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A B S T R A C T   

Designing city-scale Blue-Green Infrastructure (BGI) for flood risk management requires detailed and robust 
methods. This is due to the complex interaction of flow pathways and the need to assess cost-benefit trade-offs for 
various BGI options. This study aims to find a cost-effective BGI placement scheme by developing an improved 
approach called the Cost OptimisatioN Framework for Implementing blue-Green infrastructURE (CONFIGURE). 
The optimisation framework integrates a detailed hydrodynamic flood simulation model with a multi-objective 
optimisation algorithm (Non-dominated Sorting Genetic Algorithm II). The use of a high-resolution flood 
simulation model ensures the explicit representation of BGI and other land use features to simulate flow path
ways and surface flood risk accurately, while the optimisation algorithm guarantees achieving the best cost- 
benefit trade-offs for given BGI options. The current study uses the advanced CityCAT hydrodynamic flood 
model to evaluate the efficiency of the optimisation framework and the impact of location and size of permeable 
interventions on the optimisation process and subsequent cost-benefit trade-offs. This is achieved by dividing 
permeable surface areas into intervention zones of varying size and quantity. Furthermore, rainstorm events with 
100-year and 30-year return periods are analysed to identify any common optimal solutions for different rainfall 
intensities. Depending on the number of intervention locations, the automated framework reliably achieves 
optimal BGI implementation solutions in a fraction of the time required to find the best solutions by trialling all 
possible options. Designing and optimising interventions with smaller sizes but many permeable zones save a 
good fraction of investment. However, such a design scheme requires more computational time to find optimal 
options. Furthermore, the optimal spatial configuration of BGI varies with different rainstorm severities, sug
gesting a need for careful selection of the rainstorm return period. Based on the results, CONFIGURE shows 
promise in devising sustainable urban flood risk management designs.   

1. Introduction 

The projected increase in the frequency and severity of rainfall 
(Kendon et al., 2023; Robinson et al., 2021) combined with ongoing 
urbanisation (Miller & Hutchins, 2017) make cities more prone to flash 
flooding. Conventional grey infrastructure-based stormwater manage
ment approaches, such as underground drainage and combined sewer 
pipe networks, have demonstrated limitations in conveying surface 
runoff during extreme weather events because they are designed to 
handle only a certain amount of rainfall (Abduljaleel & Demissie, 2021; 
POST, 2007). Additionally, combined sewer overflows (CSOs) cause 
environmental pollution and pose risks to public health (Botturi et al., 
2021). Moreover, all these highly engineered approaches incur high 

financial and environmental costs (Rosenbloom, 2018). Therefore, new 
and sustainable approaches are required to manage floods in the 
catchment and cities efficiently (POST, 2007). Blue-Green Infrastructure 
(BGI) features or Low-Impact Development (LID) such as permeable 
surfaces, detention ponds, green roofs, rain gardens, swales, bio
retention cells, and water butts offer a promising solution for sustainable 
urban flood risk management (O’Donnell et al., 2020). In contrast to 
grey infrastructure, BGI follows the concept of ‘managing flood at its 
source’ i.e., designing natural or semi-natural interventions to reduce 
the surface run-off volume and intensity by mimicking natural hydro
logical processes of infiltration, evaporation, interception, and storage 
(Ahiablame et al., 2012). Thus, BGI directly reduces the pressure on 
existing urban stormwater management systems. In addition to their 
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potential to mitigate urban flash flooding, these semi-natural features 
have other multi-functional benefits such as water conservation, water 
quality improvement, biodiversity enhancement, air quality improve
ment, and urban heat island effect mitigation (Rodriguez et al., 2021). 
When it comes to practical implementation, there has been limited work 
on comprehensively assessing the cost-benefits of BGI due to the inclu
sion of many non-monetary values (Chen et al., 2020). A recent study by 
Wang and Banzhaf (2018) highlighted gaps between Green Infrastruc
ture (GI) mapping and GI functional analysis, making it difficult to 
evaluate the actual impacts of GI. To address this challenge, researchers 
such as Choi et al. (2021) and Gordon et al. (2018) have developed 
detailed frameworks to assess both monetary and non-monetary bene
fits, including environmental, social, technical, and economic perfor
mance metrics. Recently, Chen et al. (2020) evaluated selected 
ecosystem services provided by urban green infrastructure (UGI) and 
they converted those services into monetary values as well. However, 
they did not consider the costs associated with UGI implementation. 
Earlier, Beauchamp and Adamowski (2012) assessed the cost-benefits of 
GI for a housing development project and found them to be approxi
mately equal to those of conventional grey infrastructure. By factoring in 
other environmental benefits, the authors suggested adopting a GI 
approach for new housing developments. In line with these recom
mendations, local government authorities have already started incor
porating BGI into their strategic surface water management plans 
(Wheeler, 2016). 

Despite having numerous advantages, the cost-effective deployment 
of BGI is a big challenge. The effectiveness of BGI strongly relies on their 
spatial configuration i.e., features type, size, and their location of 
deployment (Huang et al., 2022; Perez-Pedini et al., 2005). These 
configuration parameters are often evaluated in a hydrodynamic flood 
model to find their optimal settings (D’Ambrosio et al., 2022; Rodriguez 
et al., 2021). However, when there is a wide range of configuration 
parameter values and combinations, their testing poses a significant 
computational challenge, even with modern computing systems. To 
overcome this challenge, researchers have adopted different statistical 
and analytical methods, which include simple scenario-based analysis 
(Abduljaleel & Demissie, 2021; D’Ambrosio et al., 2022; Webber et al., 
2020), flood source-receptor-based scenarios (Vercruysse et al., 2019), 
multi-criteria and analytical hierarchy approaches (Alves et al., 2018; 
Joshi et al., 2021; L. Li et al., 2020), and exploratory spatial data analysis 
(ESDA) (Rodriguez et al., 2021). While these methods seem quite 
effective in deriving time-efficient solutions, they also fall short of 
providing insights into whether the identified solutions are the ultimate 
cost-effective choices. To address the challenge of deriving the most 
cost-effective solutions, researchers have adapted Evolutionary Algo
rithms (EAs) or Multi-objective Optimisation Algorithms (MOOAs), 
which are commonly used to find optimal trade-offs between conflicting 
objectives (Lu et al., 2022; Maier et al., 2019; Seyedashraf et al., 2021). 

The Storm Water Management Model (SWMM) (Rossman & others, 
2010) is the tool most integrated with MOOAs (Zhang & Jia, 2023) to 
assess the efficiency of BGI in reducing peak-flows and/or total volume 
in underground drainage systems during a rainstorm event. For 
example, Wang et al., (2023) utilised future climate scenarios of rainfall 
and a combination of graph theory and genetic algorithm to optimise 
spatial green-grey layouts, employing the SWMM model. Similarly, Yao 
et al., (2022) maximised monetised net benefits against the cost of 
coupled green-grey infrastructure for different return periods by inte
grating the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with 
SWMM. Various other studies (Gao et al., 2022; Hassani et al., 2023; S. 
Li et al., 2022; Lu et al., 2022; Nazari et al., 2023; Rezaei et al., 2021; 
Wang et al., 2022a; Zhu et al., 2023) have also integrated hydrodynamic 
models, predominantly SWMM, with various optimisation algorithms, 
including Genetic Algorithm (GA), Particle Swarm Optimisation (PSO), 
and Generalised Differential Evolution (GDE3), to devise cost-effective 
low-impact development or green-grey infrastructure designs for rain
storm water management. Despite its wide application, SWMM has some 

limitations. As a semi-distributed model, it treats each sub-catchment as 
a hydrological response unit and estimates surface run-off without 
providing any overland flow routing among the sub-catchments. 
Consequently, SWMM cannot explicitly incorporate over-surface land 
use features, such as buildings and roads, nor can it simulate 2D surface 
water flows, such as pluvial and/or fluvial flooding. These limitations 
are overcome by using fully distributed hydrodynamic flood models 
such as CityCAT (Glenis et al., 2018), TELEMAC (Hervouet, 1999), and 
InfoWorks ICM (Innovyze, 2013). These models explicitly incorporate 
land use features and their characteristics on a high-spatial-resolution 
computational grid and normally apply 2D shallow water equations to 
simulate 2D surface flows and/or 1D drainage flows (Pina et al., 2016). 
During the simulation, they capture the dynamic interaction of over- 
surface features with water flow paths to provide accurate floodwater 
depths and velocities. 

In contrast to their use in detailed flood risk assessments (Pregnolato 
et al., 2016; Sun et al., 2021), the application of 2D surface models in 
MOOA-based BGI designs remains rare. One potential factor is the need 
for detailed input data to set up these models and the considerable 
computational resources required to run them (Hill et al., 2023). How
ever, the continuous production of accurate, high-scale datasets and 
advancements in computational technology have reduced the magni
tude of this challenge. Another possible explanation is the lack of readily 
adaptable automated optimisation tools for such types of models. 
Although existing tools like Pymoo (Blank & Deb, 2020) and DEAP 
(Fortin et al., 2012) are open access, their universal nature may present 
challenges when integrating them with detailed hydrodynamic models. 
Users may need to invest considerable time and effort to understand the 
problem formulation process of these tools to frame their optimisation 
problem accurately and efficiently. Additionally, the evolutionary op
erations in multi-objective optimisation algorithms can often be sensi
tive to the nature and type of optimisation problems being addressed 
(Karafotias et al., 2015). Therefore, fine-tuning evolutionary operators 
in generic optimisation tools can be a challenging task, especially for 
inexperienced users. These reviewed challenges highlight two research 
gaps: (1) the need for the development of an easily adaptable optimi
sation tool tailored specifically for BGI design, and (2) the integration of 
such a tool with a fully distributed hydrodynamic flood model to opti
mise BGI placement by explicitly representing BGI features in the model 
to accurately simulate 2D surface flows and assess surface flood risks. 

This study aims to address the identified research gaps by developing 
a multi-objective optimisation framework and integrating it with a 
detailed hydrodynamic flood model. The novelty of the current research 
lies in precisely locating the optimal sites for BGI, such as permeable 
surfaces, using a detailed hydrodynamic model for optimisation. The 
specific objectives of this research work are: (i) creating a multi- 
objective optimisation framework by incorporating the requirements 
of BGI features and integrating this framework with a detailed hydro
dynamic model, and (ii) demonstrating the functionality and efficiency 
of the newly developed optimisation framework for determining the 
locations, sizes, and spatial configurations of permeable surfaces. The 
remaining part of this paper is structured as follows: selection of an 
optimisation algorithm and detailed functionality of the optimisation 
framework including its application is presented in Section 2, the results, 
and discussions along with study limitations and future recommenda
tions are presented in Section 3, and finally, concluding remarks are 
given in Section 4. 

2. Material and methods 

2.1. Selection of a MOOA 

MOOAs normally tackle optimisation problems by iteratively 
refining a population of candidate solutions, based on objective func
tions, decision variables, and evolutionary processes, to find a new 
population (Venter, 2010). The iterative process continues until a 
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termination criterion is met to achieve a set of best or near-best solu
tions, known as Pareto optimal solutions, that represent the best trade- 
offs between conflicting objectives (Maier et al., 2019). Optimisation 
algorithms vary widely, and no single algorithm universally outperforms 
others; the choice depends on factors such as the problem type and 

optimisation parameters (Wang et al., 2022b). One common approach to 
finding the most effective algorithm is implementing multiple optimi
sation algorithms simultaneously (Yao et al., 2022). However, this 
approach is impractical with high-resolution hydrodynamic models due 
to their high computational demand. Instead, this study assessed 

Fig. 1. Generalised schematic diagram depicting the functionality of CONFIGURE at various stages: (a) BGI feature design, (b) solutions coding for initial population, 
(c) initial population simulation, (d) fitness evaluation in objective space, (e) solutions repository, (f) parents’ selection, (g) cross-over, (h) mutation, (i) offspring 
population, (j) offspring population simulation, (k) offspring fitness evaluation, (l) parent + offspring population, (m) selected elite population, (n) optimised output. 
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different MOOAs based on their functional characteristics to select a 
viable option. Key traits defining an algorithm’s effectiveness include its 
exploration and exploitation capabilities (Lin & Gen, 2009). Exploration 
represents an algorithm’s ability to discover a wide range of unique 
solutions to find the best one, while exploitation refers to focusing the 
search on a specific direction to achieve optimal solutions quickly. Ge
netic Algorithm (GA) (Holland, 1992) and Differential Evolution (DE) 
(Storn & Price, 1997) prioritise exploration by maintaining diverse so
lution populations. In contrast, Particle Swarm Optimisation (PSO) 
(Kennedy & Eberhart, 1995) and Simulated Annealing (SA) (Kirkpatrick 
et al., 1983) focus on exploitation. PSO exploits swarm knowledge, 
while SA implements a cooling schedule to optimise within promising 
regions. When considered individually, the probabilistic nature of SA 
can aid in bypassing local optima, but it may encounter slow conver
gence (Ram et al., 1996), especially in high-dimensional problems. DE 
performs well for continuous problems but may face challenges in 
discrete or combinatorial optimisation (Slowik & Kwasnicka, 2020). 
Despite its efficiency and wide application, PSO is vulnerable to being 
trapped in local optima (Couceiro et al., 2016). In contrast, GA dem
onstrates excellent exploration capabilities, allowing it to reach global 
optimal solutions while offering a simple representation of candidate 
solutions suitable for both continuous and discrete optimisation prob
lems in varying dimensional complexities. GA’s main constraint is its 
low convergence speed, which can be mitigated by using its natural 
parallelisation support (Roberge et al., 2013; Verma et al., 2021). 
Considering these observations and anticipating the most suitable way 
of formulating the BGI optimisation problem, the enhanced multi- 
objective version of GA, known as Non-dominated Sorting Genetic Al
gorithm II (NSGA-II), was selected for the proposed optimisation 
framework. Although several NSGA-II variants exist, such as Epsilon- 
NSGA-II (Kollat & Reed, 2006) and Dynamic-NSGA-II (Deb et al., 
2007), the original version of NSGA-II was selected because it is simple, 
well-understood, easy to implement, and offers good performance. 
NSGA-II utilises non-dominated sorting to select the best solutions and 
employs crowding distance techniques to maintain population diversity, 
facilitating better exploration in the search space (Deb et al., 2002). 

2.2. Designing of BGI optimisation framework 

The proposed BGI optimisation framework is named CONFIGURE, 
which stands for Cost OptimisatioN Framework for Implementing blue- 
Green infrastructURE. Fig. 1 presents a generalised schematic diagram 
depicting the functionality of CONFIGURE. The entire framework is 

coded in Python and the script is freely available (see Appendix A. 
Supplementary data 3) for integration with any hydrodynamic flood 
model of the user’s choice. The main highlight of the CONFIGURE code 
is the implementation of Python’s parallel processing functionality, 
allowing multiple instances of the hydrodynamic model to run simul
taneously and thereby reducing convergence time. 

In terms of functionality, CONFIGURE consists of five key compo
nents (Fig. 1): problem framing, initial fitness evaluation, genetic op
erations, derivation of new generations, and optimised output. For a 
detailed overview of multi-objective optimisation, readers can refer to 
Maier et al. (2019). Subsequent subsections will briefly discuss these five 
components to understand CONFIGURE’s core functionality. 

2.2.1. Problem framing 

2.2.1.1. BGI design and representation in hydrodynamic modelling. The 
selection of BGI types for optimisation depends on their suitability for 
addressing flooding in specific areas. Green roofs, permeable surfaces, 
and rain gardens typically handle floodwater at its source, while 
detention ponds and swales generally intercept flood pathways (Ahia
blame et al., 2012). For modelling, BGI features are usually generated in 
standard GIS formats, such as shapefiles or geodatabases, with key at
tributes including feature sizes, water storage capacity, infiltration 
properties, and friction coefficients. Once the input data is prepared, the 
fully distributed model creates a computational grid, either a regular or 
irregular mesh grid, and explicitly represents land use and BGI features 
on that grid. This process is hypothetically illustrated in Fig. 2. Each cell 
of the grid (depicted by the red cell on the grid, for example) receives 
relevant inputs, such as the amount of rainfall, elevation, and land use/ 
BGI properties, and uses numerical equations to calculate the water 
depth specific to that cell. The model then calculates surface runoff by 
considering the elevations and water depths of neighbouring cells. 
Fig. 2a depicts maximum water depths calculated without BGI in
terventions (baseline flood modelling), while Fig. 2b represents water 
depths with BGI features implemented. Such flood depth maps are used 
to assess the levels of risk to infrastructure, properties and/or businesses 
before and after implementing BGI. 

2.2.1.2. Decision variables and objective functions. Decision variables are 
the locations of BGI features, as shown in Fig. 1, and represented in 
Equation (1) 

I = (I1, I2, I3, ....In) (1) 

Fig. 2. High-resolution hydrodynamic simulations (a) without and (b) with BGI feature representation.  
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Each intervention location is assigned a unique index (Ij where j = 1,2,.. 
n), and the decision space includes ‘n’ intervention locations of different 
BGI types, resulting in ‘n’ decision variables. CONFIGURE aims to 
minimise the life cycle cost (C) of the BGI and the associated levels of 
risk (R). These objectives can be represented as follows (Seyedashraf 
et al., 2021): 

Minmise : F(I) = (FC, FR) (2)  

The life cycle cost for the jth BGI feature can be calculated as follows: 

C
(
Ij
)
=

(
cc
(
Ij
)
+ co

(
Ij
) )

× s
(
Ij
)

j = 1, 2, ..., n (3)  

In Equation (3), cc(Ij) and co(Ij) represent the unit size capital cost and 
unit size operational cost for the jth BGI feature respectively, while s(Ij) is 
the size of the jth BGI feature. The capital cost refers to the one-time cost 
associated with installing the BGI features, whereas the operational cost 
represents the rolling expenses related to maintaining and managing the 
BGI features for a certain lifetime. The risk values (R) depend on the type 
of risk being considered. 

2.2.1.3. Candidate solution representation. The binary combinatorial 
method is used to represent locations of BGI features in the candidate 
solutions. As illustrated in Fig. 1b, each bin of candidate solutions rep
resents a unique BGI location and can be assigned a value of 1 (feature 
present) or 0 (feature not present). A set of ’p-2′ candidate solutions is 
randomly generated, with the 1st and pth candidate solutions designated 
as baseline (no intervention) and maximum intervention scenarios, 
respectively. The total number of possible BGI candidate solutions can 
be calculated using 2n. Following binary coding, candidate solutions 
undergo initial fitness evaluation and are also stored in a solution re
pository, as shown in Fig. 1(c, e). 

2.2.2. Initial fitness evaluation 
Initial fitness evaluation is the process of measuring the fitness of 

candidate solutions by examining objective function values (cost and 
risk) for the initial population, as illustrated in Fig. 1c. The purpose of 

the initial fitness evaluation is to identify the fittest parents, which in 
turn produce potentially superior offspring. The life cycle cost (FC) of the 
zth candidate solution (Sz) can be calculated using the following 
equation: 

FC = C(Sz) =
∑n

j=1
C
(
Ij
) where z = 1,2, 3....p

Ij ∕= 0 (4)  

The risk function (FR) is user-defined and is calculated from the outputs 
(flood depths) of the selected flood simulation model. Based on objective 
function values, a fitness function calculates fitness scores as shown in 
Fig. 1d. The fitness of solutions is calculated by performing non- 
dominated sorting and crowding distance calculations (Deb et al., 
2002), which leads to the emergence of various fronts, with the first 
front comprising superior solutions. After fitness evaluation, the algo
rithm checks the termination condition (further details are given in 
subsection 2.2.5). If the exit condition is met, the optimisation process 
terminates. Otherwise, the algorithm proceeds to the next stage. 

2.2.3. Genetic operations 
Genetic operations include parent selection, cross-over, and muta

tion to produce offspring solutions. CONFIGURE uses binary tournament 
selection (Fig. 1f), random one-point cross-over (Fig. 1g), and random 
single bit-flip mutation (Fig. 1h) operators to create offspring. The 
incorporation of random positioning in cross-over and mutation opera
tions enables the algorithm to explore the search space more effectively, 
thus mitigating premature convergence (Please refer to Supplementary 
Information S5 in Appendix A. Supplementary data 2 for further details). 
Additionally, the framework introduces a solution repository (Fig. 1e) to 
store solutions generated across generations, thereby preventing dupli
cation during offspring creation. 

2.2.4. Derivation of the new generation 
The new offspring population (as depicted in Fig. 1i) is combined 

with the parent population to jointly calculate the overall fitness, as 
shown in Fig. 1l. Through this elitism, the new generation (Fig. 1m) 
contains the best solutions from both the parent and offspring pop
ulations. Subsequently, this new generation of solutions becomes the 
parents, and the entire process is repeated until a termination criterion is 
met. 

2.2.5. Optimised output 
CONFIGURE uses the generation count as a termination criterion to 

halt the optimisation process. The output of CONFIGURE comprises a set 
of solutions represented by the Pareto optimal front, as depicted in 
Fig. 3a-b. The Pareto front offers a range of optimal BGI deployment 
options to end users. Additionally, CONFIGURE introduces an innova
tive spatial classification scheme (Fig. 3c) for BGI features, based on 
their contribution to the Pareto front. BGI features that contribute most 
to optimal solutions are deemed highly cost-effective, and vice versa. 
This classification of BGI can significantly aid decision-makers in pri
oritising spatially for cost-effective BGI design. CONFIGURE Python 
code provides optimised outputs in comma-separated values (CSV) file 
format, including (1) all generations data, (2) optimal generation data, 
and (3) the contribution of BGI features to optimal solutions. The BGI 
contribution data can be linked to the shapefile of BGI features using 
their IDs to create a BGI contribution map (Fig. 3c). 

2.3. Case study 

2.3.1. Study area 
The study area shown in Fig. 4 is the catchment of Newcastle upon 

Tyne’s city centre. The catchment spans a total area of 5.3 km2 which 
comprises 43.2 % green space (including parks, moors, playgrounds, 
residential gardens, and roadside green belts), 32.5 % impervious sur
faces (such as roads, roadside pavements, and paths), and 24.3 % 

Fig. 3. (a) optimal solutions, (b) Pareto front, (c) BGI intervention 
cost-efficiency. 
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buildings. The catchment’s maximum elevation is 128 m, with a slope 
(northwest-southeast) of approximately 3.3 %. 

Newcastle has a history of both fluvial and pluvial floods since 1339 
(Newcastle City Council, 2016). More recently, the city experienced a 
flash flood caused by an exceptional ‘Thunder Thursday’ rainstorm on the 
28th of June 2012. The city received 26 mm of rainfall in 30 min, 32 mm 
in 1 h, and 49 mm in 2 h (Environment Agency, 2012). Thunder Thursday 
was estimated to be around the 100-year rainstorm event, providing a 
strong basis for modelling the event and designing BGI interventions to 
apply and test the CONFIGURE framework. 

2.3.2. Hydrodynamic modelling and exposure estimation method 
The City Catchment Analysis Tool (CityCAT) was used to simulate 

flood hydrodynamics in the study area catchment. CityCAT, an 
advanced hydrodynamic model, is designed for high-resolution simu
lation and analysis of surface water flooding (Glenis et al., 2018). It 
operates in 2D and 1D/2D modes, offering a fully coupled approach. 
Moreover, the model is fully equipped to explicitly represent and 
simulate BGI features, enabling assessment of their potential in reducing 
urban flood risk (Kilsby et al., 2020). 

CityCAT uses commonly available spatial datasets, including high- 
resolution Digital Elevation Models (DEMs) and geospatial vector 
datasets, to represent urban features such as buildings, green/permeable 
surfaces, and impermeable areas like roads and pavements. Fig. 5(a, b) 
illustrates CityCAT’s core functionality and outputs, beginning with the 
creation of a computational grid based on a DEM’s spatial resolution. In 
urban areas, flow path accuracy is enhanced, and simulation time is 
reduced by excluding building footprints from the grid using the 
building hole approach (Iliadis et al., 2023). The removed building cells 
are stored for later use in roof drainage algorithms (green roof in
terventions), while the rainfall that falls on the building cells is diverted 
to grid cells surrounding the building footprint. Each cell in the 
computational grid retrieves elevation data from the DEM and land use 
properties (surface friction, infiltration) from the land use vector data
set. Additional features like distributed rainfall, lakes, and ponds (with 
different friction coefficients, and soil properties) can also be associated 
with grid cells. Simulated rainfall can be linked with time-dependent 
boundary conditions of flow and/or water depth at spatial domain 
boundaries. Additionally, the model can efficiently integrate subsurface 
sewer networks for fully coupled surface–subsurface flood simulations, 

but this adds considerably to computation times. 
The model estimates infiltration over permeable areas using the 

Green-Ampt method, considering soil properties such as hydraulic 
conductivity, porosity, and suction head. CityCAT’s subsurface drainage 
component is based on the mathematical model for mixed flow in pipes 
presented by Bourdarias et al. (2012). The model uses the St. Venant 
equations and a conservative form of the equations for pressurised flow 
derived from the compressible Euler equations. Fig. 5(b) displays the 
outputs of CityCAT, which include time series of flood depths, flow 
velocities, and volumes in and out of manholes and gully drains. 

To represent BGI, CityCAT includes built-in storage algorithms for 
interventions such as green roofs and rain barrels, based on user-defined 
storage capacities. Surface features like detention ponds and rivers are 
represented using Digital Elevation Models (DEM), while permeable 
features are modelled by assigning different infiltration and friction 
coefficient values. 

CityCAT has undergone successful validation in various cities, 
including validation against analytic solutions of flows and laboratory 
datasets. Glenis et al. (2018) used an analytic solution and data from a 
physical model study of a dam break to demonstrate a strong agreement 
between the reference data and the CityCAT simulated numerical values 
of depth and velocity. Similarly, field validation extends to applications 
in Newcastle, where simulated flood depths for a real event in 2012 were 
checked using social media images (Kutija et al., 2014), validation of 
property flooding was conducted using local authority surveys (Bertsch 
et al., 2022) and a university campus survey (Iliadis et al., 2023). The 
results of these validation studies demonstrate a good agreement be
tween the CityCAT-modelled flooded properties and the reference sur
vey data. 

Exposure estimation: The exposure calculation tool developed by 
Bertsch et al. (2022) assesses the number of buildings exposed to varying 
flood depths. By considering building characteristics, the tool evaluates 
exposure levels based on water depths surrounding the buildings. It 
achieves this by creating a spatial buffer around each building, as shown 
in Fig. 5(c). The buffer’s size is proportional to the dimensions of the 
water depth grid cells, and it intersects grid cells surrounding the 
buildings. The tool then extracts water depth information from these 
intersected grid cells and determines flood exposure levels for each 
building based on mean depth and 90th percentile criteria from Fig. 5 
(c). 

Fig. 4. Map of the study area.  
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Fig. 5. (a) working principle of the CityCAT model and (b) its outputs (Adapted from Glenis et al., 2018), (c) building-level exposure calculation (Adapted from 
Bertsch et al., 2022). 
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2.3.3. Rainstorm design and CityCAT settings 
Two synthetic rainfall events were generated using the depth- 

duration-frequency (DDF) model and storm profiling methods recom
mended by Faulkner (1999). These events have return periods of 100 
and 30 years, each lasting half an hour. The following equation repre
sents the DDF model for rainstorms with a duration of 12 hours or less: 

lnR = (cy + d1) lnD + ey + f

where y = − ln
[

− ln
(

1 −
1
T

)]

The variables in the DDF model are defined as follows: R is the rainfall 
depth, D is the duration, y is the Gumbel reduced variate, T is the return 
period, and c, d1, e, f are catchment descriptors. The values for these 
descriptors can be obtained from the Flood Estimation Handbook (FEH) 
website (https://fehweb.ceh.ac.uk/). Using the DDF model, the rainfall 
amounts for the 100-year and 30-year return period events were 
calculated to be 31.1 mm and 21.9 mm, respectively. The temporal 

distribution profile of the rainstorms was then generated using the Flood 
Studies Report (FSR) method (Institute of Hydrology, 1975) for an 
urbanised catchment. The relevant formula is provided below. 

y =
1 − az

1 − a
where z = xb  

Where y = proportion of the rainfall depth that falls within the pro
portion x of the total storm duration, centred on the peak. The param
eters a and b have fixed values. The resulting rainstorm profiles are 
shown in Supplementary Information S9 (Appendix A. Supplementary 
data 2). 

In this case study, only the 2D surface water simulation module of 
CityCAT was used to simulate surface runoff for the designed rainstorm 
events Details of the hydrodynamic parameters and their respective 
values used in CityCAT can be found in Supplementary Information S1 
(Appendix A. Supplementary data 2). 

Fig. 6. Map of (a) permeable surfaces and their division into (b) 10 zones, (c) 15 zones, (d) 40 zones, and (e) 80 zones. The filled colour shows the percentage of the 
total intervention area contained by a specific zone. 10-zone boundary (black) used as a reference for interpreting results. 
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2.3.4. BGI intervention design 
Permeable flood risk management interventions were selected to 

assess their efficiency using CONFIGURE. The sole criterion was to 
identify all possible impervious surfaces that could be made permeable. 
Such surfaces included roadside pavements, paths, and parking areas. 
From the detailed land use data extracted from Ordinance Survey (OS) 

MasterMap® (https://digimap.edina.ac.uk), the impervious area avail
able for permeable interventions totalled 0.74 km2, with 46 % roadside 
pavements, 31 % parking areas, and 23 % paths (Fig. 6a). The remaining 
impervious surfaces were roads and therefore unsuitable for permeable 
surface interventions. To assess the cost efficiency of permeable in
terventions at the distinct parts, the catchment was divided into zones of 
varying sizes, a process known as spatial discretisation (refer to Fig. 6b- 
e). It is important to note that the term ‘zone’ is used generically to 
represent a permeable intervention of a specific size. As CityCAT uses a 
high-resolution computational grid, the zones were defined as simple 
geometric ’boxes’, with each box or zone containing many computa
tional grid cells to represent permeable features explicitly (please refer 
to Fig. 5a). The size of each box is determined by the area and practi
cality of implementing permeable interventions. Any differences in zone 
intervention areas will automatically be normalised by the intervention 
cost per unit area during optimisation. The simple box-based zoning 
method enabled consistency between ancestor and descendant zones 
during spatial discretisation. Eventually, 10 larger zones (Fig. 6b) were 
subdivided up to a total of 80 smaller zones (Fig. 6e), with the majority 
having dimensions of approximately 340 m x 180 m. This scheme pro
vided areas of appropriate size for the practical implementation of in
terventions. The multi-scale spatial discretisation approach aimed to 
assess the cost-effectiveness of permeable zones at their varied sizes. The 
spatial discretisation scheme is further elaborated in Supplementary In
formation S2 (Appendix A. Supplementary data 2). For optimisation 
encoding, each permeable zone was assigned a unique ID to represent its 
location, with each ID serving as a decision variable. In a candidate 
solution, these variables can either be present (value = 1) or absent 
(value = 0). Therefore, the optimisation of 10 permeable zones involves 
10 decision variables. Similarly, 15, 40, and 80 permeable zones 
correspond to 15, 40, and 80 decision variables, respectively. 

2.3.5. CONFIGURE settings 
Cost objective function: The unit area life cycle cost of the 

permeable surface intervention was calculated using the guidelines from 
the Environment Agency (Gordon-Walker et al., 2007). Consumer Price 
Index (CPI)-based average inflation rate (2007–2022) of 2.9 % was used 
in Equation (5) to calculate the per unit life cycle cost of permeable 
surface for a 40-year lifespan. This cost was then multiplied by the 
intervention area in each zone to obtain zone-wise life cycle cost. 

FV = BV(1 + i)n (5)  

Where FV is the future value, BV is the base year value, i is the inflation 
rate, and n is the maintenance year. The life cycle cost of each zone was 
incorporated into Equation (4) to calculate the cost objective function 
for the optimisation. 

Risk objective function: The exposure estimation method described 
in section 2.3.2 was used to proxy the risk to the buildings. From the 
different exposure categories, only highly exposed buildings were 
considered to develop the risk objective function (FR) that can be 
expressed as follows: 

FR = EB(Sz) =
∑m

i=1
Bi × IE z = 1,2, 3. . . . p (6)  

IE = f(dm, d90th) =

{
1 dm AND d90th ≥ criteria
0 dm OR d90th < criteria (7)  

In Equation (6) EB(Sz) represents the number of buildings highly exposed 
to flooding when the zth candidate solution is implemented. Bi refers to 
the ith building within the catchment, with a total of m buildings. IE 
represents an exposure index, which is the function of the mean (dm) and 
90th percentile (d90th) of flood depth values surrounding Bi. The value of 
IE is set to 1 if values of dm and d90th around Bi meet specific criteria, 
otherwise, the value is 0. 

NSGA-II parameters: Table 1 presents the NSGA-II parameters and 

Table 1 
NSGA-II parameters and their values.  

Parameter Type Parameter size/rate/value for intervention 
zones/decision variables (possible solutions) 

10 zones 
(210 =

1024) 

15 zones 
(215 =

32768) 

40 
zones 
(240) 

80 
zones 
(280) 

Candidate 
solution 
length (n) 

Binary matrix 
(number of 
columns) 

10 15 40 80 

Population 
size (p) 

Binary matrix 
(number of 
rows) 

27 66 100 100 

Selection Binary 
tournament 

− − − −

Cross-over Random single- 
point with 
probability 

1.0 1.0 1.0 1.0 

Mutation Random single 
bit-flip with 
probability 

0.4 0.4 0.4 0.4 

Stopping 
criteria 

Maximum 
number of 
generations 

25 50 100 100  

Fig. 7. (a) All candidate solutions including optimal for 10 permeable zones, 
(b) contribution of each permeable zone to optimal solutions. 
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their values used in this study. The length of the candidate solution is 
determined by the number of permeable intervention zones. The pop
ulation sizes for 10 and 15 permeable zone scenarios were chosen based 
on optimal solutions obtained from simulating all possible intervention 
options. Population size for the remaining scenarios along with the 
mutation type and mutation rates were selected based on NSGA-II 
parameter sensitivity analysis (see Supplementary Information S5 in Ap
pendix A. Supplementary data 2). 

Integration of NSGA-II with CityCAT: Fig. S10 in Supplementary 
Information S10 (Appendix A. Supplementary data 2) details the inte
gration of NSGA-II with CityCAT. A standard directory structure for 
input files was established in Windows operating system, with all City
CAT inputs fixed except for the permeable surface geometries. CityCAT 
parameter values were provided in the configuration file. Initially, a 
Python script imports the geometry files and life cycle costs for each 
permeable surface zone. NSGA-II then creates a population of candidate 
solutions. For each candidate solution, the script combines the life cycle 

costs and geometries of the contributing permeable zones, exports the 
combined geometries to a CityCAT-compatible format, and executes 
CityCAT. The CityCAT output (maximum water depths) and building 
footprints are imported back into Python to calculate the risk levels for 
each candidate solution. This process is repeated until all candidate 
solutions are evaluated for their life cycle costs and exposure levels. 
NSGA-II then evaluates the fitness of these solutions and performs 
evolutionary operations (parent selection, crossover, mutation, 
offspring generation, and new generation creation). This cycle continues 
until optimal solutions are obtained after T generations, which are then 
exported to a CSV file. 

Hardware specification: CityCAT simulations were performed on a 
workstation with an “Intel(R) Core(TM) i9-10900X CPU @ 3.70 GHz” 
processor and 64 GB RAM. On average, a single CityCAT simulation took 
a little less than a minute to complete. 

Fig. 8. Convergence test for 10 permeable zones (a) initial population with reference optimal solutions, (b-i) evolving generations, and (j) total solutions tested by 
CONFIGURE to achieve convergence. 
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3. Results and discussion 

3.1. Assessing the effectiveness of CONFIGURE 

3.1.1. Optimisation of 10-zone case 
To illustrate CONFIGURE’s functionality, all possible candidate so

lutions for 10 permeable zones were simulated to obtain the global 
optimal solutions for testing purposes. As shown in Fig. 7, the Pareto 
front resulted in 27 optimal solutions. Evaluation of all options for 15 
permeable zones is given in Supplementary Information S3 (Appendix A. 
Supplementary data 2) while further discussion on Pareto fronts is 
presented in Section 3.2. 

To assess the effectiveness of the proposed optimisation framework, 
a convergence test was conducted. Optimal solutions obtained through 
simulating all possible combinations (Fig. 7) were used as a reference. 
The initial population (Fig. 8a), equal to the number of reference solu
tions, produced the first generation (Fig. 8b) that brought candidate 

solutions nearer towards the reference Pareto front, and zone-2 emerged 
as the highly contributing zone in generation 1. This trend continued to 
generation 2 (Fig. 8c) by bringing further distinction among the zones. 
Generations 3–7 (Fig. 8d-h) continued to provide better candidate so
lutions, bringing them closer to the reference Pareto front and providing 
clearer distinctions in the permeable surface zones’ efficiency. Finally, 
in generation 8 (Fig. 8i), the evolving solutions completely overlapped 
with the reference optimal solutions, indicating convergence. 
CONFIGURE algorithm intelligently simulated only 24 % of the total 
candidate solutions (Fig. 8j) to achieve global optima, establishing a 
clear distinction in the zones based on their contribution to the optimal 
solutions. The convergence test for the 15-zone scenario is presented in 
Supplementary Information S4 (Appendix A. Supplementary data 2). 

3.1.2. CONFIGURE as a rapid screening tool 
The animation video for the optimisation process is shown in Ap

pendix A. Supplementary video 1. As can be observed in the conver
gence tests in section 3.1.1 and snapshots of the 20th (Fig. 9a) and 60th 
(optimal) generations (Figure 9b) from the animation, CONFIGURE 
starts detecting the majority of the best and the least performing loca
tions for permeable surface interventions in the initial stages of opti
misation. This demonstrates CONFIGURE’s potential as a rapid 
screening tool for examining BGI location performance. 

3.1.3. Convergence time 
The time required to evaluate all possible solutions was calculated by 

multiplying the average CityCAT simulation time by the total number of 
possible solutions, which are 2n, where n is the number of decision 
variables. Fig. 10 demonstrates that the time required to evaluate all 
possible solutions increases exponentially as the number of zones (de
cision variables) grows. However, CONFIGURE shows a behaviour 
change: at first, it behaves linearly, but as the number of decision var
iables increases further, it starts to trend towards a straight line. Sup
plementary information S6 (Appendix A. Supplementary data 2) provides 
a detailed table on CONFIGURE’s time efficiency. It is worth mentioning 
that the convergence time remained the same when CityCAT was run 
with and without a parallelisation scheme. This is because CityCAT is 
already effectively parallelised and its single instance fully uses all 
available processing cores and threads, leaving no room for additional 
parallel tasks. Running more than one CityCAT instance in parallel di
vides processing resources, thereby increasing simulation time equiva
lently for each of the instances. 

3.2. Analysis of optimised outputs 

3.2.1. Impact of spatial discretisation 
Fig. 11a shows the Pareto fronts for the four different spatially dis

cretised scenarios, while maps in Fig. 11b-e present the contribution of 
each permeable zone to the optimised set of solutions. It is evident from 
Fig. 11a that the higher spatial discretisation (small zone size, more 
quantity) produces more and significantly better optimal solutions. In 
other words, the Pareto front gains more curvature towards minimal 
values of cost and exposure. Further, making permeable zones smaller in 
size offers maximum exposure reduction with reduced intervention cost 
(see solutions for the least exposure (463 buildings) on the Pareto 
fronts). 

The zone contribution maps in Fig. 11b-e show that irrespective of 
their intervention size, different zones have different cost-efficiency 
when they work in combination. For example, referring to Fig. 11b 
and Fig. 6b, despite having comparable intervention areas (and hence 
life cycle cost), zone 7 demonstrates better cost-efficiency than zone 9 in 
reducing building exposure. This observation holds for the small-zone 
scenarios, such as zones 712, 721 & 722 (Fig. 11d & Fig. 6d), and 
zones 7121 & 7221 (Fig. 11e & Fig. 6e). Moreover, despite having a 
comparatively smaller intervention area, zone 2 (Fig. 11b & Fig. 6b) 
contributes to over 90 % of the optimal solutions, making it the most 

Fig. 9. Zones efficiency at: (a) 20th generation, (b) 60th (optimal) generation 
during optimisation. 

Fig. 10. Time needed to evaluate all possible solutions vs. time taken by 
CONFIGURE to attain near-optimal solutions. The Y-axis (time) is scaled 
logarithmically. 
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cost-effective zone. Zone 8 (Fig. 11b & Fig. 6b), on the other hand, 
performs inversely. These results emphasize the significance of consid
ering the location when deploying permeable features. 

The impact of both spatial discretisation and location suitability can 
be better understood by further examining the zone-wise contribution 
maps (Fig. 11b-e). For instance, when zone 7 in Fig. 11b is bifurcated 
(Fig. 11c), subzone 71 becomes the highest contributing zone, showing a 
better cost-effectiveness of the upper part than the lower part of zone 7. 
Upon further division of zone 71, subzone 712 (Fig. 11d) emerges as the 
most cost-effective zone and so on. When comparing the boundaries of 
zone 7 in Fig. 11b and Fig. 11e, it becomes evident that only one out of 
its eight parts is the most economical. Two of its parts (zones 7111 and 
7221) even show zero contribution to optimal solutions. Similarly, zones 
1,2, 9, and 10 exhibit similar characteristics in their spatial subdivisions. 
Surprisingly, further divisions of less cost-effective zones 6 and 8, pro
duced a couple of better cost-efficient parts. 

The influence of zone location sensitivity and spatial discretisation 
on optimisation, as explained above, can be attributed to the hydrody
namics of the area. Primarily, permeable surfaces control surface run-off 
volume by infiltrating water into the soil subsurface. Additionally, they 
attenuate the velocity of flood flow by offering fractionally more friction 
than impervious surfaces. Based on the catchment elevation (Fig. 4), the 

natural movement of the floodwater (Fig. 12) is from the northwest 
(upper catchment) towards the southeast (lower catchment). Thus, 
despite having a smaller proportion of intervention areas, zones 1 and 2 
not only reduce local exposure but also reduce flows towards other 
zones, indirectly contributing to reduced exposure within the territories 
of other zones as well. This could be the reason for the lower cost- 
efficiency of zone 4. A similar logic can be attributed to zone 7 and 
the smaller-zone scenarios. In terms of optimisation algorithm func
tionality, a finer-grained spatial discretisation empowers the algorithm 
with a range of distributed spatial options to create better cost-effective 
combinations. 

3.2.2. Cost-benefits of optimal solutions 
Referring to Fig. 11a and considering the best optimisation case i.e. 

80-zone scenario, an initial investment of up to £10 million saves 
approximately 40 buildings, resulting in a cost-benefit ratio of 1:4. 
Further investment decreases this ratio; for example, investing an 
additional £30 million only saves approximately 60 additional build
ings, with a cost-benefit ratio of 1:2. This trend continues with addi
tional investments. Therefore, for the current study, permeable 
interventions can yield a relatively better return on an investment of up 
to £10 million. 

Fig. 11. (a) Pareto fronts for spatially discretised scenarios. Maps depicting zone contribution to Pareto front in (b) 10-zone, (c) 15-zone, (d) 40-zone, and (e) 80-zone 
scenarios. The 10-zone scenario (red boundary) is used as a reference for interpreting results. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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4. Impact of different rainstorm intensities 

Fig. 13 displays the optimisation outcomes of the 80-zone scenario 
for the 100-year and 30-year rainstorm events. The efficiency of in
terventions optimised for the 100-year rainstorm event was also evalu
ated for the 30-year return period, and vice versa. Two main results 
emerged are:  

1. CONFIGURE performed well in optimising interventions for both 
rainstorm events, demonstrating its effectiveness in handling 
different rainstorm intensities. 

2. The interventions optimised for the 30-year rainstorm event per
formed sub-optimally when evaluated against the 100-year event, 
and vice versa. This discrepancy indicates that the location and 
combinations of the most cost-efficient permeable zones may vary 
between different rainstorm events, suggesting that solutions based 
on a single rainstorm event are not universal (see Fig. 13). 

The variations in optimisation results can be attributed to the sig
nificant differences in rainfall intensity and total rainfall amount be
tween two distinct rainstorm events. The significant difference in 
rainfall intensities probably leads to variations in exposure quantity and 

Fig. 12. Exposure map for baseline scenario (no BGI intervention, return period = 100 years, duration = 30 minutes).  

Fig. 13. Optimisation of 80-zone scenario for (a) 30-year, and (b) 100-year events.  
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its distributions within the catchment (Refer to Supplementary Informa
tion S8 in Appendix A. Supplementary data 2), resulting in different 
optimal zones and their combinations. However, it is anticipated that 
optimisation results will exhibit similar characteristics for rainstorm 
events with smaller differences in rainfall intensities. 

5. Study limitations 

There are a few limitations associated with the current study. Firstly, 
due to a higher computational cost, only the 2D surface flooding module 
of the CityCAT was used to test the optimisation methodology in this 
initial study. While the addition of the storm sewer network would be 
expected to reduce the overall exposure, especially for smaller floods, 
the overall spatial pattern is expected to be similar, and the study serves 
as a good starting point for understanding and implementing a detailed 
model-enabled optimisation and its related outputs. Secondly, a 5-m 
spatial resolution DEM was used in hydrodynamic simulations to 
develop and test the effectiveness of the CONFIGURE framework. 
However, a higher spatial resolution DEM can offer a more accurate 
representation of land use features, BGI interventions, and flood path
ways in an urban environment and thus can influence optimal choices. 
Nevertheless, as with all urban flood models, a compromise must be 
reached between DEM grid resolution and model simulation speed. 
Thirdly, BGI costing was approximated by following broader guidelines 
provided by the UK Environment Agency (EA) in 2007. A detailed 
appraisal can provide more accurate costing, but the optimisation pro
cesses will remain the same. Finally, this study considered the same type 
of permeable surface for parking as well as pavements and paths. 
However, if needed, diverse types of permeable surfaces for different 
impermeable features can be exercised by replicating the same meth
odology presented in this paper. 

5.1. Future recommendations 

The results of the study reveal that the benefits of permeable in
terventions are relatively low, even with a higher spatial discretisation. 
Furthermore, an optimised solution for a single return period is not 
effective for others. Therefore, considering multiple return periods 
together for optimisation is needed. It will not only provide a robust 
solution to tackle climate change impacts but may also improve the 
return on investment. Considering other types of BGI, such as ponds or 
swales, can also provide a more favourable cost-benefit ratio. When 
aiming to enhance CONFIGURE’s convergence time, if the hydrody
namic model is already parallelised or multi-thread enabled, it is 
advisable to consider multi-node parallelisation by configuring pri
mary/subordinate settings instead of applying a single-machine paral
lelisation method. Moreover, users can also try updated variants of 
NSGA-II, such as Epsilon-NSGA-II, to speed up convergence time. 
Finally, utilisation of a fully coupled hydrodynamic model, combining a 
2D surface and 1D sewer drainage modules, can evaluate surface flood 
risk and BGI efficiency more accurately to produce an improved urban 
FRM design. 

6. Conclusions 

The newly proposed Cost OptimisatioN Framework for Implement
ing blue-Green infrastructURE (CONFIGURE) offers BGI optimisation by 
simplifying the problem-framing procedure, implementing effective 
genetic algorithm operations, using a detailed hydrodynamic model, 
and introducing an effective visualisation scheme for differentiating 
between efficient and inefficient interventions. CONFIGURE demon
strates its capability to effectively achieve optimal solutions for various 
rainfall and spatial discretisation scenarios. The use of a high-resolution 
2D surface flood model enables the explicit representation of permeable 
features, allowing for better simulation and understanding of their 
functions at distinct locations during different rainstorms. The time 

required to achieve optimal solutions depends on the number of BGI 
locations being optimised. Although optimising many smaller perme
able surface zones takes more computation time, it results in significant 
cost savings. In the current study, dividing 10 large permeable zones into 
80 smaller zones allowed CONFIGURE to save approximately 30 % of 
the investment by eliminating ineffective permeable areas. However, 
the efficiency of permeable zones optimised for higher rainfall in
tensities does not translate well to lower rainfall intensities, and vice 
versa. Therefore, selecting an appropriate rainstorm return period for 
BGI location optimisation is critical. Regardless of the return period 
chosen, it is preferable to implement many small BGI interventions 
across the catchment to achieve the best cost-benefit ratio. CONFIG
URE’s ability to maximise investment efficiency using an explicit flood 
model makes it a promising tool for designing BGI for sustainable flood 
risk management in urban areas. 
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DEAP: Evolutionary algorithms made easy. J. Mach. Learn. Res. 13 (1), 2171–2175. 

Gao, Z., Zhang, Q.H., Xie, Y.D., Wang, Q., Dzakpasu, M., Xiong, J.Q., Wang, X.C., 2022. 
A novel multi-objective optimization framework for urban green-gray infrastructure 
implementation under impacts of climate change. Sci. Total Environ. 825, 153954 
https://doi.org/10.1016/j.scitotenv.2022.153954. 

Glenis, V., Kutija, V., Kilsby, C.G., 2018. A fully hydrodynamic urban flood modelling 
system representing buildings, green space and interventions. Environ. Model. 
Softw. 109, 272–292. https://doi.org/10.1016/j.envsoft.2018.07.018. 

Gordon, B.L., Quesnel, K.J., Abs, R., Ajami, N.K., 2018. A case-study based framework for 
assessing the multi-sector performance of green infrastructure. J. Environ. Manage. 
223, 371–384. https://doi.org/10.1016/j.jenvman.2018.06.029. 

Gordon-Walker, S., Harle, T., Naismith, I., 2007. Cost-benefit of SUDS retrofit in urban 
areas. Environment Agency. 

Hassani, M.R., Niksokhan, M.H., Mousavi Janbehsarayi, S.F., Nikoo, M.R., 2023. Multi- 
objective robust decision-making for LIDs implementation under climatic change. 
J. Hydrol. 617, 128954 https://doi.org/10.1016/j.jhydrol.2022.128954. 

Hervouet, J.M., 1999. TELEMAC, a hydroinformatic system. La Houille Blanche 85 (3–4), 
21–28. https://doi.org/10.1051/lhb/1999029. 

Hill, B., Liang, Q., Bosher, L., Chen, H., Nicholson, A., 2023. A systematic review of 
natural flood management modelling: Approaches, limitations, and potential 
solutions. J. Flood Risk Manage. 16 (3) https://doi.org/10.1111/jfr3.12899. 

Holland, J.H., 1992. Genetic algorithms. Sci. Am. 267 (1), 66–73. 
Huang, J.J., Xiao, M., Li, Y., Yan, R., Zhang, Q., Sun, Y., Zhao, T., 2022. The optimization 

of Low Impact Development placement considering life cycle cost using Genetic 
Algorithm. J. Environ. Manage. 309, 114700 https://doi.org/10.1016/j. 
jenvman.2022.114700. 

Iliadis, C., Glenis, V., Kilsby, C., 2023. Representing buildings and urban features in 
hydrodynamic flood models. J. Flood Risk Manage. https://doi.org/10.1111/ 
jfr3.12950. 

Innovyze. (2013). InfoWorks ICM. Innovyze. https://www.autodesk.co.uk/products/info 
works-icm/overview?term=1-YEAR&tab=subscription. 

Institute of Hydrology. (1975). Meteorological Studies. In Flood Studies Report (Vol. 2). 
Joshi, P., Leitão, J.P., Maurer, M., Bach, P.M., 2021. Not all SuDS are created equal: 

Impact of different approaches on combined sewer overflows. Water Res. 191, 
116780 https://doi.org/10.1016/j.watres.2020.116780. 

Karafotias, G., Hoogendoorn, M., Eiben, A.E., 2015. Parameter Control in Evolutionary 
Algorithms: Trends and Challenges. IEEE Trans. Evol. Comput. 19 (2), 167–187. 
https://doi.org/10.1109/TEVC.2014.2308294. 

Kendon, E.J., Fischer, E.M., Short, C.J., 2023. Variability conceals emerging trend in 
100yr projections of UK local hourly rainfall extremes. Nat. Commun. 14 (1), 1133. 
https://doi.org/10.1038/s41467-023-36499-9. 

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95- 
International Conference on Neural Networks, 4, 1942–1948. 

Kilsby, C., Glenis, V., & Bertsch, R. (2020). Coupled surface/sub-surface modelling to 
investigate the potential for blue–green infrastructure to deliver urban flood risk 
reduction benefits. In Blue–Green Cities (pp. 37–50). ICE Publishing. https://doi.org/ 
10.1680/bgc.64195.037. 

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by Simulated Annealing. 
Science 220 (4598), 671–680. https://doi.org/10.1126/science.220.4598.671. 

Kollat, J.B., Reed, P.M., 2006. Comparing state-of-the-art evolutionary multi-objective 
algorithms for long-term groundwater monitoring design. Adv. Water Resour. 29 (6), 
792–807. https://doi.org/10.1016/j.advwatres.2005.07.010. 

Kutija, V., Bertsch, R., Glenis, V., Alderson, D., Parkin, G., Walsh, C., Robinson, J., 
Kilsby, C., 2014. Model validation using crowd-sourced data from a large pluvial 
flood. 11th International Conference on Hydroinformatics. 

Li, L., Uyttenhove, P., Van Eetvelde, V., 2020. Planning green infrastructure to mitigate 
urban surface water flooding risk – A methodology to identify priority areas applied 
in the city of Ghent. Landsc. Urban Plan. 194, 103703 https://doi.org/10.1016/j. 
landurbplan.2019.103703. 

Li, S., Wang, Z., Wu, X., Zeng, Z., Shen, P., Lai, C., 2022. A novel spatial optimization 
approach for the cost-effectiveness improvement of LID practices based on SWMM- 
FTC. J. Environ. Manage. 307, 114574 https://doi.org/10.1016/j. 
jenvman.2022.114574. 

Lin, L., Gen, M., 2009. Auto-tuning strategy for evolutionary algorithms: balancing 
between exploration and exploitation. Soft. Comput. 13 (2), 157–168. https://doi. 
org/10.1007/s00500-008-0303-2. 

Lu, W., Xia, W., Shoemaker, C.A., 2022. Surrogate Global Optimization for Identifying 
Cost-Effective Green Infrastructure for Urban Flood Control With a Computationally 
Expensive Inundation Model. Water Resour. Res. 58 (4) https://doi.org/10.1029/ 
2021WR030928. 

Maier, H.R., Razavi, S., Kapelan, Z., Matott, L.S., Kasprzyk, J., Tolson, B.A., 2019. 
Introductory overview: Optimization using evolutionary algorithms and other 
metaheuristics. Environ. Model. Softw. 114, 195–213. https://doi.org/10.1016/j. 
envsoft.2018.11.018. 

Miller, J.D., Hutchins, M., 2017. The impacts of urbanisation and climate change on 
urban flooding and urban water quality: A review of the evidence concerning the 
United Kingdom. J. Hydrol.: Reg. Stud. 12, 345–362. https://doi.org/10.1016/j. 
ejrh.2017.06.006. 

Nazari, A., Roozbahani, A., Hashemy Shahdany, S.M., 2023. Integrated SUSTAIN- 
SWMM-MCDM Approach for Optimal Selection of LID Practices in Urban 
Stormwater Systems. Water Resour. Manag. 37 (9), 3769–3793. https://doi.org/ 
10.1007/s11269-023-03526-9. 

Newcastle City Council. (2016). Local Flood Risk Management Plan. 
O’Donnell, E., Thorne, C., Ahilan, S., Arthur, S., Birkinshaw, S., Butler, D., Dawson, D., 

Everett, G., Fenner, R., Glenis, V., Kapetas, L., Kilsby, C., Krivtsov, V., Lamond, J., 
Maskrey, S., O’Donnell, G., Potter, K., Vercruysse, K., Vilcan, T., Wright, N., 2020. 
The blue-green path to urban flood resilience. Blue-Green Systems 2 (1), 28–45. 
https://doi.org/10.2166/bgs.2019.199. 

Perez-Pedini, C., Limbrunner, J.F., Vogel, R.M., 2005. Optimal Location of Infiltration- 
Based Best Management Practices for Storm Water Management. J. Water Resour. 
Plan. Manag. 131 (6), 441–448. https://doi.org/10.1061/(ASCE)0733-9496(2005) 
131:6(441). 

Pina, R., Ochoa-Rodriguez, S., Simões, N., Mijic, A., Marques, A., Maksimović, Č., 2016. 
Semi- vs. Fully-Distributed Urban Stormwater Models: Model Set Up and 
Comparison with Two Real Case Studies. Water 8 (2), 58. https://doi.org/10.3390/ 
w8020058. 

POST. (2007). Urban Flooding. https://www.parliament.uk/globalassets/documents/ 
post/postpn289.pdf. 

Pregnolato, M., Ford, A., Robson, C., Glenis, V., Barr, S., Dawson, R., 2016. Assessing 
urban strategies for reducing the impacts of extreme weather on infrastructure 
networks. R. Soc. Open Sci. 3 (5), 160023 https://doi.org/10.1098/rsos.160023. 

Ram, D.J., Sreenivas, T.H., Subramaniam, K.G., 1996. Parallel Simulated Annealing 
Algorithms. J. Parallel Distrib. Comput. 37 (2), 207–212. https://doi.org/10.1006/ 
jpdc.1996.0121. 

Rezaei, A.R., Ismail, Z., Niksokhan, M.H., Dayarian, M.A., Ramli, A.H., Yusoff, S., 2021. 
Optimal implementation of low impact development for urban stormwater quantity 
and quality control using multi-objective optimization. Environ. Monit. Assess. 193 
(4), 241. https://doi.org/10.1007/s10661-021-09010-4. 

Roberge, V., Tarbouchi, M., Labonte, G., 2013. Comparison of Parallel Genetic Algorithm 
and Particle Swarm Optimization for Real-Time UAV Path Planning. IEEE Trans. Ind. 
Inf. 9 (1), 132–141. https://doi.org/10.1109/TII.2012.2198665. 

Robinson, A., Lehmann, J., Barriopedro, D., Rahmstorf, S., Coumou, D., 2021. Increasing 
heat and rainfall extremes now far outside the historical climate. npj Clim. Atmos. 
Sci. 4 (1), 45. https://doi.org/10.1038/s41612-021-00202-w. 

Rodriguez, M., Fu, G., Butler, D., Yuan, Z., Sharma, K., 2021. Exploring the spatial impact 
of green infrastructure on urban drainage resilience. Water (Switzerland) 13 (13), 
1–21. https://doi.org/10.3390/w13131789. 

Rosenbloom, J., 2018. Fifty shades of gray infrastructure: Land use and the failure to 
create resilient cities. Wash. l. Rev. 93, 317. 

Rossman, L. A., & others. (2010). Storm water management model user’s manual, version 
5.0. National Risk Management Research Laboratory, Office of Research and~…. 

Seyedashraf, O., Bottacin-Busolin, A., Harou, J.J., 2021. A Disaggregation-Emulation 
Approach for Optimization of Large Urban Drainage Systems. Water Resour. Res. 57 
(8) https://doi.org/10.1029/2020WR029098. 

Slowik, A., Kwasnicka, H., 2020. Evolutionary algorithms and their applications to 
engineering problems. Neural Comput. & Applic. 32 (16), 12363–12379. https:// 
doi.org/10.1007/s00521-020-04832-8. 

A. Ur Rehman et al.                                                                                                                                                                                                                            

https://doi.org/10.1007/s11269-018-1943-3
https://doi.org/10.1007/s11269-018-1943-3
https://doi.org/10.5539/jsd.v5n4p2
https://doi.org/10.1016/j.envsoft.2022.105490
https://doi.org/10.1016/j.envsoft.2022.105490
https://doi.org/10.1109/ACCESS.2020.2990567
https://doi.org/10.1080/10643389.2020.1757957
https://doi.org/10.1080/10643389.2020.1757957
https://doi.org/10.1007/s11425-011-4353-z
https://doi.org/10.1007/s11425-011-4353-z
https://doi.org/10.1016/j.ufug.2020.126774
https://doi.org/10.1016/j.ufug.2020.126774
https://doi.org/10.1016/j.jenvman.2021.112583
http://refhub.elsevier.com/S0022-1694(24)00967-3/h0060
http://refhub.elsevier.com/S0022-1694(24)00967-3/h0060
https://doi.org/10.1016/j.ufug.2022.127518
https://doi.org/10.1016/j.ufug.2022.127518
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
http://refhub.elsevier.com/S0022-1694(24)00967-3/h0085
http://refhub.elsevier.com/S0022-1694(24)00967-3/h0085
https://doi.org/10.1016/j.scitotenv.2022.153954
https://doi.org/10.1016/j.envsoft.2018.07.018
https://doi.org/10.1016/j.jenvman.2018.06.029
http://refhub.elsevier.com/S0022-1694(24)00967-3/h0105
http://refhub.elsevier.com/S0022-1694(24)00967-3/h0105
https://doi.org/10.1016/j.jhydrol.2022.128954
https://doi.org/10.1051/lhb/1999029
https://doi.org/10.1111/jfr3.12899
http://refhub.elsevier.com/S0022-1694(24)00967-3/h0125
https://doi.org/10.1016/j.jenvman.2022.114700
https://doi.org/10.1016/j.jenvman.2022.114700
https://doi.org/10.1111/jfr3.12950
https://doi.org/10.1111/jfr3.12950
https://www.autodesk.co.uk/products/infoworks-icm/overview?term=1-YEAR%26tab=subscription
https://www.autodesk.co.uk/products/infoworks-icm/overview?term=1-YEAR%26tab=subscription
https://doi.org/10.1016/j.watres.2020.116780
https://doi.org/10.1109/TEVC.2014.2308294
https://doi.org/10.1038/s41467-023-36499-9
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1016/j.advwatres.2005.07.010
http://refhub.elsevier.com/S0022-1694(24)00967-3/h0185
http://refhub.elsevier.com/S0022-1694(24)00967-3/h0185
http://refhub.elsevier.com/S0022-1694(24)00967-3/h0185
https://doi.org/10.1016/j.landurbplan.2019.103703
https://doi.org/10.1016/j.landurbplan.2019.103703
https://doi.org/10.1016/j.jenvman.2022.114574
https://doi.org/10.1016/j.jenvman.2022.114574
https://doi.org/10.1007/s00500-008-0303-2
https://doi.org/10.1007/s00500-008-0303-2
https://doi.org/10.1029/2021WR030928
https://doi.org/10.1029/2021WR030928
https://doi.org/10.1016/j.envsoft.2018.11.018
https://doi.org/10.1016/j.envsoft.2018.11.018
https://doi.org/10.1016/j.ejrh.2017.06.006
https://doi.org/10.1016/j.ejrh.2017.06.006
https://doi.org/10.1007/s11269-023-03526-9
https://doi.org/10.1007/s11269-023-03526-9
https://doi.org/10.2166/bgs.2019.199
https://doi.org/10.1061/(ASCE)0733-9496(2005)131:6(441)
https://doi.org/10.1061/(ASCE)0733-9496(2005)131:6(441)
https://doi.org/10.3390/w8020058
https://doi.org/10.3390/w8020058
https://www.parliament.uk/globalassets/documents/post/postpn289.pdf
https://www.parliament.uk/globalassets/documents/post/postpn289.pdf
https://doi.org/10.1098/rsos.160023
https://doi.org/10.1006/jpdc.1996.0121
https://doi.org/10.1006/jpdc.1996.0121
https://doi.org/10.1007/s10661-021-09010-4
https://doi.org/10.1109/TII.2012.2198665
https://doi.org/10.1038/s41612-021-00202-w
https://doi.org/10.3390/w13131789
http://refhub.elsevier.com/S0022-1694(24)00967-3/h0280
http://refhub.elsevier.com/S0022-1694(24)00967-3/h0280
https://doi.org/10.1029/2020WR029098
https://doi.org/10.1007/s00521-020-04832-8
https://doi.org/10.1007/s00521-020-04832-8


Journal of Hydrology 638 (2024) 131571

16

Storn, R., Price, K., 1997. Differential evolution-a simple and efficient heuristic for global 
optimization over continuous spaces. J. Glob. Optim. 11 (4), 341. 

Sun, X., Li, R., Shan, X., Xu, H., Wang, J., 2021. Assessment of climate change impacts 
and urban flood management schemes in central Shanghai. Int. J. Disaster Risk 
Reduct. 65, 102563 https://doi.org/10.1016/j.ijdrr.2021.102563. 

Venter, G., 2010. Review of Optimization Techniques. Encyclopedia of Aerospace 
Engineering. https://doi.org/10.1002/9780470686652.eae495. 

Vercruysse, K., Dawson, D.A., Glenis, V., Bertsch, R., Wright, N., Kilsby, C., 2019. 
Developing spatial prioritization criteria for integrated urban flood management 
based on a source-to-impact flood analysis. J. Hydrol. 578, 124038 https://doi.org/ 
10.1016/j.jhydrol.2019.124038. 

Verma, S., Pant, M., Snasel, V., 2021. A Comprehensive Review on NSGA-II for Multi- 
Objective Combinatorial Optimization Problems. IEEE Access 9, 57757–57791. 
https://doi.org/10.1109/ACCESS.2021.3070634. 

Wang, J., Banzhaf, E., 2018. Towards a better understanding of Green Infrastructure: A 
critical review. Ecol. Ind. 85, 758–772. https://doi.org/10.1016/j. 
ecolind.2017.09.018. 

Wang, Z., Li, S., Wu, X., Lin, G., Lai, C., 2022b. Impact of spatial discretization resolution 
on the hydrological performance of layout optimization of LID practices. J. Hydrol. 
612, 128113 https://doi.org/10.1016/j.jhydrol.2022.128113. 

Wang, J., Liu, J., Mei, C., Wang, H., Lu, J., 2022a. A multi-objective optimization model 
for synergistic effect analysis of integrated green-gray-blue drainage system in urban 
inundation control. J. Hydrol. 609, 127725 https://doi.org/10.1016/j. 
jhydrol.2022.127725. 

Wang, M., Liu, M., Zhang, D., Qi, J., Fu, W., Zhang, Y., Rao, Q., Bakhshipour, A.E., Tan, S. 
K., 2023. Assessing and optimizing the hydrological performance of Grey-Green 
infrastructure systems in response to climate change and non-stationary time series. 
Water Res. 232, 119720 https://doi.org/10.1016/j.watres.2023.119720. 

Webber, J.L., Fletcher, T.D., Cunningham, L., Fu, G., Butler, D., Burns, M.J., 2020. Is 
green infrastructure a viable strategy for managing urban surface water flooding? 
Urban Water J. 17 (7), 598–608. https://doi.org/10.1080/ 
1573062X.2019.1700286. 

Wheeler, A. F. (2016). Newcastle city strategic surface water management plan. Final 
Report. See Https://Www. Newcastle. Gov. Uk/Sites/Default/Files/Wwwfileroot/ 
Planning-and-Buildings/Planning-Policy/Newcastle\_city\_strategic\_surface\_water 
\_management\_plan\_jan\_2016. Pdf (Accessed 22 May 2024). 

Yao, Y., Li, J., Lv, P., Li, N., Jiang, C., 2022. Optimizing the layout of coupled grey-green 
stormwater infrastructure with multi-objective oriented decision making. J. Clean. 
Prod. 367, 133061 https://doi.org/10.1016/j.jclepro.2022.133061. 

Zhang, X., Jia, H., 2023. Low impact development planning through a comprehensive 
optimization framework: Current gaps and future perspectives. Resour. Conserv. 
Recycl. 190, 106861 https://doi.org/10.1016/j.resconrec.2022.106861. 

Zhu, Y., Xu, C., Liu, Z., Yin, D., Jia, H., Guan, Y., 2023. Spatial layout optimization of 
green infrastructure based on life-cycle multi-objective optimization algorithm and 
SWMM model. Resour. Conserv. Recycl. 191, 106906 https://doi.org/10.1016/j. 
resconrec.2023.106906. 

A. Ur Rehman et al.                                                                                                                                                                                                                            

http://refhub.elsevier.com/S0022-1694(24)00967-3/h0300
http://refhub.elsevier.com/S0022-1694(24)00967-3/h0300
https://doi.org/10.1016/j.ijdrr.2021.102563
https://doi.org/10.1002/9780470686652.eae495
https://doi.org/10.1016/j.jhydrol.2019.124038
https://doi.org/10.1016/j.jhydrol.2019.124038
https://doi.org/10.1109/ACCESS.2021.3070634
https://doi.org/10.1016/j.ecolind.2017.09.018
https://doi.org/10.1016/j.ecolind.2017.09.018
https://doi.org/10.1016/j.jhydrol.2022.128113
https://doi.org/10.1016/j.jhydrol.2022.127725
https://doi.org/10.1016/j.jhydrol.2022.127725
https://doi.org/10.1016/j.watres.2023.119720
https://doi.org/10.1080/1573062X.2019.1700286
https://doi.org/10.1080/1573062X.2019.1700286
https://doi.org/10.1016/j.jclepro.2022.133061
https://doi.org/10.1016/j.resconrec.2022.106861
https://doi.org/10.1016/j.resconrec.2023.106906
https://doi.org/10.1016/j.resconrec.2023.106906

	Multi-objective optimisation framework for Blue-Green Infrastructure placement using detailed flood model
	1 Introduction
	2 Material and methods
	2.1 Selection of a MOOA
	2.2 Designing of BGI optimisation framework
	2.2.1 Problem framing
	2.2.1.1 BGI design and representation in hydrodynamic modelling
	2.2.1.2 Decision variables and objective functions
	2.2.1.3 Candidate solution representation

	2.2.2 Initial fitness evaluation
	2.2.3 Genetic operations
	2.2.4 Derivation of the new generation
	2.2.5 Optimised output

	2.3 Case study
	2.3.1 Study area
	2.3.2 Hydrodynamic modelling and exposure estimation method
	2.3.3 Rainstorm design and CityCAT settings
	2.3.4 BGI intervention design
	2.3.5 CONFIGURE settings


	3 Results and discussion
	3.1 Assessing the effectiveness of CONFIGURE
	3.1.1 Optimisation of 10-zone case
	3.1.2 CONFIGURE as a rapid screening tool
	3.1.3 Convergence time

	3.2 Analysis of optimised outputs
	3.2.1 Impact of spatial discretisation
	3.2.2 Cost-benefits of optimal solutions


	4 Impact of different rainstorm intensities
	5 Study limitations
	5.1 Future recommendations

	6 Conclusions
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


