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ABSTRACT: Various forms of Parkinson’s disease,
including its common sporadic form, are characterized by
prominent α-synuclein (αSyn) aggregation in affected brain
regions. However, the role of αSyn in the pathogenesis
and evolution of the disease remains unclear, despite vast
research efforts of more than a quarter century. A better
understanding of the role of αSyn, either primary or secondary,
is critical for developing disease-modifying therapies. Previous
attempts to hone this research have been challenged by
experimental limitations, but recent technological advances

may facilitate progress. The Scientific Issues Committee of the
International Parkinson and Movement Disorder Society (MDS)
charged a panel of experts in the field to discuss current
scientific priorities and identify research strategies with
potential for a breakthrough. © 2024 The Author(s). Movement
Disorders published by Wiley Periodicals LLC on behalf of
International Parkinson and Movement Disorder Society.

Key Words: α-synuclein; Lewy pathology; neu-
rodegeneration; pathogenesis; protein aggregation

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative
Commons Attribution-NonCommercial-NoDerivs License, which permits
use and distribution in any medium, provided the original work is prop-
erly cited, the use is non-commercial and no modifications or adapta-
tions are made.

*Correspondence to: Dr. Lorraine V. Kalia, Edmond J. Safra Program
in Parkinson’s Disease, Krembil Research Institute, Toronto Western
Hospital, University Health Network, 399 Bathurst Street, Toronto, ON,
Canada; E-mail: lorraine.kalia@utoronto.ca;
Dr. Ryosuke Takahashi, Department of Neurology, Graduate School of
Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-
8501, Japan; E-mail: ryosuket@kuhp.kyoto-u.ac.jp

†Authors from the panel of experts (the MDS Scientific Issues Committee)
appear in alphabetical order.

Relevant conflicts of interest/financial disclosures: The authors do
not report any conflicts of interest related to this article.
Funding agency: MDS provided financial support for the organization
of the Los Angeles In-Person Meeting.

Received: 5 January 2024; Revised: 16 May 2024; Accepted: 3
June 2024

Published online in Wiley Online Library
(wileyonlinelibrary.com). DOI: 10.1002/mds.29897

Movement Disorders, 2024 1

https://orcid.org/0000-0001-8968-248X
https://orcid.org/0000-0002-8650-3260
https://orcid.org/0000-0003-0422-8398
https://orcid.org/0000-0003-1229-3667
https://orcid.org/0000-0003-1679-1727
https://orcid.org/0000-0003-3010-6343
https://orcid.org/0000-0003-3569-8990
https://orcid.org/0000-0003-4029-1968
https://orcid.org/0000-0002-6376-5225
https://orcid.org/0000-0002-9384-1305
https://orcid.org/0000-0002-1407-9640
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lorraine.kalia@utoronto.ca
mailto:ryosuket@kuhp.kyoto-u.ac.jp
http://wileyonlinelibrary.com
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmds.29897&domain=pdf&date_stamp=2024-06-30


α-Synuclein (αSyn) pathology is a major feature of
Parkinson’s disease (PD), and the occurrence of patho-
genic variants in the SNCA gene1-12 or multiplication
of its locus13,14 supports a possible causative role of
αSyn in PD. Yet the nature of this role has long been a
matter of debate due to unclear αSyn-mediated mecha-
nisms of cell dysfunction, degeneration, and death. This
is true not only for mutant αSyn but also for wild-type
αSyn, which is expected to have a lesser effect on
homeostatic mechanisms. Furthermore, it seems logical
to question whether αSyn aggregation in the form of
Lewy pathology (LP) constitutes a toxic insult leading
to degeneration, represents an epiphenomenon that is
not directly toxic but co-occurs with an alternative
pathogenic process, or rather has protective functions
for cells in a state of altered proteostasis.15 Although
none of these roles have been definitively demonstrated,
data generally indicate that αSyn accumulation accom-
panies a decline in the function and health of neurons,
either as a primary mechanism or secondarily by
contributing to dysfunction originating from other
mechanisms. This current dichotomy may be settled by
integrating modern resources of experimental and clini-
cal research. With potential disease-modifying therapies
that reduce αSyn levels or pathology in the current drug
discovery pipeline, a clearer understanding of αSyn’s
role in the pathobiology of PD is needed to develop the
most effective therapeutic approaches. The Scientific
Issues Committee of the International Parkinson and
Movement Disorder Society (MDS) invited a panel of

experts to discuss critical knowledge gaps regarding
αSyn in PD focusing on six key questions (Fig. 1). Here,
we summarize the most significant research recommen-
dations at the modeling and clinical levels that may
help to understand whether and how αSyn function/
dysfunction plays a mechanistic role in PD.

What Are the Physiologic Functions
of αSyn?

A better understanding of αSyn function and regula-
tion in its native environment is required not only to
support therapeutic strategies for reducing extracellular
and/or intracellular αSyn or to favor native αSyn over
its pathogenic states but also to understand the context
in which disease develops. Loss of the normal function
of αSyn does not appear to cause neurodegeneration, as
demonstrated by multiple knockout studies in various
cell and animal models, including triple knockout
mice lacking α-, β-, and γ-synuclein and conditional
knockout in adult and aging mice.16-19 Others have
reported toxicity with acute αSyn downregulation via
adeno-associated virus short hairpin RNA in the rat
nigrostriatal projection,20,21 but none has been
observed using other methods, including antisense
oligonucleotides22 and conditional knockout, which
achieve near-total depletion of αSyn. The evidence thus
suggests that loss of αSyn protein (and therefore normal
function in its narrowest sense) does not produce

FIG. 1. Key questions to be addressed to identify research priorities on the role of (α-synuclein) in PD (Parkinson’s disease) pathogenesis. [Color figure
can be viewed at wileyonlinelibrary.com]
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degeneration.23 However, the normal function of αSyn
remains highly relevant for degeneration because PD
originates in the context of normal function. Thus,
understanding transition to disease requires under-
standing normal αSyn function because disease may
involve a gain in both normal and abnormal functions.
The abundant membranous pathology in PD supports
this possibility.

Membrane Binding
αSyn, a small protein enriched at presynaptic

terminals,24 is highly dynamic, cycling between a
membrane-bound pool on synaptic vesicles and a cytosolic
pool, and adopts multiple conformations in both states.25

Membrane binding is mediated by its N-terminal sequence
that forms a broken or continuous amphipathic α-helix
upon lipid association and harbors most PD-linked
mutations.26-29 At rest, αSyn appears to associate with
synaptic vesicles.25,30 Upon neurotransmitter release,
αSyn dissociates from this location,25 but other than
membrane curvature, factors that regulate this vesicular
association remain largely unknown. Both N- and
C-terminal sequences have been proposed to modulate
αSyn membrane interactions through calcium binding,
vesicle-associated membrane protein 2 (VAMP2)/syn-
aptobrevin-2, β-/γ-synuclein, or synapsins.31-35 αSyn
multimerization and/or posttranslational modifications
(PTM) may also influence αSyn behavior or
function,36-39 such as C-terminal phosphorylation at
S129 (pS129), originally considered a hallmark of only
LP. Neural activity has been shown to drive dynamic
S129 phosphorylation, influencing protein–protein
interactions at the synapse.40,41 A better understanding
of αSyn function will provide the context to elucidate
the effects of these modifications and PD-associated
mutations. Although membrane dynamics seem impor-
tant, the specific roles of curvature, charge, and pack-
ing defects require elucidation. αSyn may also interact
with other membranes, including mitochondria,42,43

but the physiological or pathological significance of
such interactions remains unclear. In addition, nuclear αSyn
has been proposed to play a role in nucleocytoplasmic
transport and DNA damage repair,44-46 and its function
may be impaired by aggregation. Furthermore, it remains
unclear whether the cytosolic pool is functional or serves
only a regulatory role. The mechanism of membrane asso-
ciation and interaction with cytosolic factors will shed
more light on these questions.

Neurotransmitter Release
Due to its presynaptic location and presumed associa-

tion with synaptic vesicles, αSyn has been considered to
participate in neurotransmitter release, including
behaviors of synaptic vesicle pools and direct effects on
the fusion machinery. Yet αSyn is not an essential

component for neurotransmission, supported by a sub-
tle phenotype in αSyn deficiency models compared to
severe phenotypes in deficiency models for proteins
known to be essential for neurotransmitter release
(eg, presynaptic soluble N-ethylmaleimide-sensitive fac-
tor attachment protein receptors [SNAREs], Munc18-1,
and Munc13-1).47 αSyn overexpression inhibits release
possibly through multimerization, binding to VAMP2
and/or synapsin, and phase separation.34,35,48,49 Inhibi-
tion of release does not appear to require aggregation.
However, the normal role of endogenous αSyn has been
less clear, including SNARE complex stabilization, reg-
ulation of the fusion pore, or endocytosis, but it seems
to have modest effects on transmitter release.31 Inhi-
bition of release by overexpressed αSyn may thus
involve a gain of function independent of aggrega-
tion. Yet αSyn aggregation can also result in reduced
αSyn function by recruitment of physiologically
active αSyn into pathological aggregates, as demon-
strated by low levels of soluble synaptic αSyn on
administration of αSyn fibrils in animals.50-52 Inter-
estingly, in songbirds, αSyn expression correlates
with song acquisition,53 suggesting a role in synaptic
plasticity. αSyn levels upregulate in response to
growth factors as well as multiple stressors,54-57 and
αSyn levels may not only initiate but also respond to
pathogenesis.58 In this regard, missense mutations (despite
their low frequency) may provide insight into disease
mechanisms. Several mutations affect membrane
association,59-64 although in different directions,
suggesting multiple routes to disease that may involve
shared and distinct molecular processes.47

Constitutive or conditional αSyn knockout does not
cause neurodegeneration but results in hyperactivity
and motor impairments, visual issues, and changes in
presynaptic morphology.17,18,31 Consistent with the
possibility that functional αSyn may play a protective
role in established PD, one study reported that PD
patients with REP1 polymorphisms, which result in
lower αSyn expression, had worse motor and cognitive
outcomes once they develop PD,65 although another
smaller study reported the opposite results.66

Several important issues need to be addressed to shed
light on αSyn function and regulation in its native envi-
ronment. First, emphasis should be placed on physio-
logical systems and models, examining αSyn function at
endogenous levels in its native environment (in the cen-
tral nervous system [CNS] and peripheral nervous sys-
tem [PNS]) and in the nondiseased state. These native
systems will enable the definition of biologically rele-
vant lipid and protein–protein interactions in the native
context of αSyn. Second, we need better tools to study
the physiological functions of αSyn (eg, antibodies spe-
cific for cytosolic or membrane-bound αSyn and for
physiologically relevant PTMs). Finally, we need to
understand other functions of αSyn in the immune
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response and its adaptive response to infections, which
are likely to shed novel insight into its function in the
brain.

What Are the Initial Triggers of αSyn
Aggregation?

The mechanisms triggering αSyn misfolding and
aggregate formation are still unclear.67-69 Genetic, path-
ological, and molecular data support the idea that
increased αSyn levels dominate the misfolding land-
scape, with protein buildup contributing to the aggrega-
tion pathway (oligomerization, fibrilization, and
inclusion formation).14,70,71 Conversely, mechanisms
independent of protein levels might cause misfolding
and aggregation. Existing data are inconclusive, but
these alternative hypotheses do not seem to be mutually
exclusive, particularly considering that αSyn accumu-
lates in different genetic and sporadic forms of PD in
both the CNS and PNS.72 Clearly, studies aimed at
determining whether basal protein level is a critical fac-
tor to switch from normal to misfolded conformation
would provide novel insights into the mechanisms of
aggregation. Taking a spatiotemporal perspective, we
discuss molecular (intrinsic) mechanisms and primary
causative mechanisms leading to αSyn misfolding and
aggregation (Table 1).

Molecular Mechanisms
Several intrinsic factors of αSyn and its cellular envi-

ronment may modulate the folding and misfolding of
αSyn. Moreover, intrinsic factors (eg, PTMs, reduced
clearance, and proteosome dysfunction) are likely
impacted by environmental conditions.73-75 It is impor-
tant to consider that molecular mechanisms likely play
a different role in each component of the aggregation
pathway and cannot be taken out of the disease con-
text. In the initial stages of protein misfolding, intrinsic
factors might dominate because αSyn is an intrinsically
disordered protein that adopts flexible structural ensem-
bles76 dependent on its surroundings. Higher protein
levels requiring longer processing time would likely
increase the probability of populating defined β-strand-
rich structures that enter the aggregation pathway.
αSyn conversion into misfolded forms may be a contin-
uous process that, at some point and for unknown rea-
sons (eg, impaired protein clearance due to age-related
proteostasis dysfunction77-79), results in an overload of
aggregation-prone αSyn. Mutations may change how
αSyn is processed (folded and/or cleared) or the relation
between membrane-bound and unbound protein, and
thereby elevate its intracellular concentration.32,80 Fur-
thermore, underlying genetic or nongenetic factors may
differentially alter regulation of other genes (eg, genes
encoding for proteostasis network components),
influencing molecular pathways and ultimately
impacting the αSyn folding/misfolding landscape.

TABLE 1 Triggering mechanisms for αSyn misfolding and aggregation

Molecular
mechanisms

αSyn intrinsic factors • αSyn gene

• Missense mutations
• SNCA multiplications
• Single-nucleotide polymorphisms

• Posttranslational modifications

Cellular environment • Temperature, pH, redox status

• Molecular chaperones
• Protein interactions
• Proteostasis network changes • Increased production

(transcriptional and epigenetic
regulation; translational-mRNA/
ribosomal function)

• Reduced clearance (chaperone-
mediated autophagy)

Primary causative
mechanisms

Endogenous • Oxidative stress, elevated Ca2+

Metabolic/energetic changes
Autoimmunity

Exogenous • Infectious agents
• Microbiome changes
• Physical/head trauma

• Altered immune responses
• Inflammation

Abbreviations: αSyn, α-synuclein; mRNA, messenger RNA.
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Notably, transcriptional, posttranscriptional, transla-
tional, and posttranslational regulations of αSyn levels
have been poorly studied in general, particularly in cell
types that are most affected by αSyn aggregation
(regional distribution) or that may have different mech-
anisms of protein regulation (glial cells).
Modeling is based on artificially induced aggregation,

which may involve different mechanisms,81-84 because
spontaneous LP has not been reproduced even in
genetic models that exhibit aggregation.16 Notably,
major questions about the misfolding/aggregation
process for most αSyn mutants remain (eg, accelerated
oligomerization with A30P mutation vs. increased
fibrilization with A53T or E46K85,86). Although SNCA
mutations are rare and, in some cases, associated symp-
toms differ from those in sporadic PD, the molecular
effects of such mutations could provide insight into the
misfolding/aggregation of wild-type αSyn. Therefore, it
would be important to design novel studies using
genetic models and to develop models of de novo αSyn
aggregation, incorporating genetic/epigenetic, environ-
mental, inflammatory, or other factors contributing to
the terrain of protein misfolding. Some of these models
have already been used, for example, genetic
models with additional environmental toxicants such as
pesticides87-90 and models of αSyn aggregation facili-
tated by exposure to toxicants.91,92 Because αSyn
buildup in particular brain regions may be a major
player in the aggregation process, models of region-
specific conditional αSyn increase (preferably avoiding
exaggerated αSyn levels) could help assess mechanisms
leading to misfolding. Finally, using analytical
approaches that start with studies of mechanisms trig-
gering αSyn aggregation to characterize this common
terminal pathway may help support or reject hypothe-
ses about primary causative mechanisms.

Primary Causative Mechanisms
αSyn pathology may be caused by endogenous or

exogenous mechanisms. Regarding endogenous causa-
tion, the localization of αSyn, which is largely presyn-
aptic, membrane-bound,93,94 and associated with
membrane vesicle recycling, may increase demands for
protein processing. αSyn turnover remains unclear, par-
ticularly at synapses and within axons, and whether the
axonal capacity can suffice in a state of high demand is
unknown. The somatic or axonal site of chaperone-
mediated autophagy (CMA) that clears most αSyn in
neurons also remains undefined.95 Further, the distribu-
tion of αSyn pathology (brain region/cell-type specific-
ity) is important to identify primary mechanisms of
proteostasis network dysfunction, and time plays a role
because αSyn pathology develops over many years,
plausibly due to a gradual decline in proteostasis.
Therefore, primary endogenous triggers for αSyn

aggregation (eg, increased oxidative stress) need to be
investigated considering cell-type specificities, subcellu-
lar compartments, and time requirements. Aged ani-
mals, especially nonhuman primates, are of particular
interest due to differences in the misfolding landscape
across species. Alternatively, epigenetic changes associated
with aging can be applied to create an aged bio-
environment both in vitro and in vivo. Another possibility
is to develop sufficiently aged human organoids that
would allow for assessment of proteostasis machinery
activity, in particular, human cell types.
Triggering αSyn aggregation may require the inter-

action of various mechanisms of cellular dysfunction
instead of a single primary causative mechanism. For
instance, metabolic/energetic impairment, which is
favored by a particular bioenvironment (cell type
and aging), may be more relevant in the context of
altered proteostasis (overexpression or impaired
clearance). It would be particularly helpful to
develop research strategies taking a multitarget
approach to test the combined effects of various
endogenous mechanisms on αSyn folding/misfolding
and aggregation.
Mechanisms associated with an identified exogenous

cause lack supporting evidence, and most remain hypo-
thetical. Some data of interest regarding infectious
agents likely contributing altered immune responses,
such as urinary tract infection96 and SARS-CoV-2
infection97 followed by increased protein load, have
recently emerged. There is evidence that αSyn plays
a role in the immune response to bacterial and
viral pathogens (extensively reviewed98). Although
acting as a restriction factor that inhibits viral trans-
mission may be a normal function of αSyn,99 it may
also constitute another entry point for overloading
the proteostasis network, ultimately leading to αSyn
misfolding, buildup, and aggregation.

What Determines the Distribution of
αSyn Pathology?

According to the Braak staging, LP in the CNS is
hypothesized to spread from brain–environment inter-
faces (olfactory epithelium or gut), but recent work
argues for both centripetal and centrifugal spreading.100

In the elderly, LP seems to first occur in the olfactory bulb
and only in a minority of individuals in the brainstem and
more widespread in the periphery.101 Regardless of the
region first affected, it is unclear why LP distribution is
restricted to specific brain regions through much of the
disease course. To address this, the role of the brain
connectome, the role of cell-autonomous factors, and the
consequences of LP in vulnerable neurons need to be
considered.
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Brain Connectome
Both in vitro and in vivo studies have shown that

synthetic αSyn pre-formed fibrils (PFF) can induce αSyn
pathology (detected by pS129) spreading retrogradely
(from postsynaptic host to presynaptic recipient)102

and anterogradely (from cell body to axon terminal
to postsynaptic recipient), arguing that LP propagation
in humans could be bidirectional.103-106 Although
cell-to-cell spreading mechanisms remain controversial,
they appear to be dominated by processes that do
not involve any specific recognition of fibrillar αSyn
(eg, macropinocytosis),107,108 despite some studies
suggesting receptor-mediated processes.107 Some sug-
gest fibril internalization through binding to heparin
sulfate proteoglycans on the cell surface.109,110 The mech-
anisms that mediate spread may be similar for naturally
occurring αSyn aggregates (material extracted from
human LP) and synthetic αSyn PFFs,111,112 although
unlike Alzheimer’s disease pathology, LP does not collo-
cate with heparin sulfate proteoglycans or glycosamino-
glycans in PD brains as may be expected for prion-like
internalization.113 Given the bidirectional and nonspecific
nature of these propagation mechanisms, the regional and
cellular specificity of LP in PD brains is not clear. To solve
this problem, several key gaps need to be filled. One is the
generation of an unbiased, quantitative connectomic map
of brain regions manifesting LP. Modern brain mapping
approaches, like those advanced by the Allen Institute,
can help but need to be systematically applied to struc-
tures implicated in PD. Relevant synaptic connections also
need to be profiled for strength of the connection and
their propensity to propagate misfolded αSyn. Finally, this
mapping effort should consider animal species as an
experimental variable.114-116 Another gap is how the rules
governing LP spread differ from the spread of PFFs.
Spreading of synthetic PFFs differs from that of naturally
occurring strains, which differ in conformation, resulting
in unique biochemical and biological properties.117,118

Finally, the role of region-specific factors in spreading
needs to be determined. For example, inflammation has
been implicated in LP propagation.119 Regional variability
in resident glia reactivity and accessibility to peripheral
immune cells may contribute to the specific pattern of LP
in humans. On the contrary, microglial macroautophagy
may act to limit LP in certain regions.120

Cell-Autonomous Factors
Although LP propagation could be independent of

cell type, its persistence and toxicity may be cell-type
specific121 and also dependent on αSyn expression levels,
as shown in animal models.122-124 Potentially relevant
traits can be divided into several categories. First, do LP-
vulnerable neurons rely more heavily on endocytic mecha-
nisms leading to uptake of pathogenic forms of αSyn?
Notably, neuronal spiking has been implicated in the

regulation of micropinocytosis.108 Neurons that have very
high anabolic demands, like those with large axonal neu-
rotransmitter release fields, may rely more on bulk uptake
of extracellular proteins than more specific carrier-
dependent mechanisms. Interestingly, one of the most vul-
nerable brain cell types, substantia nigra pars compacta
(SNc) dopaminergic neurons, also releases neurotransmit-
ters from their dendrites creating two subcellular regions
where transmitter-related endocytosis is engaged. But it is
unclear how common this is among vulnerable neurons.
Second, do vulnerable neurons create an intracellular
environment more prone to LP persistence and toxicity?
To fill this gap, a systematic characterization of
LP-vulnerable and LP-resistant neurons at the cellular/
molecular level is required. Single cell-type-specific geno-
mics, transcriptomics, epigenetic landscapes, and proteo-
mics need to be compiled. Relevant functional studies
using genetically encoded sensors for LP-relevant variables
need to be conducted in appropriate contexts that mimic
those in vivo. Ideally, these should be contexts in which
neurons perform their normal functions (eg, physiological
spiking, releasing neurotransmitter). For example, in vivo
SNc dopaminergic neurons have a high rate of basal
mitophagy, presumably because of bioenergetic demands
associated with their network function.125 This is unlikely
to be recapitulated in vitro. Filling these knowledge gaps
will also help determine to what extent LP is a conse-
quence of trans-synaptic spread or de novo seeding within
a vulnerable cell type.

Consequences of LP
For unclear reasons, some neuronal populations

appear to tolerate LP without dying (eg, dorsal motor
nucleus of the vagus [DMV] cholinergic neurons),
whereas others succumb (eg, SNc dopaminergic neu-
rons).126 Why this is the case is unclear. It will be
important to compare LP across regions at an ultra-
structural/molecular level; in situ proteomics is an
emerging field that should make this possible.127 It is
also possible that the functional impact of LP is cell-
type specific. For example, pathogenic αSyn species
compromise mitochondrial function128-131; if the spare
bioenergetic capacity of a neuron is low, it may make
αSyn-induced mitochondrial dysfunction intolerable. In
this regard, it is necessary to determine how LP induces
cell death in vulnerable cells. For example, neuronal
death may involve mechanisms common to many cell
types (eg, apoptosis) but have cell-specific triggers that
should be explored experimentally. An obvious concern
in these studies is how faithfully experimentally induced
pathology recapitulates human pathology. Functional
studies in humans, particularly those using imaging
modalities to generate longitudinal data, will be impor-
tant to include. These tools need to refine their
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spatiotemporal resolution to generate reliable func-
tional data from mesencephalic and other brainstem
structures.

What Is the Relationship between
αSyn Aggregation and Neuronal

Dysfunction?

To understand αSyn’s role in PD, it is important
to evaluate the prevailing hypothesis that αSyn aggrega-
tion constitutes the toxic insult leading to neuronal dys-
function and death. Human genetics and
neuropathology provide definitive evidence for strong
links between αSyn aggregation and PD. However, it
remains a challenge to prove a causal relationship
between αSyn aggregation and neuronal dysfunction in
humans; thus, model systems must be used and further
developed.

Human Genetics
Pathogenic variants in SNCA or multiplication of its

locus cause an aggressive clinicopathological syndrome
of PD with high penetrance.132 Although not exact rep-
licas of sporadic PD, these rare cases suggest a central
role of SNCA in PD pathogenesis given the clinicopath-
ological similarities. Moreover, human genetics support
a gain-of-function effect of αSyn, with a clear dose–
response (triplication cases are more severe than dupli-
cation cases). Conversely, in population-based studies,
individuals found to have a deletion of one SNCA allele
lacked features of parkinsonism or dementia,133 argu-
ing against a pronounced loss-of-function effect of
αSyn. Missense mutations alter the folding landscape of
αSyn, thus affecting its propensity to aggregate as well
as its interactions with protein partners and lipids/mem-
branes. Whereas many amino acid residue substitutions
within αSyn are clearly associated with increased aggre-
gation, substitutions not associated with αSyn pathol-
ogy certainly exist but are not necessarily considered.
Genome-wide association studies (GWAS) have clearly
indicated SNCA as the most important locus separating
sporadic PD from controls, and single-nucleotide poly-
morphisms (SNP) within the SNCA locus have been
linked to earlier age of onset. These GWAS findings
highlight the utmost significance of the SNCA locus for
disease manifestation and its evolution, for not only
familial but also sporadic PD. There remains a need to
better understand how disease-associated mutations
change protein structure, alter physiological properties,
and confer toxicity, whether αSyn aggregates or not,
especially as additional SNCA variants are identified.
More prospective studies are also needed to follow the
trajectory of those with “deleterious” SNCA SNPs who
may have a more aggressive disease course. Such

research will more clearly delineate αSyn as a risk fac-
tor, instigator, and/or driver of the disease process.

Human Pathology and Model Systems
There has been some controversy about whether

αSyn levels are overall increased in PD or just shifted
toward more insoluble conformations. Using isolation
by laser-capture microdissection, SNCA messenger
RNA (mRNA) levels have been shown to be signifi-
cantly increased in sporadic PD, compared to controls,
in individual remaining nigral tyrosine hydroxylase
(TH)-positive neurons, albeit from a small sample of
brains.134 SNCA mRNA levels are also increased in
human induced pluripotent stem cell (iPSC)-derived
dopaminergic neurons upon seeded aggregation of
endogenous αSyn with PFFs.58 This suggests that aggre-
gation upregulates αSyn expression, which in turn
favors aggregation, leading to a self-maintained patho-
genic cycle. It will be crucial to extend these studies to
include quantification of αSyn protein and identification
of αSyn conformation(s) at the individual cellular level
in cases across the pathological continuum of PD,
including very early stages (eg, prodromal/premotor
PD, incidental Lewy body disease [iLBD]).
Findings from human pathology suggest that diffuse

accumulations of αSyn in the form of pale bodies or
pale neurites may form first,135-138 evolving into more
dense structures that eventually assume the compact
structure of mature LP, containing not only αSyn fibrils
but also cellular chaperones, membrane proteins, lipids,
organelles, and cytoskeletal elements. Toxicity may
result from this process. For instance, sequestration of
proteins within LP may result in functional deficits,
leading to cell stress and death.139 In addition, αSyn
aggregates can redistribute important lipid and protein
components of neuronal plasma membranes,140,141

which may be deleterious to neurons.142 In experimen-
tal models, a range of proteins, vesicles, and organelles
are sequestered within mature Lewy body–like struc-
tures. Lewy neurites may also disrupt axonal transport
and dendritic spines,143-148 thereby impairing the ability
of neurons to properly process synaptic information or
convey that information to other neurons. Thus, LP
may compromise a neuron’s function without causing
degeneration, although neuronal terminals/synapses
may be primarily affected. Given that LP may be pre-
sent in neurons for years, this is of potential therapeutic
relevance.
LP may not always be necessary for neuronal dys-

function or neurodegeneration. For example, in a small
cohort of patients classified as having Braak stages
1 and 2 (ie, before LP involves the SNc), approximately
12% cell loss was already observed in the SNc149; how-
ever, it must be noted that nigrostriatal terminals,
which may already harbor LP, were not assessed and
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that these findings have not yet been replicated in a
larger cohort. Furthermore, severe nigral degeneration
and levodopa-responsive parkinsonism can occur in the
complete absence of LP. This is best exemplified by
the majority of parkinsonian patients with biallelic
mutations in PRKN and an appreciable minority of
cases with LRRK2 mutations.150 These genetic forms
may be unrelated to sporadic PD. Even so, LP
absence does not exclude a pathogenic role for other
αSyn conformations. For example, proximity ligation
assays can visualize presynaptic αSyn disease-associated
oligomers,151 which may be more robustly correlated
with neuronal dysfunction than LP.152 It will be
important to develop tools able to detect various con-
formations of αSyn in postmortem tissue and to visual-
ize their formation in living neurons and other cells in
model systems. The latter will allow for correlations to
be made with changes in cell function in real time. Spe-
cific identities and vulnerabilities of cell types will need
to be considered. In parallel, binding partners of αSyn
in this gradual process will need to be determined. Such
work will broaden our understanding of why certain
neuronal populations and circuits appear to be impervi-
ous to heavy LP loads, whereas others are extremely
sensitive.

What Is the Role of αSyn
Propagation in the Onset and

Progression of PD?

Although postmortem studies using routine immuno-
histochemistry suggest αSyn aggregation may first occur
in the olfactory bulb, autonomic nervous system, or
enteric structures, we still do not know specifically
where in the CNS or PNS disease begins. Moreover,
there are likely clinical subtypes of PD that differ in this
respect (and others) that are not yet adequately distin-
guished or characterized. For example, studies using αSyn
seed amplification assays can identify disease-associated
seeding activity in patients with manifest PD,153-156 as well
as individuals with prodromal/premotor PD, such as idio-
pathic rapid eye movement sleep behavior disorder157 and
pure autonomic failure.158 However, it is unknown how
early in the disease process these methods can detect abnor-
mal αSyn, or if its detectability is subtype dependent. These
assays are currently unable to serve as quantitative bio-
markers of disease progression. Similarly, apart from imag-
ing the presynaptic nigrostriatal dopaminergic pathway, we
have no reliable measures of disease status that can be used
to quantify and monitor ongoing neuronal dysfunction or
progressive neurodegeneration. Without robust tools for
detecting and measuring pathogenic αSyn, there are several
challenges to determining its role in onset and progression
of PD in both experimental and clinical research.

Experimental Research
Identifying the anatomical location(s) where pathol-

ogy starts is expected to improve experimental models
of PD by defining potential sites of injection for αSyn
seeds to recapitulate most faithfully prion-like pathol-
ogy progression. However, these models often rely on
phosphorylated αSyn (usually pS129) to detect and
monitor spread of pathogenic protein. This approach
relies on several assumptions, notably that all patho-
genic αSyn is phosphorylated at one specific residue.
Yet in vitro and in vivo studies have shown that pS129
is not necessary for the formation of pathogenic
αSyn.159,160 It is increasingly recognized that αSyn mis-
folding and propagation long precede the formation of
pathological inclusions that are detectable via tradi-
tional immunohistochemical methods.151,152,160-163

Several cell-based and cell-free assays now exist for
identifying disease-associated αSyn conformations.
However, there are limitations in their use to study
onset, and they cannot be used to evaluate spread of
disease in vivo. Thus, improved research tools that are
not antibody dependent to identify the presence of
pathogenic αSyn are needed.
A prevailing hypothesis is that disease progression

results from prion-like spread of αSyn. Importantly,
experimental models typically used to investigate this
process rely on various αSyn fibril strains, including
patient-derived and synthetic strains. Decades of
research on prion protein have shown that the strain
adopted by the misfolded protein determines its bio-
chemical properties and spreading kinetics.164 Thus,
two different strains may spread to the same brain
regions in an experimental model but with different
time frames. For example, if the distribution of αSyn
neuropathology is assessed 4 months after two differ-
ent strains are injected into the brain, spread of either
strain to a particular brain region is impacted by its
rate of replication. If the same titer (ie, amount of
replication-competent αSyn, which is not the same as
total αSyn) of each strain has not been used, it is
impossible to determine if the presence or absence of
pathology in a brain region is due to strain biology or
differences in titer. Given the growing structural stud-
ies identifying unique αSyn strains,165-179 the field
needs to develop operational definitions of titer for
each αSyn strain in use. Moreover, although synthetic
strains share some structural characteristics with
fibrils purified in the presence of detergents from
patient brain homogenates, including a Greek key
motif, they fail to fully recapitulate all structural
properties, including protofilament interfaces, inter-
molecular interactions (eg, residues involved in
salt bridges), cofactors, and protofilament number
and symmetry.165,166,168-170,172,175-178,180,181 Despite
remarkably triggering pathology, varied fibril sources
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and preparations across laboratories impede compar-
ing strain-specific findings as they pertain to PD
pathogenesis. Further, it is unclear what data gener-
ated using synthetic strains are disease relevant. We
suggest standardizing experimental conditions to
evaluate αSyn spread, including (1) operational defi-
nitions and consistent methods for isolating and
injecting αSyn fibrils and (2) developing methods for
faithfully amplifying disease-relevant structures from
biomaterials (eg, brain homogenates, cerebrospi-
nal fluid).

Clinical Research
It is well established that LP, as the current marker of

pathologic αSyn, is not sufficient for onset of neu-
rodegeneration. iLBD is found in approximately 15%
of seemingly healthy elderly individuals,182-185 with no
clear evidence for widespread neurodegeneration. Further-
more, in PD patient brains, there are several regions that
demonstrate considerable αSyn aggregation with little cell
loss, including the cingulate cortex, DMV, and, early on,
locus coeruleus.186-190 This raises an important question
regarding the extent to which αSyn pathology is inducing
neuronal dysfunction in the absence of neu-
rodegeneration. This may be as important to the patient
as the consequences of neuronal loss. It is also important
to establish whether dysfunction inevitably evolves to neu-
ronal loss and whether dysfunction can be reversed with
appropriate treatment.
Critical to understanding αSyn’s role in PD progres-

sion is defining and assessing this process. Importantly,
progressive worsening of clinical parkinsonism is not
necessarily indicative of progressive neurodegeneration
and, even when this is the case, it may not be due to
further propagation of pathogenic αSyn. Progressive
neuronal dysfunction, whether or not initially triggered
by αSyn, could occur due to distinct pathobiological
processes that no longer require αSyn. A similar phe-
nomenon could be postulated for progressive SNc neu-
rodegeneration. Clinical progression, especially in early
PD, is generally assessed by worsening of levodopa-
responsive motor features, presumably indicative of pro-
gressive striatal denervation. However, it is unknown
whether this is a consequence of active spreading of path-
ogenic αSyn driving SNc neurodegeneration. Alterna-
tively, it is possible that once pathogenic αSyn has
impacted the SNc, likely through cell-to-cell prion-like
spread, other critical pathobiological processes are trig-
gered and capable of independently driving the neurode-
generative process.191 If this is the case, subsequent
disease progression related to further αSyn propagation
might be clinically evident only as other brain regions
become affected (eg, progressive cognitive decline, devel-
opment of other nondopaminergic manifestations). Thus,
there is a critical need for reliable biomarkers to detect

and quantify the presence and spread of pathogenic αSyn
in living patients, as well as more sensitive and broadly
based biomarkers for both neuronal dysfunction and
neurodegeneration.

Are Neurons with αSyn Aggregates
Destined to Die, or Can They Be

Rescued from Neurodegeneration?

αSyn aggregates are observed in several brain regions
not associated with significant cell loss, suggesting not
all neurons with αSyn aggregates are destined to die.
However, how the biochemical and structural proper-
ties of αSyn in these regions compare to αSyn aggre-
gates in regions undergoing substantial cell loss is
poorly understood. Greater understanding requires rec-
ognizing and capturing αSyn aggregate diversity in PD
longitudinally to examine the time course of αSyn
aggregation and neuronal death.

Diversity of αSyn Aggregates
αSyn pathology requires the formation of αSyn

aggregates, including fibrils, which constitute the
predominant proteinaceous aggregates found in
LP. Immunohistochemical characterization of αSyn
aggregates in postmortem brains has revealed highly
diverse structures ranging from puncta to diffuse aggre-
gates, to highly condensed eosinophilic structures with
radiating filaments, and other types of inclusions com-
posed of highly complex mixtures of membranous
organelles, lipids, and dispersed fibrils.192 These differ-
ent types of αSyn aggregates could represent (1) different
species on the pathway to LP formation or distinct
types of αSyn aggregates, (2) αSyn aggregates that arise
from different aggregation pathways or cellular inter-
actomes, or (3) aggregates that were differentially modi-
fied and remodeled as part of the cellular response to
neutralize their activity. This requires that we move
away from defining αSyn aggregates based on generic
tools that are not capable of capturing this diversity.
For example, antibodies against pS129 αSyn or
amyloid-binding small molecules, such as Thioflavin
T/S or Congo red, remain primary tools for detecting
and quantifying αSyn pathology in postmortem human
brains and preclinical models of PD, despite neither rec-
ognizing αSyn oligomers nor capturing biochemical
diversity of pathology. Developing αSyn oligomer-
specific antibodies is possible but has so far proven to
be challenging. Another challenge is to develop anti-
bodies that distinguish between dynamic physiological
oligomeric forms of αSyn from nonnative and poten-
tially pathogenic oligomeric forms, especially given our
lack of knowledge of biochemical and structural prop-
erties of native oligomers. Similarly, developing new
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tools to monitor changes in conformational properties
of αSyn is challenging because we lack knowledge
about the native conformation of αSyn in biological
membranes and different cellular compartments. Devel-
oping antibodies targeting the membrane-bound state

of αSyn may be possible using αSyn bound to synaptic
vesicles as antigens.
Biochemical modifications of αSyn aggregates can

alter their effects on neuronal function and survival.
For example, recent studies indicate that certain PTMs

TABLE 2 Top research priorities recommended by the panel

Recommendations Strategies/approaches

Applying physiological systems/models to characterize αSyn
function at endogenous levels in native environment and
nondiseased state

• Targeting interactions with lipids and proteins, function in
cellular compartments, and role in the immune response

Determining the impact of disease-associated mutations on αSyn
function and fibril structure

• Analyzing changes in protein structure, physiological
properties, and toxicity

Conducting systematic analyses of αSyn regulation and the role
of αSyn levels

• Targeting from transcriptional to posttranslational regulation
with cell-type specificity

• Using available genetic models and conditional models for
region-specific αSyn buildup

Considering cell-type specificity, cell compartment, and time
requirements for studies of triggering mechanisms of αSyn
aggregation

• Using aged animals (including aged nonhuman primates) and
aged human organoids

• Modeling epigenetic changes related to aging
Developing cell and animal models that recapitulate the different

stages of αSyn aggregation
• Incorporating the processes of oligomerization, fibrillization,

and inclusion formation

Developing de novo animal models of αSyn aggregation • Incorporating environmental, inflammatory, and other
contributors to misfolding

Designing multiple target studies of primary mechanisms of αSyn
folding/misfolding and aggregation

• Targeting the interaction of various mechanisms (eg, oxidative
stress, elevated Ca2+, metabolic/energetic changes)

Systematically characterizing LP-vulnerable and LP-resistant
neurons at the molecular and cellular levels

• Applying genomics, transcriptomics, epigenetics, proteomics,
in situ (spatial) omics, and functional studies in the context of
in vivo cell function using LP-relevant sensors

Generating an unbiased, quantitative connectomic map of LP
distribution

• Including number and strength of synaptic connections,
considering animal species differences

Establishing standardized experimental approaches for evaluating
αSyn spread using in vivo models

• Obtaining consensus on operational definitions and common
methods for isolating and dosing with disease-relevant αSyn
fibrils

• Developing methods for faithfully amplifying disease-relevant
structures from biomaterials, such as brain homogenates
or CSF

Developing better tools to label αSyn in its various forms and
cellular locations

• Including antibodies, ligands, sensors, and other markers for
application to model systems and human brain tissue

Analyzing cellular responses to LP in models and humans • Targeting functional readouts at the single-cell and population
levels (eg, metabolic changes)

• Applying longitudinal imaging studies with refined spatial and
temporal resolution

Developing reliable biomarkers to detect and quantify the
presence and spread of pathogenic αSyn in patients across the
disease spectrum (from premotor to advanced PD), and more
sensitive and broadly based biomarkers of both neuronal
dysfunction and neurodegeneration

• Considering various modalities of biomarkers (ie, chemical,
structural, functional)

• Conducting large prospective studies to define the natural
history of individuals with positive αSyn biomarkers (eg,
positive αSyn seed amplification assays) and the factors that
influence the development of clinical disease

Prospectively studying the trajectory of people with “deleterious”
SNCA SNPs who may have a more aggressive disease course

• Conducting longitudinal cohort studies

Abbreviations: αSyn, α-synuclein; LP, Lewy pathology; CSF, cerebrospinal fluid; SNP, single-nucleotide polymorphism.
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can exert strong effects on modulating αSyn fibril
seeding activity. Two recent studies showed that
nitrated or O-GlcNAc-modified αSyn fibrils exhibit
minimal or no seeding activity in primary neuron cul-
tures and seeding-mediated mouse models. This work
assumes that PTMs occur prior to templated mis-
folding, which may not be the case, as others have
shown that replication of pathogenic αSyn occurs prior
to PTM addition.193,194 Interestingly, a recent study
demonstrated that truncated αSyn is present in astro-
cytes SMP. However, whether this represents a patho-
genic species or simply glial-mediated clearance of
fibrillar αSyn remains unknown. These findings indicate
further investigation of the role of PTMs in αSyn patho-
genesis is needed. Although several PTMs have been
consistently observed in pathological αSyn aggregates
isolated from PD brains (eg, phosphorylation [Y39,
S87, S129, Y125], nitration [Y39, Y125],
ubiquitination at multiple N-terminal lysine residues,
N- and C-terminal truncations), more systematic and
quantitative mapping of αSyn PTMs at different stages
of disease progression is essential to identify and priori-
tize disease-relevant PTMs that could be targeted for
biomarker and therapeutic development.

Time Course of αSyn Aggregation and
Neurodegeneration

To determine whether accumulation and/or aggrega-
tion of αSyn in neurons is sufficient to induce neu-
rodegeneration, one must be able to conduct
longitudinal single-cell tracking studies where induction
of αSyn aggregation and formation of LP-like aggre-
gates and cell death occurs within a defined and reason-
able period. This is not currently possible in human
brains, and the only preclinical models that enable such
studies are the PFF seeding-based models of αSyn
spreading, which do not fully recapitulate PD pathol-
ogy. Given the lack of αSyn imaging agents that allow
direct monitoring of this process, studies in cellular and
rodent models expressing a fluorescent form of the pro-
tein enable monitoring αSyn aggregation kinetics while
also following the fate of neurons containing αSyn
aggregates. One limitation of these studies is their reli-
ance on αSyn fused to fluorescent proteins, which can
modify the surface of fibrils and alter their interactome.
Interestingly, uptake of αSyn fibrils into neurons that
do not express αSyn does not induce neuronal dysfunc-
tion or death, whereas internalization of αSyn into pri-
mary neurons induces αSyn fibrillization, formation of
αSyn inclusions, and neuron loss. These observations
suggest that the process of αSyn seeding and fibril
growth, rather than mere uptake or presence of αSyn
aggregates in neurons, is the primary driver of
αSyn toxicity and cell death.

We propose that any framework for investigating the
relationship between αSyn pathology formation and neu-
rodegeneration should (1) critically consider multiple sce-
narios that capture the complex relationship between
αSyn aggregation, pathology formation, and neu-
rodegeneration; (2) include clear working definitions of
the different types of αSyn species and consensus on out-
come measures to assess neuron dysfunction and death;
(3) account for differences in αSyn protein expression;
(4) account for the diversity of αSyn aggregates/pathology
observed in PD brains; (5) consider the possibility that
not all αSyn aggregates are pathogenic (ie, some aggre-
gates are toxic and/or seeding competent and others not);
(6) acknowledge that differences in the kinetics of αSyn
aggregate formation and clearance could be key determi-
nants of the final fate of affected neurons; (7) consider
the possibility that transient αSyn aggregation could trig-
ger pathogenic pathway and cascading events that, once
initiated, become independent of αSyn aggregation; and
(8) accept that neurodegeneration could result from both
aggregation-dependent and aggregation-independent
mechanisms. It is important to develop preclinical models
that recapitulate the different stages of αSyn aggregation
formation and tools that enable specific detection of these
pathologies. These resources would allow for testing
established and new hypotheses and for dissecting the
role of different αSyn species and the process of αSyn
aggregation and LP formation in the development of PD
and other αSyn-related disorders.

Conclusions

This discussion of knowledge gaps regarding αSyn’s
role in PD has identified major barriers and priorities
for research progress. It is clear that lack of more suit-
able in vivo models and probing tools is a critical issue
across molecular, cellular, and physiological studies. It
has also been underscored that recent work contributed
mostly incremental progress by expanding on similar
approaches. The perspective of the panel is that
developing new models/tools and refining the strategy-
to-target design are important to advance our under-
standing of αSyn function/dysfunction and its involve-
ment in PD pathogenesis. Table 2 summarizes the
panel’s recommendations, reached by consensus, for
top research priorities.
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