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Up to 80% of Parkinson’s disease patients develop dementia, but time to dementia varies widely from motor symptom onset. Dementia with 
Lewy bodies presents with clinical features similar to Parkinson’s disease dementia, but cognitive impairment precedes or coincides with 
motor onset. It remains controversial whether dementia with Lewy bodies and Parkinson’s disease dementia are distinct conditions or re-
present part of a disease spectrum. The biological mechanisms underlying disease heterogeneity, in particular the development of dementia, 
remain poorly understood, but will likely be the key to understanding disease pathways and, ultimately, therapy development. Previous 
genome-wide association studies in Parkinson’s disease and dementia with Lewy bodies/Parkinson’s disease dementia have identified 
risk loci differentiating patients from controls. We collated data for 7804 patients of European ancestry from Tracking Parkinson’s, 
The Oxford Discovery Cohort, and Accelerating Medicine Partnership—Parkinson’s Disease Initiative. We conducted a discrete phenotype 
genome-wide association study comparing Lewy body diseases with and without dementia to decode disease heterogeneity by investigating 
the genetic drivers of dementia in Lewy body diseases. We found that risk allele rs429358 tagging APOEe4 increases the odds of developing 
dementia, and that rs7668531 near the MMRN1 and SNCA-AS1 genes and an intronic variant rs17442721 tagging LRRK2 G2019S on 
chromosome 12 are protective against dementia. These results should be validated in autopsy-confirmed cases in future studies.
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Introduction
Parkinson’s disease, Parkinson’s disease dementia and demen-
tia with Lewy bodies, which we describe here jointly as Lewy 
body diseases, are characterized pathologically by alpha- 
synuclein aggregates forming Lewy bodies and Lewy neurites.1

Parkinson’s disease is a common degenerative movement dis-
order presenting with tremor, rigidity and bradykinesia. 
Non-motor features, including cognitive impairment and de-
mentia, develop with disease progression in Parkinson’s dis-
ease. Approximately 24% of Parkinson’s disease patients 
have mild cognitive impairment at the time of diagnosis,2 and 
up to 80% of Parkinson’s disease patients eventually progress 
to dementia (Parkinson’s disease dementia),3 which is asso-
ciated with worse functioning, poorer quality of life, care 
home admission and significant morbidity.4 However, the 
time to dementia from motor symptom onset varies widely be-
tween patients. Dementia with Lewy bodies is a synucleinopa-
thy presenting with symptoms similar to Parkinson’s disease 
dementia, including dementia, cognitive fluctuations, visual 
hallucinations and REM sleep behaviour disorder in conjunc-
tion with existing or latent parkinsonism.5 Clinically, 
Parkinson’s disease dementia and dementia with Lewy bodies 
are distinguished by the ‘1-year rule’, where Parkinson’s disease 
dementia is diagnosed when dementia develops in the context 
of well-established Parkinson’s disease more than 1 year after 
motor symptom onset, while a diagnosis of dementia with 
Lewy bodies is given when cognitive impairment precedes or 
coincides with motor impairment. Parkinson’s disease demen-
tia is distinguished from dementia with Lewy bodies by the tem-
poral sequence of symptoms.

Neuropathologically, Parkinson’s disease usually differs 
from Parkinson’s disease dementia/dementia with Lewy bodies 
in the extent of Lewy body pathology in the brain, as inclusions 
are limited to the limbic system or brainstem in Parkinson’s dis-
ease without dementia. However, the pathological delineation 
of Parkinson’s disease dementia from dementia with Lewy bod-
ies is extremely difficult. Both are characterized by Lewy bodies 
in cortical areas and a high frequency of Alzheimer’s disease co- 
pathology. Indeed, about 50% of Parkinson’s disease dementia 
patients have beta-amyloid plaques and neurofibrillary tangles 
at postmortem, which may be a better predictor of dementia 
than the extent of cortical alpha-synuclein pathology.6 The ma-
jority of dementia with Lewy bodies brains also fulfil criteria for 
a secondary diagnosis of Alzheimer’s disease.7 While a recent 
pathological study examining 110 Parkinson’s disease demen-
tia and 78 dementia with Lewy bodies postmortem brains 
showed more severe synuclein cortical load, Alzheimer’s 
disease-related pathological changes and cerebral amyloid an-
giopathy in the dementia with Lewy bodies brains,8 it is generally 
agreed that there are no clear hallmark features distinguishing 
the two diseases.9 The separation of Parkinson’s disease demen-
tia and dementia with Lewy bodies as discrete clinical and patho-
logical entities is controversial.

Lewy body diseases are primarily sporadic. Case–control 
genome-wide association studies (GWAS) in the past decade 
have identified 90 common variant risk loci associated with 

Parkinson’s disease10 and 5 risk loci associated with demen-
tia with Lewy bodies.11 Variation in several genes, including 
GBA1, TMEM175 and SNCA, confers risk for both dis-
eases, suggesting overlapping pathogenesis and underlying 
biological dysfunction. Strikingly, TMEM175 and SNCA 
also modulate age at onset in Parkinson’s disease.12 On the 
other hand, there are distinct loci for dementia with Lewy 
bodies compared with Parkinson’s disease encompassing dif-
ferent genes (e.g. APOE and BIN1 for dementia with Lewy 
bodies), and, in some cases, distinct association signals at 
the same locus. In a study using targeted high-throughput se-
quencing, two distinct regions of the SNCA gene at the 3′ and 
5′ ends were found to be differentially associated with 
Parkinson’s disease and dementia with Lewy bodies risk, re-
spectively.13 While the consequences of these distinct signals 
remain to be clarified, it has been hypothesized that these 
distinct association signals could relate to the control of 
gene expression in different brain regions, leading to different 
phenotypes.14 Genome-wide survival analysis of Parkinson’s 
disease identified RIMS215 and LRP1B16 as common risk 
loci for progression from Parkinson’s disease to Parkinson’s 
disease dementia; however, they do not seem to be relevant 
to dementia with Lewy bodies.

Heterozygous mutations in GBA1 are among the strongest 
genetic risk factors for Parkinson’s disease and dementia with 
Lewy bodies.17,18 GBA1 encodes glucocerebrosidase, a lyso-
somal enzyme involved in the metabolism of glycosphingoli-
pid. A meta-analysis of Parkinson’s disease patients showed 
that GBA1 mutations are associated with a 2.4-fold increase 
in the incidence of cognitive impairment.19 Moreover, muta-
tion carriers tend to have earlier disease onset12 and shorter 
survival.20 In a large multicentre study of GBA1 mutation 
carriers, GBA1 was also found to be strongly associated 
with Parkinson’s disease dementia as well as dementia with 
Lewy bodies, providing evidence that GBA1 mutations lead 
to impaired cognition in synucleinopathies.21 However, as 
is the case for SNCA, the specific variants associated with 
Parkinson’s disease and dementia with Lewy bodies differ.22

Although the role of these GBA1 variants in pathogenesis re-
mains unclear, studies in postmortem tissue showed that re-
duced lysosomal GCase is associated with alpha-synuclein 
aggregation, inflammation and cellular damage,22 suggesting 
an important role for GCase in the propagation of the alpha- 
synuclein pathology. This could explain the spread of Lewy 
bodies to limbic and neocortical areas of Parkinson’s disease 
patients with GBA1 mutations.

The apolipoprotein E (APOE) ϵ4 allele, a well-known risk 
locus for Alzheimer’s disease, has also been identified as a 
strong genetic risk factor for developing Parkinson’s disease 
dementia/dementia with Lewy bodies.11 APOE4 promotes 
amyloid-beta oligomerization and its pathological accumu-
lation.23 The role of APOE4 in dementia with Lewy bodies 
pathogenesis is still unclear. It has been suggested that 
APOE4 might be a driver of amyloid-beta deposition, which 
presents as a co-pathology in the majority of dementia with 
Lewy bodies brains.7 However, there is some evidence 
showing that APOE may contribute to cognitive decline 
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independently of amyloid. In autopsy studies, APOE4 was 
associated with dementia and diffuse LB pathology in 
‘pure’ dementia with Lewy bodies patients (i.e. with absent 
or low levels of amyloid) as well as Parkinson’s disease 
dementia.24,25 Mouse models of synucleinopathy have also 
demonstrated that APOE4 exacerbated alpha-synuclein 
pathology in the absence of amyloid.26,27

Parkinson’s disease, Parkinson’s disease dementia and de-
mentia with Lewy bodies share common risk genes. 
However, specific risk loci within these genes may vary 
across diseases, potentially leading to different phenotypes, 
which ultimately relate to the involvement of different cell 
types. Previous GWAS for Parkinson’s disease and dementia 
with Lewy bodies have compared Parkinson’s disease and 
dementia with Lewy bodies cases with controls. Here, in a 
study of almost 8000 cases, we aim to define the genetic de-
terminants of dementia in Lewy body diseases by taking a 
different approach. We have taken a disease classification ag-
nostic approach by comparing all Lewy body diseases with 
dementia (LBD-D), including both Parkinson’s disease de-
mentia and dementia with Lewy bodies, to Parkinson’s dis-
ease cases without dementia (LBD-ND). This ‘case–case’ 
approach should help identify specific variants that are asso-
ciated with more extensive LB and Alzheimer’s disease path-
ology that contribute to cognitive impairment, rather than 
variants that are related to the initiation of the LB pathology 
as compared with unaffected controls.

Materials and methods
Cohort description and study design
We analysed three large independent cohorts: Tracking 
Parkinson’s (TPD, www.parkinsons.org.uk/),28 Oxford 
Parkinson’s Disease Centre Discovery (OPDC, www.dpag. 
ox.ac.uk/opdc/)29 and Accelerating Medicine Partnership— 
Parkinson’s Disease Initiative (AMP-PD v2.5, https://www. 
amp-pd.org/) (Table 1, Supplementary Table 1). The 
AMP-PD data set is enriched for patients with LRRK2 
p.G2019S. Participants were included in the present study 
based on their most recent clinical diagnosis or final patho-
logical diagnosis of Parkinson’s disease, Parkinson’s disease 
dementia or dementia with Lewy bodies. A status of ‘case’ 
for LBD-D was defined if the patient had a clinical diagnosis 
of dementia with Lewy bodies5 or met the Movement 
Disorder Society task force Parkinson’s disease dementia 
diagnostic criteria.30 In detail, for Parkinson’s disease demen-
tia, the criteria included (i) scoring below the threshold for de-
mentia on the Montreal Cognitive Assessment (MoCA score  
< 21/30); (ii) having cognitive deficits that are severe enough 
to interfere with activities of daily living (MDS-Unified 
Parkinson’s disease Rating Scale (UPDRS) part I 1.1 ≥ 2 
score) and (iii) and the absence of severe depression defined 
using the MDS-UPDRS (MDS-UPDRS part I 1.3 < 4). 
LBD-ND was given a status of ‘control’. These patients did 
not have dementia based on the available clinical data. 
Patients with a change of diagnosis to a non-Lewy body 

disorder during the follow-up period were removed from 
analyses. AMP-PD is a unified cohort consisting of eight lon-
gitudinal studies with similar sample collection protocols. All 
studies were approved by local and multicentre ethics com-
mittees and are in compliance with the Declaration of 
Helsinki. Appropriate data use agreements were approved.

Genotyping and quality control
DNA was extracted from whole blood or brain tissue as de-
tailed in the protocols of each study. TPD used the Illumina 
HumanCoreExome array for genotyping. OPDC generated 
genotype data using the Illumina HumanCoreExome-12 
v1.1 and Illumina Infinium HumanCoreExome-24 v1.1 
SNP arrays. Whole genome sequencing for AMP-PD samples 
was performed using Illumina HiSeq X Ten sequencer, and 
data were processed against Human Genome Reference 
Build 38 (https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/techni 
cal/reference/GRCh38_reference_genome/). Data cleaning 
was performed using PLINK v1.9 (RRID:SCR_001757; 
https://www.cog-genomics.org/plink/1.9/)31 and PLINK 
v2.0 (https://www.cog-genomics.org/plink/2.0/). For quality 
control at the sample level, we excluded individuals from ana-
lysis if they had a low genotyping call rate (≤95%), excessive 
heterozygosity rates (>±0.15 F-statistic) or a mismatch be-
tween clinically reported and genetically determined sex by 
the X chromosome. We also excluded duplicate or related 
samples (kinship coefficient > 0.088). We removed indivi-
duals that were not of European ancestry by performing a 
principal component analysis from pruned genetic data of 
each cohort included in the analysis. We used Hapmap3 as 
the reference panel to derive ancestry groups. Individuals 
that deviated by more than 3 standard deviations from the 
mean of the first two principal components of the 
HapMap3 CEU group were removed from the analysis.

For quality control at the variant level, we removed SNPs 
from analysis if they had a low genotyping rate (<0.99%), de-
viated significantly from the Hardy–Weinberg equilibrium 
(P < 1E−8), had a minor allele frequency <1% and were non- 
autosomal (X, Y, mitochondrial chromosomes). After qual-
ity control, genetic data for TPD and OPDC were imputed 
separately against the TOPMed (https://imputation. 
biodatacatalyst.nhlbi.nih.gov/#!)32 r2 panel with Eagle v2.4 
phasing on the TOPMed Imputation Server using 
Minimac4.33,34 We used the Rsq info measure of imputation 
accuracy to exclude variants that were not confidently im-
puted. We filtered out variants with an Rsq lower than 0.8. 
We also removed SNPs if missingness was >5%, and minor 
allele frequency was <1%. The two data sets were then 
merged, with only shared variants retained.

Statistical analysis for single-variant 
associations
Clinical data were cleaned and analysed using R v4.1.3 
(RRID:SCR_001905; R Project for Statistical Computing, 
version 4.1.3; https://www.R-project.org/). We used logistic 
regression in PLINK to perform two separate genome-wide 
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association studies for LBD-D (dementia with Lewy bodies 
and Parkinson’s disease dementia) compared with LBD-ND 
(Parkinson’s disease cases without dementia) in AMP-PD 
and in the merged TPD/OPDC data sets, respectively. The fol-
lowing covariates were incorporated in our model: age at on-
set (for TPD/OPDC cohorts) or age at diagnosis (for 
AMP-PD), sex, study and the first five genetic principal com-
ponents. We meta-analysed the summary results for TPD/ 
OPDC and AMP-PD using METAL (RRID:SCR_002013; 
http://csg.sph.umich.edu//abecasis/Metal/)35 under a random 
effects model using genomic control correction. We only in-
cluded variants present in all cohorts and with a minor allele 
frequency variability below 15% across studies. We used 
Cochran’s Q to test for heterogeneity in the meta-analysis 
and excluded variants with P-value < 0.05 and I2 statistic 
≤ 80%. We considered P-values below 5 × 10−8 to be genome- 
wide significant and nominally significant below 5 × 10−6. 
We used LocusZoom to generate the Manhattan plot and 
the regional association plots (RRID:SCR_021374; http:// 
locuszoom.org/).36

Conditional analysis
In order to determine whether there were single or multiple 
independent signals at each genome-wide significant locus, 
we carried out a conditional and joint multiple-SNP analysis 
(COJO) on the GWAS summary statistics. We used the 
AMP-PD cohort as the reference panel to estimate the LD be-
tween the SNPs and apply corrections to the models as it is 
the largest participating cohort in the meta-analysis. COJO 
was performed using GCTA (v1.93.0, GCTA | Yang Lab).37

Colocalization analysis
We performed a colocalization analysis to investigate 
whether there is a shared causal variant between the risk of 
dementia in Lewy body disease cases and expression quanti-
tative trait loci (eQTLs). We used the coloc R package (ver-
sion 5.1.0; https://cran.rproject.org/web/packages/colocr/ 
index.html)38 and colochelpR as a wrapper (version 
0.99.0).39 coloc is based on a Bayesian statistical approach 
to compute a posterior probability (PP) for the following hy-
potheses: there is no association with either trait (H0); there is 

an association with the Lewy body dementia trait, but not the 
eQTL trait (H1); there is an association with the eQTL trait, 
but not the Lewy body dementia trait (H2); there is an asso-
ciation with a Lewy body dementia and an eQTL variant, 
but the causal variants are independent (H3); and there is a 
shared causal variant associated with Lewy body dementia 
and eQTL within the analysed region (H4). coloc was run 
using default per SNP priors p1 = 10–4, p2 = 10–4 and 
p12 = 10–5. A PPH4 > 0.80 was considered a statistically sig-
nificant support for colocalization. We used Cis-eQTL data 
from eQTLGen, which include 31 684 individuals (https:// 
www.eqtlgen.org/cis-eqtls.html) and compare genetic vari-
ation with blood RNA and PsychEncode. PsychEncode in-
cludes 1387 individuals (http://resource.psychencode.org/) 
and compares genetic variation with brain RNA. We ex-
tracted all the genes from ±1 Mb of the significant hits from 
the GWAS and performed a colocalization analysis on each 
gene. Since the cis-eQTL and the GWAS summary statistics 
were in different builds, we converted the summary statistics 
of the meta-analysis from hg38 to hg19 using the LiftOver 
tool (RRID:SCR_018160; https://genome.sph.umich.edu/ 
wiki/LiftOver).

Polygenic risk score
To assess the genetic overlap between LBD-D and Parkinson’s 
disease, dementia with Lewy bodies and Alzheimer’s disease 
risk profile, we computed a polygenic risk score (PRS) on all 
the LBD-D cases and LBD-ND for comparison. We used pre-
viously published Parkinson’s disease, dementia with Lewy 
bodies and Alzheimer’s disease GWAS10,11,40 as the reference 
data. After performing QC on summary statistics of the 
base data sets, we used PRSice-2 (version 2.3.5; RRID: 
SCR_017057; https://choishingwan.github.io/PRSice/)41 to 
calculate the PRS with the C + T method, which involves 
clumping SNPs and performing P-value thresholding. After 
clumping, 1 284 510 SNPs were included to generate the 
Parkinson’s disease PRS, 380 274 SNPs for the dementia 
with Lewy bodies PRS and 11 931 for the Alzheimer’s disease 
PRS. We then conducted general linear regression adjusted 
for age at onset, sex and PC1–PC5 to test if the PRS predicted 

Table 1 Cohort demographics

Cohort
TPD OPDC AMP-PD Total

LBD-D LBD-ND LBD-D LBD-ND LBD-D LBD-ND LBD-D LBD-ND

N 159 1377 93 737 2656 2782 2908 4896
N male (%) 128 (81) 863 (63) 72 (77) 460 (62) 1694 (64) 1695 (61) 1894 (65)a 3017 (61)
Age diagnosis, years 69.0 (7.9) 64.3 (9.9) 68.2 (9.0) 64.2 (9.6) 76.5 (8.8) 60.4 (10.5) 75.8 (9.1)b 62.1 (10.4)
Array/sequencing Illumina HumanCore 

Exome array
Illumina HumanCore 

Exome-12 v1.1 or Illumina 
InfiniumCoreExome-24 

v1.1

Illumina HiSeq X Ten

Means (SD) are shown unless otherwise indicated. Data shown are only in individuals who had both clinical and genetic data after quality control filters have been applied within each 
cohort. aThere are significantly more males in the LBD-ND group (P = 2.31e−16). bLBD-D is significantly older than LBD-BD (P = 2e−16). TPD, Tracking Parkinson’s; OPDC, Oxford 
Parkinson’s Disease Centre Discovery, Accelerating Medicine Partnership—Parkinson’s Disease Initiative; LBD-D: Lewy body disease with dementia; and LBD-ND: Lewy body disease 
without dementia.

Genetic aetiology of dementia in Lewy body diseases                                                              BRAIN COMMUNICATIONS 2024, fcae190 | 5

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/6/4/fcae190/7685922 by H

ilary C
alvert user on 24 July 2024

http://csg.sph.umich.edu//abecasis/Metal/
http://locuszoom.org/
http://locuszoom.org/
https://cran.rproject.org/web/packages/colocr/index.html
https://cran.rproject.org/web/packages/colocr/index.html
https://www.eqtlgen.org/cis-eqtls.html
https://www.eqtlgen.org/cis-eqtls.html
http://resource.psychencode.org/
https://genome.sph.umich.edu/wiki/LiftOver
https://genome.sph.umich.edu/wiki/LiftOver
https://choishingwan.github.io/PRSice/


the development of dementia. Results from the regression 
were meta-analysed in R with the meta package (RRID: 
SCR_019055; https://cran.r-project.org/web/packages/meta/ 
index.html).

Results
After QC, a total of 7804 individuals were selected, including 
2908 LBD-D (2552 dementia with Lewy bodies, 357 
Parkinson’s disease dementia) and 4896 LBD-ND. Case selec-
tion is summarized in Supplementary Fig. 1. Demographic char-
acteristics are summarized in Table 1. LBD-D patients were 
significantly older than LBD-ND at diagnosis (Kruskal–Wallis 
Chi-squared = 2627, df = 1, P-value < 2.2e−16). There are 
more men than women in our study, and they are more likely 
to have a dementia phenotype (P-value = 3.09e−06). We deter-
mined that with the sample size we had, we were very well- 
powered (100% power) to detect genetic variants associated 
with dementia, assuming an odds ratio of 1.4 and a minor allele 
frequency of 0.15 under an additive model (see Supplementary 
Fig. 2).

Identification of risk loci for dementia 
in Lewy body diseases
Using a case–case GWAS approach comparing patients with 
LBD-D and LBD-ND, we analysed 6 226 081 SNPs and iden-
tified three genome-wide significant loci (Fig. 1, Table 2).

The lead SNP was rs429358 in the APOE gene on chromo-
some 19 (OR = 2.606, 95% CI = 2.307–2.943, P = 3.25e−57; 
Supplementary Fig. 3A). APOE encodes apolipoprotein E, a 
known genetic factor for Alzheimer’s disease and dementia 
with Lewy bodies. It has also been identified as a risk factor 
for dementia in Parkinson’s disease.16,42 Conditional ana-
lysis on the lead SNP detected a secondary independent signal 
at the APOE locus at 19:32848205.

The second genome-wide significant SNP was rs7668531, 
an intergenic SNP between the MMRN1 gene and the 
SNCA-AS1 gene (OR = 0.719, 95% CI = 0.656–0.789, 
P = 3.25e−12; Supplementary Fig. 3B) located 170 323 kb 
downstream of the SNCA gene. This SNP is close to and in 
linkage disequilibrium with rs7680557 (D′ = 0.9959, 
r2 = 0.9196), which is associated with dementia as identified 
in the most recent Lewy body disease case–control GWAS.11

The rs7668531 signal is no longer genome-wide significant 
when we condition on the top rs7680557 in our data set, 
which suggests that rs7668531 is not independent and most 
likely tags SNCA-AS1.

The third genome-wide significant SNP was rs17442721 in 
the noncoding RNA LINC02555, which was protective 
against developing dementia (OR = 0.427, 95% CI =  
0.318–0.573, P = 1.44e−08; Supplementary Fig. 3C). 
LINC02555 is potentially a regulatory locus for LRRK2 ex-
pression in specific cell types43 and may mediate PSP sur-
vival.44 However, this SNP is in LD with LRRK2 G2019S 
(rs34637584, r2 = 0.54, D′ = 0.97). To confirm whether 

rs17442721 is independent of LRRK2 G2019S, we per-
formed a conditional analysis. Results show that 
rs17442721 is no longer genome-wide significant after condi-
tioning on the G2019S variant, confirming that it tags 
LRRK2 G2019S, and there is no difference in dementia re-
lated to this SNP when the data are stratified by G2019S sta-
tus (Supplementary Table 2). In this data set, the rate of 
dementia in LRRK2 G2019S carriers is 5% as compared 
with 39% in the total data set (Supplementary Table 3). 
rs17442721 was not in a linkage disequilibrium with PSP 
progression variant rs2242367 (r2 < 0.05).

Rs11233271 on chromosome 11 near the MIR4300HG 
gene approached genome-wide significance (OR = 1.48, 
95% CI = 1.28–1.71, P = 6.78e−08), although this will need 
further evaluation in future work.

Common variant GBA E326K was nominally, but not 
genome-wide significant (OR = 2.01, 95% CI = 1.44–2.83, 
P = 2.517e−06). The Parkinson’s disease case–control 
GWAS LRRK2 rs76904798 variant was also not 
genome-wide significant (OR = 1.02, 95% CI = 0.88–1.18, 
P = 0.7759).

Colocalization
We performed a colocalization analysis to assess the prob-
ability of a shared causal signal between dementia status 
and genetically determined gene expression regulation. 
eQTLs were obtained from eQTLGen and PsychENCODE. 
eQTLGen comprises gene expression derived from blood, 
and psychENCODE data set comprises gene expression 
from bulk RNA sequencing from the frontal cortex. We 
found a suggestive colocalization between the genome-wide 
significant signal on chromosome 12 and cis-eQTL data 
from eQTLGen (PPH4 = 0.7154) for LRRK2, and 
rs11233271 on chromosome 11 suggestively colocalized 
with FAM181B (PPH4 = 0.7009), a protein-coding gene 
that is expressed in the brain (Fig. 2).

Polygenic risk score
We applied a Parkinson’s disease, Alzheimer’s disease and de-
mentia with Lewy bodies PRS derived from the most recent 
GWAS to the LBD-D patients identified in each of our co-
horts, as well as to LBD-ND patients for comparison. We 
used a general linear regression model to assess if the normal-
ized PRS predicted dementia and meta-analysed the regres-
sions using a random effects model. Optimized P-value PRS 
based on genome-wide significant and sub-genome signifi-
cant SNPs indicated that patients with a higher Parkinson’s 
disease PRS score (based on 1 284 510 SNPs) were less likely 
to develop dementia (OR = 0.74, 95% CI = 0.56–0.98, 
P = 0.03), and the Alzheimer’s disease risk profile (based on 
31 000 SNPs) was not significantly different between the 
two groups (OR = 0.99, 95% CI = 0.82–1.20, P = 0.93). 
LBD-D was significantly associated with higher (pure) dementia 
with Lewy bodies PRS (OR = 2.69, 95% CI = 0.69–10.42, 
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P = 0.01); however, this needs to be interpreted with caution as 
the confidence interval is very large (Fig. 3).

Discussion
We have conducted a large-scale genome-wide case–case 
analysis to understand the genetic drivers of dementia in 
Lewy body diseases by comparing Lewy body diseases with 
and without dementia and identified three independent 
genome-wide significant signals in a novel case–case analysis 
by comparing LB cases with dementia with cases unaffected 
by dementia.

In line with previous studies, we showed that APOE e4 is 
the strongest risk factor for dementia in Lewy body diseases. 
Given the role of APOE e4 in Alzheimer’s disease, this may 
modulate the risk of dementia via Alzheimer’s disease 

pathology in at least a subset of the LBD-D cases; however, 
previous work has been inconsistent. A substantial propor-
tion (30–40%) of patients with Parkinson’s disease and 
50–80% of patients with dementia with Lewy bodies have 
co-occurring Alzheimer’s disease pathology.45 However, it 
is unclear whether APOE e4 drives dementia via 
Alzheimer’s disease pathology or independently. Our results 
indicate that the Alzheimer’s disease PRS does not drive de-
mentia in Lewy body diseases, suggesting that APOE e4 may 
drive dementia in these cases by an Alzheimer’s disease 
pathology-independent mechanism. Consistent with our 
findings, postmortem studies have found that APOE e4 
was associated with dementia in Lewy body diseases in 
both ‘pure’ Lewy body diseases and those with Alzheimer’s 
disease co-pathology.25 It is also possible that APOE e4 
mediates neurodegenerative processes via neuroinflamma-
tion independently of amyloid and tau pathology.46,47

Figure 1 Manhattan plot of LBD-D versus LBD-ND. A Manhattan plot representing the results of the case–case genome-wide association 
study results (n = 2908 Lewy body disorders with dementia and n = 4896 Lewy body disorders without dementia), where 6 877 765 variants have 
been analysed under a logistic regression model. The plot highlights genome-wide significant single nuclear variants on chromosome 4 (rs7668531, 
P = 3.25e−12), 12 (rs17442721, P = 1.44e−08) and 19 (rs429358, P = 3.25e−57). Negative logarithm P-value is represented on the y-axis, while 
chromosome position is represented on the x-axis. The dotted line indicates genome-wide significant threshold (5 × 10−8).
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In fact, inflammation markers are apparent before protein 
aggregation.47 For instance, a longitudinal study showed 
that blood–brain barrier dysfunction at baseline predicted 
future cognitive decline in APOE4 carriers, but not in non- 
carriers.48 Further research is needed to clarify the role of 
APOE e4 in the Lewy body disease pathology.

We also found a SNP between MMRN1 and the 5′ end of 
SNCA, but not at the 3′ end to be significantly associated with 
lower odds of developing dementia, consistent with previous 
candidate gene studies13 and GWAS.11 Postmortem studies 
have found that alpha-synuclein in cortical areas is a predict-
or of dementia in Lewy body diseases. The finding that 
SNCA-AS1 is specific to LBD-D makes it an interesting po-
tential therapeutic target. Indeed, LBD-D tends to have a 
much more aggressive disease course with faster progression 
to mortality. Targeting SNCA-AS1 could therefore be a po-
tential solution to reducing the alpha-synuclein pathology 
in the cortex and the progression to dementia in Lewy body 
diseases. Our study has separated the 3′ signal in SNCA, 
which is associated with Parkinson’s disease risk, from the 
5′ signal associated with dementia in Lewy body diseases. 
We hypothesize that the 3′ signal is important for the level 
of SNCA expression and the initiation of the Parkinson’s dis-
ease process, particularly in subcortical areas, whereas the 5′ 
SNP is associated with the expression of SNCA in the cor-
tex.49 Indirectly, this suggests that local SNCA expression 
is important, distinct from cell to cell spread from subcortical 
areas.

The third genome-wide significant signal was located near 
LINC02555, which is potentially a regulator of LRRK2. 
However, we confirmed that this SNP is tagging 
LRRK2 G2019S. In the present study, we did not exclude 
LRRK2 mutation carriers from the main analysis. As previ-
ously described, we have shown in this study that LRRK2 
G2019S carriers are less likely to develop dementia.50

Moreover, LRRK2 likely does not play a major role in demen-
tia with Lewy bodies.51 Our results confirm that in Lewy body 
diseases, the LRRK2 G2019S mutation status is associated 
with decreased odds of progression towards dementia.

Rs11233271 on chromosome 11 close to MIR4300HG 
was nominally significant in our GWAS. This SNP may regu-
late the expression of FAM181B, a protein-coding gene in-
volved in the development of the nervous system.52

FAM181B was also associated with working memory in a 
gene-based study on cognitive measures in adolescence.53

Furthermore, this locus has been associated with variation 
in the microbiome. Further studies are needed to investigate 
the role of this locus in Lewy body dementia.

Interestingly, GBA1, BIN1 and TMEM175, which are as-
sociated with case–control Lewy body disease GWAS11, did 
not appear significant when comparing LBD-D with 
LBD-ND. Since GBA1 is a known risk gene for both 
Parkinson’s disease and dementia with Lewy bodies, our 
analysis shows that variation in GBA1 does not distinguish 
between LBD-D and LBD-ND within a study of this size. 
Similarly, TMEM175 is a risk factor in both Lewy body dis-
eases with and without dementia. Therefore, it is not T
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Figure 2 Regional association plot for eQTL and GWAS signals. Results from colocalization analysis presented via regional association 
plot for expression quantitative trait loci and (A) genome-wide association signals in the region close to LRRK2 (posterior probability H4 = 0.72, 
4026 variants analysed) and (B) in the region close to FAM181B (posterior probability H4 = 0.70, 4357 variants analysed). Negative logarithm 
P-value is represented on the y-axis, while chromosome position is represented on the x-axis.
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surprising that the signal disappears when we make a 
head-to-head comparison. BIN1 encodes bridging integrator 
1 and is the second strongest signal associated with 
Alzheimer’s disease, but was not genome-wide significantly 
associated with LBD-D in this study (P = 2.276e−05).54

Increased BIN1 expression is associated with a higher load 
of tau in the Alzheimer’s disease brain, but not amyloid.55

While some studies found the tau load to be a correlate of de-
mentia in Parkinson’s disease and dementia with Lewy bod-
ies, other studies have not. Autopsy studies have found tau to 
colocalize with alpha-synuclein in Lewy bodies in both 
Parkinson’s disease and dementia with Lewy bodies.56 A 
small autopsy study in LRRK2 carriers found that 100% 
of the brains had tau pathology.57 Therefore, it is possible 
that the Lewy body disease risk genes associated with tau 
pathology are not good candidates to distinguish LBD-D 
from LBD-ND. RIMS2 was identified as a progression locus 
in a genome-wide survival study of Parkinson’s disease de-
mentia15; however, this was not genome-wide significant in 
the present study (P = 0.016).

We acknowledge several limitations of our study. First, 
the analysis only included patients of European ancestry 
and is therefore not generalizable to other populations. As 
in previous studies, there are more men than women in our 
study.58,59 Our main results apply to men and women, but 
we have not carried out a sex stratified analysis to look for 
sex-specific loci associated with dementia. In addition, it is 
possible that some patients were censored as non-demented 
based on the clinical data available, but who might have de-
veloped dementia if followed-up for a longer period of time. 
We grouped patients who developed dementia at any time 
point together in the design of our study. However, it is pos-
sible that genetic risk factors and associated neuropathology 
leading to dementia at onset are different from those asso-
ciated with dementia later in the disease course. We hypothe-
size that Parkinson’s disease patients developing dementia 
early in the disease course will be genetically closer to demen-
tia with Lewy bodies, while those developing dementia much 
later on will present with a different genetic profile. Future 
studies should aim to identify risk factors leading to a 

Figure 3 Polygenic risk score from Parkinson’s disease, Alzheimer’s disease and dementia with Lewy bodies GWAS. Violin plot 
comparing z-transformed (A) Parkinson’s disease, (B) Alzheimer’s disease and (C) dementia with Lewy body polygenic risk score (PRS) distributions 
in Lewy body disease with dementia (LBD-D, n = 2908) with those without (LBD-ND, n = 4896). The centreline of the box plot represents the 
median, and the box limits are the interquartile range. Dots correspond to outliers. A general linear regression model was applied to assess the odds 
PRS-predicted dementia. High Parkinson’s disease PRS predicts lower odds of developing dementia (OR = 0.74, 95% CI = 0.56–0.98, P = 0.03), 
while high dementia with Lewy bodies PRS predicts increased odds of developing dementia (OR = 2.69, 95% CI = 0.69–10.42, P = 0.01).
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more aggressive disease course in Lewy body diseases to im-
prove prognosis and care.

In conclusion, in a pooled analysis of dementia with Lewy 
bodies, Parkinson’s disease and Parkinson’s disease dementia, 
we have shown that APOE e4 is the major determinant of 
Lewy body diseases with dementia. We have also shown 
that variation at the 5′ end of the SNCA gene and variant tag-
ging LRRK2 G2019S are associated with a significantly re-
duced risk of dementia. Although APOE is associated with 
dementia, other Alzheimer’s disease risk loci defined by PRS 
analysis were not associated with LBD-dementia. Increasing 
sample sizes in collaborative international studies will help re-
solve the disease pathogenesis, the nosological overlap be-
tween Parkinson’s disease dementia and dementia with 
Lewy bodies, and ultimately help define new treatments.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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