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Purpose of review

Community-acquired bacterial meningitis is a continually changing disease. This review summarises both
dynamic epidemiology and emerging data on pathogenesis. Updated clinical guidelines are discussed,
new agents undergoing clinical trials intended to reduce secondary brain damage are presented.

Recent findings

Conjugate vaccines are effective against serotype/serogroup-specific meningitis but vaccine escape
variants are rising in prevalence. Meningitis occurs when bacteria evade mucosal and circulating immune
responses and invade the brain: directly, or across the blood–brain barrier. Tissue damage is caused when
host genetic susceptibility is exploited by bacterial virulence. The classical clinical triad of fever, neck
stiffness and headache has poor diagnostic sensitivity, all guidelines reflect the necessity for a low index of
suspicion and early Lumbar puncture. Unnecessary cranial imaging causes diagnostic delays. cerebrospinal
fluid (CSF) culture and PCR are diagnostic, direct next-generation sequencing of CSF may revolutionise
diagnostics. Administration of early antibiotics is essential to improve survival. Dexamethasone partially
mitigates central nervous system inflammation in high-income settings. New agents in clinical trials include
C5 inhibitors and daptomycin, data are expected in 2025.

Summary

Clinicians must remain vigilant for bacterial meningitis. Constantly changing epidemiology and emerging
pathogenesis data are increasing the understanding of meningitis. Prospects for better treatments are forthcoming.
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INTRODUCTION

Acutebacterialmeningitis (ABM) isadiseasewithrapid
onset, outbreak and epidemic potential, and high rates
of mortality and morbidity [1,2]. Considerable advan-
ces have been made in the last 30years towards epi-
demic management and disease control through
vaccination, and understanding the contributions of
both host and pathogen to clinical outcomes. In this
review, we will summarise the rapidly changing epi-
demiology of ABM in the context of new vaccines. We
will show how new unbiased genomics technologies
are revealing specific host–pathogen interactions that
cause inflammation and brain damage. Additionally,
we will summarise which new adjunctive treatments
are in development and describe how the current
Severe Acute Respiratory Syndrome CoronaVirus2
(SARS-CoV2) pandemic may impact on the WHO’s
efforts to defeat meningitis by 2030.
DOI:10.1097/WCO.0000000000000934

This is an open access article distributed under the terms of the Creative
Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where
it is permissible to download, share, remix, transform, and buildup the
work provided it is properly cited. The work cannot be used commercially
without permission from the journal.
EPIDEMIOLOGY AND IMPACT OF
VACCINATION

Community-acquired bacterial meningitis is pre-
dominately caused by three pathogens, Streptococcus
 2021 Wolters Kluwer H
pneumoniae, Neisseria meningitidis and Haemophilus
influenzae type B. Additionally, Streptococcus suis in
Southeast Asia, Listeria monocytogenes, Group B
Streptococci, and Gram-negative bacteria such as
Escherichia coli and Klebsiella pneumoniae, cause men-
ingitis in specific groups, including neonates, preg-
nant women, transplant recipients and older adults
[3]. Worldwide, the number of reported cases of
bacterial meningitis to global surveillance sites rose
between 2006 and 2016, with incidence strongly
ealth, Inc. All rights reserved.
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KEY POINTS

� The epidemiology of bacterial meningitis is regional
and highly dynamic, influenced by vaccines, climate,
latitude, population movement, viral infections
and poverty.

� Serotype/serogroup specific conjugate vaccines are
highly effective in preventing meningitis, but serotype
replacement is increasing, effectively limiting the impact
of conjugate vaccines on disease incidence

� Host and pathogen factors influence clinical outcomes,
host genetic susceptibility to poor outcome from
pneumococcal meningitis is linked to genes involved in
NF-kB signalling and endothelial integrity.

� Dexamethasone improves outcome in pneumococcal
meningitis in high-income settings only, new agents
targeted on the host response are currently in
clinical trials.

Acute bacterial meningitis Wall et al.
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related to poverty (SDI) [3]. However, the geograph-
ical incidence varies significantly. In well-resourced
settings, ABM incidence has fallen to below 0.5–1.5/
100 000 population [4,5,6

&&

]. Contrastingly, in
countries in the African Sahel region, where epi-
demic meningitis due to N. meningitidis and S. pneu-
moniae persists, incidence reaches 1000/100 000
cases [3,7–9]. Beyond the meningitis belt, the inci-
dence in Africa approaches 2.5–25/100 000 per
population [10,11].

Bacterial meningitis is globally associated with
cooler, drier seasons [9]. It is likely that climate
change will impact on meningitis incidence but
modelling data are lacking [11]. Social distancing
measures introduced to mitigate the spread of
SARS-CoV2 during the CoronaVirus Infectious
Diseases 2019 pandemic are also predicted to lead
to a 20–30% decrease in meningitis incidence
[12

&

,13].
Global meningitis epidemiology is highly

dynamic; changes in the last 25 years amongst
adults and children have been influenced by the
widespread use of conjugate vaccines [14–16], the
HIV-1 epidemic [17–19], the roll-out of antiretrovi-
ral and antibacterial treatment including preven-
tion of mother-to-child transmission [20,21], and
significant progress on development and poverty
reduction strategies (SDG), including improved
maternal and neonatal care [22].

Vaccination remains the most important pillar
of the WHO-led roadmap towards defeating menin-
gitis by 2030 [23]. A summary of all available vac-
cines against the three common pathogens is given
in Table 1.
 Copyright © 2021 Wolters Kluwe
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Streptococcus pneumoniae

S. pneumoniae is the commonest cause of ABM
world-wide. Reports of reduction in paediatric inva-
sive pneumococcal disease (IPD), following pneu-
mococcal conjugate vaccine introduction in higher-
income countries, were rapidly followed by evi-
dence of herd immunity in the wider adult popula-
tion, particularly the elderly [24–26]. Incidence of S.
pneumoniae meningitis is estimated to have fallen by
48% in children [14,16,27]. However, parallel
reports have emerged of IPD, including meningitis,
caused by nonvaccine serotypes [14,28–30]. To mit-
igate against serotype replacement and better pre-
vent meningitis, new approaches to pneumococcal
vaccine design are under development, including
whole capsule and protein vaccines [31–34,35

&

].
Neisseria meningitidis

Conjugate meningococcal vaccines are highly effec-
tive in preventing meningitis caused by individual
serogroups. Serogroup C Incidence has declined
dramatically following the introduction of Men-C
vaccine in children in many high-income countries
[36–38]. Epidemic meningitis caused by serogroup A
in the Sahel region of Africa has been dramatically
reduced by low-cost MenAfriVac serogroup A con-
jugate vaccine by 92% [39,40]. However, virulent
clones of other serogroups have subsequently
emerged (C, W, X) and epidemics of meningococcal
meningitis continue to occur in the Sahel [41,42].

As serogroup C disease declined, serogroup B
emerged as the leading cause of meningococcal men-
ingitis in high SDI countries [15]. In 2015, the UK
government introduced protein-based serogroup B
vaccine 4CMenB (Bexsero) to all children under
2 years. UK cases of invasive serogroup B in children
have declined 75% with an estimated overall vaccine
efficacy of 54% [43]. However, disease due to other
serogroups including W and Y remains problematic.
MenC conjugate vaccine has now been replaced with
quadrivalentMenACWY vaccine for all teenagers and
young adults in the UK [38].
Haemophilus influenzae

Hib vaccination in 1989 led to dramatic reductions
in paediatric meningitis between 75 and 95%
[44,45]. Subsequently, Hib meningitis has virtually
been eliminated globally in countries with effective
Expanded Programme of Immunisations (EPI), but
persists where vaccination coverage is poor includ-
ing India, Nigeria, Pakistan and the Democratic
Republic of Congo [16,44,46,47]. Hib conjugate
vaccines are estimated to have reduced Hib menin-
gitis by 49% globally 2000–2016 [3], and paediatric
r Health, Inc. All rights reserved.

r Health, Inc. www.co-neurology.com 387



Table 1. Currently available vaccinations against meningitis-pathogens

Vaccine
formulation

Vaccine
name Serotypes covered Protein conjugate

Commercially available
vaccine

Streptococcus pneumoniae

Polysaccharide PPV-23 1, 2, 3, 4, 5, 6B, 7F, 8, 9V, 9N, 10A,
11A, 12F, 14, 15B, 17F, 18C, 19F,
19A, 20, 22F, 23F, 33F

NA Pneumovax

Conjugate PCV-7 4, 6B, 9V, 14, 18C, 19F, 23F CRM197a Prevenar

Conjugate PCV-10 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19A,
19F

Protein D, diphtheria
toxoid, tetanus toxoid

Synflorex

Conjugate PCV-10 1, 5, 6A, 6B, 7F, 9V, 14, 19A, 19F CRM197 Pneumosil

Conjugate PCV-13 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C,
19A, 19F

CRM197 Prevenar 13

Neisseria meningitidis

Conjugate MenACWY ACWY CRM197, diphtheria
toxoid

Menactra, Menveo
Serum Institute of India

(in development)

Polysaccharide MPSV4 ACWY NA Menimmune

Conjugate MenC C CRM197 or tetanus
toxoid

Menitorix, NeisVac-C,
Menjugate, Meningitec

Conjugate Hib_MenCY-TT CY, Hib Tetanus toxoid MenHibrix

Conjugate Men A A Tetanus toxoid MenAfriVac

Protein Men B bivalent
vaccine

B Not used Trumemba

Protein 4CMenB B Not used Bexsero

Haemophilus influenzae

Conjugate Monovalent Type b CRM197 Menitorix, Pediacel

aCRM197¼nontoxic variant of diphtheria toxin.
NA, Not available; PCV, Pneumococcal Conjugate Vaccine; PPV, Pneumococcal Polysaccharide Vaccine.
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deaths by 90% over the same time period [16].
However, it is concerning that non-type b stains
such as Hia are emerging [42].
Group B Streptococcus

Streptococcus agalactiae (Group B Streptococcus, GBS)
primarily causes meningitis in neonates but also
causes sepsis in older adults with co-morbidities
and young adults who have consumed contaminated
fish [48]. Serotypes Ia, Ib, II, III and V account for 98%
of human carriage serotypes isolated globally [49].
Clonal complex 17 (CC17) strains have been shown
to be hypervirulent, accounting for more than80% of
the disease [50,51]. GBS disease-causing lineages have
distinct niche adaptation and virulence character-
istics [52,53]. The most promising strategy to elimi-
nate neonatal meningitis caused by GBS is
vaccination in pregnancy, trials are ongoing [54–57].
PATHOGENESIS

The pathogenesis of most ABM follows a sequential
pattern: nasopharyngeal colonization, bloodstream
 Copyright © 2021 Wolters Kluwer H

388 www.co-neurology.com
invasion across the mucosa, circulation of bacteria
to the central nervous system (CNS), and subse-
quent CNS entry [58

&

,59]. In ABM caused by L.
monocytogenes, GBS and S. suis, bacteraemia has a
gastrointestinal or genitourinary tract source
[52,60,61]. Occasionally, ABM is acquired through
direct CNS invasion through the cribriform plate
[62,63]. In the majority of immunocompetent indi-
viduals, colonisation of the nasopharynx by S. pneu-
moniae and N. meningitidis is cleared by mucosal
immunity, despite epithelial invasion [58

&

]. Co-
infection with S. pneumoniae and respiratory viruses
such as influenza causes a heightened inflammatory
state associated with both pneumococcal and
meningococcal invasion [64–66], indeed preceding
influenza is associated with seasonal ABM [11,67

&

].
Bacteraemia usually precedes translocation

across the blood–brain barrier (BBB) and/or
blood–cerebrospinal fluid barrier into the CNS.
Under basal conditions, the CNS environment is
under continuous immunological surveillance
[68]. This is achieved through the complexity of
the BBB, where pericytes, astrocytes, microglia
and specialised endothelial cells work in synergy
ealth, Inc. All rights reserved.
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FIGURE 1. Model of BBB environment during bacterial meningitis. ABM pathogen (depicted here as blue diplococci) in the
bloodstream cross the capillary endothelium using both transcellular and paracellular routes. Bacteria may also be carried
across the BBB by infiltrating phagocytes (Trojan Horse strategy). Recognition of the pathogen via sensing of PAMPs leads to
the activation of resident immune cells such as microglia, macrophages, astrocytes and pericytes and production of DAMPs.
These cells produce a coordinated inflammatory response to contain bacteria and recruit more neutrophils to the CSF
compartment. This host response, while important for killing bacteria, activates a fibrinolytic and coagulation cascade. When
advanced, these processes lead to sustained tissue damage, BBB breakdown and leakage, causing death or lifelong
neurological sequalae in survivors. ABM, acute bacterial meningitis; BBB, blood–brain barrier.

Acute bacterial meningitis Wall et al.

D
ow

nloaded from
 http://journals.lw

w
.com

/co-neurology by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4X
M

i0h
C

yw
C

X
1A

W
nY

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
1y0abggQ

Z
X

dgG
j2M

w
lZ

LeI=
 on 08/09/2024
to both resist pathogen invasion and kill bacteria on
entry [68] (Fig. 1). Bacteria breach the BBB by inter-
acting with laminin receptors and exploiting endo-
cytic pathways, for example via Platelet Activating
Factor Receptor signalling [69–72] (Fig. 1). However,
mechanisms by which ABM-causing bacteria sub-
vert CNS barriers to cause meningitis are not
fully described.

In the 10–30% of ABM cases without concurrent
bacteraemia [73], bacteria may interact with gan-
gliosides, adhere to the olfactory bulb, invade the
olfactory epithelium and directly translocate to the
brain [63,74–77]. Pneumococcal strains causing
nonhematogenous meningitis tend to be less fre-
quently studied using bacteraemia-based animal
models [75–77].
Inflammation and exacerbation of tissue
damage in acute bacterial meningitis

Bacteria replicate rapidly in the relatively immune-
privileged CNS compartment [78], releasing
 Copyright © 2021 Wolters Kluwe

1350-7540 Copyright � 2021 The Author(s). Published by Wolters Kluwe
Pathogen Associated Molecular Pattern (PAMP)s
that bind to toll-like receptors including 2,3,4 and
9, triggering the release of Damage-Accoiated
Molecular Pattern Signallings (DAMPs) via Nuclear
Factor Kappa-light-chain-enhancer of activated B
cells (NF-kB) activation [79–82]. The subsequent
release of extracellular cytokines and chemokines
including Chemokine family Ligand 8 and cerebro-
spinal fluid (CSF)-3 drives a rapid influx of neutro-
phils to the CSF compartment [83

&&

,84].
Bacterial PAMPs and virulence proteins exert

direct damage on the delicate structures of the
CNS. Pneumococcal virulence factors, including
capsule and pneumolysin, reduce microglia motility
and chemotaxis [85

&

]. Pneumolysin, a cytolysin and
Toll Like Receptor 4 agonist is implicated in directly
toxic effects on host cells, particularly within the
BBB and hippocampus [86,87]. Others stimulate
CERB binding protein (CBP) and receptor for
advanced glycation end products (RAGE), increas-
ing Tumour Necrosis Factor alpha (TNF-a) levels and
promoting BBB disruption [88,89

&

].
r Health, Inc. All rights reserved.
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Host-detection of bacteria within the CNS trig-
gers a highly inflammatory, and predominately
ineffective host response, associated with further
tissue damage. Sustained inflammation exacerbates
tissue damage, leading to death or irreversible neu-
rological damage [73,90,91]. Neutrophil infiltration
is important for bacterial elimination [92]. However,
neutrophils can directly damage the CNS [93]. Neu-
trophil extracellular traps (NETs) unexpectedly
impaired CNS pneumococcal clearance and
increased inflammatory damage in an experimental
model [83

&&

]. Damaging DAMPs released both from
neutrophil degranulation and NF-kB signalling
include myeloperoxidase, matrix-metalloprotei-
nases, TNF-a and prostaglandins [94

&

,95,96,97
&

].
Neutrophil-mediated inflammation is strongly asso-
ciated with dysfunctional coagulation and fibrino-
lytic cascade in the CNS, including an excess of the
anaphylatoxin complement C5 [98].

Clinical improvement with dexamethasone
adjunctive therapy in both Hib and pneumococcal
meningitis demonstrates the importance of host-
mediated inflammation in ABM [99,100]. Dexa-
methasone may reduce NF-kB signalling and cyto-
kine release [101].
Leveraging new technology to interrogate
acute bacterial meningitis pathogenesis

Bacterial genome-wide association studies (GWAS)
have revealed loci that are implicated in invasive-
ness, tissue tropism and the ability to cause CNS
disease [102

&&

,103
&&

,104,105]. Single Nucleotide
Polymorphisms (SNPs) in the raf operon determine
pneumococcal tropism for ear/brain or lungs in an
intranasal challenge model [106

&

,107]. Addition-
ally, SNPs in raf modulated neutrophil recruitment,
leading to strain-dependent clearance [106

&

].
Gene expression in S. pneumoniae is niche

dependent, highlighting the importance of bacterial
metabolism in pathogenesis [108,109

&&

]. In a quan-
titative proteomics study of ABM, the abundance of
pneumococcal protein Elongation Factor Tu in CSF
associated with severity in human disease [97

&

]. In a
murine model, proteins AliB and competence pep-
tides were implicated in pathogenesis [110]. Joint
human–pathogen GWAS studies of meningitis
patients suggest that genetic differences in the host
response exert greater effects on susceptibility and
disease severity than bacterial genotype. This GWAS
identified variants in the CCDC3 gene associated
with disease severity [102

&&

]. CCDC3 is a multifunc-
tion gene involved in the metabolism and suppres-
sion of NF-kB–TNFa activation in endothelial cells
[111].
 Copyright © 2021 Wolters Kluwer H
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NEW DIRECTIONS IN DIAGNOSTICS AND
CLINICAL MANAGEMENT

Early recognition and initiation of appropriate anti-
microbials are essential to minimise death and com-
plications from ABM. The differential diagnosis in
patients presenting with headache, fever, neck stiff-
ness or altered mental state is broad: the classical
meningitis triad has limited diagnostic sensitivity
[112]. A high index of clinical suspicion is thus
required to diagnose ABM [113]. Lumbar puncture
is essential, and should be undertaken promptly
before CSF is rendered sterile by broad-spectrum
antibiotics [114].

Many patients with ABM present with an altered
level of consciousness, leading clinicians to fre-
quently request cranial imaging prior to diagnostic
lumbar puncture. Early Lumbar puncture (LP) is
strongly associated with higher diagnostic yield
from the CSF; delays in LP for cranial imaging lead
to substantial reductions in yield from either CSF
bacterial culture or PCR [114]. Delays to diagnosis
are linked to worse clinical outcomes [114–116].
Cranial imaging (either CT or MRI) in patients with
clear clinical signs and symptoms of meningitis
without focal neurology is thus not recommended
in the majority of patients with suspected ABM
[117,118]. CT has poor inter-reporting reliability
to predict the risk of cerebral herniation in ABM
[119]. The American, British and European infection
societies meningitis guidelines all recommend
immediate LP in cases of suspected ABM without
delay for CT/MRI in immunocompetent adults with
suspected ABM who have a stable GCS of �12/15
without seizures [119–123]. Important contraindi-
cations to LP include shock, respiratory compro-
mise, or coagulopathy.

The diagnosis of ABM is dependent on the anal-
ysis of CSF. The leukocyte count remains the stron-
gest predictive value of ABM. Diagnostic models
including clinical, CSF and blood data show little
additional benefit beyond clinical judgement [111].
Antibiotic administration prior to LP commonly
renders the CSF sterile, thus clinicians are increas-
ingly dependent on diagnostic PCR. Recent data
suggest that while small multiplex panels targeting
Hib, meningococci and pneumococci are highly
sensitive and specific [123], larger panels that
include viral, nosocomial and rarer community-
acquired pathogens have varying sensitivity and
specificity and are not currently recommended
[124]. More recently, direct next-generation
sequencing (NGS) and metagenomics of CSF have
been proposed to detect pathogens in cases with a
high index of clinical suspicion of ABM but negative
PCR tests [125

&&

]. While this approach is promising,
ealth, Inc. All rights reserved.
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constraints around cost, bioinformatics expertise
and clinically relevant turnaround times have lim-
ited clinical use of NGS to date [124].

All guidelines recommend patients with sus-
pected ABM should receive parenteral antibiotics
within 1 h. However, only 46% of patients in a
clinical research study were reported to meet this
target, limited by delays in the emergency depart-
ment [126,127]. Antibiotic choice should be deter-
mined by patient risk group, patient allergies, and
local guidelines informed by epidemiology, includ-
ing antimicrobial resistance. Penicillin resistance in
S. pneumoniae is 15–20% in some settings, but
remains <5% in N. meningitidis [128,129]. However,
quinolone resistance in N. meningitidis reaches 70%
in Southeast Asia [15,130]. Diagnostic uncertainty
in culture-negative meningitis often leads to pro-
longed dual antibiotic and antiviral therapies,
which may be associated with nosocomial compli-
cations [114,131

&

].
Adjunctive therapies

Adjunctive treatments are designed to reduce sec-
ondary inflammation in ABM and decrease the
morbidity associated with CNS tissue damage.
Inflammation is associated with secondary compli-
cations of ABM, including death, deafness, stroke,
epilepsy and learning difficulties [91,131

&

,132–
134]. Delayed cerebral thrombosis is a rare compli-
cation of ABM that can occur up to 2 weeks post-
admission [135,136].

In hospitals in high-income settings, patients
presenting with suspected pneumococcal meningi-
tis should receive adjunctive dexamethasone to
reduce mortality [90,137]. In low-income settings,
dexamethasone is only indicated in cases of sus-
pected S. suis meningitis in Southeast Asia to reduce
deafness [137,138]. In other settings, particularly in
Low and Middle Income Countries in Africa, dexa-
methasone is ineffective and should not be given
[139].

Other previously tested adjuncts, including
hypothermia and glycerol, have been shown to be
potentially harmful and should not be administered
[140,141].
Emerging therapeutic targets

Empirical antibiotic treatment in most centres for
suspected ABM is the third-generation cephalospo-
rin, ceftriaxone [92]. However, bacterial lysis by
ceftriaxone releases DAMPs that may prolong dam-
aging inflammation even as bacteria killed [88].
Research in animal models has strongly suggested
bacteriostatic antibiotics are associated with less
 Copyright © 2021 Wolters Kluwe

1350-7540 Copyright � 2021 The Author(s). Published by Wolters Kluwe
CNS inflammation and improve outcomes [142].
In clinical practice, there are little data to suggest
different clinical outcomes occur between bacterio-
static vs. bactericidal antibiotics [143]. As such,
there are continued efforts to develop alternatives
that reduce sequalae in survivors. A phase 2 clinical
trial evaluating the adjunctive use of a nonlytic
antibiotic, daptomycin, for pneumococcal menin-
gitis is currently underway (ClinicalTrials.gov iden-
tifier NCT03480191). Adjunctive administration of
daptomycin may dampen the inflammatory effects
of ceftriaxone through currently unknown mecha-
nisms [144].

The damaging coagulation and fibrinolytic cas-
cade in CSF are triggered partly by excess comple-
ment C5 [98]. Inhibition of C5 improved outcomes
in a murine model, clinical trials of C5 antagonists
are currently underway [145].

Newer therapeutic agents with intriguing sur-
vival data in animal models are not yet in clinical
trials. These include DNAse-1, targeted at disrupting
ineffective NETosis, the possible neuroprotective
effects of metformin, and matrix-metalloproteinase
inhibitors targeted on preventing enzymatic tissue
breakdown [83

&&

,146–148]. Proposed adjunctive
antipneumococcal therapy includes targeting pneu-
molysin and P4, a pneumococcal peptide that may
inhibit replication [149,150].
CONCLUSION

Community-acquired bacterial meningitis presents
ongoing formidable epidemiological and clinical
challenges. The ability of meningitis-causing patho-
gens to evolve in the ecological niche of the naso-
pharynx during carriage, and escape serotype-
specific vaccines has led to new strategies to elimi-
nate disease carriage through serotype-independent
vaccination. The outcome of CNS host-pathogen
interactions determines clinical sequelae, influ-
enced by host genetic susceptibility.

CSF analysis is essential to make a diagnosis of
ABM, leukocyte count remains the most effective
predictor of ABM over newer models. Nonindicated
cranial imaging introduces significant diagnostic
delays. Multiplex PCR panels have increasing utility
in ABM diagnostics, however NGS remains a
research tool.

Patients with ABM continue to experience sig-
nificant complications, including death, stroke and
deafness. Adjunctive dexamethasone improves sur-
vival in high-income countries only, the results of
clinical trials of more targeted approaches are
awaited. Effective and affordable, pan-serogroup
vaccination remains a crucial goal if we are to elimi-
nate this devastating disease.
r Health, Inc. All rights reserved.
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