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Abstract
Lianas are important to rainforest ecosystems but often impede tree growth and in-
crease tree mortality and stem damage after disturbances that favor their growth. 
Understanding how lianas affect biomass recovery and rates of carbon sequestration 
following disturbance is therefore of crucial importance. In this study, we determine 
how a tropical forest recovers biomass following a large-scale disturbance, and test how 
this varies with liana dominance and stem damage. We use remote sensing methods to 
develop a model, validated by field data from 40 20 × 20 m vegetation plots, to meas-
ure the change in tree aboveground biomass 8 years after Tropical Cyclone Yasi dam-
aged logged forests in the Australian Wet Tropics. We related tree biomass changes to 
field measures of current liana dominance over trees, expressed as liana: tree basal area 
ratio, and assessed how these measures related to tree stem damage. Biomass declined 
in 34 of the 40 plots during the 8 years post-disturbance, with loss rates and propor-
tions of damaged tree stems increasing with the liana: tree ratio. From spatial upscaling, 
we found a net loss in biomass across the study landscape over the same period. Our 
results show that, following disturbances, lianas not only limit tree biomass recovery 
but also are associated with further biomass declines, most likely through their contri-
bution to stem damage and delayed mortality. Furthermore, our finding of net biomass 
loss across the landscape since the cyclone shows that, post-disturbance, rainforests 
can act as a carbon source with consequences for the global carbon sink.

K E Y W O R D S
arrested succession, Australian Wet Tropics, carbon sink, random forest, rattans, remote 
sensing, tropical cyclones, vines

1  |  INTRODUC TION

Lianas (i.e., woody vines and climbing monocots) are a conspicuous 
component of tropical forests with substantial influences on eco-
logical processes (van der Heijden et al., 2013). Lianas are increas-
ing in many tropical forests (e.g., Phillips et  al., 2002; Schnitzer & 

Bongers,  2011), most likely due to increased disturbance (Ngute 
et  al.,  2024; Schnitzer et  al.,  2021) and climate change (Vogado 
et al., 2022). These increases in lianas may affect forest functions, 
including post-disturbance recovery, with potential ramifications 
for ecosystem services such as carbon sequestration (Marshall 
et al., 2020; van der Heijden et al., 2015).
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Lianas often proliferate after tropical forests are disturbed. 
For example, rates of liana recruitment and growth are often 
greater in secondary than primary forests (Barry et  al.,  2015; 
Benítez-Malvido & Martinez-Ramos,  2003; Martin et  al.,  2004) 
and lianas proliferate following treefalls (Dalling et  al.,  2012; 
Putz, 1984), in forest fragments, and along forest edges (Campbell 
et al., 2018; Ofosu-Bamfo et al., 2022). Lianas compete with trees 
for resources, both above and belowground (Meunier et al., 2020; 
Schnitzer et al., 2005) with a greater competitive effect than trees 
of similar biomass (Tobin et al., 2012). Furthermore, because lia-
nas use trees as a structural support to climb and access the can-
opy, they cause mechanical stresses that can lead to branch and 
stem breakages (Kainer et al., 2006; Stevens, 1987). Accordingly, 
lianas can reduce tree performance (Estrada-Villegas et al., 2022), 
including rates of biomass accumulation (César et  al.,  2016; di 
Porcia e Brugnera et al., 2019; Lai et al., 2017), survival (Ingwell 
et  al.,  2010; McDowell et  al.,  2018), reproduction (García León 
et al., 2018), and recruitment (Dupuy & Chazdon, 2008; Martínez-
Izquierdo et al., 2016).

The detrimental effects of lianas on trees, combined with their 
positive responses to disturbance, make them highly influential in 
post-disturbance forest recovery. Lianas are important to forest 
succession (Capers et  al.,  2005; Dewalt et  al.,  2000) but where 
prolific can also outcompete or overload small trees, creating a 
positive feedback loop between disturbance and liana prolifer-
ation (e.g., Griscom & Ashton, 2006; Marshall et  al., 2020). When 
lianas suppress tree regeneration, the canopy does not close, thus 
maintaining the high light levels associated with disturbance, which 
promotes further liana proliferation. The outcome is an alternative 
successional pathway of liana-dominated suppressed recovery, with 
limited tree biomass recovery (e.g., Schnitzer et al., 2000; Schnitzer 
& Carson, 2010) that can persist for decades (Tymen et al., 2016). 
Arrested succession due to liana proliferation has been documented 
in Latin America (e.g., Schnitzer et  al.,  2000; Foster et  al,  2008; 
Sánchez-Azofeifa et al., 2015; Tymen et al., 2016), Africa (Babaasa 
et  al.,  2004; Marshall et  al.,  2017), Southeast Asia (Takeshige 
et al., 2023), and Australia (e.g., Metcalfe et al., 2008; Turton, 2012; 
Webb, 1958) (Figure  1) suggesting it is a consistent phenomenon 
across the tropics. However, we lack empirical data relating long-
term forest biomass recovery to measures of liana abundance that 
would allow quantification of this effect (Marshall et al., 2020).

In addition to suppressing tree growth, lianas can reduce stand-
level forest biomass by increasing tree mortality rates (McDowell 
et al., 2018). Data from the Neotropics suggest that trees with heavy 
liana infestation are two to three times more likely to die than liana-
free trees (Ingwell et  al., 2010; Phillips et  al.,  2005). When lianas 
cover multiple tree crowns, they can spread damage from lightning 
(Gora et  al., 2023) and one treefall can bring down multiple trees 
(Putz,  1984). Overall, liana proliferation displaces tree biomass 
(van der Heijden et al., 2013) and may do so at scales sufficient to 
threaten the global carbon sink (Marshall et al., 2020). The reported 
increases in liana abundance make their effects on the global carbon 
sink even more profound (van der Heijden et al., 2015). In light of the 

increased frequency with which forests are disturbed due to climate 
change and other factors, studies of the relationship between lianas 
and forest biomass recovery are important.

Changes in tree biomass can be used to monitor forest recovery 
over time after disturbances. Traditionally, this has involved manual 
measurement of aboveground biomass using forest inventory plots, 
which can be labour-intensive and not representative of inaccessible 
areas (Timothy et al., 2016). Advances in remote sensing increasingly 
allow us to predict tree biomass at improved spatial scales and with ac-
ceptable temporal resolution (Foody et al., 2001; Lechner et al., 2020; 
Lu, 2005). There is now a wide range of satellite data freely available 
at varying resolutions over multiple time intervals that can be used to 
estimate biomass and monitor it over time, retrospectively (Hansen 
et  al.,  2013; Nguyen et  al.,  2018; Pfeifer et  al.,  2016; Pflugmacher 
et al., 2014). Despite uncertainties in these satellite-derived biomass 
estimates at stand scales (Turton et  al., 2022), remote sensing can 
provide useful estimates of forest recovery indicators in relation to 
lianas and has the potential to advance our understanding of liana 
ecology (e.g., van der Heijden et al., 2022; Waite et al., 2019) such 
as by estimating rates of forest biomass recovery after disturbances 
under varying degrees of liana infestation.

Here, we aim to determine how tropical forest landscapes re-
cover their biomass following a large-scale disturbance and how this 
relates to liana dominance and stem damage in the Australian Wet 
Tropics. Our objectives were to: (a) use vegetation plots and remote 
sensing data to identify changes in plot-level forest aboveground 
biomass since a major tropical cyclone; (b) determine how this bio-
mass change relates to present-day measures of liana dominance 
and stem damage; (c) use remote-sensing data to predict landscape 
level biomass change; and (d) infer consequences for forest recovery 
in disturbed tropical forest landscapes.

F I G U R E  1 Example of a liana-dominated area in the Australian 
Wet Tropics of northeast Queensland. There is minimal tree 
regeneration visible and the trees are heavily infested with lianas. 
Slow tree mortality and slow growth maintain the open canopy 
and promote further liana proliferation. Photograph by Andrew R. 
Marshall.
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2  |  METHODS

2.1  |  Study site

The study took place in rainforests of the Wet Tropics World 
Heritage Area (WTWHA), northeast Queensland, Australia. The re-
gion is a biodiversity hotspot with a globally significant number of 
endemic species across several taxa (Le Saout et al., 2013). The study 
site is located within the WTWHA and spans an elevation gradient 
of 4–1320 m above sea level, from the Cassowary Coast lowlands to 
the Atherton Tablelands (17° 17′S–146° 0′ E). The climate is tropi-
cal, with a mean annual rainfall of around 3000 mm in the lowlands 
and 1400 mm in the highlands, the majority of which falls during the 
pronounced December–April wet season (Bureau of Meteorology, 
2023). The WTWHA is prone to tropical cyclones and the rainfor-
ests of the study area around the Cassowary Coast suffered se-
vere damage from Tropical Cyclone Larry (Australian TC Category 
4) in 2006 and Tropical Cyclone Yasi (Australian TC Category 5) in 
2011 (Turton, 2019). Much of this rainforest was cleared for agricul-
ture and urban development following European settlement in the 
early 20th Century (Winter et al., 1987) and was selectively logged 
until the area received World Heritage listing in 1988 (Goosem & 
Tucker, 2013). However, specific details on the location and extent 
of the logging are no longer available following the closure of the 
forestry industries in the region. Because of these human and natu-
ral disturbances, the landscape is heavily fragmented, consisting of 
many patches of disturbed forest in varying stages of recovery with 
characteristically low and uneven canopies and an abundance of lia-
nas (Murphy & Metcalfe, 2016; Webb, 1958).

2.2  |  Stem measurement

Forty permanent vegetation plots (20 × 20 m) (Figure  S1) were es-
tablished between September 2020 and November 2021 across a 
gradient of disturbance intensity, with plots categorized as either 
“heavily” or “lightly” disturbed. “Heavily disturbed” plots were de-
fined as having ≤25% canopy coverage by trees >5 m tall. “Lightly 
disturbed” plots were defined as having ≥75% canopy cover by 
trees >5 m tall. Canopy structure within plots was a result of both 
natural disturbances, including wind damage, and anthropogenic 
disturbances, mainly selective logging. Areas with obvious presence 
of invasive species were avoided, as the focus of this study was na-
tive lianas. Twenty plots were established in the lowlands and one 
“lightly disturbed” and one “heavily disturbed” plot was established 
approximately every 100 m along an elevational gradient (100–
1320 m) to ensure plots were representative of the entire study area. 
Further information about the plots can be found in the Supporting 
Information (Table S1). The coordinates of the four corners of each 
plot were recorded with a Garmin GPSMAP 64sx (accuracy to within 
±3.65 m).

In each plot, standardized protocols were used to measure all 
tree and liana stems ≥1 cm diameter at breast height (DBH; 1.3 m) 

(Gerwing et al., 2006; Marthews et al., 2012; Schnitzer et al., 2008). 
Lianas included all woody vines (true lianas) and climbing mono-
cots, which consisted of rattans (Arecaceae) and climbers in 
Flagellariaceae, Poaceae, and Smilacaceae. Tree height was also 
measured using a tape measure, pole, or laser rangefinder. Damage 
to trees was noted; a tree was considered damaged if the main stem 
was broken.

Aboveground biomass for each tree stem was calculated using a 
pan-tropical equation (Equation 1; Chave et al., 2014). This equation 
was previously applied in Australian rainforests, and like this earlier 
study, we used a default value for wood density in Australian tropical 
forests of 0.5 g cm−3 (Campbell et al., 2018) as we did not have com-
plete species data available for every plot.

Equation 1 shows the pan-tropical equation for calculating abo-
veground biomass

where ρ = wood density, D = DBH, and H = height.
The relative dominance of lianas over trees is expressed as the 

liana: tree basal area ratio (LTR), calculated as liana basal area divided 
by tree basal area.

2.3  |  Remote sensing

We used atmospherically corrected RapidEye Surface Reflectance 
Ortho Tile products acquired in September 2019 (passive sensor 
data at 5 m pixel resolution collecting data in the blue, green, red, 
red-edge, and near infrared spectral bands; Planet Team, 2017). This 
was the most suitable imagery collected closest to the date of our 
field surveys that was sufficiently cloud-free and of high enough spa-
tial resolution to allow detection of canopy disturbances and to align 
with the scale of our field plots; errors can be introduced if pixels 
are larger than plots (Réjou-Méchain et al., 2019). The RapidEye tiles 
were merged using QGIS v 3.22 (QGIS Development Team, 2022) to 
create a single multiband raster that covered the entire study area. 
We repeated the same process using RapidEye Surface Reflectance 
Ortho Tile products acquired in September 2011, 7 months after 
Tropical Cyclone Yasi made landfall over Mission Beach on February 
3, 2011 (Turton, 2019). The cyclone caused considerable damage to 
the region's forests (Negrón-Juárez et al., 2014) hence over the post-
cyclone 2011–2019 period; the rainforests would be expected to be 
at a state of recovery.

We extracted the surface reflectance of each mosaic band using 
the “raster” package (Hijmans & van Etten, 2010) in R statistical soft-
ware (R Core Team, 2022). We calculated standard spectral vegetation 
indices: (i) Normalized Difference Vegetation Index (NDVI) which has 
been commonly used in ecological studies (Tucker, 1979) but tends to 
saturate in highly productive environments; (ii) Enhanced Vegetation 
Index (EVI), which was developed to address NDVI's oversaturation 
problem while also reducing the impacts of aerosol contamination 
(Liu & Huete, 1995); (iii) two-band Enhanced Vegetation Index (EVI2), 

(1)AGBest = 0.0673 ×

(

�D
2
H

)0.976
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which is comparable to EVI but calculated without the blue spectral 
band (Jiang et al., 2008); (iv) Modified Soil Adjusted Vegetation Index 
(MSAVI2), which was developed to reduce soil noise (Qi et al., 1994); 
and the (v) Greenness Index (GI) (Woebbecke et al., 1995), which re-
portedly correlates with liana infestations in primary and secondary 
forests in Sabah, Malaysia (Chandler et al., 2021).

Metrics capturing texture in the image data (Haralick et al., 1973) 
were included to capture forest canopy heterogeneity, which differs 
between more and less disturbed sites, and thus potentially indicates 
biomass variation in the landscape (e.g., Gallardo-Cruz et  al.,  2012; 
Pfeifer et al., 2016; Wood et al., 2012). To calculate texture, we com-
puted a gray-level co-occurrence matrix (GLCM) with varying window 
sizes from 3 × 3 to 9 × 9 pixels. These window sizes were chosen because 
they would cover the dimensions of a typical tree crown, thus providing 
the most appropriate resolution for our dataset (Pfeifer et al., 2016). We 
computed mean, variance, contrast, and dissimilarity for each of the five 
RapidEye bands using the “glcm” package in R (Zvoleff, 2014).

The addition of topographic variables has been shown to im-
prove model accuracy when predicting biomass (Baccini et al., 2012; 
Chave et  al., 2019; Li et  al.,  2008). A digital elevation model (DEM) 
was downloaded from the Queensland Spatial Data Catalogue (State 
of Queensland, Department of Resources, 2005) with a resolution of 
25 m. This was resampled to a 5 m resolution using the bilinear interpo-
lation method with the “resample” function in the “raster” package in R.

2.4  |  Statistical analyses

Mean spectral and texture metrics, vegetation indices, and elevation of 
pixels covering the area within the coordinates of the plot corners were 
extracted using the “raster” package in R. We subsequently used these 
as variables in our predictive biomass modeling and mapping. These 
remotely sensed predictor variables were correlated with field-based 
measures of aboveground tree biomass and tested for intercorrela-
tions using a correlation matrix with the “corrplot” package in R (Wei 
& Simko, 2021). We excluded highly intercorrelated predictor variables 
(r > .7), retaining the variable of the pair that showed a stronger correla-
tion with aboveground biomass measured in the plots (Zuur et al., 2010).

We used random forest models as an alternative to linear regres-
sion to develop models predicting biomass (Dye et al., 2012; Karlson 
et al., 2015; Li et al., 2019) because they are insensitive to skew and 
able to describe complex, non-linear interactions (Breimen, 2001; 
Pflugmacher et  al.,  2014). The random forest model was trained 
using the “caret” package in R (Kuhn, 2008). Eighty percent of the 
data were used for training and the remaining 20% were used for 
testing. We conducted repeated 10-fold cross-validation three 
times. Random forest models have two key parameters, mtry and 
ntree. We tested mtry values of 1–4 and confirmed that mtry = 2 
produced the best model, based on the lowest Root Mean Squared 
Error (Table S2). We used ntree = 500 as this is the default setting 
for the “caret” package; 95% confidence intervals were calculated 
by multiplying by 1.96 by the standard error around the mean of the 
biomass prediction for each plot.

The resulting model was applied to the 2019 raster mosaic 
and used to predict biomass at the plot-level and across the land-
scape using the “predict” function. Biomass was predicted only 
across areas of the map categorized as “rainforest” according to 
the Queensland Remnant Broad Vegetation Group Classification 
(Neldner et al., 2021). We used linear regression to test the relation-
ship between the predicted biomass and the measured biomass from 
field surveys to assess model accuracy.

The random forest model was also applied to the September 
2011 raster mosaic and predicted biomass was extracted for each 
plot location. Plot-level change in biomass was analyzed as absolute 
change and as percentage change to remove the effects of differ-
ences in initial plot biomass.

To quantify how changes in tree biomass varied with LTR, we 
constructed a linear model with plot-level changes in biomass as the 
response variable and LTR as the explanatory variable. Following vi-
sual inspection of model residuals, LTR was natural log-transformed. 
To understand how this biomass change could be attributed to 
damage to living stems and how this related to LTR, we also con-
structed linear models to assess the relationship between the logit-
transformed proportion of damaged tree stems and (1) LTR, and (2) 
change in tree biomass.

Landscape level biomass change was calculated by subtracting 
the predicted biomass value for each pixel in 2019 from its pre-
dicted biomass value from 7 months after Tropical Cyclone Yasi in 
2011, resulting in a map of predicted biomass change over the 8-
year study period. We used an average wood carbon composition 
of 47.35% (Martin & Thomas, 2011) to convert biomass estimates 
into carbon.

3  |  RESULTS

3.1  |  Model performance

In the random forest model, elevation was the most important vari-
able predicting biomass, followed by the variance of the B4 band at 
a moving window size of 9 × 9 pixels, the contrast of the B4 band at a 
moving window size of 3 × 3 pixels; the contrast of B5 band at a mov-
ing window size of 3 × 3 pixels was the least important variable (see 
the Supplementary Information for more details on the final model; 
Figures S2 and S3). When predicted biomass values from the final 
random forest model were regressed against the field-measured bi-
omass values, linear regression showed R2 = .79, p = <.001 (Figure 2). 
A full list of predicted biomass values with 95% confidence intervals 
can be found in the Supplementary Information (Table S3).

3.2  |  Change in biomass

Over the 8 years after Tropical Cyclone Yasi, tree biomass declined 
in the majority of plots (34 out of 40), with greater losses in plots 
categorized as “heavily disturbed” (Figure 3). Across the 240,500-ha 
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landscape, total biomass decreased by 694,679 Mg (2.89 Mg/ha) over 
the 8-year period which is equivalent to a loss of 328,931 Mg of car-
bon (1.37 Mg/ha of carbon) (Supplementary Information, Figure S4).

Loss of tree biomass (2011–2019) increased with LTR, both as 
absolute values (R2 = .56, p < .001; Figure 4a) and as percentage bio-
mass (R2 = .60, p = <.001; Figure 4b).

3.3  |  Stem damage

The proportion of stems with damage in 2019 increased with increas-
ing LTR (R2 = .27, p < .001; Figure 5a) while change in aboveground 
biomass (kg) decreased with increasing proportion of damaged tree 

stems (R2 = .16, p = .01) (Figure  5b). Heavily disturbed plots had a 
greater proportion of damaged stems compared to plots that were 
lightly disturbed (Figure 5c).

4  |  DISCUSSION

Our study provides evidence that forests may not follow a trajectory 
towards biomass recovery following severe disturbances, which has 
implications for the functions of forests as carbon sinks. Advances 
in remote sensing, including the availability of spectral data cover-
ing multiple time periods, allowed estimation of changes in above-
ground biomass over time with reasonable accuracy. In our study 
landscape in the Australian Wet Tropics, biomass declined rather 
than recovered, and these decreases were associated with increased 
LTR and tree stem damage.

Previous studies have found slow, or even a lack of, biomass 
recovery after disturbances (e.g., Nunes et  al.,  2021; Wigneron 
et al., 2020). This can often be attributed to delayed mortality, with 
reports of increased tree mortality in the years following the distur-
bance, presumably because the damage that the trees suffered ren-
dered them vulnerable. Delayed mortality has been found to occur 
following drought (Aleixo et al., 2019), logging (Shenkin et al., 2015), 
fire (Barlow et  al.,  2003), and hurricanes (Lugo,  2008; Uriarte 
et al., 2019; Walker, 1995). We put these findings in the context of 
liana proliferation.

The finding that tree biomass continued to decline follow-
ing a disturbance and that the rate of decline increased with LTR 
aligns with expectations that liana infestations increase tree mor-
tality rates (Ingwell et  al., 2010; McDowell et  al., 2018; Phillips 
et  al.,  2005). Our findings are also consistent with literature 
from other tropical regions that show lianas reduce tree growth 
and recruitment (Estrada-Villegas et  al., 2022; Mills et  al.,  2019; 
Putz,  1984; Reis et  al.,  2020) and may prevent biomass recov-
ery (e.g., Schnitzer et  al.,  2000; Foster et  al,  2008; Murphy & 
Metcalfe, 2016; Tymen et al., 2016).

There is likely a reciprocal relationship between liana dom-
inance and the observed tree biomass decline. First, lianas that 
proliferate after disturbances may damage or kill trees that ini-
tially survived (Ingwell et al., 2010; McDowell et al., 2018; Phillips 
et al., 2002), thereby reducing existing biomass and limiting new 
biomass growth. Mortality can be exacerbated further when a tree 
falls that is connected to other trees with lianas, as this can pull 
down multiple trees (Putz, 1984). Second, following disturbances, 
delayed mortality can occur (Aleixo et  al.,  2019; Everham & 
Brokaw, 1996; Lugo, 2008; Shenkin et al., 2015). The subsequent 
treefalls can create more trellises for lianas as well as increase 
canopy openness (Schnitzer & Bongers,  2011), leading to liana 
proliferation and resulting in the high LTR values we observed 
8 years after Tropical Cyclone Yasi. It is likely both of these scenar-
ios occur and result in a positive feedback loop that involves liana 
proliferation, tree mortality and disturbance that drives biomass 
loss (Laurance et al., 2001).

F I G U R E  2 Field-measured tree above-ground tree biomass for 
40 20 × 20 m plots in northeast Queensland compared to biomass 
predicted by a random forest model based on remotely sensed 
metrics (R2 = .79, p < .001) with fitted linear regression line (solid) 
with 95% confidence intervals and 1:1 line (dashed). Solid and open 
circles represent lightly and heavily disturbed plots, respectively.

F I G U R E  3 Boxplots show changes in predicted above-ground 
tree biomass (kg) between 2011 and 2019 from 20 × 20 m 
vegetation plots in northeast Queensland, in lightly versus heavily 
disturbed plots.
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Our finding that the proportion of damaged tree stems in each 
plot increases with LTR and with the change in biomass over the 8-
year period suggests that biomass losses could result from lianas 
breaking trees. Past findings from Peru reported that plots domi-
nated by climbers had up to a nine-fold increase in the percentage 
of trees with physical damage compared to control plots (Griscom 
& Ashton,  2006) so it is feasible that lianas contribute substan-
tially to this stem damage where they are abundant. It was recently 
documented that damage to living trees contributes to a substan-
tial amount of biomass loss in the tropics (Zuleta et al., 2023); our 
study suggests this could be partly attributed to liana infestations. 
However, the trees may have already been damaged by the tropical 
cyclones (Turton, 2019) and the opening of the canopy as a result 
contributed to the increase in LTR. Hence, in this study we cannot 
distinguish between cause and effect—mechanisms are complex and 
need further study. Nevertheless, the abundance of broken stems 
in this study highlights the importance of measuring the height of 
every tree stem directly and using an allometric equation that in-
corporates height (Feldpausch et  al., 2012; Marshall et  al., 2012). 
Measuring diameter alone and using allometric equations that as-
sume height based on DBH would result in an overestimation of the 
biomass of broken stems.

Our finding that biomass was lost across the wider study land-
scape, equating to a carbon loss of 1.37 Mg/ha over the 8 years 

after Tropical Cyclone Yasi, shows that these forests acted as car-
bon sources rather than carbon sinks over that period. At the time, 
Tropical Cyclone Yasi was found to cause an important release of 
carbon from the carbon sink of Australian forests (Negrón-Juárez 
et  al.,  2014) and these findings show this effect continues even 
8 years later. This finding has important implications considering that 
forest carbon sinks are a key component in Queensland's strategy 
to meet its targets for reduced carbon emissions (WTMA, 2022). 
Previous studies of carbon density across other tropical regions 
also reported these ecosystems might be net carbon sources due 
to degradation and disturbance (Baccini et  al.,  2017). Given that 
forests are expected to play a key role in mitigating climate change 
through carbon sequestration at both global (Chazdon et al., 2016; 
Grassi et  al.,  2017; Heinrich et  al.,  2023) and national scales 
(DCCEW, 2022), yet they continue to suffer from ongoing distur-
bances Curtis et al. (2018), is concerning and warrants further study.

Our observation on decreasing forest biomass over time after 
a tropical cyclone also supports findings from past long-term stud-
ies of vegetation plots in the Australian Wet Tropics. One study in 
the region reported that from 2001 to 2012, tree growth rates de-
creased and mortality rates consistently exceeded recruitment rates 
(Murphy et al., 2013), while another reported that stand-level basal 
area decreased across plots between 1971 and 2019 and that tree 
mortality risk doubled over this time period (Bauman et al., 2022). 

F I G U R E  4 Changes in (a) tree above-
ground biomass (kg) and (b) percentage 
tree above-ground biomass (%) over an 
8-year post-cyclone period in 20 × 20 m 
plots as a function of natural-log 
transformed liana: tree ratio basal area 
(LTR) (a) R2 = .56, p < .001; (b) R2 = .60, 
p < .001). Closed circles represent lightly 
disturbed plots and open circles represent 
heavily disturbed plots. The x-axes show 
natural log scales.

(a) (b)

F I G U R E  5 Relationships between the proportion of damaged tree stems in 20 × 20 m plots and (a) liana: tree basal area ratio (LTR) 
(R2 = .27, p < .001) and (b) change in tree biomass (kg) (R2 = .16, p = .01) over an 8-year post-cyclone period. Closed circles represent lightly 
disturbed plots and open circles represent heavily disturbed plots. The x-axes have a logit scale. Boxplot (c) shows the proportion of 
damaged tree stems in heavily versus lightly disturbed plots.

(a) (b) (c)
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These patterns were ascribed to the effects of cyclones, droughts, 
and climate change. For example, decreased growth may be due to 
increased forest respiration rates caused by higher temperatures 
(Feeley et al., 2007). It is possible that lianas and their interactions 
with these variables also contributed to the increased mortality and 
reduced growth rates. The inclusion of liana data in future studies 
would allow further investigation into the role of lianas in explaining 
forest biomass losses.

Cyclones are a natural part of forest dynamics in the study 
region (Webb,  1958), so it might be expected that the ecosys-
tem should recover biomass rapidly following disturbance (Cole 
et al., 2014). For example, in a rainforest in Puerto Rico that was 
hit by a hurricane, biomass reportedly recovered to 86% of pre-
disturbance levels after only 5 years (Scatena et al., 1996). Our re-
sults contrast with this expectation, at least within the timeframe 
of our study. Anthropogenic pressures, such as fragmentation 
and logging, may increase the susceptibility of forests to dam-
age and reduce their ability to recover without human interven-
tion (Laurance & Curran, 2008; Lugo, 2008; Silvério et al., 2019; 
Turton, 2019). The Australian Wet Tropics are heavily fragmented, 
particularly in the coastal lowlands (Metcalfe & Lawson,  2015), 
which may reduce their resilience. Additionally, tropical cyclones 
are projected to increase in intensity as a result of climate change 
(Negrón-Juárez et al., 2014), putting forests in cyclone-prone re-
gions under even more pressure. Other human impacts are also 
likely to increase with increasing population pressures in the fu-
ture, so interactions between anthropogenic factors and rainfor-
est recovery are of utmost concern.

The finding that lianas are linked to biomass loss suggests 
that liana cutting has potential as a restoration management tool. 
Numerous studies show liana cutting is a cost-effective method to 
restore degraded forests and sequester carbon (e.g., Estrada-Villegas 
et al., 2022; Finlayson et al., 2022; Putz et al., 2023). However, na-
tive lianas do play key roles in ecosystem functioning. For example, 
lianas contribute disproportionately to leaf litter turnover, facilitating 
nutrient cycling and distribution (Hegarty,  1991; Tang et  al.,  2012), 
contribute to biodiversity (Campbell et al., 2015; Tng et al., 2016), and 
provide resources and connectivity for arboreal wildlife (e.g., Arroyo-
Rodríguez et al., 2015; Yanoviak & Schnitzer, 2013). Complete liana 
removal at large scales could have adverse effects, hence further re-
search is needed before this treatment should be widely implemented.

Australia has been often left out of meta-analyses on both lia-
nas and rainforest recovery (e.g., Cole et al., 2014; Estrada-Villegas 
et  al.,  2022; Finlayson et  al.,  2022; Poorter et  al.,  2021). Given 
its high levels of endemism, with little species overlap with Latin 
America (Chave et al., 2019; Corlett & Primack, 2006), differences 
in the effects of lianas on recovery might be expected but were not 
found in our study. This is an important finding because it supports 
predictions that lianas slow forest recovery and deplete biomass and 
thus carbon sequestration at a global scale (e.g., di Porcia e Brugnera 
et al., 2019; Marshall et al., 2020; van der Heijden et al., 2015).

Possible future studies should be conducted over longer time 
scales with interim measures to assess the shape of any trends. 

A limitation of our study is the lack of historic liana and tree data, 
which means that we can only infer that liana dominance increased 
and that trees died over the 8-year period of the study. Supporting 
these inferences are the well-established findings that lianas recruit 
rapidly after disturbance (e.g., Putz,  1984; Schnitzer et  al.,  2000; 
Schnitzer & Bongers, 2002; Webb, 1958; Whitmore, 1989) and can 
exceed pre-disturbance levels (Allen et  al.,  2005). Nevertheless, 
future studies that include pre-disturbance vegetation data and in-
terim measures could clarify the extent to which continued losses 
in forest biomass after disturbances are due to liana proliferation. 
Additionally, the inclusion of species data would improve the accu-
racy of plot-level biomass estimations (Chave et al., 2014) resulting in 
increased model accuracy (Réjou-Méchain et al., 2019). Wood den-
sity can be highly variable among tree species (Chave et al., 2009). 
In particular, species found in heavily disturbed sites tend to have 
lower wood density compared to those from the less disturbed sites 
(Berenguer et al., 2018), which means using a standard wood density 
value across all plots in this study may have introduced error.

This study not only adds to the increasing body of evidence that li-
anas can stall forest biomass recovery but also presents new evidence 
that lianas may contribute to further biomass loss following distur-
bances. Scaling up from plots to landscapes, our results also indicate 
that after disturbances, forests may continue to act as carbon sources 
rather than sinks. These findings have implications for forest carbon 
storage estimates and could inform management at both global and 
regional scales. At a regional scale, it highlights the need for studies 
exploring liana cutting as a management tool for preventing further 
biomass loss and promoting biomass recovery. At a global scale, if 
tropical forests are unable to recover biomass after disturbances, this 
will have serious consequences for the global carbon sink.
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