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Abstract: In the midlatitudes of the planet, we are facing the imminent disappearance of one of
our best high-resolution (pre)historic climate and anthropogenic pollution archives, namely the loss
of glacial ice, through accelerated global warming. To capture these records and interpret these
vanishing archives, it is imperative that we extract ice-cores from midlatitude regions where glaciers
still survive and analyse them within frameworks of inter-disciplinary research. In this paper, we
focus on Georgia, part of the Greater Caucasus. Results of ice-core analyses from the region have never,
to date, been integrated with its other abundant palaeo-environmental, archaeological and historical
sources. We review the results of international projects on palaeo-environmental/geoarchaeological
sediment archives, the archaeology of metal economies and preliminary ice-core data in Georgia.
Collectively, we show that the different strands need to be integrated to fully explore relationships
between climate/landscape change and human societal transformations. We then introduce an
inclusive interdisciplinary framework for ongoing research on these themes, with an ultimate future
goal of using data from the past to inform societal resilience strategies in the present.

Keywords: climate-change; ice-cores; palaeo-environment; geoarchaeology; landscapes;
(pre)historic-pollution; metal-economies; Caucasus; resilience; SDG-13

1. Introduction

In this paper, we review current research on climate and environmental change in
Georgia from the onset of the Bronze Age to the later Middle Ages, when the region was a
nexus between Eurasian civilisations [1–3]. The aim is to explore the variable interactions
between rapid climate change and human societal transformations, with a particular focus
on the Georgian Greater Caucasus and the trans-Caucasus corridor (Figure 1a). We discuss
the results of research on different palaeo–climate/environmental and geoarchaeologi-
cal records and their future research potential (ice-cores; glacial moraines; coastal-, lake-,
river-, peat- and settlement-sediment archives), together with archaeological research on
metal production and settlement patterns. The research has been undertaken by different
Georgian and Georgian–International teams. Following our summary of the nature and
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potential of current research, we present an inclusive interdisciplinary future research
agenda that suggests several priorities designed to enable different projects to contribute to
larger scale research questions. Eventually, we hope to set the evidence from integrated
climate/environmental, archaeological and historic records of the Georgian Caucasus in
their appropriate place between those more firmly established global midlatitude records
for western and central Europe and the Mediterranean, and central and east Asia. Ulti-
mately, our future objective is to use the evidence from the past to inform the development
of strategies for social resilience to climate change in the future, contributing to the United
Nations Sustainable Development Goal 13 [4,5].

The last decade has seen increasing interdisciplinary analysis of multiple strands of
evidence by teams researching the impact (or not) of climate and environmental change on
complex human societies in different regions. For example, the historic climate and societal
change studies based on dendrochronological sequences in Europe and central Asia and
volcanic eruptions recorded in polar ice cores [6–10]; those based on measurement of historic
Nile floods for Egypt and the Middle East, linked to volcanic climate-forcing [11]; and the
Mediterranean-wide climate studies based on pollen and marine sediment cores [12,13].
These focused regional interdisciplinary studies linking pollen, sediment-core, textual and
archaeological evidence have also identified distinct regional patterns of contemporary
climate differences, for example, between the western and eastern Mediterranean, raising
questions over the validity of general climate-period characterisations, such as the Late
Antique Little Ice Age and Medieval Climate Anomaly [14–21]. Given the recognition
of the variable regional impact of climate change in the past, there is an imminent need
to undertake an interdisciplinary study in Georgia, sampling from the Greater Caucasus
and the trans-Caucasus corridor, to evaluate human response and resilience to exogenous
influences from climate.

The regional studies above, conducted across the midlatitudes of the planet, have
been augmented recently by high-resolution, interdisciplinary ice-core research projects
from both polar and midlatitude mountain locations, exploring trends in (pre)historic
climate change and human macroeconomic and societal markers (e.g., pandemics) from
pollution records over the last two millennia. For example, seen in the Greenland ice-sheet
research by McConnell and Rogerson [22,23] and in the research of the ‘Historical ice core
project’ at Colle Gnifetti in the Swiss–Italian Alps, led by Mayewski and McCormick [24].
Other midlatitude, ice-core research is currently being undertaken in the Himalayas and
the Pamirs (Figure 1b). Some have attempted to link climate trends from western/central
Europe and the Mediterranean with those emerging from eastern Asia [25]. However, the
absence of interdisciplinary studies from the Caucasus–Black Sea, located between the
more comprehensively studied regions, is severely limiting those attempts.

High-resolution data on the impact of climate and environmental change in Georgia
is currently lacking. We are also faced with the imminent loss of some of our best high-
resolution (pre)historic potential climate and pollution archives, preserved in alpine glacial
ice, due to accelerated global warming [26–28]. The region has a unique and currently re-
coverable variety of palaeo–climate, environmental and pollution (prehistoric and historic)
records, together with a growing corpus of associated archaeological evidence of settlement
patterns, extractive industries and landscape change. Timing is everything in regard to the
extraction of the glacial ice records of at least 250 m thickness, preserved in the Greater
Caucasus glaciers. They may hold 4000 years [29] or more of climate and human macroeco-
nomic/societal history, potentially at annual resolution level, if new sampling technology
is used. Hence, there is an urgent need for comprehensive data collection within coor-
dinated climate–environment–archaeological projects using integrated interdisciplinary
approaches. Global warming may make the next several years the last opportunity to
recover and analyse Greater Caucasus glaciochemical records before melting destroys their
integrity [30]. This review and the suggested interdisciplinary research framework will
hopefully provide a foundation to catalyse this necessary research before the full spectrum
of data disappears.
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Figure 1. (a)—Location map of Georgia relative to the Caucasus Region and the location of the
ice core drilling sites. A physical map of the Caucasus ecoregion was used and modified for the
background [31]. The insert map in the upper right shows the location of Georgia relative to Eurasia.
(b)—Midlatitude global ice-core locations. (© Google Earth).

2. Potential of Palaeo–Climate/Environmental and Archaeological Records in Georgia
2.1. Ice Core(s)—Assessment of the State of Preservation of the Ice Archives in the
Georgian Caucasus

Several ice cores have been recovered from the Greater Caucasus since the mid-1980s
(Figure 1). The highest site, at 5115 m a.s.l., is located on the western plateau near the active
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Mt. Elbrus volcano [29,32–34]. The radiocarbon age from the bottom of this 181.8-metre
ice core is 280 ± 400 CE. Older ice could potentially be found if drilling took place at the
thickest part of the glacier [35]. Only one shallow 18-metre ice core record was recovered
prior to the 2021 expedition to the Mt. Kazbegi plateau, 4500 m a.s.l., in 2015 [35]. In
the same study, the authors reported an ice thickness of ca. 250 metres near the drill site,
but problems with the drilling prevented the recovery of the entire record. An attempt to
recover a pilot shallow ice core in 2021 by a Georgian-led international team from a slightly
lower elevation resulted in only a 1.5-metre-long sample (Figure 2). Drilling was hampered
again by the increasing presence of thick refrozen melt layers. A comparison of the 2021
stratigraphy with the 2015 ice core record clearly shows an increase in melt layer thickness.
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Figure 2. Mount Kazbegi 2021 ice-core pilot project. (a)—ascending to the camping site (4100 m
a.s.l.), (b)—Ice sampling site 4300 m a.s.l., (c)—Transportation of the ice samples. (d)—transported
ice samples in the laboratory at the Climate Change Institute, University of Maine.
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This finding is corroborated by an increase in mean surface temperature in the region
(Figure 3). Observed melt layers due to the increased regional temperature trend have
already impacted the recovery of ice cores from several sites [36]. Fortunately, new elec-
trothermal drilling technology [37] should be able to circumvent problems related to the
presence of water in firn ice near the surface that impacts electromechanical drills. We
expect that a long-term ice archive is preserved at depths below the influence of recent
anthropogenic warming and that we should be able to reconstruct an entire palaeo record
using comprehensive glaciochemical measurements [38]. It is not clear at this point when
deeper parts of the record will be rendered unusable as warming propagates down from
the surface, possibly in as little as five to ten years [39].
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available for the Greater Caucasus covering longer periods, based on numerical radiocar-
bon [40] and surface exposure ages [41]. Previously, moraine deposits and glacial stratig-
raphy were used for the reconstruction of past glaciations in this region [42]. However, in 
most cases, these studies lacked hard chronological data, so the dates of the majority of 
moraines are currently assumed but not proven. In this context, future work will need to 
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clide (TCN) dating (Beryllium-10, Aluminium-26, Chlorine-36, Carbon-14) and numerical 

Figure 3. Temperature anomaly plot of observed surface temperature increase in western Eura-
sia between 2000 and 2023, which has had a very negative impact on many glaciers in the region.
The ECMWF European Reanalysis V5 (ERA5) [0.25◦ × 0.25◦] 2-m surface temperature data files
were re-gridded and generated to 0.5◦ × 0.5◦ using bilinear interpolation function. Climate Reana-
lyzer 2024. [Monthly Reanalysis Maps]. Climate Change Institute, University of Maine. Retrieved
[17 January 2024], from https://climatereanalyzer.org/.

2.2. Glacial Moraines

In the last few decades, regional glacier-related research in the Greater Caucasus
focused mainly on glacier inventories, indicating a significant shrinkage in regional ice
coverage during the last decades [30]. In contrast, only a few published investigations
are available for the Greater Caucasus covering longer periods, based on numerical ra-
diocarbon [40] and surface exposure ages [41]. Previously, moraine deposits and glacial
stratigraphy were used for the reconstruction of past glaciations in this region [42]. How-

https://climatereanalyzer.org/
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ever, in most cases, these studies lacked hard chronological data, so the dates of the majority
of moraines are currently assumed but not proven. In this context, future work will need to
implement state-of-the-art complementary methods such as terrestrial cosmogenic nuclide
(TCN) dating (Beryllium-10, Aluminium-26, Chlorine-36, Carbon-14) and numerical glacier
modelling to investigate past glacier-climate variability in the Greater Caucasus and to
identify any regional divergences during apparent global climate shifts (Figure 4).

Sustainability 2024, 16, x FOR PEER REVIEW 6 of 24 
 

 

glacier modelling to investigate past glacier-climate variability in the Greater Caucasus 
and to identify any regional divergences during apparent global climate shifts (Figure 4). 

 
Figure 4. Moraines from the Roshka River valley. Future moraine sampling site. Google Earth image 
was used as a background. (© Google Earth). 

2.3. River-, Peat- and Lake-Sediment Cores 
The investigation of Holocene river sediments in western Georgia can provide 

unique information on hydrological and environmental changes in the floodplains and 
studied catchments caused by natural and anthropogenic factors (Figure 5). Furthermore, 
reconstructed sedimentation rates of the rivers (originating from the Caucasus cryosphere 
with the influence of snow and ice melt, as well as those without cryospheric influence 
only fed by rainfall) can provide unprecedented details on the regional sediment dynam-
ics of different geo-ecological zones linked to Holocene climate changes and agriculture 
[43,44]. Additionally, metal-pollution levels within the river sediments can provide infor-
mation about mining/smelting and pollution of waterways [45]. On the basis of former 
research, it is expected that the river sediments will mainly provide data from the last 5500 
years [46]. 

Extraction of peat cores for detailed long-term analysis of climate change has been 
undertaken in western, coastal Georgia, notably at the Ispani peat bog, which contained a 
pollen record providing data on climate and landscape change extending back over 4500 
years [47–49]. Currently, however, the records are poorly resolved in terms of chronology, 
with age-depth-models going back to the mid-Holocene constructed from relatively few 
radiocarbon dates. Western Georgia is perhaps the only place in the wider Middle East 
where sphagnum and ombrotrophic peat bogs exist. To date, no prehistoric to historic 
pollution studies have been undertaken on these peat records. They certainly contain om-
brotrophic (blanket bog) records for the last two millennia, which coincide with land-
scapes that are archaeologically well-documented for metal production [47]. Analysis of 
elements related to metalworking and crustal proxies (e.g., lead, silver, copper, zinc, arse-
nic, bismuth, iron, titanium, sulphur etc.) using pXRF scans and then ICP-MS measure-
ments of acid-digested samples, as well as lead isotope ratios of these peat records, have 
the potential to generate a regional picture of former industrial activity that complements 
and extends that provided by archaeometallurgical surveys. It may also identify the pres-
ence of pollution sources from the Mediterranean or Middle East, as prevailing winds 
carry aerosols from those regions (Figure 6) [50,51]. They may also contain information on 

Figure 4. Moraines from the Roshka River valley. Future moraine sampling site. Google Earth image
was used as a background. (© Google Earth).

2.3. River-, Peat- and Lake-Sediment Cores

The investigation of Holocene river sediments in western Georgia can provide unique
information on hydrological and environmental changes in the floodplains and studied
catchments caused by natural and anthropogenic factors (Figure 5). Furthermore, recon-
structed sedimentation rates of the rivers (originating from the Caucasus cryosphere with
the influence of snow and ice melt, as well as those without cryospheric influence only
fed by rainfall) can provide unprecedented details on the regional sediment dynamics of
different geo-ecological zones linked to Holocene climate changes and agriculture [43,44].
Additionally, metal-pollution levels within the river sediments can provide information
about mining/smelting and pollution of waterways [45]. On the basis of former research, it
is expected that the river sediments will mainly provide data from the last 5500 years [46].

Extraction of peat cores for detailed long-term analysis of climate change has been
undertaken in western, coastal Georgia, notably at the Ispani peat bog, which contained
a pollen record providing data on climate and landscape change extending back over
4500 years [47–49]. Currently, however, the records are poorly resolved in terms of chronol-
ogy, with age-depth-models going back to the mid-Holocene constructed from relatively
few radiocarbon dates. Western Georgia is perhaps the only place in the wider Middle
East where sphagnum and ombrotrophic peat bogs exist. To date, no prehistoric to historic
pollution studies have been undertaken on these peat records. They certainly contain
ombrotrophic (blanket bog) records for the last two millennia, which coincide with land-
scapes that are archaeologically well-documented for metal production [47]. Analysis of
elements related to metalworking and crustal proxies (e.g., lead, silver, copper, zinc, arsenic,
bismuth, iron, titanium, sulphur etc.) using pXRF scans and then ICP-MS measurements of
acid-digested samples, as well as lead isotope ratios of these peat records, have the potential
to generate a regional picture of former industrial activity that complements and extends
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that provided by archaeometallurgical surveys. It may also identify the presence of pollu-
tion sources from the Mediterranean or Middle East, as prevailing winds carry aerosols
from those regions (Figure 6) [50,51]. They may also contain information on macrosocietal
events and trends resulting from disease pandemics, economic shifts and wider societal
transformations [22–24]. Peat records from overlapping cores from the same location would
also allow for the analysis of cryptotephra to refine radiocarbon chronologies [52,53] and
for the detailed study of environmental change and peat accumulation rates using pollen.
Reconstruction of temperature profiles could also be achieved through analysis of 13Carbon,
a well-established temperature proxy in peat sediments [54].
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Figure 5. Approximately 3-metre-thick layered, fine-grained Rioni river sediments near Samtredia
town, forming a potential Late Holocene palaeo–environmental archive.

Pollution profiles from peat cores and river sediments can also be contextualised
against existing modern pollution studies of different agricultural soils undertaken in
the post-Soviet era to assess any contamination risks for upper historical peat and river
sediments [55]. This would enable the assessment of the cumulative impact of the potential
release of toxic metal pollution from the Bronze Age to the early modern period, alongside
the pollution from the twentieth century.
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Analyses of lake- and palaeo-lake sediment cores for their potential to illustrate chang-
ing climate and environmental conditions and anthropogenic impact through time has, to
date, only been undertaken in central-southern Georgia, in the Lesser Caucasus. Partic-
ularly notable pollen records extending beyond the Last Glacial Maximum, with dating
models based on between 17 and 21 radiocarbon dates, have been retrieved from Lake
Paravani [56]. The Paravani records form part of a cluster of detailed lake sediment studies
in the Georgian Lesser Caucasus, in Armenia and eastern Türkiye [57–59]. Currently,
however, there are no high-resolution lake records in the Georgian Greater Caucasus or
in coastal western Georgia. As with current peat records, there are no regional studies
of anthropogenic heavy metal pollution (lead, mercury, copper, arsenic, et al.) from lake
sediment cores at present. A series of lakes could provide optimal records, notably in
the Svaneti region, northwestern Georgia, for example, Lake Ugviri (Figure 7). Regional
histories of anthropogenic pollution derived from lake, fluvial and peat sediments, with
sufficiently high-resolution, age-depth models based on multiple radiocarbon and lumines-
cence dates, could be compared to ice-core pollution histories from the Greater Caucasus.
Such comparison could facilitate, alongside the use of lead isotope analysis, differentiation
of local/regional pollution signals from those that arrived as aerosol from more distant
sources in other parts of the Black Sea region, Anatolia or the Mediterranean.
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2.4. Archaeological Surveys and Dating Programmes
2.4.1. Metal Economies

Western Georgia (ancient Colchis) has had well-documented human occupation since
the Middle Palaeolithic [60,61] and has one of the richest Bronze and Iron Age metallurgical
traditions in the world. The fame of its metalworking industries was recorded in early As-
syrian, Urartian, Greek, Roman, and Armenian written sources, as well as Greek mythology.
Strabo considered and analysed this tradition and concluded: ‘The richness of this country
(Colchis) in gold, silver, iron, and copper explains the true reason for the Argonaut cam-
paign’ [62]. In addition to thousands of metal artefacts recovered in hoards and graves [63],
hundreds of metal production sites (both primary smelting sites and secondary casting
workshops) have been reported, providing an exceptional picture of the region’s ‘crafting
landscape’ [64,65]. These metal production sites were initially investigated during the
Soviet period [66,67], but the technology, chronology, and organisation of production have
been greatly clarified over the last decade of archaeometallurgical research [68,69]. While
metallurgical production debris is attested already in third-millennium BCE sites, a massive
expansion in copper and bronze production is well-documented in the late second and
early first millennium BCE [68,69]. This expansion coincides with the peak of the ‘Colchis
Bronze Culture’ [60]. Iron was probably smelted locally as early as the eighth–seventh
centuries BCE, but the earliest iron smelting sites identified so far date to the fifth–third
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centuries BCE; and further concentrations of iron production followed in the medieval
period (Figure 8).

Sustainability 2024, 16, x FOR PEER REVIEW 10 of 24 
 

 

so far date to the fifth–third centuries BCE; and further concentrations of iron production 
followed in the medieval period (Figure 8). 

 
Figure 8. Map of prehistoric and historic metal production sites in western Georgia. Digital elevation 
data is from the Shuttle Radar Topography Mission (SRTM) and Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) (a product of METI and NASA) (developed from Erb-
Satullo et al. [68]). 

Though extremely rich, the documented archaeometallurgical record is uneven, both 
geographically and chronologically, with some areas and periods well-documented and 

Figure 8. Map of prehistoric and historic metal production sites in western Georgia. Digital elevation
data is from the Shuttle Radar Topography Mission (SRTM) and Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) (a product of METI and NASA) (developed from
Erb-Satullo et al. [68]).



Sustainability 2024, 16, 7116 11 of 24

Though extremely rich, the documented archaeometallurgical record is uneven, both
geographically and chronologically, with some areas and periods well-documented and
others virtually unexplored. The densely vegetated landscape, as well as the swampy and
mountainous terrain, mean that surveys are challenging, and there are major differences in
comprehensiveness of data collection and quality between intensive and extensive surveys.
For instance, it is unclear what happened to the Late Bronze Age–Early Iron Age copper
smelting industry in the mid-first millennium BCE, as few copper smelting sites belonging
to that period have been identified so far (for a rare exception, see Nadiradze, [70]). Did
the industry collapse, or did it relocate to higher elevations more inaccessible to modern
archaeological surveys? The answer requires further research. There is also the possibility
of a contraction of iron production in the 14th century CE. Was this a consequence of
the recorded pandemics in the mid-fourteenth century—anthrax, bubonic plague—or the
combined result of the pandemics and the wars of the mid-fourteenth century in Georgia,
culminating in the invasions of Timur the Lame from 1386 [3] (145–147) To address these
questions and others, a combined approach involving further radiocarbon/luminescence
dating of smelting sites in the mountain (e.g., Svaneti region, Lechkhumi) river catchment
and coastal locations is necessary, allied to studies of glacial ice and sediment pollution
proxies for metallurgical activity.

2.4.2. Settlement and Connection Dynamics

Hippocrates, the father of medicine (ca. 460–370 BCE), wrote in his only authentic
treatise preserved to us—On Airs, Waters and Places—that in the ‘fenny, warm, humid,
and wooded’ lowlands of the Phasis (modern Rioni River, western Georgia), with a warm
climate dominated by ‘copious and severe rains. . . at all seasons’ the inhabitants were
living ‘among the fens’, in ‘dwellings constructed of wood and reeds, . . . erected amidst the
waters’. Therefore, ‘they seldom practice walking either to the city or the market, but sail
about, up and down, in canoes constructed out of single trees, for there are many canals
there’. This has been confirmed by Georgian archaeologists and the geomorphological
team of the University of Cologne. The latter showed that in the lower part of the Enguri
floodplain, round or ellipsoidal artificial mounds of several dozens of metres in diameter
were raised from the late third and throughout the second millennium BCE in the middle
of marshes drained by channels and that some of them were inhabited until the Roman
period [46,71,72]. By contrast, along the lower Rioni River, archaeologists have observed
Bronze and Iron age settlements on natural hills. Sometimes terraced, these hill settlements
were protected by ditches, wooden palisades and even walls built with stones, wood and
clay [1,73]. However, although some sites are reputed to contain archaeological traces
(like Namarnu), the settlements situated downstream from Kutaisi, on the ancient estuary
which developed into the Paliastomi lake, have not yet been fully mapped, dated, or
systematically investigated. Also, the location of the major Greek city, Phasis, remains
unknown, like almost all of the other sites mentioned in the ancient texts or inscribed on
the Peutinger map (Figure 9) [74–77].

Currently, there is no explanation for the abandonment of the wetland settlements
during the Greek and Roman periods in the region, nor for the disappearance of the famous
city of Phasis between the Roman–Sasanian wars and the Arabic invasion during the
Late Antique Little Ice Age (?), when destructive flooding events were also recorded in
northwestern Iran [20]. The current hypotheses about successive relocations of Phasis
were invented due to the impossibility of correlating the actual present-day landscape
and archaeological finds with the literary sources. It has been suggested that the ‘Lazi’,
inhabitants of all Colchis between the fourth and seventh centuries CE withdrew into
the southern mountains by the end of that period [2,78]. Nevertheless, the maritime
settlements on the shores of the Lesser Caucasus (Pontos) and the Greater Caucasus
(Abkhazeti) Black Sea coasts continued to be occupied throughout the Middle Ages [79,80].
Geospatial (satellite, aerial) and geophysical surveys, geoarchaeological coring and dating
of settlement mounds and hill-top settlements, followed by targeted excavations, will
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establish the palaeo–environmental and palaeo–climatic reconstruction of the Georgian
lowlands (Figure 10). They will confirm or contradict the general versus regional climatic
scenarios of the Eastern Mediterranean. For example, can we relate the Roman Climatic
Optimum (possibly seen by de Klerk et al. [49]) in the Colchian pollen record, dated
1773 ± 34 cal BP, to the increase of Roman imperial material culture in Colchis? How did
the cooler and wetter periods in the Late Antique Little Ice Age and the Medieval Little Ice
Age impact the lowlands and their settlements?
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These integrated studies are the necessary basis for understanding new scenarios in
the social, economic and cultural history of the region to give greater context to settle-
ments subjected to sample excavation on different scales from the Neolithic to the Middle
Ages [81–84], and to provide greater chronological resolution to preliminary attempts at
modelling changes in long-term demographic patterns linked to major climate shifts in the
wider Middle East from the Late Holocene [85]. Recording the location, date and general
characterisation of the settlements (construction techniques, food production, measures of
sustainability/resilience in a difficult environment) will be the first step in reconstructing
the dynamic networks connecting the Caucasus through its ‘Caucasian’, ‘Caspian’, ‘Sar-
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matian’ and ‘Albanian gates’, with the Near East, Asia—via the so-called ‘Silk roads’—the
northern Eurasian steppe, and the Black Sea.
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3. Establishing an Interdisciplinary Climate–Environment–Archaeological–Historical
Research Framework for Georgia

The unique circumstances of Georgia and the Greater Caucasus region, with an es-
timated glacial ice record stretching back between two and four thousand years, a wide
variety of different palaeo–climatic and palaeo–environmental archives, abundant evidence
of human presence since the mid-Palaeolithic, and complex societies with extractive in-
dustries since the Neolithic–early Bronze Age, provide an unprecedented opportunity
to explore the past interplay (or lack of it) between climate change, landscape dynamics
and human action. Future comparative studies of multiple types of geo-archives and
archaeological evidence will enable the analysis of diverse climatic, environmental and
anthropogenic markers both over the long durée and during shorter periods of rapid
climate and social change [86]. On the basis of the review undertaken in this paper, we
suggest below an interdisciplinary framework for the future to promote the integration
of research on climate/environmental change and its relationship to human societal de-
velopments in Georgia since the Late Neolithic–Bronze Age. We hope that it may provide
an inclusive structure enabling Georgian and Georgian–International teams undertaking
research with different disciplinary combinations and at different spatial and temporal
scales to contribute results on relationships between climate–environment and human
societal dynamics.

The framework seeks to enable the provision of groundbreaking perspectives on:

- The impact (or not) of both slow and rapid climate and environmental change on the
landscape dynamics and human populations in Georgia, the Greater Caucasus and
the eastern Black Sea region (and possibly also the eastern Mediterranean regions for
selected periods).

- Human transformation of the environment through agriculture and metal economies
from the Neolithic and Bronze Age to the present.

- Key moments of human societal change through population movement, technological
innovation, connection/trade, war and disease pandemics.
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- The (pre)historic impact of climate change and human-induced environmental pol-
lution on ecosystems and its consequences in our own time (for food, environment
and infrastructure security) through comparison with rapid warming and cooling
periods in the past and the realisation of the toxic impact of the release of historic
‘legacy pollution’ into modern ecosystems.

This interdisciplinary framework will lead to a new, integrated palaeo–climate–
environmental/pollution/archaeological/historical research cluster in Georgia, joining
others around the midlatitudes of the planet (see Figure 1b). The Colle Gnifetti Historical
ice core project held records from the region of northwest/western Europe and northwest
Africa, and its analysis was linked to palaeo–environmental, historical and archaeological
archives from those regions [24]. The Caucasus interdisciplinary framework, hopefully link-
ing ice cores with other palaeo–climate/palaeo–environmental records, could incorporate
climate, volcanic eruption and pollution evidence from the central–eastern Mediterranean,
the Black Sea, Anatolia and the Middle East and will integrate archaeological and historical
evidence from the outset. Other ice cores (extracted by the Climate Change Institute, Uni-
versity of Maine and other institutions) from Mount Everest and the Pamirs incorporate
evidence from Central Asia, the Himalayas and the northern Indian subcontinent [87,88].

Ice-core records from the Greater Caucasus mountains, sampled at ultra-high (annual)
resolution, will be able to provide an unprecedented, detailed record of both historic climate
change and the role of human macroeconomic (metal-related) and societal trends on the
environment for the Caucasus region. Learning from preliminary ice-core drilling at Mount
Kazbegi in 2021, future electrothermal drilling campaigns in that location are a priority, as
are drill-site selection campaigns in the Svaneti region (Figure 11). The aim is to recover and
develop several comparable regional glacial ice-core records. This will require glaciological
studies of snow accumulation rates, temperature observations, glacial flow modelling and
ice thickness mapping using ground penetrating radar [89,90].

The individual ice core records will need to be sampled for stable water isotopes and
element concentrations using ion chromatography solution-based ICP-MS. Layer detec-
tion will be conducted using a hyperspectral imaging technique. A unique LA-ICP-MS
instrumentation for ice [91] will allow the establishment of annual layer markers in deep
parts of the ice core records [92]. Using glacio–chemical, physical and optical proper-
ties of the ice cores will enable the identification and careful differentiation of volcanic,
dust storms and human pollution events. A developed time scale will be corroborated
using microparticulate radiocarbon-dating; correlation of temperature and precipitation
proxies, and prehistoric and historic pollution evidence as proxies for human macrosoci-
etal/economic/pandemic impact on the environment with other regional archives. Cli-
mate reanalysis datasets (e.g., ECMWF ERA5, NCEP/NCAR) will be used to drive Flex-
part/HYSPLIT models to establish modern-day analogue scenarios for the calculation of
source emission parameters for prehistoric and historic pollution (Figure 6).

In order to differentiate (pre)historic local/regional metalworking/macrosocietal
events in Georgia from pollution arriving from more distant regions (e.g., the Balkans,
Cyprus, Anatolia), we need to be able to match ice core records with those from regional
peat-, lake- and fluvial-sediment cores, which usually (but not always) captured local pollu-
tion sources. Importantly, however, the peat and lake core bulk samples should also be large
enough to allow for comprehensive analysis of a suite of elemental isotopes required to
identify local and foreign pollution signals, especially from lead/silver production [93,94].

Peat, lake and fluvial sediments will also provide pollen profiles, information on
longer term fluvial sedimentation phases, and highly resolved palaeo-flood data. The
latter will enable the investigation of (pre)historic landscape change and trends in culti-
vation/landscape management so that agricultural evidence can be analysed alongside
the data from metal economies/pollution [46,95]. Building on the pioneering work of Ku-
paradze [96], Sulava [69], Erb-Satullo et al. [68], an enlarged survey and dating programme
of the metalworking sites in western Georgia is necessary to gain further chronological res-
olution on trends in the scale and date of mining and smelting of different metals [68,69,96].
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Also, this will allow the differentiation of pollution derived from local or longer distance
sources within sediment and ice core records through isotope and concentration analy-
ses [94].
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Geoarchaeological data from the Georgian coast of the Black Sea and the Colchis Plain
will document landscape changes during the late Holocene, influenced by sea level change,
tectonics and change in the sedimentation levels of major rivers (Enguri, Rioni), building
on existing research in those and neighbouring areas (Figure 12) [46,95]. Reconstruction of
changes in the palaeo-historic landscape can reveal patterns totally different from today. For
example, in the last decade, the study of the lower Kuban River in the northern Caucasus,
revealed the existence of an archipelago in the middle of the Cimmerian Bosporus/Kertch
Strait [97]. Much larger than previously thought by modern scholars, and with multiple
channels between the islands occupied since the Bronze Age and the Greek archaic period,
this strait suffered major transformations comparable with those supposed for the lower
Rioni river in Georgia (the ancient Phasis—the famous river travelled by the Argonauts
searching for the Colchian Golden Fleece). However, nothing is known at present about the
progradation of this delta. Geoarchaeological research is essential for reconstructing the for-
mer landscape topography, the delta advance, and the local sea-level evolution compared
to other parts of the Black Sea coasts [98]. Therefore, such palaeo–environmental recon-
structions will form the key component—in fact, the very first step—for understanding
the human settlement pattern, local economy and wider human social networks through
time, from the Bronze Age to the present. A subsequent synthetic analysis and interpreta-
tion phase, incorporating all known contexts from archaeological and historical sources,
will be essential to provide meaning and context to the various proxy data, whether for
known historical volcanic eruptions, disease events, sociopolitical events/periods and
economic innovations.

Ideally, these multidisciplinary analyses can be structured within a broad spatial
transect from the central Greater Caucasus mountains in the northeast, following major
river valleys (Enguri, Rioni) to the Black Sea coast in the southwest (Rioni delta, Poti)
(Figure 13).

Within such a transect, research can be focused on specific subregional case-studies:

- A Greater Caucasus Mountain case study, whether in the Svaneti region, the upper
Enguri valley, or Kazbegi, comprising extraction and analyses of ice cores (for climate
and pollution-related research) and lake sediment cores (including anthropogenic
pollution profiles), glacial moraines and radiocarbon/luminescence dating of known
archaeological metal smelting/working sites.

- A Rioni river valley case study in the central zone of the transect, comprising fluvial
and alluvial geomorphology and sediment analyses, as well as minor element/metal
pollution analyses, radiocarbon-dating of known metalworking sites, and synthesis
of the settlement history from archaeological remains. This would need to combine
the use of geomorphological (study of natural outcrops and drill cores, analysis of
high-resolution DEMs), geophysical (electrical resistivity tomography, electromag-
netic induction), geochronological (radiocarbon, luminescence), sedimentological-
geochemical (grain size, rock magnetic, CNS and heavy mineral element analysis) and
palaeobotanical (biomarker, phytolith or pollen) analyses (Figure 5) [95].

- A Black Sea coastal plain and delta case study can expand on the research by Ilia
State University and Cologne University already undertaken in this area for micro-
topographical and landscape reconstruction linked to the Bronze Age to modern
settlement evidence. New research needs to focus on known ombrotrophic peat
bog analysis for prehistoric and historic pollution studies. A second dimension
can be added through the geoarchaeological study of the Rioni delta, following the
approaches of the international project lead by the German Archaeological Institute
(DAI) with French and local partners in the northern Caucasus and the Kuban delta
(Figure 12). The reconstruction of the geobioarchaeological landscapes over the longue
durée will allow an assessment of changing delta topography, influenced by human
alteration of the landscape and climate change.
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4. Conclusions and Prospects

Given the close entanglement of human societal dynamics with climate and envi-
ronment [100] and the growing picture of regional variations and responses to external
shocks, the proposed interdisciplinary research framework seeks to take advantage of the
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unique range of climate–environment and archaeological records reviewed in this paper,
to enable a systematic and integrated study of human resilience in Georgia in the face of
changing climate and social challenges over the last four millennia. The strategic location
of this research in Georgia, at the crossroads of prehistoric and historical connections be-
tween western and eastern Eurasia [101–103], will provide a key comparative dataset to
confront current western and central European and Mediterranean biases in the clustering
of high-resolution evidence. It will also directly address the relationship between regional
and global climate change and human societal development in the midlatitudes of the
planet. The suggested transect of records from the Greater Caucasus to the Black Sea coast
will allow for the investigation of the regional impact of rapid solar- and volcanic-climate
forcing, as well as cycles of economic growth/collapse, warfare, conquests and pandemics,
between the Caspian and Black seas.

The framework can also enable the provision of a series of analogues from the past to
aid societal resilience in the present and future [104]. Firstly, it will allow exploration of
societal responses to rapid climate change and volatility in the past, such as the suggested
destructive flooding of the later sixth and seventh centuries CE, and the rapid regional
warming events between the mid-tenth and mid-thirteenth centuries CE. Data from the
past could also help to predict future changes in hydrological/stream-flow patterns, land
surface erosion, and linked changes in atmospheric circulation, which will have pronounced
impacts on human settlement patterns and food supply and security. Furthermore, it will
inform potential resilience measures necessary to mitigate risk from the legacies of past
industrial activities. With the accelerated pace of global climate- and related landscape
change in recent decades, significant levels of toxic pollution created in the past are being
released into modern ecosystems. Large-scale copper-, iron-, gold- and silver-extraction
from the Bronze Age onwards released toxic contaminants such as lead, arsenic and mercury
from smelting ores and metal-purification processes [46,55]. Analyses of ice core and peat
records in western Europe have shown that the levels of pollution from the past, such as
the Roman and medieval periods, were sometimes greater than levels in the ‘Industrial’ era
of the last two centuries. Rapidly melting glaciers and more dynamic rivers fed by them
will both release and erode antique to modern pollution into current ecosystems. Assessing
and measuring the scale of toxic activities from the past and the impact of their release in
the present due to modern rapid climate change will enable the identification of where
mitigating controls are necessary [105]. The ultimate goal, therefore, is to put the past to
work for us in attempting to address the existential societal challenges of our own time and
the future.
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