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Abstract

Acoustic and articulatory signals are naturally coupled and complementary. The challenge of

acquiring articulatory data and the nonlinear ill-posedness of acoustic–articulatory conversions

have resulted in previous studies on speech emotion recognition (SER) primarily relying on uni-

directional acoustic–articulatory conversions. However, these studies have ignored the potential

benefits of bi-directional acoustic–articulatory conversion. Addressing the problem of nonlinear

ill-posedness and effectively extracting and utilizing these two modal features in SER remain open

research questions. To bridge this gap, this study proposes a Bi-A2CEmo framework that simul-

taneously addresses the bi-directional acoustic-articulatory conversion for SER. This framework

comprises three components: a Bi-MGAN that addresses the nonlinear ill-posedness problem,

KCLNet that enhances the emotional attributes of the mapped features, and ResTCN-FDA

that fully exploits the emotional attributes of the features. Another challenge is the absence

of a parallel acoustic-articulatory emotion database. To overcome this issue, this study utilizes

electromagnetic articulography (EMA) to create a multi-modal acoustic-articulatory emotion

database for Mandarin Chinese called STEM-E2VA. A comparative analysis is then conducted

between the proposed method and state-of-the-art models to evaluate the effectiveness of the

framework. Bi-A2CEmo achieves an accuracy of 89.04% in SER, which is an improvement of

5.27% compared with the actual acoustic and articulatory features recorded by the EMA. The

results for the STEM-E2VA dataset show that Bi-MGAN achieves a higher accuracy in mapping

and inversion than conventional conversion networks. Visualization of the mapped features be-

fore and after enhancement reveals that KCLNet reduces the intra-class spacing while increasing

the inter-class spacing of the features. ResTCN-FDA demonstrates high recognition accuracy on

three publicly available datasets. The experimental results show that the proposed bi-directional

acoustic-articulatory conversion framework can significantly improve the SER performance.
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1. Introduction1

Speech emotion recognition (SER) is a crucial research area in contemporary human-computer2

interaction that strives to empower computers with the capacity to comprehend and identify3

emotional information conveyed in speech [1]. The outcomes of SER research have already exerted4

a significant influence across various domains, including autonomous driving, depression diagnosis,5

web call services, recommender systems, and healthcare science [2, 3, 4]. In its initial stages,6

most of this research focused on unimodal speech data for emotion analysis [5, 6, 7]. However,7

SER based solely on speech modality has several drawbacks, such as in the case of speakers8

with damaged vocal cords or low speech intelligibility caused by diseases. These limitations9

significantly restrict the recognition performance of the system. To address these drawbacks, an10

increasing number of studies have investigated emotions by combining speech with other modal11

data, such as behavioral signals like body movements and facial expressions. Furthermore, speech12

can be combined with physiological signals [8, 9], including motor signals from the articulatory13

organs. Articulatory features refer to the position and movement of the tongue, teeth, lips, and14

other articulatory organs. In general, articulatory signals encompass multiple features that can be15

utilized for emotion recognition, including the state (silence or movement), range, displacement,16

and velocity of the articulatory organs [10, 11, 12]. Nevertheless, the limited availability and high17

cost of articulation data have led these signals to be neglected in most of the existing research.18

Ensuring convenient access to parallel acoustic and articulatory data and leveraging the fused19

signals from both sources are crucial for advancing SER research.20

Inverse mapping is currently considered the mainstream approach for acquiring articulatory21

data [13]. Inverse mapping utilizes acoustic features and converts them one-to-one into the22

corresponding articulatory features, thereby addressing the challenge of acquiring difficult-to-23

obtain articulatory data and reducing the data acquisition cost [14]. Forward mapping is the24

counterpart of inverse mapping and involves the conversion of the corresponding acoustic features25

using the kinematic features of the articulatory organs [15]. Both forward and inverse mapping26

are of great importance for SER research. However, acoustic and articulatory conversions are27

highly nonlinear, making both mapping and inversion challenging because of their ill-posed nature28

[16]. Consequently, scholars have faced numerous challenges in addressing this problem using29

traditional statistical and machine learning methods [17, 18].30

Most SER algorithms based on acoustic and articulatory conversion utilize either forward or31

inverse mapping to extract acoustic or articulatory features and then employ a subsequent classi-32

fication model for emotion classification. Previous studies have separated the forward and inverse33

mapping by considering them as separate tasks. However, parallel acoustic and articulatory sig-34

nals are applicable for both forward and inverse mapping. We argue that the joint consideration35

of mapping and inversion will greatly improve the efficiency of the use of acoustic and articulatory36

data. The major challenge encountered in SER based on acoustic and articulatory data lies in the37

lower emotion recognition rate of the mapped features compared with real features, which directly38

hampers the practicality and widespread adoption of this research [10, 19]. Solving the problem39
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of the low emotion recognition rate of mapped features is one of the most important issues in40

current research. Therefore, in this study, we design algorithms that can solve the problem of41

nonlinear ill-posedness and generate high-precision mapping features.42

SER research comprises two parts: features [20] and recognition algorithms [21]. To enable43

SER networks to better recognize the emotions conveyed in speech, extracting salient features44

is indispensable. Some of the classical features include the mel frequency cepstral coefficient45

(MFCC), fundamental frequency, and pitch. As technology has advanced, one of the main research46

trends in feature extraction is capturing emotional features from multi-modal speech signals, e.g.,47

the combination of speech with facial expressions or body movements [22, 23], or the integra-48

tion of acoustic features, semantic primitives, and emotional dimensions (valence and arousal)49

[24]. Deep learning recognition algorithms including convolutional neural networks (CNNs) [25],50

transformers [6], recurrent neural networks (RNNs) [7], temporal convolutional networks (TCNs)51

[26], and deep belief networks (DBNs) have been successfully applied to SER [27]. In current52

research, TCNs are being rapidly deployed in SER [28, 25]. The TCN-based emotion recogni-53

tion method is performed as follows: first, the emotion-dependent features are extracted using54

multilayer dilation convolution, and then a classifier is used to complete the emotion recognition.55

The methods mentioned above mainly focus on feature extraction and emotion recognition for56

the emotional information embedded in speech. However, articulatory features or the fusion of57

acoustic and articulatory features are not considered. Therefore, developing weighted adaptive58

emotion recognition algorithms that can incorporate both acoustic and articulatory fusion features59

is important. Attention mechanisms can offer a practical solution to the issue of redistributing60

weight coefficients. Therefore, in this study, we construct a TCN emotion recognition algorithm61

that can adaptively allocate weight coefficients using an attention mechanism.62

To effectively leverage the complementarity and coupling of parallel acoustic and articulatory63

data in SER, this study proposes a Bi-directional Acoustic–Articulatory Conversion framework64

for speech Emotion recognition (Bi-A2CEmo). Drawing inspiration from generative adversarial65

thinking, contrastive learning, and the attention mechanism in deep learning, this study integrates66

and applies these approaches to construct a Bi-A2CEmo framework. The framework consists of67

three components: a Bi-MGAN for bi-directional acoustic-articulatory conversion, a KCLNet for68

enhanced mapping of feature emotional attributes, and a ResTCN-FDA network that adaptively69

assigns weights to feature and dimension channels.70

The contribution of this paper can be summarized as follows:71

• This study introduces a unified and extensible Bi-A2CEmo framework. This framework72

can simultaneously perform the mapping and inversion tasks of acoustic and articulatory73

signals, enabling a better understanding of the distributions of real features and generating74

highly accurate mapped features. Moreover, the Bi-A2CEmo can enhance the emotional75

attributes of the mapped features, and the weight-adaptive operation of the recognizer can76

further enhance the recognition performance of the algorithm.77
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• We propose Bi-MGAN to address the nonlinear ill-posedness problem in acoustic and artic-78

ulatory conversions. Bi-MGAN is based on a generative adversarial mechanism that learns79

the potential coupling between the mapping and inversion. In addition, we develop KCLNet80

based on contrastive learning to enhance the affective attributes of the mapped features.81

• We propose utilizing feature dimension attention (FDA) for the adaptive assignment of82

weights to feature matrices; the FDA algorithm is then integrated with residual TCNs83

(ResTCNs) to build ResTCN-FDA.84

The remaining sections of the paper are structured as follows. Section 2 provides a review of85

relevant underlying models in SER. Section 3 presents the specific components of the Bi-A2CEmo86

framework. Section 4 describes the database and features designed and recorded in this study.87

Section 5 outlines the experimental design and discusses the results. Section 6 discusses the88

interests and limitations of the proposed method. Section 7 summarizes our work and proposes89

future directions.90

2. Related work91

Over the past decade, forward and inverse mapping have been the dominant methods for92

studying acoustic-articulatory conversion. With the development of machine learning techniques,93

significant performance improvements have been achieved for both forward and inverse methods.94

In the field of forward mapping, most studies have focused on utilizing machine learning methods95

to model the potential coupling relationship between articulation and acoustic features. Iing et96

al. [29] proposed an improved hidden Markov model (HMM) to explore the joint articulatory-97

to-acoustic distribution relationship, which converted the acoustic features using articulatory98

features. That study found that known articulatory features could be converted into acoustic99

features. Acoustic data have wide utility in reality, and several studies have focused on deploying100

forward mapping in the field of acoustics. These studies have proposed practical methods for101

solving real-world problems [30]. The use of forward mapping to design articulatory synthesizers102

with native accents for non-native speakers is a classic example [31]. In research on inverse map-103

ping, some studies have modeled and analyzed the coupling between articulation and acoustics,104

whereas others have attempted to apply inverse mapping to downstream tasks, such as emotion105

recognition and dysarthria [19, 32]. Compared with forward mapping, relatively few studies have106

focused on inverse mapping. This is because inverse mapping uses known acoustic signals to107

convert unknown articulatory signals, which are not as widely used in life as acoustic signals.108

These studies have demonstrated the potential coupling between acoustic and articulatory sig-109

nals and the need to use mapping and inversion techniques to investigate the acoustic domain.110

However, these studies used split mapping and inversion, arguing that these processes could not111

be performed simultaneously in a single model. However, this reduces the efficiency of mining112

parallel acoustic and articulatory data and limits the analysis of the strong correlation between113

the two types of data.114
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Studies have demonstrated that machine learning-based mapping and inversion methods are115

often effective. Ren et al. [10] proposed a particle swarm optimization-based least-squares sup-116

port vector machine (PSO-LSSVM) algorithm for exploring articulatory-to-acoustic conversion.117

However, the accuracy of these methods tends to deteriorated when predicting downstream acous-118

tic tasks, leading to a significant disparity between the mapped and real features. To address the119

issue of nonlinear ill-posedness in acoustic-articulatory conversion, one approach is to utilize deep120

neural networks (DNN) for feature-level and score-level conversion of both modal features [19].121

However, it should be noted that DNNs cannot effectively model long-term dependencies in fea-122

tures. Therefore, one proposed algorithm utilized a bi-directional long short-term memory recur-123

rent (BiLSTM) [33] as a conversion model. This model efficiently captured acoustic-articulatory124

features over long distances. However, BiLSTM requires an externally specified context window.125

Thus, the deep recurrent mixture density network (DRMDN) algorithm was proposed, which126

can adaptively learn contextual information in the features [34]. In addition, with the rise of127

generative models, conversion models based on variational auto-encoders (VAE) have also been128

proposed. These models can be combined with regularization techniques to learn the kinematic129

trajectories of articulatory organs using the movement parameters of the jaw, tongue, and lips130

[32]. Our concept is to construct a bi-directional acoustic-articulatory conversion model based on131

the generative adversarial concept. This model will be able to perform mapping and inversion132

tasks simultaneously, allowing for a more comprehensive understanding of the potential conversion133

laws between the two modal features.134

Acoustic signals are generated by the unique movements of articulatory organs [35]. Therefore,135

there is a natural coupling and complementarity between the emotional information embedded in136

speech and the movement trajectories of articulatory organs. Common approaches for exploring137

the emotional relevance of acoustic and articulatory signals include meta-analyses, multivariate138

discriminant analyses, and machine learning [19, 30, 32]. Among these, machine learning ap-139

proaches have made great strides in the field. Lee et al. [11] used a machine learning approach140

to demonstrate that human articulatory joints are significantly advanced in recognizing emotions141

such as neutrality, anger, happiness, and excitement. Kim et al. [36] concluded that articulatory142

joint emotional information can be predicted using an inverse model. Based on this, Erickson et143

al. [37] used the XGBoost method to achieve a significant improvement in emotion recognition144

performance for bimodal features by fusing speech and articulation compared with the perfor-145

mance for single-modal features. These studies validated the advancement of articulatory features146

as well as the fusion of acoustic and articulatory features in emotion recognition. However, the147

problem of mapping features with a lower emotion recognition rate than the real features has been148

neglected [10, 19]. In recent years, contrastive learning has shown promising results in feature149

enhancement research. This method typically compares pairs of positive and negative samples150

to learn more discriminative feature representations. One study [38] found that incorporating151

comparative learning as a feature enhancement module into the overall recognition framework152

could significantly improve the generalization performance of the system. Based on this, we plan153
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to build a feature enhancement module that can effectively enhance the emotional attributes of154

mapped features.155

Multi-modal and multi-scale fusion of features is currently a mainstream research direction in156

SER [22, 23]. For example, Chen developed a network based on a connected attention mechanism157

to achieve the early fusion of multi-scale features [39]. Zhu used a global perceptual fusion module158

to learn multi-scale emotion representations [40]. Heqing used a multi-level acoustic information159

module to extract multi-scale features of MFCC, spectrograms, and acoustic information; these160

features were then fused using a collaborative attention mechanism [41]. Xingfeng proposed161

the usd of a three-layer model comprising acoustic features, semantic primitives, and affective162

dimensions to represent the subtle emotional information in speech [24]. These approaches have163

pushed the development of SER, but they have focused only on the expression of emotion from164

multiple perspectives, ignoring the variability in the internal parameters of the features themselves165

in portraying emotion. Acoustic and articulatory features are composed of many different fine-166

grained parameters, and some variability exists in the portrayal of emotions across different167

fine-grained parameters. However, many CNN-based SER systems have been developed in the168

field of classifier research [25, 28]. For example, Zhao et al. [42] constructed a multi-dimensional169

cascaded CNN-LSTM network to learn local and global emotion representations from speech and170

spectrograms. Anvarjon et al. [43] proposed a low-complexity model by improving the pooling171

strategy of the CNN convolutional layers. Zhang et al. [44] reported the existence of a gap172

between emotions and features and proposed deep convolutional neural networks (DCNNs) to173

bridge this gap. However, the fixed feeling field of the CNN and the same coefficients of the174

channel dimension weights limit the learning ability of the model, which leads to difficulty in175

fitting the model to the differences between channel dimensions and emotions. Moreover, the176

fusion of acoustic and articulatory features has a certain degree of variability in the portrayal177

of emotions in different dimensional channels after the features have been extracted by the deep178

network. Therefore, we combine a sensory field-scalable TCN with an attention mechanism to179

solve the problem of feature and dimension channel weight adaptation.180

As mentioned above, traditional conversion models rely on a single mapping or inversion181

approach to investigate the correlation between two modalities. This limitation hinders the182

ability of these models to analyze the interplay between modalities in terms of reconstructing183

acoustic or articulatory signals, resulting in low predictive power and a low data mining rate.184

In SER studies that utilize acoustic-articulatory conversion, the issue of a lower recognition rate185

for mapped feature emotions compared with real features remains unresolved, directly impacting186

the applicability of the method. Conversely, the issue of the adaptive weighting of features187

and dimensional channels in the recognition network has been overlooked. To address these188

challenges, this study proposes a bi-directional acoustic-articulatory conversion-based framework189

for emotion recognition that incorporates enchantable mapping and inversion techniques into a190

weight-adaptive emotion recognition network. This framework not only synchronizes the mapping191

and inversion tasks through a generative adversarial mechanism, but also enhances the emotions192
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of the mapped features using contrastive learning and attention mechanisms while also adapting193

the weights of the recognition network.194

3. Proposed Bi-A2CEmo framework195

The proposed Bi-A2CEmo framework can synchronize the generation of mapped acoustic and196

articulatory features, leading to improved recognition results and enhanced overall recognition of197

the SER system. Table 1 summarizes the notation used in this study.198

Table 1: Notation.

Notation Description Notation Description

X articulatory feature domain E expectations

x articulation features GX→Y forward generator

x̂ mapped articulatory features GY→X inverse generator

x̂′ enhanced mapped articulatory features DX articulation discriminator

x̃ cycle articulation features DY acoustic discriminator

Y acoustic MFCC feature domain La adversarial loss function

y acoustic MFCC features Lc cycle consistency loss function

yi i-th order MFCC feature L1 L1 regularization

ŷ mapped acoustic MFCC features Lbce cross entropy loss function

ŷ′ enhanced mapped acoustic features Lg generator loss function

ỹ cycle acoustic MFCC features Lm bounded mapping loss function

z Acoustic-articulatory fusion features ⊗ element-wise product

z′ features of TCN output fα embedding layer

z̄ features of ResTCN output gα projection layer

z̄′ features of Ff module outputs qα prediction layer

z̄′′ features of Ff and Fd module outputs ⊕ element-wise add

ri real features of the i th sample Lk KCLNet loss function

F features of different types of parameters ← assign a value

C network output dimension-channel t iteration

Ff feature attention mechanisms w full connectivity layer mapping

Fd dimensional attention mechanisms Υ network function of EN-branch

∥∥22 L2 cosine similarity loss function ℜ field of real numbers

Ex̂,y sum of loss expectations for x̂ and y Ntest test set sample size

θt trainable parameters of EN-branch at iteration t ranki serial number of sample i

ηt features for CN-branch clustering at iteration t M number of positive samples

Fave feature means under different dimensional channels N number of negative samples

ηy optimal real representation clustered from y ln logarithmic functions based on e

ei mapping features of the i th sample θ learnable parameters for EN-branch

Before model training, we conducted feature extraction on the bimodal emotion dataset199

captured by the EMA, which encompassed acoustic and articulatory data. The extracted fea-200

tures, comprising 28-dimensional kinematic features of articulatory organs, x, and 60-dimensional201

MFCC features, y, were then employed as inputs for the model. Fig. 1 shows the architecture of202

Bi-A2CEmo, which consists of three key components: Bi-MGAN, KCLNet, and ResTCN-FDA.203

During the training process, Bi-MGAN employs a generative adversarial approach to predict the204

mapped features. These mapped features are subsequently passed to KCLNet to enhance the205

emotional attributes. The enhanced mapped features are fused with real features, and the result-206

ing fused features are utilized by ResTCN-FDA for the emotion recognition task. The following207

subsections provide a detailed discussion of these three components.208
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Figure 1: Proposed Bi-A2CEmo framework, which comprises three steps: (1) bi-directional acoustic-articulatory

conversion is achieved by inputting real features (x or y) into Bi-MGAN to predict the corresponding mapped fea-

tures (ŷ or x̂); (2) KCLNet enables the mapped features to learn the emotional attribute information of the optimal

real features using a contrastive learning strategy; and (3) ResTCN-FDA performs adaptive emotion modeling on

the fused features (real features and enhanced mapping features). Two cases of bi-directional acoustic-articulatory

conversion are illustrated: (1) when the real articulatory feature, x, is known, Bi-A2CEmo sequentially predicts

the mapped acoustic feature, ŷ, enhances the mapped acoustic feature, ŷ′, and performs emotion recognition of

the fused feature, (x + ŷ′); (2) when the real acoustic feature, y, is known, Bi-A2CEmo sequentially predicts the

mapped articulatory feature, x̂, enhances the mapped articulatory feature, x̂′, and performs emotion recognition

of the fused feature, (y + x̂′).

3.1. Bi-MGAN209

The goal of the conversion network is to use real features to generate highly precise mapped210

features. The aim of this study is to investigate the impact of these mapped features on SER.211

The cycle consistent generative adversarial network (CycleGAN) does not require pairs of training212

data when applied to image-style conversion tasks [45], unlike for acoustic and articulatory feature213

conversion tasks. Most speech in the human body relies on the production of unique vocal tract214

shapes, which necessitates a parallel relationship between acoustic and articulatory data. To215

enhance the mapping capabilities of the conversion model, we propose Bi-MGAN for acoustic216

and articulatory conversion tasks. Our improvement focuses on the network structure and loss217

function of CycleGAN.218

3.1.1. Bi-MGAN structure219

Compared with image-style conversion tasks, acoustic-articulatory conversion is less com-220

putationally intensive. In this study, the generator and discriminator are optimized to reduce221

redundancy in the conversion network, prevent gradient vanishing, and improve the mapping222

accuracy. As shown in Fig. 2, the Bi-MGAN model consists of a forward generator (GX→Y), in-223

verse generator (GY→X), articulatory discriminator (DX), and acoustic discriminator (DY). Fig.224

2 shows the data flow when training the Bi-MGAN model with acoustic and articulatory features225
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as inputs. The inverse generators in the upper and lower halves of the figure are the same mod-226

ules. Similarly, the forward generators in the upper and lower halves of the figure are also the227

same modules.228

Figure 2: Loss function and data flow of Bi-MGAN during training.

• GX→Y. The forward generator utilizes articulatory features to establish a direct correspon-229

dence with acoustic features, aiming to prevent DY from accurately determining the mapped230

and real acoustic features. To minimize repetition, we implemented the up-sampling and231

down-sampling layers using a dense layer. The up-sampling layer increases the dimen-232

sionality of the input 28-dimensional articulatory features to 512 dimensions, while the233

down-sampling layer converts the high-dimensional articulatory features into 60-dimensional234

acoustic features. The structure of GY→X is designed to be the same as that of GX→Y, with235

the difference that GY→X utilizes MFCC features to represent the corresponding articu-236

latory features. The objective of GY→X is to prevent DX from accurately distinguishing237

between the mapped and real articulatory features.238

• DX. Articulation discriminators evaluate and calculate both real and mapped articulation239

characteristics. They utilize the weight parameters of the loss function callback GY→X to240

enhance the precision of the mapped features, effectively serving as supervisors and pro-241

viding feedback for the mapped articulation features. DX is essentially a binary recognizer242

that aims to accurately discriminate between mapped and real articulatory features. This243

is the exact opposite of what is expected from GY→X. The conversion model determines the244

global optimal solution through an iterative optimization process that alternates between245

10



the two. DY is used to distinguish between real and mapped acoustic features, and the loss246

function is employed to adjust the weight parameters of GX→Y. This allows for supervision247

and feedback of the mapped acoustic features.248

Fig. 3(a) shows a schematic diagram of the Bi-MGAN model, which converts real articulatory249

features, x, into mapped acoustic features, ŷ, and then converts ŷ back into cyclic articulatory250

features, x̃. This process is described below.251

Step 1: The real acoustic features x are converted into their corresponding mapped articula-252

tory features, ŷ (1 in Fig. 3(a)).253

Step 2: The acoustic feature mapping loss is calculated using the error between y and ŷ.254

Step 3: The mapped articulatory features, ŷ, are converted into cyclic acoustic features, x̃ (2255

in Fig. 3(a)).256

Step 4: By calculating the error between x and x̃, the loss of cyclic consistency in the articu-257

latory features can be determined.258

Similarly, Fig. 3(b) shows a schematic diagram of the Bi-MGAN for converting real acoustic259

features, y, into mapped articulatory features, x̂, and then converting x̂ into cyclic acoustic260

features, ỹ.261

(a) x→ ŷ → x̃ of the mapping principle. (b) y→ x̂→ ỹ of the mapping principle.

Figure 3: Schematic of the proposed Bi-MGAN network.

3.1.2. Bi-MGAN loss function262

To address the issue of nonlinear ill-posedness in acoustic and articulatory conversion, we263

introduce a generator loss function and boundedness mapping loss function, which are derived264

from the loss function of CycleGAN. During training, Bi-MGAN incorporates four types of losses:265

generator loss, adversarial loss, cycle consistency loss, and bounded mapping loss. Fig. 2 illus-266

trates the data flow relationship of the four loss functions in Bi-MGAN. The solid line represents267

forward propagation, whereas the dashed line represents backpropagation. In Bi-MGAN training,268

each epoch prioritizes the training of the discriminator. Once the discriminator can accurately269
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identify the real and mapped features, it then proceeds to train GX→Y and GY→X. This in-270

volves alternating iterative optimization of the generator and discriminator, which helps make271

the mapped features closer to the real features.272

• Adversarial loss function [46]. The loss functions for GX→Y and DY, which are used to273

measure the discriminability of the mapped features from real features, are expressed as274

follows:275

La (GX→Y,DY) = Ex∼X [ln (1−DY (GX→Y (x)))] + Ey∼Y [lnDY (y)] (1)

When DY discriminates against y, the loss value for the data is set to 1 if the discrimination276

is based on actual data. In contrast, when DY discriminates against GX→Y (x), the loss277

value for the data is set to 0 if the discrimination is based on mapped data.278

• Cycle consistency loss function [46]. The mapped features are converted to cycle features to279

enable the convergence of cycle features to real features. The equation is given as follows:280

Lc (GX→Y,GY→X) = Ey−Y [L1 (y,GX→Y (GY→X(y)))] + Ex→X [L1 (x,GY→X (GX→Y(x)))]

(2)

Where L1 represents L1 regularization.281

• Generator loss function. We have added Lg as a base mapping function to enhance the282

conversion capabilities of the generator. The loss functions GX→Y and GY→X are thus283

defined as follows:284

Lg (GX→Y) = Ex−X [Lbce (GX→Y (x))] (3)
285

Lg (GY→X) = Ey−Y [Lbce (GY→X (y))] (4)

Where Lbce denotes the cross-entropy loss function, and Bi-MGAN utilizes Lbce to deter-286

mine GX→Y(x). If the result of the judgment is true, it means that GX→Y(x) has become287

indistinguishable from the real feature, y. If this judgment is false, it will result in errors.288

Eq. (4) is identical to Eq. (3); the only distinction is that Eq. (4) involves the manipulation289

of GY→X(y).290

• Bounded mapping loss function. To ensure the accuracy of the mapping features, relying291

solely on Eqs. (1)-(4) is not adequate to accomplish the acoustic and articulatory conversion292

tasks. In this study, the regularization of real and mapped features is applied to Bi-MGAN293

to constrain the range of the generated mapped features. This is achieved by reducing the294

number of mapped features with large errors generated by the model during training. The295

equations for the forward and inverse bounded mapping loss functions are as follows:296

Lm (y,GX→Y) = Ex−X,y−Y [L1 (y,GX→Y(x))] (5)
297

Lm (x,GY→X) = Ex−X,y−Y [L1 (x,GY→X(y))] (6)

Eq. (5) states that L1 (y,GX→Y(x)) is the L1 difference between the real acoustic feature,298

y, and the mapped acoustic feature, GX→Y(x). Eq. (6) is equivalent to Eq. (5).299
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3.2. KCLNet300

The purpose of KCLNet is to enhance the emotional information associated with the mapped301

features and address the issue of insufficient emotional information available for these features.302

KCLNet is a two-channel neural network comprising a clustered neural branch (CN-branch)303

and an enhanced neural branch (EN-branch). The CN-branch clusters real features using k-304

means clustering to extract the most emotionally expressive features from the sample. The305

EN-branch enhances the mapped features by incorporating emotional information through an306

encoder. Finally, KCLNet calculates the difference between the improved mapped features and307

the actual features using a cosine similarity (CosSim) function. This function enhances the308

emotional information of the mapped features.309

3.2.1. KCLNet structure310

KCLNet primarily aims to enhance the emotional information of the mapped features and311

address the issue of insufficient emotional information in the mapped features. This is achieved312

by continuously aligning the mapped features with the actual features, using an optimal emotional313

expression through a comparison prediction method. Fig. 4 illustrates KCLNet with real acoustic314

features y and mapped articulatory features, x̂, as inputs. Its structure can be interpreted in terms315

of the CN-branch and EN-branch.

Figure 4: KCLNet network for enhanced mapping of articulatory features.

316

• CN-branch. First, we randomly set seven initial center-of-mass points. Then, we calculate317

the distance between each feature and the seven center-of-mass features. Based on this318

distance, each feature is assigned to an appropriate cluster. Finally, the center-of-mass319

points are updated based on the affiliation of the clusters. The most emotionally informative320

real acoustic features are obtained by iteratively performing operations until all feature321

points are closest to the center of mass.322

• EN-branch. The EN-branch consists of embedding encoders, projection, and prediction.323

The embedding encoder (fα in Fig. 4) deeply encodes the mapped articulatory features324

to generate emotionally expressive embedding features. The projection encoder (gα in325

Fig. 4) projects the embedding features into a high-dimensional space. It consists of a326

fully connected (FC) layer, a normalization layer, and a ReLU. The FC layer that maps327
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articulatory features has 60 dimensions, whereas that of the FC layer that maps acoustic328

features has 28 dimensions. The normalization layer and ReLU are connected after the FC329

layer. The predictive encoder (qα in Fig. 4) predicts the projected features to generate330

enhanced mapped articulatory features.331

We comprehend KCLNet using the expectation-maximization (EM) algorithm, which consists332

of four steps: optimizing real feature extraction, predicting mapped features, contrasting emo-333

tional similarities, and applying a stop-gradient. The specific operations for each epoch are as334

follows:335

Step 1: The optimization of real features is performed by KCLNet, which clusters the real336

features based on different emotional states and identifies the optimal real features for337

each emotion from a pool of 2415 real features.338

Step 2: Prior to predicting the mapping features, KCLNet initially conducts embedding and339

projection of the mapping features and subsequently generates enhanced mapping340

features using the prediction encoder.341

Step 3: The cosine similarity comparison loss function is employed to evaluate the dissimilarity342

between the emotional information of the real and mapped features.343

Step 4: The CN-branch utilizes a stop-gradient to prevent the back-propagation process and344

ensure optimal emotion representation of the real features obtained from clustering.345

Conversely, the EN-branch combines forward and back propagation to update the346

network parameters in alternating iterations.347

3.2.2. KCLNet loss function348

KCLNet optimizes the real features and enhances the emotion of mapped features through349

iterative optimization. Using the real acoustic features, y, and mapped articulatory features, x̂,350

as inputs to KCLNet, the loss function, Lk, of the model is defined as follows:351

Lk(θ, η) = Ex̂,y

[
∥Υθ(x̂)− ηy∥22

]
(7)

where x̂ represents the mapped articulatory features, y represents the real acoustic features, Υ352

represents the network function of the EN-branch, θ represents the learnable parameter of the353

EN-branch, ηy represents the optimal real representation under different emotional clusters from354

k-means clustering, Ex̂,y represents the sum of the loss expectations of x̂ and y, and ∥∥22 represents355

the L2 cosine similarity loss function. Eq. (8) shows the optimization objective of KCLNet.356

min
θ,η

Lk(θ, η) (8)

We interpret this optimization objective in terms of EM, thus splitting the above equation357

into two sub-objectives: Eq. (9) and Eq. (10).358

θt ← argmin
θ

p
(
θ, ηt−1

)
(9)
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ηt ← argmin
η

Lk

(
θt, η

)
(10)

where ← represents the assignment and number of epoch iteration rounds, t is the iteration359

number, θt represents the learnable parameters of the EN-branch at t iterations, ηt−1 denotes the360

optimal real features clustered by the CN-branch at t− 1 iterations, and ηt denotes the optimal361

real features clustered by the CN-branch at t iterations. KCLNet solves for ot by fixing the ηt−1362

variable through the stop-gradient. When θt is known, it is substituted into Eq. (10) to find ηt.363

The above derivation uses only mapped articulatory features and real acoustic features as inputs,364

and it is necessary to swap x and y when mapped acoustic features and real articulatory features365

are used as inputs.366

3.3. ResTCN-FDA367

During the training of the recognition model, the same weights are assigned to different368

channels with different dimensional features. This can result in underutilization of emotional369

information. In this study, we propose a network for emotion recognition that combines ResTCN370

with an FDA attention mechanism. The FDA allows for weighting and adjustment of the features371

of the ResTCN output, thereby improving the utilization of acoustic and articulatory features372

that are significantly correlated with emotions.373

Fig. 5 shows the overall ResTCN-FDA emotion recognition network. Here, z, which combines374

the real and mapped features, undergoes sequential dilation convolution, normalization, ReLU,375

and dropout operations in ResTCN. This process will generate the feature z′, which contains the376

elemental dependencies. Then, z and z′ are concatenated such that the features contain both377

overall emotion information and local element dependency information. Finally, the ResTCN378

output feature, z̄, is input into the FDA to finalize the weight reallocation of the feature and di-379

mension channels. During training, the convolution kernel for the dilated convolution of ResTCN380

is set to two. The module has a total of three ResTCN layers, so the overall dilation factor is381

d = {20, 21, 22} in order. The variables z ∈ RF×C , F , and C represent the number of features382

and output channel dimension of the feature map, respectively.383

As shown in Fig. 5, the output signal, z̄, of ResTCN sequentially passes through the feature384

attention mechanism, Ff ∈ RF×1, and the dimension attention mechanism, Fd ∈ R1×C , to obtain385

the output signal, z̄′′ ∈ RF×C . The entire process is represented as follows:386

z̄′ = Ff (z̄)⊗ z̄ (11)

387

z′′ = Fd (z̄
′)⊗ z′ (12)

where
⊗

is the element-wise product. The details of Ff and Fd are given below.388

• Feature attention. Different features respond differently into emotion recognition. To en-389

hance the extraction of emotional information from multi-class features, this study calculates390

the weights of each feature class in z̄. As shown in Fig. 5, the transposed feature vectors are391
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Figure 5: Overall structure of the ResTCN-FDA network.

first passed through global maximum pooling (GMP) and global average pooling (GAP).392

Then, the outputs of both are combined and passed through the convolutional and sigmoid393

layers to calculate the feature attention weight, Ff ∈ RF×1.394

• Dimensional attention. As shown in Fig. 5, the GAP operation is first performed on z̄′395

to obtain the mean feature, Favc, for each dimension channel. Dimensional attention is396

implemented using an FC layer and a sigmoid function. Finally, the weight coefficients of397

the dimensional attention are applied to z̄′, thereby assigning different weight coefficients398

to each dimension channel. The relevant equations for these calculations are as follows:399

Fave,c =
1

F

F∑
f=1

(z′c(f)) (13)

400

Fd (z̄
′) = Sigmoid (wFave ) (14)

Eq. (13) represents the mean Fave,c of the features in channel c, and z′c ∈ RF×1 represents401

the F × 1 features in channel c. In Eq. (14), w is the FC layer.402

4. Emotion database and data representation403

Owing to the lack of publicly available parallel acoustic and articulatory multi-modal emo-404

tional datasets, we recorded the Suzhou and Taiyuan emotional datasets in Mandarin with elec-405

tromagnetic articulation, electroglottography, video, and audio (STEM-E2VA) using EMA AG501406

and extracted the features of both modalities based on this database.407

4.1. Construction of the STEM-E2VA acoustic-articulatory emotional database408

Owing to the absence of parallel acoustic and articulatory emotion datasets, we recorded the409

STEM-E2VA dataset and used it as the primary database for this study. It contains recordings and410
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articulatory data from 22 native Mandarin-speaking individuals. Of the 22 participants, 62.5%411

had a bachelor’s degree, and 37.5% had a master’s degree. The average age of the participants was412

25 years, and the male-to-female ratio was 1:1. Prior to data collection, all participants completed413

the Symptom Self-Rating Scale SCL-90. Only those who passed the scale were informed of the414

data collection process. The STEM-E2VA database was completed based on the EMA AG501415

collection. During recording, the EMA acquired the Cartesian coordinates of transducers fixed416

to the articulatory organs as articulatory data through electromagnetic coupling. The data was417

collected at a sampling rate of 250 Hz. In addition, the EMA synchronously recorded the acoustic418

data to form parallel acoustic and articulatory data. Fig. 6 shows the synchronized acoustic-419

articulatory signal waveforms acquired by the EMA AG501. Fig. 6(a) shows the acoustic signals.420

Fig. 6(b) shows the articulatory signals recorded by the hypoglossus sensor. The top three lines421

in the figure represent the positional parameters of the sensor along the X-axis (black), Y-axis422

(blue), and Z-axis (red). The bottom three lines of the graph represent the speed variation of the423

sensor on the X-axis (black), Y-axis (blue), and Z-axis (red).424

(a) Acoustic signals acquired by EMA AG501.

(b) Articulatory signals recorded by the hypoglossus sensor.

Figure 6: Synchronized acoustic-articulatory signals acquired by EMA AG501.

In the data acquisition of STEM-E2VA, we installed 13 sensors. These sensors included three425

reference surface sensors, three bite-plate sensors, four lip sensors, and three tongue sensors.426

The detailed configurations of these sensors are shown in Fig. 7. The reference surface sensors427

were placed at positions B1, B2, and B3 on the participant to minimize errors caused by head428

movements during data collection. The bite plate sensors were arranged at positions P1, P2,429

and P3 on the surface of the bite plate. The reference surface sensor and bite plate sensor were430

intended to perform head and tooth calibration during the pre-processing of articulatory data431

and were not involved in articulatory data acquisition. The lip and tongue sensors were used to432

collect trajectory data of the articulatory organs. They were arranged as follows: left lip, right433

lip, upper lip, lower lip, tongue root, middle tongue, and tongue tip. After the sensors were able434

to transmit data consistently, the subjects were asked to articulate the contents of the corpus. We435
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obtained 2415 parallel acoustic and articulatory data points. The amount of data was consistent436

for each emotion; therefore, we do not consider the error in recognition results caused by data437

imbalance in this study.438

(a) Reference

surface sensor (b) Vocal organ sensor (c) Bite plate sensor

Figure 7: Sensor settings for data acquisition by EMA AG501.

4.2. Acoustic and articulatory features439

In this study, we extract MFCC and articulatory features from acoustic and articulatory data,440

respectively. The MFCC is widely used in acoustic and articulatory conversion tasks because of441

its robust representation of timbres in speech. This enables the articulatory features generated442

through MFCC mapping to exhibit good performance. In this study, MFCC is used as the443

acoustic feature, and the acoustic feature set is denoted by Y. yi is the i-th order MFCC; the444

skewness, kurtosis, mean, variance, and median parameters are extracted sequentially for yi with445

i = 12. Therefore, Y is the MFCC feature with a dimension of 60.446

Among the articulatory features, this study considers the motion features of the tongue and447

lips as the main features, and the displacement and velocity features of the articulatory organs448

when they move are extracted; X is used to denote the articulatory feature set. As shown in449

Fig. 7(b), X contains 21-dimensional displacement parameters for the left lip, right lip, upper lip,450

lower lip, tongue root, tongue middle, and tongue tip in a three-dimensional coordinate system,451

as well as seven-dimensional velocity parameters. Therefore, the X feature set is a 28-dimensional452

articulatory motion feature.453

5. Experiments454

To demonstrate the state-of-the-art of the proposed Bi-A2CEmo framework, this study presents455

an experimental evaluation of the overall framework and each of its three components. This sec-456

tion describes the experiments designed to answer the following research questions:457

RQ1: How does the proposed Bi-A2CEmo framework perform in emotion recognition tasks com-458

pared with the baseline?459
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RQ2: How does the proposed Bi-MGAN algorithm perform in terms of forward and inverse460

mapping, compared with the baselines?461

RQ3: Can the proposed KCLNet algorithm effectively solve the problem of low emotion recog-462

nition of mapped versus real features?463

RQ4: Can the proposed ResTCN-FDA algorithm handle speech emotion recognition tasks better464

than the baselines?465

In addition, a five-fold cross-validation scheme was used for all experiments during the training466

phase. The ADAM optimizer was used to update the step sizes. The neural networks implemented467

in this study were built using the TensorFlow library, Keras, and Scikit-learn.468

5.1. Datasets469

The experiments were evaluated using our self-constructed dataset and three publicly available470

datasets.471

(1) STEM-E2VA: Our constructed dataset includes both acoustic and articulatory data.472

We selected 2415 parallel acoustic-articulatory emotion data in this study, which included seven473

emotions: neutral, ecstatic, pleased, angry, indifferent, pained, and sad.474

(2) EMO-DB1: This public speech database was organized by the University of Berlin, Ger-475

many, and recorded by 10 professional actors [47]. We selected 535 speech data samples from the476

dataset, which included seven emotions: anger, fear, boredom, disgust, joy, nertral, and sadness.477

(3) CASIA2: This is a Chinese speech emotion dataset recorded by the Institute of Automa-478

tion, Chinese Academy of Sciences [48]. For this study, we selected 1200 speech data points from479

this dataset, which included six emotional states: anger, fear, happiness, neutrality, sadness, and480

surprise.481

(4)RAVDESS3: The Ryerson Audio-Visual Database of Emotional Speech and Songs (RAVDESS)482

[49] is a publicly available multi-modal emotional dataset. The dataset contains video and audio-483

only emotional data from 24 professional performers consisting of 12 females and 12 males. The484

RAVDESS comprises 7356 files. In this study, we selected only 1440 speech files that included485

eight emotional expressions: neutral, calm, happy, sad, angry, fearful, surprised, and disgusted.486

5.2. Bi-directional acoustic-articulatory conversion for emotion recognition (RQ1)487

In this study, we explored the effect of bi-directional acoustic-articulatory conversion on SER488

based on Bi-A2CEmo and compared it with mainstream recognition algorithms to validate the489

effectiveness of the Bi-A2CEmo framework. The experiments were dominated by parallel acoustic-490

articulatory data from STEM-E2VA, and the EMO-DB [47], CASIA [48], and RAVDESS [49]491

datasets were used to validate the improvement provided by the ResTCN-FDA. The accuracy492

(ACC), F1-score (F1), area under the curve (AUC), and confusion matrix were used as evaluation493

1http://emodb.bilderbar.info/docu/#emodb
2http://www.chineseldc.org/resource_info.php?rid=76
3https://zenodo.org/record/1188976
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metrics. The ACC reflects the proportion of samples correctly classified and is expressed as494

(TP+TN)/(TP+TN+FP+FN), where TP denotes true positives, TN denotes true negatives,495

FP denotes false positives, and FN denotes false negatives. The closer the parameter values of496

these evaluation metrics are to 1, the better the classification performance of the model.497

In experiments on the effect of bi-directional acoustic-articulatory conversion on emotions, the498

Bi-A2CEmo framework gave rise to two variants: Bi-A2CEmoa and Bi-A2CEMob. Bi-A2CEmoa499

utilized the ResTCN-FDA algorithm, whereas Bi-A2CEMob employed both the Bi-MGAN and500

ResTCN-FDA algorithms. The experimental paradigm for exploring the effect of bi-directional501

acoustic-articulatory conversion on SER based on Bi-A2CEmo was as follows: first, we extracted502

the acoustic and articulatory features of STEM-E2VA, generated the mapping features using Bi-503

MGAN, enhanced the emotional attributes of the mapping features using KCLNet, and finally504

used ResTCN-FDA as the recognition network. The respective evaluation metrics were compared505

by inputting the features of different stages of the modality into ResTCN-FDA. Table 2 summa-506

rizes the evaluation metrics for the real, mapped, and enhanced mapped features of the acoustic507

and articulatory signals on ResTCN-FDA.508

As indicated in Table 2, among the unimodal features, the enhanced mapped acoustic features509

had the highest ACC of 80.93%, and the mapped articulatory features had the lowest ACC of510

53.02%. For both articulatory and acoustic features, the evaluation metrics of the enhanced511

mapped features were higher than those of the real features, which in turn were higher than512

those of the mapped features. This indicates that the mapped features contain less emotional513

information than the real features, i.e., forward and inverse mapping will reduce the amount of514

emotional information in the features. Meanwhile, (b) and (c) or (e) and (f) in Table 2 confirm515

that KCLNet can effectively enhance the emotional attributes of the mapped features.516

As indicated in Table 2(k), among the bimodal fusion features, the feature that fused the en-517

hanced mapped acoustics with real articulation exhibited the highest emotion recognition rate of518

89.04%. As presented in Table 2(h), the features fusing mapped acoustics with real articulation519

had the lowest recognition rate of only 72.47%. The recognition rate of real acoustic features520

was improved by 3.88% and 12.19% after fusion with mapped articulatory features and enhanced521

mapped articulatory features, respectively; the recognition rate of real articulatory features was522

improved by 8.91% and 25.48% after fusion with mapped acoustic features and enhanced mapped523

acoustic features, respectively. This indicates that both mapped features and enhanced mapped524

features act as emotional complements to real features, and the emotional complementary effect of525

enhanced mapped features is more effective than that of mapped features. This also demonstrates526

that bi-directional acoustic-articulatory conversion can help the SER system learn potential emo-527

tional attributes in acoustic and articulatory signals that have been ignored previously, leading528

to a significant increase in the emotion recognition rate of the model.529

To test the performance and robustness of the SER system, two comparative analyses were530

performed: the benchmarking of Bi-A2CEmoa with previous research and the comparison of531

the model with the same input features. Table 3 summarizes the results of the comparison of532
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Table 2: Evaluating the emotion recognition performance (%) of the proposed method of the STEM-E2VA dataset.

No. Features Framework Dimension ACC F1 AUC

a Acoustic(R) Bi-A2CEmoa 60 75.63 75.44 76.82

b Acoustic(C) Bi-A2CEmob 60 59.23 58.69 59.82

c Acoustic(E) Bi-A2CEmo 60 80.93 80.69 82.92

d Articulatory(R) Bi-A2CEmoa 28 63.56 62.96 63.87

e Articulatory(C) Bi-A2CEmob 28 53.02 52.03 53.61

f Articulatory(E) Bi-A2CEmo 28 68.76 69.68 70.38

g Acoustic(R)+Articulatory(C) Bi-A2CEmob 88 79.51 79.69 79.97

h Acoustic(C)+Articulatory(R) Bi-A2CEmob 88 72.47 72.45 72.95

i Acoustic(R)+Articulatory(R) Bi-A2CEmoa 88 83.77 83.64 83.97

j Acoustic(R)+Articulatory(E) Bi-A2CEmo 88 87.82 87.70 87.98

k Acoustic(E)+Articulatory(R) Bi-A2CEmo 88 89.04 88.74 89.22

1 (R) represents the real features recorded by the EMA. (C) represents the mapped features converted by

Bi-MGAN. (E) represents the enhanced mapped features jointly processed by Bi-MGAN and KCLNet.

2 Bi-A2CEmoa represents a variation of the framework that utilizes the ResTRCN-FDA algorithm. Bi-

A2CEmob represents a variation of the framework that utilizes the Bi-MGAN and ResTCN-FDA algorithms.

The Bi-A2CEmo framework utilizes the Bi-MGAN, KCLNet, and ResTCN-FDA algorithms.

Bi-A2CEmoa with previous studies on the EMO-DB, RAVDESS, and CASIA databases. After533

a thorough and meticulous analysis of all of the studies presented in Table 3, the methodology534

introduced in this study achieved the highest ACC and F1 on the EMO-DB and CASIA datasets.535

However, upon evaluation of the RAVDESS database, the recognition efficacy of Bi-A2CEmoa536

was found to be slightly lower than that of the benchmarks set forth in Ref. [50]. To elucidate537

this variation, we used the experimental methodology outlined in Ref. [50]. Our investigation538

revealed that the study employed a comprehensive LibROSA feature ensemble comprising 386 di-539

mensions, including MFCCs, chroma vectors, mel-scaled spectrograms, spectral contrast features,540

and tonal centroid features. It is worth noting that the 60-dimensional MFCC features used in541

our study were a subset of the LibROSA feature set. In table 4, we compare Bi-A2CEmoa with a542

conventional CNN and LSTM [50], as well as the latest HS-TCN [26] and DRN [51] algorithms,543

using 60-dimensional MFCC as the input features. As indicated in Table 4, the proposed network544

achieved accuracies of 80.41%, 75.63%, 80.16%, and 66.55% on the CASIA [48], STEM-E2VA,545

EMO-DB [47], and RAVDESS [49] databases, respectively, which is a significant improvement in546

performance compared with the CNN, LSTM, HS-TCN, and DRN models. In addition, ResTCN-547

FDA achieved 2.01%-7.85% and 3.69%-7.19% improvements in the F1-score and 3.28%-6.07% and548

2.96%-7.96% improvements in AUC compared with the HS-TCN and DRN networks, respectively,549

thus verifying the effectiveness of the improved Bi-A2CEmo model.550

In the feature validity demonstration, the conventional algorithm uses acoustic features as551

inputs and ignores articulatory information. The Bi-A2CEmo model not only considers the552
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Table 3: Comparison of the current approach with previous studies based on the recognition rate for the EMO-DB,

RAVDESS, and CASIA databases.

Datasets References
Results(%) Brief Description

ACC F1 Feature Classifier Categories

EMO-DB

Li et al. [50] N/A 90.93 MSF LMT
Neutral, Happy, Angry, Sad

This work 91.88 91.45 MFCC Bi-A2CEmoa

Latif et al. [52] 70.98 N/A GeMAPS SVM

Liu et al. [53] 78.66 N/A MFCC SVM Angry, Fear, Boredom, Disgust,

Singh et al. [54] 79.86 N/A MSF DNN-SVM Joy, Neutral, Sad

This work 80.16 80.78 MFCC Bi-A2CEmoa

RAVDESS

Bagus et al. [24] 78.50 N/A HSF LSTM Calm, Happy, Sad, Angry,

This work 75.19 74.97 MFCC Bi-A2CEmoa Fear, Surprised, Disgust

Singh et al. [54] 52.24 N/A MSF DNN-SVM

Liu et al. [53] 64.32 N/A MFCC SVM-RBF Calm, Happy, Sad, Angry, Fear,

Zeng et al. [55] 64.48 N/A Spectrograms GResNets Surprised, Disgust, Neutral

This work 66.55 65.57 MFCC Bi-A2CEmoa

CASIA

Li et al. [50] N/A 78.51 MSF LMT
Neutral, Happy, Angry, Sad

This work 88.75 88.67 MFCC Bi-A2CEmoa

Jiang et al. [56] 51.3 N/A Spectrogram CNN

Zhang et al. [57] 79.67 N/A HSF HPCB Angry, Fear, Happy, Neutral,

Mao et al. [58] 80.02 N/A LLD SVM Sad, Surprised

This work 80.41 81.22 MFCC Bi-A2CEmoa

1 geneva minimalistic acoustic parameter set (GeMAPS).

2 high-level statistical functions (HSF), modulation spectral features (MSF), low-level descriptor (LLD).

3 logistic model trees (LMT), heterogeneous parallel conv-bilstm (HPCB), gated residual networks (GResNets).

emotion of acoustic features, but also the conversion and enhancement of acoustic features. In553

addition, the fusion features of the two modalities are modeled, unlike in conventional algorithms,554

which greatly improves the recognition accuracy of the system. For the STEM-E2VA dataset,555

the recognition rate of ResTCN-FDA with only MFCC input was 75.63%, which was 5.30% lower556

than that with the enhanced mapped MFCC (Table 2(c)), thus demonstrating that Bi-MGAN557

and KCLNet can significantly improve the recognition rate of the system. When real acoustic558

MFCC features are used as the input, Bi-A2CEmo sequentially completes inversion and feature559

enhancement, as well as emotion recognition of the fused features. Table 2(g) and (j) present560

the recognition rates of MFCC with the fusion of mapped articulatory features and enhanced561

mapped articulatory features, respectively; their recognition rates are improved by 3.88% and562

13.41% compared with those of ResTCN-FDA with MFCC as the input. Comparing Table 2563

and Table 4, we can conclude that ResTCN-FDA in Bi-A2CEmo can significantly improve the564

emotion recognition accuracy of the system, and the Bi-A2CEmo framework can accomplish565

the functions of bi-directional acoustic-articulatory conversion and feature emotion enhancement,566

which significantly improves the emotion recognition rate of the system.567

Fig. 8 shows the confusion matrix with a single acoustic or articulatory feature set as the568
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Table 4: Comparison of the recognition algorithm of Bi-A2CEmo with conventional recognition algorithms for the

CASIA, STEM-E2VA, EMO-DB, and RAVDESS datasets (%).

Database CASIA STEM-E2VA EMO-DB RAVDESS

Categories 6 7 7 8

Metrics ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC

CNN 63.00 62.43 63.19 56.77 56.84 57.77 69.72 69.09 69.86 57.29 55.67 57.85

LSTM 62.92 62.55 63.37 58.10 58.04 59.19 68.60 68.51 68.83 56.04 55.87 56.57

HS-TCN 76.25 76.64 76.91 72.81 72.59 72.92 74.76 73.60 75.51 63.29 63.56 63.58

DRN 76.91 76.67 76.94 68.15 68.25 68.86 76.64 74.72 76.96 63.46 61.88 63.90

Bi-A2CEmoa 80.41 81.22 81.43 75.63 75.44 76.82 80.16 80.78 81.58 66.55 65.57 66.86

input. Fig. 9 shows the confusion matrix with acoustic-articulatory bimodal features as the569

input. From Fig.8(a), (b), and (c), it can be observed that the recognition rate of mapped570

acoustic features in the “Ecstatic” and “Painful” states is lower compared with the real features.571

However, the recognition rate of the enhanced mapped acoustic features in the “Pleased” and572

“Angered” states is significantly improved. This suggests that the quality of the features is573

influenced by the mapped acoustic features generated through forward mapping, which vary with574

different emotions. Additionally, it demonstrates the effectiveness of KCLNet in enhancing the575

mapped acoustic features. By comparing Fig. 8(d), (e), and (f), it is evident that the emotional576

quality of the mapped articulatory features varies significantly for different emotions. This also577

serves as evidence of the effectiveness of KCLNet in enhancing the mapped articulatory features.578

By comparing Fig. 8(a), (d), and Fig. 9(c), it can be seen that the fusion of real acoustic features579

with real articulatory features results in a significant improvement in the emotion recognition580

rate.581

By comparing Fig. 8(a) and Fig. 9(a), (c), and (d), we observe that the mapped articula-582

tory features, real articulatory features, and enhanced mapped articulatory features all provide583

additional emotional information to complement the real acoustic features. Specifically, the en-584

hanced mapped articulatory features exhibit the strongest emotional complementation, whereas585

the mapped articulatory features demonstrate the weakest emotional complementation. By com-586

paring Fig. 8(d) and Fig. 9(b), (c), we can also observe that the mapped acoustic features have587

the most negative impact on the emotion complementation of articulatory features, whereas the588

augmented mapped acoustic features have the most positive impact on emotion complementation.589

5.3. Bi-MGAN performance comparison (RQ2)590

To assess the effectiveness of the generator loss function and boundedness mapping loss func-591

tion, we conducted ablation experiments on the conversion network based on STEM-E2VA. This592

study establishes five sets of networks for validation: GAN [45], CycleGAN [46], Bi-MGAN(G)593

with the inclusion of a generator loss function, Bi-MGAN(M) with the inclusion of a boundedness594

mapping loss function, and Bi-MGAN(GM) with the inclusion of both generator and boundedness595

loss functions. This section evaluates the prediction performance using the mean absolute error596
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(a) Acoustic(R) (b) Acoustic(C)

(c) Acoustic(E) (d) Articulatory(R)

(e) Articulatory(C) (f) Articulatory(E)

Figure 8: Confusion matrix of real, mapped, and enhanced mapped features for acoustic or articulatory features.

(MAE) and root mean square error (RMSE).597

As indicated in Table 5, the MAE and RMSE of Bi-MGAN(G) were reduced by 0.010-0.093598

mm and 0.011-0.087 mm, respectively, whereas those of Bi-MGAN(M) were reduced by 0.169-599

0.248 mm and 0.038-0.294 mm, respectively, compared with those of CycleGAN. This indicates600

that both the generator loss function and bounded mapping loss function are beneficial for both601

forward and inverse mapping. These functions help convert the model to generate highly accurate602

mapping features. In addition, the MAE and RMSE of Bi-MGAN(GM) are lower than those of603
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(a) Acoustic(R)+Articulatory(C) (b) Acoustic(C)+Articulatory(R)

(c) Acoustic(R)+Articulatory(R) (d) Acoustic(R)+Articulatory(E)

(e) Acoustic(E)+Articulatory(R)

Figure 9: Confusion matrix for acoustic-articulatory bimodal features.

Bi-MGAN(M) and Bi-MGAN(G). This indicates that the combination of the two losses proposed604

in this study enhances the mapping ability of the conversion model and brings the mapped features605

closer to the real features.606

Table 6 presents the performance of the proposed conversion network for both forward and607

inverse mapping compared with the baseline. The baseline methods include the PSO-LSSVM608

[10], DRMDN [34], BiLSTM [33], and DNN. DNN is implemented using neural networks with609

three hidden nonlinear layers, each consisting of 2048 nodes. BiLSTM has 500 units in the first610
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Table 5: Bi-MGAN network ablation experiment.

Method
Forward Mapping Inverse Mapping

MAE RMSE MAE RMSE

GAN1 1.217 1.642 − −

GAN2 − − 0.946 1.189

CycleGAN 1.127 1.428 0.811 0.919

Bi-MGAN(G) 1.034 1.341 0.801 0.908

Bi-MGAN(M) 0.879 1.134 0.642 0.881

Bi-MGAN(GM) 0.703 0.920 0.501 0.683

1 GAN1 is the Generative Adversarial Network with forward mapping.

2 GAN2 is the Generative Adversarial Network with inverse mapping.

two layers and 150 units in the last two layers. DRMDN uses a Gaussian mixture density output611

layer. The learning factors c1 and c2 of the PSO-LSSVM algorithm are both set to 1.5. From612

Table 6, it is evident that the MAE and RMSE values of Bi-MGAN are significantly lower than613

those of the baseline methods. This demonstrates that Bi-MGAN can significantly enhance the614

conversion accuracy of the network.615

Table 6: Comparison of conversion networks.

Method
Forward Mapping Inverse Mapping

MAE RMSE MAE RMSE

DNN1 1.479 1.613 - -

BiLSTM1 1.298 1.422 - -

PSO-LSSVM1 1.185 1.252 - -

DRMDN1 0.884 0.948 - -

DNN2 - - 1.143 1.259

BiLSTM2 - - 1.003 1.217

PSO-LSSVM2 - - 0.967 1.136

DRMDN2 - - 0.831 0.939

Bi-MGAN 0.703 0.908 0.501 0.683

1 DNN1, BiLSTM1, PSO-LSSVM1, and DRMDN1 represent forward

mapping networks based on this baseline.

2 DNN2, BiLSTM2, PSO-LSSVM2, and DRMDN2 represent inverse

mapping networks based on this baseline.

5.4. Feature enhanced network performance analysis (RQ3)616

Considering the complexity of acoustic and articulatory features, this study conducted a617

dimensionality reduction visualization and comparison analysis of real, mapped, and enhanced618
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mapped features of the STEM-E2VA dataset using t-SNE. The purpose of this analysis was to619

validate the emotion enhancement ability of KCLNet for mapped features.620

Fig. 10(a), (b), and (c) show the distributional projections of t-SNE after dimensionality621

reduction for real, mapped, and enhanced mapped articulatory features, respectively. It is clear622

that the articulatory features recorded by the EMA and the mapped articulatory features gener-623

ated by Bi-MGAN exhibit random distributions of articulatory data across similar emotions after624

dimensionalizing over t-SNE. Fig. 10(a) and (b) do not show a clear data distribution pattern.625

Instead, the enhanced mapping of articulatory features reveals a clear distribution rule under626

different emotional states, as shown in Fig. 10(c). This demonstrates that KCLNet results in627

a significant reduction in intra-class spacing and an increase in inter-class spacing for mapped628

articulatory features.629

(a) Real articulatory features (b) Mapped articulatory features (c) Enhanced articulatory features

Figure 10: Visualization of articulatory features.

Fig. 11(a), (b), and (c) show the projection of the data distribution after t-SNE dimensionality630

reduction for real, mapped, and enhanced mapped acoustic features, respectively. Fig. 11 shows631

that the distribution of the acoustic data for both the real and mapped acoustic features in Fig.632

11(a) and (b), respectively, is scattered and does not exhibit a clear data distribution pattern. The633

enhanced mapped acoustic features in Fig. 11(c) are clearly distinguishable from the articulatory634

features of the different emotions after t-SNE dimensionality reduction. Therefore, we can infer635

that KCLNet results in a significant reduction in intra-class spacing and an increase in inter-class636

spacing of the mapped acoustic features.637

In summary, KCLNet can significantly enhance the emotional information of the mapped638

features and effectively address the issue of insufficient emotional information of the mapped639

features generated by the conversion model.640

(a) Real acoustic features (b) Mapped acoustic features (c) Enhanced acoustic features

Figure 11: Visualization of acoustic features.
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5.5. ResTCN-FDA network ablation experiment (RQ4)641

To investigate the role of the FDA in emotion recognition, we extracted 60-dimensional MFCC642

features from the STEM-E2VA, CASIA, RAVDESS, and EMO-DB databases as inputs for the643

ablation experiments. The models were evaluated in terms of accuracy, F1-score, and AUC.644

Table 7: ResTCN-FDA network ablation experiments (%).

Database CASIA STEM-E2VA EMO-DB RAVDESS

Categories 6 7 7 8

Metrics ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC

TCN 70.69 69.18 70.79 64.71 64.52 66.69 71.26 68.67 71.71 59.07 59.02 59.66

ResTCN 72.25 72.16 72.67 68.31 67.68 71.14 73.71 74.28 74.83 62.41 61.15 61.77

ResTCN-FA 76.25 76.56 76.96 73.63 73.78 74.83 76.22 76.62 76.94 63.93 62.40 63.98

ResTCN-DA 73.75 73.71 73.97 72.85 72.61 73.36 77.29 75.81 77.91 64.07 63.82 64.90

Bi-A2CEmoa 80.41 81.22 81.43 75.63 75.44 76.82 80.16 80.78 81.58 66.55 65.57 66.86

As indicated in Table 7, when comparing the residual temporal convolution network of feature645

attention (ResTCN-FA) and the residual temporal convolution network of dimension attention646

(ResTCN-DA) to ResTCN, the accuracy of the feature attention pair is improved by 1.52%-5.32%,647

and the accuracy of the dimension attention pair is improved by 1.50%-4.54%. This demonstrates648

that assigning different weight parameters to various features and dimension channels can enhance649

the accuracy of emotion recognition. ResTCN-FDA shows a significant improvement in accuracy650

compared with TCN, ResTCN, ResTCN-FA, and ResTCN-DA. In addition, the F1-score and651

AUC of ResTCN-FDA are also improved to a certain extent compared with the other networks.652

This improvement suggests that the ResTCN-FDA network is more effective for handling emo-653

tional features.654

6. Discussion655

The specific effects of the potential coupling between speech and articulation on emotion656

recognition remain understudied. Speech, as a product of the synergistic interactions of human657

vocal organs, inherently involves interactions between multiple modalities during its production.658

After observing the coupling phenomenon between speech and articulatory waveforms (Fig. 6) in-659

spired by the human articulation mechanism, this study proposes an emotion recognition method660

based on bi-directional acoustic-to-articulatory conversion. The following provides an in-depth661

discussion of the results of this study.662

First, as illustrated in Figs. 8 and 9, the fusion of acoustic and articulatory features sig-663

nificantly enhances the emotion recognition rate compared with using a single modality, with664

varying degrees of improvement across different emotional states. Notably, the recognition rates665

for neutral, ecstatic, and painful emotions exhibit the most prominent increases. This finding666

not only underscores the pivotal role of integrating acoustic and articulatory features in emotion667

recognition tasks, but also demonstrates that by learning from the information present in both668
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modalities, the system is able to capture subtleties in emotional expressions more comprehen-669

sively, thereby enhancing its recognition performance.670

Furthermore, the emotion recognition rate of the bimodal fusion features generated by Bi-671

A2CEmo is higher than that of the fusion features recorded by EMA. This further validates672

our hypothesis that learning the potential bi-directional coupling relationship between the two673

modalities can yield higher-quality representations. Although EMA is an accurate measurement674

method for articulation, it is prone to interference from external noise when capturing the dynamic675

changes in articulatory organs. In contrast, Bi-A2CEmo can more precisely model and predict676

the interaction between speech and articulation by simulating the human articulatory mechanism,677

thereby extracting more representative emotional features.678

Table 3 presents a detailed comparison of the performance of our proposed method with679

that of previous studies in various experimental settings. Given the diversity of experimental680

configurations, a direct comparison of the effectiveness of the different methods is challenging.681

For instance, Ref. [50] employed MSF features for four-class emotion recognition on the EMO-DB682

and CASIA datasets, Ref [24] utilized HSF features to achieve seven-class emotion recognition on683

the RAVDESS dataset, and Ref. [53] extracted MFCC features from the EMO-DB and fed them684

into an SVM for seven-class classification. As is evident from the data in Table 3, although our685

method lags slightly behind the results of Ref. [24], considering that the MFCC features we used686

are merely a subset of those in Ref. [24], this sufficiently demonstrates the remarkable superiority687

of our proposed method for emotional feature extraction.688

Table 4 compares the emotion recognition effectiveness of our proposed method with that of689

mainstream methods in the same experimental settings. The results indicate that our method690

achieves the best classification performance among all listed methods. Notably, that the Bi-691

A2CEmo model achieves high recognition rates on multiple public datasets, which not only verifies692

the effectiveness of our method but also demonstrates its strong generalization ability, providing693

robust support for excellent performance across different datasets. This finding lays a solid694

foundation for the future application of the proposed method in practical scenarios.695

7. Conclusion696

In this study, we propose a bi-directional acoustic-articulatory conversion framework for emo-697

tion recognition. It leverages the coupling and complementarity between acoustic and articulatory698

signals to improve the overall performance of the SER system. Specifically, we incorporate a gen-699

erative adversarial mechanism and contrast enhancement strategy into Bi-A2CEmo. Building700

on the generative adversarial mechanism, we propose Bi-MGAN for acoustic and articulatory701

conversion, effectively addressing the nonlinear ill-posedness problem in feature conversion to702

generate highly precise mapped acoustic and articulatory features. To address the low emotion703

recognition rate of the mapped features, we introduce KCLNet, which significantly enhances the704

mapped features by comparing emotions within and across the mapped and real features. In705

the emotion recognition network of Bi-A2CEmo, we introduce the FDA attention module and706
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integrate it with ResTCN, enabling the recognition model to dynamically allocate weight coef-707

ficients to features and maximize the extraction of emotional elements. Additionally, we design708

and collect a database of STEM-E2VA emotional speech and articulatory Mandarin to address709

the data gap in this research area.710

The Bi-A2CEmo is based on two metrics, MAE and RMSE, for the acoustic and articula-711

tory conversion task. Bi-MGAN conducted ablation experiments and comparison tests on the712

STEM-E2VA dataset. The results demonstrate that the generator loss function and the bounded713

mapping loss function can significantly reduce the dispersion of the mapped features. The Bi-714

MGAN algorithm can generate mapping features with higher accuracy compared to BiLSTM,715

PSO-LSSVM, and DRMDN. To enhance mapping features, we propose a contrast enhancement716

strategy and conduct an interpretive analysis of the features before and after enhancement using717

a visualization algorithm. The results demonstrate that KCLNet can effectively decrease the718

intra-class spacing of mapped features and increase the inter-class spacing of mapped features.719

Finally, we have conducted extensive experiments on the proposed ResTCN-FDA using CASIA,720

STEM-E2VA, EMO-DB, and RAVDESS datasets. This paper reveals that in acoustic and articu-721

latory bimodal signals, the mapping feature, the true feature, and the enhanced mapping feature722

of each modality serve as emotional complements to the true feature of the other modality, and723

this complementary effect is enhanced in turn. The Bi-A2CEmo framework can not only effec-724

tively recognize the emotions embedded in articulatory signals and those embedded in parallel725

acoustic-articulatory signals, but also improve the recognition performance of the SER system by726

exploiting the coupling and complementarity of the two signals. The experimental results show727

that the proposed bi-directional acoustic-articulatory conversion is very effective for the study of728

SER.729

The current study has several limitations that offer potential avenues for future exploration.730

Our approach relies primarily on EMA-captured acoustic-articulatory signals as the primary data731

source. However, the bulkiness of these devices, their high cost, and the constraints of wired sen-732

sors pose considerable challenges to the development of real-time, portable emotional recognition733

systems. Nonetheless, with ongoing advancements in sensor design technology, the process of734

collecting articulatory data will become increasingly streamlined, offering more convenient con-735

ditions for research.736
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