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One-Sentence Summary: Meta-analysis reveals significant positive impacts of conservation 
actions on biodiversity, compared with outcomes anticipated without intervention 
 

Abstract: Governments recently adopted new global targets to halt and reverse the loss of 35 

biodiversity. It is therefore crucial to understand the outcomes of conservation actions. We 
conducted a global meta-analysis of 186 studies (including 665 trials) that measured biodiversity 
over time and compared outcomes under conservation action with a suitable counterfactual of no 
action. We find that in two-thirds of cases, conservation either improved the state of biodiversity, 
or at least slowed declines. Specifically, we find that interventions targeted at species and 40 

ecosystems, such as invasive species control, habitat loss reduction and restoration, protected 
areas, and sustainable management, are highly effective, with large effect sizes. This provides 
the strongest evidence to date that conservation actions are successful, but require 
transformational scaling-up to meet global targets.  
  45 
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Main Text: Ongoing and dramatic declines in global biodiversity, and the associated negative 
consequences for human well-being, are among the most pressing contemporary risks to society 
(1). Governments have thus adopted goals to tackle biodiversity loss and its drivers: 20 Aichi 
Biodiversity Targets in the Strategic Plan for Biodiversity 2010-2020 through the Convention on 
Biological Diversity, and now 4 goals for 2050 and 23 targets for 2030 in the 2022 Kunming-5 

Montreal Global Biodiversity Framework (GBF) (2). Similar targets are echoed in the 17 
Sustainable Development Goals (3). More than $121 billion is invested annually into 
biodiversity conservation worldwide (4). Yet despite this, none of the Aichi Targets were fully 
met (1). It could be concluded that responses to the ongoing biodiversity crisis are either 
insufficient, ineffective, or both (5, 6) and that the targets established in the new GBF will also 10 

likely not be achieved. However, such conclusions are premature: conservation interventions 
could represent progress, and be at least partly effective, even if global policy targets have not 
yet been achieved in full. There is consequently a need for a robust evaluation of policy targets, 
and an assessment of whether conservation interventions are working – that is, having positive 
impacts and providing better outcomes than the absence of interventions – as governments start 15 

committing resources and implementing the GBF. 
 
Robust impact assessment using a counterfactual approach (7) reveals that conservation action 
has prevented extinctions (8) and reduced extinction risk (9) for species across taxonomic groups 
compared with an absence of conservation action. There has been an increase over the last 20 

decade in studies evaluating the impact of specific conservation actions, from global to local 
scales, using counterfactual comparisons, including for protected areas (10), payments for 
environmental services (11), invasive alien species (IAS) eradications (12), and sustainable 
management of ecosystems (13). Other studies have undertaken meta-analyses or systematic 
reviews, but only for individual conservation actions (14–16). Similarly, the Conservation 25 

Evidence website (17) provides a compendium of evidence for the effectiveness of a wide range 
of individual conservation interventions. However, since conservation actions started over a 
century ago, there has been no comprehensive meta-analysis of the impact of conservation across 
the full suite of conservation actions and intervention types, multiple levels and metrics of 
biodiversity, and over time. Such an assessment is critically needed to inform implementation of 30 

the GBF. 
 
Here we conduct a meta-analysis of the impact of a wide range of conservation interventions 
globally. Meta-analysis provides a powerful and informative method to summarize results from 
multiple studies and accounts for unequal precision among studies in the calculation of effect 35 

sizes. We evaluate the impact of conservation actions that address direct pressures on 
biodiversity, promote restoration and recovery of populations and habitat, and aim to safeguard 
the environment across different levels of biological organization, compared with outcomes 
expected without intervention. Specifically, we consider seven intervention types aiming to 
tackle the direct drivers of environmental degradation: establishment and management of 40 

protected areas; other measures to reduce habitat loss and degradation (including policy and 
restoration); sustainable use of species; sustainable management of ecosystems; control of 
pollution; eradication and control of invasive alien (and problematic native) species; and climate 
change adaptation. These classes of intervention were identified based on the strategies of the 
intergovernmental environmental agreements, especially the nine Aichi Targets in Strategic 45 

Goals B and C of the Strategic Plan for Biodiversity 2011-2020 (Table S1), aligned in turn to the 
targets of the GBF and Sustainable Development Goals 14 (Life Below Water) & 15 (Life on 
Land). We consider impacts on biodiversity at ecosystem, species, and genetic levels. 
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We conducted a Rapid Evidence Assessment (see Methods) and meta-analysis of studies 
published in English that present a counterfactual-based analysis of the impact of conservation 
actions over time (18). Our literature search yielded 1,445 studies (published papers) spanning 
spatial scales from local to continental, and more than a century (1890-2019) (Table S2; Fig. S1). 5 

Of these, we retained only studies that contained temporal data, where we could express 
outcomes as effect sizes generated from the ‘rate of change under the intervention’ compared 
with ‘rate of change under a counterfactual scenario’ (19), yielding 186 studies that were 
included in our meta-analysis (Table S3). Using a rate of change to calculate the effect size 
allowed us to assess conservation actions over different time scales, avoiding premature 10 

conclusions based on study duration. Where studies measured change in biodiversity using more 
than one metric (e.g. different species), each was treated as a distinct trial nested within that 
study, totaling 665 trials across the dataset. 
  
Our comprehensive dataset shows the variable outcomes of conservation outcomes. As such, 15 

interventions that generate gains in the state of biodiversity compared with a counterfactual in 
which biodiversity declines, stays the same, or improves to a lesser degree than the intervention, 
reveal absolute positive impacts of conservation action (Fig. 1a). Relative positive impacts of 
conservation action result when biodiversity declines, but the intervention slows the decline 
compared with the counterfactual (Fig. 1b). Conversely, relative negative impacts of 20 

conservation action occur when biodiversity improves, but the counterfactual reveals greater 
improvements than the intervention (Fig. 1c). Absolute negative impacts of conservation action 
result when biodiversity declines following the intervention while it improves, stays the same, or 
declines to a lesser degree in the counterfactual (Fig. 1d). These four categories are mutually 
exclusive. 25 

 

Results 

 
We find that in the majority of cases, biodiversity conservation works. Our meta-analysis shows 
that the ‘Overall’ impact of conservation is positive and significant (mean Hedges’ g [± 95% CI] 30 

= 3.24 [2.95 – 3.52], p<0.001), indicating that, conservation interventions yield beneficial 
outcomes for biodiversity compared with the outcome in the absence of an intervention (Fig. 2a). 
We also show that conservation actions can yield positive impacts in both an absolute and a 
relative sense (Fig. 1). In two-thirds of trials, conservation either improved the state of 
biodiversity (“absolute positive impacts”, 45.4%), or at least slowed declines (“relative positive 35 

impacts”, 20.6%). However, in one-fifth of trials, biodiversity under the intervention declined 
more than no action (“absolute negative impacts”, 20.6%), while in a smaller number of cases 
biodiversity improved in both the intervention and counterfactual, but the counterfactual revealed 
greater improvements (“relative negative impacts”, 11.6%). There was no difference between 
intervention and counterfactual for 1.8% of trials. Moreover, we find that the effect sizes of some 40 

individual interventions are high in magnitude and positive, indicating a substantial positive 
impact of those actions on the whole.  
 
All types of intervention assessed that had more than five trials showed a significant positive 
effect compared with a counterfactual (Fig. 2a; Fig. S2) – eradication and control of invasive 45 

alien and problematic native species (7.07 [6.1–8.04], p<0.001), sustainable management of 
ecosystems (5.70 [4.66–6.74], p<0.001), habitat loss reduction & restoration (5.58 [4.5–6.7], 
p<0.001), and establishment and management of protected areas (1.41 [1.03–1.78], p<0.001). 
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The impact of efforts towards sustainable use of species is inconclusive (2.07 [-0.71–4.84], 
p=0.15), with large confidence intervals possibly related to the small number of studies 
(Nstudies=5,  Ntrials=7). There were too few studies assessing the impact of interventions of 
pollution control or climate change adaptation to analyze separately (each had five or fewer 
trials) but these were included in the calculation of the Overall effect size. Likewise ‘Other’ 5 

studies that did not fit into one of the seven key intervention categories (e.g. food 
supplementation (Nstudies=1), culling of diseased individuals (Nstudies=1), and captive breeding and 
release (Nstudies=5)) were only included in the calculation of the Overall effect size (categorized 
as “Other” in the Figures). Studies focused on the impact of controlling problematic native 
species were combined with studies on IAS given the similarity of the interventions involved.  10 

 
The impact of actions targeting different levels of ecological organization are positive and 
significant, with the greatest impact shown for actions targeting species (3.56 [3.14–3.97], 
p<0.001), followed by ecosystems (2.88 [2.46–3.29], p<0.001), and then genetic diversity (3.84 
[1.35–6.32], p=0.002), which had wide confidence intervals because there were few studies (Fig. 15 

2b). In terms of geographic breakdown, effect sizes were positive and significant on all 
continents (Table S4). Our dataset also shows that effect sizes are positive and significant across 
each of the differing approaches to measuring the impact of an intervention (Table S5).  
 
The timespan of datasets analyzed in the different studies was highly variable, with the shortest 20 

being 1 month and the longest 110 years (median=4.7, mean=7.4) (Fig. 3). These date back to 
1890, and show a trend that studies mainly focused on protected areas until the 1990s, but after 
this, diversified to a wider range of interventions. Studies with a longer duration were not 
significantly more likely to show more beneficial or detrimental impacts of conservation actions 
than shorter studies (Fig. S3). Meta-regression of effect sizes against year of publication (Fig. 4) 25 

indicated that more recent studies were more likely to show a positive effect of conservation 
action, although the low R2 shows that other factors influence effect sizes, as would be expected 
(because many factors in addition to the intervention determine effect sizes). 
 
Half of the studies that met our meta-analysis inclusion criteria (95/186) were conducted in 30 

Western Europe, North America, Australia, and New Zealand (Fig. 3). Of the seven intervention 
types examined, the largest proportion focused on terrestrial and marine protected areas (38%) 
and the eradication and control of invasive alien and problematic native species (25%). Fewer 
studies evaluated other conservation actions for ecosystems (e.g. restoration, habitat conservation 
policy, sustainable management), for species (e.g. sustainable use, reintroductions), and for 35 

genetic diversity (e.g. supplementation, supportive breeding; Table S3).  
 
Our results remain largely unchanged in sensitivity analyses designed to test the impact of 
different methodological considerations (Fig. S4), including: imputing the rate of change when it 
was zero in either the intervention or counterfactual; nesting trials within studies; and 40 

undertaking a supplemental literature search. Cumulative meta-analysis revealed that effect sizes 
stabilize after the addition of studies published from approximately 2011 onwards (Fig S5), and 
in assessing publication bias, the symmetrical nature of our funnel plots (Fig. S6), combined with 
a Fail-safe N of 1,280, led us to conclude that any publication bias in our dataset is minimal.  
 45 

Discussion 
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We have shown that across a full suite of conservation actions and intervention types, multiple 
levels and metrics of biodiversity, and over a century of action, conservation has improved the 
state of biodiversity – or at least slowed its decline – compared with no conservation action. Our 
calculated effect sizes are often large and positive, meaning that the outcomes from conservation 
actions are substantially better than no action at all.  5 

 
Among the different conservation actions evaluated in our study, the eradication, control and 
management of IAS showed the largest impact of conservation action (as highlighted by the 
largest effect size in our intervention groupings), followed by actions to reduce habitat loss and 
degradation, sustainable management of ecosystems, and protected areas (Fig. 2a). IAS 10 

eradication and control has generated some of the most striking conservation successes reported 
to date, particularly on islands (20, 21). There were numerous studies evaluating the impact of 
IAS control and eradication that were excluded from our meta-analysis because they report data 
for only one time point, but these tend to also show a positive impact.  
 15 

Although few in number, studies assessing actions to reduce habitat loss and degradation, 
including restoration, did show positive results (Fig. 2a) consistent with global analyses (22, 23). 
Efforts to ensure sustainable management of ecosystems, particularly on land, also generally 
increased native species abundance and habitat cover (Fig. 2a). These results are consistent with 
global analyses of sustainable management of ecosystems under agriculture and forestry (24, 25). 20 

 
Protected areas have been shown to be effective in reducing conversion of natural land cover 
(10), terrestrial habitat loss (15), coral loss (26), tropical forest fires (27), species extinction risk 
(28), and in increasing biomass and density of marine organisms (14, 29). Protected area 
effectiveness varies geographically, in terms of their effectiveness in preventing deforestation 25 

(30) and reducing anthropogenic pressure (31). Poor performance of protected areas often results 
from shortfalls in human and financial capacity (32, 33), while protected area downgrading, 
downsizing and degazettement presents another major challenge in some regions (34). However, 
our results concur that while their effectiveness is not universal (31), protected areas are an 
important tool for achieving conservation outcomes (Fig. 2a).  30 

 
The impacts of efforts to address unsustainable use of species in the ocean and on land were 
mixed (Fig. 2a), but the number of studies meeting the criteria for inclusion in our meta-analysis 
was small (Nstudies=5).    
  35 

Across our dataset, 137 trials (21% of cases) provide examples in which conservation 
interventions were not only associated with a negative rate of change, but performed more poorly 
than counterfactuals for biodiversity state. Eradicating and controlling invasive alien and 
problematic native species can negatively impact non-target species through incidental damage 
or mortality, or meso-predator release, and this explains the negative impacts observed for this 40 

group of papers. For example, in the United States, application of herbicides to invasive alien 
plants harmed native forbs (35), and in India, physical removal of invasive alien algae caused 
further spread and establishment elsewhere (36) (Fig. 1). Protected areas can show negative 
impacts if there is poor enforcement and insufficient resourcing, leading to higher rates of 
resource extraction, poaching, or agricultural expansion compared with counterfactual areas (37), 45 

or if protection increases the abundance of both predators and the target species in a no-take 
marine protected area (38). These unintended outcomes emphasize the importance of evidence-
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based interventions alongside effective monitoring, so that negative responses can be quickly 
detected and conservation measures adjusted accordingly.  
 
More and better counterfactual studies are needed for a wider range of conservation interventions 
and geographic regions. Particular gaps include assessments of pollution control, climate change 5 

adaptation, sustainable use of species, habitat loss reduction (beyond protected areas), actions 
targeting species and genetic diversity, and conservation actions in the Global South.  
 
The finding that contemporary studies were more likely to show a positive effect of conservation 
actions (Fig. 4) may be due to increases in funding and project-level resources, more targeted 10 

interventions, or indeed, that conservation practice is improving over time as lessons are learned 
from previous failures, and methods are improved. These same factors may help explain the 
larger effect sizes of more rigorous experimental/quasi-experimental study designs (Table S5), 
since their application (particularly quasi-experimental) tends to be more recent. That the 
relationship between effect size vs. study duration (Fig. S3) showed no general trend in direction 15 

indicates that valuable insights can be gained even for studies that are short in duration, provided 
the study design is appropriate. This further underscores the necessity of counterfactual 
evaluation and meta-analysis to assess conservation impact. 
 
Overall, global conservation efforts have helped to slow declines in biodiversity, and could 20 

eventually bend the curve of absolute biodiversity loss (39). Quantifying and evidencing the 
relative biodiversity outcomes (typically gains) of conservation is crucial, to contextualize and 
explain declining state indicator and increasing response indicator trends. While the state of 
biodiversity is declining across the globe in absolute terms, conservation actions work most of 
the time – the challenge is now to expand these to the scale necessary to reverse the global 25 

biodiversity crisis. That is, conservation interventions are working, but there are simply not 
enough conservation actions implemented, or in the right places. Realizing the highly ambitious 
vision of the GBF not simply to slow declines of biodiversity by the end of the decade, but to 
reverse them (2), will require ongoing assessment of the impact of specific conservation 
interventions, to inform adaptive management with evidence. Even more importantly, however, 30 

it will require substantially scaled-up funding and commitment for implementation of 
demonstrably effective conservation interventions – a real transformational change – which in 
turn depends on increased political will and investment. 
 
Such an increase in conservation action and associated outcomes will require expanded 35 

implementation and significant additional investment across many sectors of society, particularly 
beyond the traditional conservation sector. Meeting global biodiversity conservation targets to 
reduce the extinction risk of all species and safeguard sites of international biodiversity 
importance was estimated to cost around $80 billion annually over a decade ago (40). A 
comprehensive global conservation program would require an investment of $178-524 billion 40 

annually (4), much of it focused in highly biodiverse countries. Although high, these costs are 
dwarfed by the value that biodiversity provides to society through the delivery of ecosystem 
services (41). Thus, conservation actions are investments rather than payments – and, as our 
study demonstrates, they are typically investments that yield genuine, high-magnitude positive 
impacts.  45 
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Fig. 1.  Schematic representation of different broad categories of conservation impact, with 
illustrative case studies drawn from our dataset (example reference numbers in superscript). (A) 5 

‘Absolute positive impact’ = intervention outperforms counterfactual and there is an increasing 
biodiversity trend under the intervention. (B) ‘Relative positive impact’ = intervention 
outperforms counterfactual but there is a declining biodiversity trend under both intervention and 
counterfactual. (C) ‘Relative negative impact’ = counterfactual outperforms intervention but 
there is an increasing biodiversity trend under both intervention and counterfactual. (D) 10 

‘Absolute negative impact’ = counterfactual outperforms intervention and there is a declining 
biodiversity trend under intervention.  
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Fig. 2. Effect sizes of conservation interventions (A) Overall, and by class of intervention, and 
(B) for different levels of ecological organization. The number of intervention vs counterfactual 
trials of data (ntrials), and unique studies (nstudies) are reported in parentheses. Mean standardized 
effect size (Hedges’ g) is indicated by the vertical line, and 95% confidence intervals are 5 

represented by the bar width. Where the confidence intervals do not overlap zero, the effect size 
is significant. Vertical dashed lines show zero effect, whilst effect sizes to the right indicate that 
the intervention is more successful than the counterfactual. Interventions with five or fewer trials 
(pollution control, climate change adaptation and those classified as ‘other’), are not shown, but 
do contribute to the calculation of the Overall effect size. The icons (Copyright BIP/SCBD) in 10 

(A) show the primary Aichi target that the intervention classes align with, however, as shown in 
Table S1, these interventions also align with a suite of other goals and targets from 
intergovernmental environmental agreements. 
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Fig. 3. Characteristics of the studies (n=186) included in the meta-analysis. Each bar represents a 
single study included within the meta-analysis, and shows (against the x-axis) the timescale (start 
to end years) covered by the dataset in that study (note break in the scale). The color of each bar 
denotes the intervention type explored by that study. Points show the year in which the 5 

associated study was published in the literature. Inset: world map showing the number of studies 
carried out in each country represented within the meta-analysis (number of countries=42). 
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Fig 4.  Publication year vs. mean standardized effect sizes for each study, colored by 
intervention. Blue line and dark grey shaded area show linear line of best fit with 95% 
confidence intervals. Linear regression is significant (p<0.001) but R2 is small (R2=0.03), as 5 

would be expected. 
 

 

 


