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Measurement of overall survival (OS) remains the gold standard for interpreting the impact of new therapies for multiple myeloma
in phase 3 trials. However, as outcomes have improved, it is increasingly challenging to use OS as the primary endpoint if timely
approval of novel agents is to be ensured to enable maximum benefit for patients. Surrogate endpoints of OS, such as progression-
free survival (PFS) and response to treatment, have contributed to approval decisions by the Food and Drug Administration (FDA)
and European Medicines Agency as endpoints demonstrating clinical benefit, and the FDA has recently supported the use of
minimal residual disease (MRD) as an accelerated approval endpoint in multiple myeloma. This review aims to address situations in
which the use of PFS as a surrogate endpoint warrants careful interpretation especially for specific subgroups of patients and
considers ways to ensure that studies can be designed to account for possible discordance between PFS and OS. The utility of
subgroup analyses, including the potential for those not pre-specified, to identify target populations for new agents is also
discussed.
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INTRODUCTION
The overarching goal in improving treatment outcomes in
cancer is to reduce symptom burden and prolong the length
and quality of life (QoL) while limiting treatment-related
toxicity. While measurement of overall survival (OS) remains
the gold standard for interpreting the impact of new therapies
for multiple myeloma in phase 3 clinical trials, as outcomes have
improved, it has become increasingly challenging to wait for
this endpoint to keep pace with the rapid progress being
achieved in the field. Median OS, when short, can be compared
directly between interventions. However, with improved mye-
loma therapies and increased survival duration, it is increasingly
difficult to use OS as the primary endpoint to ensure timely
approval of novel therapies for the benefit of patients. This
difficulty is also reflective of the use of study designs that
incorporate crossover after relapse and successful scientific
advances over time, which for myeloma have consistently
provided effective approved agents that have impacted out-
comes after relapse both in and outside of clinical trials,
ultimately resulting in greater reliance on surrogate endpoints
of OS to provide reliable and validated indicators of clinical
benefit of novel interventions.

Surrogate endpoints are defined by the National Institutes of
Health as “biomarkers intended to substitute for a clinical
endpoint” [1]. For surrogate endpoints to be used in the context
of drug approval, the United States Food and Drug Administration
(FDA) mandates that “clinical trials are needed to show that the
surrogate endpoint can be relied upon to predict or correlate with
clinical benefit in a context of use” [2]. Progression-free survival
(PFS), defined as time from start of therapy to disease progression
or death, has been used in this way by both the FDA and the
European Medicines Agency (EMA) in many drug approvals to
date [3, 4]. Second progression-free survival (PFS2), defined as
time to second disease progression or death, has been used
additionally to account for the impact of a drug/intervention on
potential resistance after relapse [3]. Earlier surrogate endpoints
predictive of long-term outcomes such as OS, including minimal
residual disease (MRD) negativity, are increasingly used as
research endpoints [5–7] but have previously been more
challenging to regulatory agencies as primary endpoints of clinical
trials [8]. The Oncologic Drugs Advisory Committee of the FDA has
recently advised that current evidence supports the use of MRD as
an accelerated approval endpoint in myeloma clinical trials [9].
This paves the way for accelerated approval based on MRD as an
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endpoint but with a requirement for ongoing follow-up and PFS/
OS confirmation.
The aim of this review is to explore the current use of PFS as a

surrogate endpoint for OS in myeloma, examine situations when
this has not been reliable, and discuss ways to ensure that studies
are planned to account for these situations, or at least mitigate
their effect. This will improve the development of optimal study
designs moving forward and increase acceptance of other
surrogate endpoints such as MRD, while improving our ability to
confidently establish the efficacy of novel agents/interventions in
the treatment of patients with myeloma and rapidly translating
this into approvals for patient access [10].

PFS IS AN ACCEPTED SURROGATE ENDPOINT IN MYELOMA
There are many examples of myeloma trials in which a
demonstrable PFS benefit is associated with a similar benefit in
OS [11–15]. Based on such data, PFS as a surrogate endpoint has
contributed to many approval decisions by the EMA and FDA.
Recent examples include the MAIA trial, which compared the
combination of daratumumab, lenalidomide, and dexamethasone
(DRd) to lenalidomide and dexamethasone (Rd) in patients with
newly diagnosed myeloma (NDMM) considered ineligible for
autologous stem cell transplant (ASCT). The trial showed a PFS
benefit with DRd compared to Rd (hazard ratio [HR] 0.55 [95% CI,
0.45–0.67]; p < 0.0001) and an OS benefit (HR 0.66 [95% CI,
0.53–0.83]; p= 0.0003). The OS findings were consistent across
subgroups, with the exception of patients with impaired baseline
hepatic function, which favored Rd (HR 1.29 [95% CI, 0.64–2.60]),
although patient numbers (DRd, n= 31; Rd, n= 29) were small
[11]. Similar findings have been observed with combinations of
agents from all anti-myeloma drug classes, in both transplant-
eligible and -ineligible populations, as well as newly diagnosed
and relapsed patient populations. These include the SWOG
0777 study that compared lenalidomide, bortezomib, and
dexamethasone (RVd) to Rd in transplant-ineligible patients with
NDMM and demonstrated that PFS benefit was accompanied by
OS benefit [12], building on the efficacy shown for this
combination in both transplant-eligible and -ineligible NDMM
patients [13]. Similarly, in the setting of relapse, there are
numerous examples, including the POLLUX (comparing DRd vs
Rd) [14] and ASPIRE trials (comparing carfilzomib with Rd vs Rd)
[15], where PFS and OS were consistently superior for the triplet vs
the doublet. However, there are several recent studies where PFS
does not act as a surrogate for OS, and the validity of using it as a
surrogate endpoint has been questioned [16]. In some cases,
adequately powering a study to identify an OS difference may be
challenging due to sample size constraints, unless a large
magnitude of effect is expected and may not be included as a
co-primary endpoint. Exploring other reasons for lack of this
translation and how this discrepancy might be addressed will help
advance myeloma therapies at a greater pace by ensuring use of
the earlier, more rapidly interpretable endpoints whilst preserving
the validity of OS in reflecting improved outcomes overall.

HETEROGENEITY IN POPULATIONS CAN AFFECT THE ABILITY
TO TRANSLATE A PFS BENEFIT TO OS BENEFIT
Recent examples of clinical trials in which a significant PFS benefit
has not translated into an OS benefit for all patients has occurred
in situations where specific subgroups have heterogeneous
outcomes with respect to the endpoint. In some of these,
subgroup heterogeneity has led to an apparent lack of OS benefit
or even a detrimental effect on OS in the study population;
however, subgroup analyses have led to the identification of
groups that may benefit from the treatment being studied
[17–19]. Important examples of this include differences based on
heterogeneity by molecular subgroups, prior ASCT, and age.

Molecular heterogeneity
The BELLINI trial demonstrated a significant PFS benefit with the
addition of the BCL-2 inhibitor venetoclax to bortezomib and
dexamethasone (HR 0.63 [95% CI, 0.44–0.90]) but with a
significantly worse OS (HR 2.03 [95% CI, 1.04–3.95]) in patients
with relapsed/refractory myeloma (RRMM) [20]. This led to a partial
clinical hold being imposed by the FDA on all venetoclax trials.
However, on further analysis of the trial, there was evidence of
significant heterogeneity in OS outcomes between patients with
t(11;14) or high BCL2 expression (OS: HR 0.82 [95% CI, 0.40–1.70])
and those with no t(11;14) or low BCL2 expression (OS: HR 1.34
[95% CI, 0.81–2.20]), which likely accounted for the discordance
between PFS and OS in the study population [18]. This
heterogeneity was also evident in the PFS analysis (Fig. 1A). In
those patients without t(11:14) and/or high BCL2 expression and
lack of benefit from the use of venetoclax, additional toxicity may
have led to the worsening in OS. Across the study, adverse events
led to 12 deaths in the venetoclax arm (the majority due to
infection) and only one in the placebo arm [18].
This effect of heterogeneity between molecular subgroups was

also identified in pre-clinical [21, 22] and early-phase studies [23].
However, the BELLINI trial was intentionally not restricted to the
t(11;14) subtype of myeloma based on the premise that
combination with dexamethasone [24] and bortezomib [25] could
increase BCL-2 dependency even in patients without t(11;14) or
high BCL2 expression, and therefore, all myeloma patients rather
than a subset may benefit [26]. In phase 1b study investigating
venetoclax, bortezomib, and dexamethasone in patients with
RRMM, there were markedly improved responses in patients with
high BCL2 expression compared to those with low BCL2 expression
(94% vs 59%) [27], although it required the results of the phase 3
BELLINI study to demonstrate the negative interaction between
PFS and OS outcomes in the non-t(11;14), low BCL2 subgroups
[20, 28].
Designing the BELLINI study with recruitment of only patients

with t(11;14) and/or high BCL2 expression or adequately powering
this subgroup within the all-comers study may, in retrospect, have
prevented the significant pause in development following the trial
results and arguably led to the approval of venetoclax. However,
the feasibility of recruiting the patient numbers required to
achieve this was considered potentially prohibitive and reflects
the reality of conducting clinical trials of selected subgroups
within a meaningful time frame. Importantly, investigation of
venetoclax, although delayed, was subsequently reinitiated. The
phase 3 CANOVA study was designed to evaluate the safety and
efficacy of venetoclax plus dexamethasone (Ven/dex) compared
with pomalidomide plus dexamethasone (Pom/dex) in patients
with RRMM and with t(11;14)-positive disease only, but did not
meet its primary endpoint of PFS [29]. However, a post hoc
sensitivity analysis of CANOVA that counted the start of a new line
of anti-myeloma therapy as a PFS event (rather than being
censored) demonstrated a significant PFS benefit with Ven/dex vs
Pom/dex (HR 0.651 [95% CI, 0.487–0.870; p= 0.003). Of note, there
was no significant difference in OS in this analysis although a
trend in favor of Ven/dex was seen (Ven/dex: 32.4 months vs Pom/
dex: 24.5 months; HR 0.697 [95% CI, 0.472–1.029]; p= 0.067) [29].
Importantly, this heterogeneity has not been observed in all

studies, as it is usually determined by the degree of molecular
targeting of the agent under study. During development of a new
agent, it is therefore key to study molecular heterogeneity
through allied translational research programmes to identify and
validate potential populations that may benefit most. The results
of such subgroup analyses would enable the definition of a “target
population(s)” for specific therapies prior to the phase 3 trial
design, which could benefit timely drug development. This
suggested approach would be preferable to all-comers trials
followed by subgroup analysis, which nonetheless may have
validity, especially if these analyses are planned a priori, but may
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take longer, require a larger sample size, and may require further
validation as part of the drug approval process.

Age-related heterogeneity
Heterogeneity in OS outcomes by age has recently been
highlighted by results of the phase 3 OCEAN trial, where there
was a significant PFS advantage with the novel peptide-drug
conjugate melflufen and dexamethasone combination (melflu-
fen/dex) compared to Pom/dex (HR 0.79 [95% CI, 0.64–0.98;
p= 0.032]) in the overall population of patients with RRMM [17].
However, this improvement in PFS did not translate to an OS
benefit (HR 1.10 [95% CI, 0.85–1.44; p= 0.47]) [17]. Examination
of subgroups revealed evidence of heterogeneity by age for
both PFS (phet= 0.033) and OS (phet= 0.006; Fig. 1B). There was
also an apparent detriment to OS with melflufen/dex in patients
<65 years (HR 1.71 [95% CI, 1.09–2.69]) compared to that with
Pom/dex but a significant benefit in patients >75 years (HR 0.46
[95% CI, 0.23–0.92]) [17]. Whether this is related solely to age or
to differences in prior treatment is of interest and may be a
complex interaction of both, as there was also significant
heterogeneity by previous ASCT with the use of high-dose
alkylation as conditioning.
Heterogeneity by age was also seen in the Myeloma XI trial

comparing lenalidomide maintenance to observation in patients
of all ages [30]. The randomization of the lenalidomide and
observation arms was conducted in transplant-eligible and

-ineligible patients enrolled in the trial, with pre-planned analysis
in both. Patients in the transplant-eligible pathway had a median
age of 61 years vs 74 years for those in the transplant-ineligible
pathway [31, 32]. In contrast to the OCEAN study, there was no
heterogeneity by transplant eligibility for PFS. Overall, there was
significant PFS benefit (HR 0.46 [95% CI, 0.41–0.53]; p < 0.0001),
consistent in both pathways of the trial (transplant-eligible
patients: HR 0.48 [95% CI, 0.40–0.58], p < 0.0001; transplant-
ineligible patients: HR 0.44 [95% CI, 0.37–0.53], p < 0.0001).
However, for OS, there was significant heterogeneity between
pathways (transplant-eligible patients: HR 0.69 [95% CI, 0.52–0.93],
p= 0.014; transplant-ineligible patients: HR 1.02 [95% CI,
0.80–1.29], phet= 0.0445) demonstrating a translation of PFS
benefit to OS for younger and fitter patients, but not for older
and/or less fit patients.
Whilst there are key differences between the OCEAN and

Myeloma XI trials, including enrollment of RRMM patients in
OCEAN compared to NDMM patients in Myeloma XI, taken
together, these studies trigger the hypothesis that heterogeneity
could be associated with reduced impact on OS for immunomo-
dulatory drug (IMiD) use in older patients, compared to younger
patients, perhaps from differences in immune effects and innate
immune exhaustion associated with advancing age, and other
potential confounders such as vascular health.
To better understand these differences, we examined hetero-

geneity by age groups seen within and between recently
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published phase 3 clinical trials in myeloma reporting PFS and OS
(Supplementary Methods). To compare the PFS and OS impact
from different classes of anti-myeloma therapies, only trials where
the effect of specific agents belonging to one of the three major
anti-myeloma drug classes (anti-CD38, proteasome inhibitors [PIs],
or IMiDs) could be isolated were included. This included “add-on”
trials of an agent or where it was compared to an inactive control
(observation or placebo) but not a different class of agent. For
example, where A is the agent in question, trials of AB vs B, ABC vs
BC, and A vs observation/placebo were included while trials of A
vs C or AC vs BC were not.
This search strategy identified 20 trials that were included in the

analysis (Supplementary Fig. 1; Supplementary Table 1); of these,
five isolated an anti-CD38 antibody effect, eight an IMiD effect,
and seven a PI effect. Median age across all trials was 66 years
(range, 59–73). In total, 19 of 20 trials reported significant PFS
benefit in the overall population (five of five evaluating anti-CD38
antibodies, eight of eight evaluating IMiDs, and six of seven
evaluating PIs), but only 10 of 20 trials reported significant OS
benefit (four of five evaluating anti-CD38 antibodies, three of eight
evaluating IMiDs, and three of seven evaluating PIs).
When adjusting for individual drug class effect, there was no

evidence of a relationship between the HR and age for PFS
(p= 0.607; Fig. 2A). For OS, however, there was a significant
negative relationship between HR and median age of patients
included in trials (p= 0.022). Notably, this relationship was
observed for IMiDs and PIs, but not anti-CD38 antibodies
(p= 0.017; Fig. 2B).
For trials where subgroup analysis of HR for OS by age were

reported, these intra-trial outcomes were plotted by age group
(Supplementary Fig. 2). Lack of standardization in age groupings
reported made the cross-trial analysis challenging. The clearest
trend appeared in a prespecified analysis of the ICARIA-MM trial
that analyzed OS with isatuximab plus pomalidomide and low-
dose dexamethasone vs pomalidomide and low-dose dexametha-
sone in patients with RRMM, wherein a decrease in the HR was
seen with increasing age [33].
On examining the effect of both IMiDs and PIs in this analysis,

there appears to be a relationship between median age of
participating patients and the HR for OS, but not PFS. It appears to
be less likely for a PFS benefit to translate to an OS benefit in both
IMiD and PI trials recruiting older patients, suggesting a
differential effect of IMiDs and PIs on survival after progression
in older patients that is not seen with anti-CD38 antibody
therapies. Possible hypothesis for this effect could be an ongoing
effect of IMiDs and PIs after relapse or lack of dosing optimization
of these agents for older patients, leading to toxicity that
continues into subsequent lines of therapy, thus impacting
outcomes. Alternatively, both IMiDs and PIs may induce alterations
in myeloma clonality and/or in the bone marrow stroma, which in
turn may impair the efficacy and/or tolerance of subsequent
treatments. Within all trials reported, dosing of the key agents was
not adjusted based on age or frailty, which could perhaps have led
to different outcomes. This approach of age- or frailty-based
dosing is being prospectively studied in the ongoing FiTNEss
(Myeloma XIV) trial, which is randomizing ASCT-ineligible patients
to receive standard-of-care dosing and reactive dose modification
in the event of toxicity or frailty score-adapted dosing (Interna-
tional Myeloma Working Group frailty score) with dose reductions
determined by frailty groups [34].
Limitations and confounders of this analysis (Fig. 2) included an

inability to examine agents separately within each class due to the
limited number of trials. Specifically, within the PI group, there are
many trials with ixazomib; however, there are only very few trials
studying the addition of bortezomib or carfilzomib that also have
OS data at the current time. In the IMiD groups, it is also difficult to
interrogate differences between lenalidomide and pomalidomide,
and these data do not include any trials of the next-generation
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Fig. 2 Random effect model of progression-free survival and
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cereblon E3 ligase modulatory drug (CELMoD) agents. It is,
therefore, possible that the effects identified may not be a class
effect but rather, driven by one or more of the individual agents
within that class. The included trials also have different lengths of
follow-up, which affects both the likelihood of OS data being
available and the maturity of data. Importantly, differences in the
way age subgroups were reported or lack of age subgroup
outcome reporting limited the breadth of the intra-trial analyses.
These findings provide critical considerations for future trial

designs, as well as interpretation of current study results. They
highlight the critical importance of reporting subgroup analyses
by age to ensure these interactions are understood and explored.
For future trials, this analysis also raises the question of whether
agents should be added in such a way that their individual
outcomes can be studied (as in the studies included in our
analysis) or used in more head-to-head studies. The latter clearly
provides key information about an agent or combination in direct
comparison with another, but when conducting head-to-head
comparisons, it is important to understand the impact of
subgroup heterogeneity based on prior studies such as those
presented here that may otherwise be “hidden”. Recent examples
of when this might be important include the DREAMM3 trial that
compared belantamab mafodotin to Pom/Dex in patients with
RRMM [35], which did not meet its primary endpoint of PFS. The
data reported to date suggest that there was a subset of patients
sensitive to belantamab mafodotin, with a median duration of
response for belantamab mafodotin not yet reached vs 8.5
months with Pom/dex, consistent with the idea that heterogeneity
in the population being studied may have prevented the overall
PFS being significantly different from that of the control group.
Similar considerations should be given to reporting other
potential surrogate endpoints, with sub-analyses being especially
valuable in identifying likely subgroups in which early endpoints
are more or less likely to translate into OS benefit. Ongoing studies
of belantamab in different populations may shed additional light
on its true efficacy and are awaited with great interest.
Of note, in the presence of true heterogeneity of treatment

effects, interpretation of the main treatment effect can be
complex and may limit interpretation of the overall treatment
effect. For example, given that IMiDs and PIs may have
heterogeneous OS benefit across age groups (e.g., Myeloma XI
trial [30]; Fig. 2), careful interpretation of observed HR hetero-
geneity in trials where these are used as a comparator is needed. If
a treatment has an observed homogeneous HR benefit compared
with a heterogeneous comparator, it paradoxically means that the
experimental arm may in fact be heterogeneous as well. Similarly,
observed heterogeneous HRs in comparison with a heterogenous
comparator require caution in terms of interpretation of the
treatment benefit of the experimental drug, as seen with ICARIA-
MM or OCEAN [17, 33]. Taken together, these analyses further
support the importance of evaluating subgroups in determination
of clinical benefit.

OTHER SITUATIONS WHERE PFS BENEFIT MAY NOT
TRANSLATE TO OS: THE ISSUE OF COMPETING RISKS
The examples discussed above include trials exhibiting hetero-
geneity in outcomes between subgroups that could be contribut-
ing to the lack of translation of PFS benefit to OS benefit. Other
trials have shown this lack of translation without distinct subgroup
heterogeneity currently identified, key examples being the recent
studies of early vs delayed ASCT examined in the EMN02 [36], IFM
2009 [37, 38], and DETERMINATION trials [39]. In the parallel IFM
2009 and DETERMINATION studies, there was a significant PFS
benefit associated with early vs delayed ASCT (IFM 2009: HR 0.70
[95% CI, 0.59–0.83; p < 0.001] [38]; DETERMINATION: HR 1.53 [95%
CI, 1.23–1.91; p < 0.001]). It should be noted that the HRs are
calculated differently, such that they reflect a similar outcome in

favor of ASCT in both trials. Despite these impressive PFS
differences between early vs delayed ASCT groups in the IFM
2009 trial at 93 months follow-up [38, 40], there was no significant
difference in OS (HR 1.03 [95% CI, 0.80–1.32; p= 0.81]). Similarly, in
the DETERMINATION trial, at 76 months follow-up, there was no
significant difference in OS between RVd plus ASCT vs RVd alone
(HR 1.10 [95% CI, 0.73–1.65; p > 0.99]). This could be due to several
reasons; of note, neither study was specifically powered to
demonstrate an OS benefit, as the primary endpoint was PFS.
While it is possible to hypothesize that an OS benefit would have
been seen if the studies had been larger, notably, in other similarly
sized studies not involving transplant, there has been a correlation
between PFS and OS suggesting that transplant may be the
confounding effect [11, 12, 41]. An alternative explanation could
be that studies in transplant-eligible patients with NDMM now
have long median PFS and OS, including the control arms of these
studies and therefore, the influence of crossover and other
therapeutic advances over time plays a larger role, with salvage
therapy in particular proving increasingly effective. To this point,
more patients in the IFM 2009 trial received a delayed transplant
(77%) than in DETERMINATION (28%), suggesting that beyond
crossover to ASCT, other factors such as the remarkable efficacy of
next-generation novel agents have a favorable impact on long-
term outcomes. In recent years the development of immunothera-
pies for myeloma including bispecific antibodies and chimeric
antigen receptor T-cell therapies has moved at a rapid pace
[42, 43]. These treatments challenge the old paradigm that patient
remission will shorten with each line of treatment with many
inducing deep and durable remissions at later lines of therapy.
This confounds the follow-up of overall survival for clinical trials as
longer-term outcomes may be driven by access to such therapies
as opposed to the original trial randomization. In trials performed
across multiple international centers, global heterogeneity in
access to subsequent anti-myeloma drugs may also exacerbate
this.
Importantly, the longer the median PFS and OS achieved, the

greater the potential for competing risks affecting OS outcomes to
become apparent. These competing risks may affect subgroups
differently and reflect toxicity, side effects, and impact on the
disease itself, such as mutational burden and signatures resulting
from mutagenic treatments [40] as well as second primary
malignancies, specifically, secondary myeloid leukemia and
myelodysplastic syndrome [39]. Another example of the issue of
competing risks is exemplified by a recent post-hoc analysis of
DETERMINATION that explored outcomes with RVd alone vs RVd
plus ASCT in African American and White patients which showed
that while outcomes with RVd plus ASCT were similar in patients
of both races, African American patients with high body mass
index and female sex appeared to derive significantly more PFS
benefit from RVd alone. This may be related to the Duffy-null
genotype, a common variant in people of African and Middle
Eastern genetic ancestry, that has a key role in cytokine
homeostasis, inflammation and likely, myeloma pathobiology
and was present in approximately 60% of African American
patients tested to date in the study [44, 45].
Prior studies of transplant have shown consistent PFS with ASCT

[46], but OS benefit has been less clear. Interestingly, in the
EMN02 study that compared ASCT with bortezomib-melphalan-
prednisone in patients with NDMM, ASCT was associated with PFS
benefit (HR 0.73 [95% CI, 0.62–0.85]; p= 0.0001) compared with
bortezomib-melphalan-prednisone, but there was no significant
difference in OS (HR 0.9 [95% CI, 0.71–1.13]; p= 0.35). Conversely,
tandem ASCT showed a benefit in both PFS (HR 0.74 [95% CI,
0.56–0.98]; p= 0.036) and OS (HR 0.62 [95% CI 0.41–0.93];
p= 0.022) compared with single ASCT [36]. This suggests that in
the context of ASCT, the impact of high-dose melphalan and its
effects on both the patient and their myeloma is key in
understanding the complexity of these interactions, as well as
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their combined long-term effect on the outcome for either benefit
or detriment in any particular patient through competing risk.

DOES LACK OF TRANSLATION OF PFS BENEFIT TO OS BENEFIT
MATTER? IS OS THE ONLY IMPORTANT GOAL?
When examining the circumstances wherein an agent may have
substantial PFS benefit without translation to OS, it is important to
reflect on the impact of that situation on an individual patient.
While prolonging life is of key importance, first remission is often
when patients are feeling most well, with the fewest myeloma-
related symptoms. Prolonging this time (before relapse) even in
the context of no OS benefit may still, therefore, be of benefit to
patients. An illustrative example is the transplant-ineligible path-
way of the Myeloma XI trial in which the use of lenalidomide
maintenance more than doubled median PFS from 11 months to
26 months (HR 0.44 [95% CI, 0.37–0.53]; p < 0.0001) in patients
who had not undergone ASCT, but there was no significant OS
difference [30]. Prolonging first remission, with only a single anti-
myeloma agent rather than combination therapies required at
relapse with more hospital attendances, may benefit patients’
QoL. It may also be more cost-effective for patients to continue
single-agent maintenance therapy for longer, and thus need less
expensive therapies for a shorter duration to achieve the same
effect. Although this is an area of active study, recent data suggest
that early ASCT may be more expensive than delayed therapy (or
being kept in reserve), at least in the jurisdiction of US health care,
challenging similar arguments used previously in favor of patients
undergoing early vs deferred ASCT [47–50].
The duration of first remission in the DETERMINATION trial was

approximately 2 years longer with early vs delayed ASCT, with a
median PFS of 67.5 months vs 46.2 months (HR 1.53 [95% CI,
1.23–1.91; p < 0.001]), but remarkably, no significant difference in
OS [39]. However, for many patients, this would mean a prolonged
time after ASCT when they may have regained a QoL not
dissimilar to their pre-diagnosis state, perhaps returning to work,
whilst taking oral maintenance therapy. This comes with the key
caveat of significant loss of QoL during transplant, which may last
for several months [51]. Conversely, there may clearly be patients
for whom a delayed transplant is more appropriate, for example, if
lifestyle factors favor early return to work after/during induction
therapy, with ASCT delayed until first relapse or used later and
only if needed. The risk-benefit balance in these scenarios are
patient-specific and should therefore be carefully discussed, with
personal and disease-related factors tailored to patient preference
[52]. These issues highlight the critical importance of incorporat-
ing health-related QoL into clinical trial endpoints as well as
parallel healthcare resource utilization and health economic
analyses within studies to enhance optimal translation into clinical
practice and for reimbursement discussions [53]. Efforts to
encourage this approach are included in recommendations such
as those in the European Society for Medical Oncology-Magnitude
of Clinical Benefit Scale [54].
Similar to these arguments, the acceptance of the use of MRD as

an endpoint for accelerated approval, does not mean that MRD
negativity should be pursued at all costs. Particularly in the older
patient population, the balance of efficacy and toxicity is critical
and co-primary endpoints combining both should be considered
to ensure the achievement of a deep response that does not come
at too high a price for the patient.

CONCLUSIONS
Whilst PFS continues to be commonly used in FDA and EMA
approvals as a surrogate endpoint for OS in myeloma, recent
examples highlighted above demonstrate situations in which
clinical benefit of PFS does not translate to OS. Understanding
why this has occurred can be aided by understanding and utilizing

subgroup analyses of clinical trials, potentially even if not pre-
specified and new information has come to light, which may be of
value to avoid overlooking a group that derives significant benefit
from a particular therapy, or missing others for whom the benefit
is less. Furthermore, this may help identify target populations for
new agents that may better inform subsequent studies. The use of
such analyses may require dialog with approval bodies such as the
FDA and EMA to ensure such findings are accepted in drug
approval reviews, as well as being patient-focused to optimize
availability of novel agents to target populations in need. Whether
or not subgroup analyses can contribute to approval processes
may depend on whether there is a strong biological rationale for
the subgroup effect, whether the analysis was prespecified and
appropriately powered, and the magnitude of difference. Post-hoc
analyses may provide a high degree of evidence but given the
statistical risks associated with multiple testing and adequacy of
powering of the study, further validation may be needed as part of
the approval process. Importantly, for optimal patient access, this
should not necessarily preclude initial approval, especially given
the complexity of disease pathobiology and treatment effect as
the therapeutic landscape expands, but critically, may require
further validation as part of subsequent prospective studies.
Additionally, ongoing follow-up of trials for OS (preferably also
adequately powered) will ensure that a clear picture emerges over
time. However, powering of endpoints for OS is likely to require
additional patients, longer follow-up, and therefore, significant
additional resources to implement. Translational analyses per-
formed pre-clinically and during early-phase clinical trials are
critical to understand how to better design later-phase studies.
Novel trial designs such as adaptive studies in which subgroups
are identified at interim analysis and expanded in the second part
of the study may also help improve rapid integration of this
approach.
Understanding the value of a long PFS, including the duration

of progression-toxicity-free survival, and the translation (or
otherwise) to OS for patients is best informed by concurrent
patient-reported outcomes within key phase 3 trials. If feasible,
this would need to be continued at least until the point estimate
of PFS2 to capture patient experiences after first relapse, as well as
continuing to assess OS, which remains the gold standard for
outcome.
How can these findings be applied to implementation of other

surrogate endpoints in myeloma, such as MRD? Recent accep-
tance of the use of MRD as an endpoint for accelerated approval is
vital given the ongoing advances in myeloma therapies seen to
date, to enable their rapid translation to real-world practice [53].
This means that even PFS is now too long to make this a
meaningful endpoint and enable early adoption of novel therapies
in the frontline setting. However, if MRD is used as an endpoint, it
is equally important to ensure appropriate follow-up for PFS and
OS. Subgroup analyses should be encouraged to avoid missing
key groups that do, or do not, benefit unless a target population
can be identified from prior knowledge of drug action, which
requires both confirmation in randomized trials and careful
attention to correlatives. In our view, implementing these
measures will hopefully ensure timely drug approvals in myeloma
and subsequently, further improvements in clinical benefit for all
our patients.
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