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Abstract: The observation that certain therapeutic strategies for targeting inflammation benefit pa-
tients with distinct immune-mediated inflammatory diseases (IMIDs) is exemplified by the success
of TNF blockade in conditions including rheumatoid arthritis, ulcerative colitis, and skin psoriasis,
albeit only for subsets of individuals with each condition. This suggests intersecting “nodes” in
inflammatory networks at a molecular and cellular level may drive and/or maintain IMIDs, being
“shared” between traditionally distinct diagnoses without mapping neatly to a single clinical pheno-
type. In line with this proposition, integrative tumour tissue analyses in oncology have highlighted
novel cell states acting across diverse cancers, with important implications for precision medicine.
Drawing upon advances in the oncology field, this narrative review will first summarise learnings
from the Human Cell Atlas in health as a platform for interrogating IMID tissues. It will then review
cross-disease studies to date that inform this endeavour before considering future directions in
the field.

Keywords: immune-mediated inflammatory diseases; single-cell sequencing; multi-tissue atlas;
cross-tissue atlas; human cell atlas; integrative analysis; precision medicine

1. Introduction

Immune-mediated inflammatory diseases (IMIDs) are a group of conditions charac-
terised by immune dysfunction leading to chronic inflammation and tissue damage [1].
IMIDs can affect various organs, including the joints (e.g., rheumatoid arthritis; RA), gut
(inflammatory bowel disease; IBD), and skin (e.g., psoriasis, atopic dermatitis). It is known
that people with one IMID are more likely to develop another compared to the general
population. For example, the incidence of IBD is 2.5 times higher amongst people with RA
compared to the rest of the UK population [2]. Over the last two decades, IMID incidence
has increased significantly [2]. In parallel, evolving pathophysiological understanding of
these conditions coupled with advances in biotechnology have led to the deployment of
targeted, biologic immunotherapies that have transformed patient outcomes. This era was
heralded by TNF inhibitors (TNFis) for the treatment of RA [3], and the drug class has
since proved effective for several other IMIDs, including psoriasis, psoriatic arthritis (PsA),
axial spondyloarthritis (AxSpA) and IBD (Crohn’s disease and ulcerative colitis; CD and
UC). However, it has also become evident that a given targeted approach typically benefits
only a subset of patients with each IMID for which it is licensed. Hence, around half of
AxSpA or IBD recipients of TNFi achieve satisfactory outcomes [4–6]; alternative targeted
therapies may prove effective for the remainder, but, in the absence of suitable predictive
biomarkers, such patients remain subject to “trial-and-error” treatment approaches. On one
hand, such variation in therapeutic efficacy between individuals with the same diagnosis
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highlights heterogeneity in the molecular, cellular, and immunopathological drivers of
each clinically classified IMID [7]. On the other hand, the pleiotropic benefit of targeted
treatments between IMIDs recalls overlapping genetic architectures that point to shared
disease mechanisms [8]. It follows that an organ-specific classification of IMIDs is limited
in addressing patient need, as it fails to acknowledge endotypes that may exist within and
between IMIDs. A complimentary classification based on tissue-based pathology could
prove transformative, enabling the right drug to be selected for the right patient.

As with other fields, our understanding of immunobiology has been revolutionised
by next-generation sequencing (NGS). Bulk RNA-sequencing measures average gene ex-
pression levels over a large population of cells, which may be composed of different cell
types. Although bulk profiling enables a gross comparison of conditions (e.g., healthy
versus diseased states), it cannot differentiate between changes in cell type abundance
and cell type-specific gene expression [9]. Deconvolution methods enable cell type pro-
portions to be estimated from such data, but their accuracy is limited. Advancements in
single-cell technologies have allowed for the profiling of tens of thousands of individual
cells in parallel. Unlike bulk RNA-seq, single-cell RNA-seq enables the interrogation of
tissue/organ composition, heterogeneity of cell states, and rare cell populations; they have
proven pivotal in describing molecular and cellular heterogeneity at the level of blood and
tissue. Despite their capabilities, such approaches rely on tissue dissociation, meaning that
the spatial context of the cells is lost. Spatial omics technologies can map measurements
of biomolecules in tissue sections, in some cases up to single-cell resolution. These ad-
vances have been complemented by the rapid development of algorithms and standardised
pipelines for data analysis. Myriad computational tools have become available to facilitate
alignment, quality control (QC), quantification, dimensionality reduction, batch correction,
and clustering of single-cell sequencing (scSeq) data. Toolkits such as Seurat [10] and
Scanpy [11] combine many of these functions into integrated workflows, the latter utilising
a Python-based framework for better scalability and integration with machine learning
applications. Taken together, evolving technologies of this kind and bioinformatics tools
have the ability to dissect the heterogeneity within IMID tissues at unprecedented depth
and scale.

These advances, combined with the growing availability of IMID datasets and associ-
ated metadata, provide an opportunity to deliver a step-change in the characterisation of
shared and tissue discrete pathobiology. In this review, an overview of cross-tissue analyses
of health will be given to explore the challenges of multi-tissue atlas construction. Next,
pan-cancer atlases will be explored as an exemplar for the characterisation of shared cell
states in disease and their association with clinical outcomes. Finally, current multi-tissue
studies of IMIDs will be reviewed, and future directions will be explored.

2. Lessons from the Human Cell Atlas (HCA)

Significant advancements in single-cell genomics have enabled the construction of
single-cell “atlases” of tissues that make up the human body. Founded in 2016, the Human
Cell Atlas (HCA) is a global consortium that aims to develop comprehensible reference
maps of tissues for understanding health and disease [12]. This effort will produce draft
atlases of increasing resolution and scale. The first will feature single-cell and single-nucleus
transcriptomic data from healthy tissues, combined with spatial analysis. HCA researchers
have profiled 58.5 million cells across 15 organ systems to date [13]. Commensurate with
their objectives; however, the HCA’s Biological Network atlases map discrete tissues, organ
systems, or focus areas such that they, with the limited exceptions described here, do not
yield cross-tissue single-cell atlases.

2.1. Cross-Tissue Studies in Health

In 2022, four studies detailing multi-tissue single-cell atlases were published in
Science [14–17]. Collectively, they profiled over 1 million cells, corresponding to 500 cell
types across more than 30 tissues. Domínguez Conde et al. [14] constructed a multi-tissue
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immune cell atlas including ~330,000 immune cells across 16 tissues from 12 deceased
adult donors. This involved 10X scRNA-seq and paired VDJ sequencing of T and B cell
receptors. These authors furthermore developed a machine learning tool named CellTypist
that can utilise manually curated, harmonised cell type labels for automated annotation
of scRNA-seq data. Suo et al. [15] constructed a multi-tissue atlas of the developing im-
mune system, also using scRNA-seq and paired VDJ sequencing. This atlas featured
>900,000 cells across nine prenatal tissues, including the yolk sac, liver, and skin. Eraslan
et al. [16] exploited single-nucleus RNA sequencing (snRNA-seq) to construct a multi-tissue
atlas featuring >200,000 cells from frozen, archived tissue samples across 8 healthy organs.
Finally, the Tabula Sapiens Consortium [17] created a multi-tissue atlas of ~500,000 cells
from 24 different tissues and organs using 10X scRNA-seq and SMART-seq2 technologies.
Collectively, these landmark studies demonstrate the potential to delineate shared and
tissue-discrete cell states. For example, Eraslan et al. [16] identified a shared fibroblast
phenotype of extracellular matrix protein expression across multiple tissues and a distinct
calcium signalling programme in lung alveolar fibroblasts. Domínguez Conde et al. [14]
found tissue-discrete immune cell subsets with variable chemokine expression, indicative
of adaptation to tissue microenvironments. These studies also allowed for the identifi-
cation of rare cell populations, such as enteric neurons in the oesophagus and prostate
neuroendocrine cells [16]. Finally, these studies reported enrichment of disease-associated
loci in specific cell types/states. Ultimately, the HCA multi-tissue atlases demonstrate
how cross-tissue comparison and association of disease with specific cell types can deliver
valuable insights into human physiology.

2.2. Cross-Tissue Studies in Health: Challenges and Potential Solutions

HCA Consortium studies such as these provide insight into the challenges of single-cell,
multi-tissue atlas construction and interrogation, but also valuable precedent and some
approaches for addressing them. These are summarised below.

2.2.1. Methods for Sample Processing

The construction of large-scale atlases is dependent upon the availability of viable
single-cell suspensions of freshly isolated tissues and, in turn, robust translational research
infrastructure linking clinical and laboratory facilities/collaborating teams. Disaggregation
protocols for these purposes have been validated for many tissues [18], but it is important to
note that these may not be suitable for certain target cell types that, due to their morphology,
do not readily form single-cell suspensions. For example, neurons form complex networks
via their branched extensions (axons and dendrites), epithelial cells are sensitive to most
digestion protocols, and viable yield is often poor, while skeletal myocytes and cardiomy-
ocytes are multinucleated and large in size. Enzymatic or mechanical dissociation of these
tissues can disrupt cellular integrity, bias cell populations, and introduce stress response
artefacts. Single nuclear (sn)RNA-seq circumvents some of these challenges and is also
applicable to frozen, archived tissue samples. Four nucleus isolation protocols for doing so
have now been benchmarked by Eraslan et al. [16]. Such work broadens opportunities for
snRNA-seq of frozen tissues at a much larger scale than could previously be contemplated,
for example, by facilitating studies to elucidate mechanisms of genetic risk by identifying
cell types across tissues via which expression quantitative traits (eQTLs) are exerted at
disease risk loci.

It is not practical or desirable for a single laboratory to generate all the data that
constitutes a cell atlas. However, data production is not standardised across centres,
which inevitably introduces “batch” effects that must be distinguished from biology. The
broad concept of “batch” includes all non-biological factors that contribute to variability,
including sample processing, scSeq platform technology, sequencing, reference genomes,
and alignment tools. The unwanted variation introduced by these factors can result in
significant difficulties when making cross-study comparisons.
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2.2.2. Challenges of Variation between scSeq Platforms

The scSeq platform used to generate scRNA-seq data can be a significant source of
variation. Most studies use the droplet-based 10X Genomics platform [19]. However,
as single-cell technologies have matured, versions of the same technology can differ in
terms of sequencing end (3′ versus 5′) and droplet capture (Next GEM versus GEM-X [20]),
thus causing further variation. Sequencing reads must be aligned to a reference genome
once they have been generated, which introduces additional sources of variation, such
as whether intronic reads are included and the choice of reference (UCSC [21] versus
Ensembl [22]) and its version number. Differences in alignment methods can be mit-
igated by realignment where the original FASTQ files are available, but, as discussed
below, the availability of these files is a significant barrier to data reuse and high-quality
atlas generation.

2.2.3. Challenges of Data Access

Aside from pooling archived tissues, an alternative method of increasing sample size
for atlas construction is to leverage publicly available datasets. Public data repositories such
as the HCA Data Portal [12], the European Genome-phenome archive (EGA) [23], and the
Gene Expression Omnibus (GEO) [24] have sought to “democratise” access to scRNA-seq
datasets. Processed data are frequently stored on GEO, but to standardise all stages of data
processing (e.g., alignment, QC, normalisation, etc.), raw data in the form of FASTQ files
are required. Due to concerns pertaining to donor identification, access to raw data requires
the submission of data access agreements. Multiple repositories exist, but access processes
differ between them, making it challenging for single-centre administrators to navigate
multiple agreements. Even more problematically, raw data are frequently not available at
all or only through requests to the author.

2.2.4. Methods for Data Integration

As their availability, scale, and complexity have increased, data integration has become
a key component of computational analysis pipelines. Indeed, Suo et al. [15] demonstrated
this by integrating newly generated scRNA-seq data from the prenatal yolk sac, spleen, and
skin with publicly available single-cell foetal datasets. Just as samples handled in batches
during processing and data generation lead to unwanted technical variation within datasets
as a result of differences in sequencing depth or read length, “between-dataset” batch effects
are an almost inevitable consequence of combining data from different studies. It is critical
to minimise technical variation while preserving biological variability for downstream
analyses. Numerous integration methods are available for scRNA-seq data, which may be
variously suited to this objective from study to study (Table 1). “Similarity-based methods”
generally project cells into a low-dimensional embedding, identify similar cells/clusters
across batches and then apply batch correction at these levels. Some similarity-based
methods do not apply batch correction, instead producing a batch-weighted graph. “Deep
learning methods” utilise variational autoencoder (VAE) frameworks to learn a latent
representation of cells and then decode this to infer batch-corrected estimated counts.

Table 1. Examples of methods for integration of scRNA-seq datasets. Adapted from [25].

Language Dimension
Reduction

Similarity Search
Level

Output Type
(G/E/W) * Notes Reference

MNN R - Cell G [26]

fastMNN R PCA Cell G Good for simple
integration tasks [27] [26]

Seurat v2
(CCA) R CCA Cell E [28]

Seurat v3 R CCA Cell G High usability [27] [29]
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Table 1. Cont.

Language Dimension
Reduction

Similarity Search
Level

Output Type
(G/E/W) * Notes Reference

Scanorama Python SVD Cell G/E Good for simple
integration tasks [27] [30]

BBKNN Python PCA Cell W High speed and usability [27] [31]

Conos R PCA Cell W [32]

Harmony R PCA Cluster E
Good for simple

integration tasks. High
speed and usability [27,33]

[34]

LIGER R iNMF Cluster E [35]

scMerge R PCA Cluster G [36]

scVI Python VAE - E Good for complex integration
tasks. Memory efficient [27] [37]

scANVI Python VAE - E
Good for complex integration

tasks. Memory efficient.
Requires cell annotations [27]

[38]

scGen Python VAE - G Requires cell annotations [39]

trVAE Python VAE - E [40]

MNN, mutual nearest neighbours; PCA, principal component analysis; CCA, canonical correlation analysis; SVD,
single value decomposition; iNMF, integrative non-negative matrix factorisation; VAE, variational autoencoder.
* G, gene expression matrix; E, embeddings; W, weighted edge graph.

2.2.5. Methods for Benchmarking Data Integration

Benchmarking of data integration methods used to solely rely on qualitative evalua-
tion of UMAP visualisations, which involves users observing the degree of batch mixing
and the separation of cell type labels from 2D plots. While this approach is informative, it
is also highly subjective. Now, packages such as scIB (single-cell integration benchmarking)
provide a platform for quantitative evaluation of scRNA-seq using metrics of “batch mix-
ing” and “biological conservation” (Table 2) [27]. Batch mixing refers to the combination
of data from different batches via the removal of unwanted technical and biological varia-
tion. Conversely, biological conservation refers to the preservation of relevant biological
variability between cells, which is commonly captured by cell type annotations.

Table 2. Examples of benchmarking metrics for integration of scRNA-seq datasets. Adapted from [27,41].

Metric Name Level Notes Reference

Batch mixing

iLISI Cell
Inverse of the sum of batch probabilities within a weighted
kNN. Reflects the number of batches in a neighbourhood.

Graph variant scales to large datasets
[27,34]

kBET Cell type Comparison of label composition of a k-nearest neighbourhood
of a cell and the expected (global) label composition [42]

Graph connectivity Cell type Determines how well the kNN graph of the integrated
data connects cells of the same label [27]

ASW batch Cell Relationship between within-batch and between batch
distances of a cell. Reflects separation between batches [43]

PCR batch Global
Correlation of batch variable with principal components

weighted by variance contribution. Reflects the total
variance explained by the batch variable

[42]
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Table 2. Cont.

Metric Name Level Notes Reference

Bio-conservation

cLISI Cell
Inverse of the sum of cell type probabilities within a
weighted kNN. Reflects the number of cell types in a

neighbourhood. Graph variant scales to large datasets
[27,34]

ASW label Cell type Relationship between within-label and between-label distances
of a cell. Reflects separation between cell type clusters [43]

Isolated label Cell type Determines how well cell type labels that are shared by
few batches are separated from other cell type labels [27]

KMeans NMI Cell type Overlap between predicted clustering
and provided cell type labels [44]

KMeans ARI Cell type Overlap between predicted clustering and provided cell
type labels (after correcting for overlap by chance) [45]

iLISI, integration local inverse Simpson’s index; kNN, k-nearest neighbourhood; kBET, k-nearest-neighbour batch
effect test; ASW, average silhouette width; PCR, principal component regression; cLISI, cell-type local inverse
Simpson’s index; NMI, normalised mutual information; ARI, adjusted rand index.

Importantly, these performance metrics complement, rather than replace, the inspec-
tion of UMAP visualisation. Benchmarking studies have shown that there is no integration
method that is universally superior, so users are advised to conduct benchmarking on their
own data to select the most appropriate method [34]. This is due to a lack of “ground truth”
in integration benchmarking: the “true” batch-corrected structure of a dataset is unknown,
and the preservation of user-defined cell type labels is used to measure of bio-conservation.
Consequently, the choice of integration method is often dependent on researcher prefer-
ence and familiarity. Interestingly, all four of the HCA multi-tissue atlases [14–17] used
VAE-based integration methods to integrate their datasets. This preference for VAE-based
integration methods in these studies can be partly attributed to recommendations from
benchmarking studies on complex batch effects [27].

2.2.6. Methods for Cell Type/State Annotation

Along with integration, cell type/state annotation remains a challenge in single-cell
transcriptomics. The ‘traditional’ strategy involves manual annotation using curated lists
of marker genes. These marker genes are then compared with genes that are differentially
expressed between cell clusters to annotate cell types. This approach is intuitive and based
on scientific consensus; however, it is also time-consuming and lacks reproducibility. Conse-
quently, several methods for automatic cell-type annotation of scRNA-seq data have arisen
over the last five years (Table 3). “Marker-based” annotation methods score and classify
cells based on their expression of cell-type-specific marker gene sets. “Reference-based”
annotation methods transfer cell type labels from a reference to cells or clusters in a query
dataset with similar gene expression profiles. This can be achieved by several approaches,
including correlation, supervised learning, and reference mapping. Supervised learning
methods, such as the aforementioned CellTypist tool [14], involve training classifiers on la-
belled reference datasets and propagating cell type labels onto an unlabelled query dataset.
In contrast, reference mapping approaches involve projection of the query dataset into
the same low-dimensional space as the reference and subsequent label transfer using this
joint embedding.

HCA efforts aim to build a definitive reference atlas of all cell states with a harmonised
and uniform annotation. In the future, it will be important for researchers to be able to
annotate their data using this curated reference. This will aid consistency across studies and
reduce time spent on manual annotation. For most HCA tissues, only small studies, exist
and there is no coherent annotation across them, meaning that the current focus remains
on the discovery of cell states. Nevertheless, reference-based automated annotation tools
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are likely to be very important in the future when the HCA goals of a unified cell type
nomenclature are realised.

Table 3. Examples of cell type annotation methods of scRNA-seq datasets. Adapted from [46,47].

Method Name Language Approach Reference

Marker-based

scCATCH R Scoring system [48]

SCSA R Scoring system [49]

SCINA Python Bi-modal distribution fit to marker genes [50]

CellAssign R Probabilistic Bayesian model [51]

Reference-based

scmap-cell R Cosine similarity [52]

scmap-cluster R Cosine similarity, Pearson/Spearman correlation [52]

SingleR R Spearman correlation [53]

scMatch Python Spearman correlation [54]

CHETAH R Spearman correlation [55]

CellTypist Python Logistic regression classifier [14]

scPred R SVM * [56]

SingleCellNet R Random forest [57]

scNym Python Adversarial neural network [58]

Seurat (Azimuth) R Reference mapping + Transfer learning [59]

scArches Python Reference mapping + Transfer learning [60]

Symphony R Reference mapping + Transfer learning [61]

* SVM, support vector machine.

3. Learnings from Pan-Cancer Studies

When translating learnings from cross-tissue atlases in health that are of relevance for
IMID tissue comparisons using scSeq data, reference to the oncology field is instructive,
where analogous evaluations between tumour tissues already form part of the established
literature (Figure 1). For example, a pan-cancer T cell atlas (~400,000 cells, 316 donors,
21 cancer types) developed by Zheng et al. [62] included newly generated and publicly
available scRNA-seq data integrated using Harmony (Table 1) [34]. Two major immunophe-
notypes emerged, defined according to relative frequencies of terminally exhausted and
tissue-resident memory CD8+ T (Tex and Trm) cells infiltrating tumour tissue—the relative
ratios of which appear to discriminate between good and poor cancer outcomes. Another
pan-cancer T cell atlas developed by Chu et al. [63] (~300,000 cells, 324 donors, 16 can-
cer types) [39] identified CD4+ and CD8+ T cells displaying a stress response phenotype
(TSTR cells), which mapped to lymphocyte aggregates near tumour beds across multiple
tumour types. Of particular note, in a subset of immune checkpoint blockade (ICB) recip-
ients with renal cell carcinoma and melanoma, high CD4/CD8+ TSTR frequencies were
associated with poor cancer responses.

Tang et al. [64] produced a natural killer (NK) cell atlas (~160,000 cells, 716 donors,
24 cancer types). Distinct infiltrating NK cell subsets displayed cancer type specificity, with
CX3CR1+ NK cells associated with pancreatic cancer, breast cancer, and melanoma. Regulator
of G-protein signalling 1 (RGS1) was identified as a potential marker of tumour-infiltrating
NK cells, due to its high specificity amongst differentially expressed genes between blood
and tumours. Stressed CD56dimCD16hi NK cells were also specifically enriched in tumours
compared to blood, thereby termed tumour-associated NK (TaNK) cells, which were found
to exhibit impaired cytotoxicity compared to NK cell subsets in adjacent non-tumour tissues,
with lower granzyme B (GZMB) and perforin levels measured by multiplex immunofluores-
cence (mIF) staining and flow cytometry. A high abundance of TaNK cells in breast cancer
and melanoma tumours prior to ICB therapy was proposed as a predictor of non-response
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to therapy. The authors furthermore leveraged tools, including CellPhoneDB [65], together
with previously annotated pan-cancer atlases of T cells and myeloid cells [62,66], to infer an
immunosuppressive role for TaNK cells in the tumour micro-environment via interaction
with other immune cell compartments.

Spatial transcriptomics (ST) has proved a valuable adjunctive tool alongside scSeq
analyses of disaggregated tumour tissue for purposes of unravelling pathobiology within
and between tumour types. A study by Ma et al. [67] exemplifies this, whereby a pan-cancer
spatial atlas of fibroblasts, pericytes, and smooth muscle cells (SMCs) was developed by
integrating scRNA-seq and ST data (~740,000 cells, 6 cancer types, 56 donors for scRNA-seq,
22 donors for ST). CellTrek, a computational tool that uses scRNA-seq and ST data to map
cells back to their spatial coordinates in tissue sections, was used for this purpose [46].
Distinct from ST deconvolution methods, which infer cell type proportions for each coordi-
nate, this approach helped to characterise four cancer-associated fibroblast (CAF) subtypes:
inflammatory (iCAF), matrix (mCAF), metabolic (meCAF), and proliferative (pCAF); iCAFs
displayed enrichment of chemokine and complement activation genes, while mCAFs dis-
played enrichment of those related to angiogenesis and regulation of extracellular matrix
(ECM) organisation. A transition pathway from pericytes to iCAFs and mCAFs was also
proposed by applying the Slingshot tool [68].

All of these studies illustrate the enormous potential for comparative, cross-tissue
scSeq analyses. Incorporating innovative analytical tools and/or in combination with
parallel technologies, including spatial transcriptomics/proteomics of paired samples, such
approaches may unravel discrete and overlapping mechanisms of disease across different
tumours. As will now be highlighted, deploying them across tissue from distinct IMIDs
may offer similarly valuable insight, though the field remains in its infancy.
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4. Cross-Tissue Studies of IMIDs

There is a breadth of IMID tissue scRNA-seq data available from published studies.
This includes RA synovium [69,70], psoriatic and dermatitis skin [71], colon, and ileum
from IBD [72], kidney from lupus nephritis [73], and others. Despite this, relatively few
cross-tissue, single-cell studies of IMIDs have yet been published. The three that have
derive from the same group of investigators, each favouring the Harmony [34] data in-
tegration algorithm or variant thereof for purposes of data integration (Figure 2). First,
a study by Zhang et al. [74] sought to identify shared immune compartments between
COVID-19 bronchoalveolar lavage fluid (BALF) and inflamed tissue from IMIDs—namely,
RA synovium, lupus nephritis kidney, CD ileum, and UC colon. Given differential cell type
proportions between tissues, scRNA-seq data were integrated using a weighted variant
of Harmony [34] to account for bias. Amongst the four inflammatory macrophage states
identified, the authors described a CXCL10+CCL2+ “inflammatory” phenotype abundant
in COVID-19 BALF that is also enriched in inflamed synovium, CD ileum, and UC colon
compared to non-inflamed controls. Next, building on the observation that granzyme
K-expressing CD8 T cells (termed tissue-enriched granzyme K-expressing or TteK CD8 cells)
are abundant in the synovium of RA patients [69], Jonsson et al. [75] employed Harmony
to integrate scSeq data from synovial tissue, gut, kidney, and COVID-19 BALF. They then
confirmed TteK CD8 cells to be a major population of tissue-associated T cells across diseases
and human tissues—being present at higher proportions than granzyme B-positive coun-
terparts more classically associated with cytotoxicity. Indeed, TteK CD8 cells have a lower
cytotoxic potential and are not exhausted, rather being prolific producers of interferon
gamma (IFNγ) and TNF. Finally (also employing a weighted variant of Harmony [34] for
integration), Korsunsky et al. [76] constructed an elegant fibroblast cell atlas with newly
generated scRNA-seq data from ILD lung tissue, UC colon, salivary gland from primary
Sjögren’s syndrome (pSS), and RA synovium. Amongst the five fibroblast states shared
across tissues, the authors identified two—CXCL10+CCL19+ “immune-interacting” and
SPARC+COL3A1+ “vascular-interacting” fibroblasts—to be expanded in all tissues. Re-
spectively localised to lymphoid niches and perivascular regions of these inflamed tissues,
the authors thereby proposed novel stromal drivers of immune cell infiltration and matrix
remodelling common to distinct IMID tissues, with implications for therapeutic targeting.

These exemplars, transformative in their own right, emphasise the potential value
of cross-tissue comparisons in IMIDs as a route to shared mechanistic understanding
(Figure 2)—and additional important insights to be gained from replication by different
researchers are awaited. They also invite important downstream mechanistic work as a
precursor to potential interventional studies [44,46]. For example, Korsunsky et al. [76]
went on to culture synovial fibroblasts from ILD and RA synovial tissue and, upon stim-
ulating them with supernatant from in vitro-activated T cells, observed expansion of an
immune-interacting fibroblast subtype reminiscent of that identified from scRNA-seq data.
The vascular-interacting SPARC+COL3A1+ phenotype could only be recapitulated in a
3D synovial organoid model, which facilitates vascular tubule formation, as opposed to
2D co-culture with endothelial cells. This highlights the importance of culture conditions,
including the importance of 3D architecture, when designing experiments to functionally
validate scSeq findings in vitro as a route to better understanding IMID pathophysiology,
and will inform future studies.
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The current paucity of cross-tissue, single-cell atlases of IMID should not be misdiag-
nosed as an absence of interest since large-scale projects are in development. For example,
the Oxford-Janssen Cartography collaboration was launched in 2021 and aims to create
detailed cellular atlases across multiple IMIDs to inform precision medicine. At this early
stage, these researchers have developed a pipeline for multi-omic single-cell and spatial
transcriptomic data analysis to facilitate this endeavour [77].

Importantly, many cell states that have been implicated in “tissue-discrete” immunopatholo-
gies have yet to be explored in a cross-tissue context. For example, T peripheral helper (Tph)
cells were first characterised in seropositive RA synovium as a PD-1hiCXCR5-CD4+ popula-
tion, which can infiltrate inflamed tissues and promote B cell maturation, thereby contribut-
ing to the formation of tertiary lymphoid structures [78]. Since this finding, Tph cells have
been implicated in several autoimmune diseases, including systemic lupus erythematous
(SLE) [79], type 1 diabetes (T1D) [80], primary biliary cirrhosis (PBC) [81], immunoglobin
A nephropathy (IgAN) [82], and immunoglobin G4-related disease (IgG4-RD) [83]. Whilst
these cells have displayed enrichment in individual diseases and correlation with disease
activity, their cellular phenotypes have not been compared across tissues in integrative
analyses. Indeed, beyond RA, Tph studies have been limited to circulating cells due to a
lack of available tissue.

Reasons for a relative dearth of multi-tissue studies of IMIDs to date are, as touched on
in the following section, various, and benchmarking of numerous available data integration
algorithms in this specific context remains an area of unmet need. Nonetheless, these
studies represent an excellent foundation and stimulus for future work.

5. Discussion

Advancements in single-cell genomics and the increasing availability of IMID scRNA-seq
datasets have created great potential for multi-tissue, integrative analyses of IMIDs. The
paucity of multi-tissue IMID atlases in part reflects challenges that extend beyond the field
of immunobiology. Chief among these is data sharing, which is currently not standardised
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across institutions. Additional bureaucracy can lead to delays and possible omissions
from integrative analyses, an outcome that is unfavourable for owners and prospective
users of data alike. Indeed, the EU-STANDS4PM Consortium, a pan-European platform
for standardisation in silico studies in personalised medicine, devised a harmonised data
access agreement to achieve this very goal [84]. Another challenge for the integrative analy-
sis of IMID tissue is that published scRNA-seq datasets are aligned to different versions
(“builds”) of the human genome, a resource that is constantly evolving [85]. Consequently,
access to raw sequencing reads in the form of FASTQ files is indispensable for integrative
analyses. Despite this, some authors opt to publish processed data, while raw data are
not always accessible for secondary analysis. As the advancement of new knowledge in
immunobiology increasingly stands to benefit from large-scale integrative analyses of the
kind described in this review, a remoulding of academic culture should be encouraged
by institutions and publishers alike; this should remove barriers to data access whilst
protecting intellectual ownership and appropriately crediting the originators of high-value
translational data. Accordingly, we suggest it would be advantageous if scientific organi-
sations, including the National Institute of Allergy and Infectious Diseases (NIAID) paid
heed to this unmet need, for example, establishing consensus groups and open platforms
for access to organised data and annotations. Further along in the integrative analysis
pipeline, integration presents related challenges for multi-tissue atlases of IMID tissues.
There are many effective algorithms for batch correction, but distinguishing batch effects
from true biology and knowing when the latter has been removed are the challenges that
remain. To mitigate this, multi-tissue atlases should be supplemented with orthogonal
validation of findings using methods such as spatial profiling, immunohistochemistry and
in vitro studies.

Multi-tissue atlases have enormous potential to address gaps in our understanding
of cell states in inflammatory diseases. Cross-tissue studies of IMIDs have demonstrated
that previously identified inflammatory cell states in one tissue can be resolved in multiple
other tissues via integration [74–76]. Another knowledge gap is linked to this: cell–cell
interactions in the inflammatory microenvironment are understudied in comparison to
the characterisation of cell states within individual cell types. Spatial transcriptomics, in
combination with cell–cell interaction prediction software, can be leveraged to bridge this
gap, similar to pan-cancer studies [63,67]. Multi-tissue atlases must also address knowledge
gaps at the disease level. Common IMIDs such as RA, CD, and UC regularly feature in
meta- and integrative analyses of inflamed tissue, leading to other diseases being over-
looked. For example, giant cell arteritis (GCA), the most common form of vasculitis [86], is
rarely included in these analyses. A diversification of IMID tissues in integrative analyses
would aid in the identification of rare cell populations that could be shared across them.
The underlying hypothesis in these studies is that there are a finite number of cell states
and transcriptional programmes that define responses to different stimuli, rather than the
possibility that each inflammatory challenge induces a distinct response. There is some
encouraging evidence for this, such as circulating Tph cells across IMIDs [87] and shared
fibroblast states across inflamed tissues [76], but a comprehensive catalogue of these states
is lacking. Defining these states has the potential to clarify shared qualities across IMIDs.
Therefore, integrative analysis of tissues from rare and common IMID tissues provides an
opportunity for cross-fertilisation between cohorts with different diseases, benefitting both
patient groups. Finally, multi-tissue atlases must help address the lack of association be-
tween shared cell states and therapeutic outcomes. The association of shared cell states with
favourable and unfavourable responses to immunotherapy would aid patient stratification,
improving the efficacy of these interventions. This will require bulk and/or scRNA-seq
datasets associated with phase II/III clinical trials for targeted immunotherapies with
high-quality metadata. Collaboration between industry and academia will be vital in this
endeavour, with well-curated clinical trial samples at their strategic centre.

In conclusion, multi-tissue atlases have charted shared and tissue-discrete biology in
health and cancer; IMIDs are now beginning to be examined in the same manner. Although
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currently limited in number, these studies’ obvious potential will lead to inevitable growth
in the coming years. We propose they will ultimately illuminate novel IMID taxonomies,
heralding a new era of precision medicine for patients.
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