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ABSTRACT

This study explores the role of diffusion in creating instabilities in the Bruk Temkin-Gorodsky Novakovic (BT-GN) oscillatory carbonyla-
tion reaction network. Stoichiometric network analysis and numerical methods revealed the presence of two destabilizing feedback cycles
responsible for these instabilities. Analysis of a spatially uniform system showed that the saddle-node bifurcation can be simulated within the
reaction network. The introduction of diffusion results in two types of instabilities: one occurs when a spatially uniform system is already
unstable, leading to a reaction–diffusion front; and another involves diffusion-driven instabilities where introducing diffusion destabilizes a
stable spatially uniform system. Slower PdI2 diffusion plays a key role in inducing these instabilities. Equations describing conditions for the
emergence of the instabilities in both cases were derived.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0211536

This study investigates the emergence of oscillatory dynamics in a
Bruk Temkin-Gorodsky Novakovic (BT-GN) oscillatory carbony-
lation reaction network, employing a combination of stoichio-
metric network analysis and numerical simulations. The study
examines the interplay between reaction kinetics and diffusion,
identifying key feedback loops that drive instability in this sys-
tem. Notably, the introduction of diffusion was found to yield two
distinct types of instabilities: reaction-diffusion fronts and Tur-
ing patterns. The latter, arising from a stable system destabilized
by diffusion, highlights the crucial role of spatial heterogeneity
in pattern formation. This research provides valuable insights
into the complex dynamics of reaction-diffusion systems, with
implications for diverse fields ranging from material science to
biological pattern formation.

I. INTRODUCTION

Pattern formation in nature (e.g., stripes in zebras and spots in
leopards) was a subject of Alan Turing theory of the chemical basis
of morphogenesis, where the feasibility of homogeneous uniform
state to progress to pattern formation was proposed to take place
via instability resulting from the interaction of chemical reaction

and the difference in diffusion coefficients of the chemical species
involved.1,2 The appearance of Turing patterns is vast and includes
fronts, hexagons, spirals, stripes, and dissipative solutions observed
and linked with a broad range of phenomena in biological systems
and beyond.3–15 When chemical reactions are examined under labo-
ratory conditions, systems that produce Turing patterns are scarce
and commonly linked to oscillatory chemical reactions in which
two or more chemical species are oscillating. Experimentally, the
patterns are captured in the Belousov Zhabotinsly reaction, as well
as the Briggs–Rauscher and Chlorite-Iodide-Malonic Acid (CIMA)
reactions,16–24 with real-life applications of such observations yet to
materialize. Looking for further examples of the existence of Turing
patterns in oscillatory reaction systems that potentially can lead to
new discoveries and applications, the study reported here focuses
on the Bruk Temkin-Gorodsky Novakovic (BT-GN) reaction, an
oscillatory carbonylation reaction employing poly(ethylene glycol)
methyl ether acetylene (PEGA) as a substrate.25 This oscillatory
chemical reaction is unusual and stands out from other oscilla-
tory chemical reactions. It is an organic chemical oscillator, where
complex products are formed from simple starting materials.26–28 In
addition to oscillations in pH and redox potential, it can produce
oscillations in turbidity, and heat is released from the reaction in a
pulsed stepwise manner.29–32 Importantly, progress in experimental
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studies of this chemical system led to the portfolio of substrates
which, in addition to small molecule substrates such as pheny-
lacetylene, now include polymeric substrates based on PEGylated
alkynes.25,33 Equally, it has been demonstrated experimentally that
in addition to small molecule catalysts [e.g., palladium(II) iodide],
oscillatory carbonylation reactions are also feasible when polymeric
catalysts are used (e.g., imine functionalized chitosan-palladium).34

Transition to polymeric substrates and catalysts allowed the opening
of a new chapter in the studies of oscillatory carbonylation pro-
cesses and led to the proof-of-concept development of oscillatory
(pulsatile) materials intended for pulsatile drug release and other
useful applications.35 The study reported here employs a mathe-
matical modeling approach to explore the BT-GN reaction system
to determine feasibility and conditions that could yield Turing
patterns.

In order to effectively evaluate and control the behavior of
temporal and spatiotemporal phenomena, it is crucial to have a
comprehensive understanding of the conditions under which they
can occur. A key factor in achieving this goal is an accurate
mathematical model based on a realistic chemical network. As part
of the modeling process, performing linear stability analysis plays
an essential role, as it ensures that the proposed model generates
correct dynamics. Linear stability analysis of the reaction–diffusion
system is based on solving analytically the steady-state problem and
then evaluating eigenvalues of the Jacobian to determine stability
and the type of bifurcations.36 Realistic chemical networks usually
have more than three intermediate species (variables), while ana-
lytical solutions can usually only be found in the case of a max of
three variables. Therefore, analysis of the reaction–diffusion sys-
tem encountered in chemistry was usually done on the networks
with two or three intermediate species while in the case of the
reaction networks with more species, analysis was usually limited
to numerical investigation. To overcome this problem in our pre-
vious work,37 a method based on stoichiometric network analysis
(SNA)38,39 was presented. In this approach, analysis can be done
efficiently on very complex chemical networks incorporating more
than three intermediate species. Furthermore, the analytical form of
instability conditions for the emergence of diffusion-driven insta-
bilities, which can be used to optimize experimental conditions, can
be efficiently derived. This approach also facilitates the detection of
important processes and intermediate species involved in the emer-
gence of diffusion-driven instabilities. Hence, taking into account all

advantages, this approach was used to analyze the BT-GN reaction
system.

The study reported here commences with a basic reaction
network of the BT-GN reaction system, substantiated with the
experimental evidence25 and proceeds to examine two sets of condi-
tions: one for a well-stirred reactor (a spatially uniform system) and
another where diffusion is present (a spatially nonuniform system).
The aim was to gain a comprehensive understanding of the stability
boundaries in this system under different conditions. The study also
focuses on determining the conditions for diffusion-driven instabil-
ities. This study also aims to build on our previous work37 related
to the reaction–diffusion systems and expand our understanding of
how conservation constraints affect the steady-state stability of the
reaction networks in the presence of diffusion.

II. MODEL

The reaction network of the oscillatory carbonylation reaction
employing poly(ethylene glycol) methyl ether acetylene (PEGA) as a
substrate and palladium iodide (PdI2) as a catalyst used in this study
is given in Table I.

The proposed reaction network simulates the dynamics of a
system comprising PEGA as substrate, PdI2/KI as catalyst, and
methanol as both reactant and solvent. The system is purged with
CO and air in a semi-batch configuration, which is known to
produce several hours of oscillatory dynamics under certain ini-
tial conditions.25 This reaction network describes the process of
oscillatory carbonylation through a series of six chemical reac-
tions, where reaction rates (R5) and (R–5) come from a direct and
reversible reaction in equilibrium. The model includes 11 chemical
species: PEGA, PdI2, HI, CH3OH, CO, PEGP, Pd, O2, I2, H2O, and
IPdR (where R stands for COOCH3). Among these species, PEGA,
CH3OH, O2, and CO are reactants, while PEGP represents the main
diester product of the reaction (poly(ethylene glycol)methyl ether
(Z)-5-methoxy-3-(methoxycarbonyl)-5-oxopent-3-enoate).31 PdI2,
HI, Pd, I2, and IPdR serve as intermediate species and play a
crucial role in determining the system’s dynamics. Although PdI2

is added to the system to initiate the reaction, it is considered
an intermediate species. Alternatively, if treated as an external
species with constant concentration, it would disrupt the feed-
back cycles required for the proper functioning of the reaction
network considered. Due to an excess of CH3OH and purging by

TABLE I. A set of reactions representing the model studied.25 Note: R stands for COOCH3.

Reactions Reaction rates

PEGA+ PdI2 + 2HI+ 2CH3OH+ 2CO
k1
−→ PEGP+ Pd+ 4 HI r1 = k1[PEGA]0[PdI2][HI]2 (R1)

2HI+ 0.5 O2
k2
−→ I2 +H2O r2 = k2[HI]2 (R2)

Pd+ I2
k3
−→ PdI2 r3 = k3[Pd][I2] (R3)

Pd+ I2
k4
−→ PdI2 r4 = k4[Pd][I2][PdI2] (R4)

PdI2 + CH3OH+ CO
k5
←→

k−5
IPdR+HI r5 = k5[PdI2] (R5)

r−5 = k−5[IPdR][HI] (R–5)
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O2 and CO, their concentrations were considered constant.28,40–43

They were not included in the reaction rates associated with the
proposed reaction network but were incorporated into the cor-
responding rate constants. PEGA is consumed only by reaction
(R1), causing its concentration to decrease over time. However, this
occurs much more slowly than other reactions in the overall process.
Therefore, the PEGA concentration is considered to be constant,
assuming that the system is in a pseudo-steady-state. This constant
PEGA concentration was used for stability analysis and numerical
simulations.

In the reaction network presented in Table I,25 reactions (R1)
and (R4) are postulated to be autocatalytic. Reaction (R1) is assumed
to be autocatalytic in hydrogen iodide species, which is considered
to be the source of oscillations in hydrogen ions and, therefore, pH
oscillations in this system. However, (R4) was postulated to repre-
sent the autocatalysis of PdI2, but the stoichiometry of reaction (R4)
does not align with the expression of reaction rates based on mass
action kinetics. The adjustments were made to rectify this discrep-
ancy without altering the structure of the reaction network.44 The
revised expression for the reaction (R4) is provided below and is
subsequently used in place of Reaction 4 given in Table 1.

Pd+ I2 + PdI2
k4
→ 2PdI2. (R4)

In our simulations, mass action kinetics was used to describe
the kinetics of chemical reactions in both spatially uniform and
nonuniform systems. In the case of a spatially uniform system, the
temporal dynamics of the concentrations of the intermediate species
PdI2, HI, Pd, I2, and IPdR is described by the following set of
ordinary differential equations (ODEs),

d[PdI2]

dt
= −r1 + r3 + r4 − r5 + r−5,

d[HI]

dt
= 2r1 − 2r2 + r5 − r−5,

(1)

d[Pd]

dt
= r1 − r3 − r4,

d[I2]

dt
= r2 − r3 − r4,

d[IPdR]

dt
= r5 − r−5,

where the expressions for the reaction rates ri are defined in Table I.
In the case of a spatially nonuniform system, the following set of
reaction–diffusion equations was used:

d[PdI2]

dt
= D1∇

2[PdI2]− r1 + r3 + r4 − r5 + r−5,

d[HI]

dt
= D2∇

2[HI]+ 2r1 − 2r2 + r5 − r−5,

d[Pd]

dt
= D3∇

2[Pd]+ r1 − r3 − r4, (2)

d[I2]

dt
= D4∇

2[I2]+ r2 − r3 − r4,

d[IPdR]

dt
= D5∇

2[IPdR]+ r5 − r−5,

where∇2 represents the Laplacian operator while D1–D5 are the dif-
fusion coefficient of intermediate species PdI2, HI, Pd, I2, and IPdR,
respectively.

III. METHODS

A. Numerical simulations

Numerical methods were used to solve ODEs and partial difer-
ential equations (PDEs) representing dynamics of the PEGA reac-
tion network under spatially uniform and nonuniform conditions.
To solve ODEs describing the PEGA reaction network dynamics
under a spatially uniform system, a MATLAB odes15s function was
used. To solve PDEs representing dynamics of the system under spa-
tially nonuniform conditions, FENICS package45 was used. FENICS
package employs a finite element method to solve PDEs. An implicit
Euler scheme was used to discretize time in the PDEs.

To effectively simulate the thin layer of solution in a reac-
tion–diffusion system, a circular computational domain with a
radius of 5 cm was used. Homogeneous Neumann boundary
conditions46 were applied at the boundaries. Initially, a uniform dis-
tribution of concentrations for intermediate species PdI2, HI, Pd, I2,
and IPdR was considered within this domain to maintain simplicity
for the initial conditions of the reaction network model. The only
exception to this uniform distribution was at the center—a smaller
circular area with a radius of 0.005 cm where concentrations were set
at double relative to the rest of the domain to model localized varia-
tions in concentration that may occur in practical scenarios like the
addition of reactants at specific locations within the reactor.

B. Stoichiometric network analysis

Linear stability analysis in SNA37–39,47,48 is based on finding a
positive solution of the steady-state equation38,47,49,50

Srss = 0, (3)

where S is the stoichiometric matrix related to intermediate species
of considered reaction network while rss is the vector of reaction
rates at the steady state. In matrix S, each row corresponds to an
intermediate species and each column corresponds to a reaction
defined in the model. Therefore, element Si,j is defined as the differ-
ence between the stoichiometric coefficients of intermediate species
ci on the right and left side of the reaction Rj (Si,j= Si,j

R− Si,j
L). Pos-

itive solutions of Eq. (1) are found in the form of the matrix of
extreme currents E. Having matrix E calculated, vector rss can be
represented as a positive linear combination using the relation38,39

rss = Ej, (4)

where vector j represents current rates, with each rate ji indicating
the contributions of corresponding extreme current Ei (a column of
matrix E). The use of matrix E and Eq. (4) allows for the decomposi-
tion of the entire network into steady-state subnetworks, making it
easy to evaluate their impact on stability.
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For steady-state stability evaluation, the calculation of Jacobian
is essential. For spatially uniform systems, the Jacobian is defined
as38,39

M(j, h) = −V(j)diag(h), (5)

where h is a vector of reciprocal steady-state concentrations of
intermediate species, while V(j) is a current rate matrix defined as38

V(j) = −Sdiag(Ej)KT, (6)

where K is the matrix of the order of reactions, while T stands
for matrix transpose. Similarly to matrix S, in matrix K, each row
corresponds to one of the intermediate species and each column cor-
responds to one of the reactions defined in the model. In this case,
element Ki,j represents the stoichiometric coefficient of intermediate
species ci on the left side of a chemical reaction (Ki,j= Si,j

L). For spa-
tially nonuniform systems, Jacobian MRD is divided into two parts:
one corresponding to the Jacobian of spatially uniform system M
defined in Eq. (5) and also includes the diffusion part. Matrix MRD

is defined as38,51

MRD = M− ω
2diag(D), (7)

where ω is the real number that determines the spatial frequency of
perturbations also known as wave vector.16,36,38,51 This term emerges
as a result of the linearization of the system around steady-state
where Fourier transformation is applied in order to handle spatial
terms in Eq. (2).

Steady-state stability in SNA is evaluated using Hurwitz deter-
minants 1i or α approximation criteria.38,52,53 These are used to
assess spatially uniform and nonuniform systems for steady-state
stability. For saddle-node (SN) bifurcation to occur, it requires
that αn= 0, while Andronov-Hopf (AH) bifurcation occurs when
1n–i= 0 (index n corresponds to the number of intermediate
species—variables in the system).54 The α approximation is typically
utilized for large chemical systems where at least one coefficient of
characteristic polynomial α1–αn needs to be negative for an unsta-
ble steady state to occur. Conditions for AH emergence are derived
from α1–αn–1, while the condition for SN remains unchanged. In
spatially uniform systems, steady-state stability can also be deter-
mined by analyzing the diagonal minors of V(j), indicating insta-
bility if a negative diagonal minor exists. Despite being an approxi-
mation, this approach generally yields reliable results.37,48,55–58

IV. RESULTS AND DISCUSSION

A. Stability analysis of a spatially uniform system

The first step in the analysis involves creating the S and K
matrices which are, for the model under consideration, defined by
Eqs. (8) and (9), respectively,

S =











−1 0 1 1 −1 1
2 −2 0 0 1 −1
1 0 −1 −1 0 0
0 1 −1 −1 0 0
0 0 0 0 1 −1











PdI2

HI
Pd
I2

IPdR

, (8)

K =











1 0 0 1 1 0
2 2 0 0 0 1
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 0 1











PdI2

HI
Pd
I2

IPdR

. (9)

Upon analysis of matrix S, it was determined that its rank is
3 while there are five intermediate species. As a result, two con-
servation constraints can be derived from this analysis, which are
presented in the form of the conservation matrix C [Eq. (10), fur-
ther information available in Appendix III in the supplementary
material],

C =











1 2
0 1
1 0
0 2
1 1











PdI2

HI
Pd
I2

IPdR

. (10)

From Eq. (10), two conservation constraints can be derived as
shown in Eqs. (11) and (12),
[

PdI2

]

+
[

Pd
]

+
[

IPdR
]

=
[

Pdtot

]

=
[

PdI2

]

0
+

[

Pd
]

0
+

[

IPdR
]

0
,

(11)

2[PdI2]+ [HI]+ 2[I2]+ [IPdR] = [Itot] = 2[PdI2]0 + [HI]0

+ 2[I2]0 + [IPdR]0.
(12)

Equation (11) illustrates the preservation of the overall palladium
content, while Eq. (12) shows the conservation of iodine within the
system.

The subsequent procedure involves the computation of
matrix E and the identification of relevant reaction pathways
(steady-state subnetworks). The expression for matrix E is given
by Eq. (13) (calculation details are provided in Appendix III in the
supplementary material),

E =















0 1 1
0 1 1
0 1 0
0 0 1
1 0 0
1 0 0















R1

R2

R3

R4

R5

R−5

. (13)

Matrix E was found to have three columns where the first
column represents the equilibrium pathways E1 [(R5) and (R–5)],
consisting only of a pair of reversible reactions. The second and third
columns include irreversible reactions E2 [(R1), (R2), and (R3)] and
E3 [(R1), (R2), and (R4)], respectively.

Using Eq. (4), the reaction rates at steady state were expressed
as a linear combination of current rates [see Eq. (14)],

rss,1 = j2 + j3,

rss,2 = j2 + j3,

rss,3 = j2,

rss,4 = j3,

rss,5 = j1,

rss,6 = j1.

(14)
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To assess the possible presence of an unstable steady state and
identify key intermediate species, we analyzed the diagonal minors
of matrix V(j). Two negative diagonal minors were discovered with
dimensions 3× 3. The first minor includes the intermediate species
PdI2, HI, and Pd, while the second minor consists of PdI2, HI, and I2.
These two diagonal minors play a crucial role in generating instabil-
ities within the model. Specifically, destabilizing feedback cycles are
formed due to interactions between these aforementioned species.
The expressions for the determinants of these considered diagonal
minors are as follows:

βPdI2 ,HI,Pd = −2j1(j2 + j3)
2, (15)

βPdI2 ,HI,I2 = −2j1(j2 + j3)
2. (16)

Interestingly, the expressions for both diagonal minors are the
same. The current j1 in combination with either j2 or j3 is required
for instabilities to exist in this model, since removing any two cur-
rents leads to cancellation of negative terms in Eqs. (15) and (16).
Different types of bifurcations present in the model were identi-
fied by analyzing the coefficients of the characteristic polynomial.
Analyses of α1–α3 have shown that there are negative terms only in
α3, while α4 and α5 are zeros as a consequence of the conservation
constraints [Eqs. (11) and (12)]. The expression for α3 is presented
in Eq. (17), where the reciprocal steady-state concentrations h1–h5

correspond to the reciprocal values of PdI2, HI, Pd, I2, and IPdR,
respectively,

α3 = h1j1(j2 + j3)
2(4h2h5 + h4h5 − 2h2h3 − h2h4). (17)

In Eq. (17), h1–h5 correspond to reciprocal steady-state concentra-
tions of PdI2, HI, Pd, I2 and IPdR, respectively. The existence of a
negative term solely in α3 implies that this system can only undergo
a saddle-node (SN) bifurcation. The exact condition for the appear-
ance of the SN bifurcation (α3= 0) was derived from Eq. (17) and
shown in Eq. (18),

h5 =
2h3 + h4

4h2 + h4
h2. (18)

If the value of h5 exceeds the threshold defined by Eq. (18), α3

is positive, which indicates a stable steady state. On the contrary,
if h5 falls below the threshold, α3 is negative and signals an unsta-
ble steady state. Equation (17) shows that the stability condition is
valid only when both h1 and j1 are greater than zero, and this must
be accompanied by either j2 or j3 being also greater than zero. In
other words, PdI2 must be present in the system for instability to
occur, along with reactions found in E1 together with reactions from
either E2 or E3. The negativity of α3 is determined solely by the
ratio between h2, h3, h4, and h5. Two extreme scenarios result in α3

becoming negative: when the value of h4 is negligible compared to

h3, thereby leading to specific stability conditions,

2h5 < h3,

h4h5 < 2h2h3,
(19)

and when h4 is higher than h3, which results in the second system of
inequalities,

4h5 < h4,

h5 < h2.
(20)

Based on the analysis of Eqs. (18)–(20), it can be deduced that
instabilities in this model arise when the value of h5 is lower than
that of h2. In other words, a higher steady-state concentration of
[IPdR] compared to [HI] leads to instability. This phenomenon
can be attributed to the autocatalysis of HI in reaction (R1), which
serves as the main driving force behind these instabilities within the
model. Notably, for instabilities to occur, reactions from either of
subnetworks E2 and E3 [specifically (R2), (R3), and (R4)] must also
be present. Additionally, both reaction (R5) and its reverse coun-
terpart (R–5), found in subnetwork E1, are essential for triggering
instabilities within this model. Sustaining the occurrence of these
reactions is crucial for maintaining the destabilizing feedback cycle,
thus requiring high concentrations of IPdR.

B. Numerical validation of the model

To validate the derived equations and stability conditions,
a numerical analysis was performed. The reaction rate constants
reported in the study that proposed reaction network presented in
Table I25 were reapplied to ensure consistency. Table II displays the
values of these parameters.

By using Eqs. (11), (12), and (14), the steady-state equation
for HI was solved while expressing the steady-state concentrations
of the other species and current rates j1–j3 as functions of HI. The
solution revealed that the steady-state concentration of HI can be
obtained by solving a fourth-degree polynomial provided in the sup-
plementary material [Eq. (A1.3), Appendix I]. In this analysis, we
used an initial concentration of PEGA, denoted as [PEGA]0, as a
continuation parameter which, as an initial concentration of the
substrate, can be adjusted in the experimental work. Figure 1 shows
the results obtained from this analysis.

On examination of the values of j parameters derived from
Eq. (14), it was observed that for the rate constant values defined
in Table II, the behavior of the reaction network is primarily deter-
mined by the reactions in the subnetworks E1 and E3 [(R1), (R2),
(R4), (R5), and (R–5)]. This observation arises from the significantly
lower value of j2 compared to those of j1 and j3. Figure 2 depicts
the dependence of parameters j1 to j3 on the initial concentration of
[PEGA]0.

TABLE II. The values of reaction rate constants used in the analysis.25

k1/M–3 min–1 k2/M–1 min–1 k3/M–1 min–1 k4/M–2 min–1 k5/min–1 k–5/M–1 min–1

6.00× 1012 2.00× 103 1.00× 10–7 2.00× 107 3.00× 10–4 1.00× 102
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FIG. 1. Bifurcation diagram obtained using methods of numerical continuation
with [PEGA]0 as a control parameter. The values of the reaction rate constants
used in the analysis are presented in Table II; the blue line represents a stable
steady state, while the red line represents an unstable steady state.

The analysis reveals that the system indeed undergoes an SN
bifurcation, leading to two branches of solutions. One branch con-
sists of stable steady states, while the other branch includes unstable
states. It is also worth noting that under the same parameter val-
ues, a steady state can be stable or unstable depending on its initial
conditions (the value of [PEGA]0). Numerical simulations were
performed to investigate the system’s behavior. The reaction rate
constants corresponded to those found in Table II, while the initial
conditions matched the steady-state concentrations at points P1 and
P2 in Fig. 1. The results of the numerical simulations corresponding
to the case of stable and unstable steady-state are presented in Fig. 3.

Previous study25 has shown that the model can produce
oscillatory dynamics. Although our analysis has shown that the
Andronov–Hopf bifurcation cannot be obtained within this reac-
tion network, we managed to obtain damped oscillatory dynamics
in numerical simulations. The ability to create an Andronov–Hopf
bifurcation is a useful approach for generating oscillatory dynamics.

It enables the simulation of sustained oscillations with controllable
characteristics and the efficient determination of conditions for its
emergence. Hence, further modifications to the proposed reaction
network, such as the introduction of additional reactions, are nec-
essary to enhance the flexibility of the model and its effectiveness
in capturing the complexities found experimentally. An example of
oscillatory dynamics obtained in the model is presented in Fig. 4.

C. Stability analysis in the presence of diffusion

Stability analysis was conducted by examining the coefficients
of the characteristic polynomial defined in Eqs. (21)–(23). Within
α3,RD, α4,RD, and α5,RD, negative terms capable of generating insta-
bilities were found. The expressions for α3,RD, α4,RD, and α5,RD are as
follows:

α3,RD = α3 + p(ω, D, j, h), (21)

α4,RD = q(ω, D, j, h), (22)

α5,RD = z(ω, D, j, h), (23)

where α3 corresponds to the coefficients of the characteristic
polynomial of the spatially uniform system [for α3, see Eq. (17)],
while p(ω, D, j), q(ω, D, j), and z(ω, D, j) are multivariate
polynomials in ω, D1–D5, j1–j3, and h1–h5. In the case of α4,RD and
α5,RD, there are only reaction–diffusion related terms since α4 and α5

are zeros due to the presence of conservation constraints in the case
of a spatially uniform system [see Eqs. (11) and (12)]. The expres-
sions for p(ω, D, j), q(ω, D, j), and z(ω, D, j) can be found in the
supplementary material [Eqs. (A2.1)–(A2.14), Appendix II].

D. Analysis of α3,RD

The analysis of p(ω, D, j, h) has shown that only positive terms
can be found there. For instabilities to occur through α3,RD < 0, it
is possible only if the steady state of a spatially uniform system
is already unstable (α3 < 0) while p(ω, D, j, h) > 0. Hence, essen-
tial conditions for the system to undergo unstable steady state are
determined by Eqs. (18)–(20). Furthermore, the instabilities in this
scenario arise from destabilizing feedback cycles within the reac-
tion network. Diffusion, on the other hand, acts as a stabilizer for
steady-state and helps us to propagate these instabilities across the
system.

FIG. 2. The values of current rates (a) j1, (b) j2, and (c) j3, as a function of the values of initial concentration of [PEGA]0. Values of current rates j1–j3 were calculated from
Eq. (14) for the values of steady-state concentrations presented in Fig. 1.
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FIG. 3. Numerical simulations of the reaction network presented in Table I: (a) stable steady state corresponding to points P1 with initial conditions [PdI2]0= 1.82× 10–5 M,
[HI]0= 5.90× 10–6 M, [Pd]0= 1.30× 10–5 M, [I2]0= 1.50× 10–5 M, and [IPdR]0= 9.26× 10–6 M; (b) unstable steady state corresponding to point P2 with initial conditions
[PdI2]0= 1.82× 10–5 M, [HI]0= 3.04× 10–6 M, [Pd]0= 4.32× 10–6 M, [I2]0= 1.18× 10–5 M, and [IPdR]0= 1.80× 10–5 M; the values of reaction rate constants used in
both cases are presented in Table II. In both cases, the value of [PEGA]0= 1.83× 10–5 M was used.

To verify the applicability of Eqs. (18)–(20) to a spatially non-
uniform system, numerical simulations were conducted. Parameters
were selected to represent a scenario where the steady state of the
spatially uniform system is already unstable (point P2 on the bifur-
cation diagram Fig. 1). To ensure that the unstable steady state
originates only from α3 < 0, parameter values were adjusted so that
both α4,RD and α5,RD [Eqs. (22) and (23)] produce positive values.
This was achieved by modifying the diffusion coefficients D1–D5

while keeping all other parameters unchanged. The values of the

FIG. 4. Numerical simulation of the oscillatory dynamics obtained in the model
under consideration. The values of reaction rate constants used in the simulations
are presented in Table II while [PEGA]0= 2.03× 10–5 M; initial conditions used
in the simulations: [PdI2]0= 4.05× 10–5 M; [HI]0= 0M; [Pd]0= 0M; [I2]0= 0M;
and [IPdR]0= 0M.

reaction rate constants used in the simulations are presented in
Table II. The results of the simulations, together with the parameter
values used, are presented in Fig. 5 (multimedia available online).

It was observed that when an initial perturbation is induced at
the center of the computational domain, a front is formed and moves
toward the boundaries at a constant velocity. As the front advances,
there is a gradual increase in the concentration of hydrogen iodide
HI. Upon reaching the boundaries of the computational domain, the
concentration of HI begins to increase throughout the entire area. In
particular, the rate of increase is more pronounced near the bound-
aries compared to the central region where the initial perturbation
was introduced. This fast increase continues until a uniform distri-
bution of the concentration is achieved throughout the entirety of
the domain.

E. Analysis of α4,RD and α5,RD

In a spatially uniform system, it was shown that α4 and α5

(both equal to 0) do not contribute to the steady stability of the
reaction network considered. The introduction of diffusion changes
this by creating the terms in the expansions for α4,RD and α5,RD that
are the result of the interaction between diffusion and reactions.
Now, both α4,RD and α5,RD determine steady-state stability, as shown
clearly in Eqs. (11) and (12), which can lead to the emergence of
diffusion-driven instabilities. Therefore, analysis of α4,RD and α5,RD

was conducted.
The analysis of α4,RD [Eq. (22)] revealed that all negative terms

are contained within the coefficient q1,4(ω, D, j, h) presented in
Eq. (24),

q1,4(D, j, h) = h1j1(j2 + j3)
2(4D3h2h5 − 2D4h2h3 − D3h2h4

− 2D5h2h3+D2h4h5+ 4D4h2h5−D5h2h4+D3h4h5).
(24)

Chaos 34, 073152 (2024); doi: 10.1063/5.0211536 34, 073152-7

© Author(s) 2024

 05 August 2024 10:10:13

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 5. Numerical simulations obtained for α3 < 0 while α4,RD > 0 and α5,RD > 0. Figures a1–c1 represent the change of HI concentration in the computational domain over
time: (a) t= 1.53× 103 min, (b) 1.48× 104 min, and (c) 1.00× 105 min. Figures a2–c2 represent the change in HI concentration measured between points (0 cm, 0 cm) and
(10 cm, 0 cm). Parameters used in simulations: for the values of the reaction rate, constants are presented in Table II: [PEGA]0= 1.832× 10–5 M, D1= 1.00× 10–5 cm2 s–1,
D2= 1.00× 10–4 cm2 s–1, D3= 1.00× 10–4 cm2 s–1, D4= 1.80× 10–5 cm2 s–1, and D5= 1.80× 10–5 cm2 s–1; initial conditions throughout the domain except in the cen-
ter of the computational domain: [PdI2]0= 1.82× 10–5 M, [HI]0= 3.04× 10–6 M, [Pd]0= 4.32× 10–6 M, [I2]0= 1.18× 10–5 M, [IPdR]0= 1.80× 10–5 M; perturbation was
introduced in the center of the computational domain where the initial concentrations were set to be: [PdI2]0= 3.64× 10–5 M, [HI]0= 6.08× 10–6 M, [Pd]0= 8.64× 10–6 M,
[I2]0= 2.36× 10–5 M, and [IPdR]0= 3.60× 10–5 M. Multimedia available online.

The efficient strategy for achieving α4,RD < 0 requires two steps:
Step (1) identifying conditions under which q1,4(ω, D, j, h) becomes
negative and Step (2) finding the parameters that contribute the
most to the positive terms in q(ω, D, j, h), thus stabilizing the steady
state. Solving Step 1 requires a thorough examination of q1,4(ω, D,
j, h). The similarity between q1,4(ω, D, j, h) and the expression of α3

is apparent. Both depend on the presence of parameters h1 and j1–j3
for instabilities to occur, regardless of their specific values. However,
in contrast to α3, conditions for α4,RD < 0 are influenced by both the
ratio between the parameters h2–h5 and the diffusion coefficients
D2–D5. Additionally, it was observed that only positive terms are
linked to h5. As a result, a condition for ensuring q1,4(ω, D, j, h) < 0
was obtained,

h5 ≤
D3h4 + 2D4h3 + 2D5h3 + D5h4

4D3h2 + D2h4 + 4D4h2 + D3h4
h2. (25)

According to Eqs. (A2.6)–(A2.9) (Appendix II in the supple-
mentary material), the diffusion coefficient D1 for the intermediate
species PdI2 is only found in positive terms of q(ω, D, j, h). This
suggests that D1 plays a significant role in stabilizing the steady state.

The same analysis was also performed on α5,RD [Eq. (23)].
In this case, all negative terms were found within z1,4(ω, D, j, h)

[Eq. (26)] while all remaining terms are positive,

z1,4(D, j, h) = h1j1(j2 + j3)
2(D2D3h4h5 + 4D3D4h2h5

− D3D5h2h4 − 2D4D5h2h3). (26)

The condition for z1,4(ω, D, j, h) < 0 was found to be defined by
Eq. (27),

h5 ≤
D5(D3h4 + 2D4h3)

D3(D2h4 + 4D4h2)
h2. (27)

Equation (27) is similar to Eq. (25), except that it is sim-
pler in the number of terms. As in the previous case, the diffu-
sion coefficient D1 associated with the intermediate species PdI2

can only be found among the positive terms of z(ω, D, j, h). It
can be concluded from this analysis that the slow diffusion of the
PdI2 catalyst is an important factor that contributes to the appear-
ance of diffusion-driven instabilities. Furthermore, the similarities
between Eqs. (24)–(27) and the equations describing stability con-
ditions for spatially uniform systems are evident, indicating that
autocatalysis of HI and a destabilizing feedback cycle remain the
main driving force for instabilities within this model. The key con-
dition lies in the appropriate difference in concentrations of HI and
IPdR. Although the steady-state of a spatially uniform system can
be stable (h5 > h2), under specific diffusion conditions, instability
may emerge. Equations (25) and (27) demonstrate that this is most
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FIG. 6. Numerical simulations obtained for α4,RD < 0 and α5,RD < 0. Figures a1–c1 represent the change of HI concentration in the computational domain over time:
(a) t= 1.53× 103 min, (b) 4.08× 104 min, and (c) 1.45× 107 min. Figures a2–c2 represent the change in HI concentration measured between points (0 cm, 0 cm)
and (10 cm, 0 cm). Parameters used in simulations: k1= 6.00× 1012 M–3 min–1, k2= 2.00× 103 M–1 min–1, k3= 1.00× 10–7 M–1 min–1, k4= 2.00× 107 M–2 min–1,
k5= 3.00× 10–4 min–1, k–5= 1.00× 102 M–1 min–1, [PEGA]0= 1.83× 10–5 M, D1= 1.00× 10–5 cm2 s–1, D2= 1.00× 10–4 cm2 s–1, D3= 2.00× 10–5 cm2 s–1,
D4= 1.00× 10–4 cm2 s–1, and D5= 1.20× 10–3 cm2 s–1; initial conditions throughout the domain except in the center of the computational domain: [PdI2]0= 1.82× 10–5 M,
[HI]0= 5.90× 10–6 M, [Pd]0= 1.30× 10–5 M, [I2]0= 1.50× 10–5 M, and [IPdR]0= 9.26× 10–6 M; perturbation was introduced in the center of computational domain,
where initial concentration were set to be: [PdI2]0= 3.64× 10–5 M, [HI]0= 1.18× 10–5 M, [Pd]0= 2.60× 10–5 M, [I2]0= 3.00× 10–5 M, and [IPdR]0= 1.85× 10–5 M.
Multimedia available online.

likely when diffusion of IPdR occurs faster compared to other inter-
mediate species, leading to variations in concentration levels and
consequent instability emergence.

To test the validity of Eqs. (25) and (27), numerical analysis
was employed. Simulations were carried out under conditions cor-
responding to a stable steady state in a spatially uniform system,
specifically resembling point P1 as shown in Fig. 1. To ensure that
Eqs. (25) and (27) were satisfied, different diffusion coefficient val-
ues were tested while maintaining constant values for intermediate
species concentrations and reaction rate constants as those defined
in point P1. The numerical analysis revealed that α4,RD > 0 and
α5,RD < 0 were achievable under the given conditions. However, it
was not possible to achieve a situation where α4,RD < 0 and α5,RD > 0.
Additionally, both α4,RD and α5,RD could be negative, which was
used as the scenario for subsequent simulations. The simulation
results, along with the parameter values used, are presented in Fig. 6
(multimedia available online).

After the initial perturbation, a front begins to emerge and
moves toward the boundaries of the computational domain. This
results in regions of both lower and higher HI concentrations
becoming apparent. The areas with higher HI concentrations are
situated near both the boundaries and the center of the computa-
tional domain, while those with lower HI concentrations are located
between them. Over time, regions with higher HI concentrations
near the boundaries gradually disappear. As a result, only areas with
lower HI concentration and those with higher HI concentration
near the center of the computational domain remain. Additional
1D numerical simulations performed on much longer timescale also

confirmed that observed regions of lower and higher HI concen-
trations represent permanent structures (see Appendix IV in the
supplementary material).

V. CONCLUSIONS

The study focuses on the dynamics of the reaction network
of the oscillatory carbonylation reaction using poly(ethylene gly-
col) methyl ether acetylene (PEGA) under pseudo-batch conditions.
To assess steady-state stability, we utilized stoichiometric network
analysis in both spatially uniform and non-uniform systems. In a
spatially uniform system, two destabilizing feedback cycles were
identified as contributing to unstable steady states: one involving
PdI2, HI, and Pd, and another involving PdI2, HI, and I2. The analy-
sis of a spatially uniform system has shown that the proposed model
can simulate saddle-node bifurcation when the concentration of
IPdR exceeded that of other species. This result was confirmed by
bifurcation analysis and numerical simulations. In addition, numer-
ical analysis has also indicated that dampened oscillatory dynam-
ics can be generated in the analyzed reaction network, although
simulation of the Andronov–Hopf bifurcation is not possible. To
obtain the Andronov–Hopf bifurcation, which is a preferred method
for achieving oscillatory dynamics in reaction networks since it
allows easier control of the characteristics of oscillatory dynamics,
additional reactions must be incorporated into the model.

In contrast to these findings, by introducing diffusion into
the system, two types of instabilities were observed. The first type
occurred in an already unstable spatially uniform system, and its
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emergence was determined by conditions for SN bifurcation. In this
case, an expanding reaction–diffusion front was observed in the sys-
tem. The second type, known as Turing patterns, occurred when a
stable spatially uniform system became destabilized as a result of dif-
fusion. Interestingly, it was found that slower PdI2 diffusion played a
crucial role in inducing diffusion-driven instabilities, since PdI2 typ-
ically stabilizes the steady state. Numerical simulations confirmed
the validity of these derived conditions for both types of instabili-
ties, supporting the effectiveness and potential applicability of this
model for further investigation. PdI2 has a role of the catalyst in
the system, and while in the studied model, it is presented as the
reacting species, due to its poor solubility in methanol, it is actually
used in the presence of KI leading to the formation of the complex
PdI4

2−,59 which acts as the catalyst in this system. However, since
the oscillations in turbidity, experimentally captured in this oscilla-
tory system, have been linked with the precipitations of Pd(0) and its
cycling to Pd+2 [as summarized by (R1), (R3), and (R4) in the model,
Table I],25 regions of higher and lower concentrations of Pd+2 can
be envisioned as a consequence of the difference in the solubility
of Pd species involved in this system. Furthermore, with progress
in studies of oscillatory carbonylation reactions and the introduc-
tion of both the polymeric substrate and the polymeric catalyst,35,60

diffusion could be altered by the change in the size of the species
involved in this system, offering additional opportunities to intro-
duce the instability to the system. Using the study reported here as
a basis, experimental studies are planned, seeking to uncover com-
plexities not yet seen in oscillatory carbonylation reactions, which
potentially can lead to discoveries, understanding, and utilization of
patterns seen in nature but not yet understood or applied.

The results of this study also indicate that diffusion-driven
instabilities can emerge in reaction networks only if destabilizing
feedback cycles are present within the network. In other words, they
will emerge only if instabilities can be found in spatially uniform sys-
tems. This seems to be a general characteristic of reaction networks,
which is also consistent with the results of our previous work.37 A
significant result related to conservation constraints was also found.
In a spatially uniform system, instability conditions were defined by
α1–α3 while α4–α5 are zero due to the conservation constraints. The
presence of diffusion maintains the satisfaction of conservation con-
straints as confirmed by expressions for α4,RD and α5,RD, but in this
scenario, a4rd and a5rd become important for determining insta-
bility conditions due to the interaction between chemical reactions
and diffusion. Furthermore, our numerical simulations also revealed
that the time for the occurrence of diffusion-driven instabilities
(Fig. 6) is considerably longer than the time for the emergence
of instabilities when a spatially uniform system is already unsta-
ble (Fig. 5). This could potentially explain why diffusion-driven
instabilities are rarely observed in experimental studies; their emer-
gence may require a longer time period than typically observed in
laboratory settings.

SUPPLEMENTARY MATERIAL

See the supplementary material for Appendix I: equations
used within this paper to calculate steady-state concentrations;
Appendix II: expressions for multivariate polynomials p(ω, D,
j), q(ω, D, j), and z(ω, D, j) associated with coefficients of the

characteristic polynomial defined in Eqs. (21)–(23); Appendix III:
algorithm and instructions how to calculate matrices E and C; and
Appendix IV: results from 1D numerical simulation.
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44Ž. Čupić, S. Maćešić, K. Novakovic, S. Anić, and L. Kolar-Anić, “Stoichiometric
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