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Abstract
Measurements	of	net	primary	productivity	(NPP)	and	litter	decomposition	from	tropi-
cal peatlands are severely lacking, limiting our ability to parameterise and validate 
models of tropical peatland development and thereby make robust predictions of how 
these systems will respond to future environmental and climatic change. Here, we pre-
sent	total	NPP	(i.e.,	above-		and	below-	ground)	and	decomposition	data	from	two	flo-
ristically	and	structurally	distinct	forested	peatland	sites	within	the	Pastaza	Marañón	
Foreland	Basin,	northern	Peru,	the	 largest	tropical	peatland	area	 in	Amazonia:	 (1)	a	
palm	 (largely	Mauritia flexuosa)	dominated	swamp	forest	and	 (2)	a	hardwood	domi-
nated	swamp	forest	(known	as	‘pole	forest’,	due	to	the	abundance	of	thin-	stemmed	
trees).	Total	NPP	in	the	palm	forest	and	hardwood-	dominated	forest	(9.83 ± 1.43	and	
7.34 ± 0.84 Mg	C	ha−1 year−1,	respectively)	was	low	compared	with	values	reported	for	
terra firme	 forest	 in	the	region	 (14.21–15.01 Mg	C	ha−1 year−1)	and	for	tropical	peat-
lands	elsewhere	(11.06	and	13.20 Mg	C	ha−1 year−1).	Despite	the	similar	total	NPP	of	
the	two	forest	types,	there	were	considerable	differences	in	the	distribution	of	NPP.	
Fine	root	NPP	was	seven	times	higher	in	the	palm	forest	(4.56 ± 1.05 Mg	C	ha−1 year−1)	
than	in	the	hardwood	forest	(0.61 ± 0.22 Mg	C	ha−1 year−1).	Above-	ground	palm	NPP,	
a	 frequently	 overlooked	 component,	made	 large	 contributions	 to	 total	NPP	 in	 the	
palm-	dominated	forest,	accounting	for	41%	(14%	in	the	hardwood-	dominated	forest).	
Conversely, Mauritia flexuosa litter decomposition rates were the same in both plots: 
highest	for	leaf	material,	followed	by	root	and	then	stem	material	(21%,	77%	and	86%	
of	mass	remaining	after	1	year	respectively	for	both	plots).	Our	results	suggest	poten-
tial differences in these two peatland types' responses to climate and other environ-
mental changes and will assist in future modelling studies of these systems.
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1  |  INTRODUC TION

Peatlands	 are	 among	 the	 Earth's	 most	 carbon-	dense	 ecosystems	
(Page	et	al.,	2011),	thus,	quantification	of	their	carbon	fluxes	is	es-
sential	to	understanding	the	global	carbon	cycle	(Loisel	et	al.,	2021).	
Tropical	peatlands	are	estimated	to	store	105	Pg	of	carbon	(C)	below-	
ground	(Dargie	et	al.,	2017),	equivalent	to	the	above-	ground	forest	
carbon	stock	of	the	entire	Amazon	basin	and	its	contiguous	forests	
(Mitchard	et	al.,	2013).	In	recent	decades,	human-	induced	peatland	
destruction	and	degradation,	mostly	in	Southeast	Asia,	has	led	to	a	
decline	in	tropical	peat	carbon	stocks	(Miettinen	et	al.,	2016, 2017).	
In	 Amazonia,	 the	 presence	 of	 extensive	 peatlands,	 particularly	 in	
Peru,	has	only	come	to	light	in	the	past	15 years	(Draper	et	al.,	2014; 
Hastie et al., 2022; Lähteenoja et al., 2009).	So	far,	peatland	degra-
dation	and	disturbance	have	been	limited	there	(Hastie	et	al.,	2022).	
However, there is evidence that rates of peatland deforestation and 
degradation	 are	 increasing	 (Marcus	 et	 al.,	 2024);	 ongoing	 and	 fu-
ture	agricultural	expansion,	 resource	extraction,	 road-	building	and	
other infrastructure development may accelerate peat carbon loss 
further	 (Hastie	et	al.,	2022;	López	Gonzales	et	al.,	2020;	Roucoux	
et al., 2017).	 In	addition,	Amazonian	peatlands	may	be	affected	by	
21st	century	climate	change.	For	example,	temperatures	in	Amazonia	
have increased by c. 0.7°C since the 1970s, precipitation appears 
to	 be	 declining	 in	 southern	 Amazonia	 and	 increasing	 in	 northern	
Amazonia	(Marengo	et	al.,	2018),	extreme	drought	and	flood	events	
have	increased	throughout	the	region	(Gloor	et	al.,	2015),	and	parts	
of	the	Amazon	are	changing	from	a	carbon	sink	to	a	carbon	source	
(Gatti	et	al.,	2021).

For	Amazonian	peatlands,	changes	in	temperature	and	hydrol-
ogy could affect peat accumulation because peat builds up under 
anaerobic conditions, that is, where waterlogging is near perma-
nent, as these inhibit most microbial decomposers, allowing plant 
litter to accumulate over centuries to millennia. Increased dry sea-
son length or intensity may therefore increase peat decomposition 
via	 changes	 in	 water	 table	 level,	 leading	 to	 lower	 below-	ground	
carbon	 stocks	 (Flores	 Llampazo	 et	 al.,	2022; Young et al., 2023).	
Hydrology is also likely to affect vegetation composition and struc-
ture.	Long-	term	lowering	of	the	peatland	water	table	may	result	in	a	
change	in	species	composition	(Flores	Llampazo	et	al.,	2022),	which	
in	turn	may	result	in	an	increase	in	above-	ground	biomass,	if	anaer-
obic	conditions	are	reduced	(Sousa	et	al.,	2020).	On	the	other	hand,	
increased	extreme	flood	events	may	lead	to	an	increase	in	mortality	
events	and	a	decrease	in	above-	ground	biomass	(Flores	Llampazo	
et al., 2022).	Given	 the	size	of	 the	peat	carbon	stock	 in	Peruvian	
Amazonia,	estimated	at	more	than	5 Pg C	(Hastie	et	al.,	2022),	the	
ongoing response of peatlands to human disturbance and climatic 
change is an important element of the changing carbon cycle in 
Amazonia.

Peat	 accumulation	 (or	 loss)	 primarily	 depends	 upon	 the	 bal-
ance	between	rates	of	plant	 litter	production	 (i.e.,	 the	net	primary	
productivity	 of	 the	 ecosystem)	 and	 organic	 matter	 loss	 through	
decomposition. For tropical peatlands, these rates are not well 
quantified.	There	 is	only	one	published	 study	of	 the	 total	 net	pri-
mary	 productivity	 (NPP)	 of	 a	 tropical	 peatland,	 from	 Micronesia	
(Chimner	 &	 Ewel,	2005),	 and	 data	 on	 litter	 and	 root	 productivity	
are	available	from	just	one	peatland	site	within	Peruvian	Amazonia	
(Dezzeo	 et	 al.,	2021; Hergoualc'h et al., 2023).	 Data	 on	 litter	 de-
composition	 is	 available	 from	 five	 tropical	 peatland	 sites,	 in	 Peru	
(Dezzeo	et	al.,	2021; Hergoualc'h et al., 2023),	Micronesia	(Chimner	
& Ewel, 2005; Ono et al., 2015),	Malaysia	(Yule	&	Gomez,	2009)	and	
Panama	(Hoyos-	Santillan	et	al.,	2015).	NPP	and	decomposition	data	
are	not	just	of	basic	scientific	value	but	are	also	crucial	for	quanti-
tative	peat	accumulation	simulation	and	forecasting	(e.g.,	Kurnianto	
et al., 2015; Young et al., 2023).

Here,	we	address	the	knowledge	gap	by	reporting	NPP	and	de-
composition data from two tropical peatland sites with contrasting 
vegetation,	located	in	the	Pastaza-	Marañón	Foreland	Basin	(PMFB)	
in	 northern	 Peruvian	 Amazonia.	 The	 PMFB	 peatlands	 are	 esti-
mated	 to	 cover	43,600 km2	 and	 store	 a	 large	proportion	 (4.1 Pg C)	
of	 the	 known	 lowland	 Amazonian	 peatland	 carbon	 stock	 (5 Pg C;	
Hastie et al., 2022).	Of	the	major	peatland	ecosystems	which	have	
been	identified	in	the	PMFB,	palm	swamps	dominated	by	the	palm	
Mauritia flexuosa,	 known	 regionally	as	 ‘aguajales’,	 are	 the	most	ex-
tensive,	 accounting	 for	 at	 least	 75%	of	 the	 peatland	 area	 (Draper	
et al., 2014; Hastie et al., 2022; Honorio Coronado et al., 2021).	
Owing	 to	 their	 large	 extent,	 palm	 swamps	 account	 for	 the	 larg-
est	 proportion	 of	 the	 PMFB	 total	 peatland	 carbon	 stock	 (Draper	
et al., 2014; Hastie et al., 2022; Honorio Coronado et al., 2021),	
but	the	most	carbon-	dense	peatlands	known	in	the	basin	are	hard-
wood	 tree-	dominated	 swamp	 forests,	 known	 as	 pole	 forests,	 or	
‘varillales	 hidromórficos’	 (Draper	 et	 al.,	 2014; Hastie et al., 2022; 
Honorio Coronado et al., 2021)	 after	 the	abundant	 thin-	stemmed,	
often	short-	stature	trees	which	characterise	these	forests	 (Draper	
et al., 2014;	 Lähteenoja	 &	 Page,	2011).	 Pole	 forest	 peatland	 cov-
ers	only	11%–14%	of	 the	PMFB	peatland	area	 (Honorio	Coronado	
et al., 2021),	 but	 yields	 the	 highest	 total	 carbon	 storage	 of	 any	
Amazonian	forest,	estimated	at	1113 Mg C ha−1	(compared	to	the	c.	
252 Mg C ha−1 stored in the surrounding terra firme forests; Honorio 
Coronado et al., 2021),	 despite	 their	 relatively	 low	 above-	ground	
biomass. This is owing to the tendency of pole forests to overlie 
deeper peat deposits.

We use in situ	 measurements	 of	 above-	ground	 productivity	
and	 below-	ground	 productivity	 of	 hardwood	 tree	 and	 arbores-
cent	palm	species,	and	the	results	of	litter	bag	experiments	in	two	
forest plots, a palm swamp peatland plot and a pole forest peat-
land plot, to estimate the net primary productivity and rates of 
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decomposition in these two regionally important peatland forest 
types.

2  |  MATERIAL S AND METHODS

2.1  |  Study sites

The	 two	 field	 sites	 in	 this	 study	are	both	 situated	 in	 the	PMFB	 in	
northeast	Peru	and	had	pre-	existing	0.5 ha	permanent	forest	plots:	
plot	NYO-	03	in	Nueva	York	(4.401° S,	74.271° W)	and	plot	VEN-	02	
in	Veinte	de	Enero	 (4.672° S,	73.819° W)	 (Figure 1).	The	climate	of	
the	region	is	tropical,	ever-	wet	with	mean	annual	temperatures	and	
rainfall	of	26°C	and	c.	3000 mm,	respectively	(Marengo,	1998).

Our site selection was based on ensuring we represented the 
most	 carbon-	dense	 peatland	 type,	 pole	 forest	 peatland,	 and	 the	
most	extensive	peatland	type,	palm	swamp	peatland,	in	the	PMFB,	as	
well	as	the	accessibility	of	the	sites.	Plot	NYO-	03	is	located	in	an	om-
brotrophic	pole	forest	peatland	3.5 km	from	the	Tigre	River,	a	black-	
water	left-	bank	tributary	of	the	Marañón.	Pole	forest	peatlands	are	
concentrated	north	of	the	Marañón	River	where	the	rivers	appear	to	
be	relatively	geomorphologically	stable	(Draper	et	al.,	2014; Hastie 
et al., 2022; Honorio Coronado et al., 2021).	Under	these	conditions	
of prolonged stability thick, domed peatlands have had time to de-
velop	(Draper	et	al.,	2014;	Lähteenoja	&	Page,	2011),	with	the	oldest	
core	recovered	so	far	dating	to	8650–8990 years	Before	Present	at	
the	base	of	the	peat	(Lähteenoja	et	al.,	2012).	The	commonly	domed	
structure of pole forest peatland areas means that they are pre-
dominantly	 rain-	fed	 and,	 as	 a	 result,	 nutrient-	depleted	 relative	 to	

minerotrophic swamps which, by contrast, can receive inputs of nu-
trients	from	rivers	and	ground	water	(Lähteenoja	&	Page,	2011).	In	
plot	NYO-	03,	the	peat	is	4.6 m	thick;	common	tree	species	include	
Pachira nitida, Platycarpum loretensis and Xylopia	sp.	(Table S1).	Plot	
NYO-	03,	 for	 the	 remainder	 of	 the	 text,	 is	 referred	 to	 as	 the	 pole	
forest peatland plot.

Plot	VEN-	02	is	located	in	a	minerotrophic	palm	swamp	peatland	
dominated by the arborescent palm Mauritia flexuosa,	2 km	from	the	
Yanayacu	River,	a	black-	water	right-	bank	tributary	of	the	Marañón	
River.	Palm	swamp	peatlands	are	usually	minerotrophic	systems,	that	
is, they receive water and nutrient inputs from a fluvial or ground-
water	 source.	 Across	 the	 PMFB	 region,	 the	 peat	 underlying	 palm	
swamps	 is	on	average	1.6 m	thick	 (Honorio	Coronado	et	al.,	2021)	
and	is	typically	Mid-		to	Late	Holocene	in	age	at	the	base	(Lähteenoja	
et al., 2012).	 Morphologically	 dynamic	 river	 systems,	 common	 in	
much	of	the	PMFB,	continuously	rework	their	floodplains,	which	lim-
its the age and thickness of peat deposits in the region south of the 
Marañón	River	(Draper	et	al.,	2014; Lähteenoja et al., 2009).	In	plot	
VEN-	02	the	peat	is	1.2 m	thick.	Although	Mauritia flexuosa is by far 
the most abundant species, the palms Socratea exorrhiza and Euterpe 
precatoria	are	also	common	(Table S1).	Plot	VEN-	02,	for	the	remain-
der	of	the	text,	is	referred	to	as	the	palm	swamp	peatland	plot.

2.2  |  Net primary productivity measurements

Methods	for	quantifying	the	components	of	forest	NPP	(tree	stem,	
branch,	canopy	and	root	productivity)	are	well	established	and	for	
consistency we followed the standardised methodology of the 

F I G U R E  1 Fieldwork	location	maps	showing:	(a)	the	two	0.5 ha	vegetation	plots	at	the	sites	of	Nueva	York,	a	pole	forest	peatland,	and	
Veinte	de	Enero,	a	palm	swamp	peatland,	on	Google	Earth	imagery;	(b)	the	study	region	(i.e.,	the	extent	of	(a),	the	Pastaza	Marañón	Foreland	
Basin	and	the	administrative	region	of	Loreto	within	Peru).	Map	created	using	the	Free	and	Open	Source	QGIS.	Map	lines	delineate	study	
areas and do not necessarily depict accepted national boundaries.
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global	ecosystem	monitoring	(GEM)	network	(Marthews	et	al.,	2014)	
where	possible.	However,	 the	GEM	NPP	methodology	was	devel-
oped for terra firme	forests	and	adaptions	were	required	to	measure	
fine	root	NPP	in	peat	swamp	conditions;	additionally,	we	developed	
our	own	method	to	measure	above-	ground	palm	NPP,	which	is	not	
considered	in	the	GEM	methodology.	We	follow	the	convention	that	
palms	are	flowering	monocots	in	the	family	Areceaceae	within	the	
order	Arecales.	We	define	 trees	as	plants	with	an	elongated	stem	
comprising	 secondary	 woody	 growth,	 which	 excludes	 palms.	 We	
report	NPP	in	Mg C ha−1 year−1.	Total	NPP	is	the	sum	of	all	the	com-
ponent	mean	NPP	measurements,	as	described	in	Table S2, where 
calculations	of	the	mean	and	standard	error	for	each	NPP	compo-
nent are also presented.

2.2.1  |  Tree	stem	net	primary	productivity

Tree	stem	NPP	(palms	excluded)	was	measured	using	dendrometer	
bands	 (following	Marthews	et	al.,	2014).	 In	each	plot,	every	stem	
with	a	diameter	at	breast	height	 (DBH)	of	≥10 cm	was	 fitted	with	
a dendrometer band. The dendrometer bands were placed close 
to,	but	not	on,	the	point	of	measurement	(typically	1.3 m)	for	DBH	
measurements.	After	installation	in	March	2018,	the	dendrometer	
bands	were	left	for	1 month	to	settle	before	the	measurement	pe-
riod	commenced.	At	time	zero,	the	DBH	of	each	stem	was	measured	
using	a	diameter	tape,	then	over	the	course	of	12 months,	circum-
ference growth was measured from the dendrometer band every 
3 months	using	callipers.	In	order	to	convert	increments	in	tree	stem	
circumference	 to	 increments	 in	 tree	stem	NPP,	 the	above-	ground	
biomass	 (AGB;	 kg)	 of	 each	 tree	was	 estimated	 for	 each	 3-	month	
interval	using	the	following	equation	(from	Chave	et	al.,	2014):

where WD	is	wood	density	(g	cm3),	D	is	tree	stem	diameter	(cm),	and	
H	is	tree	height	(m).	WD	was	obtained	from	the	Zanne	et	al.	(2009)	
wood density database. Ideally, the mean species WD from the da-
tabase	 was	 used;	 where	 species-	level	WD	 was	 not	 available,	 the	
genus, family or plot mean WD was used. Tree diameter was cal-
culated	 from	 the	 dendrometer	 band-	derived	 tree	 circumference.	
Tree height was not available for all trees, and so was estimated for 
all	 trees	using	modelled	 tree	height	 from	an	asymptotic	 exponen-
tial model relating tree diameter to tree height fitted to pooled data 
from the palm swamp peatland plot and the pole forest peatland 
plot. The data were pooled, because the model using the 27 tree 
measurements from the palm swamp peatland plot did not converge. 
Tree	heights	were	measured	using	a	Nikon	laser	rangefinder	(manu-
facturer:	Nikon;	model:	Forestry	Pro	II	Rangefinder)	in	2009	in	the	
palm	 swamp	peatland	 plot	 (27	 trees)	 and	 in	 2019	 in	 the	 pole	 for-
est	peatland	plot	(52	trees).	The	model	of	best	fit	(residual	standard	
error:	4.68 m;	degrees	of	freedom:	76)	for	predicting	tree	height	(H; 
m)	from	stem	diameter	(D;	mm)	was	as	follows:

The	stand	NPP	for	each	census	was	then	estimated	as	the	sum	of	indi-
vidual tree increments of all surviving trees between one census and 
the	next:

Some	dendrometer	bands	were	damaged	(largely	owing	to	ter-
mites).	The	proportion	of	dendrometer	bands	which	were	damaged	
were	23%	for	the	pole	forest	peatland	plot	and	16%	for	the	palm-	
dominated	peatland	plot.	A	gap	in	the	dendrometer	band	data	for	a	
tree was filled by interpolation, using data from previous and sub-
sequent	censuses	or	extrapolation	if	there	were	gaps	at	the	begin-
ning	or	end	of	the	sequence	of	censuses.	In	the	pole	forest	peatland	
plot there were individuals for which no growth measurement was 
available	(3%	of	measurements).	Therefore,	a	plot-	level	species-	,	ge-
nus-		or	family-	DBH	size	class	mean	growth	rate	was	used,	as	long	
as there were at least five measurements from which to calculate 
the mean. Where the number of measurements were fewer than 
five,	a	plot-	level	DBH	size	class	mean	growth	rate	was	used	(<1%	
of	 measurements).	 The	 DBH	 size	 classes	 were	 10–19.9,	 20–29.9,	
30–39.9	 and	≥ 40 cm.	We	 assumed	 a	 carbon	 content	 of	 45.6%	of	
dry	biomass,	based	on	a	mean	value	for	tropical	tree	stems	(Martin	
et al., 2018).

2.2.2  |  Palm	stem	net	primary	productivity

At	 the	 time	of	 field	work,	we	were	not	 aware	of	 any	 study	which	
measured	palm	stem	NPP	and	therefore	developed	our	own	meth-
odology.	Given	that	mature	palms	do	not	exhibit	secondary	(diam-
eter)	growth,	we	estimated	palm	stem	NPP	by	measuring	changes	
in stem height over time, from the ground surface to the base of the 
lowest	 living	 frond.	Members	 of	 the	 field	 team,	 in	 the	 year	 2018,	
climbed the palm stems and measured stem height directly using a 
tape measure for all stems but one in the pole forest peatland plot 
(n = 37),	and	for	a	subsample	of	stems	in	the	palm	swamp	peatland	
plot	(n = 46).	The	physical	nature	of	climbing	the	palms,	which	could	
only be done in dry weather, limited the number of individuals which 
could be physically measured for total palm height. The same palms 
were then remeasured in 2019 for the pole forest peatland plot and 
in 2020 for the palm swamp peatland plot.

To estimate the unmeasured palm heights for the year 2020 
in	 the	palm	swamp	peatland	plot	 (n = 209),	we	used	a	 regression	
between palm height data measured in the palm swamp peatland 
in	 2019	 using	 a	 Nikon	 laser	 rangefinder	 (manufacturer:	 Nikon;	
model:	 Forestry	 Pro	 II	 Rangefinder)	 and	 the	 2020	 directly	mea-
sured	height	data	(p < .001,	R2 = .89).	To	obtain	estimates	for	2018,	
we	extrapolated	back	from	the	2020	estimated	heights	using	the	
mean	palm	stem	height	growth	rate	(0.06 m year−1)	of	the	directly	
measured palms. In the pole forest peatland plot, only one palm 
was not measured. For this, we estimated its height in 2019 using 
a regression between palm heights measured by laser in the pole 
forest peatland plot in 2019 and the 2019 directly measured palm 
heights	(p < .001,	R2 = .56).	To	obtain	an	estimate	for	its	height	in	

(1)AGB = 0.0673 ×WD × D2 × H0.976,

(2)H = 28.9298 − 47.2647 × exp(−0.0081×D).

(3)Stand NPP = Σ
(

individual AGBcensus n+1 − individual AGBcensus n

)

.
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    |  5 of 21DARGIE et al.

2018,	we	extrapolated	back	from	the	2019	height	estimate	using	
the mean palm stem height growth rate of the directly measured 
palms	(0.13 m year−1).

The	 AGB	 (kg)	 of	 each	 individual	 palm	 was	 then	 estimated	
using	 genus-	specific	 palm	 allometric	 equations	 from	 Goodman	
et	al.	(2013),	as	follows:

where	AGB	is	the	above-	ground	biomass	(kg)	of	the	five	genera	pres-
ent across the two plots, H	 is	 the	 stem	height	 of	 the	 palm	 (m)	 as	
measured in the field, and D	 is	 the	diameter	at	breast	height	 (cm).	
For Socratea	individuals	(n = 49),	the	only	genus	for	which	diameter	
is	 a	 parameter	 in	 the	 AGB	 allometry,	DBH	was	 interpolated	 from	
DBH measurements made during forest inventories in 2017 and 
2019,	 following	 the	RAINFOR	 field	 protocol	 (Phillips	 et	 al.,	2021).	
We	assumed	a	carbon	content	48.1%	of	dry	biomass,	based	on	the	
mean	 value	measured	 for	Amazonian	 palm	 stem	 tissue	 (Goodman	
et al., 2013).

To estimate the uncertainty associated with our palm stem 
NPP	estimate	we	used	a	resampling	approach.	We	estimated	palm	
AGB	increments,	one	for	each	stem,	using	resampled	AGB	incre-
ment	data,	 to	estimate	palm	stem	NPP.	We	repeated	 the	 resam-
pling	1000	times	and	calculated	the	standard	error	of	palm	NPP.	
This	 was	 necessary	 as	 we	 only	 have	 palm	 stem	 NPP	 estimated	
from one census interval.

2.2.3  |  Branch	net	primary	productivity

Branch	 shedding,	 which	 is	 assumed	 to	 be	 equal	 to	 branch	 NPP	
(Malhi	et	al.,	2009),	was	measured	by	collecting	all	woody	debris	
with	 a	 diameter	 ≥2 cm	 along	 four	 1 × 100 m	 transects	 running	
parallel	 to	 the	 0.5 ha	 plot	 boundaries	 (Marthews	 et	 al.,	 2014).	
Collections	were	made	every	3 months	(Marthews	et	al.,	2014)	and	
the woody debris was sorted into five classes of degree of decom-
position	and	then	into	three	diameter	class	sizes	(2–5,	>5–10	and	
>10 cm)	 (Baker	&	Chao,	2011).	For	each	 transect,	 the	 total	 fresh	
mass	 for	each	decomposition-	diameter	class	was	weighed	 in	 the	
field and a subsample was taken. Subsamples were weighed fresh 
and then dried to constant mass in an oven and weighed again to 
obtain the gravimetric water content. This water content of the 
subsample was used to estimate the total dry mass from the total 
fresh	mass.	We	assumed	a	carbon	content	of	45.6%	of	dry	biomass	
(Martin	et	al.,	2018).

2.2.4  |  Tree	litter	productivity

Tree	litter	production,	which	is	assumed	to	be	equal	to	canopy	NPP	
(Malhi	et	al.,	2009),	was	measured	monthly.	In	both	plots,	a	0.25 m2 
litter trap was installed in the centre of 10 of the 15 subplots at a 
height	 of	 1 m	 above	 the	 forest	 floor	 (Marthews	 et	 al.,	2014).	 The	
monthly litter collections were dried to constant mass in an oven, 
separated into the categories of leaves, woody material, reproduc-
tive parts and miscellaneous material, then weighed. We assumed 
a	carbon	content	48.8%	of	dry	biomass,	based	on	a	mean	value	for	
Amazonian	tree	litter	(Hättenschwiler	et	al.,	2008).

2.2.5  |  Palm	litter	productivity

For	the	palm	species,	the	large	size	of	the	palm	fronds	precluded	
the use of litter traps to measure this component of litter produc-
tion.	Palm	litter	production	rates,	assumed	to	be	equal	to	the	palm	
canopy	 NPP,	 were	 therefore	 measured	 using	 the	 same	 ground	
transects	as	were	used	for	branch	NPP.	Palm	litter	was	collected	
every	3 months	and	separated	into	the	categories	of	petiole,	leaf-
let	and	inflorescence	(including	any	fruit).	The	total	fresh	mass	of	
each category was weighed in the field and a subsample was taken 
to estimate the water content of each category for each transect. 
Subsamples were weighed fresh and then dried to constant mass 
in an oven and weighed again to obtain the gravimetric water 
content.	 We	 assumed	 a	 carbon	 content	 51.2%	 of	 dry	 biomass,	
based	on	a	mean	value	for	Amazonian	palm	leaf	tissue	(Goodman	
et al., 2013).

2.2.6  |  Root	productivity

Fine	root	productivity	was	measured	over	3-	month	intervals	(fol-
lowing	Marthews	et	 al.,	2014)	 from	April	 2018	 to	April	 2019.	 In	
each	 plot,	 eight	 mesh	 cores	 measuring	 6.5 cm	 in	 diameter	 and	
50 cm	in	 length,	made	up	of	a	15 mm	outer	rigid	mesh	lined	with	
2 mm	flexible	and	root-	penetrable	mesh,	were	filled	with	root-	free	
peat and installed in the ground at the eight interior intersec-
tions of the 15 subplots. Our cores were smaller in diameter and 
longer	in	length	than	the	standard	GEM	methodology	(Marthews	
et al., 2014):	we	used	a	smaller	diameter	to	reduce	disturbance	of	
the	peat	profile	 (Laiho	et	al.,	2014)	and	a	 longer	depth	to	ensure	
we	met	the	requirements	of	peat	development	models	(Kurnianto	
et al., 2015).	The	root-	free	peat,	which	filled	the	cores,	came	from	
just outside each respective plot to ensure that the peat within 
the core was of a similar nutrient status to that of the surrounding 
peat. Roots were handpicked from the peat by a team of people 
over several days until no roots were visible in the peat. Once filled 
with	root-	free	peat,	the	cores	were	wrapped	and	frozen	to	prevent	
the peat from running out of the core during transportation to the 
field. Every 3 months, the cores were replaced with new cores. 

(4)ln
(

AGBMauritia

)

= 2.4647 + (1.3777 × ln(H)),

(5)AGBMauritiella = 2.8662 × H,

(6)ln
(

AGBOenocarpus

)

= 4.5496 + (0.1387 × H),

(7)ln
(

AGBSocratea

)

= 3.7965 +
(

1.0029 ×
(

ln
(

D2H
)))

,

(8)AGBEuterpe = − 108.81 + (13.589 × H),
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6 of 21  |     DARGIE et al.

The	 cores	 retrieved	 from	 the	 field	were	 sieved	 using	 a	 0.14 mm	
mesh sieve to recover all roots which had grown into the core over 
the	3-	month	period.	The	roots	were	then	dried	to	constant	mass	
in an oven before being weighed. The mass of carbon we assumed 
to	be	45.9%	of	dry	biomass	for	the	pole	forest	plot	and	48.3%	for	
the	 palm-	dominated	 plot,	 which	 is	 the	 weighted	mean	 of	 tropi-
cal	hardwood	trees	(45.6%	C	for	tropical	tree	stem	tissue;	Martin	
et al., 2018)	and	palms	(48.8%	C	for	Amazonian	palm	root	tissue;	
Goodman et al., 2013)	in	each	plot.

The	 NPP	 of	 large	 structural	 tree	 roots,	 referred	 to	 here	 as	
coarse roots, are not captured by the root ingrowth core method. 
The	logistical	difficulty	of	measuring	the	NPP	of	such	roots	means	
that	 their	NPP	 is	usually	estimated.	Following	Malhi	et	al.	 (2009),	
we	assumed	that	the	tree	coarse	root	NPP	was	21%	of	tree	stem	
NPP.	We	assumed	a	carbon	content	45.6%	of	dry	biomass	(Martin	
et al., 2018).	Palm	coarse	root	NPP	was	calculated	as	the	difference	
between	estimated	below-	ground	biomass	 (BGB)	at	 the	start	and	
end	of	the	census	period.	The	BGB	(kg)	of	each	individual	palm	was	
estimated	using	allometric	equations	from	Goodman	et	al.	 (2013),	
as follows:

where H	is	the	height	of	the	palm	stem	(m).	In	plot	VEN	02,	there	were	
also Socratea exorrhiza, Euterpe precatoria and Oenocarpus mapora indi-
viduals.	However,	Goodman	et	al.	(2013)	do	not	present	BGB	allometric	
equations	for	these	genera.	Therefore,	we	applied	the	Mauritia BGB al-
lometric	equation	to	Oenocarpus mapora individuals and the Mauritiella 
BGB	allometric	equation	to	Socratea exorrhiza and Euterpe precatoria in-
dividuals, based on morphological similarities of these genera. We as-
sumed	a	carbon	content	48.8%	of	dry	biomass	(Goodman	et	al.,	2013).	
The	BGB	palm	allometric	equations	of	Goodman	et	al.	(2013)	are	not	
coarse root specific. However, the description of the destructive sam-
pling	behind	these	allometric	equations	(Freitas	et	al.,	2006)	suggests	
that it was only the vertical anchoring roots directly below the palm 
that	were	sampled,	rather	than	horizontally	growing	roots.	Therefore,	
we	do	not	believe	we	have	doubled	accounted	the	root	NPP	captured	
in our root ingrowth cores. To estimate the uncertainty associated with 

our	estimate	of	palm	coarse	NPP	we	used	 the	same	 resampling	ap-
proach	described	for	palm	stem	NPP	uncertainty.

2.3  |  Litter decomposition

Litter bags were installed in each plot to measure decomposition 
rates.	 For	 both	 plots,	mesh	 bags	 (material:	 polypropylene;	 dimen-
sions:	26 cm × 30 cm;	mesh	size:	1.5 mm)	were	filled	with	either	dried	
leaf	 (ca.	5 g),	 stem	 (ca.	5 g)	or	 root	 (ca.	4 g)	material	 collected	 from	
specimens of Mauritia flexuosa only. While this does not give us in-
sight into whether tree species litter would follow a similar decom-
position pathway, it does allow a direct comparison of decomposition 
rates between the ombrotrophic pole forest and minerotrophic palm 
swamp peatland sites. Note that the dried litter came from fresh 
rather than senesced leaves, and wood and roots from living trees, 
due	to	difficulty	in	collecting	a	sufficient	quantity	of	dead	but	unde-
composed material. 10 replicates of each litter type were placed in 
10 different subplots within each plot. Decomposition bags contain-
ing leaf or stem material were left at the surface while decomposi-
tion	bags	containing	roots	were	buried	at	a	depth	of	30 cm	below	the	
peat	surface	(a	common	treatment	in	decomposition	studies,	for	ex-
ample, Chimner & Ewel, 2005;	Dezzeo	et	al.,	2021;	Hoyos-	Santillan	
et al., 2015; Ono et al., 2015),	to	simulate	where	this	litter	category	
would	 typically	 enter	 the	 peat	 profile	 under	 natural	 conditions.	 A	
depth	of	30 cm	was	chosen	in	order	to	be	compatible	with	peat	de-
velopment models which have been adapted for tropical settings. 
One bag was recovered from each of the 10 locations after periods 
of	 approximately	1,	2,	3,	4,	6,	10	and	12 months.	After	 collection,	
the bags were dried to constant mass in an oven and the content 
weighed.

In the statistical analysis, we treat the stem, branch and root lit-
ter independently to obtain the most robust decomposition model 
for	each	(see	Table 1).	For	all	three	litter	types,	we	used	non-	linear	
least	squares	analyses,	with	forest	plot	fitted	as	a	factor.	For	both	
stem and root litter, we weighted the models to reduce the hetero-
scedasticity	(see	Table 1).	To	assess	whether	decomposition	patterns	
were different between the palm swamp peatland and the pole for-
est peatland for the three litter types, we also fitted a nested model, 

(9)ln
(

BGBMauritia

)

= − 0.3688 + (2.0106 × ln(H)),

(10)ln
(

BGBMauritiella

)

= 1.0945 + (0.11086 × H),

TA B L E  1 Model	parameters	and	applied	weightings	for	the	model	of	best	fit	describing	litter	decomposition	(the	fraction	of	initial	mass	
remaining)	as	a	function	of	time	(number	of	days;	represented	by	x),	for	each	litter	type	(stem,	roots	and	leaves)	in	plots	NYO-	03,	a	pole	
forest	peatland,	and	VEN-	02,	a	palm	swamp	peatland.

Litter type Site

Parameter values (±SE) for the model form: y = a + (b − a) × e(−e
c×x)

Weighting applieda b c

Stem Pole	forest	peatland 0.844 ± 0.038*** 0.992 ± 0.007*** −5.025 ± 0.453*** 1/x2

Palm	swamp	peatland 0.862 ± 0.018*** 1.007 ± 0.015*** −4.257 ± 0.328*** 1/x2

Roots Both 0.759 ± 0.028*** 1.024 ± 0.012*** −4.584 ± 0.232*** 1/x2

Leaves Both 0.150 ± 0.054** 0.948 ± 0.045*** −4.949 ± 0.199*** NA

Note:	For	root	and	leaf	litter,	the	inclusion	of	forest	plot	as	factor	was	non-	significant	(p > .05);	therefore,	we	present	a	single	model	for	both	plots.	All	
model	parameters	shown	are	significant;	**	denotes	a	p-	value	<.01,	***	denotes	a	p-	value	<.001.
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    |  7 of 21DARGIE et al.

where plot was not fitted as a factor, and compared the nested 
models	 to	 the	 originals	 using	ANOVA.	 If	models	were	 not	 signifi-
cantly	different	 (p > .05)	we	 selected	 the	 simpler	model.	Model	 fit	
was	assessed	using	residual	quantile-	quantile	plots,	residuals	plotted	
against fitted values, and histograms of the residuals. From the mod-
els of best fit, we predict the mass remaining after 1 year for each 
litter	 type	and	 the	95%	confidence	 intervals.	Confidence	 intervals	
were	calculated	using	the	‘predFit’	function	of	the	R	package	investr	
(Greenwell	&	Schubert	Kabban,	2014).

2.4  |  Data processing and analysis software

All	 analysis	 was	 carried	 out	 in	 R	 (R	 Core	 Team,	 2022).	 The	 tidyr	
(Wickham,	2001),	dplyr	(Wickham	et	al.,	2021),	lubridate	(Grolemund	
& Wickham, 2011),	nls2	(Grothendieck,	2013)	and	investr	(Greenwell	
& Schubert Kabban, 2014)	packages	were	used	 in	data	processing	
and analysis.

3  |  RESULTS

3.1  |  Net primary productivity

Total	 mean	 (±	 SE)	 NPP	 was	 similar	 in	 the	 two	 peatland	 plots:	
9.83 ± 1.43 Mg	 C	 ha−1 year−1 in the palm swamp peatland and 
7.34 ± 0.84 Mg	C	ha−1 year−1 in the pole forest peatland. This simi-
larity	 masks	 considerable	 differences	 between	 the	 different	 NPP	
components	for	the	two	plots	(Figure 2)	and	their	proportional	con-
tribution	to	the	total	NPP	(Table 2).	Given	the	different	vegetation	
composition	of	the	two	plots,	it	was	to	be	expected	that	they	would	
differ in terms of the proportional contribution of the different plant 
components	to	total	NPP.	The	low	stem,	litter	and	branch	NPP	in	the	
palm swamp peatland plot reflects the lower tree stem numbers in 
the	plot	(55	surviving	stems	vs.	375	in	the	pole	forest	peatland).	The	
palm swamp peatland plot had a higher number of palm individuals 
than	the	pole	forest	peatland	plot	(275	vs.	38	surviving	individuals)	
and	 therefore	palm	NPP,	both	 in	absolute	values	and	proportional	
contribution, was much higher in the palm swamp.

The	palm	swamp	peatland	plot	fine	root	NPP	was	4.56 ± 1.05 Mg	
C ha−1 year−1,	which	was	much	higher	than	the	fine	root	NPP	of	the	
pole	forest	peatland	plot	at	0.61 ± 0.22 Mg	C	ha−1 year−1. In the palm 
swamp,	 roots	 (fine	and	coarse	 root	NPP	combined)	were	 the	 larg-
est	contributor	(49%)	to	total	NPP,	followed	by	palm	above-	ground	
NPP	(palm	stem	and	palm	litter	NPP	combined;	41%),	with	hardwood	
above-	ground	NPP	(tree	branch,	stem	and	litter	NPP	combined)	con-
tributing	 just	10%	 (Table 2).	 In	 the	pole	 forest	 peatland,	 however,	
hardwood	above-	ground	NPP	contributed	74%	of	total	NPP,	mostly	
through	litter	(56%	of	total	NPP).	Roots	and	palms	contributed	just	
13%	and	14%	to	total	NPP	respectively	(Table 2).

The	two	forest	types	appear	aseasonal	 in	terms	of	NPP.	There	
are no clear seasonal or other temporal patterns in the tree litter 
NPP	data	from	the	palm	swamp	peatland	plot,	nor	in	the	quarterly	

measurements	of	tree	stem	NPP,	branch	NPP,	palm	litter	NPP	and	
root	NPP	 from	 both	 sites	 (Figure 3; Figures S2–S5).	 There	 are	 no	
clear	season	patterns	in	the	pole	forest	peatland	plot	except	possibly	
for	tree	litter	NPP,	which	was	highest	in	July	to	October	2018	when	
the water table was at its lowest level over the measurement period, 
and	 in	March	 and	April	 2019	 following	 a	 short-	lived	 rise	 in	water	
table	(Figure 3; Figures S2–S5).

3.2  |  Litter decomposition

Leaf litter decomposed at the fastest rate in both the palm and pole 
forest	peatland	plots,	with	21%	(95%	CI:	16%–26%)	mass	remaining	
after	1	year	for	both	plots	(Figure 4; Table 4).	This	was	followed	by	
much	slower	rates	for	stem	material,	with	77%	(95%	CI:	72%–81%)	
mass	remaining	after	1	year	for	both	plots	 (Figure 4; Table 4).	The	
slowest	rates	were	for	root	litter,	with	86%	(95%	CI	pole	forest	peat-
land:	82%–89%;	95%	CI	palm	swamp	peatland:	83%–90%)	of	mass	
remaining after 1 year for both plots. For stem litter, decomposi-
tion was initially significantly faster in the pole forest peatland plot 
than in palm swamp peatland plot, driven by modest differences in 
the first 6 months, shown by the original model being a significantly 
better	fit	than	the	nested	model	 (p < .001).	Root	and	 leaf	 litter	de-
composition patterns were not different between the palm swamp 
and the pole forest peatlands, shown by there being no significant 
difference	between	 the	original	 and	nested	models	 (roots:	p = .93;	
leaves: p = .95).

4  |  DISCUSSION

4.1  |  Net primary productivity

Our results underline the importance of considering the contribu-
tion of palms to productivity and carbon cycling in peatlands. Few 
previous	 studies	 have	 considered	 the	 NPP	 of	 palm	 species	 out-
side	 of	 plantation	 agriculture	 settings	 (Avalos	 et	 al.,	2022; Bocko 
et al., 2023; Goodman et al., 2013)	 and	 this	omission	may	 lead	 to	
considerable	underestimations	of	 forest	NPP,	particularly	 in	 tropi-
cal	peatland	settings	where	palms	frequently	dominate	the	canopy	
(Bocko	 et	 al.,	2023).	We	 found	NPP	 in	 the	 palm	 swamp	 peatland	
(9.83 ± 1.43 Mg C ha−1 year−1)	to	be	non-	significantly	different	to	NPP	
in	 the	pole	 forest	peatland	 (7.34 ± 0.84 Mg C ha−1 year−1).	 It	 is	 likely	
that palms account for the majority of the palm swamp peatland 
total	NPP;	when	we	combine	palm	above-	ground	NPP	(41%	of	total	
NPP)	with	root	NPP	(49%	of	total	NPP),	the	majority	of	which	is	likely	
palm roots, it seems that palms could account for more than >80%	of	
total	NPP.	Even	in	the	pole	forest	peatland	palm	above-	ground	NPP	
accounted	for	14%	of	total	NPP,	still	a	significant	proportion	of	NPP	
even though this site was dominated by hardwood trees.

At	 a	 regional	 level	 our	 results	 suggest	 that	 Peruvian	 lowland	
peatlands are substantially less productive than the region's terra 
firme	forests,	with	values	between	14.21	and	15.01 Mg	C	ha−1 year−1 
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8 of 21  |     DARGIE et al.

reported	for	Peruvian	lowland	terra firme	forests	(del	Aguila-	Pasquel	
et al., 2014;	Malhi	et	al.,	2014; Table 3),	although	it	should	be	noted	
that these terra firme values are higher than in many other tropi-
cal forest settings, which are typically <10 Mg	C	ha−1 year−1	 (Clark	
et al., 2001).	The	comparatively	 low	productivity	of	 the	peatlands	
is consistent with the anaerobic soil conditions, which are known 
to adversely affect tree photosynthetic rate and respiration effi-
ciency	(Kozlowski,	2002).	These	peatland	sites	also	have	much	lower	

stem productivity than nearby seasonally flooded forests on allu-
vial	floodplains	(average	of	8.5 Mg	C	ha−1 year−1; Nebel et al., 2001)	
which,	despite	annual	flooding,	can	have	a	higher	NPP	than	the	sur-
rounding terra firme forests. It has been suggested that the location 
of the seasonally flooded forests, on alluvial floodplains inundated 
by	white-	water	 rivers	with	 relatively	 high	 nutrient	 levels,	 explains	
this	 high	 productivity	 (Malhi	 et	 al.,	 2004; Nebel et al., 2001).	 In	
the	 PMFB	 peatlands,	 however,	 the	 near	 year-	round	 waterlogged	

F I G U R E  2 Net	primary	productivity	for	(a)	a	pole	forest	ombrotrophic	peatland	(NYO-	03)	and	(b)	a	palm	swamp	minerotrophic	peatland	
(VEN-	02)	in	the	Pastaza	Marañón	Foreland	Basin.	Values	of	the	mean	and	standard	error	are	presented	in	Mg	C	ha−1 year−1.	*Tree	coarse	root	
NPP	standard	error	for	plot	VEN-	02	is	equal	to	0.003.
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conditions may counteract any productivity benefit that comes from 
any	 influx	of	nutrients	 in	 floodwaters.	Furthermore,	as	 is	 the	case	
for	 our	 sites,	many	 PMFB	 peatlands	 are	 either	 ombrotrophic	 (the	
pole	forest	peatland	plot)	or	are	likely	only	flooded	by	nutrient-	poor	
black-	water	 rivers	 (the	 palm	 swamp	peatland	 plot)	 and	 so	 are	 un-
likely	to	receive	large	fluxes	of	nutrients	from	flooding.	In	fact,	PMFB	
peatlands	have	similar	NPP	values	to	montane	forests:	the	NPP	of	

the	pole	forest	peatland	plot	is	comparable	to	NPP	values	reported	
for	lower	montane	cloud	forests	(Girardin	et	al.,	2010; Table 3).	Like	
the	 PMFB	 peatlands,	 cloud	 forests	 often	 have	 high	 soil	 moisture	
content and low pH, but unlike the lowland peatlands, they are also 
subjected	to	low	temperatures	(Bruijnzeel	&	Veneklaas,	1998),	which	
is thought to limit soil N mineralisation and therefore N availability 
(Fisher	et	al.,	2013).

F I G U R E  3 (a)	Boxplot	and	stripchart	(triangles)	of	total	litter	productivity	for	the	pole	forest	peatland	plot	(light	grey)	and	palm	swamp	
peatland	plot	(dark	grey)	across	the	12	one-	month	census	periods	(starting	in	May	2018).	The	box	represents	the	interquartile	range,	and	
the	middle	line	represents	the	median	and	the	whiskers	represent	the	minimum	and	maximum	values.	(b)	Minimum	and	maximum	daily	
air	temperature	time	series	(top	panel),	daily	precipitation	time	series	(middle	panel)	and	in situ	water	table	time	series	(with	the	peatland	
surface	represented	by	the	grey	solid	line)	recorded	in	the	pole	forest	peatland	plot	(solid	line)	and	palm	swamp	peatland	plot	(dashed	line;	
time	series	available	only	since	09/2018),	during	the	12	collection	months	(CM)	of	the	two	plots,	shown	at	the	top	of	the	figure.	The	air	
temperature	and	precipitation	times	series	were	recorded	at	Puerto	Almendra	meteorological	station	(3.829° S,	73.377° W;	ca.	100–120 km	
from	the	two	plots;	data	available	from	the	Servicio	Nacional	de	Meteorología	e	Hidrología	del	Perú:	httpS:// www. senam hi. gob. pe/?p= estac 
iones ).
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Both the palm swamp and pole forest peatland plots had a total 
NPP	 lower	than	the	total	NPP	estimates	reported	 in	the	 literature	
for	peatlands	in	Indonesia	(13.2 Mg	C	ha−1 year−1; Basuki et al., 2019)	
and	 Micronesia	 (11.06 Mg	 C	 ha−1 year−1; Chimner & Ewel, 2005; 
Table 3).	Tree	stem	NPP	in	the	pole	forest	peatland	plot	was	consid-
erably	 lower	 than	stem	NPP	 in	Micronesian	peatlands	 (Chimner	&	
Ewel, 2005).	In	our	search	of	the	literature,	we	did	not	find	a	study	
which	 reported	 branch	 NPP	 for	 another	 tropical	 peatland.	 Drier	
conditions	at	the	Indonesian	site	may	explain	the	higher	NPP	com-
pared	 to	 PMFB	 peatlands.	 The	water	 table	 at	 the	 Indonesian	 site	
was	 reported	 to	be	on	 average	40 cm	below	 the	peatland	 surface	
(Basuki	et	al.,	2019),	similar	to	the	lowest	water	table	depth	recorded	
within	 our	 plots	 (Figure 3).	 Increased	 soil	 aeration	 could	 increase	
productivity through an increase in root respiration, as well as lit-
ter mineralisation, potentially increasing plant nutrient availability. 
This,	 however,	 cannot	explain	 the	difference	between	NPP	at	 the	
PMFB	peatlands	 and	 the	Micronesian	peatland	 site	 since,	 like	our	
sites, the authors report a mean water table level close to the sur-
face	(Chimner	&	Ewel,	2005).

Within	 the	 PMFB,	 Hergoualc'h	 et	 al.	 (2023)	 report	 litter	 NPP	
for another Mauritia flexuosa-	dominated	 palm	 swamp	 peatland,	
Quistococha.	Comparing	our	result	to	theirs,	it	appears	that	variation	
in	the	density	of	palms	determines	variation	in	NPP	among	different	
palm	swamps	 in	the	region.	Quistococha	has	170	Mauritia flexuosa 
stems	and	1846	tree	stems	per	hectare	 (Hergoualc'h	et	al.,	2023),	
while	our	palm	swamp	peatland	plot	has	density	of	548	palm	(358	
Mauritia flexuosa)	stems	and	118	tree	stems	per	hectare.	Therefore,	
it	is	not	surprising	that	Hergoualc'h	et	al.	(2023)	found	tree	litter	NPP	
to	be	almost	five	times	higher	at	Quistococha	than	tree	litter	NPP	in	

our palm swamp peatland. Furthermore, Mauritia flexuosa	litter	NPP	
was	an	order	of	magnitude	lower	than	tree	litter	NPP	at	Quistococha	
(Hergoualc'h	et	al.,	2023),	whereas	in	our	palm	swamp	peatland	palm	
litter	NPP	is	over	four	times	as	high	as	the	tree	litter	NPP.	The	high	
palm stem density of our plot suggests that the Veinte de Enero 
palm swamp has been subjected to relatively low levels of human 
disturbance	(Hidalgo	Pizango	et	al.,	2022).	Although	the	palm	swamp	
peatland	studied	by	Hergoualc'h	et	al.	(2023)	is	inside	a	reserve,	its	
close	proximity	 to	 the	urban	 centre	of	 Iquitos,	means	 it	 has	 likely	
been subjected to more human disturbance than the more remote 
palm swamp peatland at Veinte de Enero. This is supported by the 
Mauritia flexuosa	male/female	ratios	of	the	two	plots	(Quistococha:	
4.1;	VEN-	02:	1.5);	the	destructive	harvesting	of	female	Mauritia flex-
uosa for their fruit can leave palm swamp forests with high Mauritia 
flexuosa	male	to	female	ratios	(Hidalgo	Pizango	et	al.,	2022).

Tree	 litter	NPP	 as	 a	 proportion	of	 total	NPP	 in	 the	pole	 for-
est peatland was much higher than is typical of tropical forests 
(Malhi	et	al.,	2011).	The	high	proportional	contribution	of	tree	lit-
ter	to	total	NPP	is	in	part	the	result	of	the	low	root	NPP	in	the	pole	
forest	 peatland,	 but	 nonetheless	 the	 ratio	 of	 litter	 to	 stem	NPP	
of	both	 the	palm	swamp	and	pole	 forest	peatland	plots	 (4.8	and	
5.3,	 respectively)	 is	 higher	 than	 is	 typical	 for	 forests	 across	 the	
region	(0.7–2.2;	Table S3).	Similarly	high	NPP	allocation	to	tree	lit-
ter,	and	high	litter-	to-	stem	ratios,	have	been	reported	by	Chimner	
and	Ewel	 (2005)	for	Micronesian	wetlands	(Table 3).	A	finding	of	
high	NPP	allocation	to	tree	litter	in	a	tropical	peatland	is	perhaps	
surprising,	 as	 one	 might	 expect	 the	 nutrient-	poor	 conditions	 to	
limit	 leaf	 turnover	 (Poorter	et	al.,	2009),	 and	 indeed	 there	 is	ev-
idence from tropical peatlands elsewhere that peatland species 

F I G U R E  4 Mauritia flexuosa litter 
decomposition through time. The 
fraction of the initial mass remaining 
plotted against the number of days the 
decomposition bags were left in the 
field for stem, root and leaf litter in the 
pole forest peatland plot and the palm 
swamp peatland plot. The models of 
best	fit	from	non-	linear	least	squares	
regression	analyses	(described	in	Table 1)	
are also shown. For root and leaf litter, 
the inclusion of forest plot as a factor was 
non-	significant	(p > .05)	and	therefore	the	
lines represent decomposition through 
time for both plots. However, for stem 
litter, the inclusion of forest plot as a 
factor	was	significant	(p < .05).	Therefore,	
a model of best fit for the pole forest 
peatland and palm swamp peatland plots 
are shown separately.
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have	a	higher	 investment	 in	 leaf	preservation	than	non-	peatland	
species	(Yule	&	Gomez,	2009),	which	presumably	leads	to	longer	
leaf	lifespans	(Wright	et	al.,	2004).	However,	at	least	one	species,	
Platycarpum loretense, particularly abundant in the pole forest 
peatland	plot	(Table S1),	has	been	observed	to	have	high	levels	of	
leaf	turnover	(authors'	personal	observation).

Root	NPP	in	the	palm	swamp	peatland	plot	was	high	compared	
with	other	tropical	peatlands	(Table 3):	asround	a	third	higher	than	
has	been	reported	for	Quistococha	(Dezzeo	et	al.,	2021),	and	higher	
still	 than	 root	NPP	 reported	 for	 a	Micronesian	 peatland	 (Chimner	
& Ewel, 2005; Table 3)	 and	 Congolese	 peatlands	 (Sciumbata	
et al., 2023).	Given	the	low	number	of	tree	stems	in	the	palm	swamp	
peatland plot, it can reasonably be assumed that this higher root pro-
ductivity is the result of palm root productivity specifically, which 
would	explain	 the	 lower	 root	productivity	at	 the	Quistococha	site	
where	 (despite	still	being	classed	as	a	palm	swamp)	 the	density	of	
palms	 is	 lower	 (Hergoualc'h	et	al.,	2023).	Hardwood	tree	root	pro-
ductivity	at	our	sites	appears	to	be	very	low,	as	root	NPP	in	the	pole	
forest	peatland	was	considerably	lower	than	any	root	NPP	values	re-
ported in the literature for tropical forests, both in terms of propor-
tional	contribution	to	total	NPP	(13%)	and	in	absolute	value	(0.94 Mg	
C ha−1 year−1).	 Dezzeo	 et	 al.	 (2021),	 however,	 found	 no	 significant	
difference	between	tree	and	palm	root	productivity	at	Quistococha.	
While methodological effects, such as root disturbance during in-
growth core installation, higher substrate bulk density inside root 
ingrowth	cores,	 and	excessively	 large	core	volumes	can	artificially	
reduce	measurements	of	 root	productivity	 (Laiho	et	al.,	2014),	we	
took	steps	to	reduce	the	possibility	of	such	scenarios	(see	Section	2)	
and	would	expect	these	effects	to	act	equally	on	both	plots.	A	root	
productivity study in lowland Congolese peatlands which used a 
mini-	rhizotron	method	also	found	higher	 root	productivity	 in	 their	
palm-	dominated	 peatland	 site	 compared	 to	 their	 tree-	dominated	
peatland	site	(Sciumbata	et	al.,	2023; Table 3).	It	could	be,	therefore,	
that	the	non-	woody	nature	of	palm	roots	means	that	palms	have	a	
more prolific rooting system than trees and/or have a faster regen-
eration	rate	 following	severing	 (Hodel,	2009).	Further	 research	on	
the contribution of roots to peat carbon accumulation should be a 
priority.

It is becoming increasingly apparent that different forest types 
can	 have	 very	 different	 NPP	 allocation	 patterns	 (e.g.,	 Zhang-	Zheng	
et al., 2024),	and	Malhi	et	al.	(2021)	make	the	point	that	using	tree	stem	
growth	alone	as	an	indicator	of	ecosystem	NPP	can	not	only	lead	to	
these differences being overlooked, but also can lead to considerable 
underestimations	of	total	NPP.	The	two	peatland	plots,	with	their	low	
tree	stem	NPP,	but	relatively	high	leaf	NPP	in	the	pole	forest	peatland	
and	high	 root	and	palm	NPP	 in	 the	palm	swamp	peatland,	are	good	
examples	of	where	this	NPP	underestimation	would	occur.

It is notable that only litter productivity showed a slight seasonal 
pattern, with higher productivity coinciding with the drier months 
in	the	pole	forest	peatland	(Figure 3).	This	is	a	common	finding	for	
tropical forests, as many trees shed their leaves in the dry season 
(Zhang	 et	 al.,	2014).	 In	 the	 pole	 forest	 peatland	 there	was	 an	 ad-
ditional, higher peak in litter productivity following a short, sharp Fo
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rise	in	water	table	levels.	Peaks	in	leaf	shedding	have	been	observed	
during	 flood	pulses	 in	other	 flooded	 forest	 types	 in	Amazonia,	 in-
cluding	the	Quistococha	peatland,	as	the	anoxic	conditions	limit	can-
opy	growth	and	leaves	are	abscised	(Hergoualc'h	et	al.,	2023; Nebel 
et al., 2001; Schöngart et al., 2002).	However,	 seasonally	 flooded	
forests	experience	much	larger	water	table	level	changes	than	pole	
forest	peatlands	(Flores	Llampazo	et	al.,	2022),	and	the	leaf	shedding	
event	in	response	to	flooding	observed	by	Hergoualc'h	et	al.	(2023)	
in	a	palm	swamp	peatland	was	during	an	El	Niño	event,	when	water	
table	levels	were	exceptionally	high.	The	rather	modest	rise	in	water	
table level in our pole forest peatland plot, along with the asyn-
chronicity of the peaks in litter productivity and water table levels, 
may indicate that the higher water table was not responsible for the 
higher litter productivity at this time. The absence of any apparent 
seasonal	variation	in	the	other	NPP	components	may	prove	to	be	a	
distinctive feature, given that both climate and water table position 
often	do	not	vary	substantially	in	PMFB	peatlands	(Flores	Llampazo	
et al., 2022),	but	longer	records	of	NPP	from	more	peatland	sites	are	
needed in order to properly assess the importance of seasonality in 
these ecosystems.

4.2  |  Litter decomposition

We found that, for the three different Mauritia flexuosa litter 
types, stem material decomposed at the slowest rate, followed by 
root material, followed by leaf material. The fast decomposition 
of palm leaves is consistent with the findings of the limited num-
ber of studies which have measured palm litter decomposition in 
a	 tropical	wetland	 setting	 (Frangi	&	Lugo,	1985;	Hoyos-	Santillan	
et al., 2015).	Our	palm	 leaf	decomposition	 rates	 are	higher	 than	
the values published for the other palm litter decomposition 
studies	 (Table 4),	 and	 slightly	 higher	 than	 decomposition	 rates	
reported	 for	 hardwood	 litter	 at	 another	 PMFB	 palm-	dominated	
peatland	site	(Hergoualc'h	et	al.,	2023).	This	could	be	in	part	owing	
to our use of fresh, rather than senesced litter, which may mean 
that	 the	 leaf	material	was	higher	 in	nutrients	and	non-	structural	
carbohydrates, which can have a priming effect on microbial 
populations	(Hättenschwiler	et	al.,	2011).	However,	our	palm	leaf	
decomposition rates are within the range of decomposition rates 
published for hardwood leaf litter at other tropical wetland sites 
(Table 4).	 Unlike	 the	 leaf	 litter,	 root	 litter	 at	 both	 our	 sites	 had	
slightly slower rates of decomposition compared with palm and 
tree	 root	 decomposition	observed	 at	 the	other	 published	PMFB	
palm-	dominated	peatland	site	(Dezzeo	et	al.,	2021; Table 4).	Our	
finding of higher decomposition rates for palm root material com-
pared	to	palm	stem	material	is	in	contrast	to	the	findings	of	Hoyos-	
Santillan	et	al.	(2015),	who	found	root	material,	both	for	palms	and	
hardwood species, to decompose slower than stem material in 
Panamanian	peatlands.	 In	 general,	 looking	 across	 a	 range	of	 de-
composition studies in tropical wetlands, the emerging pattern is 
one of leaf litter decomposing fastest, followed by much slower 
decomposition	of	stem	material	and	then	root	material	(Table 4).

Decomposition rates are either determined by environmental 
factors, such as temperature, pH and degree of anaerobicity, or 
by litter traits, such as the degree of recalcitrance of the carbon 
compounds, the presence of priming compounds and nutrient lev-
els	within	 the	 litter	 (Hättenschwiler	 et	 al.,	2011).	 The	use	of	 litter	
from a single species, Mauritia flexuosa, provides insight into how the 
different environmental conditions in the ombrotrophic pole forest 
and the minerotrophic palm swamp peatland affect decomposition 
rates. The comparable decomposition rates between the two plots 
suggest that the differences in hydrology do not result in different 
decomposition rates directly. However, interspecific variations in lit-
ter	quality	can	be	high	(Hättenschwiler	et	al.,	2008, 2011)	and	it	is	
possibly that differences in species composition between the two 
plots,	likely	driven	by	hydrology	(Flores	Llampazo	et	al.,	2022),	may	
result	in	differences	in	plot-	level	decomposition	rates	that	have	not	
been detected by our use of a single species.

Similarly, differences in hydrological conditions within the plots 
did not seem to be the principal factor determining decomposition 
rates between litter types; root material, buried below the surface 
decomposed at a faster rate than the stem material at the surface. 
It is likely that the aerobic conditions at the surface would have had 
a positive influence on decomposition rates. Therefore, our results 
suggest that it is the difference in litter traits between the three lit-
ter	types	that	drives	the	differences	in	decomposition	rates.	As	most	
other studies find that roots decompose more slowly than stem ma-
terial	(Table 4),	contrary	to	our	results,	it	suggests	that	the	structural	
composition of Mauritia flexuosa roots, or indeed stem, may be atyp-
ical.	This	 is	supported	by	the	findings	of	Dezzeo	et	al.	 (2021)	who	
found Mauritia flexuosa roots to decompose faster than hardwood 
species, despite similar C/N ratios. This is an important topic for 
further research, given the abundance of Mauritia flexuosa roots in 
many	PMFB	peat	profiles,	which	would	suggest	they	play	a	key	role	
in peat accumulation.

4.3  |  Potential future changes in NPP and 
decomposition

Estimating	 tropical	 peatland	 NPP	 is	 a	 first	 step	 in	 understanding	
these systems. We then need to know what the principal control-
ling	factors	of	forest	NPP	in	a	tropical	peatland	setting	are	and	how	
that	 differs	 from	non-	peatland	 tropical	 forest.	 For	 example,	while	
climatic	drying	can	reduce	tropical	forest	NPP	(Clark	et	al.,	2013)	if	
drying is sufficient to induce water stress, within a peatland it may 
result	in	an	increase	in	NPP,	as	anoxic	conditions	are	reduced.	Our	
results begin this process of increasing understanding of tropical 
peatland	NPP	dynamics.

In	 the	 northwestern	 Amazon,	 where	 our	 two	 peatland	 plots	
are located, increased precipitation and floodplain inundation 
has	been	observed	over	the	last	few	decades	(Gloor	et	al.,	2015).	
Peatland	forests,	which	tend	not	to	experience	water	deficits	even	
in	the	dry	season,	are	unlikely	to	experience	 increases	 in	NPP	 in	
response to wetter conditions. In fact, increased precipitation 
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could	have	a	negative	 impact	on	peatland	NPP	 if	 there	 is	 an	as-
sociated	increase	in	cloudiness,	reducing	solar	radiation	(Graham	
et al., 2003; Schuur, 2003),	or	if	there	is	an	increase	in	inundation	
levels or their duration this may impede respiration, limiting plant 
growth	(Fonseca	et	al.,	2019; Schöngart et al., 2002).	 Indeed,	 in-
undation	events	which	exceed	the	vegetation	tolerance	to	flood-
ing	can	result	in	mortality	events	(Kalliola	et	al.,	1991),	which	may	
change the structure and function of the system. Even more mod-
est changes in hydrology could, over long time periods, result in a 
change	in	NPP	if	there	is	a	change	in	vegetation	community	com-
position	(Flores	Llampazo	et	al.,	2022).	Although	palm	swamp	peat-
lands	 tend	 to	 receive	 flood	waters,	more	extreme	 flood	 regimes	
may force a shift in vegetation community towards to seasonally 
flooded forest communities more tolerant of larger fluctuations in 
water	table	levels	(Flores	Llampazo	et	al.,	2022),	which	may	result	
in	an	increase	in	forest	NPP,	depending	on	the	nutrient	content	of	
the	flood	water	(del	Aguila-	Pasquel	et	al.,	2014;	Malhi	et	al.,	2004; 
Table 3).

Whether	changes	in	peatland	NPP	would	lead	to	changes	in	peat	
accumulation	 rates	 in	 the	 PMFB	would	 depend	 on	 the	 degree	 to	
which	NPP	changes	were	reinforced	or	counteracted	by	changes	in	
decomposition rates. If precipitation/flooding increased in the re-
gion	and	water	table	levels	increased	as	a	result,	one	would	expect	
a reduction in decomposition rates. However, this could be coun-
teracted to a degree if changes in vegetation community lead to 
a	change	 in	 litter	quality	and	 therefore	 lability	 (Wang	et	al.,	2015; 
Wright et al., 2013)	or	 if	 increased	 flooding	were	accompanied	by	
an	increase	in	mineral	load	into	the	peatlands	(Kalliola	et	al.,	1991)	
leading to increased microbial activity or changes in the microbial 
population	(Andersen	et	al.,	2013).	Processes	of	peat	accumulation	
are	 complex,	 and	 even	with	 high	 initial	 rates	 of	 decomposition,	 a	
negative feedback can occur whereby the organic matter remain-
ing is highly recalcitrant, protecting it from further decomposition 
(Hodgkins	et	al.,	2018; Leifeld et al., 2012).

In	order	 to	make	quantitative	predications	of	 future	 change	 in	
peat accumulation, processed based mathematical models of peat-
land	development	 are	 required.	While	 at	present	 there	 is	 perhaps	
not	sufficient	data	to	adequately	represent	some	of	the	more	com-
plex	 processes	 influencing	 peat	 accumulation	 rates,	 two	 models,	
HMPTrop	(Kurnianto	et	al.,	2015)	and	Digibog	(Young	et	al.,	2023)	
have successfully simulated historical variations in peat accumula-
tion	rates	in	Southeast	Asia	and	the	Congo	Basin	respectively,	using	
limited	data	on	plant	litter	production	(i.e.,	NPP)	and	decomposition.	
Our data could be used as the basis for similar modelling work in the 
PMFB,	eventually	leading	to	forecasting	of	peat	accumulation	rates	
under different land use change and climate change scenarios in the 
PMFB.

5  |  CONCLUSIONS

We have presented data on total net primary production and lit-
ter	decomposition	from	two	types	of	Amazonian	peatlands,	a	palm	

swamp peatland and a pole forest peatland. These data will be im-
portant	for	parameterising	and	validating	process-	based	models	of	
peat accumulation, but they also provide insights into ecosystem 
functioning	 in	 Amazonian	 peatlands	 that	 have,	 until	 now,	 been	
lacking.

Total	NPP	 is	 similar	 at	both	 sites	and	 is	 low	compared	 to	 terra 
firme and seasonally flooded forests in the lowland tropics, but sim-
ilar	to	NPP	estimates	from	the	very	limited	data	from	other	tropical	
peatlands.	However,	despite	the	similar	total	NPP,	there	are	strong	
differences between our two sites, particularly in the contribution of 
roots	to	overall	productivity,	which	was	very	high	(49%)	in	the	palm	
swamp peatland and much less important in the pole forest peat-
land	(13%).	This	suggests	that	palm	swamp	peatlands	may	be	more	
inclined	to	produce	‘replacement	peat’—,	that	is,	mostly	made	from	
roots,	 below-	ground—than	 other	 vegetation	 types,	 which	 would	
affect the bulk radiocarbon age of the peat and other properties 
of relevance to palaeoenvironmental reconstruction, because the 
different	components	of	a	peat	sample,	for	example,	pollen	versus	
roots, will represent material produced at different times and poten-
tially under different environmental conditions.

We find that there is little difference in litter decomposition 
rates at our two sites. Our estimates are broadly comparable to data 
from other tropical peatlands, with faster decomposition of leaves 
compared	to	stem	and	root	material.	A	possible	explanation	is	that	
the roots of Mauritia flexuosa, the species studied here, may be com-
posed	 of	 less	 recalcitrant	 material	 than	 hardwood	 roots	 (Dezzeo	
et al., 2021).	Further	investigation	of	the	properties	of	Mauritia flex-
uosa,	which	dominates	large	areas	of	peatland	in	the	PMFB,	would	
help	to	understand	the	extent	to	which	it	plays	a	particular	role	in	
peat formation in this region.

Clearly, data from just two sites are insufficient to fully char-
acterise	 the	 likely	 variability	 in	 ecosystem	 function	 within	 PMFB	
peatlands, which are known to include other vegetation types such 
as	 seasonally	 flooded	 and	 open	 (herbaceous)	 peatlands	 (Honorio	
Coronado et al., 2021).	Similarly,	it	is	not	possible	to	draw	firm	con-
clusions on seasonality from our short study, but indications of pos-
sible seasonality in litter production at the pole forest peatland plot 
(but	not	the	palm	swamp	peatland	plot)	suggest	an	avenue	for	future	
research.

Finally, our study points to the need for standardised methods 
for	 measuring	 forest	 NPP	 in	 tropical	 peatland	 settings.	 Peatland	
fine	root	NPP	is	particularly	challenging	to	measure:	obtaining	root-	
free	medium	to	fill	ingrowth	cores	with	is	extremely	difficult,	given	
that	tropical	peats	can	be	largely	composed	of	root	material	(Hoyos-	
Santillan et al., 2015).	Furthermore,	 flooding	and	the	tendency	of	
the	peat	to	collapse	upon	excavation	prevent	the	use	of	traditional	
rhizotrons.	 Although	 mini-	rhizotrons	 have	 been	 developed	 for	
and	 deployed	 in	 peatlands	 (Arnaud	 et	 al.,	2019, 2021; Sciumbata 
et al., 2023),	 the	method	 requires	 the	 conversion	 of	 root	 length,	
observed	 in	photographs	 taken	 from	 inside	 the	mini-	rhizotron,	 to	
root	mass,	and	 requires	a	number	of	assumptions	which	have	yet	
to	be	clearly	quantified	(Sciumbata	et	al.,	2023).	Furthermore,	the	
assumption	 that	 coarse	 root	 NPP	 amounts	 to	 21%	 of	 stem	NPP,	
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based on very limited data, is very possibly an underestimation in a 
forested peatland setting, where many tree species show root ad-
aptations for the flooded conditions such as stilt roots and pneu-
matophores. Similar methodological developments will be needed 
to better account for the contribution of palms to peatland canopy 
and	stem	NPP,	building	on	the	methods	pioneered	here.
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