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• A low-cost approach to in-field spectral
data collection in extreme environments

• Smartphone-based instrumentation en-
ables rapid and accurate data collection

• On ice measurements successfully
incorporated into ice surface energy
balance model

• Proglacial measurements highlight po-
tential for vegetation and lichen-based
studies

• Machine learning provides accurate
automatic identification of spectral
targets
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A B S T R A C T

Hyperspectral imaging is a valuable analytical technique with significant benefits for environmental monitoring.
However, the application of these technologies remains limited, largely by the cost and bulk associated with
available instrumentation. This results in a lack of high-resolution data from more challenging and extreme
environmental settings, limiting our knowledge and understanding of the effects of climate change in these
regions. In this article we challenge these limitations through the application of a low-cost, smartphone-based
hyperspectral imaging instrument to measurement and monitoring activities at the Greenland Ice Sheet. Datasets
are captured across a variety of supraglacial and proglacial locations covering visible and near infrared wave-
lengths. Our results are comparable to the existing literature, despite being captured with instrumentation
costing over an order of magnitude less than currently available commercial technologies. Practicalities for field
deployment are also explored, demonstrating our approach to be a valuable addition to the research field with
the potential to improve the availability of datasets from across the cryosphere, unlocking a wealth of data
collection opportunities that were hitherto infeasible.
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1. Introduction

Hyperspectral imaging is a highly versatile analytical technique with
potential for a wide variety of applications within environmental
monitoring (Aasen et al., 2015; Näsi et al., 2015; Stuart et al., 2019; Jia
et al., 2020; Rodrigues and Hemmer, 2022). By providing a rapid, non-
destructive, and information-rich form of data collection, it enables real-
time monitoring and decision making across a broad range of locations
and measurement scenarios, reducing the need for time-consuming and
often complex sample collection and logistics associated with the reli-
able transport of representative samples for further testing. The non-
invasive analysis offered by hyperspectral imaging techniques enables
samples to be analysed in their true in-situ state. This is of considerable
importance in the context of the ongoing climate crisis where detailed
datasets are required to enable us to better understand the effects of
climatic changes. However, despite these significant benefits, the
application of hyperspectral imaging techniques within these contexts
remains comparatively limited to applications in other disciplines. This
is largely due to the high costs and low portability typically associated
with these instruments, limiting their application to better-resourced
research teams across more easily accessible locations. The monitoring
of more extreme environmental settings is particularly affected by these
restrictions, significantly limiting the data collection opportunities
across these typically more inaccessible areas (O’Neal, 2010). These
restrictions, therefore, have a compounding effect on our understanding
within climate-critical environments, limiting our knowledge to a
comparatively small group of accessible locations (O’Neal, 2010; Stuart
et al., 2019). Our research seeks to address these restrictions by
improving the democratisation of hyperspectral imaging applications
within more challenging and difficult to access areas.

Applications of hyperspectral imaging within the cryosphere are a
key component for the accurate monitoring of climate-critical environ-
ments, particularly the identification and monitoring of light absorbing
impurities (LAIs) across glacier ice and snow. These particles have a
significant impact on albedo and radiative forcing, and thus play an
important role in melt dynamics within the cryosphere (Warren, 2019).
Traditional approaches to monitoring LAI typically utilise portable
multispectral imaging instruments and/or satellite-based analyses
(Painter et al., 2001; Casey and Kääb, 2012; Di Mauro et al., 2015;
Naegeli et al., 2015; Cook et al., 2017a; Cook et al., 2017b). However,
the spectral and spatial resolution limitations associated with these
techniques, combined with the high spectral similarities present be-
tween LAI species, make it difficult to accurately identify LAI within
glacial settings (Seager et al., 2005; Cook et al., 2017a). Whilst some
studies have successfully identified LAI using these techniques, such as
Wang et al. (2020) who detected algal blooms using satellite imagery, it
remains difficult due to current limitations. LAI typically found across
glacial environments such as windblown and englacially transported
mineral dusts, and algal blooms have typically similar spectral profiles
that result in decreased reflectance, particularly across visible wave-
lengths. Whilst slight spectral variations mean that they can be differ-
entiated, e.g. an increase in reflectance across red wavelengths (ca.
625–740 nm) typically associated with mineral dusts (Dumont et al.,
2014; Zhang et al., 2017), and the presence of absorption features that
indicate the presence of chlorophyll a in algal blooms (Painter et al.,
2001; Cook et al., 2017a), these features are often missed by measure-
ments with coarser banding. Hyperspectral imaging provides a means of
overcoming these limitations and has been previously applied in several
studies, demonstrating that it can accurately identify subtle variations in
spectral response between LAIs (Di Mauro et al., 2017; Cook et al.,
2017a; Stuart et al., 2019; Williamson et al., 2019; Halbach et al., 2023).

In proglacial environments, hyperspectral imaging can provide
detailed observations of lichen and vegetation communities, enabling
more thorough analysis of community health and increasing the ease of
species identification. Application of hyperspectral approaches in these
settings aids traditional field observations, creating reliable visual

records for future comparisons. This, in turn, reduces the time required
for detailed on-site analyses, easing pressure on time-critical field
studies. Existing applications of spectral imaging in these settings have
shown considerable promise (Van der Veen and Csatho, 2005; Salehi
et al., 2016; Guedes et al., 2022), suggesting that if hyperspectral data
could be collected more widely, more detailed and reliable data analysis
could be achieved in these settings.

In this article we demonstrate the effectiveness of a portable, low-
cost alternative to currently available instrumentation. We apply the
Hyperspectral Smartphone, a low-cost smartphone-based hyperspectral
imaging instrument, to data collection scenarios across supraglacial and
proglacial locations at Isunguata Sermia, south-west Greenland. Using
this instrumentation, we capture datasets across visible and near
infrared (NIR) wavelengths (450 nm – 850 nm). Datasets are acquired
from a variety of features, with the aim of highlighting the significant
potential offered by low-cost hyperspectral imaging instruments within
these contexts. Machine learning image segmentation is applied to the
captured datasets to demonstrate the significant data analysis opportu-
nities provided through these novel approaches. By providing a highly
portable, low-cost alternative to currently available instrumentation, we
aim to open-the-door for more detailed spectral analysis studies within
extreme and difficult to access environments.

2. Methodology

2.1. Field site

The study area in south-west Greenland (67.150◦ N, 50.040◦ W)
included both ice-covered and proglacial areas, close to the ice sheet
margin. Fig. 1(A) shows the location of the study area in south-west
Greenland. Fig. 1(B) and 1(C) show the context of the study site close
to Isunnguata Sermia and the location of proglacial and supraglacial
measurement sites respectively. This region features a slow-moving ice
margin with average winter speeds of 20–100 m yr−1 recorded at
Isunguata Sermia, where ice flows in an east-west orientation (Jones
et al., 2018; Derkacheva et al., 2021). The climate in this area is defined
as low Arctic, experiencing average highs of 16 ◦C in summer and
average lows of −24 ◦C in winter (Lindbäck and Pettersson, 2015). The
dominant source of LAI within this area is local windblown dust due to
the study site’s proximity to the ice margin (Wientjes et al., 2011).
Located directly north of Russell Glacier, this region represents one of
the most studied areas of the Greenland Ice Sheet (GrIS) (Lindbäck and
Pettersson, 2015; Derkacheva et al., 2021; Harper et al., 2021), with a
broad range of existing studies covering glacial and geophysical pro-
cesses (e.g. Bartholomew et al., 2011; Palmer et al., 2011; Van De Wal
et al., 2012; Sole et al., 2013; Wright et al., 2016; Yde et al., 2018; Maier
et al., 2019; Derkacheva et al., 2021). A number of automatic weather
stations (AWS), run by PROMICE, also cover this area (Fausto et al.,
2021), providing valuable context for new device demonstration and
testing. Measurements were completed across a two-week period be-
tween the 7th and 22nd August 2023 across supraglacial areas in the
ablation zone of Isunguata Sermia and proglacial locations extending ca.
1 km from the ice margin.

2.2. Instrumentation

The Hyperspectral Smartphone (Fig. 2) is a low-cost, field portable
hyperspectral imaging instrument. As outlined in Stuart et al. (2021)
and Davies et al. (2022), the Hyperspectral Smartphone uses a 3-D
printed spectral housing to enable hyperspectral datasets to be
captured with a smartphone camera. This instrument is now undergoing
further development for commercialisation. In previous publications
(Stuart et al., 2021; Davies et al., 2022; Stuart et al., 2022a) we have
applied this instrument using an unmodified smartphone camera,
enabling datasets to be captured across visible wavelengths. However, in
this article we utilise a modified design enabling the spectral range of

M.B. Stuart et al.
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the instrument to be extended into the near infrared (NIR). In the
modified design, the infrared filter has been removed and the optics
recalibrated to ensure visual focus was not impacted.

Table 1 shows the specifications used for the instrument. The
smartphone used in this design represents a typical off-the-shelf handset.
This particular handset was chosen for its affordability and popularity
within commercial markets, highlighting the quality of hyperspectral
data collection that can be acquired with low-cost, off-the-shelf com-
ponents. This instrument is a pushbroom-style hyperspectral instrument,
where a line of spectral information is recorded per exposure as the
instrument is translated across a scene (Stuart et al., 2019). At present
this instrument is handheld; however, there is significant potential for
drone-based applications in the future. The instrument provides a pixel
resolution of typically 900 × 720 px but the width of the images is
determined by the duration of the scan so this figure can vary.

To enable reliable measurements that remained unaffected by satu-
ration, neutral density (ND) filters were fitted to reduce the intensity of
reflected solar radiation. The Samsung Galaxy S9 provided greater user
input, allowing the operator to manually adjust shutter speed reducing
the required optical density of the external filters. The ND filters can be

changed to suit illumination conditions.

2.3. Data collection and analysis

Measurements were captured across 21 sites in a catchment of
Isunguata Sermia. To reduce the potential impact of illumination vari-
ations, all datasets were captured on clear sky or fully overcast days
within 2 h of solar noon (Cook et al., 2017b). Hyperspectral measure-
ments were acquired using the handheld method described in Davies
et al. (2022), where an in-scene reference card is used to enable spatial
and spectral corrections without the need for additional data collection.
Standard RGB photographs were also captured for each location to
provide a visual comparison to the hyperspectral datasets.

A test card (Fig. 3) with known spectral responses was imaged before
data capture at each site, acting as a calibrated standard to ensure robust
datasets were acquired. This allowed the accuracy of spectral datasets to
be assessed in the field without the need for on-site spectral calibration.
Additionally, a minimum of five scene passes were captured of each
target to monitor the repeatability of captured datasets. Supraglacial
measurements were captured for a variety of debris-laden and clean ice

Fig. 1. Study area location in south-west Greenland (A). Context of study site close to Isunguata Sermia (B). Location of proglacial and supraglacial measurement
sites on the south-eastern part of the tongue of Isunguata Sermia (C). Background image taken from Sentinel-2 L1C true colour image (Red = Band 4, Green = Band 3,
Blue = Band 2) captured on 27th July 2023.

M.B. Stuart et al.
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locations, whereas proglacial measurements were more varied covering
lichen and shrub vegetation populations as well as a range of glacially
and fluvially deposited clasts. Sites were chosen for their spectral and
spatial diversity, giving us the opportunity to test the abilities of these
low-cost instruments across a broad range of glaciologically relevant
applications.

Whilst measurement quality was initially assessed in the field, post-
processing and analysis were predominantly completed in the labora-
tory. Hyperspectral data cubes were built within MATLAB (R2023a)
where spectral datasets were also corrected for sensor and illumination
biases using white and dark references. The white reference was taken
from the in-scene reference card, providing a distinct matte white
reference for each measurement. This helped to account for variations in
illumination that may have occurred between individual measurements.
Furthermore, prior to their application in the field, these instruments
were spectrally calibrated using a mercury argon lamp that produced a
series of intense narrow peaks at known wavelengths. The peaks at
546.07 nm and 576.96 nm were used to calculate the wavelength range
and spectral resolution. Further details on post-processing can be found
in Davies et al. (2022).

In this article the terms “reflectance” and “albedo” are used regu-
larly. To prevent confusion, in the context of this article we define these
terms as follows: “reflectance” refers to the spectral reflectance of a
target as a function of wavelength. “Albedo” refers to the reflective
properties of a target and is used when discussing the fraction of light
that is reflected from a target surface.

2.4. Machine learning

The data collected from the field was split into two sets, one for
training and the other for testing. The training datasets were manually
segmented. The machine learning was performed using MATLAB
(R2023a) to read in manually labelled spectral data sets to train and
produce a model to segment further data sets. The function “fitcnet” was
used with default parameters to build the convolution neural network
model, which could then be implemented using the “predict” function
with the model and a spectral data cube from the testing dataset as the
input. The use of this neural network function is precedented as an

analysis tool (Slightam and Griego, 2023; Patmanee et al., 2024). The
function applied the model to each of the spectra of the data cube and
was given a score for each feature the model was trained to identify. The
feature category given the highest score was assumed by the function to
be the feature in question and an image was produced with highlighted
areas corresponding to the presence of the feature/target. The final
output was an overlay of the detected feature over a pseudo RGB image
produced from the data cube where the spectrum corresponding to each
pixel had been run through the function.

2.5. Sample analysis

Several small samples of supraglacial debris were collected to un-
dergo laboratory analysis for ground truthing (Table 2). These samples
were stored at ambient temperature in plastic containers prior to mea-
surements in the laboratory using a laboratory-based hyperspectral
imaging instrument. Measurements were captured using the low-cost
design discussed in Stuart et al. (2022b), covering a wavelength range
of 450–750 nm. Illumination was provided by a Halogen lamp and the
spectral characteristics of the light source were removed with a white
correction in the same way that illumination bias was removed from the
hyperspectral images captured in the field, ensuring a fair comparison
between the two instruments. Samples were misted with water prior to
measurements to better represent their in-situ state. These samples were
used as ground truths to provide a reference to quantify the accuracy of
the field portable instrumentation. Sediment descriptions in Table 2 are

Fig. 2. The Hyperspectral Smartphone. 3-D render of the instrument highlighting key components (left) and a photograph of the instruments in the field demon-
strating their high portability (right).

Table 1
Instrument Specifications.

Instrument
Smartphone Handset Samsung Galaxy S9
Imaging Mode Pushbroom
Exposure Time (ms) 30
Spectral Range (nm) 450–850
Spectral Resolution (nm) 10
ND Filter Optical Density 1.6 Visible, 0.7 NIR
Weight (g) 301.64
Dimensions (cm) 14.5 × 8 × 9.5

M.B. Stuart et al.



Science of the Total Environment 951 (2024) 175516

5

based on in-field context and analysis. Fig. 4 shows a diagram of the
laboratory set-up used for these measurements.

2.6. Snowpack and ice surface energy balance modelling

We acquired hyperspectral images along a glacier transect to
demonstrate how the instrumentation could be incorporated into future
surface energy balance modelling studies. Sites were located in an
approximately southwest-northeast orientation at ca. 50 m elevation
intervals (equivalent to 0.2 to 0.7 km apart) from the ice margin towards
the main trunk of Isunguata Sermia to a height of 595 m a.s.l. Measured
albedo values were calculated for each site and incorporated into the
COupled Snowpack and Ice surface energy and mass balance model in
PYthon (COSIPY) (Sauter et al., 2020).

We calculated the albedo of supraglacial targets by integrating the
spectral intensities of the white portion of the in-scene reference card
and the measurand. The albedo was calculated by taking the ratio of

these values, using the reference card as a highly diffuse reflective
reference surface. The reflectance card provides diffuse reflection across
the spectral range of the instruments with a minimum reflectivity of
0.925 at ca. 450 nm. However, before the spectral intensity of the
reference card was integrated, the spectral reflectivity of the card had to
be calibrated to account for variations resulting from its imperfect
spectral reflectance. We measured the spectral reflectivity of the refer-
ence card using a Thorlabs spectrometer (CCS200) and integrating
sphere (Thorlabs 4P4). A representative sample of the card was placed in
the sample port, flush with the interior surface of the sphere, and a
broad-spectrum white LED was used for illumination. The spectrometer
was coupled to the measuring port of the integrating sphere by a fibre
optic and lens (Thorlabs LB1596), the combination of which ensured the
field of view of the spectrometer was filled by the sample.

Point simulations of hourly surface melt for each transect location
were run using the COSIPY model forced by interpolated data from the
KAN_L PROMICE AWS. Atmospheric temperature was interpolated to
the elevation of each transect site using a lapse rate of −5.3 ◦C km−1

(Harper et al., 2011). Atmospheric pressure was interpolated using the
barometric equation. Hourly total precipitation and snowfall fields were
extracted from the nearest ERA5-Land reanalysis grid cell (Muñoz-
Sabater et al., 2021). We ran COSIPY for each transect site with both
albedo estimates derived from Landsat and Sentinel-2 optical satellite
data (Feng et al., 2023) between August 10th - 17th, and those derived
from our hyperspectral data.

3. Results

3.1. Supraglacial measurements

Hyperspectral images were captured across a range of clean ice areas
and areas with high concentrations of LAI to test instrument efficacy in a
variety of sample collection scenarios. Fig. 5(A) shows a spectral com-
parison between datasets acquired from clean ice and LAI-covered sites.
Clean ice locations show a high intensity response across visible wave-
lengths, with the greatest intensity present across shorter wavelengths,
whereas LAI-covered regions produce a much lower intensity response
across all wavelengths. Additionally, this demonstrates that datasets
from high albedo locations can be collected with this instrument without
encountering problems relating to saturation.

Fig. 5(B) shows the data captured from two visually similar LAI-
covered locations. Site i shows Habitat 1 debris, believed to be an area
of windblown sediments from local moraine deposits, consisting of silt-
sized grey clasts. Site ii shows sediments from Habitat 2, thought to be a

Fig. 3. The test card used for in-field instrument calibration with data cube wavelengths and the reconstructed pseudo RGB image, highlighting the accuracy
provided by the instrument.

Table 2
Description of debris samples and their supraglacial locations.
Sample Description Site GPS Coordinates
A Habitat 1 Debris: Thought to be windblown

silt-sized grey clasts
Site i N 67.15145 W

50.04026
B Habitat 2 Debris: Thought to be sand and

Silt-sized orange/red clasts present within
an exposed debris seam

Site
ii

N 67.15694 W
50.00383

Fig. 4. Experimental set-up used for laboratory measurements of supraglacial
debris samples.

M.B. Stuart et al.
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Fig. 5. Supraglacial Measurements. A – spectral datasets for clean ice and LAI-covered locations shown alongside pseudo RGB reconstructions for example locations,
albedo values are available in Table 3. B – Comparison of visually similar debris sites. Site i: Habitat 1, Site ii: Habitat 2. Visual datasets of each site are shown
alongside their spectral responses recorded in the field and in the laboratory. Highlighted region shows area for direct comparison, emphasising the abilities of our
low-cost approach. C – Hyperspectral datasets for a supraglacial location featuring cryoconite holes, demonstrating the instrument’s ability to accurately reconstruct
on-ice features. Note the target area is defined by the size of the window within the reference card which is ca. 9 cm × 18 cm.

M.B. Stuart et al.



Science of the Total Environment 951 (2024) 175516

7

mineral dust seam that is melting out of the ice. These sediments consist
of silt and sand-sized red/orange clasts, contrasting with the local de-
posits (Bøggild et al., 2010; Nagatsuka et al., 2016). Despite these dif-
ferences, it is clear in Fig. 5(B) that from visual comparisons between the
standard photographs, these locations are difficult to distinguish.
However, focusing on the spectral information captured from each site,
subtle differences between their spectral responses become clear,
particularly with the addition of infrared wavelengths. From the spectral
data we can differentiate between these two locations, with the debris
from the mineral dust seam (Site ii) showing a consistently higher
spectral response across orange and red wavelengths (ca. 580 nm – 750
nm).

To further support this analysis, the field data can be directly
compared with laboratory analyses of these debris samples. Fig. 5(B)
shows the spectral responses of the debris samples captured using the
laboratory-based hyperspectral imaging system. These datasets high-
light the subtle differences between the samples that can be difficult to
identify by eye or with spectral instrumentation with coarser banding.
From these data we can clearly identify the increase in spectral response
across red wavelengths present in sample ii and the expected low
response across all wavelengths in sample i. Residuals were calculated to
compare the two measurement systems (laboratory and field) with
RMSE= 0.0125 and 0.0249 and R-squared values of 0.991 and 0.973 for
windblown sediments and mineral dust seams respectively.

Additionally, a variety of on-ice features were targeted to determine
whether these could be accurately identified with the Hyperspectral
Smartphone. Fig. 5(C) shows a dataset captured from an area featuring
cryoconite holes (typically 5–10 cm diameter cylindrical, water-filled
holes in the ice surface created by differential melting of clean ice
compared to sediment and biological material (Wharton et al., 1985;
Banerjee et al., 2023)) of varying size and depth. This figure demon-
strates that these small features can be accurately identified and visually
reconstructed using this instrumentation, with cryoconite holes of
varying size accurately reconstructed in the hyperspectral data. Note,
the banding present in this image is a result of the image capture process.

3.1.1. Albedo measurements
The albedo values calculated from our hyperspectral data and cor-

responding modelled surface melt vary considerably along the transect
(Table 3). There is also significant variability in albedo between nearby
sites A4 and A5, despite being less than 100 m apart and at the same
elevation. Site A4 has an albedo of 0.44, while site A5 has an albedo of
0.73. This results in a difference in daily surface melt of 1.26 cm w.e. In
contrast, using the satellite-derived albedo product, which has a coarser
ground footprint, the albedos were very similar (0.58 and 0.60,
respectively), leading to a much smaller difference in daily surface melt
of 0.09 cm w.e. Overall, there is an increase in albedo away from the
margin as is expected because much of the surface darkening in the

lower ablation area is predominantly from windblown dust (Wientjes
et al., 2011).

At approximately 590 m a.s.l. there is a band of ice with many
cryoconite holes. Spatially dense cryoconite holes reduce the albedo
calculated using our hyperspectral data because the debris that sits at
their bases makes up a significant proportion of the ice surface when
viewed from directly overhead. This reduction is not evident in the
satellite-derived albedo product (Feng et al., 2023), which is partially
derived from off-nadir imagery that does not incorporate cryoconite
hole debris due to their high depth-diameter ratio. However, measure-
ments completed by Ryan et al. (2018) found that the presence of
cryoconite holes had a minimal impact on albedo, suggesting that our
approach may overestimate the impact of cryoconite on albedo in this
instance. Overall, our data also showmore variability, which is expected
given the larger footprint of the satellite-derived albedo data (ca.
100–900 m2).

3.2. Measurements from the ice sheet foreland

Measurements in the ice sheet foreland were captured from a broad
range of targets to better demonstrate the variety of applications that
could benefit from the introduction of low-cost hyperspectral imaging
approaches. Datasets were collected from a variety of shrub vegetation
communities to highlight the accurate detection of spectral features such
as pigment variations and red edge increases. Fig. 6(A) shows the
spectral responses acquired from two shrub vegetation sites, demon-
strating the differences in spectral response between the two vegetation
types. Due to the pigmentation of the targets, Arctic Willow (salix arc-
tica) shows a higher spectral response across shorter blue/green wave-
lengths, whereas Bog Bilberry (vaccinium uliginosum) shows a marked
increase in reflectance across longer orange/red wavelengths. This
figure also highlights the benefits provided by the additional NIR
wavelengths, enabling red edge detection with a smartphone-based
instrument.

Several lichen measurements were also captured. Hyperspectral
measurements of lichens have been shown to provide valuable records
of species abundance and distribution for lichenometric dating studies
as well as an accurate visual record for comparisons with future datasets
(Guedes et al., 2022). A variety of crustose lichen species across the ice
sheet foreland were imaged using the Hyperspectral Smartphone. Fig. 6
(B) shows a hyperspectral dataset captured from a region of algal
growth, thought to be trentepohlia, marking a palaeo shoreline of an ice-
dammed lake. Lichens such as rhizocarpon geminatum,which appear grey
in colour, have also begun to colonise the surface. This figure clearly
highlights the abilities of the Hyperspectral Smartphone with the
reconstructed pseudo RGB dataset accurately portraying the original
target.

Table 3
Measurement locations and ice surface information with calculated hyperspectral and satellite-derived albedos for each site.
Name Date Latitude

(◦)
Longitude
(◦)

Elevation (m a.
s.l.)

Surface Type Hyperspectral Satellite-Derived Albedo
Albedo Daily SurfaceMelt (cm

w.e.)
Albedo Daily Surface Melt

(cm w.e.)
A1 10-Aug

2023
67.15145 −50.0403 490 Wind-blown sediment 0.30 3.60 0.28 3.68

A2 15-Aug
2023

67.15348 −50.0292 493 Wind-blown sediment 0.18 4.11 0.24 3.85

A3 15-Aug
2023

67.15446 −50.0244 496 Mineral dust seam 0.13 4.33 0.33 3.47

A4 15-Aug
2023

67.15581 −50.0172 535 Clean Ice 0.63 2.18 0.39 3.21

A5 15-Aug
2023

67.15969 −50.003 594 Cryoconite features 0.44 3.00 0.58 2.40

A6 10-Aug
2023

67.15911 −50.0034 595 Clean Ice with small
cryoconite features

0.73 1.74 0.60 2.31

M.B. Stuart et al.
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3.3. Machine learning

Machine learning analysis was applied to several hyperspectral
datasets to determine whether target features could be automatically
identified across multiple images from their spectral response. The
software was trained on example datasets captured with the Hyper-
spectral Smartphone, with a minimum of five examples provided for
each spectral target. Fig. 7(A) shows the results of this process when
applied to a supraglacial dataset with multiple cryoconite features.
Although cryoconite features are fairly evident in typical visual images,
we have included them here to demonstrate that the image segmenta-
tion technique can be applied to detect these features, precluding the
need for multiple image segmentation techniques. It also serves to
provide visual validation for the technique.

This analysis was also applied to proglacial datasets. Fig. 7(B) shows
the results obtained from analyses of multiple lichen species. This figure
shows that the different lichen species present across the rock surface
can be accurately identified from these datasets. Furthermore, the
software has also differentiated between areas of lichen and areas of the
underlying rock surface, supporting the potential offered by low-cost
hyperspectral imaging approaches. Fig. 7(C) further emphasises the
success of this approach, showing that areas of lichen can be accurately
distinguished from algal targets.

4. Discussion

4.1. Benefits for in-field glacial research

The Hyperspectral Smartphone is an accurate, low-cost alternative to
traditional hyperspectral field data collection within the cryosphere. It
can provide significant benefits, enabling highly detailed and tradi-
tionally expensive hyperspectral datasets to be captured using a
portable, low-cost alternative. The light-weight, portable nature of this

instrumentation makes it highly suited to applications within the cryo-
sphere, where measurements are often completed in remote locations
with uneven/rough terrain. This setting, therefore, makes it difficult to
utilise heavier and bulkier instrumentation without encountering sig-
nificant expenses and/or time-consuming logistics. Increasing data
collection opportunities through more accessible instrumentation helps
to develop a more detailed picture of the environmental setting. The
results above highlight the potential of such instruments for both glacier
foreland and supraglacial environments, emphasising their adaptability
to different settings and targets within challenging and difficult to access
environments.

For supraglacial measurements, the Hyperspectral Smartphone pro-
vides a novel means of LAI analysis and identification. Hyperspectral
images of the ice surface can be acquired across many sites relatively
quickly providing additional information on surface albedo; a key input
to surface energy balance models. The results obtained with our
instrumentation show similarities to those collected in previous studies
e.g. Dal Farra et al. (2018) where the spectral analysis of our sediments
produces similar spectral curves. Furthermore, our results agree with
previous studies that state that the optical properties of mineral dusts are
typically dominated by iron oxides (Kaspari et al., 2014; Zhang et al.,
2015; Zhang et al., 2017), resulting in an increase in reflectance across
longer wavelengths, which is visible in our datasets. The additional
spectral resolution (beyond that captured using standard RGB cameras)
enables more accurate identification of different debris types. For
example, Ryan et al. (2018), used standard RGB images to identify
different surface types, by incorporating our approach it may enable
their “distributed impurities” category to be better attributed. Further-
more, we believe, the spectral resolution offered by our approach will
enable differentiation between mineral dusts and algal blooms as the
absorption features typically associated with snow and ice algae should
be visible within the spectral resolution provided by our instrumenta-
tion. This could be particularly beneficial when mapping the relative

Fig. 6. Proglacial Measurements. A – Spectral comparison of Arctic Willow (i) and Bog Bilberry (ii) highlighting pigment and red edge detection enabled by the
extended spectral range. B – Hyperspectral data captured for a region of algal lake staining with grey lichen features. Note the target area is defined by the size of the
window within the reference card which is ca. 9 cm × 18 cm.
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coverage of different debris types, providing a means of identifying their
sources. By providing more accessible, highly portable hyperspectral
imaging instrumentation, capable of producing datasets that are com-
parable with current approaches, we can significantly increase the data
collection opportunities within these more challenging environmental
settings.

There are also considerable opportunities for instrument applications
within proglacial settings. The extended spectral range is particularly
beneficial, enabling additional information to be obtained from vege-
tation targets. By including NIR wavelengths within these datasets,
vegetation indices such as the Normalised Difference Vegetation Index

(NDVI) can be calculated using data captured from a smartphone-based
instrument. To date, the measurement of these vegetation indices with
smartphones has been infeasible due to the built-in restrictions associ-
ated with the camera systems of commercially available units. The
introduction of our novel approach, therefore, offers a valuable low-cost
alternative to vegetation monitoring studies in these regions. As such,
this has considerable potential for applications focusing on Arctic
greening and browning (Huete et al., 2002; Brown et al., 2016; Wang
and Friedl, 2019; Myers-Smith et al., 2020).

Arctic greening is among the world’s most significant large scale
ecological responses to climate change (Wang and Friedl, 2019; Myers-

Fig. 7. Machine Learning Applications. Areas highlighted in red indicate the detection of the labelled target. A – Automatic detection of on-ice features. B – Detection
and differentiation between different lichen species and the underlying rock surface. C – Detection and differentiation between lichen and lake staining features. Note
the target area is defined by the size of the window within the reference card which is ca. 9 cm × 18 cm.
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Smith et al., 2020; Shijin and Xiaoqing, 2023). However, its causes and
dynamics are complex and remain difficult to measure accurately using
existing approaches due to limitations in temporal resolution and poor
correlation between datasets captured across different platforms (Myers-
Smith et al., 2020). A combined approach, using datasets acquired from
satellite, proximal remote sensing, and in-situ measurements, whilst
accounting for related scaling issues (Myers-Smith et al., 2020), has been
proposed to advance studies of Arctic vegetation change. To be effective
this approach will require a significant increase in the temporal reso-
lution of in-situ measurements of Arctic vegetation. The Hyperspectral
Smartphone, as a low-cost, rapid, and accurate hyperspectral imaging
instrument, could therefore provide a route to improvingmeasurements.

Incorporating the Hyperspectral Smartphone into quantifying vege-
tation indices would enable a greater number of datasets to be acquired
over a wider survey area during the measurement period. Additionally,
future developments towards unmanned aerial vehicle (UAV)-mounted
surveys with these instruments further increase the measurement op-
portunities offered. The light-weight nature of these instruments (see
Table 1) would allow them to be incorporated within a UAV set-up with
relative ease, however, it should be noted that applications involving
UAV measurements would require the inclusion of additional optics to
ensure reliable data capture over these larger distances.

Low-cost hyperspectral imaging approaches enable the development
of high-quality imagery, creating a reliable record of spectral informa-
tion for a wide variety of targets and locations across the cryosphere. By
creating these records, we provide a wealth of data for future analysis
and comparison to future datasets without requiring the significant
upfront costs associated with many commercial devices. Whilst we
acknowledge that standard photographs can act as reliable records for a
number of applications, the addition of detailed spectral information
provided by hyperspectral instrumentation opens the door to a much
wider range of analysis and comparison. These records could prove
particularly beneficial within the field of lichenometry, for example,
where current measurement approaches can often be subjective and
lacking in visual records that enable accurate comparisons between
datasets (Guedes et al., 2022). Hyperspectral datasets enable the iden-
tification of specific spectral signatures, providing a more robust means
of differentiating between species, reducing the potential for the
misidentification of vegetation and lichen species.

Finally, the successful application of machine learning analysis
techniques to these datasets demonstrates the level of detail, and
quantitative information that can be extracted using this low-cost
instrumentation. The reliable identification of, and distinction be-
tween, the spectral characteristics of targets provides access to a wealth
of information that was difficult to acquire hitherto. Combining these
techniques within a low-cost, more accessible approach provides a path
towards increasing our understanding of the processes influencing these
key environmental settings whilst also bringing us closer to the demo-
cratisation of these valuable analytical techniques within the
cryosphere.

4.2. Practicalities for field deployment

The above sections highlight the considerable potential offered by
the outputs of the Hyperspectral Smartphone. This section aims to
provide an insight into the practicalities of deploying this instrumen-
tation within an Arctic field setting. Some of the greatest challenges
faced by instrument applications in these environments are portability
and power consumption, with typical commercial instruments being
large, and bulky with significant power requirements. In contrast, the
Hyperspectral Smartphone is highly portable requiring only a smart-
phone equipped with the spectral housing, and the in-scene reference
card to enable accurate in-field data collection. As such, these in-
struments can be carried with ease in hand luggage, minimising their
impact on trip logistics. in the field, these pieces of equipment can be
carried in a rucksack alongside other field equipment, as demonstrated

within this study where the instruments were transported to the field
sites daily in this manner without encountering any problems or
breakages. This enables the user to capture a broad range of datasets
across multiple locations without considerable set-up times or acquisi-
tion periods. Furthermore, the only power requirements are those of the
smartphones themselves which were charged at the field camp with a
small solar panel prior to deployment for data capture, removing the
need for the transport of large battery power supplies.

The battery life offered by these instruments is also significant, with
both instruments requiring only two charges over the two-week research
period. Whilst we acknowledge that colder measurement conditions or
more intense surveys will likely reduce battery life considerably, the
instruments are small enough that they could easily be placed inside a
jacket to keep them warm until they are needed for measurements. For
longer deployments a small power bank could be carried to provide
several phone charges. Additionally, data acquisition is rapid with scans
taking ca. 10 s to complete. This offers a considerable improvement on
existing approaches which typically take over 10 min to successfully
collect a dataset. Whilst there are snapshot-style approaches that enable
data acquisition times similar to those offered by the Hyperspectral
Smartphone, these instruments cost more than £20,000, which is over an
order of magnitude more expensive than our smartphone-based
approach.

5. Conclusions

In this article we have applied a smartphone-based hyperspectral
imaging instrument and machine learning techniques to data collection
and analysis activities at Isunguata Sermia, south-west Greenland. Our
results demonstrate the substantial potential offered by hyperspectral
imaging techniques, indicating that the limitations often associated with
low-cost components are now being overcome as technologies continue
to improve and develop. The datasets captured by these instruments are
similar to those found by other studies, despite being captured on de-
vices that cost over an order of magnitude less than typical commercially
available systems. The applications demonstrated in this article repre-
sent a small number of measurement opportunities available within
more extreme environmental settings, with the introduction of accurate
and reliable low-cost hyperspectral imaging alternatives unlocking a
wealth of data collection opportunities that were hitherto infeasible.
These new approaches, therefore, provide a significant step towards the
democratisation of this valuable analytical technique, helping to
improve our understanding of a wide range of more difficult to access
environmental settings.
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