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ABSTRACT The escalating impact of vehicular Carbon Dioxide (CO2) emissions on air pollution, global
warming, and climate change necessitates innovative solutions. This paper proposes a comprehensive
Internet-of-Vehicles (IoV) network for real-time CO2 emissions estimation and reduction. We implemented
and tested an on-board device that estimates the vehicle’s emissions and transmits the data to the network.
The estimated CO2 emissions values are close to the standard emissions values of petrol and diesel vehicles,
accounting for expected discrepancies due to vehicles’ age and loading. The network uses the aggregate
emissions readings to inform the Reinforcement Learning (RL) algorithm, enabling the prediction of optimal
speed limits to minimize vehicular emissions. The results demonstrate that employing the RL algorithm can
achieve an average CO2 emissions reduction of 11 kg/h to 150 kg/h.

INDEX TERMS Emission estimation, CO2 emissions, Internet-of-Vehicles, Emission reduction, reinforce-
ment learning, traffic management.

I. INTRODUCTION
Vehicles are one of themain sources of Carbon dioxide (CO2)
emissions that contribute to air pollution, global warming,
and climate change [1], [2]. Many developed countries aim
to reduce CO2 emissions by 50%-55% by 2030-2035 and
cut it entirely by 2050 [3], [4]. Considering the necessity of
CO2 emissions reduction, several intelligent transportation
systems (ITS) are proposed, including traffic management
and control, eco-navigation and monitoring, vehicle dynamic
state control, driver assistance, and cooperative communica-
tion systems [2], [5]. However, to develop and implement
ITS-based emissions reduction systems, a real-time emissions
estimation and monitoring system is required [6]. Emission
estimation depends on many parameters related to road topol-
ogy, vehicle characteristics and dynamics, as well as traffic
and atmospheric conditions [2]. Hence, to estimate vehicular
emission, different emission models were proposed based on
collected data about these parameters at microscopic, meso-
scopic and macroscopic scales [7].

The related works that discussed models of emission esti-
mation, the use ofmachine learning algorithms in ITS, and the

application of vehicular communications to address emission
reduction are discussed in the part that follows.

A. RELATED WORKS
1) Models for vehicular emission estimation
Microscopic models require a second-by-second vehicle’s
trajectory and dynamics data to estimate emissions vlaues
accurately. However, microscopic models are highly compu-
tational and storage demanding [8]. Examples of microscopic
models are MOBILE and Motor Vehicle Emission Simulator
(MOVES) from the U.S. Environmental Protection Agency
(EPA), Comprehensivemodal emissionmodel (CMEM), Pas-
senger car andHeavy duty EmissionModel (PHEM), andVir-
ginia Polytechnic Institute and State University microscopic
(VT-Micro) model [9]–[11]. In [6], a real-time emission es-
timation system was developed. The proposed system used
traffic data collected from inductive loop detectors (ILDs) that
provide inductive vehicle signatures to estimate vehicle cate-
gory and activities. The results, combined with atmospheric
conditions, were used to determine the MOVES model’s
emission rates from pre-generated look-up tables. However,
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FIGURE 1: A summary of the microscopic, mesoscopic and macroscopic models for vehicular emission estimation.

incorrect vehicle type estimation was reported, particularly
for single-unit tracks. As a result, inaccurate overall emission
estimation is possible due to this misclassification. In addi-
tion, the study did not consider other factors, such as vehicle
age or road slops, to estimate the emission. The study in [12]
estimate individual vehicle emissions by utilizing automatic
licence plate recognition (ALPR) detectors to identify vehicle
registration data, types, trajectories and deriving modes. The
obtained data is used to calculate the emission factors of each
vehicle and the aggregate emissions on road links. The study
revealed that specific types of vehicles are responsible for
high emissions. Therefore, the study recommended applying
restriction policies on high-emission vehicles as a remedial
action to reduce emissions.

Mesoscopic and macroscopic models reduce vehicles’ tra-
jectory data sampling resolution. In [8], the sampling reso-
lution of mesoscopic traffic simulation was reduced to 6 s.
Newell’s car-following model generated the required second-
by-second vehicle trajectory data. The results were fed into a
post-processed microscopic MOVES Lite model to estimate
emissions. MOVES Lite model considers only five vehi-
cle categories to reduce the computational complexity. The

study recognized performance limitations and inaccuracies
of Newell’s car-following model. In [13], taxi GPS devices
collected trajectory data every 10 s. The collected data was
then converted into the required second-by-second trajecto-
ries to obtain the vehicle-specific power (VSP) and vehicles’
operationmodes forMOVES. The results showed a difference
between U.S. and China emission values. China has higher
emission figures due to longer traffic signal cycles that cause
longer idle time. In [1], sparse mobile sensor data was used
to generate the second-by-second trajectories for emission
estimation with the MOVE model. The study examined a
range sampling interval (10 s, 20 s, and 30 s). The results
showed that acceptable trajectories and emission estimation
can be achieved when the sampling interval is less than 20 s.
In [14], the Virginia Tech model was used with macroscopic
traffic flow. The proposed VT-macro model considered a
time resolution of 10 s and driving modes of a group of
vehicles instead of individual vehicles. The model estimation
emission accuracy exceeded 90% of that achieved by the VT-
micro model. Fig.1 summarises the proposed microscopic,
mesoscopic and macroscopic model examples.

On-road, on-board/portable or laboratory-based emission
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monitoring and testing procedures were developed to ensure
that manufacturing standards meet emission legislation and
policies (e.g. TIER in the U.S. and EURO in Europe) [15].
While the laboratory-based chassis dynamometer method
that is run under controllable conditions provides accurate
measurements, it does not consider real-world on-road inter-
active drivers’ behaviours, atmospheric and road topographic
conditions [15], [16]. Therefore, portable emission measure-
ment systems (PEMS) were developed and used [15], [16].
Sophisticated emission measurements and analysis for emis-
sions type approval require PEMS instruments with large
size, weight and power consumption [15]. The study in [17]
investigated the viability of characterising vehicle emission
dispersion in a real-world street canyon by utilising CO2 as a
tracer gas. A network of air-quality sensors was deployed on
the roadside to quantify the dispersion of the tracer gas. The
findings demonstrated that the CO2 in a test vehicle’s exhaust
gas had an insignificant impact at roadside. Work in [18]
aimed to apply MOVES model in Korea by considering local
topology, driving situations and emissions laws. Hence, ex-
pensive and time-consuming real-world emissions tests were
conducted for 17 light-duty petrol and diesel vehicles.

The majority of studies leveraged offline traffic data to
estimate vehicular emission values. Studies that used real-
time measurements conducted high-cost and time consuming
measurements. Non of the previous studies suggested a device
that uses on-board vehicles’ sensors to estimate real-time
emission.

2) Machine learning algorithms in ITS
Recently, there has been an upsurge in the number of research
activities that employed machine learning in traffic manage-
ment [19]. In [20], a transfer learning-based deep RL for
vehicle routing was used for urban areas, with four-lanes grid-
shaped road networks. The results proved the efficacy of the
proposed algorithm in reducing the travel time in a hetero-
geneous traffic system where automated vehicles (AV) and
human-driven vehicles (HV) coexist. The study in [21] used a
deep learning long short-termmemory network (LSTM) and a
bidirectional LSTM (BiLSTM) models-based CO2 emission
estimation. The study used a premeasured offline dataset
from Kaggle to train the algorithm. The study in [22] also
used different deep-learning techniques that utilize LSTM,
gated recurrent unit (GRU), and recurrent neural network
(RNN) algorithms to estimate CO2 emissions. The study
relied on premeasured chassis dynamometer test results of
5,287 light-duty vehicles. Both [21] and [22] showed that
deep-learning techniques provide an accurate estimation of
the CO2 emission. However, unlike our proposed emission
estimation method, the studies [21], [22] did not offer real-
time CO2 emission measurements. In addition, we employ
the machine learning algorithm as a remedial action to reduce
emissions. All previous research works estimated vehicle
emissions to evaluate environmental impact. The majority
of these works relied on offline traffic datasets to estimate
generic CO2 emission values. Only a few of these works

used real-time traffic measurements to estimate generic CO2

emission values and recommended remedial action to reduce
emissions.
Artificial intelligence (AI) was investigated in transporta-

tion systems for traffic management and control [23]. Works
in [24]–[27] proposed intelligent traffic management and
control schemes. The majority of the previous works focused
on controlling traffic signals and intersections. Few of them
quantitatively studied the impact of intelligent traffic man-
agement and control schemes on CO2 emissions. None of
the previous studies leveraged a learning algorithm with an
objective to reduce emissions from petrol and diesel vehicles.

3) Application of vehicular communications for emission
reduction
Vehicular communication-based emission reduction tech-
niques were proposed in [28], [29]. To reduce unnecessary
high-emission driving activities such as acceleration and de-
celeration, inter-vehicle communication (IVC) was proposed
in [28]. The study used VT-Micro to evaluate the emission
reduction due to the proposed IVC versus traffic light cycle
time. When implementing IVC at long ( >100 s) traffic light
cycle time, lower emission values were observed. Similarly,
the impact of communicating traffic light states with vehicles
on emission reduction was studied in [29]. The study aimed
to optimize vehicles’ driving activities and gear choices to
reduce emissions when approaching a traffic light. VISSIM
simulator and PHEM microscopic model were utilized for
traffic flow modelling and emission estimation, respectively.
A reduction of 80%, 35%, and 18% in the CO, NOx and par-
ticulate matter emission values, respectively, were achieved
using the proposed method.
Long range (LoRa) technology is especially proposed for

Internet of Things (IoT) devices with limited resources [30].
Given its ability to offer long-distance communication link
at a low energy consumption, LoRa presents a promising
solution for smart city applications [31]. An experimental
study in [32] showed the viability of using Lora technology
for vehicular communication networks in highly dynamic
urban environments. Similarly, the work in [33] demonstrated
the efficacy of LoRa technology in implementing internet-of-
vehicles (IoV) network outperforming other technologies in
terms of power consumption and coverage range.

B. RESEARCH PROBLEM AND MOTIVATION
The research activities lack a holistic system that estimates
real-time emission values from on-road vehicles and takes
instantaneous action to reduce them. The urgency of tackling
the vehicular carbon footprint to reduce its impact on the
environment and climate change mandates prompt action to
address the scarcity of this vital system. The main objective
and motivation of this study is to propose a practical and
comprehensive IoV network that estimates real-time CO2

emissions from vehicles and takes immediate response for
emission reduction leveraging reinforcement learning (RL)

VOLUME 11, 2023 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3441949

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



A. S. Devi et al.: IoV for CO2 Emission Estimation and RL-Based Emission Reduction

FIGURE 2: A schematic of the proposed IoV network structure.

algorithm as intermediate action toward achieving the net-
zero goals for traffic systems.

C. ORIGINAL CONTRIBUTIONS
The original and novel contributions of this paper are:

• Implement an on-board wireless device connected to
the vehicle’s Electronic Control Units (ECU) via on-
board diagnostics-II (OBDII) and use existing sensors to
estimate emission values from the vehicle. This device
transmits these values to the network to provide real-
time information about traffic-generated emissions. To
the best of our knowledge, this is the first work in the
literature that proposes real-time data collection of CO2

emission values for a transport system.
• Propose a RL algorithm for adaptive traffic management

and speed limit decisions leveraging the available real-
time CO2 emission values collected from vehicles using
the proposed on-board emission estimator. To the best
of our knowledge, this is the first study in the literature
to propose an RL model with an agent that considers
emission levels as a reward, aiming to reduce emissions
from petrol and diesel vehicles, which are currently the
most available on the roads.

The rest of the paper is organized as follows. The pro-
posed IoV network structure is described in Section II. RL
algorithm is explained in Section III. Results are discussed in
Section VI. Finally, conclusions are provided in Section IV.

II. NETWORK STRUCTURE
Fig. 2 illustrates a schematic of the proposed IoV network
structure. The network consists of three layers: vehicles as
end network nodes, access points (APs) and traffic manage-
ment unit (TMU) with edge and/or cloud processing and
computing capabilities for traffic-controlling [34], [35]. The

following sections present a detailed discussion of these three
layers.

A. TERMINAL LAYER: VEHICLES
Vehicles act as end nodes of the network [34], [35]. Each
vehicle uses an on-board emission estimation device to mea-
sure CO2 emissions. Existing on-board sensors for vehicle
speed, manifold air pressure sensors, air temperature, engine
temperature, engine oil pressure, oxygen, and fuel pressure
can be used to estimate emissions. The CO2 emission of
vehicle j is calculated as [27], [36]:

EjCO2
= fjCO2

∆Fj, (1)

where, fjCO2
is the CO2 rate in (g/ml) of fuel and ∆Fj is the

fuel consumption during the time interval of ∆t , which is
given as [27], [36]:

∆Fj = [αj + β1jRjT vj + (β2jMja2j vj/1000)aj>0]∆t, (2)

where, vj is speed (m/s), aj is acceleration (m/s2) andRjT is the
total tractive force (N) of vehicle j. Vehicle’smassMj (Kg),αj,
β1j and β2j are vehicle’s type-dependent constants. Similarly,
other greenhouse gas emissions (GHG) (e.g. CO, HC and
NOx) are estimated with different αj, β1j and β2j values [27].
As shown in (2), deriving modes vj and aj influence the CO2

emissions.
The estimated emissions volume and vehicle’s speed are

then sent to the nearest AP using an on-board LoRa transmit-
ter. LoRa technology is an optimal choice for this application
since data transmitted from vehicles is latency and power
constraint transmission, but it does not require high band-
width. Furthermore, given the long transmission range offered
by LoRa technology, a limited number of APs is adequate,
thereby reducing the overall network deployment costs.
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B. NETWORK ACCESS LAYER: ACCESS POINTS
APs are road-side units that provide access to the cloud or
edge processing units [35], [37], depends on the area and
network structure [38] (as explained in Section IV.C). They
collect the transmitted emission and speed data from vehicles
at that road section and report these values to the TMU. They
also monitor and report traffic flow at that road section. APs
bring the TMU awareness of the spatial distribution of traffic
flow and emission concentrations throughout the network.

The aggregate emission value for a pollutant k on road
segment i is proportional to the traffic flow [39], and it is given
by:

∆Eik =
Nvi∑
j=1

EjkTi, (3)

where, Ejk is the emission of pollutant k from vehicle j (e.g.
emission of CO2 is given in (1)), Ti is traffic flow (veh/s), and
Nvi is the number of vehicles on road segment i.

C. COMPUTING LAYER: TRAFFIC MANAGEMENT UNIT
TMU is the computing unit of the network. According to
the recent typologies of IoV networks, this unit can leverage
edge, fog and/or cloud computing [35], [37], [40]. It collects
data from APs to make comprehensive cognition about the
network status. The data includes emission values, traffic
flow, and vehicle speed in a road segment. As the aggregate
emission value on road segment i in (3) depends on the traffic
flow, TMU uses the data collected by APs to manage traffic
flow and speed on road sections to redistribute and reduce
emission values.

The traffic flow Ti is given by the product of vehicle density
η (veh/m) and vehicle average speed v (m/s) [39], [41]. Criti-
cal traffic density ηc is given by the number of vehiclesNvi per
road segment i length li, which is also reciprocal to the inter-
vehicular separation (headway). The traffic is in a free-flow
mode if η < ηc. Otherwise, a high traffic flow occurs [39]. As
given in (3), road sections with high traffic flow (congestion)
are responsible for high emission values. This is because,
at high traffic density, the driving mode follows a stop-and-
go manoeuvring style, which includes speed fluctuation [1].
Therefore, the TMU aims to control the traffic flow and sta-
bilize the average speed to reduce aggregate emission values.

The following section presents the RL-based emission re-
duction method.

III. REINFORCEMENT LEARNING-BASED EMISSION
REDUCTION
In single-agent RL, the system is modelled as a Markov
decision process (MDP), where the agent utilizes aQ-learning
algorithm to learn and evaluate the effect of its actions on
the system. The agent learns about the system by [42]: i)
sensing the state of the system, ii) taking actions accordingly
to stay in the current state or transfer it to a new state, iii)
receiving a reward to evaluate the quality of this action and iv)
keeping records about the quality of any state-action pair for

FIGURE 3: A proposed RL algorithm for emission reduction.

future decisions. The agent aims to find a sequence of optimal
actions that maximize the total reward.
Fig. 3 shows a diagram of the proposed RL algorithm for

emission reduction. At time step n, the agent perceives the
state sn ∈ S presented by the speed of vehicles, where S is
a finite set of the perceived states. The agent takes an action
an from a set of possible actions A to maintain or change the
current state to a new state, i.e., increase, decrease or maintain
the speed limit of a road section under study. The action is
taken according to a particular state-action mapping policy.
The state-action mapping is performed by exploring different
actions for each state or by exploiting a previously used state-
action pair that achieved high performance, and it is given as:

Cn+1(sn) =


Cn(sn), if
maxan∈A Q

n+1(sn, an) = maxan∈A Q
n(sn, an)

an, otherwise
(4)

where, Qn+1(sn, an) is the quality of state-action pair. How-
ever, (4) is considered a greedy policy because it becomes
effective after a sufficient state-action exploration.

ϵ-greedy state-action mapping policy is employed to bal-
ance the exploitation and exploration, and it is given as [43]:

C̃n+1(sn) =


an, if ϵ ≤ e−Eα

(
α ∈ N+

)
Cn(sn), otherwise

(5)

where, ϵ is a random number and e−Eα is a probability
function that decays with a rate ofE when the number of visits
to a state sn increases. Hence, this reduces random actions
when the exploration becomes sufficient.
The agent considers the level of emissions as a reward Rn

to evaluate the quality Qn(sn, an) of the state transition. If the
emission volume on a road section i is∆Eik , given in (3), the
reward of each state is given by:

Rn = Eagr −∆Eiknsn (6)
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where Eagr is an aggregate emission volume, and the total
reward is given by:

R =

∞∑
n=1

γn(Eagr −∆Eiksn) (7)

where γn ∈[0,1] is a discount factor that indicates the sig-
nificance of the current reward compared to the previously
earned values. After receiving the reward, the agent evaluates
the updated joint quality of state-action:

Qn+1(sn, ai) = Qn(sn, an) + lr(s, a)[Rn+1

+ γn ·max[(Qn(sn+1, an+1)]− Qn(sn, an)]. (8)

where, lr(s, a) is the learning speed of the agent. It is given
as:

lr(s, a) =

[
1

1 + V (s, a)(1− γ)

]0.7

, (9)

where V (s, a) is the function of exploitation of a state-action
pair. The learning performance in (6) and (7) demonstrates
that the agent considers the emission value as a reward for
evaluating the quality of state-action transitions in (8). The
aggregate emission value obtained in (3) is directly related to
the traffic flow on the road segment and, hence, also related to
traffic density. In addition, as the agent builds and maintains
a Q-table, this means that algorithm implicitly account for
historic emission values (from previous action-reward pairs)
to take future decisions.

The following section presents the on-board emission me-
ter device design and demonstrates the feasibility of the pro-
posed network in reducing the emission values.

IV. RESULTS AND DISCUSSION
In this study, we implemented a prototype of an on-board
emission meter that estimates vehicle’s emission and speed
values and transmits these values to the TMU, which uses
these values to run a RL algorithm. The objective of this
RL algorithm is to find adaptive road speed limit values that
minimize the aggregate emission values of the network. The
following sections discuss the design and test results of the
prototype of on-board emission meter device as well as the
emission optimization results of the RL algorithm.

A. ON-BOARD EMISSION METER DEVICE PROTOTYPE:
DESIGN AND TESTS
1) on-board emission meter device design
Emission values of vehicles depend on different parameters,
including speed, fuel consumption, air-fuel mixture during
combustion and fuel type. The ECUs of the vehicle provide
the sensor parameters [44], [45], which can be processed to
estimate emission values. In this study, CO2 emission values
were processed and extracted using fuel consumption figures
as follows [46, Ch. 6]:

CO2petrol =
6.760

MPG
(kg/km), (10)

 

OBD 

Adapter 

Single 

board 

embedded 

processor  

LoRa 

Transceiver 

LoRa 

gateway 

Infrastructure 

Car 

Auxiliary 

USB 

power 

outlet 

(a)

 

OBDII adapter 

LoRa Sx1268 transceiver 

HAT 

(b)

FIGURE 4: On-board emission meter: a) architecture and b)
prototype.

for a petrol-fuelled vehicle, and

CO2diesel =
7.440

MPG
(kg/km), (11)

for a diesel-fuelled vehicle.
Fig. 4 depicts the designed on-board emission meter that

was implemented using Raspberry Pi 3B+ equipped with 7”
touchscreen display and LoRa Sx1268 transceiver HAT. The
LoRa HAT is placed on the 40 GPIO pins of the Raspberry Pi.
The HAT’s antenna operates at 433MHz and 868MHz. In our
work, we used frequency of 868MHZ which is licence-free
in the UK. The Raspberry Pi is powered by an auxiliary USB
power outlet adapter (12V to 5V).
On-board vehicle sensors transfer regular readings via

Controller Area Network (CAN) protocol (ISO 11898-1 stan-
dard) to the ECU of the vehicle using a serial bus [44].
The OBDII uses parameter ID (PID) codes to retrieve sen-
sors readings from the ECU. An OBDII Bluetooth adapter
(ELM327) serves as a bridge between OBDII ports and a
regular RS232 serial interface. The ELM327 adapter plugs in
the 16-pin data link connector (DLC) of the OBDII port and
connects with the Raspberry Pi via Bluetooth which allows
access to sensors’ readings [44].
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TABLE 1: Summary of the estimated and standard CO2

emission values.

Vehicle Fuel Estimated emission Standard emission

type value (kg/km) value (kg/km) [46], [47]

BMW 330I 2017 Petrol 0.160 0.170

Citroen C4 2012 Diesel 0.149 0.130

2) On-board emission meter device tests
The device is tested with two different vehicles on two
urban roads in London and Rugby, UK. The first vehicle
BMW330I 2017 has a 2.0-liter (1998 cc) turbocharged inline-
4 engine and gross vehicle weight (GVW) of 2,085 kg (4,596
lbs) (approximately). The second vehicle is Citroen C4 2012
with a 1.6L (1560 cc) diesel engine and an approximate GVW
of 1,800 kg (3,968 lbs). Table 1 summarizes the estimated
and standard CO2 emission values, while idle1 [46], [47]. The
table shows that the estimated values are within the standard
range of emission values. BMW 330I 2017 emission value
is closer to the standard value. Meanwhile, Citroen C4 2012
has an emission value higher than the standard value. This
is expected because the estimated value varies due to factors
such as vehicle age and load.

B. REINFORCEMENT LEARNING-BASED EMISSION
REDUCTION RESULTS
At this stage, testing the on-board emission meter to estimate
emissions values for a large number of vehicles in the real-
world is difficult. Instead, this study used VISSIM to simu-
late the real-time traffic to examine the performance of the
proposed RL algorithm to reduce emissions. VISSIM gives
the emissions, speed, and density values of the vehicles on
a pre-designed road section of a single lane with 200 km
length. The RL algorithm was implemented using Python.
A connection between VISSIM and Python was established
using Vissim Component Object Model (COM) interface to
exchange data related to traffic flow, road network, and sim-
ulation outcomes between VISSIM and Python. VISSIM’s
emissions calculation model determines the emissions values
for each vehicle according to (1) and (2). The produced
dataset is utilized to train the RL agent over 1000 episodes
with a learning speed lr = 0.7, epsilon ϵ = 0.2, discount
factor γ = 0.8, and epsilon-decay E = 0.005. These values
were tuned to optimize the learning convergence of the RL
algorithm. Otherwise, using different values does not provide
the expected performance [20].

Fig. 5 shows the predicted speed and emission values un-
der high traffic flow of 2000 vehicles/h and traffic density
of 112 vehicles/km/lane. The figure illustrates that the mean
speed values after applying the RL algorithm are similar to
the speed values before applying the RL. The RL algorithm
restricted the variation of the speed within maximum and
minimum values of 46.9 km/h and 47.1 km/h, respectively.

1Due to safety constraints according to Coventry University ethics appli-
cations: P154637 and P144636.
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FIGURE 5: Values of a) speed & b) emissions before and
after applying the RL under high traffic flow conditions with
a traffic density of 112 vehicles/km/lane.

The total CO2 emission values decreased from 978 kg and
1003 kg to 827 kg and 866 kg during the first and second
hours, respectively. This is equivalent to an average emission
reduction of 150 kg/h. The result is consistent with [1] that
reported if all vehicles cruise in a cluster of constant speed,
this reduces the emission values. However, the RL suggested
precise speed restriction is difficult to achieve practically
using the current cruise control and ECUs that support 1 km/h
of increments or decrements.
The predicted speed and emission values under free flow

traffic of 1500 vehicle/h and density of 48 vehicles/km/lane
are depicted in Fig. 6. Similar to the high traffic flow case,
the algorithm restricted the speed values between 96.1 km/h
and 94.7 km/h. This results in a CO2 emission reduction from
512 kg to 501 kg and from 530 kg to 488 kg, i.e. the average
emission reduction values are 11-42 kg/h during the first and
second hours, respectively. Those values are lower than the
achieved reduction during high traffic density because the
speed values vary over a wider range due to the free flow. In
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FIGURE 6: Values of a) speed & b) emissions before and
after applying the RL under free-flow traffic conditions with
a traffic density of 48 vehicles/km/lane.

addition, the emission values in this case are low and further
reduction of the emission values by changing the speed values
is limited. The results also meet the expectations in (3), which
linked traffic flow and emission values. Fig. 6 (b) depicts that
the emission values when the traffic is in a free-flowmode are
lower than those in Fig. 5 (b) when the traffic flow is high.

Having presented the results of the RL algorithm, the
next section discusses the network scalability and practical
implementation. It provides future directions to underpin the
practicality of the proposed system.

C. RESULTS DISCUSSION: NETWORK SCALABILITY,
PRACTICAL IMPLEMENTATION AND FUTURE DIRECTIONS
Practical implementation of the proposed IoV network needs
to consider three factors: the transmission range of LoRa, type
of area, architecture of traffic management system and the
complexity of the RL model.

The experimental study in [32] showed an adequate perfor-
mance of LoRa technology at a transmission range of 0.2 km,

which is close to the length of urban road link. Our results
were obtained from 200 km single-lane road section in VIS-
SIM and the training happened over 1000 episodes. In a more
complex network scenario, in [20], urban areas of 1 km2,
1.96 km2 and 4 km2, with four-lanes grid-shaped road net-
works of 3×3, 5×5 and 8×8, the training required 1500, 2500
and 9000 episodes, respectively. The processing capacity of
the network can be handled by the network structure. For
example, considering a realistic traffic management system
implemented in the USA [38], APs along a single road or
highway can report to a single facility TMU. In a small city,
APs can report the collected data to a single jurisdiction TMU.
In large metropolitan cities, multiple jurisdictions TMUs are
required to manage traffic of different areas. However, the
studies in [48], [49] showed that managing the traffic in a
particular area impacts the traffic in other areas, creating a
bottleneck. Thus, as a solution multiple jurisdictions TMUs
need to cooperatively manage the traffic. Therefore, a future
direction of this study is to investigate a cooperative multiple
agents machine learning algorithm to manage the traffic with
an objective to reduce the CO2 emissions at network level.

In addition, the proposed structure of the IoV network does
not depends on the vehicle type, meaning it can collect data
from any type of vehicle on the road. However, the on-board
emission meter was tested with petrol- and diesel-fueled ve-
hicles in Section IV.B. The device was not tested with other
types of vehicles, such as hybrid and electric vehicles. A
future direction of this study is to extend the design of the
proposed on-board emission device to report emission data
from hybrid vehicles to the network.

V. CONCLUSION

In this paper, we developed a holistic system to determine
real-time vehicular CO2 emission values and developed RL-
based adaptive speed limits to reduce the total emission of the
network. We demonstrated an on-board device that estimates
vehicle emission values and transmits them to the network.
The device was tested with petrol and diesel vehicles. The
estimated CO2 emission values were close to the standard
emission values for the tested vehicles, with a difference
attributed to the vehicle’s age and loading. The study relies
on interaction between VISSIM and Python simulations to
obtain emissions values and apply the machine learning algo-
rithm. The results showed that themachine learning algorithm
did not change the speed value under high traffic flow but
reduced the variation of the speed values. This achieved a
reduction of 150 kg/h of average CO2 emission values when
the speed of the vehicles can be controlled to one decimal
point accuracy. The achieved emission reduction under free
flow was limited to 42 kg/h because the emission values were
low, and achieving more reduction by restricting the speed
values is not sufficient. More efforts are required to develop
an efficient emission reduction algorithm that considers traf-
fic flow and density.
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