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Abstract

Background: Asthma is routinely treated with inhaled corticosteroids (ICS).

Asthma patients on ICS are at increased risk of adrenal suppression, a potentially

serious effect of long‐term glucocorticoid exposure; however, this relationship is

poorly understood. Therefore, this study aims to identify metabolite biomarkers

related to adrenal suppression in asthma patients taking ICS.

Methods: A total of 571 urine metabolites from 200 children with asthma on

ICS in the Pharmacogenetics of Adrenal Suppression with Inhaled Steroids

(PASS) cohort were profiled. Samples were grouped by peak plasma cortisol

measurement as adrenal sufficient (>350 nmol/L) or insufficient (≤350 nmol/L)

(outcome). Regression and discriminant‐based statistical models combined with

network analyses were utilized to assess relationships between metabolites and

the outcome. Finally, prioritized metabolites were validated using data from an

ancillary study of the Childhood Asthma Management (CAMP) cohort with

similar characteristics to PASS.

Results: Ninety metabolites were significantly associated with adrenal suppres-

sion, of which 57 also could discriminate adrenal status. While 26 metabolites

(primarily steroids) were present at lower levels in the adrenal insufficient

patients, 14 were significantly elevated in this group; the top metabolite,

mannitol/sorbitol, was previously associated with asthma exacerbations. Network

analyses identified unique clusters of metabolites related to steroids, fatty acid

oxidation, and nucleoside metabolism, respectively. Four metabolites including

urocanic acid, acetylcarnitine, uracil, and sorbitol were validated in CAMP cohort

for adrenal suppression.

Conclusions: Urinary metabolites differ among asthma patients on ICS, by

adrenal status. While steroid metabolites were reduced in patients with poor
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adrenal function, our findings also implicate previously unreported metabo-

lites involved in amino acid, lipid, and nucleoside metabolism.
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1 | INTRODUCTION

Although considered safe and effective for asthma
symptom control, the long‐term use of corticosteroids,
both inhaled and oral, is associated with some significant
risk of tertiary adrenal suppression (adrenal insuffi-
ciency), an important adverse event with the potential to
lead to acute adrenal crisis due to suppression of
endogenous cortisol production.1 While children with
asthma who are taking inhaled corticosteroids (ICS) have
lower risk of tertiary adrenal suppression than adults,
they may be more susceptible to its effects as a result of
their hypothalamic‐pituitary‐adrenal (HPA) axis devel-
opment.2 The risk can be minimized through appropriate
monitoring of adrenal function in high‐risk patients, and
it is recommended that children using high doses of ICS
undergo regular monitoring of HPA axis function.2,3

Multiple additional risk factors contribute to tertiary
adrenal suppression in children. These include the dose
and duration of ICS use, and higher doses and longer
duration of ICS exposure are associated with increased risk
of adrenal suppression in children with asthma.4–6 Certain
types of ICS (such as fluticasone propionate) may also be
associated with a higher risk of adrenal suppression than
others.7–9 In addition to ICS dose, type, and duration, the
concomitant use of other medications that affect the
metabolism of ICS is also a risk factor for adrenal
suppression in children.10–13 Finally, additional risk factors
involved in increased adrenal suppression in children
include younger age and lower body weight, genetic
variation, and alteration of biochemical pathways related
to steroid metabolism.14,15 Due to genetic and environ-
mental factors, 30% or more of asthma patients experience
poor steroid responsiveness and require higher ICS doses to
control asthma symptoms, putting these patients at
increased risk of developing adrenal suppression.16 Both
corticosteroid responsiveness and adrenal suppression
demonstrate repeatable interindividual variation that is
partly due to perturbation of genetic and molecular
pathways17–19; however, the genetic and molecular contri-
butions to both steroid response and adrenal suppression
are not well understood.

Asthma metabolomic studies have also identified an
increasing number of biochemical predictors of asthma
risk and treatment responses to commonly prescribed

medications, namely corticosteroids. Notably, metabolo-
mics studies have found that the use of ICS in asthma was
associated with alterations in amino acid, carbohydrate,
and lipid metabolism, in sputum and sera.18,20 A recently
published a large scale metabolomic study with 14,000
individuals from four cohort studies revealed that patients
with asthma who are treated with ICS are at risk of
adrenal suppression.19 Plasma levels of cortisol were
significantly decreased over 24‐h period in asthma patients
with ICS treatment, compared with asthma patients
without ICS.19 The study also identified 17 endogenous
steroid metabolites which were significantly decreased in
asthma patients. Of 17, DHEA‐S (dehydroepiandrosterone
sulfate) and cortisol are biomarkers for adrenal suppres-
sion.19 While metabolomics represents a promising
approach for investigating molecular drivers of adverse
effects related to ICS use, the roles of specific metabolites
related to these outcomes are not well understood. In this
study, we investigated the hypothesis that unique
metabolite signatures are associated with the development
of tertiary adrenal suppression among children with
asthma who are taking ICS. We evaluated this hypothesis
through prospective untargeted metabolomics profiling
combined with bioinformatics and statistical approaches
to compare global metabolite profiles in urine samples
from children with or without adrenal suppression.

2 | METHODS

2.1 | Description of samples and
outcome

The study was conducted on urine samples collected from a
subset of patients enrolled in the Pharmacogenetics of
Adrenal Suppression with Inhaled Steroids (PASS) cohort.17

Participants were recruited into the PASS study from 25
sites across the United Kingdom and other relevant details
of this cohort have been published.17,21 In this study, we
profiled samples from 200 non‐Hispanic white children of
European descent aged 5−18 years, including 114 males
and 86 females, who were taking ICS for asthma symptom
control (described in Figure 1). The primary outcome was
the presence of adrenal suppression diagnosed by low‐dose
short Synacthen test, which was defined using a cutoff for
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peak plasma cortisol of less than 350 nmol/L; the clinical
validity of this threshold in children with adrenal suppres-
sion was established.17 Samples were categorized into two
groups based on peak plasma cortisol values to facilitate
comparison of adrenal sufficient (>350 nmol/L) (N=188)
or insufficient (≤350 nmol/L) (N=12) status (Figure 1).
Urine samples were collected from all patients following
the low‐dose short Synacthen test and were immediately
stored at −80°C before shipping to Metabolon, Inc., for
metabolite profiling.

2.2 | Metabolomic analysis

Urinary metabolomic profiling was performed by Meta-
bolon, Inc. Global untargeted profiling was conducted
using Ultrahigh Performance Liquid Chromatography
Tandem Mass Spectroscopy (UPLC‐MS/MS) with Ther-
mo Scientific Q‐Exactive high resolution and accurate
mass spectrometer. Batch variation was controlled in the
analysis. The sample preparation and profiling methods
were described in detail previously.22 Values for each
urine sample were normalized by osmolality and each
metabolite was median normalized to correct for
analytical variation across runs. A total number of 984
named metabolites were identified by their mass to
charge ratio (m/z), retention time (rt), and chromato-
graphic data from all molecules present in the library

using software developed at Metabolon, Inc. Metabolite
pathways were annotated using the company in‐house
software named Metabolon Pathway Analysis.

For quality control (QC), 815 of the 984 metabolites
with measurements available in over 70% of patients
were kept. In addition, the analysis excluded all named
xenobiotics and partially characterized molecules. The
final data set included 571 metabolite measurements
from 200 patients (the list of metabolites is available by
request). The data were processed with half the mini-
mum imputation on the missing metabolite measure-
ments, then log transformed and pareto scaled. All
metabolites had a positive interquartile range (IQR) after
QC. Similar QC pipelines have previously been applied in
multiple peer‐reviewed publications.18,23,24

2.3 | Statistical analysis

All statistical analyses were conducted using R statisti-
cal software version 4.2.2.25 Logistic regression was
applied to quantify the relationship between peak
plasma cortisol levels and urinary metabolite measure-
ments (concentrations). The outcome variable in the
logistic regression model was adrenal status (as suffi-
cient ( ≥peak plasma cortisol 350 nmol/L) vs. insuffi-
cient (peak plasma cortisol<350 nmol/L)). Since the
distribution of the outcome variable in this data was

FIGURE 1 Metabolomics study design.
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heavily unbalanced by sample size between groups,
which could introduce bias into the analysis, Synthetic
Minority Over‐sampling Technique (SMOTE) was uti-
lized to resample the data.26 In short, SMOTE resamples
the unbalanced data by first randomly selecting an
instance in the minority class as well as one instance
among its k nearest neighbors. A new synthetic instance
is then generated as a convex combination between
the instance and the selected nearest neighbor. Syn-
thetic data is added until the number of instances in the
minority group is as desired. SMOTE is increasingly
utilized in recent metabolomics investigations.27–29

While seeing increasingly more applications in metabo-
lomics, SMOTE still raises concerns in terms of the
quality of data that it generates and consequently, its
accuracy in identifying significant metabolites. There-
fore, we conducted a simulation to evaluate the quality
of metabolites detected by SMOTE compared with
regular Logistics regression as well as Saddle point
Approximation models. This substudy is provided in the
Supporting Information S1 section.

In this study, SMOTE was set with both k and the
number of replications as three, so that the resampled
data consisted of 188 adrenal sufficient and 48 adrenal
insufficient patients. Following resampling of the data,
logistic regression was performed to assess associations
between predictor variables (individual metabolite mea-
surements) and the outcome (adrenal status) and
adjusting for gender and age. However, age was not
significant in univariate or multivariate analyses, and
was dropped in our final models. Logistic regression was
utilized to evaluate the association between metabolites
and outcomes (adrenal sufficient vs. insufficient). Math-
ematically, the model for each metabolite i is

P y

β β m β g

( = Adrenalinsufficient)

=
1

1 + exp(− − − )

c

i0 1 2

where yc is the adrenal suppression diagnosis (adrenal
sufficient vs insufficient); mi is the measurement for
metabolite i; and g represents gender (female = 0,
male = 1). To account for the randomness introduced
by resampling, each model was fitted 1000 times, and the
resulting p Values for each metabolite were then
aggregated using their medians. p Values resulting from
hypothesis testing were corrected using the false discov-
ery rate (FDR), with a significance cutoff of 0.05.

Finally, Orthogonal Projections to Latent Structures
Discriminant Analysis (OPLS‐DA) models were fitted on
the resampled data using the ropls package in R.30 The
models were also fitted 1000 times to account for
randomness introduced through resampling. Q2Y metrics

and 1000‐iteration permutation testing were used to avoid
overfitting and to assess the statistical significance of the
models. The priority of the metabolites was further
determined with variable importance in projection (VIP)
scores derived by median aggregation from the 1000 runs.

2.4 | Pathway enrichment analysis

Pathway analysis of metabolites was first performed using
MetaboAnalyst 5.0 (https://www.metaboanalyst.ca, ac-
cessed on 14 Feb 2023), specifying the hypergeometric
test for over‐representation analysis and relative between-
ness centrality for the pathway topology analysis.31 Of 571
metabolites, 289 metabolites with the Kyoto Encyclopedia
of Genes and Genomes (KEGG) identifiers that also
matched with molecules listed in the MetaboAnalyst
database were input as the reference metabolome. All
identified pathways were prioritized according to p Values
from pathway enrichment analysis, with FDR adjusted
p< .05 or unadjusted p< .05 representing cutoff values for
enrichment significance.

Due to the poor representation of KEGG identifiers
among our metabolite data, we also employed Chem-
RICH (https://chemrich.idsl.me/home, accessed on Jan-
uary 7, 2023), a statistical enrichment analysis based on
chemical similarity instead of biochemical knowledge
annotation.32 Out of 571 named metabolites, 470 were
included in this analysis. ChemRICH clusters metabo-
lites into nonoverlapping chemical groups using Tani-
moto substructure chemical similarity coefficients and
calculates cluster p‐values using the Kolmogorov−Smir-
nov test. The information required for this analysis
included compound name, PubChem ID, the Simplified
Molecular Input Line Entry System (SMILES) identity
achieved from PubChem Database (https://pubchem.
ncbi.nlm.nih.gov/idexchange/idexchange.cgi, accessed
on January 7, 2023), unadjusted p Values from logistic
regression, as well as fold changes (ratios of medians of
adrenal insufficient group and that of adrenal sufficient
group). The ChemRICH library requires input fold
changes to be positive, therefore we evaluated the data
without log transformation (as log‐transformed data may
yield negative fold changes).

2.5 | Network analysis

A correlation network was used to quantify and visualize
the relationships among metabolites. Log‐transformed
metabolite concentrations were used to calculate Pearson
correlations of 90 significant metabolites using a threshold
of 0.8 (p Value < 2.22 × 10−16). All computations for
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network visualization were generated in Python using the
network package.33 Following correlation analysis, net-
works were then visualized using the MetScape plugin in
Cytoscape 3.9.1.34,35

2.6 | Validation of metabolites

The Childhood Asthma Management Program (CAMP)
is a randomized, placebo‐controlled, clinical trial of
inhaled anti‐inflammatory treatments for mild to moder-
ate childhood asthma.36 The CAMP cohort and study
designed have been previously described.36 The valida-
tion group included 10 patients (aged 8−15 years) who
underwent evaluation of HPA axis function at 36 months
after receiving continuous treatment of budesonide
(400 µg/day). After the HPA test, sera and urine samples
were collected and cortisol measures were obtained over
24 h (baseline, 24‐h urine cortisol, and 30‐min and
60‐min serum cortisol measurements). Serum metabo-
lites were profiled by the Broad Institute of MIT and
Harvard (https://www.broadinstitute.org/).19,37 Metabo-
lites that overlapped in PASS and CAMP were investi-
gated to determine whether they met significant thresh-
olds in both cohorts. After QC procedures (as described
above), 482 metabolites were included in linear
regression analysis, performed as described in the previous
section. Linear regression models were fitted with the
outcome variable specified as either serum cortisol
measurement (baseline, 30 and 60‐min serum cortisol

measurements) or the 24‐h urinary cortisol measurement,
and predictor variables as each of the metabolite measure-
ments individually, adjusted for gender and age.

3 | RESULTS

3.1 | Study cohort and metabolomics
profiling results

Following metabolite profiling and QC procedures, 571
metabolites were identified in 200 urine samples from
PASS participants. The greatest proportion of metabolites
was categorized as amino acids (45.7%), followed by
lipids (23.8%), with the remainder as carbohydrates
(4.90%), cofactors and vitamins (6.83%), energy cycle
(2.63%), nucleotide (9.46%), peptide (6.65%) (Figure 2 and
Figure S1a).

Of the 571 metabolites, logistic regression models
identified 90 (15.8%) metabolites that were significantly
associated with adrenal status (FDR< 0.05) (Figure 2);
statistical and pathway information are provided in the
Table S1. Reflecting the overall composition of the
measured metabolites, these were primarily lipids
(45.6%), amino acids (31.1%) and nucleotides (10.0%)
Figure S1b). Twenty‐six of the 90 significantly associated
metabolites were annotated to steroid sub‐pathways,
including androgenic steroids (13), pregnenolone (4),
progestin steroids (2) and corticosteroids (7) (Table 1).
All 26 steroid metabolites were significantly reduced in

FIGURE 2 Manhattan plot of p Values from 571 metabolites in logistic regression models.
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the adrenal insufficient samples compared to adrenal
sufficient (Table 1 and Figure 2). Nine of the 26 steroid
metabolites were included among the top 10 most
significant metabolites, with the most significant metabo-
lite, 5α‐pregnane‐3β,20α‐diol disulfate, belonging to the
progestin steroids sub‐pathway (Table 1 and Figure 2).
Notably, of the top 10 metabolites significantly associated
with adrenal suppression, one non‐steroid metabolite, cis‐
urocanate, was ranked as 8th by p Value and was reduced
in the adrenal insufficient samples (odds ratio [OR] = 0.20
[95% confidence interval [CI] 0.12−0.35]; p= 1.42 × 10−6)
(Figure 2 and Table S1). Moreover, 14 metabolites were

significantly associated with increased levels in the
adrenal insufficient group (Figure 3). Six of these 14 were
amino acid metabolites, three were peptides, and two were
carbohydrates (Figure 3). The peptides, γ‐glutamyl leu-
cine, γ‐glutamyl tyrosine, and γ‐glutamyl epsilon lysine,
were annotated to the γ‐glutamyl amino acid pathway.
Among the amino acids, three were annotated to the
leucine, isoleucine, and valine metabolism pathways,
while the two carbohydrates included glucose and
mannitol/sorbitol (Figure 3). Based on FDR adjusted
p‐value, mannitol/sorbitol was the most significant of the
14 metabolites found at higher levels in the adrenal

TABLE 1 Steroid metabolites significantly associated with adrenal suppression in the PASS cohort.

Metabolite Metabolite sub‐pathway OR (95% CI) p Valuea Study

5 alpha‐pregnan‐3beta,20alpha‐diol disulfate Progestin steroids 0.25 (0.16, 0.37) 1.10E‐08 [19]

21‐hydroxypregnenolone disulfate Pregnenolone steroids 0.22 (0.14, 0.34) 1.18E‐08 [19]

Andro steroid monosulfate C19H28O6Sa,* Androgenic steroids 0.3 (0.21, 0.43) 1.21E‐08 [19]

Pregnen‐diol disulfate* Pregnenolone steroids 0.28 (0.19, 0.41) 3.22E‐08 [19]

Pregnenetriol disulfate* Pregnenolone steroids 0.29 (0.2, 0.43) 7.32E‐08 [19]

Androstenediol (3beta,17beta) disulfateb Androgenic steroids 0.32 (0.22, 0.46) 1.14E‐07 [19]

16 a‐hydroxy DHEA 3‐sulfate Androgenic steroids 0.39 (0.29, 0.53) 1.31E‐07 [19]

Androsterone glucuronide Androgenic steroids 0.41 (0.29, 0.57) 9.60E‐06 [19]

Dehydroandrosterone glucuronide Androgenic steroids 0.43 (0.31, 0.59) 1.18E‐05

Androstenediol (3beta,17beta) disulfatea Androgenic steroids 0.46 (0.34, 0.62) 2.26E‐05 [19]

Pregnanediol‐3‐glucuronide Progestin steroids 0.44 (0.32, 0.61) 2.69E‐05 [19]

17 alpha‐hydroxypregnanolone glucuronide Pregnenolone steroids 0.53 (0.41, 0.68) 3.43E‐05 [38]

Epiandrosterone glucuronide Androgenic steroids 0.47 (0.35, 0.64) 4.18E‐05

11 beta‐hydroxyandrosterone glucuronide Androgenic steroids 0.37 (0.25, 0.56) 7.38E‐05 [19]

Dehydroepiandrosterone sulfate (DHEA‐S) Androgenic steroids 0.53 (0.4, 0.69) 1.42E‐04 [19]

Epiandrosterone sulfate Androgenic Steroids 0.57 (0.43, 0.74) 1.01E‐03 [19]

3 alpha,21‐dihydroxy‐5beta‐pregnane‐11,20‐dione
21‐glucuronide

Corticosteroids 0.56 (0.42, 0.75) 1.98E‐03

11‐dehydrocorticosterone sulfate Corticosteroids 0.57 (0.43, 0.76) 2.10E‐03

11 beta‐hydroxyandrosterone sulfateb Androgenic steroids 0.6 (0.45, 0.8) 7.88E‐03

Cortisol 21‐sulfate Corticosteroids 0.62 (0.47, 0.82) 1.16E‐02

Etiocholanolone glucuronide Androgenic steroids 0.68 (0.53, 0.86) 1.57E‐02 [19]

Cortolone glucuronidea Corticosteroids 0.61 (0.44, 0.84) 2.32E‐02 [20]

Cortolone glucuronideb Corticosteroids 0.62 (0.46, 0.85) 2.40E‐02 [20]

Tetrahydrocortisol Corticosteroids 0.63 (0.46, 0.86) 2.89E‐02 [19]

11‐ketoetiocholanolone sulfate Androgenic steroids 0.65 (0.48, 0.87) 3.25E‐02

Cortisone Corticosteroids 0.65 (0.47, 0.89) 5.00E‐02 [18]

Abbreviation: CI, confidence interval; FDR, false discovery rate; OR, odds ratio; PASS, Pharmacogenetics of Adrenal Suppression with Inhaled Steroids.
aMetabolite names with an asterisk (*) indicate that the identity has not been confirmed based on analytical standard;
bFDR< 0.05.

6 of 16 | TRAN ET AL.



insufficient group (p= 4.97 × 10−5); the second was
3‐methylcrotonylglycine (p= 3.33 × 10−4) (Figure 3).

Overall, OPLS‐DA models were able to clearly
separate the two adrenal status groups. In total, 57
metabolites were potential predictors of adrenal suppres-
sion (variable importance scores [VIP] > 1.5) (Table S1).
Of these, 24 metabolites were annotated to major steroid
hormone biosynthesis sub pathways. The top‐ranked
metabolite was 21‐hydroxypregnenolone disulfate, a
steroid metabolite (VIP: 3.82). Six nonsteroid metabolites
present among the top 20 (VIP > 2.08) included cis‐
urocanate, mannitol/sorbitol, 3‐methylcrotonylglycine,
1‐methylguanine, (S)−3‐hydroxybutyrylcarnitine, and
N‐acetyl‐cadaverine (Figure S2). The remaining metabo-
lite, glycoursodeoxycholate, approached significance
with a p value of 0.06. Furthermore, 56 of the 57
metabolites were also significantly associated with
adrenal suppression in the logistic regression models,
and 33 significant metabolites from logistic models still
achieved VIP values over 1.1 (Table S1).

3.2 | Enrichment of biological and
biochemical pathways related to adrenal
suppression

Thirty four of 90 significant metabolites associated with
adrenal suppression by logistic regression models, and
with KEGG identifiers matching those in the Metaboa-
nalyst 5.0 database, were analyzed for pathway enrich-
ment. Twenty‐three perturbed metabolic pathways were
identified, among which the steroid hormone bio-
synthesis pathway was the most influential in adrenal

insufficient samples compared with adrenal sufficient,
with an FDR adjusted p value of 2.38 × 10−4 (Table S2).
Due to lacking KEGG IDs, only six hit metabolites could
be matched in the steroid hormone metabolism pathway
while there were 26 total steroid metabolites significantly
associated with adrenal insufficiency, based on logistic
regression models. The second most altered metabolic
pathway (unadjusted p= 9.06 × 10−3) was galactose
metabolism which included three hit metabolites:
glucose, mannitol/sorbitol, and myo‐inositol (Table S2).

Based on chemical similarity provided by Chem-
RICH, the output revealed 22 significantly enriched
metabolite clusters with FDR adjusted p value less than
0.05 (Table 2 and Figure S3). The list of metabolites in
each cluster was listed in Table S3. The top three most
significantly altered metabolite clusters included andro-
genic steroids, pyrimidine metabolism, and fatty acid
metabolism (Table 2). Of the 22 clusters, 10 contained
only metabolites that were decreased in adrenal insuffi-
cient group (annotated as blue clusters in Figure S3).
Four of these 10 clusters represented lipid metabolites,
and included androgenic steroids, corticosteroids, fatty
acids (branched‐chain amino acid metabolism), and
members of the dicarboxylate metabolism pathway.
Two clusters (histidine and creatine metabolism, respec-
tively) included only amino acids. The remaining clusters
were represented by purine metabolism (nucleotides)
and amino sugar metabolism (carbohydrates). Further-
more, γ‐glutamyl amino acid was the only cluster
containing all seven metabolites that were enriched in
the adrenal insufficient group, suggesting a dysfunction
in peptide metabolism (annotated as red cluster in
Figure S3).

FIGURE 3 Urinary metabolites with significantly elevated levels in adrenal insufficient patients. The dotted line indicates the cutoff for
OR. OR and 95% CIs are shown for each metabolite. Statistical significance was determined using an adjusted FDR< 0.05. CI, confidence
interval; FDR, false discovery rate; OR, odds ratio;
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3.3 | Network analysis of metabolic
interaction

The metabolite correlation network of 90 significant
metabolites was mainly composed of three clusters that

included a steroid metabolite cluster and two non‐steroid
metabolite clusters (Figure 4). The largest cluster was the
steroid biosynthesis pathway and included 20 metabolites
with significantly lower concentrations in adrenal insuffi-
cient samples (Table 1 and Figure 4A). The second cluster

TABLE 2 Metabolite sub‐pathways differing between adrenal sufficient and insufficient groups.

Cluster namea
Cluster
sizeb FDR p Value Key compound

No of increased
metabolitesc

No of decreased
metabolitesc

Androgenic steroids 7 9.90E‐19 Androstenediol
(3beta,17beta) disulfate (2)

0 7

Pyrimidine metabolism,
uracil containing

12 2.80E‐05 Uracil 1 7

Fatty acid metabolism (also
BCAA metabolism)

3 7.20E‐05 Propionylcarnitine (C3) 0 3

Histidine metabolism 23 1.00E‐04 Cis‐urocanate 0 11

Lysine metabolism 20 1.80E‐04 N‐acetyl‐cadaverine 2 5

G‐glutamyl amino acid 10 4.30E‐04 g‐glutamyltyrosine 7 0

Purine metabolism, guanine
containing

3 1.50E‐03 1‐methylguanine 0 2

Secondary bile acid metabolism 9 1.50E‐03 12‐dehydrocholate 1 3

Aminosugar metabolism 8 1.60E‐03 N‐acetylglucosaminitol 0 1

Leucine, isoleucine and
valine metabolism

35 3.70E‐03 3‐methylcrotonylglycine 4 6

Polyamine metabolism 10 7.30E‐03 5‐methylthioadenosine (MTA) 1 4

Fatty acid, dicarboxylate 17 8.50E‐03 4‐octenedioate 0 2

Pyrimidine metabolism,
cytidine containing

5 1.40E‐02 3‐methylcytidine 1 2

Corticosteroids 4 1.40E‐02 Cortisol 21‐sulfate 0 3

Tryptophan metabolism 27 2.20E‐02 Xanthurenate 2 7

Methionine, cysteine, SAM,
and taurine metabolism

20 2.70E‐02 Taurine 2 2

Purine metabolism, (hypo)
xanthine/inosine containing

9 2.70E‐02 1‐methylhypoxanthine 0 4

Tyrosine metabolism 26 2.70E‐02 3,4‐dihydroxyphenylacetate 2 6

TCA cycle 13 2.70E‐02 2‐methylcitrate 1 1

Dipeptide 8 2.70E‐02 phenylalanylglycine 0 2

Acetylated peptides 10 2.70E‐02 phenylacetylglutamine 1 0

Creatine metabolism 4 4.20E‐02 guanidinoacetate 0 1

Abbreviation: BCAA, branched‐chain amino acid.
aCluster name are sub pathways which are annotated by Metabolon Inc.;
bCluster size is number of metabolites in each cluster;
cIncreased refers to elevated concentrations of metabolites in the adrenal insufficient group, while decreased indicates reduced concentrations in the adrenal
insufficient group. Increased or decreased levels are determined based on fold change, calculated as the ratio of the medians of imputed metabolite
measurements in adrenal insufficient vs adrenal sufficient patients; a ratio value < 1 indicates lower levels of metabolites in adrenal insufficient compared to
adrenal sufficient groups.
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comprised eight compounds related to carnitine metabolism:
indoleacetoylcarnitine*, isovalerylcarnitine (C5), N,N,N‐
trimethyl‐5‐aminovalerate, undecenoylcarnitine (C11:1), car-
nitine, acetylcarnitine (C2), (S)‐3‐hydroxybutyrylcarnitine
and 3‐hydroxyhexanoylcarnitine (1) (Table 3 and Figure 4B).
Of these eight, five metabolites were significantly decreased
in the adrenal insufficient group, based on ChemRICH
(Table 3). The remaining three did not have SMILES
identifiers and were not included in the ChemRICH
analysis. Based on ORs from logistic regression, these three
metabolites showed lower levels in adrenal insufficient
samples compared with adrenal sufficient samples
(Table 3). The third cluster included 12 compounds: lipids
(4‐methylhexanoylglutamine, nonenedioate (C9:1‐DC) *,
4‐octenedioate, pimeloylcarnitine/3‐methyladipoylcarnitine
(C7‐DC), heptenedioate (C7:1‐DC) *); amino acids
(3‐methoxytyramine, m‐tyramine); and nucleotides
(3‐methylcytidine, N3‐methyluridine, N4‐acetylcytidine, 5,6‐
dihydrouridine, pseudouridine) (Table 3 and Figure 4C).
Five nucleotide compounds belonged to pyrimidine metabo-
lism, two amino acids compounds belonged to tyrosine
metabolism, and five lipids belonged to fatty acid metabolism
pathways (Table 3). Eight of 12 compounds showed
decreased amount in adrenal insufficient groups based on
ChemRICH analysis (Table 3). Four compounds did not
have SMILES identifiers, but based on ORs, all four had ORs
less than 1.00, demonstrating lower levels in the adrenal
insufficient groups (Table S1).

To identify which nodes within the network could be
of particular relevance to the structure of the network,
we estimated the connectivity and neighborhood density
properties of all network nodes. Our findings showed

that network hubs, i.e., the nodes with a high level
of connectivity based upon the number of edges,
included androstenediol (3beta, 17beta) disulfate (2) with
10 edges, androstenediol (3beta, 17beta) disulfate (1), and
21‐hydroxypregnenolone disulfate, with eight edges each
(Figure S4a). All of their connected neighbors are steroid
metabolites, implying central roles in cortisol homeosta-
sis. Other nodes with high connectivity include N4‐
acetylcytidine and 5,6‐dihydrouridine, with six edges
each (Figure S4b). These were connected to each other by
strongly correlated edges (Pearson correlation ρ = 0.87)
in the third cluster. In the second cluster, defined by
carnitine metabolism, carnitine and acetylcarnitine (C2)
represented hubs with four connected edges (Figure S4c).
Overall, the findings of network analysis revealed not
only steroid biosynthesis, but other pathways also
including fatty acid, pyrimidine, and carnitine metabo-
lism, were altered due to adrenal suppression.

3.4 | Validation in CAMP cohort

In total, 482 serum metabolites were analyzed for
association with serum cortisol levels by linear regres-
sion; no metabolite was significantly associated with 24‐h
urinary cortisol measurement using FDR adjusted
p‐value threshold of 0.05. By unadjusted p< .05, 46
metabolites were potentially associated with urinary
cortisol level (range of unadjusted p‐values: 6.12 × 10−04

to 4.99 × 10−2) (Table S4). Of these 46, four metabolites
were also significantly associated with peak plasma
cortisol measurement in the PASS cohort, matching with

FIGURE 4 Network visualization of Pearson correlations using log transformed metabolite concentrations with absolute values higher
than 0.8. (A) Cluster 1 includes 20 steroid metabolites. (B) Cluster 2 is comprised of eight metabolites from fatty acid metabolism, and
carnitine, trytophan and leucine metabolism pathways. (C) Cluster 3 includes 12 metabolites from fatty acid metabolism and nucleotide
metabolism. Nodes (circles) represent individual metabolites. Thickness of the edges (lines connecting nodes) represents the strength of
correlation while the number label of the edges are values for Pearson correlations. Node width represents strength of correlation. Pink
nodes represent metabolites with KEGG IDs. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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HMDB and KEGG IDs. These four were urocanic acid
(trans‐urocanate), C2 carnitine (acetylcarnitine (C2)),
uracil, and sorbitol (mannitol/sorbitol). For super and
sub pathway annotation, 30 of 46 metabolites could be
annotated to the lipid class with 21 metabolites that
mainly belonged to fatty acid synthesis and metabolism.
We also evaluated the association between serum
metabolites with serum cortisol levels at different time
points (baseline/30‐min/60‐min). However, no overlap of
significant metabolites between PASS and CAMP were
observed at the baseline cortisol level. Two overlapping
and significant metabolites, kynurenine and pseudour-
idine, were identified at the 30‐min and 60‐ minute
timepoints, respectively (Table S5).

4 | DISCUSSION

Asthma patients exposed to high doses and long
durations of ICS use are at increased risk of adrenal
insufficiency due to the suppression of endogenous
cortisol production. Adrenal suppression in asthmatics
can occur even at standard corticosteroid doses, suggest-
ing that the origination is multi‐factorial. However,
clinical factors do not entirely account for this phenome-
non. While moderate‐ and high‐dose ICS use is
associated with adrenal suppression, frequent courses
of oral corticosteroids, most commonly prescribed for
asthma exacerbations, can also lead to HPA axis
dysfunction.39 Contributing clinical factors include corti-
costeroid exposure (type, dose, formulation, pharmaco-
kinetics, duration of treatment, route of administration),
and disease status (asthma severity, presence of exacer-
bations, comorbidities).40 While biochemical factors
promoting HPA axis insufficiency are likely to play a
role, genetic factors, notably genetic variation, could also
contribute.17,41 A study of 62 asthmatic children on ICS
determined an association of four HPA axis‐related
single‐nucleotide polymorphism (SNP) with changes in
serum cortisol levels before and after adrenocorticotropic
hormone (ACTH) stimulation test.41 In a recent genome‐
wide association study, Hawcutt et al. reported a
significant association of a SNP in PDGFD with adrenal
suppression occurring in children with asthma who were
taking ICS.17 However, while genetic factors likely confer
susceptibility to the development of adrenal suppression
in asthmatics taking ICS, few studies have been
conducted to investigate this.19,20 To identify molecular
drivers that regulate endogenous cortisol levels, we
profiled 200 urine samples from a pediatric asthma
patient cohort taking ICS. Of 571 fully annotated and
non‐xenobiotic metabolites, 90 metabolites were signifi-
cantly associated with adrenal status. Forty‐four of these

90 were also previously identified as significantly altered
across multiple metabolomic studies of asthma
patients.18,19,38,42–44 Based upon the most recent findings
from our research group, 21 metabolites identified in this
study were also associated with ICS response in asthma
across different cohorts.18,19 Another recent study found
five metabolites including isovalerylcarnitine (C5); cor-
tolone glucuronide (1), cortolone glucuronide (2),
xanthurenate, and taurochenodeoxycholic acid 3‐sulfate
that were reduced by ICS in a dose dependent manner as
compared with placebo.20 Significant enrichment of
multiple pathways for metabolism of steroids, pyrimi-
dines, fatty acids, carnitine, and sugar was observed in
this study, highlighting that ICS can impact multiple
pathways related to adrenal function in patients with
asthma. These findings demonstrate the value for
metabolomics profiling of asthma patients on ICS with
a spectrum of adrenal function, providing unique
metabolite signatures and insights into biological path-
ways contributing to the development of tertiary adrenal
suppression among asthmatic children on ICS treatment.

Alterations in lipid profiles observed in our samples
mainly involved changes in steroid and fatty acid
metabolism. Lipids and steroids have demonstrated
potent inflammatory effects in respiratory diseases.
Network analysis revealed a primary cluster comprised
of steroid metabolites while both the second and third
clusters in the network analysis included fatty acid
metabolites. Steroid metabolism can be affected by
duration of ICS use and the changes in levels of steroid
hormones were observed across multiple studies. This
study identified 26 endogenous steroids and their
derivatives that were significantly decreased among
patients with low peak cortisol levels following ACTH
stimulation test. Notably, these included DHEA‐S, a
biomarker for adrenal suppression.45 A recent metabo-
lomic study found 17 steroid metabolites from major
steroid hormone biosynthesis sub pathways that were
markedly decreased in asthma patients on ICS.19 While
the originating biochemical events preceding both
asthma and adrenal insufficiency are not known, these
findings confirm ICS treatment in children could reduce
production of steroid hormones in the body, leading to
increased risk of adrenal suppression.

Metabolite network analysis identified a unique
cluster defined by carnitine, and four fatty acyl
carnitines involved in β‐oxidation (the most important
pathway for fatty acid metabolism). All were signifi-
cantly decreased in the adrenal insufficient patients.
Carnitine has an important role in the transport of fatty
acids into the mitochondrial matrix for β‐oxidation.46

Carnitine reduction has been reported during and after
pediatric asthma exacerbations 47 and is associated with
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asthma severity.48 Furthermore, the four acylcarnitines
(short chain (C2), 3‐hydroxyhexanoylcarnitine, (S)‐3‐
hydroxybutyrylcarnitine, undecenoylcarnitine) were
strongly correlated in the second cluster. Decreased
levels of these acylcarnitines suggest an impaired fatty
acid oxidation capacity in asthma patients with tertiary
adrenal insufficiency. Multiple studies suggested that
impaired β‐oxidation may play a role in the develop-
ment or severity of asthma.49–51 Additionally, when
β‐oxidation is defective, the alternative pathway,
ω‐oxidation can occur, producing dicarboxylic acids
from medium chain fatty acids.52 In our study, three
dicarboxylate fatty acids including heptenedioate,
4‐octenedioate, and nonenedioate were significantly
decreased in adrenal sufficient patients. These changes
suggest that the ω‐oxidation pathway may be inhibited
or impaired, indicating a disruption in the metabolism
of long chain fatty acids. A prior metabolomics study
performed by our group also demonstrated potential
association between ω‐oxidation to exacerbation in
asthma cases with ICS treatment.18

Histidine is an essential amino acid that plays an
important role in various physiological process, including
the synthesis of proteins, regulation of immune function,
and neurotransmitter synthesis.53 The metabolism of
histidine involves several enzymes and pathways that
convert histidine into multiple metabolites including
urocanic acid (UCA), which is reported to have a direct
relationship with asthma; low levels of UCA were
present in children with allergic asthma.42 Our study
revealed an association of UCA including two isomers,
cis and trans, with adrenal insufficiency. Both were
significantly associated with adrenal suppression. Nota-
bly, UCA was also significantly linked with 24‐h urinary
cortisol after HPA test in pediatric asthma patients in
CAMP cohort. In our study, the concentration of both cis
and trans‐UCA were significantly reduced in patients
with adrenal insufficiency compared with adrenal
sufficiency. Moreover, cis‐UCA was the key component
in histidine metabolism which was significantly down-
regulated in adrenal insufficient samples based on
pathway analysis, suggesting UCA can serve as an
indicator of reduced histidine metabolism. Although
cis‐urocanic acid has not been extensively studied in
relation to asthma, some studies have suggested that cis‐
urocanic acid may play a role in regulating immune
function and inflammation in the skin.54,55 Further
studies are warranted to clarify the roles of UCA and
its metabolites in asthma and ICS response.

Glucose metabolism involves several different bio-
chemical pathways including glycolysis, gluconeogenesis,
and the pentose phosphate pathway.56 In our study,
mannitol/sorbitol was significantly increased in adrenal

insufficient patients relative to those that were adrenal
sufficient. This finding was also confirmed through
validation in the CAMP cohort. Sorbitol was significantly
negatively associated with 24‐h urinary cortisol level
(estimated effect = −55.2 in linear model). Another study
showed that mannitol/sorbitol was associated with
increased frequency of asthma exacerbations while on
ICS in adult patients fromMass General Brigham Biobank
cohort.18 Sorbitol is converted to fructose, and under
normal glucose homeostasis, conversion of less than 3% of
glucose to sorbitol (polyol pathway) is the minor route of
glucose metabolism, which is concurrent with glycolysis.57

Therefore, excess glucose could lead to a large formation
of sorbitol, causing osmotic damage.57 Additionally,
sorbitol dehydrogenase converts sorbitol to fructose,
preventing sorbitol accumulation.57 However, in our
study, only mannitol/sorbitol and glucose were signifi-
cantly elevated in adrenal insufficient patients. Fructose
levels were not significantly different between adrenal
sufficient vs insufficient patients. This finding suggests
that long‐term ICS use leading to adrenal insufficiency
could induce altered glucose metabolism including
hyperglycemia, and osmotic damage caused by increased
levels of sorbitol. Further research is needed to determine
the exact mechanism involved.

Another altered pathway with significantly elevated
metabolites in adrenal insufficient patients was the
γ‐glutamyl (GG) amino acid pathway. Based on Chem-
RICH analysis, “GG‐amino acid” was the only cluster
containing all seven metabolites that were enriched in
the adrenal insufficient patients. Of the seven, three GG‐
amino acids (including GG‐tyrosine, GG‐epsilon‐lysine,
and GG‐leucine) were significantly increased in the
adrenal insufficient group based on logistic regression
models. These metabolites play critical roles in main-
taining glutathione homeostasis.58 In brief, the GG group
is a small chemical moiety that is present in excess
glutathione molecules that are produced by cells.58 When
cells produce excess glutathione, the GG group can be
transferred to amino acids or dipeptides by the enzyme
GG, resulting in the formation of GG‐amino acid.58

Excess glutathione from cells is transferred to various
amino acids or dipeptide acceptors to produce GG‐amino
acids, mediated by the enzyme GG‐ transpeptidase
(GGT).58 The levels of several GG‐amino acids showed
significant increases in the adrenal insufficient patients
in this study, suggesting elevated GGT enzyme activity
indicating increased oxidative stress and inflammation.59

Furthermore, high GGT levels are connected to high
levels of leukotriene and other inflammatory mediators,
which can exacerbate asthma symptoms.60 In another
epidemiological study, in healthy patients, a high serum
GGT level (measured during general health checkup)
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was associated with the risk of future development of
asthma, potentially through mechanisms related to
increased oxidative stress.61

Recent studies showed that RNA modification is
involved in multiple cellular processes, leading to altera-
tions in immune responses.62 In this study, nine RNA
modification molecules were significantly reduced in the
adrenal insufficient patients. These include methylated
nucleosides (N3‐methyluridine, 3‐methylcytidine), the
RNA base uracil and its methylated derivative thymine,
the RNA nucleoside pseudouridine, and the tRNA
molecules 5,6‐dihydrouridine and 1‐methylguanine as
well as a metabolite related to the highly conserved
RNA modification process, N4‐acetycytidine. This finding
suggests that the synthesis and degradation of various
RNAs were decreased in adrenal insufficient patients.
Seven of nine significant nucleotide molecules belonged to
pyrimidine metabolism. Of these seven, uracil was
significantly associated with cortisol levels in both CAMP
and PASS cohorts. Uracil is involved in inflammation63

and levels were significantly decreased in severe
asthma.48,64 Pyrimidine metabolism was linked to asthma
pathophysiology including methacholine responsiveness
(pre‐ and postbronchodilator) in children.23 Another study
in mice showed that several metabolites of pyrimidine
metabolism including uracil were significantly decreased
in asthma models and were significantly elevated after
asthma treatment.65 However, there are few studies to
date on the effects of altered RNA modification processes
in asthma66,67; further studies are needed to explore their
potential relationship.

Our study reveals important changes in the urinary
metabolome across multiple chemical classes in pediatric
asthma patients taking ICS, providing evidence of altera-
tions in multiple biochemical pathways in patients
experiencing tertiary adrenal suppression. While our study
has multiple strengths, we must mention several limita-
tions. A major limitation of our study includes a low
sample size for the adrenal insufficient group. The rate of
adrenal suppression caused by long‐term corticosteroid
use was higher in the PASS genetic study, which has a
larger number of profiled samples relative to this subset of
urine samples from the cohort. Not every individual
provided urine samples, and adrenal status was blinded to
investigators until analysis. Therefore, to account for
potential bias between two groups, we performed SMOTE
as a method to correct for imbalance. Additionally, while
several sex steroid metabolites were significantly associ-
ated with adrenal status in our analysis, we could not
interrogate the effect of gender related to the outcome due
to the smaller sample size of the comparison group.
Following methodological challenges, we identified addi-
tional limitations of the study, including lack of

information on ICS dose included as a variable in our
models; however, based on prior reports, the majority of
children in this sample from PASS are taking high doses of
ICS, which could be reflective of both asthma severity and
susceptibility to adrenal suppression. Our study was also
limited to inclusion of only white non‐Hispanic indivi-
duals and did not include individuals of other ethnic
backgrounds, which is less informative for generalizing
our findings. Furthermore, our results cannot be fully
represented to all asthmatic patients, as we recruited only
pediatric patients. Another limitation of this study is the
small sample size of the CAMP validation cohort;
metabolic profiling of the validation cohort did not share
many metabolites with our discovery sing NetworkX.
Proceedings of the 7th Python incohort, therefore we only
validated four significant metabolites, although we were
able to establish in silico relationships with a number of
previously identified metabolites. As such, predictive
modeling is currently not a robust approach with our
current data set, due to the smaller sample size. With
larger scale studies, we will have the capability to generate
more robust predictive models to identify biomarkers of
adrenal status in patients with asthma. From a clinical
perspective, an important question that remains largely
unanswered is whether (and how many) observed
metabolite changes are related to underlying asthma
versus solely tertiary adrenal suppression. There is likely a
substantial molecular overlap between these phenotypes,
but the extent of this, and its originating biological event
(s), is not known. While our study design compared two
groups based on adrenal status within the same cohort,
there is likely to be confounding in regard to asthma
severity and the presence of concomitant conditions.
Given the limited power, we do not have sufficient
numbers within these groups to enable stratified analyses
that would help clarify this. However, we note that
multiple metabolites associated with adrenal status were
also previously associated with asthma and ICS use,
suggesting that at least some of the observed changes are
related to asthma progression and ICS exposure.

In conclusion, our findings demonstrate that there
are significant differences in urinary metabolite profiles
between adrenal sufficient versus insufficient pediatric
asthma patients who are taking ICS. The study high-
lighted potential metabolomic indicators of adrenal
suppression occurring while on ICS. Notably, several
anti‐inflammatory metabolites were decreased in adrenal
insufficient patients, underlying the HPA‐axis impact of
ICS use via immune and inflammatory responses. These
metabolites may serve as biomarkers of both ICS
response and risk of adrenal suppression in asthma
patients. Ongoing studies to integrate these findings
with other omics data will ultimately deepen our
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understanding of the impact of ICS exposure on
adrenocortical function in asthma patients.
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