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Abstract. Bayesian model updating represents a sound formulation to incorporate the
unavoidable uncertainties arising in the system identification of infrastructure assets. However,
the treatment of cases involving a relatively large number of model parameters remains an
open issue, especially for dynamic nonlinear structural models. In this context, an effective
implementation of subset simulation is considered within the framework of Bayesian model
updating with structural reliability methods (BUS). For improved numerical efficiency, a
substructure coupling technique for dynamic analysis is implemented to develop a reduced-order
model strategy. To assess the capabilities of the proposed method, an application example that
considers a three-dimensional bridge model equipped with nonlinear devices is presented.

1. Introduction
The evaluation of the state of structural dynamical systems using measured responses is an
important and current challenge in civil engineering. The treatment of the inherent uncertainties
arising in this context is of paramount importance, for which Bayesian model updating yields
a suitable probabilistic formulation [1, 2]. In this setting, the updated joint distribution of
the uncertain parameters is obtained taking into account available measurements as well as
prior knowledge. For problems involving a large amount of data, asymptotic methods can
be used to obtain explicit approximations of the posterior distribution [1, 3]. In more general
cases, posterior samples can be generated by applying specialized stochastic simulation methods.
Some available techniques include, e.g., the Metropolis-Hastings (M-H) algorithm [4, 5] and the
transitional Markov chain Monte Carlo (TMCMC) method [6]. While these sampling approaches
have been demonstrated in different applications (see, e.g., [7, 8]), they face potential problems
when the number of identification parameters is relatively high [9, 10].

Some approaches to explore high-dimensional posterior distributions of structural dynamical
models include Hamiltonian Monte Carlo [10], subspace identification techniques [11], and the
use of Kalman filters [12]. From a general perspective, the suitability of the different solution
techniques is heavily dependent on the particularities of the problem at hand. Thus, it can be



argued that there is still room for additional advancements in this field. In this regard, one
type of approaches that can potentially handle high-dimensional parameter spaces corresponds
to Bayesian model updating using structural reliability methods (BUS) [13, 14, 15, 16]. The
distinctive feature of BUS is that an auxiliary reliability problem is formulated to explore the
target posterior distribution. In this regard, the corresponding failure event can be defined a
priori [13, 15] or adaptively during the sample generation process [14, 16, 17]. Even though these
techniques have been implemented in a number of applications [18, 19], their use in structural
dynamics applications involving complex nonlinear models and response measurements remains
rather limited.

This contribution presents a BUS approach for identification problems involving dynamic
nonlinear structures and measured response data. A strategy based on subset simulation [20]
is formulated, which requires minimal modifications to the original algorithm and circumvents
the need of knowledge about the maximum likelihood value. Several implementation aspects
are discussed to enhance the effectiveness of the method. Overall, the resulting method is a
potentially useful tool to address Bayesian updating problems that involve structural dynamical
models with high-dimensional parameter spaces.

2. Problem formulation
2.1. Bayesian model updating
Consider model parameter vector θθθ ∈ ΘΘΘ ⊂ Rnθ corresponding to a model class M and available
measurement data denoted by D. The goal of Bayesian model updating is to characterize the
updated joint distribution of θθθ, i.e., p(θθθ|D). From Bayes’ theorem [1, 2],

p(θθθ|D) =
p(θθθ)LD(θθθ)

P (D)
(1)

where p(θθθ) denotes the prior probability density function (PDF), LD(θθθ) is the likelihood function,
and P (D) =

∫
p(θθθ)LD(θθθ)dθθθ is the so-called evidence. The initial knowledge about the plausibility

of different model parameter values is incorporated by means of p(θθθ). Further, LD(θθθ) quantifies
how likely is to observe the available measurements for a given parameter vector θθθ. Finally,
P (D) is a normalizing constant.

2.2. Likelihood function
This contribution focuses on structural dynamical systems in which the identification data
D comprises time series of length nt corresponding to a total of nη responses of interest.
Specifically, η∗n(tj) denotes the nth response of interest measured at time tj with n = 1, . . . , nη

and j = 1, . . . , nt, while ηn(tj , θθθ) is the associated prediction corresponding to the parameter
vector θθθ. Further, the prediction errors en,j(θθθ) = η∗n(tj)−ηn(tj , θθθ) are assumed to be independent
random variables that follow a zero-mean Gaussian distribution with variance equal to σ2. Then,
it is possible to state the likelihood function as [1]

LD(θθθ) =
1

(2πσ2)nηnt/2
exp

− 1

2σ2

nη∑
n=1

nt∑
j=1

(η∗n(tj)− ηn(tj , θθθ))
2

 (2)

2.3. Structural dynamical systems
Special attention is directed to structural systems characterized as multi-degree-of-freedom
models whose response satisfies the equation of motion

Mÿ(t) +Cẏ(t) +Ky(t) + κκκ(ẏ(t),y(t), ζζζ(t)) = f(t) (3)



where y ∈ Rny is the displacement vector; the matrices M is the mass matrix; C is the damping
matrix; K is the stiffness matrix; f(t) denotes the vector of external forces; and κκκ(ẏ(t),y(t), ζζζ(t))
is a vector comprising the nonlinear forces of the system, whose state variables ζζζ(t) satisfy an
appropriate nonlinear equation. Although Eq. (3) is particularly well suited to treat localized
nonlinearities, it can also be extended to consider nonlinear models of the entire structure.
Finally, it is noted that the evaluation of ηn(tj , θθθ), n = 1, . . . , nη, j = 1, . . . , nt requires solving
coupled nonlinear differential equations to determine the joint evolution of y(t) and ζζζ(t). This
can be carried out by resorting to any appropriate numerical technique.

3. Solution method
3.1. Equivalent formulation based on reliability problems
The main idea of BUS is to formulate Bayesian model updating as the equivalent task of
characterizing a suitable failure domain [13]. In this regard, consider the auxiliary failure event

Z = {u < cLD(θθθ)} (4)

where u ∈ [0, 1] is a uniform random variable, θθθ ∈ ΘΘΘ ⊆ Rnθ follows the prior distribution p(θθθ)
in Eq. (1), and c > 0 is referred to as the likelihood multiplier. This constant verifies [13]

c−1 ≥ Lmax = sup
θθθ∈ΘΘΘ

LD(θθθ) (5)

If the previous condition is satisfied, the marginal PDF of θθθ given failure matches the posterior
PDF in Eq. (1), that is, p(θθθ|F ) = p(θθθ|D). In other words, if failure samples (θθθ, u) ∼ p(θθθ, u|F )
have been drawn using a suitable reliability method, their corresponding θθθ-components are
distributed according to p(θθθ|D). Finally, the evidence is obtained as P (D) = c−1PF , where PF

is the failure probability. This is a valuable feature for problems involving multiple probabilistic
model classes [21].

3.2. Likelihood multiplier
The treatment of the likelihood multiplier is a key aspect of BUS. In practice, the optimal value
choice c−1 = Lmax cannot be guaranteed. While selecting c−1 > Lmax ensures the validity of
the formulation, if c−1 is too large the computational efforts might be excessive. Finally, in
case c−1 < Lmax the marginal conditional distribution p(θθθ|F ) becomes a biased version of the
posterior PDF [15], that is, p(θθθ|F ) ̸= p(θθθ|D). In this regard, several approaches have been
proposed to select the value of c−1. A straightforward strategy is to define c−1 a priori based
on the characteristics of LD(θθθ) [13], which can be complemented with a post-processing step
[15]. Alternatively, adaptive schemes to select the likelihood multiplier based on intermediate
results of the corresponding reliability analysis have been presented. Subset simulation [20] has
been adopted to this end using an inner-outer approach [14] or an adaptive target failure event
[16, 17]. In general, c−1 should be as small as possible while satisfying c−1 ≥ Lmax.

3.3. Main ideas
In this work, a subset simulation-based strategy is developed to select the likelihood multiplier
in an adaptive manner [17]. In this context, and taking into account the discussion in [14, 16],
Eq. (4) is restated as

F = {d(θθθ, u) > d∗} =
{
ln (LD(θθθ))− ln (u) > ln

(
c−1
)}

(6)

where d(θθθ, u) = ln (LD(θθθ))−ln (u) is the equivalent demand function with threshold d∗ = ln(c−1).
Based on the previous formulation, subset simulation can be carried out without specifying the
value of c−1 beforehand. Further, the value of d∗ can be updated at the end of each sampling



stage using the maximum observed log-likelihood value. The conventional condition to stop the
sampling process within subset simulation is implemented, i.e., the process is finished when the
next intermediate threshold surpasses d∗. Hence, the herein proposed scheme only involves slight
modifications to the customary subset simulation algorithm for its implementation. In addition,
it is noted that the likelihood multiplier is explicitly selected as the maximum likelihood value
observed throughout the entire sampling process.

3.4. Basic pseudo-code
For completeness, a pseudo-code of the proposed method is presented in the following. A
more thorough description of the approach, which encompasses theoretical and practical
implementation aspects, can be found in [17].

1. Define the conditional probability p0 and the sample size N such that p0N is integer.

2. Obtain a set of N samples,
{
(θθθ0n, u

0
n), n = 1, . . . , N

}
according to the unconditional

distribution p(θθθ, u). Evaluate the corresponding log-likelihood values ℓ0n = ln
(
LD(θθθ

0
n, u

0
n)
)

and demand function values d0n = d(θθθ0n, u
0
n), n = 1, . . . , N .

3. Initialize k = 1 and d∗ = maxn=1,...,N ℓ0n.

4. Set dk as the [(1 − p0)N ]th largest value within {dk−1
n , n = 1, . . . , N}. If dk ≥ d∗, set

m = k, dm = d∗ and go to step 7. Otherwise, define the kth intermediate failure domain as
Fk = {(θθθ, u) ∈ΘΘΘ× [0, 1] : d(θθθ, u) > dk}.

5. By construction, there are p0N samples in
{
(θθθk−1

n , uk−1
n ), n = 1, . . . , N

}
that belong to Fk.

Considering each sample as the seed state, employ the modified MH algorithm [20] to
draw (1 − p0)N additional samples within Fk to obtain a set of N conditional samples{
(θθθkn, u

k
n), n = 1, . . . , N

}
at level k. The corresponding log-likelihood and demand function

values are, respectively, ℓkn = ln
(
LD(θθθ

k
n)
)
and dkn = d(θθθkn, u

k
n), n = 1, . . . , N .

6. Update the threshold as d∗ ← max{d∗,maxn=1,...,N ℓkn}. Set k ← k + 1 and go back to
step 4.

7. The set {θθθmn , n = 1, . . . , N} ∈ Fm represent posterior samples. The evidence is estimated as

P (D) ≈ ed
∗ × pm−1

0 ×

(
1

N

N∑
n=1

I [d(θθθmn , umn ) > d∗]

)
(7)

where I[·] = 1 if the expression within square brackets is true and I[·] = 0 otherwise.

3.5. Implementation details
The proposed approach can be regarded as computationally very demanding due to the
significant number of dynamic analyses involved in its practical application. Some efficiency
enhancements can be achieved by improving the effectiveness of the sampling process, such as
the use of adaptive proposal distributions [22] or a resampling step to reduce sample dependency
[16]. However, reducing the computational cost of evaluating LD(θθθ) is paramount to enhance
the numerical efficiency of the approach. In this regard, two different strategies are considered.

3.5.1. Parametric reduced-order models The concept of substructure coupling for dynamic
analysis is employed to formulate a model reduction strategy within the herein proposed
approach [23]. In this regard, a number of linear and nonlinear substructures are defined to
characterize the whole structure, which are then coupled to obtain a model of reduced dimension.
To circumvent the need of repeatedly assembling the different substructures, an efficient
parametrization technique is implemented. In this setting, by assuming that the dynamical



matrices of each linear substructure can be parametrized in terms of a single parameter, the
reduced-order matrices are explicitly parameterized in terms of the model parameters under
consideration [24]. In general, significant computational savings can be achieved with this
strategy.

3.5.2. Surrogate model strategies Additional efficiency improvements can be achieved by
reducing the number of calls to the likelihood function. To this end, surrogate model strategies
can be implemented [25] to approximate LD(θθθ). The idea is to formulate a metamodel for
the likelihood function based on, e.g., neural networks, support vector machines, or kriging
interpolants. Ideally, a significant portion of the samples are evaluated using the metamodel
instead of the likelihood function and, in this manner, the overall computational efficiency can
be improved. An important implementation aspect is to achieve a suitable balance between the
complexity of the metamodel and its accuracy. Even though surrogate modeling strategies can
be very efficient for problems involving low-dimensional parameter spaces, their extension to
cases with multiple uncertain parameters remains an open challenge.

4. Application example
4.1. Description of the structural system
The finite element model of a bridge structure, has been borrowed from [17] and is shown in
Fig. 1, is considered in this work. The girder is supported by four piers of 8 m height with a
rigid connection, where each of them rests on four piles of 35 m height. Such piles and piers
are modeled by means of column elements whose cross sections are circular with diameters of
0.6 m and 1.6 m, respectively. Further, the total length of the deck is equal to 199 m across
five spans. Shell and beam elements are implemented to characterize the deck cross section.
In addition, a pair of sliding bearings is present at each abutment to support the bridge deck.
These devices comprise a steel slider fixed at an upper plate that slides against a semi-spherical
surface of stainless steel, thereby dissipating energy through friction-related phenomena [26].
Overall, approximately 105 degrees of freedom are involved in the dynamical characterization of
the structural model.

For dynamic analysis purposes it is assumed that the nonlinearities are restricted to the
response of the sliding bearings while the rest of structural components remain linear. An
experimentally validated model is implemented to represent the nonlinear response of the
bearings [26], thereby accounting for changes in the corresponding friction coefficient observed
during seismic events. As an example, Fig. 2 shows a representative bearing response in terms
of the relationship between restoring force and relative displacement. In addition, the structural
elements are characterized by a Young modulus of 2.0 × 1010 N/m2, a Poisson ratio of 0.2,
and a mass density equal to 2500 kg/m3. Further, a series of translational springs distributed
along the height of the piles are employed to represent the interaction between the piles and
their surrounding soil. The corresponding stiffness constants are assumed to grow linearly from
5.6× 106 N/m at the surface to 1.1× 108 N/m at the bottom of the piles. Finally, the critical
damping ratio under consideration is equal to 3%.

4.2. Model reduction
The structural model is subdivided into sixteen linear structures and two nonlinear substructures
as presented in Fig. 3. Specifically, the deck comprises substructures Si, i = 1, . . . , 5, the bridge
piers correspond to substructures Si, i = 6, . . . , 9, and the corresponding footings and piles relate
to substructures Si, i = 10, . . . , 13. Furthermore, the aforementioned springs that represent the
interaction between piles and their surrounding soil conform substructures Si, i = 14, . . . , 16.
Finally, substructures Si, i = 17, 18 comprise the sliding bearings at the abutments. Thus, the



Figure 1. Three-dimensional representation of
the bridge. Figure 2. Typical bearing re-

sponse.

linear substructures are Si, i = 1, . . . , 16, whereas substructures S17 and S18 are characterized
as nonlinear.

A total of 449 generalized coordinates are obtained as a result of the above substructuring,
which represents less than 5% of the total number of degrees of freedom involved in the
unreduced finite element model. Moreover, additional analyses carried out in the context of this
contribution determine errors in the ten lowest natural frequencies being smaller than 0.5%. It is
noted that such frequencies account for the linear elements of the undamped structural system.
In addition, Fig. 4 presents the modal assurance criterion (MAC) values [27] corresponding to
mode shapes associated with the ten lowest natural frequencies of the unreduced and reduced-
order systems. As the off-diagonal elements are negligible, both models can be considered
consistent with respect to their mode shapes.

Figure 3. Selected substructures. Figure 4. Resemblance of the mode shapes of
original and reduced-order models in terms of
their MAC values.

4.3. Identification problem
Synthetic measurement data are considered for identification purposes. The measurements
are simulated by generating response time series with the nominal finite element model. To
this end, El Centro ground-motion record has been applied at 50◦ with respect to the x axis
and re-scaled so that the corresponding peak acceleration is equal to 5 m/s2 (see Fig. 1).
Synthetic acceleration measurements in the horizontal plane are considered for identification



purposes, which are obtained at the center of the different deck spans. A duration of 20 s
with a time step ∆t = 0.01 s is taken into account. To incorporate monitoring errors, a
discrete white noise sequence is incorporated to contaminate the acceleration measurements.
The corresponding standard deviation is taken equal to 10% of the root-mean-square value of
the original acceleration responses (σ0 = 0.08 m/s2) Thus, the identification data comprises
nr = 10 responses of interest and nt = 2000 time steps.

For illustration purposes, a total of five identification parameters are considered. In particular,
θ1 controls the elastic modulus of the deck girder, θ2 of the piers, θ3 of the pile elements, θ4 is
associated with the initial friction coefficient of the bearings, and θ5 is related to σ in Eq. (2).
These parameters are defined in a normalized way such that θi = 1, i = 1, . . . , 5, characterize the
nominal (target) values. The prior PDF of θi, i = 1, . . . , 4 is taken as uniform over [0.5, 1.5]4,
while the prior distribution of θ5 is defined as lognormal with a median equal to 0.5 and a
logarithmic standard deviation of 0.3.

Based on the previous formulation, it is possible to parametrize the different substructure
stiffness matrices in terms of θθθ. In this regard, θ1 is associated with substructures Si, i = 1, . . . , 5;
θ2 with Si, i = 6, . . . , 9; and θ3 with Si, i = 10, . . . , 13. Hence, the strategy based on substructure
coupling for dynamic analysis presented in Section 3.5.1 can be implemented. According to
validation calculations, the speedup factor for evaluating LD(θθθ) obtained by virtue of the
aforementioned parametrization technique is approximately equal to 10 for this example.

4.4. Results
To generate a set of posterior samples, subset simulation is implemented with N = 2000 and
p0 = 0.1 (see Section 3.4). Table 1 shows the corresponding estimates of the posterior mean
values. It is seen that the maximum deviation with respect to the target value θtargeti = 1,
i = 1, . . . , 5, is around 2%. It can be argued that such results are associated to the non-trivial
interaction between the stiffness of the piers and piles, i.e., between parameters θ2 and θ3. That
is, higher (lower) values of θ2 can be compensated with lower (higher) values of θ3 to obtain a
similar dynamical behavior at the measurement points, which is consistent from the structural
viewpoint.

Table 1. Posterior mean values of the
identification parameters.

Parameter Posterior mean value

θ1 0.99
θ2 1.02
θ3 0.98
θ4 1.00
θ5 0.99

Table 2. Log-evidence estimates obtained in
five algorithm runs.

Run No. Log-evidence

1 2.21× 10−4

2 2.20× 10−4

3 2.21× 10−4

4 2.21× 10−4

5 2.20× 10−4

Based on dynamical response measurements, the herein presented strategy allows updating
the model predictions. In particular, the prediction of responses that are not considered in the
data used for identification purposes can be updated. To illustrate this feature, the abutment
displacements along the x axis are shown in Fig. 5. Specifically, this figure presents the target
responses (solid-black lines) as well as their prior and posterior uncertainty represented in terms
of 95%-confidence intervals (gray areas). It can be argued that a significant level of uncertainty
is present in the prior prediction. Nevertheless, available measurement data can be employed to
achieve significant improvements to the predictive capabilities of the model. Indeed, the various
lines in the right plots, corresponding to the posterior distribution, are indistinguishable from



one another. That is, the update responses match the target ones. In other words, the posterior
distribution identified by the proposed method enables high-quality updated predictions of these
unobserved responses.

Figure 5. Displacement response at the abutments (x-axis). Target values (black line) and
95%-confidence interval (gray area). Left: Prior distribution. Right: Updated distribution.

Figure 6 presents the value of threshold level, d∗, obtained throughout the different subset
simulation levels. It is noted that, within the proposed approach, this quantity is directly related
to the likelihood multiplier and is associated with the maximum value of the likelihood function
observed during the sampling process. From the figure, it is seen that 10 stages are needed to
verify the stopping condition. Moreover, the value of d∗ stabilizes roughly after five stages, with
a marginal incremental trend in later stages. This indicates the validity of the proposed strategy
to select the likelihood multiplier, since the region of the parameter space associated with high
values of the likelihood function can be efficaciously sampled. To obtain further insight into the
performance of the method, Table 2 reports the estimates of the log-evidence computed from five
independent runs. These estimates, which are computed with negligible computational efforts,
are very similar between each other. Overall, the preceding findings suggest that the herein
reported BUS implementation can be employed to address Bayesian model updating problems
associated with complex nonlinear structural systems and dynamical response measurements.

Figure 6. Threshold level in terms of
simulation level.

5. Conclusions
An effective implementation of Bayesian updating with structural reliability methods (BUS),
suitable for the treatment of dynamic nonlinear structural systems, has been presented. In this
setting, posterior samples are obtained as those lying in an especially devised failure domain.
Subset simulation, a popular sampling technique for reliability analysis, is considered. Further,



a formulation to determine the likelihood multiplier in an adaptive manner is presented. For
improved numerical efficiency, parametric reduced-order models are implemented using the
concept of substructure coupling for dynamic analysis. To illustrate the advantages of the
herein reported approach, an application example involving a three-dimensional finite element
model involving friction-based isolators is studied. In general, the predictive capabilities of
the structural dynamical system are enhanced by virtue of available response measurements.
Moreover, significant computational efficiency improvements are achieved by the model reduction
technique under consideration while ensuring the consistency of the reduced and unreduced
models in terms of their relevant dynamical properties. Overall, the findings discussed in this
work indicate that the proposed BUS approach can be regarded as a is a potentially useful
technique for tackling complex Bayesian model updating problems in realistic scenarios that
entail involved nonlinear structural models and measured response data.
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