ensemble optimized (ES) 16.94 % 57.91 % 37.42 %

NDEO 39.38 % 88.78 % 64.08 %

Model 4 (5 Lags) Heating Cooling Average comparison

Ensemble (SA) -104.35 % -48.61 % -76.48 %
Ensemble optimized (ES) 24.47 % 69.57 % 47.02 %

NDEO 86.59 % 88.14 % 87.36 %
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Model environment: TUS Intensity (1.0W/cm2), Sensor (5)

The last SPSI environment is now considered, consisting of the data collected by the

furthest sensor (5), relatively to the TUS device, while applying a TUS beam intensity

of 1.0W/cm2. Analogously to the previous environments, the uncorrupted data is first

considered, depicted in Figure (C.17). The fifth sensor was placed orthogonally at

20mm from the TUS beam central line, Figure (3.4) of Chapter(3), thus the heating

experienced in this region was small, hence the temperature propagation dynamics are

slow and smooth. Consequently the models are expected to follow the desired behaviour

without a vast effort.

Figure C.17: Uncorrupted data set used for SPSI model training, validation and
test. Collected from the homogeneous phantom experimental setup. TUS intensity:

1.0W/cm2. Sensor 5.

Four distinct models were constructed, exposed Table (C.24).

In Figure (C.18) the third model (Model 3) output curve is confronted with the desired

one. We can observe two almost perfectly matched curves. It is by this time evident

that the most defiant challenges are concentrated in the environments exhibiting fast

and abrupt temperature evolutions, i.e. higher intensities and most importantly, spatial

locations more close to the TUS device face.

The ensemble approaches performance indicators are shown in Table (C.25) and the

generalization ability is compared with KTB models in Table (C.26).
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Table C.24: Performance descriptors obtained concerning models with different num-
ber of input lags. The models presented were selected using the KTB approach. SPSI,

Sensor 5 (1.0 W/cm2). Data used: uncorrupted.

Model 1(2 lags) Model 2(3 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -9853 -9872 BIC -10817 -10362
MSE 6.2375e-06 8.9043e-06 MSE 2.7668e-06 7.5919e-06
MSRE 2.5726e-07 3.6862e-07 MSRE 1.1411e-07 3.1433e-07
MSEv 9.5965e-05 8.5749e-05 MSEv 9.3611e-05 8.0271e-05
MSREv 3.9692e-06 3.5519e-06 MSREv 3.8579e-06 3.3278e-06
MSEt 2.3481e-04 1.3382e-04 MSEt 2.6098e-04 1.8483e-04
MSREt 9.7033e-06 5.5407e-06 MSREt 1.0734e-05 7.6457e-06
Mae 0.0795 0.0418 Mae 0.0476 0.0432
LWN 7 7 LWN 11 7
SR n n SR n n

Model 3(4 lags) Model 4(5 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -10735 -10405 BIC -10245 -9927
MSE 2.6602e-06 4.9640e-06 MSE 5.2799e-06 8.3487e-06
MSRE 1.0981e-07 2.0561e-07 MSRE 2.1774e-07 3.4576e-07
MSEv 7.9328e-05 8.3608e-05 MSEv 7.9055e-05 6.0168e-05
MSREv 3.2562e-06 3.4647e-06 MSREv 3.2623e-06 2.4919e-06
MSEt 3.2457e-04 2.7561e-04 MSEt 2.0606e-04 1.3722e-04
MSREt 1.3377e-05 1.1435e-05 MSREt 8.4744e-06 5.6819e-06
Mae 0.0618 0.0504 Mae 0.0627 0.0537
LWN 11 11 LWN 7 7
SR n n SR n e

The KTB comparison revealed highly unstable results. Definitely data random division

and different number of input lags used to train the networks are not sufficient measures

to achieve the ambiguity levels required to explore the ensemble mechanism potentials.

In a general way the three methods exhibit a fairly low performance.

Figure (C.19) depicts the corrupted using to construct the models for the second ex-

periment. Their performance figures can be assessed in Table (C.27). The usual 70/30

division scheme separates the training set from the validation set, and testing is done

over the whole original data set.
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Figure C.18: Behaviour of the model through the whole data set, selected using the
KTB approach. The blue line represents the desired behaviour and the model’s training
output is given by the black line. The error line is red, circle and cross markers repre-
sents the model’s validation and test output respectively. SISP,homogeneous phantom

experimental setup. TUS intensity: 1.0W/cm2. Sensor 5. Data used: uncorrupted.

Figure C.19: Data after the addition of random Gaussian noise. The noisy data is
used for training and validation. The Uncorrupted, noise free data is used to test the
model. Collected from the homogeneous phantom experimental setup. TUS intensity:

1.0W/cm2. Sensor 5.

The output of model 3 over the test is shown in Figure (C.20).
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Table C.25: Performance comparison between all methodologies employed. SPSI,
Sensor 5 (1.0 W/cm2). Data used: uncorrupted.

Model 1 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 9.5965e-05 2.3481e-04 0.0795 8.5749e-05 1.3382e-04 0.0418
Ensemble (SA) 9.2791e-05 2.5343e-04 0.0793 8.6340e-05 1.3884e-04 0.0424

Ensemble optimized (ES) 9.1119e-05 2.3534e-04 0.0794 8.5387e-05 1.3441e-04 0.0420
NDEO 1.1362e-04 3.2665e-04 0.0792 1.1591e-04 1.9896e-04 0.0445

Model 2 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 9.3611e-05 2.6098e-04 0.0476 8.0271e-05 1.8483e-04 0.0432
Ensemble (SA) 7.3989e-05 2.2148e-04 0.0428 8.3155e-05 1.9877e-04 0.0449

Ensemble optimized (ES) 7.0526e-05 2.2464e-04 0.0416 8.0441e-05 1.8727e-04 0.0432
NDEO 9.3589e-05 2.6087e-04 0.0476 1.1757e-04 3.0325e-04 0.0524

Model 3 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 7.9328e-05 3.2457e-04 0.0618 8.3608e-05 2.7561e-04 0.0504
Ensemble (SA) 6.2215e-05 2.5668e-04 0.0605 6.3104e-05 1.9231e-04 0.0413

Ensemble optimized (ES) 6.0037e-05 2.4690e-04 0.0598 6.2946e-05 1.8573e-04 0.0398
NDEO 7.9303e-05 3.2452e-04 0.0618 8.3609e-05 2.7561e-04 0.0504

Model 4 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 7.9055e-05 2.0606e-04 0.0627 6.0168e-05 1.3722e-04 0.0537
Ensemble (SA) 8.1700e-05 2.1279e-04 0.0640 5.9120e-05 1.4648e-04 0.0535

Ensemble optimized (ES) 7.7687e-05 2.0258e-04 0.0632 5.9496e-05 1.3916e-04 0.0538
NDEO 1.0499e-04 2.7270e-04 0.0654 7.5935e-05 2.1969e-04 0.0570

Figure C.20: Behaviour of model 3 in the test set, selected using the KTB approach.
The blue line represents the desired behaviour and the model’s test output is given by
the black line. The error line is red. SISP,homogeneous phantom experimental setup.

TUS intensity: 1.0W/cm2. Sensor 5. Data used: corrupted.
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Table C.26: Generalization error obtained with the ensemble approaches in com-
parison with the KTB model selection. SPSI, Sensor 5 (1.0 W/cm2). Data used:

uncorrupted.

Model 1 (2 Lags) Heating Cooling Average comparison

Ensemble (SA) -7.93 % -3.75 % -5.84 %
Ensemble optimized (ES) -0.22 % -0.44 % -0.33 %

NDEO -39.11 % -48.69 % -43.90 %

Model 2 (3 Lags) Heating Cooling Average comparison

Ensemble (SA) 15.13 % -7.54 % 3.80 %
Ensemble optimized (ES) 13.93 % -1.32 % 6.30 %

NDEO 0.04 % -64.07 % -32.01 %

Model 3 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) 20.92 % 30.22 % 25.57 %
Ensemble optimized (ES) 23.93 % 32.61 % 28.27 %

NDEO 0.01 % 0.00 % 0.01 %

Model 4 (5 Lags) Heating Cooling Average comparison

Ensemble (SA) -3.27 % -6.75 % -5.01 %
Ensemble optimized (ES) 1.69 % -1.41 % 0.14 %

NDEO -32.34 % -60.10 % -46.22 %

Observing the results, and confronting them with Figure (C.18), one can note that the

maximum absolute error was reduced, even though the models were trained with highly

noisy data, which proves the robustness of the modelling approaches taken. We classify

the data as highly noisy data due to the fact that temperature range experienced in

this sensor was narrow, 23.7 − 24.7 oC, and the Gaussian distribution from where the

noise was taken from remained the same, which accentuates the power of the noise in

the data, Figure (C.19).

Concerning the ensemble approaches, Table (C.28) exposed the calculated performance

criteria values and Table (C.29) compares their generalization ability when compared

with the KTB correspondent models.

When the modelling task is alleviated, i.e. smooth and slow dynamics, the ensembles

methods returned high gains in the generalization ability, when compared with the KTB

approaches. Assuredly the complexity of the forecasting task has impact in the enhance-

ments gained when using this ensembles methods. This conclusion can be justified if we

assume that hardening the dynamics involved in the modelling process leads to a smaller

success rate of building good models. Therefore, in highly complex environments it is

not trivial to consistently build good models to compose the ensemble. In contrast, if the
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Table C.27: Performance descriptors obtained concerning models with different num-
ber of input lags. The models presented were selected using the KTB approach. SPSI,

Sensor 5 (1.0 W/cm2). Data used: corrupted.

Model 1(2 lags) Model 2(3 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -2752 -3062 BIC -3056 -3118
MSE 3.7713e-02 3.6548e-02 MSE 3.1093e-02 3.2258e-02
MSRE 1.5551e-03 1.5105e-03 MSRE 1.2842e-03 1.3338e-03
MSEv 3.8728e-02 3.4810e-02 MSEv 3.4602e-02 3.1570e-02
MSREv 1.5987e-03 1.4371e-03 MSREv 1.4272e-03 1.3091e-03
MSEt 1.9058e-03 4.9649e-03 MSEt 8.6358e-04 1.8765e-03
MSREt 7.8911e-05 2.0472e-04 MSREt 3.5475e-05 7.7434e-05
Mae 0.1256 0.1670 Mae 0.0738 0.0886
LWN 7 8 LWN 10 10
SR n n SR n n

Model 3(4 lags) Model 4(5 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -2982 -3223 BIC -3112 -3134
MSE 2.8873e-02 2.7785e-02 MSE 2.4869e-02 2.7266e-02
MSRE 1.1926e-03 1.1484e-03 MSRE 1.0259e-03 1.1287e-03
MSEv 2.8571e-02 2.9675e-02 MSEv 2.3549e-02 2.6009e-02
MSREv 1.1782e-03 1.2292e-03 MSREv 9.7095e-04 1.0764e-03
MSEt 3.6052e-04 3.4729e-04 MSEt 1.7014e-04 5.5672e-04
MSREt 1.4825e-05 1.4315e-05 MSREt 7.0813e-06 2.2941e-05
Mae 0.0470 0.0510 Mae 0.0374 0.0486
LWN 15 15 LWN 20 19
SR n n SR n n

dynamics are more easy to model, one can consistently build reliable models that enter

the ensemble and, if the ambiguity levels are right, boost the performance enhancements

one expects when using such techniques.
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Table C.28: Performance comparison between all methodologies employed. SPSI,
Sensor 5 (1.0 W/cm2). Data used: corrupted.

Model 1 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 3.8728e-02 1.9058e-03 0.1256 3.4810e-02 4.9649e-03 0.1670
Ensemble (SA) 2.3659e-02 6.5248e-04 0.1256 2.4576e-02 1.5052e-03 0.1670

Ensemble optimized (ES) 2.2847e-02 8.9711e-05 0.1256 2.3582e-02 1.6850e-04 0.1670
NDEO 2.2801e-02 1.2814e-04 0.1039 2.2938e-02 4.7537e-05 0.0921

Model 2 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 3.4602e-02 8.6358e-04 0.0738 3.1570e-02 1.8765e-03 0.0886
Ensemble (SA) 2.4371e-02 6.3943e-04 0.0939 2.4556e-02 1.4835e-03 0.1257

Ensemble optimized (ES) 2.4012e-02 7.6183e-05 0.0939 2.2989e-02 1.4575e-04 0.1257
NDEO 2.4114e-02 1.8224e-04 0.0350 2.3562e-02 1.8295e-04 0.1012

Model 3 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.8571e-02 3.6052e-04 0.0470 2.9675e-02 3.4729e-04 0.0510
Ensemble (SA) 2.4246e-02 6.3237e-04 0.0750 2.4305e-02 1.4718e-03 0.0986

Ensemble optimized (ES) 2.3217e-02 6.8635e-05 0.0750 2.3208e-02 1.3290e-04 0.0986
NDEO 2.3228e-02 3.0468e-05 0.0192 2.3388e-02 3.3558e-05 0.0178

Model 4 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.3549e-02 1.7014e-04 0.0374 2.6009e-02 5.5672e-04 0.0486
Ensemble (SA) 2.0603e-02 6.2806e-04 0.0620 2.1851e-02 1.4650e-03 0.0805

Ensemble optimized (ES) 2.0067e-02 6.3838e-05 0.0230 2.1001e-02 1.2503e-04 0.0265
NDEO 1.9936e-02 4.5339e-05 0.0168 2.0933e-02 4.7459e-05 0.0208
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Table C.29: Generalization error obtained with the ensemble approaches in compari-
son with the KTB model selection. SPSI, Sensor 5 (1.0 W/cm2). Data used: corrupted.

Model 1 (2 Lags) Heating Cooling Average comparison

Ensemble (SA) 65.76 % 69.68 % 67.72 %
Ensemble optimized (ES) 95.29 % 96.61 % 95.95 %

NDEO 93.28 % 99.04 % 96.16 %

Model 2 (3 Lags) Heating Cooling Average comparison

Ensemble (SA) 25.96 % 20.94 % 23.45 %
Ensemble optimized (ES) 91.18 % 92.23 % 91.71 %

NDEO 98.90 % 90.25 % 94.58 %

Model 3 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) -75.40 % -323.80 % -199.60 %
Ensemble optimized (ES) 80.96 % 61.73 % 71.35 %

NDEO 91.55 % 90.34 % 90.94 %

Model 4 (5 Lags) Heating Cooling Average comparison

Ensemble (SA) -269.15 % -163.15 % -216.15 %
Ensemble optimized (ES) 62.48 % 77.54 % 70.01 %

NDEO 73.35 % 91.48 % 82.41 %



D
Extended results obtained with respect to SPMI

typology models.

This appendix covers the remaining modeling environments considered when modelling

SPMI typology models, extending the results exposed in Section(5.3). The following

operating points are covered here:

• Sensor 2, all TUS beam intensities (0.5W/cm2, 1.0W/cm2, 1.5W/cm2, 1.8W/cm2)

• Sensor 5, all TUS beam intensities (0.5W/cm2, 1.0W/cm2, 1.5W/cm2, 1.8W/cm2)

Model environment: Sensor (2), all TUS intensities

Moving along the array of sensors, we consider here the data collected by sensor 2,

considering all intensities. This data is illustrated in Figure (D.1), after the completion

of the Gaussian contamination process (corrupted data). We can discarded the first

experiment (using the uncorrupted data) if we assume the second (corrupted) experiment

189
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constitutes a more challenging task. Thus is reasonable to assume the results obtained

with a corrupted data set to be at the very least comparable with the results one would

obtain considering uncorrupted data.

Figure D.1: Corrupted data after the completion of the Gaussian contamination
process.. The noisy data is used for training and validation. The unaltered, noise free
data is used to test the model. Collected from the homogeneous phantom experimental
setup. The top curve corresponds to the strongest intensity. TUS intensity (from the
shortest curve to the tallest curve): 0.5W/cm2, 1.0W/cm2, 1.5W/cm2 and 1.8W/cm2.

Sensor 1.

Data collected at 0.5W/cm2, 1.0W/cm2 and 1.8W/cm2 was used for training and data

collected at 1.5W/cm2 was used for validation. The model test assessment was done

using the complete uncorrupted data set. After the construction of four distinct models,

the performance criteria were calculated and exposed in Table (D.1).

Observing the performance descriptors, in particular the maximum absolute error Mae,

one can note a surprisingly low error threshold that the test error maintained. Albeit

the data used for training and validation was contaminated with noise, the robustness

of the models are verified, since the networks were able to fully comprehend the process

dynamics. Furthermore note that the data collected at 1.5W/cm2 was used just for

validation, which means that the network did not learned its parameters according to

the validation patterns. Then the original uncorrupted data collected at 1.5W/cm2 was

part of the test set. With these results, the models interpolation ability is successfully

assessed, since the networks were able to predict one step ahead within a threshold lower

then 0.05 oC (model 4). Furthermore the data that was indeed seen, was contaminated
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Table D.1: Performance descriptors obtained concerning models with different num-
ber of input lags. The models presented were selected using the KTB approach. SPMI

(Sensor 2). Data used: corrupted.

Model 1(2 lags) Model 2(3 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -10934 -12455 BIC -12071 -12648
MSE 4.2035e-02 3.2463e-02 MSE 2.9627e-02 3.0433e-02
MSRE 1.5873e-03 1.3161e-03 MSRE 1.1268e-03 1.2361e-03
MSEv 4.5034e-02 3.2201e-02 MSEv 2.9403e-02 3.1046e-02
MSREv 1.6322e-03 1.2775e-03 MSREv 1.0670e-03 1.2307e-03
MSEt 8.5816e-04 7.1760e-04 MSEt 1.3724e-04 4.1565e-04
MSREt 3.3813e-05 2.9029e-05 MSREt 5.4154e-06 1.6847e-05
Mae 0.1912 0.1530 Mae 0.0757 0.0789
LWN 7 11 LWN 15 15
SR e n SR e e

Model 3(4 lags) Model 4(5 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -12287 -12748 BIC -12265 -13231
MSE 2.7490e-02 2.9199e-02 MSE 2.7325e-02 2.5278e-02
MSRE 1.0445e-03 1.1859e-03 MSRE 1.0385e-03 1.0265e-03
MSEv 2.9374e-02 2.7381e-02 MSEv 2.7823e-02 2.6139e-02
MSREv 1.0639e-03 1.0857e-03 MSREv 1.0077e-03 1.0371e-03
MSEt 1.0497e-04 2.5406e-04 MSEt 9.9212e-05 1.7824e-04
MSREt 4.0882e-06 1.0366e-05 MSREt 3.8351e-06 7.2434e-06
Mae 0.0536 0.0588 Mae 0.0392 0.0561
LWN 19 20 LWN 23 24
SR n n SR n n

with noise, which reinforces the interpolation ability of the created BSNNs. Figures

(D.2), (D.3), (D.4) and (D.5) depict the output of model 4 assessment over the complete

test set.



Extended results obtained with respect to SPMI typology models. 192

Figure D.2: Behaviour of model 4 in the test set (Sensor 2 0.5W/cm2), selected using
the KTB approach. The blue line represents the desired behaviour and the model’s test
output is given by the black line. The error line is red. SIMP, homogeneous phantom

experimental setup. Data used: corrupted.

Figure D.3: Behaviour of model 4 in the test set (Sensor 2 1.0W/cm2), selected using
the KTB approach. The blue line represents the desired behaviour and the model’s test
output is given by the black line. The error line is red. SIMP, homogeneous phantom

experimental setup. Data used: corrupted.
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Figure D.4: Behaviour of model 4 in the test set (Sensor 2 1.5W/cm2), selected using
the KTB approach. The blue line represents the desired behaviour and the model’s test
output is given by the black line. The error line is red. SIMP, homogeneous phantom

experimental setup. Data used: corrupted.

Figure D.5: Behaviour of model 4 in the test set (Sensor 2 1.8W/cm2), selected using
the KTB approach. The blue line represents the desired behaviour and the model’s test
output is given by the black line. The error line is red. SIMP, homogeneous phantom

experimental setup. Data used: corrupted.

Albeit the contamination present in the data set used to train and validate the model,

we observe a robust and successful learning of the process dynamics. The assessment of

the ensemble methods follows. Table (D.2) presents the performance criteria calculated

for this methods. Table (D.3) confronts the ensemble performance in the test set with

the descriptors calculated for the KTB approach.
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Table D.2: Performance comparison between all methodologies employed. SPMI
(Sensor 2). Data used: corrupted.

Model 1 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 4.5034e-02 8.5816e-04 0.1912 3.2201e-02 7.1760e-04 0.1530
Ensemble (SA) 2.3568e-02 2.4316e-04 0.1912 2.2742e-02 3.5411e-04 0.1530

Ensemble optimized (ES) 2.3380e-02 8.0554e-05 0.1912 2.2540e-02 2.0317e-04 0.1530
NDEO 2.3461e-02 4.5211e-05 0.0331 2.2621e-02 1.2487e-04 0.0698

Model 2 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.9403e-02 1.3724e-04 0.0757 3.1046e-02 4.1565e-04 0.0789
Ensemble (SA) 2.2879e-02 2.1719e-04 0.1302 2.3114e-02 3.4762e-04 0.1077

Ensemble optimized (ES) 2.2807e-02 5.4445e-05 0.1302 2.2971e-02 1.9656e-04 0.1369
NDEO 2.2762e-02 5.3853e-05 0.0188 2.2985e-02 6.7114e-05 0.0580

Model 3 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.9374e-02 1.0497e-04 0.0536 2.7381e-02 2.5406e-04 0.0588
Ensemble (SA) 2.3142e-02 2.0657e-04 0.1020 2.2142e-02 3.4410e-04 0.0663

Ensemble optimized (ES) 2.3032e-02 4.3681e-05 0.1020 2.1841e-02 1.9292e-04 0.1369
NDEO 2.3018e-02 5.7776e-05 0.0254 2.2052e-02 9.7936e-05 0.0510

Model 4 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.7823e-02 9.9212e-05 0.0392 2.6139e-02 1.7824e-04 0.0561
Ensemble (SA) 2.3271e-02 2.0107e-04 0.0836 2.2812e-02 3.4274e-04 0.0649

Ensemble optimized (ES) 2.3105e-02 3.8042e-05 0.0217 2.2552e-02 1.9143e-04 0.1369
NDEO 2.3206e-02 5.2366e-05 0.0494 2.2722e-02 5.3971e-05 0.0558

Once again the NDEO approach outperformed the others methods by a considerable

amount. Nevertheless the ES optimization scheme also provided a generalization per-

formance enhancement comparable with the results obtained with this method when

considering SPSI model typology. Thus the ES method is providing evidence of be-

ing scalable approach in terms of complexity. Ideally this method should maintain the

same levels of enhancement regardless of the modelling environment complexity. Such

a method would be highly desirable.
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Table D.3: Generalization error obtained with the ensemble approaches in comparison
with the KTB model selection. SPMI (Sensor 2). Data used: corrupted.

Model 1 (2 Lags) Heating Cooling Average comparison

Ensemble (SA) 71.66 % 50.65 % 61.16 %
Ensemble optimized (ES) 90.61 % 71.69 % 81.15 %

NDEO 94.73 % 82.60 % 88.66 %

Model 2 (3 Lags) Heating Cooling Average comparison

Ensemble (SA) -58.25 % 16.37 % -20.94 %
Ensemble optimized (ES) 60.33 % 52.71 % 56.52 %

NDEO 60.76 % 83.85 % 72.31 %

Model 3 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) -96.80 % -35.44 % -66.12 %
Ensemble optimized (ES) 58.39 % 24.06 % 41.23 %

NDEO 44.96 % 61.45 % 53.20 %

Model 2 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) -102.67 % -92.29 % -97.48 %
Ensemble optimized (ES) 61.66 % -7.40 % 27.13 %

NDEO 47.22 % 69.72 % 58.47 %



Extended results obtained with respect to SPMI typology models. 196

Model environment: Sensor (5), all TUS intensities

To not exhaust the reader we shall pass directly to the last sensor (Sensor 5), the

furthest sensor relatively to the TUS face, Figure (3.4. Nevertheless it should be men-

tioned that the results concerning sensor 3 and 4 are in the line of results being presented.

Figure (D.6) depicts the noisy data used to train (0.5W/cm2, 1.5W/cm2 and 1.8W/cm2)

and validate (1.0W/cm2) the model. The whole uncorrupted data set was used in the

test set.

Figure D.6: Corrupted data after the completion of the Gaussian contamination
process.. The noisy data is used for training and validation. The unaltered, noise free
data is used to test the model. Collected from the homogeneous phantom experimental
setup. The top curve corresponds to the strongest intensity. TUS intensity: 0.5W/cm2,

1.0W/cm2, 1.5W/cm2 and 1.8W/cm2. Sensor 1.

The performance of the four distinct build models is presented in Table (D.4).

The assessment of model 4 in the test set is illustrated through Figures (D.7), (D.8),

(D.9) and (D.10). This plotting expose a successful learning process, where the erros

were consistently kept under a 0.16 oC error threshold, despite the training phase use

of the highly corrupted data.
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Table D.4: Performance descriptors obtained concerning models with different num-
ber of input lags. The models presented were selected using the KTB approach. SPMI

(Sensor 5). Data used: corrupted.

Model 1(2 lags) Model 2(3 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -12013 -12945 BIC -12158 -12871
MSE 3.1806e-02 2.9228e-02 MSE 3.0144e-02 2.9472e-02
MSRE 1.2977e-03 1.1911e-03 MSRE 1.2305e-03 1.2036e-03
MSEv 3.5268e-02 3.2856e-02 MSEv 3.1034e-02 2.7756e-02
MSREv 1.4527e-03 1.3623e-03 MSREv 1.2794e-03 1.1485e-03
MSEt 1.5687e-03 2.4346e-03 MSEt 9.3066e-04 1.4004e-03
MSREt 6.4969e-05 1.0055e-04 MSREt 3.8475e-05 5.7846e-05
Mae 0.1764 0.1396 Mae 0.1391 0.1126
LWN 11 11 LWN 15 15
SR n n SR n n

Model 3(4 lags) Model 4(5 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -12382 -13243 BIC -12607 -13109
MSE 2.7934e-02 2.6327e-02 MSE 2.5872e-02 2.6982e-02
MSRE 1.1407e-03 1.0745e-03 MSRE 1.0576e-03 1.1025e-03
MSEv 2.7678e-02 2.8223e-02 MSEv 2.6563e-02 2.8463e-02
MSREv 1.1399e-03 1.1694e-03 MSREv 1.0944e-03 1.1783e-03
MSEt 6.7565e-04 9.0539e-04 MSEt 3.9436e-04 6.1172e-04
MSREt 2.7927e-05 3.7410e-05 MSREt 1.6334e-05 2.5294e-05
Mae 0.1178 0.0910 Mae 0.0977 0.0842
LWN 19 19 LWN 23 23
SR n e SR n n

Figure D.7: Behaviour of model 4 in the test set (Sensor 5 0.5W/cm2), selected using
the KTB approach. The blue line represents the desired behaviour and the model’s test
output is given by the black line. The error line is red. SIMP, homogeneous phantom

experimental setup. Data used: corrupted.
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Figure D.8: Behaviour of model 4 in the test set (Sensor 5 1.0W/cm2), selected using
the KTB approach. The blue line represents the desired behaviour and the model’s test
output is given by the black line. The error line is red. SIMP, homogeneous phantom

experimental setup. Data used: corrupted.

Figure D.9: Behaviour of model 4 in the test set (Sensor 5 1.5W/cm2), selected using
the KTB approach. The blue line represents the desired behaviour and the model’s test
output is given by the black line. The error line is red. SIMP, homogeneous phantom

experimental setup. Data used: corrupted.
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Figure D.10: Behaviour of model 4 in the test set (Sensor 5 1.8W/cm2), selected using
the KTB approach. The blue line represents the desired behaviour and the model’s test
output is given by the black line. The error line is red. SIMP, homogeneous phantom

experimental setup. Data used: corrupted.

In an attempt to enhance the predictions, the discussed ensemble methods were applied,

by forming an ensemble of four forecasting entities (models). The evaluation of these

methods is reflected in Table (D.5) and the comparison with the KTB approach is made

in Table (D.6).

This last SPMI environment revealed ES performance enhancements comparable with

the ones obtained using NDEO. Both approaches provide a considerable gain in the

forecasting performance. It’s by this time evident that the NDEO approach requires

perfect conditions for performance enhancements. Perfect conditions assumes a ensem-

ble composed by uncorrelated models. Furthermore all this uncorrelated models should

be good models. Achieving both these requirements might not be a trivial task.
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Table D.5: Performance comparison between all methodologies employed. SPMI
(Sensor 5). Data used: corrupted.

Model 1 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 3.5268e-02 1.5687e-03 0.1764 3.2856e-02 2.4346e-03 0.1396
Ensemble (SA) 2.3769e-02 8.6071e-04 0.1761 2.6073e-02 1.2587e-03 0.1392

Ensemble optimized (ES) 2.2885e-02 1.1745e-04 0.1761 2.4082e-02 1.5402e-04 0.1392
NDEO 2.3053e-02 8.1659e-05 0.1184 2.4165e-02 1.0835e-04 0.0460

Model 2 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 3.1034e-02 9.3066e-04 0.1391 2.7756e-02 1.4004e-03 0.1126
Ensemble (SA) 2.4135e-02 8.4286e-04 0.1577 2.3590e-02 1.2493e-03 0.1261

Ensemble optimized (ES) 2.2856e-02 9.8962e-05 0.1577 2.1473e-02 1.4369e-04 0.1261
NDEO 2.2839e-02 4.2434e-05 0.0358 2.2104e-02 2.4255e-04 0.0905

Model 3 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.7678e-02 6.7565e-04 0.1178 2.8223e-02 9.0539e-04 0.0910
Ensemble (SA) 2.2858e-02 8.2880e-04 0.1435 2.5293e-02 1.2419e-03 0.1139

Ensemble optimized (ES) 2.1828e-02 8.4273e-05 0.1435 2.2873e-02 1.3541e-04 0.1139
NDEO 2.1894e-02 4.4359e-05 0.0327 2.2954e-02 6.4314e-05 0.0446

Model 4 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.6563e-02 3.9436e-04 0.0977 2.8463e-02 6.1172e-04 0.0842
Ensemble (SA) 2.3395e-02 8.1724e-04 0.1302 2.7380e-02 1.2362e-03 0.1054

Ensemble optimized (ES) 2.2098e-02 7.2076e-05 0.0398 2.4606e-02 1.2884e-04 0.0639
NDEO 2.2362e-02 1.0087e-04 0.0404 2.4507e-02 1.0688e-04 0.0550



Extended results obtained with respect to SPMI typology models. 201

Table D.6: Generalization error obtained with the ensemble approaches in comparison
with the KTB model selection. SPMI (Sensor 5). Data used: corrupted.

Model 1 (2 Lags) Heating Cooling Average comparison

Ensemble (SA) 45.13 % 48.30 % 46.72 %
Ensemble optimized (ES) 92.51 % 93.67 % 93.09 %

NDEO 94.79 % 95.55 % 95.17 %

Model 2 (3 Lags) Heating Cooling Average comparison

Ensemble (SA) 9.43 % 10.79 % 10.11 %
Ensemble optimized (ES) 89.37 % 89.74 % 89.55 %

NDEO 95.44 % 82.68 % 89.06 %

Model 3 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) -22.67 % -37.17 % -29.92 %
Ensemble optimized (ES) 87.53 % 85.04 % 86.29 %

NDEO 93.43 % 92.90 % 93.17 %

Model 2 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) -107.23 % -102.09 % -104.66 %
Ensemble optimized (ES) 81.72 % 60.02 % 70.87 %

NDEO 74.42 % 82.53 % 78.48 %



E
Results for MPMI model typology, prediction

horizon h = 7 seconds.

As discussed in Section(5.4), the prediction horizon was extended, moving towards an

assessment of the approach scalability, which can provide a great insight regarding the

robustness of the modeling approach. We now extend the prediction horizon h to 7

seconds., an increase by a multiplicative factor of 7.

Temperature data points concerning all intensities and spatial locations are now consid-

ered. The original uncorrupted data, is illustrated in Figure (E.1).

We start by creating four distinct models using this unaltered data. Again the distinction

among the models resides in the number of input lags. The data division applied,

concerning trainning, validtion and test sets can be found in Appendix(B), Model 1.

The performance criteria calculated for the distinct models are presented in Table (E.1).

202
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Figure E.1: Uncorrupted data set used for MPMI model training, validation and test.
Collected from the homogeneous phantom experimental setup.

Albeit the increase of the prediction horizon to 7 seconds the performance descriptors

obtained represent excellent figures. Concerning models 2, 3 and 4 the maximum abso-

lute error Mae obtained (including the test set) was kept below a threshold of 0.1 oC,

which is a meritorious indicator about the predictions provided by the networks. Figures

(E.2) and (E.3) expose the behaviour of model 4 in the test set (Sensor 3, 0.5W/cm2

and Sensor 5, 1.8W/cm2.)

Figure E.2: Model’s behaviour in the test set (Sensor 3 0.5W/cm2), selected using
the KTB approach. The blue line represents the desired behaviour and the model’s test
output is given by the black line. The error line is red. MIMP, homogeneous phantom

experimental setup. Data used: uncorrupted.



Results for MPMI model typology, prediction horizon h = 7 seconds. 204

Table E.1: Performance descriptors obtained concerning models with different number
of input lags. The models presented were selected using the KTB approach. MPMI.

Data used: uncorrupted.

Model 1(2 lags) Model 2(3 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -20531 -18390 BIC -20975 -23567
MSE 2.4201e-04 8.6867e-04 MSE 1.8933e-04 9.9935e-05
MSRE 9.2701e-06 3.2581e-05 MSRE 7.1766e-06 4.0305e-06
MSEv 2.5127e-04 2.2165e-04 MSEv 2.1658e-04 1.1034e-04
MSREv 9.9201e-06 8.7704e-06 MSREv 8.5972e-06 4.4736e-06
MSEt 2.3355e-04 2.3393e-04 MSEt 2.1444e-04 1.4472e-04
MSREt 9.3110e-06 9.2870e-06 MSREt 8.5231e-06 5.6957e-06
Mae 0.1537 0.7401 Mae 0.0920 0.0531
LWN 28 8 LWN 33 52
SR e n SR e n

Model 3(4 lags) Model 4(5 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -20875 -23671 BIC -21712 -23766
MSE 1.8780e-04 8.9119e-05 MSE 1.1461e-04 8.0350e-05
MSRE 7.1088e-06 3.5921e-06 MSRE 4.3600e-06 3.2463e-06
MSEv 1.6165e-04 9.9556e-05 MSEv 1.0414e-04 8.9524e-05
MSREv 6.4897e-06 4.0364e-06 MSREv 4.0603e-06 3.5912e-06
MSEt 1.8281e-04 1.0716e-04 MSEt 1.3007e-04 1.0946e-04
MSREt 7.5338e-06 4.4885e-06 MSREt 5.3774e-06 4.5481e-06
Mae 0.0854 0.0482 Mae 0.0444 0.0477
LWN 33 59 LWN 63 63
SR e n SR e n

These two figures represent network’s ability to interpolate and extrapolate the data.

The data concerning sensor 5 1.8W/cm2 represents a test to the extrapolation ability of

the network, since it consists in data captured in one extremity, while the data captured

by Sensor 3 at 0.5W/cm2 serves as a test to the network’s ability to interpolate since

the network has been shown examples from both sides.

The ensemble approaches performance figures are shown in Table (E.2) and the gener-

alization performance between the two paradigms (single model and model ensemble)

can be observed in Table (E.3). Observing Table (E.1) one can notice that Model 4

consistently exhibits better performance figures than all the others models, hence the
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Figure E.3: Model’s behaviour in the test set (Sensor 5 1.8W/cm2), selected using
the KTB approach. The blue line represents the desired behaviour and the model’s test
output is given by the black line. The error line is red. MIMP, homogeneous phantom

experimental setup. Data used: uncorrupted.

ensemble approaches comparison reveals that this methods might not be justifiable as

shown in Table (E.3), where in the last Model we do not observe a performance improve-

ment, hence the overhead introduced in the system is not justifiable. This observations

are in compliance with the remarks that an ensemble of networks requires individuals

with comparable performances. Moreover by using the original data, the models might

suffer from positive correlation.

Analogously to the previous model typologies, we now consider a noisy contaminated

data set. The noise ei was taken from a Gaussian distribution ei ∼ N (0, σ), Figure

(4.12). The Gaussian contaminated data set is shown in Figure (E.4).
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Table E.2: Performance comparison between all methodologies employed. MPMI.
Data used: uncorrupted.

Model 1 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.5127e-04 2.3355e-04 0.1537 2.2165e-04 2.3393e-04 0.7401
Ensemble (SA) 1.9166e-04 1.8801e-04 0.1537 1.3265e-04 1.3525e-04 0.7401

Ensemble optimized (ES) 1.6627e-04 1.4588e-04 0.1537 1.2393e-04 1.1528e-04 0.7401
NDEO 1.6607e-04 1.4305e-04 0.1520 1.2577e-04 1.3327e-04 0.7248

Model 2 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.1658e-04 2.1444e-04 0.0920 1.1034e-04 1.4472e-04 0.0531
Ensemble (SA) 1.8044e-04 1.7488e-04 0.0673 1.0004e-04 1.2156e-04 0.1542

Ensemble optimized (ES) 1.4002e-04 1.3249e-04 0.0673 9.1472e-05 1.0148e-04 0.1542
NDEO 1.3978e-04 1.3046e-04 0.0686 8.9444e-05 9.8966e-05 0.0512

Model 3 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 1.6165e-04 1.8281e-04 0.0854 9.9556e-05 1.0716e-04 0.0482
Ensemble (SA) 1.4136e-04 1.4379e-04 0.0673 8.8032e-05 1.0580e-04 0.0569

Ensemble optimized (ES) 1.1552e-04 1.0787e-04 0.0673 7.6662e-05 9.4693e-05 0.0569
NDEO 1.1669e-04 1.0722e-04 0.0683 7.9205e-05 9.3611e-05 0.0466

Model 4 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 1.0414e-04 1.3007e-04 0.0444 8.9524e-05 1.0946e-04 0.0477
Ensemble (SA) 1.2552e-04 1.4288e-04 0.0534 9.0284e-05 8.7823e-05 0.0429

Ensemble optimized (ES) 1.0279e-04 1.2691e-04 0.0436 8.7702e-05 9.9710e-05 0.0457
NDEO 1.0409e-04 1.3003e-04 0.0444 8.9534e-05 1.0950e-04 0.0477

Figure E.4: Corrupted data obtained after the Gaussian contamination process. The
corrupted data is used for training and validation. The uncorrupted original data is
used to test the model. Collected from the homogeneous phantom experimental setup.
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Table E.3: Generalization error obtained with the ensemble approaches in comparison
with the KTB model selection. MPMI. Data used: uncorrupted.

Model 1 (2 Lags) Heating Cooling Average comparison

Ensemble (SA) 19.50 % 42.18 % 30.84 %
Ensemble optimized (ES) 37.54 % 50.72 % 44.13 %

NDEO 38.75 % 43.03 % 40.89 %

Model 2 (3 Lags) Heating Cooling Average comparison

Ensemble (SA) 18.45 % 16.00 % 17.23 %
Ensemble optimized (ES) 38.21 % 29.88 % 34.05 %

NDEO 39.16 % 31.62 % 35.39 %

Model 3 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) 21.35 % 1.27 % 11.31 %
Ensemble optimized (ES) 40.99 % 11.64 % 26.31 %

NDEO 41.35 % 12.65 % 27.00 %

Model 4 (5 Lags) Heating Cooling Average comparison

Ensemble (SA) -9.85 % 19.77 % 4.96 %
Ensemble optimized (ES) 2.42 % 8.91 % 5.67 %

NDEO 0.03 % -0.03 % -0.00 %

Using this noisy data, four models were again build and assessed. The data splitting

regarding all models was done by merging the test set into the validation set. The data

used to test the models was the complete uncorrupted data set, concerning all models

and intensities, hence the models were assessed using the data shown in Figure (E.1).

The performance figures obtained for each one of the four built models is presented in

Table (E.4).

Analyzing the performance indicators one can conclude that, despite the data contam-

ination, the models were able to learn the process true dynamics, which proves the

robustness of the modelling approach and evince the approximation power of BSNNs.

The model was assessed using the complete original data set, i.e. all the curves present

in Figure (E.1). One can observe that the maximum absolute errors Mae were kept

under simperingly low thresholds even when the networks are trained with highly con-

taminated data. For instance, Model 4 kept Mae under 0.35 oC through all the test set,

with a one step prediction horizon of 7 seconds. Figures (E.5), (E.6), (E.7), (E.8) and

(E.9) demonstrate Model’s behaviour in the test set for different intensities and spatial

locations.
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Table E.4: Performance descriptors obtained concerning models with different number
of input lags. The models presented were selected using the KTB approach. MPMI.

Data used: corrupted.

Model 1(2 lags) Model 2(3 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -9372 -9547 BIC -9784 -10066
MSE 2.7037e-02 3.2030e-02 MSE 2.2369e-02 2.5688e-02
MSRE 1.0312e-03 1.2991e-03 MSRE 8.5683e-04 1.0447e-03
MSEv 2.6722e-02 2.9949e-02 MSEv 2.1470e-02 2.4964e-02
MSREv 1.0429e-03 1.2001e-03 MSREv 8.3985e-04 1.0003e-03
MSEt 1.9728e-03 1.5113e-03 MSEt 1.8568e-03 1.0050e-03
MSREt 7.5553e-05 5.9482e-05 MSREt 7.0785e-05 3.9572e-05
Mae 0.6428 0.7287 Mae 0.4668 0.6075
LWN 29 8 LWN 33 13
SR n n SR n n

Model 3(4 lags) Model 4(5 lags)

Criterion Heating Cooling Criterion Heating Cooling

BIC -9596 -10171 BIC -9551 -10386
MSE 2.4560e-02 2.3859e-02 MSE 2.2650e-02 2.1279e-02
MSRE 9.2981e-04 9.7178e-04 MSRE 8.6211e-04 8.6492e-04
MSEv 2.7118e-02 2.4098e-02 MSEv 2.3695e-02 1.9927e-02
MSREv 1.0561e-03 9.6533e-04 MSREv 9.2650e-04 7.9681e-04
MSEt 2.0776e-03 7.1778e-04 MSEt 1.2554e-03 6.5287e-04
MSREt 7.7306e-05 2.8442e-05 MSREt 4.7779e-05 2.5945e-05
Mae 0.7875 0.3870 Mae 0.2745 0.3264
LWN 18 18 LWN 43 23
SR n n SR n n

Figure E.9: Model’s behaviour in the test set (Sensor 1 1.8W/cm2), selected using
the KTB approach. The blue line represents the desired behaviour and the model’s test
output is given by the black line. The error line is red. MIMP, homogeneous phantom

experimental setup.
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Figure E.5: Model’s behaviour in the test set (Sensor 1 1.8W/cm2), selected using
the KTB approach. The blue line represents the desired behaviour and the model’s test
output is given by the black line. The error line is red. MIMP, homogeneous phantom

experimental setup.

Figure E.6: Model’s behaviour in the test set (Sensor 2 1.0W/cm2), selected using
the KTB approach. The blue line represents the desired behaviour and the model’s test
output is given by the black line. The error line is red. MIMP, homogeneous phantom

experimental setup.

The test using data collected at Sensor 1 at 1.8W/cm2 represents the most challenging

prediction zone, due the abrupt temperature evolution. However the network managed

to follow the temperature variations, even with the increased prediction horizon. After

the training of the four models, the ensembles approaches were applied. Their descriptors

are assessed in Table (E.5) and the usual comparison with the KTB paradigm is done

under to results shown in Table (E.6).
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Figure E.7: Model’s behaviour in the test set (Sensor 1 1.8W/cm2), selected using
the KTB approach. The blue line represents the desired behaviour and the model’s test
output is given by the black line. The error line is red. MIMP, homogeneous phantom

experimental setup.

Figure E.8: Model’s behaviour in the test set (Sensor 1 1.8W/cm2), selected using
the KTB approach. The blue line represents the desired behaviour and the model’s test
output is given by the black line. The error line is red. MIMP, homogeneous phantom

experimental setup.

The generalization assessment of the ensemble’s approaches revealed consistent perfor-

mance improvements achieved by the three methods, with a tendency for better results

when NDEO is applied. Nevertheless the performance gains encountered for this model

typology are substantially worst when compared to the previous typologies. This fact

is due to the outlier performance that a model admitting a higher number of input lags

has over models that consider less inputs. As so, the ensemble has an individual whose



Results for MPMI model typology, prediction horizon h = 7 seconds. 211

Table E.5: Performance comparison between all methodologies employed. MPMI

Model 1 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.6722e-02 1.9728e-03 0.6428 2.9949e-02 1.5113e-03 0.7287
Ensemble (SA) 2.3894e-02 1.9472e-03 0.6428 2.1844e-02 1.1711e-03 0.7287

Ensemble optimized (ES) 2.3292e-02 1.9544e-03 0.6428 2.0864e-02 1.1893e-03 0.7287
NDEO 2.3503e-02 1.9949e-03 0.6372 2.0311e-02 6.0846e-04 0.3195

Model 2 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.1470e-02 1.8568e-03 0.4668 2.4964e-02 1.0050e-03 0.6075
Ensemble (SA) 2.1529e-02 1.6396e-03 0.5090 2.3417e-02 8.1185e-04 0.3778

Ensemble optimized (ES) 2.0990e-02 1.6469e-03 0.5090 2.1850e-02 8.3013e-04 0.3778
NDEO 2.1293e-02 1.7106e-03 0.4637 2.1444e-02 8.5243e-04 0.4862

Model 3 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.7118e-02 2.0776e-03 0.7875 2.4098e-02 7.1778e-04 0.3870
Ensemble (SA) 2.6551e-02 1.4333e-03 0.4229 2.5128e-02 6.9105e-04 0.3238

Ensemble optimized (ES) 2.6410e-02 1.4407e-03 0.4229 2.2239e-02 7.0943e-04 0.3238
NDEO 2.6694e-02 1.5387e-03 0.4925 2.1715e-02 6.3656e-04 0.3229

Model 4 Heating Cooling

Criterion MSEv MSEt Mae MSEv MSEt Mae

KTB 2.3695e-02 1.2554e-03 0.2745 1.9927e-02 6.5287e-04 0.3264
Ensemble (SA) 2.4220e-02 1.1765e-03 0.3531 2.2313e-02 6.2893e-04 0.2107

Ensemble optimized (ES) 2.3487e-02 1.1839e-03 0.3120 1.9942e-02 6.4741e-04 0.3210
NDEO 2.3695e-02 1.2551e-03 0.2745 1.9447e-02 5.6579e-04 0.2714

performance might not me comparable with the remainders, thus compromising the

whole ensemble mechanism. However any performance gain, if its additional overhead

is justified, are welcome in biomedical applications, which is a highly sensitive area, any

improvement can make the difference.
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Table E.6: Generalization error obtained with the ensemble approaches in comparison
with the KTB model selection.

Model 1 (2 Lags) Heating Cooling Average comparison

Ensemble (SA) 1.30 % 22.51 % 11.90 %
Ensemble optimized (ES) 0.93 % 21.31 % 11.12 %

NDEO -1.12 % 59.74 % 29.31 %

Model 2 (3 Lags) Heating Cooling Average comparison

Ensemble (SA) 11.69 % 19.22 % 15.46 %
Ensemble optimized (ES) 11.30 % 17.40 % 14.35 %

NDEO 7.87 % 15.18 % 11.53 %

Model 3 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) 31.01 % 3.72 % 17.37 %
Ensemble optimized (ES) 30.66 % 1.16 % 15.91 %

NDEO 25.94 % 11.32 % 18.63 %

Model 2 (4 Lags) Heating Cooling Average comparison

Ensemble (SA) 6.28 % 3.67 % 4.98 %
Ensemble optimized (ES) 5.70 % 0.84 % 3.27 %

NDEO 0.02 % 13.34 % 6.68 %
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