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BEACH VOLUMETRIC ANALYSIS AND WAVE FORCING 

ALONG AN IRISH BEACH SYSTEM 

 

Abstract 

 

Five Finger Strand, a bedrock-framed beach located between Five Finger rock and the 

mouth of Trawbreaga Bay, Republic of Ireland, appears to experience high temporal and 

spatial variability in erosion and accretion because the coast is forced by multiple 

mechanisms that operate over different time scales (Cooper et al., 2007). To identify all 

states the beach can present, their frequency of occurrence and dynamics, it the study of 

beach profiles was implemented in which beach volumetric analysis was used to 

determine and predict beach evolution. Additionally incident waves were analysed and 

statistical analysis applied on these. 

Owing to data complexity, a Geographic Information System (GIS) tool – BeachPROG 

– was developed to facilitate data analysis. As input it uses Differential Global Positioning 

System (DGPS) data and outputs Digital Elevation Models (DEMs), beach volumes, 

profiles and respective areas and slopes, through Python script. In general, this tool 

revealed good results, as the data automation, visualisation, spatial consultation, and 

spatial analysis can be accessed in a much more intuitive way than through existing 

methods. Equally, this tool can serve as a methodological base for other investigations, 

presenting a fully commented, easy script structure that enables further modifications 

and/or script accretions. 

Data from the BeachPROG tool, were compared against hydrodynamic data at the site. 

The existence of variations in beach behaviour caused by wave forcing was clearly 

evident. However, in some cases it was equally possible to verify that even being exposed 

to conditions capable of causing significant changes, the beach remained stable. 

A deep knowledge on how waves and inlet dynamics interact with the beach, changing 

its behaviour, was however, not the main aim of this thesis, since the main goal was to 

develop and test the GIS based tool. Previous studies analysing similar forcing agents 
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showed different beach behaviours, for the study area, indicating that further and more 

detailed studies must be performed. 

 

 

 

Key-words: Beach profile, beach volume, GIS tool. 
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ANÁLISE VOLUMÉTRICA DE PRAIA E ATUAÇÃO DAS 

ONDAS AO LONGO DE UM SISTEMA DE PRAIAS DA COSTA 

IRLANDESA 

 

Resumo 

 

A praia Five Finger Strand, de estrutura rochosa e compreendida entre a rocha Five Finger 

e a barra de maré do Trawbreaga (M. C. O’ Connor, Cooper, & McKenna, 2009), 

República da Irlanda, evidencia ser condicionada por diversos mecanismos, causando 

variabilidade sedimentar temporal e espacial (Cooper et al., 2007). Para a correta 

identificação dos comportamentos que a praia pode apresentar, respetiva frequência e 

dinâmica com que ocorrem, foi implementado o estudo de perfis de praia, tendo-se 

recorrido às análises volumétricas para determinar a sua evolução. Adicionalmente, 

estudou-se a atuação das ondas incidentes e implementou-se uma análise estatística. 

Devido à complexidade dos dados, foi desenvolvida a ferramenta SIG – BeachPROG – 

para facilitar o tratamento de dados. Esta ferramenta usa dados DGPS para originar 

MDEs, perfis de praia, volumes e respetivas áreas, através de códigos em Python. No 

geral, esta ferramenta revelou estar apta a desenvolver as tarefas definidas, sendo que a 

automatização dos dados, visualização, consulta e análise espacial podem ser executadas 

de forma bastante intuitiva. A ferramenta está igualmente apta a servir como base 

metodológica para outras investigações, apresentando um código totalmente comentado 

e de fácil estrutura, permitindo assim futuras modificações. 

Após obtenção dos dados com a ferramenta BeachPROG, foram realizadas comparações 

com dados da agitação marítima. A existência de variações comportamentais da praia 

causadas por alterações na atuação das ondas foi bastante evidente. No entanto, em alguns 

casos foi igualmente possível verificar que, mesmo existindo todas as condições capazes 

de provocar alterações significativas na praia, esta manteve-se estável. 
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Não foi possível, nesta dissertação, saber em detalhe como estes dois mecanismos atuam 

na praia e qual o agente predominante para cada condição, visto que o objetivo principal 

foi o desenvolvimento e teste da ferramenta. Estudos anteriores revelaram que, para 

condições hidrodinâmicas semelhantes, diferentes comportamentos da praia foram 

obtidos, reforçando a necessidade da realização de estudos mais detalhados. 

 

 

 

Palavras-chave: Perfil de praia, volume de praia, ferramenta SIG.  
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CHAPTER 1 

 

1 INTRODUCTION 

1.1 DISSERTATION SUBJECT 

The Dissertation “Beach Volumetric Analysis and Wave Forcing along an Irish Beach 

System” is part of the Geomatic Master, specialisation in Geographic Information 

Science. 

A user-friendly GIS tool was developed that enables the quantification of volumetric 

changes. The tool was applied to the beach of Five Finger Strand (Republic of Ireland), 

analysing large-scale coastal measurements, and also the correlation link between results 

from developed GIS tool and sea waves dynamics. 

This investigation was held between the University of Algarve (Portugal) and University 

of Ulster (Northern Ireland). 

1.2 RATIONALE OF THE STUDY TOPIC 

Human population growth and its associated developments are placing enormous pressure 

on coastal resources and are requiring effective environmental planning, conservation and 

protection as a result. The knowledge of economic and environmental impacts requires 

an understanding of the way that terrestrial and marine processes operate and interact in 

the coastal zone (Morton, 1979). 

Coastal environments often appear to experience high temporal variability in erosion and 

accretion because the drivers of coastal change are forced by multiple mechanisms that 

operate over a large range of time scales including: wave swash and backwash (seconds–

minutes), tides (hours–months), climate and changes in storm amplitude and frequency 
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(years–decades) and relative sea-level rise (centuries–millennia) (Larson et al., 1999). A 

number of researchers state that beach mobility is also a function of the geological 

framework (Klein and Menezes, 2001; Jackson and Cooper, 2009 and Jackson et al., 

2005), such as the distance between headlands, bay shape, grain size and nearshore slope. 

Moreover, additional influence on environments adjacent to tidal inlets arise from 

changes in channel dimensions and position, reconfiguration of tidal deltas, changing 

tidal prism, as well as interaction with other channels (O’Connor, et al., 2011). 

To acquire a deep knowledge of beach morphology it is essential to identify all different 

states a beach presents and their frequency of occurrence. Equally important is the 

understanding of beach dynamics, which require the identification of physical 

mechanisms involved in the beach shape modification (Sénéchal et al., 2009). 

The behavioural knowledge of coastal environments is limited by the time scale of 

measurements. On the time scale of hours to months measurements are taken generally 

to relate hydrodynamic processes to sand movement and beach morphology changes (eg., 

Anfuso, 2005; Masselink et al., 2007). Over longer intervals ranging from months to 

years, our understanding of beach erosion dynamics during a certain time period is very 

difficult to quantify because high-frequency surveys are not typically sustainable and 

measurement accuracy degrades severely as sampling frequency decreases. For example, 

seasonal or yearly beach profile measurements will not capture details of storm-induced 

erosion and subsequent beach accretion that occurred in the middle of the sampling year. 

In contrast, at intermediate time scales beach erosion and accretion are commonly derived 

from time series of shore-normal elevation profiles and changes in the position of the 

shoreline (Farris & List, 2007). However, even comparing pre- and post-storm beach 

surveys, spaced only a few days apart, there is an under-predict of results because beach 

recovery typically begins immediately after a storm event (List et al. 2006; Zhangand 

Whitman, 2007). 

As the beach is exposed to a variety of external processes, constantly changing its shape, 

the study of beach profiles over the long term seems to be the best way to predict coastal 

behaviour according to changes on wave and tidal conditions. A beach profile represents 

the cross-shore morphology of the beach along the coast and it may extend out through 

the offshore region to beyond the dunes (Kaiser & Frihy, 2009). The response of beach 
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profiles to changing hydrodynamic conditions is related to the equilibrium beach profile 

concept, wherein is dependent on numerous factors such as grain size (Dean, 1991), 

changes on sea level or on sediment supply (Storms et al., 2002), incidence of storms, 

beach state (Carter and Balsillie, 1983) among others. 

Different approaches are cited in the literature to predict variations in beach profiles such 

as process based mathematical and numerical models, deterministic process based 

models, probabilistic models, wave let models, inverse models and data-based models 

(Hashemi et al., 2010). Beach volumetric analysis is one of the most commonly used 

approaches to determine variations in beach profiles and afterward to predict beach 

evolution. Forecasts can even be made by fitting deterministic trends through the data and 

extrapolating them into the future (Southgate, 2008). For that purpose, sufficiently long 

and accurate time series of beach volumes measurement, characterised by specific spatial 

coverage, spatial resolution, temporal resolution, and overall length in time (Kroon et al., 

2008), must be collected using traditional survey techniques, video imagery, remote 

sensing DGPS or terrestrial laser (scan). 

Studies applying beach profiles analysis are relatively common in literature with distinct 

approaches according to field sites and measurement techniques.  Li et al. (2005); Kabdas 

& Tu (2006); Kaiser & Frihy, (2009); Hashemi et al., (2010) and Muñoz-Perez & Medina, 

(2010) are some examples of this variety. 

Beach profiling has also been extensively used in Northern Ireland, in studies focused on 

the identification of external forcing factors and quantification of their contribution to 

coastal behaviour, such as Cooper et al. (2004, 2007);  Jackson et al. (2005); O'Connor, 

et al (2007, 2011). 

The procedure for understanding and predicting beach volume changes consists primarily 

of analysing hydrodynamic forcing (waves, currents, water levels) and then applying a 

correlation or a statistical analysis derived from an explicit comparison of the beach 

volume and hydrodynamic data series (Southgate, 2008). Because of the complexity of 

the system, the data obtained from any of these sources needs to be manipulated in order 

to analyse spatial characteristics and to represent them graphically. The advent of GIS 

technology has facilitated such analysis (Andrews et al., 2002). GIS has provided new 
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spatial analysis and data integration techniques for accurate mapping and analysis of 

many dynamic coastal environments. GIS for coastal research purposes also enables a 

simplified data access, easy data editing and updating, and on-the-fly visualisation of 

coastal hazards (Bossak et al., 2005). 

Despite the advances made with GIS software, the extensive period between the 

introduction of raw data in the system and the final result makes the work difficult and 

slow. This led to the construction of GIS tools, as versatile and flexible as possible, that 

on the one hand enable the data automation, visualization, spatial consultation, spatial 

analysis, and geostatistical analysis in a much more intuitive way (Rodríguez, et al., 

2009), and on the other hand allow the access of final results with reduced time 

consumption. 

1.3 METHODOLOGY IMPLEMENTED 

The main goal of this dissertation is the construction of a GIS tool to analyse beach 

surveys/profiles. This need arises from the data accumulation of field studies of the 

scientific group at the University of Ulster. The field work on the Five Finger Strand (and 

other beaches) was conducted over several years in order to relate the morphodynamics 

of the beach with the action of external factors. 

The methodology discussed in this Dissertation is separated into two distinct parts: 

1. The creation of a GIS tool. This tool allows the input of DGPS data and the output 

of DEM, beach volumes, profiles and respective areas, volumes and slopes. This 

tool was created specifically for beach profile surveys, in order to enable a more 

rapid and convenient extraction of results. The output data can then be stored and 

used for coastal dynamic analysis; 

2. Study of the relation between forcing factors and data obtained from the GIS tool. 

In order to study the coastal dynamics of Five Finger Strand, sea waves data were 

used to relate medium and maximum wave height between periods with the 

volume changes obtained by the GIS Tool to understand if the observed variations 

can be correlated directly with wave height variations. Other parameters such as 
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the sea wave direction and lateral sediment transport were also used to determine 

the influence of storms on coastal morphodynamics. 

1.4 DISSERTATION STRUCTURE 

The present work is divided into chapters, each one with a specific approach to the study 

phase (Figure 1.1). 

In the second chapter a description is given of the state-of-the-art on the topic, which 

addresses the issues related to the morphodynamics of beaches and the action of forcing 

agents, such as marine action and the occurrence of storms, as well as the potential use of 

GIS tools for the analysis of coastal processes. Also considered in this chapter are 

advances of studies related to beach morphodynamics and studies conducted in the same 

study area. 

A more detailed approach of the study area is presented in the third chapter, including a 

description of the morphodynamic and hydrodynamic aspects of the region. 

The fourth chapter describes the methodology used to achieve the objectives set for this 

study. It is possible to find in this chapter a description of the fieldwork that has been 

used for collecting geographic information from the beach in study, the pre-processing of 

data, the development of the GIS tool, a guide use of the tool and the quantitative analysis 

resulting from the comparison between morphological and environmental factors. 

The fifth chapter describes results obtained within this Dissertation and consecutively, 

the sixth chapter discusses the application of the developed tool for the study area, the 

comparison of the results arising from the tool with the forcing factors and an examination 

of the applicability of the developed tool. 

Finally, in the last chapter, the concluding remarks obtained with this research are 

presented. 
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Figure 1.1: Dissertation structure. 
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CHAPTER 2 

 

2 STATE OF THE ART 

2.1 BEACH MORPHODYNAMICS 

Beaches are naturally highly dynamic and their behaviour is often complex and difficult 

to study. The intertidal zone, loosely defined as the transition area between the dry beach 

and the nearshore, is a friction-dominated area where sediment redistribution depends on 

geological controls (bedrock geology, accommodation space, sediment volume, etc.), 

sedimentary factors (grain shape, packing, composition, porosity, lithification, drainage, 

biological activity, etc.), as well as dynamic factors (secondary wave motions, tidal 

currents, edge waves, upwelling/downwelling, gravity, etc.) (Cooper & Pilkey, 2004). 

Additionally at beaches adjacent to tidal inlets, other influences such as interaction with 

nearby channels, their changes on position and dimensions, reconfiguration of tidal deltas, 

and changes on tidal prisms (Morton et al., 2007 and Cooper et al., 2007) determine 

beaches’ behaviour. 

Despite the wide acceptance of the influence of the factors described above, there is no 

unanimity in regard to these factors importance. For many, waves and tides are the 

foremost factors that contribute to the coastal morphodynamics (Davis & Hayes, 1984). 

In this case, beaches dominated by the influence of waves are called wave-dominated 

coasts and those dominated by tides are called tide-dominated coasts. The beach may 

exhibit tide-controlled morphology when wave energy is low to nil. This state may 

become dispersed by waves during the high-energy season, resulting in a profile that 

reflects mixed domination. Generally, the larger the tidal range, the more important the 

intertidal volume of sand or gravel, and the higher the wave energy levels required in 

order for large-scale morphological changes to occur. As a result, the rates of sediment 

transport and beach morphological change are retarded on beaches with large tidal ranges 
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and lower modal wave energy. As tidal action increases, the shallow shoreface and inner 

shelf topography may be characterised by numerous banks and ridges that are typical of 

a tide-dominated process signature. Levoy et al. (2000) also verified that the larger the 

tidal range, the greater the variations in morphodynamic behaviour between the lower 

beach and the upper beach. Mixed coasts would be expected to show stable large-scale 

morphological and sedimentary patterns that are quite distinct from those of pure wave-

dominated and tide-dominated coasts (Anthony & Orford, 2002). 

As well as waves and tides, the effect of winds can also affect the coastal morphology 

both directly and indirectly. The direct effects are confined to the removal of sediment 

from the beach, often depositing the material on sand dunes. The indirect effects are 

through the creation of waves and also the setting-up of the local sea level (increased 

storm surge). Local coastal currents can also be created by winds which may be important 

in moving sediment (King, 1972 in Bernabeu et al., 2003). Variations in wind direction 

would alter the nearshore current circulation, and such alterations might eventually 

become apparent in shoreline changes (Carter, 1975). 

Fitting together all these variables and increasing their intensity, the morphological 

changes are often larger than long intervening periods of fair weather conditions, with 

storms being among the most important driving forces causing rapid and dramatic 

changes in beach morphology (Forbes et al., 2004; Balsillie, 1986, Morton, et al., 1995 

and Morton, 2002). As stated by Balsillie (1986), storm effects depend on local wave 

refraction-diffraction patterns, sediment supply to the coast, beach morphological 

behaviour, dune development, human alterations and uses of the shoreline. In general, 

storms act on the sub-aerial beach and deposit the eroded material offshore, usually in the 

form of sandbars. Conversely, it is expected that during fair weather conditions bars 

slowly move back onshore (Niedoroda et al., 1985; Backstrom et al., 2009a). 

Many studies have investigated the consequences of extreme single-storm events. 

However, beach vulnerability to storm action is also partly dependent on the difference 

between storm frequency and beach recovery period, whereby beach erosion is 

accentuated when storm frequency exceeds the beach recovery period for individual 

storms (Morton et al., 1995). In this case, a storm group exists and is defined as a series 

of successive storms without beach recovery in between. The definition of a storm group 



 
BEACH VOLUMETRIC ANALYSIS AND WAVE FORCING ALONG AN IRISH BEACH SYSTEM 

 

UALG-FCT / ISE 2014  

 

23 

 

depends, therefore, on the ability of a particular coastal area to recover from storm events 

(Ferreira, 2006). Interest in the consequences of storm group incidence on coastal 

evolution and morphology is relatively recent. Even if successive storms are common in 

some coastal regions, their cumulative impacts are still poorly understood (Birkemeier et 

al., 1999, Morton, 2002 and Ferreira, 2006). It has been recognised, however, that 

successive storms can cause significant erosion and important morphological changes 

(Lee et al., 1998 and Birkemeier et al., 1999). Furthermore, it has been observed that in 

some cases the combined erosion of successive storms is greater than the sum of the 

average erosion of the individual storm (Morton et al., 1995 and Lee et al., 1998). Ferreira 

(2005) concluded that the erosion caused by a group of storms with short return periods 

can easily exceed the single-event erosion associated with a longer return period storm. 

Despite the importance on beach morphology actuation, observations of storm response 

on high energy beaches are still rare in comparison to accounts of storm impacts on low 

energy coasts. Cooper et al. (2004) believe that this could have been due to the 

infrequency of morphologically significant events on high-energy coasts, where larger 

storms might be required to produce morphological impacts. Short & Trembanis (2004) 

also pointed to the fact that coastal monitoring at higher temporal and spatial resolution 

carries many challenges including high costs with beach survey and also intense labour 

work because they typically require several years of data before meaningful trends 

emerge.  

Closely linked to the beach morphological behaviour numerously cited above, and 

defended by many researchers, such as Dean (1991), is the control exercised by sediment 

texture and grain size. Beach slope, which is related to the grain size of the sediment 

(Carter, 1988 in Storms et al., 2002), determines the morphodynamic beach behaviour, 

where dissipative and reflective beaches mark the two extremes of this morphodynamic 

continuum, with a series of intermediate types in between (Wright & Short, 1984) 

Reflective beaches, argued by many to be caused by sediment deficit (Storms et al., 2002), 

are characterised by a narrow and steeply sloping surface with slope angles ranging from 

6° to 10°. Beach sediment is usually characterised by medium to coarse gravel on the 

upper and lower beach face. These beaches typically comprise a step feature at the base 

of the swash zone, and beach cusps may be present on the upper beach, occasionally 
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fronted by a shallow sub-tidal terrace. In contrast, dissipative beaches are known to be 

almost entirely dominated by a flat, wide, featureless intertidal zone. Beach slopes are 

very gentle (0.5–1°) and composed of homogeneous fine to medium sands. This beach 

state is also known to have multiple breaker lines that dissipate the majority of their wave 

energy in the very wide surf zone (Harris et al. 2011 and Scott et al., 2011). Intermediate 

types may exhibit a combination of both types of the above mentioned. They are usually 

defined by the presence or absence, nature and form of sand bars and rip currents in the 

surf (Harris et al., 2011 and Short, 2006). As such, it could be expected a relationship by 

which dissipative beaches suffer lesser effects from storm’s action, due to the presence 

of bars that provide efficient obstacles against energetic waves, than intermediate or 

reflective beaches (Carter & Balsillie, 1983). Likewise, reflective or intermediate beaches 

reduce their ability to dissipate energetic waves and as a result, they would be more 

sensitive to storm action (Benavente et al. 2000). 

Despite this expected link between reflective / dissipative beaches and their behaviour 

when affected by extreme events, it is easy to check through some investigation results 

that morphologic changes can be diverse, proving that there is no simple relationship 

between high energy forcing and beach morphodynamic state. i.e., there are reports of 

different beach responses to storms incidence, such as the case where important damage 

was produced by means of overwashing (Benavente et al. 2002), and other cases where 

no significant damage was produced whether before or after these rigorous conditions, 

exhibiting a state of dynamic equilibrium. For example, Aagaard et al. (2005) observed 

beach profiles without significant changes arguing that the beach was already in 

equilibrium with energy conditions. Newe et al. (1999 in Aagaard et al., 2005) obtained 

similar observations but concluded that morphological changes of beaches are related to 

the initial beach profile, where gentle slopes tend to have small changes. Wright (1980) 

also suggested that dissipative beach erosion is mainly limited to dune/backshore zone 

without any significant change of beach surface. In the same way, a study led by 

Benavente et al. (2002) indicates that beach predisposition to erosion depends mainly on 

the ability of beaches to change their morphodynamic state. In other words, seasonal 

beaches are more resistant to storms than uniform unchanging beaches. They justified 

their idea by saying that the drifting from one morphodynamic state to another one is 
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directly related to the beaches ability to adapt its profile to new energetic conditions. This 

autodefensive behaviour depends mainly on the amount of sand available for the change. 

They also verified that in places where there was not enough sand for the beach to acquire 

a complete dissipative state, the beach was severely eroded. The same authors concluded 

that the location of river mouths and other contouring conditions, favours a greater 

availability of sand in some beaches which, from a morphodynamic point of view, 

become more mobile and self-protected against storms. More recently, Almeida et al. 

(2011) investigated variations in beach morphology at the Praia de Faro (Portugal) and 

their relationship to wave conditions. They verified that morphological changes in this 

intermediate to reflective beach profile were greatest at the beach face/berm and sub-tidal 

terrace.  

It becomes clear that the physical reasons why beaches sometimes erode, sometimes 

accrete, and sometimes are in a state of dynamic equilibrium over the time scale of one 

or more storm events or tidal cycles have not yet been determined (Aagaard et al., 2005). 

Even with this lack of knowledge, it is widely accepted that the morphology of a beach is 

mainly controlled by temporal variability of wave climate, tide and sediment 

characteristics (King, 1972 in Bernabeu et al., 2003).  

Since the beach and its behaviour are complex, and due to the lack and difficulty in 

collecting daily beach morphological and hydrodynamic data, several numerical models 

have been developed. Despite this wide range of numerical models, several authors have 

stated which fundamental parameters and steps a model should include: i) offshore wave 

height and wave period; ii) water level, including wave set-up; iii) representative grain 

size or fall velocity for the profile; iv) representative initial shape of the profile, including 

the dune; v) onshore boundary conditions for dune erosion; vi) calculation procedure for 

the cross-shore sediment transport rate or, alternatively, direct calculation of the 

morphologic change of the profile based on a given idealised form; vii) calculation 

procedure for computing dune erosion, containing a temporal dependence; viii) 

verification with field data over the range of conditions for which the model will be 

applied; iv) and storm surge duration (Balsillie, 1986; Kriebel & Dean, 1993; Van de 

Graff, 1994 and Schoones & Theron, 1995). 
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After a detailed analyses of different models and their application, it was concluded by 

Ferreira & Dias (2000) that it was virtually impossible to define conclusively which 

model(s) was superior to the others. However, the XBeach tool, developed to model the 

nearshore response to hurricane impacts, which includes wave breaking, surf and swash 

zone processes, dune erosion, overwashing and breaching, has been applied successfully 

along more complex situations. In the latter case, the coast has significant alongshore 

variability, and included the effect of sediment sorting, on including onshore processes 

(e.g. skewness, asymmetry), on modelling hurricane impacts over larger 2D areas, on 

predicting infragravity motions on coral reefs, on modelling short-wave motions and on 

modelling gravel beaches. The potential of the model strategy has been positively shown 

in a number of analytical, lab and field cases and is being used by a rapidly increasing 

user group worldwide. 

Apart from these numerical models, a variety of indicators can also be used in to 

understand beach evolution. An example of data that can be used as an indicator of coastal 

state is the beach volume, defined both across the intertidal portion of the beach and across 

the full nearshore zone (Southgate, 2008). Many other indicators can be applied to 

comprise beach dynamics such as the identification of erosion and accretion phases on 

the beach, quantification of long-term recession and/or accretion trends, the degree of 

erosion and rate of recovery due to storm events, the beach response to engineering work, 

seasonal changes and interannual variability (Masselink & Pattiaratchi, 2001; Kroon et 

al., 2008 and Harley et al., 2011). 

To select indicators from the above expressed variety, the knowledge of the coastal 

monitoring resolution and extension, performed at each study, is required. According to 

van Rijn et al., (2003), long-term trends are relevant for the evaluation of final beach 

width or the rate of erosion. Medium-term responses, with seasonal winter–summer 

profile oscillations, provide information about the cross-shore dimension of the berm. 

Finally, short-term changes (i.e., following an extreme storm) may determine the 

maximum retreat of the shoreline. 
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2.2 GIS TOOL FOR COASTAL DYNAMICS ANALYSIS 

GIS provides spatial analysis and data integration techniques for accurate mapping and 

analysis of beach dynamic, dunes, wetlands, coastal bays and estuaries, and many other 

coastal features (Allen et al., 2012). It also allows to improve the knowledge on factors 

that control coastal behaviour, to evaluate the impact of forcing factors on littoral 

environments and manage them properly (Li et al., 2000). Furthermore, GIS provides 

simple access of data, ease edit and update, and fast visualization of coastal hazards 

(Bossak et al., 2005). 

Since GIS was one of the tools recommended in the World Coast Conference in 1993 

(Vellinga & Klein, 1993), a number of different projects using GIS applications for 

coastal zones, that allow coastal researchers to visualize coastal features in a much more 

intuitive way, have been developed (Andrews et al., 2002). An example is the Dune 

Hazard Assessment Tool developed by NOAA Coastal Services Center, (2003), a tool 

that helps coastal managers to identify the relative risk to properties from coastal erosion 

which use remotely sensed elevation data and traditional ground survey data.1 

Numerous studies have explored GIS’ potentialities in a variety of scenarios. To assist in 

the calculation of coastal change rates. For example, Duffy & Dickson (1995) produced 

an ArcInfo Macro Language program, SHOREGRID, that calculates shoreline evolution 

rates from digitized 2-D shorelines for two time intervals. SHOREGRID can also be used 

to predict future shorelines based on a linear projection of the calculated erosion rates. 

SHOREGRID has been successfully implemented to investigate sea cliff retreat (Moore 

& Griggs, 2002). 

Similar to the SHOREGRID program, the Digital Shoreline Analysis System (DSAS) 

utilizes digitized shorelines in a GIS environment to quantify shoreline change. This tool 

uses regression techniques to calculate the linear change rates at specified locations 

between multiple digitized shorelines by casting perpendicular transects from the original 

shoreline (Harris et al., 2005; Himmelstoss et al.. 2006 and Pendleton et al., 2004). 

                                                 
1http://www.csc.noaa.gov/magazine/2002/01/news.html 

http://www.csc.noaa.gov/magazine/2002/01/news.html
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Although not focused on erosion, Bossak et al. (2005) developed a GIS tool, the Coastal 

Impact Assessment Tool (CIAT), to predict the effect of coastal storms on beaches and 

dunes using beach slope, wave height, wave period, and tide/storm surge values. 

Additionally, the tool utilizes 3-D visualization features in GIS for scenario evaluation. 

The tool calculates estimated water run-ups during storms, which provides useful 

information for an assessment of likely coastal damage during storm events (Olsen, 

Young, & Ashford, 2012). It also incorporates a capability to access multiple data layers 

rapidly, including DEMs, Digital Raster Graphics (DRG), and aerial photography 

(Bossak et al., 2005). 

The GEOSTORM Tool was developed by Almeida et al. (2011) to model beach erosion 

due to storms. This tool consists of a Graphical User Interface (GUI) that was written in 

Visual Basic for Applications (VBA) code, embedded in ArcMap (version 9.3). The tool 

comprises two modules: The first module enables the achievement of beach transect 

information; and the second module estimates profile erosion, at each transect, through 

the application of the Kriebel & Dean (1993) storm erosion convolution model (Almeida 

et al., 2011). 

Applying 3-D analysis, the TopCAT tool provides a user-friendly interface for automated 

volumetric change analysis of large topographical datasets along with several tools to 

enhance DEM and Light Detection And Ranging (LIDAR) data processing. Results from 

TopCAT reveal erosional hot spots and alongshore coastal change trends for a region. As 

this GIS extension incorporates the use of a 3-D environment, working with TopCAT and 

3-D data provides several advantages compared to 2-D data. First, TopCAT is not limited 

to transects, but instead works with the entire data grid thereby accounting for the data 

between transects. Next, a vectorized approach requires the user to select a consistent 

location for comparative analysis. Finally, TopCAT allows for continuous volumetric 

analysis which provides valuable information for sediment budget analysis (Olsen et al., 

2012). 

Frias et al., (2013) developed a Web GIS tool (WebInletAnalyst) that allows both 

researchers and managers to autonomous extract the evolution of key tidal inlet 

parameters such as minimum cross-section area, inlet width, maximum depth and 

migration distance, from a set of bathymetric charts and raw data surveys. The tool is 
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built on a web interface written and compiled using MatLab (The MathworksTM). 

Ultimately, the tool will be made available on Python code, allowing future further 

improvements and adaptations by the scientific community. 

The GIS toolbox MAPBeach – GIS tools for Morphological Analysis at Pocket Beaches 

– was developed to simplify the morphological analysis of pocket beaches after 

morphological monitoring performed trough topographical surveys. The developed GIS 

toolbox enabled a quick and efficient evaluation of the morphological changes occurred 

at the selected beaches, associated to different forcing conditions, through the 

determination and further analysis of a set of pre-defined morphological parameters, 

including beach profiles, beach slope, elevation, volumes, beach curvature, beach 

rotation, among others. MAPBeach includes two sections: The single beach tool, which 

allows a simple characterization of the beach face along the entire area and determines 

the dominant beach directions and the radius of curvature in an easy way; and the Multi 

beach, that presents a greater complexity in implementation. The great advantage of this 

tool is to enable direct analysis and visualization of spatial and volumetric changes 

through altimetry comparison (Horta et al., 2013). 

Despite the wide range of tools capable of examining beach morphologies, there are still 

some improvements to be considered, particularly in the case of lower spatial resolution 

data. On this basis, the GIS tool presented in this Dissertation has been created. This tool, 

created using the module Arcpy from Environmental Systems Research Institute (ESRI) 

ArcGIS®, takes in DEMs as input within an undefined number of shapefiles (data 

obtained from DGPS). Subsequently, it obtains beach profiles and volumes along defined 

lines that indicate the precise location of the profile to be extracted. In other words, this 

tool has very similar characteristics to the Graph Profile - 3D Analyst tool from ESRI 

ArcGIS®, adding the possibility of introducing numerous shapefiles’ points (which 

depend exclusively on the computer processing power that will be used), and 

consequently obtaining areas and volumes from that portion of the beach. With this tool 

it is also possible to smooth the distribution of points obtained with DGPS along the beach 

and their associated inaccuracies as well as the continuous volumetric analysis, not just 

limiting the study to transect. This method is also described in detail ahead at chapter 4. 
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CHAPTER 3 

 

3 STUDY AREA 

3.1 GEOMORPHOLOGY 

Five Finger Strand, a bedrock-framed beach, is located on the north coast of the 

Inishowen Peninsula, North of Donegal in the Republic of Ireland (Figure 3.1). This 

beach extends for approximately 1.7 km north-south between Five Finger rock and the 

mouth of Trawbreaga Bay (O’ Connor et al., 2009). 

 

 

Figure 3.1: Study Area location. Font: Ana Luísa Martins. 
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Affected by successive glaciations, the Midlandian glaciation and ice limits during 

deglaciation are the main constraints on contemporary coastal geomorphology. Sediment 

supply occurs predominantly from reworking of shelf sands, and locally from erosion of 

bluffs of glacial sediments(Cooper et al., 2004). Coastal sediment supply is thus strongly 

related to patterns of ice movement, stabilisation and decay during the last glacial cycle 

(Jackson et al., 2005). Consequently, this embayment comprises a finite sediment volume 

with minimal longshore sediment exchange with other beaches and low contemporary 

sediment supply from other sources like rivers and primary productivity (Jackson & 

Cooper, 2010). 

The beach is composed of a 2 m veneer of mainly fine sand (mean grain size 0.22 mm) 

with some medium sized sand along the dune line in the northern beach section and a 

subsurface pebble/gravel layer. It is geologically constrained between two rock headlands 

and fronts an extensive mature vegetated dune system. This dune system precludes barrier 

overwash during storms and constrains coastal morphological response to storms to cross-

shore or alongshore transport of sediment under wave action and aeolian deflation and 

transport (Cooper et al., 2004).At the southern end of the beach a tidal inlet dominates the 

system and is associated with an ebb tidal delta and a tidal channel(Cooper et al., 2007). 

Within this estuary system modern fluvial sediment contribution is negligible and the 

main sediment exchanges take place between tidal inlet, tidal deltas, beach and dune 

(Jackson et al., 2005). 

The northern beach is ≈ 350 m wide and dissipative at low tide and narrows to ≈ 90m at 

the southern end with a steeper slope. The dominant element at the southern beach area 

is the Trawbreaga Bay tidal inlet. The inlet throat is 100 m wide and is fixed in position, 

except seaward of the throat, in which the inlet position varies from a southerly position 

to northwesterly (Cooper et al., 2007). The ebb tidal delta position is also variable with 

relict shoals evident after the inlet position changes (O’ Connor et al., 2009). The switch 

from one ‘attractor’ to another may occur over a relatively short time period. Previous 

studies have suggested numerous factors which may contribute to this change in tidal inlet 

behaviour, among these are Walton and Adams (1976) in O’Connor et al., (2011) which 

proposed that the inlet had one stable position from which it was perturbed by fluctuations 

in external energy conditions reflected in average storminess rather than individual 
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storms. The system then returned towards its stable condition by internal sediment 

redistribution and onshore bar migration. 

These findings contrast with those of Cooper et al., (2007), who suggested that the inlet 

was not stable and that the system continuously switched between the northwesterly to 

southerly position in a system of self-organization independent of external forcing. It was 

also stated that wave action causes increased sediment elevations at the seaward crest of 

the ebb delta reducing the efficiency of ebb currents, causing a deflection of ebb channel 

flow around the terminal lobe of the delta. The channel takes a new position and the 

former ebb delta is abandoned, and this sediment is reworked onto the adjacent beach. 

The relatively closed nature of the system with minimal sediment input means that once 

the ebb channel switches position to the south the sediment in the abandoned ebb delta is 

reworked onshore. Lack of modern sediment input coupled with the loss of some 

sediment into the flood delta results in progressive erosion, so the system cannot fully 

recover to its pre-erosional state. Cooper et al., (2007) also indicate that long-term, large-

scale coastal behaviour can occur through normal day-to-day processes, i.e., it is not 

necessary to invoke sediment influxes, climate change, sea-level change, or extreme 

events as drivers of change. In short, when the inlet is in the northerly position sediment 

is removed from the beach and stored in the ebb tidal delta. This results in dune scarping, 

beach lowering and gravel exposure. In contrast, when the inlet position lies in the south 

the sediment is reworked and migrates onshore in the form of bars. This then results in 

beach accretion and dune progradation (Cooper et al., 2007 and O’Connor et al., 2010). 

It was also verified that previous phases of erosion and accretion of inlet position can lead 

to a shoreline position variation of ≈ 120 m. 

Historical evidence from maps and air photographs records the occurrence of several 

erosion-accretion phases linked to the position of the ebb channel with fluctuations 

between these two states of approximately 25–50 years intervals. Superimposed on this 

cyclicity appears to be a gradual historical retreat of the shoreline as accretion following 

each successive erosional period does not regain the position of earlier shorelines (Cooper 

et al., 2007). 

More recently, O’Connor et al. (2011) proposed that the channel relocation is the 

consequence of increase in average storminess conditions. They affirmed this based on 
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the peaks in North Atlantic Oscillation (NAO) values during 1900 to the mid-1920s, late 

1940s to early 1950s, and the mid-1990s which suggested increases in wind speeds and 

wave heights, corresponding well to changes in channel positions. Thus, there appears to 

be a potential link between channel relocation and periods of high average storminess 

reflected in instrumental records and/ or NAO Index values. 

3.2 HYDRODYNAMICS 

High energy wave climate is predominant at Five Finger Strand. Records obtained by two 

offshore buoys (M4 Buoy (54840V N, 09804V W) was used to define Irish Sea wave 

conditions as the M2 Buoy (53838V N, 5825V W) described Atlantic wave conditions). 

Annual averages of wave height and period from the M2 and M4 buoys points to 

dominant swell waves with a modal significant offshore wave height of ≈2.2 m and a 

period of 9 s (Jackson et al., 2005), quite similar to those obtained using the data ERA-

Interim (Figure 3.2). Equally, the dominant swell approach is from the W and SW 

quadrants (Figure 3.2), as also indicated by Cooper et al. (2007). The same authors 

moreover confirmed that waves are fully refracted upon reaching the beach. The swell 

refraction over the irregular sea floor and around the indented shoreline has produced a 

beach equilibrium plan form that typically shows little net morphological change on an 

annual basis and is also stable in the medium term (Cooper et al., 2004). 
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Figure 3.2: Wave climate during the study period. Font: ERA-Interim data (see subchapter 4.4). 

The existing planform configuration can be easily modified by the actuation of storms. 

Due to the intersection of the main conduit of North Atlantic cyclones, Ireland 

experiences the maximum impact of Atlantic swell waves and storm activity (Jackson & 

Cooper, 2010). With dominant winds from the SW quadrant, winter storms generate 

deep-water waves whose heights can reach 15–20 m (Carter & Balsillie, 1983 and  

Jackson & Cooper, 2010), and are refracted significantly southwards as they encounter 

the northwest coast of Ireland (Backstrom et al. 2009). 
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Similarly to this refraction effect, distinct factors also limit the morphological impact of 

storms and the identification of their impacts in the study area. First, because the coastline 

is exposed to modally high energy swell that arrives fully refracted at the shoreline, an 

increase in swell size may not necessarily create a change in wave energy dispersal 

patterns. Instead, analysis of the impact of increased swell size using wave modelling 

suggests that much of the excess energy is accommodated by development of a wide surf 

zone with much wave energy dissipation offshore. In contrast, short period waves 

associated with locally strong winds, dissipate their energy further shoreward, where they 

are not fully refracted and may thus be more effective in generating gradients of wave 

energy that lead to alongshore or offshore sediment dispersal (Cooper et al., 2004). 

Second, since the sandy beaches are in the dissipative morphodynamic domain, much 

long-wave- length wave energy is dissipated across the shoreface during increased swell 

regimes and is unlikely to generate an excess of energy in the nearshore (Cooper et al., 

2004).Third, because the tidal range is mesotidal, with spring tide of ≈ 3.5 m and neap 

tide ≈ 1.6 m (Cooper et al., 2004; Jackson et al., 2005 and Backstrom et al., 2009), there 

is a long tidal interval during which short-lived storms will not coincide with such levels, 

causing a reduced occurrence of elevated water levels that exceed normal tidal high water 

levels (Cooper et al., 2004).The duration of a storm will thus enhance its likelihood of 

spanning a high tide level. Fourth, offshore sediment losses during storms are likely to be 

replaced by fair-weather swell conditions. Thus, long-term impacts of storms are likely 

to be difficult to detect in the historical record of morphological change except at the 

vegetation line (Cooper et al., 2004). 

The study carried by Cooper et al., (2004) revealed a strong spatial variability in potential 

shoreline response to storms. For these authors, for a storm of high enough magnitude to 

cause morphological change, factors such as wind direction, coastal orientation, 

interaction of wind and swell waves, produce potentially important differences in coastal 

response patterns. 

Cooper et al., 2004 also revealed that relatively few storms have produced coastal 

morphological impacts over a 40–50-year period. They linked this few storms actuation 

with the wind, once it can optimize the transfer of energy to waves, which in turn undergo 

refraction, reflection and dissipation as they approach the shore (Cooper et al., 2004). 
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Sea-level change can also operate as a direct forcing factor generating morphological 

change on an open-coast beach (Storms et al., 2002). Carter (1982) speculated that a 

slightly falling relative sea level might explain the dune progradation observed at Five 

Finger Strand in the late 1970s and early 1980s. The sea-level record since then is, 

however, considerably more complex and includes fluctuations that do not show a clear 

link to the observed morphological changes (Jackson et al., 2005). 

3.3 COASTAL MANAGEMENT PRACTICE 

The ‘problem’ of erosion at Five Finger Strand began in the mid-1990s with shoreline 

erosion, dune scarping, beach lowering and gravel exposure (Cooper et al., 2007). 

Concern for the beach by the general public and local councillors was countered by the 

construction of a small seawall (approximately 10 m wide) in the mid-1990s authorised 

by the local authority engineer at the time, to protect the car park (O’Coonor et al., 2010). 

However, no maintenance was carried out on the seawall and it subsequently failed due 

to continued beach lowering and dune scarping (Cooper & Mckenna, 2008). 

The undeveloped nature of the Five Finger Strand hinterland meant that pressure to halt 

the erosion at the site was mainly the result of a desire to maintain present conditions and 

preserve its recreation-friendly state. The initial construction of the seawall demonstrated 

that hard sea defences would not provide the answer to the erosion issue (Cooper & 

Mckenna, 2008).Hence, general public and local councillors determined that the 

introduction of hard artificial engineering structures in response to public demands at the 

site would have resulted in wave reflection and consequent beach lowering, gravel 

exposure and ultimately the loss of sand from the beach. Fixing the position of the dunes 

would also have accelerated erosion elsewhere, particularly at the edges of the armoured 

sections. Cutting off the dunes from the sediment exchange system would have halted the 

natural working of the system once dunes provide the sand storage buffer which is part 

of the “defence mechanism” of beaches in response to storms. Without this supply of 

sediment the beach seaward of the defences would lose its natural protection, resulting in 

erosion and sediment starvation. The placement of artificial structures would also have 

destroyed the visual quality of the site (Cooper & Mckenna, 2008). 
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Since coastal erosion continued to be a problem, with increased intensity at the beginning 

of this century, possibly due to a number of high magnitude storms, it was accepted that 

hard engineering was not a sustainable option but a system of soft intervention could be 

adopted. As a pilot scheme straw bales were used as a form of coastal protection (Figure 

3.3) (O’Connor et al., 2010). 

 

 

Figure 3.3: Straw bales used as a form of coastal protection. Font: O’Connor et al., 2010. 

In order for any soft engineering methods to work, the method chosen must be appropriate 

for the individual site. It was accepted by the engineer and coastal scientists that 

placement of straw bales at Five Finger Strand would not halt the erosion, but it was seen 

as a low-cost, temporary response to ease public pressure at the time. The bales were 

emplaced in November 2005 and one section was replaced in 2006. As a form of dune 

protection the bales did not stop the retreat of the scarp, but they stayed in place for over 

a year without affecting the ability of the coast to operate naturally (O’Connor etal. 2010). 

The perceived slowing of the erosion rate, coupled with the management action taken, 

quelled the pressure for artificial hard defences. Since 2004 the onshore movement of 

sediment from the ebb delta has increased beach levels and resulted in mainly sandy 

conditions, which are more acceptable for recreation purposes (O’Connor et al., 2010). 

This lead to the recognition that the erosion at this site is part of a longer erosion/accretion 

cycle. The system, since then, has continued to work naturally (O’ Connor et al., 2009).  
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CHAPTER 4 

 

4 METHODOLOGY 

4.1 FIELD SURVEY 

Morphological surveys were performed on Five Finger Strand beach, Northern Ireland, 

over an eight year period, between February 2004 and January 2012. Surveys were 

undertaken regularly, at intervals of approximately two months or after a storm, always 

performed at low tide and preferentially during spring tides, totalling 75 beach surveys. 

Eight shore-perpendicular profiles spacing each other approximately 200 m (Figure 4.1) 

were monitored using a DGPS. The base station was set up over a known temporary 

benchmark while the rover was attached to a quad (Figure 4.2). The DGPS was then used 

to stake out all profiles by inserting 2 poles on the line of each profile. These poles were 

then lined up at low water and the quad driven inland along the profile to the base dune 

collecting X, Y and Z data every 1 m. The DGPS provides an accuracy of ±3 cm in the 

vertical and horizontal dimensions, giving a high level of accuracy for monitoring beach 

profiles. 
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Figure 4.1: Shore-perpendicular profiles used as DGPS survey’ guide. 

 

Figure 4.2: Field survey with DGPS’ rover attached to a quad. 

The coverage of beach elevation points varied slightly due to different conditions of sea 

waves and tides, having reached approximately1000 elevation points for each survey; a 

total area of 182752 m2, a minimum value of altitude of -2 m and maximum of 4 m, 

relatively to the mean sea level. 
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4.2 DATA PRE-PROCESSING 

Despite requiring a short amount of time at the site, field measurement of elevation along 

transect lines only measures one- and two-dimensional changes (change in elevation 

along X or Y). It does not effectively represent the spatial variability of beach topography 

in the system statistically or cartographically because of the horizontal distance between 

transects. As a result interpolation is used to predict these values for which there is no 

recorded observation within the area covered (Algarni & El hassan, 2001). The 

development of a digital gridded continuous surface, or DEM, suitable for landform 

analysis and modelling, can be done using readily available basic mapping software. 

However, the selection of interpolation method is more complex, requiring both visual 

and statistical exploration (Andrews et al., 2002), since there is no explicit rule indicating 

which method is adequate for a particular surface (Erdogan, 2009). The choice of the 

interpolation method and its parameters depends on the type and characteristics of the 

surface to be generated, the type of surface to be modelled along with the purpose of the 

modelling, and also on the accuracy, density and distribution of the source data (Gong et 

al., 2000 and Yılmaz, 2007). 

Due to its extensive use, DEM quality are particularly important, and must be an 

important input when using and comparing methods for particular applications (Smith et 

al. 2003). The accuracy of interpolation methods can be evaluated by different methods. 

One of them is the split-sample method. In this method some raw data are omitted, 

interpolation is performed, and the difference between the predicted and measured values 

of the omitted values is calculated. This difference is used as a measure of the stability of 

the interpolation algorithm (Smith et al., 2005). 

In order to enable such a validation method, within the ESRI ArcGIS® software the 

function “Subset Features” from the “GeostatisticalAnalyst” was used. This extension 

allows a random division of the data into two parts: the "training" for DEM creation and 

the "test" for its validation. Thus, the data were divided in two parts: 95%for the "training" 

which were tested with different interpolation methods, and the remaining 5% for the 

"test" which enabled an assessment of the methods by comparing the interpolated values 

with the values obtained from the field survey. 
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A total of 13 interpolation methods were tested using for each one the options that best 

fit the field data. The differences between the interpolated and observed elevation values 

at each “test” point were analysed using standard descriptive statistics for DEM accuracy 

assessment(Fischer & Tate, 2006). The most common statistical descriptor is the Root 

Mean Square Error (RMSE) (Li, 1988 and Fischer & Tate, 2006): 

 

𝑹𝑴𝑺𝑬 = √
∑(𝒁𝑫𝑬𝑴 −  𝒁𝑶𝑩𝑺)𝟐

𝒏
 

 

Where 𝑍𝐷𝐸𝑀 represents the interpolated elevation from the DEM, 𝑍𝑂𝐵𝑆 the observed 

elevation and n the number of sample points.  

Two other descriptors, the Mean Error (ME) and the Error Standard Deviation (S), are 

used frequently for a more complete statistical description of DEM interpolation error 

(Desmet, 1997 and Fischer & Tate, 2006): 

 

𝑴𝑬 =
∑(𝒁𝑫𝑬𝑴 −  𝒁𝑶𝑩𝑺)

𝒏
 

 

𝑺 = √
∑[(𝒁𝑫𝑬𝑴 − 𝒁𝑶𝑩𝑺) − 𝑴𝑬]𝟐

𝒏 − 𝟏
 

 

The two extreme values for the difference between the interpolated and observed 

elevation (positive maximum and negative maximum) were also retained, indicating the 

general location of all other values (Li, 1988). Visual representation of models was also 

taken into account on the definition of the best method since it is also important to 

consider how the method represents reality in visual terms. Thus, to choose the best 

method it was also visually verified the capability of the methods to represent the 

morphology when compared to field observations (visual reliability). 

The results for the descriptive statistics, presented in Table 1, indicate that despite the 

sparse data distribution, some methods have good statistical results. The best method 

chosen to represent the data/ beach over the years was the Radial Basis Function (RBF), 
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Multiquadratic. This method consists on a series of exact interpolation algorithms in 

which the surface passes through each measured sample location. It is conceptually 

similar to fitting a rubber membrane through the measured sample values while 

minimizing the total curvature of the surface. According to Yang et al. (2004), 

Multiquadratic function is considered by many to be the best interpolation method. 
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Triangular Irregular Network (TIN) * 0.5384 1.1090 1.0013 3.4890 0.0085

Natural Neighborhood Interpolation (NNI) * 0.5572 1.1141 0.9964 3.4890 0.0088

Inverse Distance Weighting (IDW) * 0.2837 0.4424 0.3506 1.3466 0.0003

Local Polinomial Interpolation (LPI) * 0.3511 0.5624 0.4537 1.9417 0.0368

Completely Regularized Spline (CRS) 0.1749 0.2919 0.2413 0.8434 0.0014

Spline with Thension (ST) 0.1591 0.2677 0.2224 0.7728 0.0007

Multiquadratic (M) * 0.1042 0.1873 0.1607 0.5885 0.0025

Inverse multiquadratic (IM) 0.2341 0.3651 0.2894 0.9877 0.0075

Thin Plate Sline (TPS) 0.0805 0.1581 0.1406 0.5050 0.0011

Ordinary (KEO) * 0.1148 0.2002 0.1695 0.6074 0.0012

Simple (KES) 0.2456 0.3615 0.2739 0.8918 0.0031

Universal (KEU) * 0.1147 0.1997 0.1688 0.6096 0.0022

Ordinary (KGO) * 0.1708 0.2976 0.2517 0.9710 0.0037

Simple (KGS) 0.1344 0.2060 0.1612 0.6123 0.0025

Universal (KGU) * 0.1642 0.2796 0.2337 0.9074 0.0031

Ordinary (KCO) * 0.1068 0.1894 0.1615 0.5839 0.0025

Simple (KCS) 0.1750 0.2606 0.1994 0.6638 0.0163

Universal (KCU) * 0.1072 0.1860 0.1569 0.5733 0.0027

Ordinary (KSO) 0.1081 0.1895 0.1608 0.5861 0.0029

Simple (KSS) * 0.1871 0.2819 0.2178 0.7113 0.0013

Universal (KSU) * 0.1082 0.1890 0.1601 0.5827 0.0027

Visual/Shape ReliabilityTipo de ModeloMétodo de Interpolação NegativoPositivoME SRMSE

Radial Basis Functions

Kriging

Exponential

Gaussian

Circular

Spherical

Interpolation Method Model Visual Reliability Positive Negative ME RMSE S 

Table 1: Statistical results for Interpolation Methods. 
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As important as the choice of interpolation method, the optimum cell size must be also 

evaluated. The optimal dimension of DEM grid size, or resolution, is a function of the 

morphologic feature under investigation and computing capacity (Hengl, 2006). For 

example, if the mapped feature is relatively homogeneous, a small grid cell size may 

introduce artifacts that are not there. Grid cell size can also be too large not representing 

correctly the details of the morphology. The enlargement of grid resolution leads to 

aggregation or up scaling and decrease of grid resolution leads to disaggregation or 

downscaling. As grid becomes coarser, the overall information content in the map will 

progressively decrease and vice versa (McBratney, 1998; Kuo et al., 1999 and Stein et 

al.,2001). So grid resolution should also be dependent on the purpose of the analysis 

(Andrews et al., 2002).  

Although much has been published on the effect of grid resolution and the accuracy of 

spatial modelling, choice of grid resolution is seldom based on the inherent spatial 

variability of the input data (Bishop et al., 2001 and Vieux & Needham, 1993). In fact, in 

most GIS projects, grid resolution is selected without any scientific justification. In the 

ESRI ArcGIS® package, for example, the default output cell size is suggested by the 

system using some trivial rule: in the case where the point data is being interpolated in 

Spatial Analyst, the system will take the shortest side of the study area and divide it by 

250 to estimate the cell size ([ESRI], 2002). 

Therefore, to test the cell size that best fits the existing data three different methods were 

used. The first one was adapted from the cartographic rule which says that there should 

be at least one (ideally four) observation per 1 cm2 of the map. This Scale Number (SN) 

method, known as “Inspection Density” (Hengl, 2006), can be expressed mathematically 

as: 

𝑺𝑵 =  √
𝑨

𝑵
× 𝟏𝟎𝟐 

Where A is the surface of the study area in m2 and N is the total number of observations. 

The second method is also mentioned by (Hengl, 2006) and connects the problem of the 

grid resolution with the Nyquist–Shannon sampling theorem. This theorem indicates that 

a suitable grid resolution can be derived for given sample elevations (e.g. contours) and 
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based on the complexity of terrain. Hence, the grid (pixel) size (ρ) should be at least half 

the average spacing between the inflection points: 

𝝆 ≤
𝒍

𝟐 ∙ 𝒏(𝜹𝒛)
 

 

Where l is the length of a transect and n (δz) is the number of inflection points observed. 

Lastly, the “Point to Raster” tool in ESRI ArcGIS® was used by consulting the default 

cell size for the output raster dataset. The default cell size is the shortest of the width or 

height of the extent of the input point data, divided by 250. 

The results obtained by the three methods showed an optimal resolution of 2 meters. 

4.3 BeachProG – BEACH PROFILE GRAPH TOOL 

Scripting in ESRI ArcGIS® environments is possible since the introduction of version 9. 

Realizing that many of their users do not want or need to be programmers, but would 

rather have some tools at their disposal to solve the problem at hand, ESRI has chosen to 

support a variety of scripting languages. One of the languages supported is Python 

(Butler, 2005). Python is a freeware programming language designed to be an easy-to-

use, easy-to-learn dynamic scripting language. This means that there is no compiling, it 

is interactive and it allows users to learn its many layers of implementation at their own 

pace (Butler, 2005). 

A script in Python language for ESRI ArcGIS® can be created in two ways. The first way 

is to export the existing model from ArcToolbox to the Python script. The export tool 

automatically imports module Arcpy (Dobesova, 2011).This module is a site package that 

builds on the successful ESRI ArcGIS® scripting module with the intention of creating 

the basis for a useful and productive way to perform geographic data analysis, data 

conversion, data management, and map automation with Python. With ArcPy it is 

possible to have access to geoprocessing tools as well as additional functions, classes, and 

modules that allow the creation of workflows quickly and easily. The second way is to 

directly create a script in an integrated development environment, in which basic program 
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structures such as cycles (for, while), and decision structure (if, else) can be utilized. It is 

also possible to add notification messages to result window for users about flow of the 

batch data processing. Moreover, some methods from Geoprocessor, like enumeration 

methods that return a Python list of all file names or raster data sets in a directory on hard 

disk, are only accessible by scripting (Dobesova, 2011). 

The BeachProG tool has a range of functions that come with the package ESRI ArcGIS® 

and functions created for the specific purpose of this thesis, such as the beach profile 

volume calculation. 

4.3.1 Tool Acquisition 

The tool is in a zipped folder named BeachProG. This folder can be stored anywhere on 

the computer, however the path cannot contain spaces or underscores. The folder that 

contains the input data and the one created to receive outputs should also follow this 

requisite. 

When extracting the files from the zipped folder the user will come across the folder 

structure in figure 4.3. 

 

Figure 4.3: Folder structure of BeachPROG tool. 

 The folder "Script" contains the script used to run the tool in ESRI ArcGIS®. The 

user must make sure that the path that the tool displays in ESRI ArcGIS® (through 

the properties of the tool in ArcCatalog) corresponds to the current path where the 

tool has been saved. 
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 The folder "ToolData" stores all the files needed to run the tool. In this case the 

layers are present with the definition of the colour palette to be used in DEM, and 

the templates used to create the beach profiles. 

 The Toolbox containing the tool is in the "ToolShare". To use the tool in ESRI 

ArcGIS®, simply access this folder in ArcCatalog and double click "BeachProg". 

It will open the window of the input parameters. This window will be described 

in detail later. 

 Also present in this folder is the file txt "READ_ME" containing the basic 

indications of tool’s usage, the same information described in this subchapter. 

As described above, the BeachProG tool executes the system tools from ESRI ArcGIS® 

in a sequence, feeding the output of one tool to the input of another. These tools are based 

on some extensions that depending on the type of user license of ESRI ArcGIS® can be 

present or not. There are three extensions in these conditions: "3D Analyst", 

"Geostatistical Analyst" and "Spatial Analyst". Users should therefore make sure that 

they have these three extensions. 

In addition to the extensions, the version of ESRI ArcGIS® is also extremely important. 

This tool was developed using ArcInfo 10.1, so a version equal or superior to is extremely 

recommended. 

4.3.2 Input Parameter Window 

The interface between Python workflow and users is made through the Input Parameter 

Window (Figure 4.4).This parameter window allows the user to input data required to run 

the tool. Once the tool is executed, the parameter values are sent to the tool's source code. 

The tool reads these values and proceeds with its work. 
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Figure 4.4: Input Parameter Window of BeachPROG tool. 

For a proper use of the tool the user must follow the suggestions / conditions for 

completing the fields enumerated at Figure 4.4. 

1. Input data - The input features containing the z-values to be interpolated. Only 

Feature Classes are allowed. This field allows the introduction of various features 

(Multivalue Parameter) at the same time, however the files must be entered in 

ascending / descending order, since some functions within the tool will be carried 

out taking into account this order. These data form the basis for the construction 

of DEM. 

2. Z value field - Field that holds a height value for each point. This field name 

containing z-values must be entered by the user and the field’s name must be equal 

for all shapefiles (introduced at step 1), otherwise the tool will result in an error. 
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3. Cell size - The cell size at which the output raster will be created. The default 

value is set to 2 (meters) based on studies that were conducted specifically for this 

work. However, it can easily be changed. 

4. Study area - The feature used to clip the input features. This polygon sets the limits 

of the area to be compared with the other files (comparison over the years). This 

polygon will always be the same for all surveys. 

5. Line - Input line mask defining the section to be extracted. This field refers to the 

line that will be used to extract the value of raster cells intersected by the line, for 

beach profile construction. The direction of this line will indicate the ascending 

or descending order of data plotted in profile graph. 

6. Profile PlaneHeight - The elevation of the plane that will be used to calculate both 

area and volume from the beach profile graph. Volume and area will be calculated 

above the Profile Plane Height. 

7. Plane Height - The elevation of the plane that will be used to calculate both area 

and volume from the raster. Volume and area will be calculated above the Plane 

Height. Heights are always the same for all surveys data. 

8. Output results folder - The folder that will contain the results from Profile tool. 

The name should not contain spaces or underscores. 

4.3.3 Structure of BeachProG 

4.3.3.1 Data Pre-conditions 

As this tool was created to specifically best fit the data obtained from the field work, it 

was necessary to understand the type of data in question and the steps necessary to achieve 

the objectives proposed for this tool. 

Despite being collected with a DGPS system, the data obtained from the field work have 

spatial incoherence. As these data are the base for the beach profile extraction that will 

be compared along the years, the profiles must be always extracted at the same position. 

To circumvent this situation it was defined that the field data serve as the basis for DEM 

construction and afterwards the introduction of a line by the user will indicate the precise 

location for beach profile extraction (“Line” - Point 5 from Input Parameter Window). 

The example below (Figure 4.5) demonstrates this situation. 
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Figure 4.5: Spatial incoherence of DGPS surveys along time and example of a defined extraction line. 

As the coverage of beach elevation points varied slightly due to different conditions of 

sea waves and tides and because it is necessary to always use the same area, for temporal 

comparison, a polygon was constructed (“Study Area” – Point 4 from Input Parameter 

Window). For this the following principles were considered: (i) For points to the East 

(next to the base of the dune), it was selected the farthest point from the base of the dune, 

for all common points between surveys (Figure 4.6); (ii) For the northern and southern 

limits of the polygon, the central points were chosen and were given a margin of 

approximately 1 meter to avoid null values when constructing DEMs (Figure 4.6); (iii) 

points to the West of the beach (seaward limit), the farthest points from the seaward limit 

were chosen, i.e., the points that were closer to the centre of the beach were chosen. Figure 

4.6 illustrates the point selection to create the polygon (study area). Data length much 

greater or smaller than the remaining data were excluded from the study. 

Example of line location for 

profile extraction 
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Figure 4.6: Illustration of point’s selection to create the polygon for study area delimitation. The red dots indicate the 

points chosen for the creation of the polygon. 

4.3.3.2 Script structure 

The BeachPROG tool is a sequence of python functions. Once running this tool, the 

following tasks are performed: 

1) Starting with the DEM construction, it is applied the best interpolation method for 

this beach surface representation, based on DGPS data (described in subchapter 

4.2). 

2) Sequentially, the polygon introduced in section 4 of the Input Parameter Window 

cuts the DEM obtained in step 1, defining the study area. In other words, the cells 

of the raster corresponding to the study area will be extracted. Informations 

outside the polygon are eliminated. 

3) Through the line introduced in section 5 of the Input Parameter Window, it is 

extracted all raster cells that intersect the DEM from step 2). 

4) For each cell of the raster from step 3, a middle point will be created in the output 

feature class and all raster cells information are attached to these points. 

5) Determines the distances between points created in step 4. This distance is 

calculated from the nearest point of the basis dune to the remaining points. 

6) Calculate area between consecutive points based on their distances and elevations. 
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In order to compare the results obtained over several years, the area (A) between 

subsequent pairs of profile points was calculated using: 

𝑨 = ∑(𝜹𝒉𝑳𝑶𝑾 × 𝒅𝑺𝑼𝑩) + ((𝟎. 𝟓 𝜹𝒉𝑺𝑼𝑩) × 𝒅𝑺𝑼𝑩) 

Where: 

δhLOW = the difference in height between the lowest point on the profile and the lowest 

point of the subsequent pair that is being analysed; 

dSUB = the horizontal distance between the subsequent points being analysed; 

δhSUB = the difference in height between the subsequent points being analysed. 

To simplify this calculation, the minimum height is always equal to zero. This is 

possible through the introduction of the "reference plane" that is given by the user, 

i.e., the minimum height from which the user wants to draw the profile. If the plan 

entered by the user is less than zero, the positive of this value is added to the others 

elevations, so that the minimum height is always zero (Table 3). 

The total area is calculated through the sum of all values calculated in the previous 

step (Figure 4.7). 
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Figure 4.7: δh and dSUB calculation to determine the area (A) between successive points. 

 

7) Creates a new raster based on subtraction of different surveys, such as 2012 minus. 

2004 This step allows to identify changes that have occurred over this period, such 

as areas of erosion or accretion. So, it is subtracted the value of the second input 

raster from the value of the first input raster on a cell-by-cell basis. 

8) Calculates the total area and volume of rasters from step 2 above the reference 

plane introduced in point 7 of the Input Parameter Window. 

9) Creates a profile graph as a visual output using the graph template within the 

folder “BeachProG\ToolData”. 

10) Creates a profile series graph as a visual output using the graph template within 

the tool. 

11) Converts a table with coordinates, area, total area and mean slope informations to 

a Microsoft Office Excel file. This can only be used with ESRI ArcGIS® 10.2 

The figure 4.8 shows the sequence of functions used to obtain the BeachProG results. 
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Figure 4.8: Sequence of functions used in BeachPROG tool 
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4.3.4 Tips for modification / customization 

As this tool can be used with data from all coastal sites, and because this tool was created 

to fit the study area in question, it is necessary to pay attention to some situations: 

 Because raster names cannot have more than 13 characters, the input data name 

(first field of Input Parameter window), must be modified. For this, all names 

should have the same structure, equal or similar to: “year” + “_” + “location”. 

Then, a new name is created. The example bellow (Figure 4.9) shows the structure 

used for this work: 

 

 

Figure 4.9: Code for modification of input data name. 

 The type of model used to develop DEM should be modified if the user concludes 

that the Multiquadratic interpolation method does not efficiently represent the 

surface. 

 The templates within the folder “ToolData” can be replaced. If so, the names 

should be the same in both script and folder (Figure 4.10). 

Input name structure 

Split name at “_” 

New structure name 
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Figure 4.10: Code for templates and folders location. 

 The last part of the script is the table conversion, with elevation, area and slope 

information, for Excel files. This is only available for version 10.2 of ArcGIS, so 

the user must delete or comment (“#”) this part of the script if using older versions. 

Alternatively, this information can be accessed by opening the “.dbf” file of the 

shapefile in excel. 

4.4 RELATIONSHIPS BETWEEN WAVE CONDITIONS AND BEACH VOLUME 

Because of the difficulty in accessing wave data during the study period, results from a 

hindcast model were used. The enormous distance of M4 and K4 oceanographic buoys 

from Five Finger Strand beach and the discontinuity of their records favoured their 

exclusion. Hindcast is a way of testing a mathematical model against known values to 

reconstruct past conditions. This approach usually refers to a numerical model integration 

of a historical period where no observations have been assimilated. As observations of 

surface wave parameters such as the wave height (Hso) are relatively scarce, hindcasting 

is generally a successful alternative.2 

                                                 
2http://www.oceanweather.com/research/HindcastApproach.html 

http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Computer_simulation
http://en.wikipedia.org/wiki/Data_assimilation
http://en.wikipedia.org/wiki/Ocean_surface_wave
http://en.wikipedia.org/wiki/Significant_wave_height
http://www.oceanweather.com/research/HindcastApproach.html
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The hindcast data used here is based on stored data obtained from the weather 

observation, produced by the European Centre for Medium-Range Weather Forecasts 

(ECMWF). These data have become an important and widely utilized resource for the 

study of oceanic processes and predictability since they are produced using fixed, modern 

versions of the data assimilation systems developed for numerical weather prediction. 

Consequently, they are more suitable than operational analyses for use in studies of long-

term variability.3 

The data used here belong to ERA-Interim, which is the latest global atmospheric re-

analysis produced by the ECMWF. It covers the period from 1 January 1989 onwards, 

and continues to be extended since March (2009) in near-real time to support climate 

monitoring (Dee et al., 2011). 

The ECMWF forecasting system consists of several components: an atmospheric general 

circulation model, an ocean wave model, a land surface model, an ocean general 

circulation model and perturbation models for the data assimilation and forecast 

ensembles, producing forecasts from days to weeks and months ahead (Persson & 

Andersson, 2013). 

The wave prediction system is based on the Wave modelling (WAM) approach (Komenet 

al., 1994) which concists in an optimal interpolation scheme to constrain predicted wave 

spectra using altimeter wave height observations (Dee et al., 2011). The sea state is 

described by the two-dimensional wave spectrum which gives the distribution of wave 

variance over different frequencies and propagation directions. Wave energy then follows 

from the product of water density, acceleration of gravity and wave variance.4 

In a generic way, the methodology used to obtain oceanic data from ERA -Interim is: 

 Obtain observations of relevant atmospheric parameters for meteorological 

models (atmospheric pressure, temperature, ice cover, among others); 

 Introduce these atmospheric parameters in an atmospheric general circulation 

model which will use atmospheric pressure to simulate wind fields; 

 The wind field is introduced in the ocean circulation model to generate waves; 

                                                 
3http://www.ecmwf.int/research/era/do/get/Re-analysis_ECMWF 
4 http://www.ecmwf.int/en/research/modelling-and-prediction/marine 

http://en.wikipedia.org/wiki/ECMWF_re-analysis
http://www.ecmwf.int/research/era/do/get/Reanalysis_ECMWF
http://www.ecmwf.int/en/research/modelling-and-prediction/marine


 
BEACH VOLUMETRIC ANALYSIS AND WAVE FORCING ALONG AN IRISH BEACH SYSTEM 

 

UALG-FCT / ISE 2014  

 

58 

 

 And finally, the sea surface wave is then integrated again in the atmospheric 

circulation model to simulate the roughness and friction of the ocean surface that 

will influence their own wind fields (called a two-way coupling of nested models). 

This methodology runs successively each day and all the processes are restarted using the 

new atmospheric observations. 

Since this is a model of global and oceanic range, wave climate conditions are always 

considered at deep water, i.e., the waves are always generated without considering energy 

dissipation by bottom friction and consequently increased wave height in shallow waters. 

A more detailed information about the current status of ERA-Interim production, 

availability of data online, and near-real-time updates of various climate indicators 

derived from ERA-Interim data, can be found at ECMWF site.5 

To have access to ERA-Interim data, a free download is available for a regular grid that 

covers the entire globe. For this specific case, information was extracted for the grid point 

closer to Five Finger Strand (Figure 4.11), at location of 55.5º and -7.5º. The point is 

about 20 km from the beach and has a water depth of approximately -58m. 

The result is a table which contains records for all days and months related to the chosen 

period: 01-01-2004 to 31-12-2012 in this case. Each day presents four records with 6 hour 

intervals in between. Moreover, three types of data can be found, that are the swh - 

significant wave height (meters), mwp - mean wave period (seconds) and mwd- mean 

wave direction (º, starting at North). 

The obtained wave data was compared against the volumetric values obtained for Five 

Finger Strand using the following methodology: 

A. Interaction between wave action and beach volumetric behaviour. A qualitative 

analysis was performed based on graphical observation of the difference between 

beach volumetric results and maximum Hso over the years under study, allowing 

the observation of the behaviour / response of the beach in relation to wave action. 

For this, it were used the monthly average of Hso values, based on daily average, 

                                                 
5http://www.ecmwf.int/research/era 

http://www.ecmwf.int/research/era
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a month before the dates of volumetric surveys of the beach. This correlation helps 

to identify the environmental factors acting on the behaviour of the beach. 

B. The effect of the channel - the channel can affect the volume of the beach 

significantly. To do this analysis, there were identified (with bibliographic 

resource), periods of significant variation of the channel to determine if they 

coincide with periods of increased volume variation of the beach. 

C. The wave direction - the occurrence of sediment erosion / accumulation periods 

may be related to different wave direction. To relate this, the results obtained at 

point “A” were compared with the annual mean wave direction in order to try to 

get some behavioural patterns.  

D. Occurrence of alongshore sediment transport. Part of the sediment can be 

transferred from one location to another alongshore resulting in a differentiation 

in response to wave propagation between profiles. That is, one profile can 

accumulate and the other one can suffer erosion, for similar offshore wave 

conditions, while the total variation of the beach may be zero. This indicates the 

occurrence of alongshore sediment transport. To verify this occurrence the data 

were divided into two groups according to the direction of wave propagation, 

which promote sediment transport in opposite directions. 

E. Finally, the relationship between wave action and each beach profile volume was 

determined for the eight profiles through the use of linear regression, yielding a 

line of best fit and a significance level for the relationship. The calculated lines 

constrained the intercept through the origin assuming that there are no vertical 

variations when the Hso is zero. The resultant equations define the empirical 

relationships between offshore wave height and beach profile volume, which 

enabled a Hso threshold for important morphological changes to be calculated. 
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Figure 4.11: Grid data with the closest point (≈ 20 km) to Five Finger Strand. Font: ERA-Interim data image. 

Five Finger Strand 

Closest point 
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CHAPTER 5 

 

5 RESULTS 

5.1 BEACH VOLUMETRIC ANALYSIS 

5.1.1 Total Volume 

The results obtained with the tool enable an analysis of the beach evolution over the years 

under study. The first results obtained with this tool are the DEM. These DEM, although 

imprecise, due to the large spacing between existing profiles, allow a visual analysis of 

the beach behaviour. The temporal comparison allows a preview and general notion of 

erosion / accumulation locations and periods as well as the behaviour of the shoreline. 

Figure 5.1 allows a temporal visual analysis of results obtained in 2004, 2006, 2008 and 

2012. It is possible to see an indentation of the shoreline in the northernmost part of the 

beach, while the southernmost part seems to move toward the sea. In the northernmost 

part of the beach, it is also possible to observe a decrease in intensity of the colour on the 

positive values indicating an altimetric variation, that is, the occurrence of beach erosion. 

Contrary, the southernmost part presents an accumulation tendency. 
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Figure 5.1: DEM changes along time for the study area. 

To complement this visual analysis the tool produces an excel file with values of areas 

and volumes for all DEM produced. The transposition of these values to charts enables 

an easier volumetric analysis. The following chart shows the volumetric variation from 

2004 to 2012 as well as the trend line of these values (Figure 5.2). The results indicate 

the occurrence of continuous coastal erosion with an average loss of ≈ -2000 m3/year, 

despite the existence of some accretion periods, such as the volumetric accretion in 

2007/11/09, while other are marked by erosion. 

 

Erosion 

Accretion 

2004/02/10 2006/02/01 2008/03/19 2012/01/10 
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Figure 5.2: Beach volume changes from 2004 to 2012 and respective trend line. 

By calculating the difference between the consecutive total volumes obtained in the same 

excel file, it is possible to identify periods of increased erosion / accumulation (Figure 

5.3). Periods of increased erosion are related to 2004/04/07, 2006/09/25 and 2007/11/09, 

and the greatest accumulation occurred in 2007/10/10, with values of -42494 m3; -56455 

m3; -104258 m3 and 42779 m3, respectively. The occurrence of a total erosion of circa 

90000 m3 was verified. 

 

Figure 5.3: Volumetric difference between consecutive surveys. 

Another approach taken by the tool is the DEM resulting from the comparison between 

consecutive surveys. This result allows the observation and easy identification of 

locations where sediment erosion / accumulation occurred. The DEM for the outcomes 

identified in the previous graph (periods of increased erosion and accumulation), are 
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present in Figure 5.4 below. The layer symbology was created so that the areas with 

higher erosion are shown in red, with a gradual change to green, where there are areas of 

sediment accumulation. The north and south parts of the beach suffer erosion. 

 

 

Figure 5.4: DEM resulting from the comparison between consecutive surveys and identification of locations where 

sediment erosion / accumulation occurred. 

5.1.2 Beach Profiles Volume 

For a more precise and detailed analysis of the beach volumetric variation, the beach 

profiles study revealed to be the best approach for this case study. Thus, the tool produces 

two results: excel table with the volume information for a quantitative analysis, and the 

profiles images for qualitative analysis. From the excel file it is possible to obtain the 

charts with volume variation of each profile (Figure 5.5, 5.6, 5.7 and 5.8). All profiles 

showed gradual erosion over the years, except for profile 7. Through the difference 

between consecutive volumetric variations it was possible to quantify the erosion and 

accumulation observed in profiles. The overall volumetric variation for the analysed 
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period was: erosion of 79,954 m3 for profile 1; 65,538 m3 for profile 2; 65,372 m3 for 

profile 3; 31,910 m3 for profile 4; 61,910 m3 for profile 5; 100,471 m3 for profile 6; 25,623 

m3 for profile 8, and an accretion of 58,288 m3 for profile 7. 
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Figure 5.5: Beach Profiles volumetric variations during the study period. 
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Figure 5.6 (Cont.): Beach Profiles volumetric variations during the study period. 
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Figure 5.7 (Cont.): Beach Profiles volumetric variations during the study period. 
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Figure 5.8: Beach Profiles volumetric variations during the study period.
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For the profile behaviour representation the tool produces an image for each profile, and 

another image containing the first and last profile of the study. The following figures are 

the result of the overlap of profiles 6 and 7 (Figures 5.9 and 5.10), profiles that showed 

greater erosion and greater accumulation, respectively. 

 

 

Figure 5.9: BeachPROG result with beach profile graph overlapping of profile 6 from 2004 and 2012. 

Profile 6 

Beach lowering 
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Figure 5.10: BeachPROG result with beach profile graph overlapping of profile 7 from 2004 and 2012. 

5.2 DRIVING FACTORS AND BEACH VOLUMETRIC VARIABILITY 

5.2.1 Hso interactions 

5.2.1.1 Interaction between Hso and beach volumetric behaviour 

Conditions where the beach is exposed to regular sea waves and no change in its angle of 

attack does not always happen, hindering the identification of agents that force such 

behaviours. In a perfect condition an inverse relationship exists between these two 

variables. That is, when the volume of sand increases the wave height decreases, or the 

opposite. However, such conditions do not always occur, evidencing the intervention of 

external agents on beach behaviour. 

For Five Finger Strand, analyses of the relationship / interaction between wave height and 

beach volumetric variations were performed using the monthly average of Hso values, 

based on daily average, a month before the dates of volumetric surveys of the beach. 

Profile 7 

Beach accretion 
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Five Finger Strand presents both episodes. Through figure 5.11 it is possible to verify that 

there are periods where the volume variability is inversely proportional to the Hso 

(marked in green). The green marks correspond to periods of 2004/12, 2005/02, 2005/05, 

2005/06, 2005/11, 2006/03, 2006/04, 2006/07, 2006/08, 2006/09, 2007/05, 2007/06, 

2008/04, 2008/05, 2008/08, 2008/09, 2009/02, 2010/03, 2011/08, 2011/09/, 2011/10 and 

2012/01. The remaining periods do not show this relationship. That is, when volume 

increases Hso also increases and vice versa.
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Figure 5.11: Volumetric difference versus maximum Hso variation. Periods where the volume variability trend is inversely proportional to the wave height variability trend are marked in green. 
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5.2.1.2 Beach behaviour and Hso thresholds 

Once the beach showed moments of direct relationship between wave height and beach 

volumetric variation, as well as moments of inverse relationship, which has evidenced by 

the intervening of external agents, the existence of relationship between waves direction 

and recorded heights was then examined. 

Thus, the maximum wave height of the daily average a month before the month of field 

surveys was used. The relationship between a certain level of Hso and the beach 

behaviour can be checked through the figures 5.12 and 28 below. It is possible to verify 

that Hso shows generally lower values than those presented in Figure 5.13, ranging 

between 3 and 6 m. 

In contrast, figure 5.13, which corresponds to periods in which there is no inverse 

correlation between beach volume and wave action, Hso generally lie between 2 and 7 m. 

 

Figure 5.12: Maximum wave height of the daily average a month before the month of field surveys. These periods 

correspond to the months in which occurred inverse relationship between wave height and beach behaviour. Data are 

generally between 3 and 6 m. 
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Figure 5.13: Maximum wave height of the daily average a month before the month of field surveys. These periods 

correspond to the months in which occurred direct relationship between wave height and beach behaviour Data are 

generally between 2 and 7 m. 

5.2.1.3 Relationship between Hso and beach profile behaviour 

The relationship between beach profile volume and Hso for each profile was quantified 

using a least squares regression applied to each profile. According to Almeida et al., 

(2011), the best statistical method to correlate these two variables, taking into account the 

type of relationship being examined, the dependence / independence between variables 

and the type of relationship between them, is the linear regression.. 

Linear regression is a method for estimating the conditional (expected value) Y of a 

variable, given the values of some other variable X. In other words, these relationships 

essentially predict the beach profile volumetric behaviour in terms of different wave 

conditions. Figure 5.14 indicates a weak correlation between the two variables. The 

resulting relationships are: 

Profile 1 = 0,0725 

Profile 2 = 0,0055 

Profile 3 = 0,0711 

Profile 4 = 0.0512 

Profile 5 = 0,0142 

Profile 6 = 0,1442 

Profile 7 = 0,0683 

Profile 8 = 0,0432
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Figure 5.14: Linear regression between beach profiles volumes and Hso. 
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5.2.2 Channel effects 

Highlighting the relationship between the tidal inlet and the adjacent beach 

morphodynamics, it was made a collection of relevant literature information. Several 

studies conducted analyses to historical data in order to identify this relationship. The 

available information contains a number of indicators of geomorphic change over the past 

180 years. In a chronological order: 

1834 and 1907 - Change in position in the ebb channel from northwesterly to southerly 

through map observations(O’Connor et al., 2011); 

1952 - The inlet channel was in the south, but an abandoned ebb delta in a northwesterly 

position suggested that the channel had recently moved from north to south (O’Connor et 

al., 2011); 

1977 and 1982 (Figure 5.15) - The ebb channel was located in the south of the embayment 

and the ebb delta was present at its terminus. The barrier beach maintained a concave, 

swash-aligned planform and the beach was wide and sandy with a bar near the low tide 

level. An extensive foredune accumulation, backed by a distinct linear former dune 

erosion scarp that was well vegetated, was evident. To the south of the inlet channel the 

rocky coast was fringed by a narrow sandy beach (Cooper et al., 2007 and O’Connor et 

al., 2011); 

1995 – The channel switched once again to the northwest (Cooper et al., 2007 and 

O’Connor et al., 2011); 

2000 Air photographs and field observations showed marked morphological changes 

compared to the 1977 and 1982 situation (Figure 5.15). The ebb channel extended 

obliquely across the beach towards the northwest to a new ebb delta deposited at its 

terminus. Sand from the southern ebb delta had accumulated against the rocky southern 

margin of the bay, building a wide intertidal beach against the rocky bay margin. In the 

north, the barrier beach became depleted of sand, exposing patches of the underlying 

gravel. The foredunes and the frontal margin of the fixed dunes were deeply eroded 

(Cooper et al., 2007); 
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2001 to 2004 - The northern ebb delta began to be reworked by wave action into a series 

of landward-migrating bars on the intertidal and subtidal beach (Cooper et al., 2007); 

February, 2004 - The beach had assumed an overall planar sandy form, covering the 

formerly exposed gravel (Cooper et al., 2007); 

2008 - The channel was in the north and the beach showed signs of stability and the 

subtidal bars appeared to be increasing in size with small amounts of sediment migrating 

onshore periodically (O’Connor et al., 2011). 

 

Figure 5.15: Channel position variability throughout the years. Font: Cooper et al., (2007). Explanations for each date 

can be found at the text. 

In summary, the tidal inlet suffered cyclical variations in position. From maps of 1834, 

1907 and 1952, the ebb channel showed signs that had recently moved to south. That is, 

the channel changed three times its position between the periods 1834 and 1952. Then, 

since 1952, the beach suffered an accretion period, and the beach was wide and sandy 

with a bar near the low tide level. An extensive foredune accumulation was also evident. 

In 1995, the channel switched once again to the northwest. Five years later it was clearly 

evident the morphological changes in the behaviour of both beach and channel. A wide 
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intertidal beach was built against the southern bay margin. In the north, the beach became 

depleted of sand, exposing the underlying gravel. The foredunes and the frontal margin 

of the fixed dunes were deeply eroded. In 2004, the beach started showing signs of 

stability, once it had assumed an overall planar sandy form, covering the formerly 

exposed gravel. In 2008 the beach was completely stable. The subtidal bars appeared to 

be increasing and small amounts of sediment migrating onshore periodically. 

5.2.3 Wave direction 

The behaviour of the beach mentioned above at point 5.2.1 may be in response to the sea 

waves’ direction of actuation. To evaluate the relationship between these two parameters 

two graphs were created, one with the directions of the waves recorded in "green" periods 

and the other with the remaining directions. 

Figure 5.16a, which represents the direction of the waves within the green periods, shows 

different angles of incidence. Despite angle variation from SWS to WNW, a greater 

number of records are between W and WNW directions. 

The opposite is also possible to check with figure 5.16b. That is, despite it varies between 

SSW and WNW direction, the greater angle of incidence for these periods was between 

SW and W. 

It is therefore possible to see that waves from W-WNW seem to have an inverse response 

between wave height and beach volume change while waves from WSW do not seem to 

have such reaction. 
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Figure 5.16: Sea waves directions from “green periods” (a) and remaining ones (b). 

5.2.4 Occurrence of lateral sediment transport 

In open beaches, some of the sediment is transferred alongshore from one profile to 

another, so that one can react negatively and one positively to the wave’s actuation. That 

is, exists sediment transference from some profiles to others. Such variations are highly 

dependent on the direction of wave’s action, for the occurrence of erosion. For the 

existence of accumulation processes, this may be related to shoreline direction, natural or 

artificial obstacles, interaction of external forcing factors, etc.). 

To analyse the existence of such situations, the wave records were divided into two angles 

of incidence. Since the beach is positioned S-N, this division was made between S-W-N. 

So, one group contains directions from S to W and the other one from W to N. 

Subsequently, for each wave direction group(S-W and W-N), the volumetric difference 

between months / years was calculated (02/2004 - 01/2004). The sum of these values was 

used to verify the existence of alongshore sediment transference (Figures 5.17 and 5.18). 

This process was repeated for the eight profiles. 

The behaviour of beach profiles was then analysed. The group containing the incidence 

angle between W and N is composed of periods of 2004/12, 2005/02, 2005/06, 2006/05, 

2006/09, 2007/04, 2007/06, 2007/08, 2007/09, 2007/10, 2008/04, 2008/11, 2010/06, 

a) b) 
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2011/02, 2011/08 and 2012/01. All other records present incidence angles between W 

and S. 

Through the figures 5.17 and 5.18 it is possible to verify that the lateral sediment 

transference has an inverse correlation relative to the wave’s action. That is, waves with 

angles of incidence from NW quadrant provide sediment transference to the north side 

(accumulation at north and erosion at south of the beach), and SW waves provide 

sediment transference to the south side (accumulation at south and erosion at north). 

 

 

Figure 5.17: Lateral sediment transport between profiles with incidence wave angle from NW quadrant. The volume 

difference is related to the sum of all volumetric difference values for periods of 2004/12, 2005/02, 2005/06, 2006/05, 

2006/09, 2007/04, 2007/06, 2007/08, 2007/09, 2007/10, 2008/04, 2008/11, 2010/06, 2011/02, 2011/08 and 2012/01 

for each profile. 
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Figure 5.18: Lateral sediment transport between profiles with incidence wave angle from S to W quadrant. The 

volume difference is related to the sum of all volumetric difference values for all other periods not included in the 

figure 5.17. 
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CHAPTER 6 

 

6 DISCUSSION 

6.1 BeachPROG TOOL FUNCTIONALITY 

The BeachPROG tool proved to be able to integrate and process data in a GIS 

environment in an easy and convenient way. By owning a set of interconnected processes, 

it is also possible the addition, removal and modification of existing relations between 

each process within the tool. 

The tool fields needed for running the BeachPROG tool are easy to fill and are properly 

documented, making the results easily reproducible. However, it is important to know 

and respect the input formats and know exactly the correspondent output, thus enabling a 

proper operation / application of the tool. This information can be accessed at the tool’s 

window as well as in the PDF document available within the tool´s folder. For less 

experienced users with GIS environments, the tool shows in a simple and intuitive way the 

achieved results of the data acquired at Five Finger Strand. 

However, the delay in obtaining results from the tool is one of problems verified. That is, 

while simplifying the work of the users by decreasing the number of processes required 

to achieve the results, high interconnection between processes makes its functionality 

extremely slow and requires an extra effort from the computer. 

It is also important to mention the fact that this tool requires the use of ESRI ArcGIS® 

software and their extensions, presenting difficulties for use by less experienced users as 

well as all conditions involving the use of a closed source software. 

Another downside of using the tool is that it does not allow graphical interaction of input 

data, forcing users an early selection and verification of data. 
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In order to extend and improve its applicability in the study of the morphodynamics of 

beaches, the tool needs to be adapted with the addition of new processes. However, for 

this study, the tool proved to be perfectly able to assist in studies of the morphodynamics 

of Five Finger Strand. Thus, the BeachPROG tool reveals to be a tool with great potential 

to help the scientific community as well as to be a tool with the potential to assist in 

intervention of coastal managers. 

6.2 VOLUMETRIC CHANGES AND WAVE INFLUENCE 

The occurrence of erosion at Five Finger Strand is evident. However, understanding the 

behaviour of the beach over the years and identifying the forcing agents and predicting 

their behaviour, is fairly difficult. As an initial premise, Five Finger Strand (as other 

beaches worldwide) experience high temporal variability in erosion and accretion because 

it suffers the action of wave swash and backwash, tides, climate, and sea-level 

(Rodriguez, Rodriguez, & Fegley, 2012). Other driving factors are the distance between 

headlands, bay shape, grain size, nearshore slope (Klein & Menezes, 2001), and tidal inlet 

influence (O’Connor et al., 2011). These are very generic driving mechanisms that must 

be studied in particular for each coastal area to define what are the most relevant 

mechanisms to justify the observed evolutionary behaviour. 

The beach behaviour obtained here is quite complex and do not complies with all 

interactions described above. Briefly, it is possible to verify that the beach evolution is 

dominated by erosion periods (Figure 5.2), as accretions following each successive 

erosion were not sufficient to regain the position of earlier shorelines. This variability is 

an established trend over 8 years and reflects a sedimentary loss, probably associated with 

a lower sediment source to the region or greater loss in the system (e.g. to the submerse 

zone). However, as the evaluation of the total sediment budget was not performed in this 

Dissertation, it is not possible to indicate the effective reason that leads to this sedimentary 

loss. The results obtained during this study support this conclusion, and are referenced 

below. 

Despite this erosive trend, it has not occurred evenly along the beach. It was found by 

qualitative and quantitative methods that the northern part of the beach seems to be 
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retreating toward the dune. Instead, the southern area showed sediment movement toward 

the sea. This trend causes slight rotation in the direction of beach orientation, exposing 

the southern area to a greater wave’s incidence. Results obtained through the analysis of 

beach profiles also support this analysis. Results of volumetric variations for each profile 

indicate that all the profiles have been eroded, with the exception of profile 7 (Figure 5.5, 

5.6, 5.7 and 5.8). 

Equally, the initial and final profiles overlap observation (2004 and 2012), provided that 

the landward areas suffered greater variation, both positive (profile 7), and negative (the 

remainer of profiles). The areas between the ~ 100 and ~ 130 m seaward also showed 

relatively significant variations. In the remaining parts of profiles, variation was almost 

parallel to the initial profile’s shape (Figure 5.9 and 5.10). 

Consequently, it was found a pattern of beach morphological variation: generalized beach 

lowering by erosion and inland migration throughout the northern sector and from profile 

1 to 6; and enlargement of beach in the south, especially in profile 7, which leads to a 

beach reconfiguration. 

The channel can also be an important external force influencing beach behaviour, which 

contribute to beach volume variation of one month to another. Cooper et al., (2004, 2007) 

and O’Connor et al., (2007) verified that when the channel is in the northwestern position, 

which occurred during the entire study period, the ebb channel builds a new ebb tidal 

delta at its terminus, drawing sand from the adjacent beach. This leads to lowering of the 

beach and enables waves to propagate landward and erode the base of the dune. This 

eroded sand is transferred to the growing northern ebb tidal delta. The southern ebb tidal 

delta is simultaneously abandoned and is reworked by wave action to nourish the pocket 

beaches on the southern margin of the embayment. 

Qualitative relationships can be identified with the channel interaction. From the literature 

review mentioned above, results by Cooper et al., (2004, 2007) and O’Connor et al., 

(2007), revealed the increase occurrence of subtidal bars in 2008. From results of this 

Dissertation, and now relating the evolution of the beach at a smaller scale (months), the 

identification of all periods with inverse relationship between wave action and beach 

volumetric variability can also be related to channel’s interactivity. Accordingly, periods 

with inverse relationship between wave action and beach volumetric variability (Figure 
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5.16) correspond mainly to the direction of wave propagation between WNW and W. The 

remaining periods occurred with directions between SW and W (Figure 5.16). Knowing 

that waves from WNW -W provide erosion when the sea waves are greater, and 

accumulation when the wave propagation is smaller, angles incidence between SW and 

W appears to suffer interactions with other forcers. In this case, the channel effect seems 

to co-operate with this waves’ angle. That is, when the wave height increases, coupled 

with the effect of the channel, the beach erodes. On the other hand, when the wave height 

decreases, the channel effect prevents the beach recovery and so continued erosion or 

stability exists. It is important to mention that the channel is not effective to attenuate 

wave’s energy due to the depth of the channel while the subtidal bars are effective in 

mitigating this energy. 

More associations can be made with the channel actuation. Such is the case of wave’s 

incidence directions. Results point to an inverse relationship between angle of wave’s 

incidence and direction of lateral sediment transport - sediment exchange between 

profiles. For waves from NW, sediment appears to move northward. The erosion occurred 

in the southern beach may be related to the northern headland, which refract the wave, 

reaching the southern part of the beach. Another possible explanation is the dissipation 

effect caused by the sand bars which serves to protect the northside of the beach. Waves 

from SW cause similar effects to the ones provided by the channel. That is, the occurrence 

of lateral sediment transport to the south. This occurrence reinforces the fact that the 

waves from the SW quadrant undergo a strong interaction with the channel. 

It is also possible to observe that these two groups have different wave heights. While 

almost half of the periods marked in green occurred with heights below 4 meters, more 

than half of the remaining periods were subject to wave’s height with more than 5 meters. 

I.e., waves from NW-W and height below 4 meters provided the occurrence of crosshore 

exchanges. This reveals that beach recovery mainly depends on the regime of wave 

propagation and that beach erosion suffers the action of other factors. These results can 

also justify some of the behaviour of alongshore sediment transport. 

It becomes clear that interaction between waves and beach exists. Also, the effect of the 

channel seems to significantly influence both the wave action and the behaviour of the 

beach. It is also possible to identify a general pattern in this behaviour. However, 



 
BEACH VOLUMETRIC ANALYSIS AND WAVE FORCING ALONG AN IRISH BEACH SYSTEM 

 

UALG-FCT / ISE 2014  

 

87 

 

quantifying and predicting these interactions is still extremely difficult and cannot be 

made based on the general results obtained here. Cooper et al., (2004); Jackson et al., 

(2005) and Backstrom et al., (2009) also verified that even with a storm of high enough 

magnitude to cause morphological change, other factors produce potentially important 

differences in coastal response patterns. Such is the case with the high energy swell that 

arrives fully refracted at the shoreline, where an increase in swell size may not necessarily 

create a change in wave energy dispersal patterns; the dissipative morphodynamic beach 

domain, where wave energy is dissipated across the shoreface during increased swell 

regimes and is unlikely to generate an excess of energy in the nearshore beach; or the 

mesotidal range felt at Five Finger Strand, where there is a long tidal interval during 

which short-lived storms will not coincide with such levels, causing a reduced occurrence 

of elevated water levels that exceed normal tidal high water levels. Similarly, O’ Connor 

et al., (2009) have concluded that the erosion at this site is part of a longer 

erosion/accretion cycle. 

More studies should be conducted in order to identify and understand all the processes 

that operate and influence the morphology of Five Finger Strand. Besides closely 

monitoring the morphological beach evolution, with decreased temporal spacing between 

field surveys, which can currently be done with refuse to satellite images; a detailed study 

of the main conditions of sedimentary transference should be performed, thus observing 

the patterns of refraction and energy dissipation relative to sediment transfer. It should 

also be estimated regional sediment budget, which includes the submerged bars and 

estuary, thereby realizing the sediment loss, its cause and location of the transferred 

sediment. 
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CHAPTER 7 

 

7 CONCLUSION 

The knowledge of environmental impacts that influence the beach behaviour at Five 

Finger Strand requires an understanding of the way terrestrial and marine processes 

operate and interact with each other. This requires high-frequency surveys that for reasons 

of unsustainability, degrades severely the measurement accuracy as sampling frequency 

decreases. Also, the spatial distance between sampling profiles also present difficulties in 

our understanding of these interactions. 

The method used here to understand the beach behaviour consists of quantifying the beach 

volumetric variation for each survey period, the analysis of the hydrodynamic forces 

caused by waves and then examination of the correlation or a statistical analysis derived 

from an explicit comparison of the beach volume and hydrodynamic data series. Because 

of the complexity of survey data, and to facilitate its manipulation, a GIS tool was created 

– BeachPROG that automates the intermediate steps to obtain beach volumes and 

profiles. 

This tool revealed in a general way good results, as the data automation, visualization, 

spatial consultation, and spatial analysis can be accessed in a much more intuitive way. It 

is equally important to mention that this tool can serve as a methodological base for other 

investigations, presenting a fully commented, easy script structure that enables further 

modifications and / or script accretions. Contrary, despite being easy to work and 

intuitive, it does not allow graphical interaction of input data, forcing users an early 

selection and verification of data. Also, it is important to know and respect the input 

formats and know exactly the corresponding output, thus enabling an accurate operation 

/ application of the tool. Another difficulty verified with this tool was the delay in 

obtaining results. The high interconnection between processes is the cause of this delay 

in processing all data. 
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The tool proved to be perfectly capable of assisting in the examination of Five Finger 

Strand morphodynamics. For that reason, the BeachPROG tool revealed to have great 

potential in helping the scientific community as well as assisting in the intervention of 

coastal managers. 

With volumetric data as a starting point, comparisons with hydrological data were 

performed. From what has been discussed throughout this Dissertation, as well as based 

on previous papers mentioned throughout this work, it can be seen that there are two types 

of beach behaviours: 

 Short term evolution, which encompasses the response of the beach to the action 

of storms: 

o It is easily identifiable a link between the existence of beach behaviour 

with the direction of wave action. Waves from the NW quadrant has an 

inversely proportional relation to the beach volumetric variation: when 

one increases the other one decreases and vice versa. 

o Similarly, for waves of the same quadrant, there is an alongshore sediment 

transfer from south to north, which can be explained by the existence of 

the northern headland that protects the northern beach, while it causes a 

rotation in the direction of the wave, causing direct interaction with the 

southern beach. The sand bars also provide protection from direct wave 

actuation. 

o Waves from the SW quadrant showed to interact with the beach quite 

differently. There is clear interaction of channel with sediment transport 

from north to south, due to sediment transfer from the beach to the ebb 

tidal delta (in the northern beach), and sediment transference from the 

abandoned ebb tidal delta to the south beach (accumulation in the southern 

area), that causes slight rotation in the direction of beach orientation and 

exposes the southern area to a greater wave’s incidence. 

 Long term beach evolution (years), evidenced through two distinct behaviours: 

o Sediment loss over the years, with an average of ≈ 2000 m3/year. This loss 

seems to be directly linked to the performance of the ebb tidal channel 

with sediment transfer from the beach to the ebb tidal delta / sand bars. 

This erosive behaviour seems to be linked to the channel’s position, since 
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the north position causes erosive behaviour and south a cumulative 

behaviour. Note that the channel was north throughout the period under 

study. 

o Furthermore, the existence of sediment movement toward the base of the 

dune in the north, and towards the sea in the south, which causes slight 

rotation in the direction of beach orientation, exposes the southern area to 

a greater wave’s incidence. 

Full detailed comprehension of how interaction take place between the beach, the 

prevailing hydrological force and the existence of other influential agents cannot be 

revealed within the scope of this Dissertation. Further studies should be conducted in 

order to identify and understand all the processes that operate and influence the 

morphology of Five Finger Strand. Besides closely monitoring the morphological beach 

evolution, a detailed study of the main conditions of sedimentary transference should be 

performed. It should also be estimated regional sediment budget, which includes the 

submerged bars and estuary. 
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# Tool Name: Beach Profile Graph (BeachProG) 

# Author name: Ana Luísa Banja Martins 

# email: albmartins.0306@gmail.com 

 

#_____________________________________________________________________ 

 

# Import arcpy module 

import arcpy 

from arcpy.sa import * 

from arcpy import env 

import os 

import sys 

 

# Overwrite Output 

arcpy.env.overwriteOutput = True 

 

#_____________________________________________________________________ 

### Check for Extension 

# Geostatistical Analyst 

arcpy.CheckOutExtension('GeoStats') 

#Spatial Analyst 

arcpy.CheckOutExtension('Spatial') 

# 3D Analyst 

arcpy.CheckOutExtension('3D') 

 

#_____________________________________________________________________ 
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### Script arguments 

in_data_points = arcpy.GetParameterAsText(0) 

in_data_points_file = in_data_points.split(';') 

Zvalue_field = arcpy.GetParameterAsText(1) 

Output_cell_size = arcpy.GetParameterAsText(2) 

StudyArea_polygon = arcpy.GetParameterAsText(3) 

profile_line_location = arcpy.GetParameterAsText(4) 

Profile_plane_height = arcpy.GetParameterAsText(5) 

Plane_Height = arcpy.GetParameterAsText(6) 

outputFolder = arcpy.GetParameterAsText(7) 

 

#_____________________________________________________________________ 

 

#Get the path name to this script 

scriptPath = sys.path[0] 

#Get the pathname to the ToolShare folder 

toolSharePath = os.path.dirname(scriptPath) 

#Now construct pathname to the ToolData folder 

toolDataPath = os.path.join(toolSharePath,"ToolData") 

#Create the pathname to the graph template 

templatePath = os.path.join(toolDataPath, "Template_graph.tee") 

#Create the pathname to the graph series template 

templategraphSeries = os.path.join(toolDataPath, "Template_graphSeries.tee") 

arcpy.AddMessage("templatePath is " + templatePath) 

#Now construct pathname to the RESULTS folder 
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toolResultsPath = os.path.join(toolSharePath,outputFolder) 

arcpy.AddMessage("output folder " + toolResultsPath) 

#Create the pathname to the raster symbology 

RasterSymbologyPath = os.path.join(toolDataPath, "raster_symbology.lyr") 

#Create the pathname to the minus raster symbology 

MinusSymbologyPath = os.path.join(toolDataPath, "MINUS_symbology.lyr") 

 

#_____________________________________________________________________ 

 

 ## shapefile name: ff_2004_02_10_prf 

 ## split_data_points_name[0]=ff 

 ## split_data_points_name[1]=2004 

 ## split_data_points_name[2]=02 

 ## split_data_points_name[3]=10 

 ## split_data_points_name[4]=prf 

 

#_____________________________________________________________________ 

 

env.workspace = toolResultsPath 

i = 0 

for in_data_points in in_data_points_file: 

 arcpy.AddMessage("in_data is " + in_data_points) 

 

 split_input_data_name = in_data_points.split('_') 

 name = split_input_data_name[1] + split_input_data_name[2] + 

split_input_data_name[3] 

 arcpy.AddMessage("name is " + name) 
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### Process: Create Radial Basis Function (Multiquadratic) 

 RBF = str('RB_') + name 

 featureClassName = arcpy.ValidateTableName(RBF, toolResultsPath) 

 outFeatureClass = os.path.join(toolResultsPath, featureClassName) 

 arcpy.RadialBasisFunctions_ga(in_data_points, Zvalue_field, '#', outFeatureClass, 

Output_cell_size, 'NBRTYPE=Standard S_MAJOR=350 S_MINOR=200 ANGLE=355 

NBR_MAX=16 NBR_MIN=5 SECTOR_TYPE=FOUR_SECTORS', 

'MULTIQUADRIC_FUNCTION', '#') #'NBRTYPE=Standard S_MAJOR=350 

S_MINOR=200 ANGLE=355 NBR_MAX=16 NBR_MIN=5 

SECTOR_TYPE=FOUR_SECTORS' 

 

### Process: Extract by Mask (raster with study area) 

 rasterCLIPname = str('Cp_') + name 

 RC = arcpy.ValidateTableName(rasterCLIPname, toolResultsPath) 

 oRC = os.path.join(toolResultsPath, RC) 

 out_Extract_By_Mask = ExtractByMask(RBF, StudyArea_polygon) 

 out_Extract_By_Mask.save(oRC) 

 

### Process: Make Raster Layer 

 Raster_Layer_name = str('Rt_') + name 

 Raster_Layer = arcpy.MakeRasterLayer_management(oRC, Raster_Layer_name) 

 

### Process: Set the symbology of the output 

 RasterLayerWithSymbology = 

arcpy.ApplySymbologyFromLayer_management(Raster_Layer, RasterSymbologyPath) 

 

### Process: Save to layer file 

 LYR_name = str('RBF_') + name 
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 SAVELayer = os.path.splitext(LYR_name)[0] + ".LYR" 

 arcpy.SaveToLayerFile_management(RasterLayerWithSymbology, SAVELayer) 

 

### Process: Intersect (line with study area polygon) 

 lineCLIPname = 'LineClip' 

 LC = arcpy.ValidateTableName(lineCLIPname, toolResultsPath) 

 oLC = os.path.join(toolResultsPath, LC) 

 arcpy.Intersect_analysis ([profile_line_location, StudyArea_polygon], oLC, 'ALL', '#', 

'INPUT') 

 

### Process: Extract by Mask (profile line) 

 extract_raster_by_line = str('L_') + name 

 EM = arcpy.ValidateTableName(extract_raster_by_line, toolResultsPath) 

 oEM = os.path.join(toolResultsPath, EM) 

 out_Extract_By_Mask_L = ExtractByMask(rasterCLIPname, 'LineClip.shp') 

 out_Extract_By_Mask_L.save(oEM) 

 

### Process: Raster to point 

 raster_cell_points = str('Points_') + name 

 SAVEraster_cell_to_points = os.path.splitext(raster_cell_points)[0] + ".SHP" 

 arcpy.RasterToPoint_conversion(extract_raster_by_line, SAVEraster_cell_to_points, 

'Value') 

 

### Process: Feature Vertices To Points 

 fcList = arcpy.ListFeatureClasses('Line*') 

 for line in fcList: 

 vertice_name = "Vertice" 
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 V = arcpy.ValidateTableName(vertice_name, toolResultsPath) 

 oV = os.path.join(toolResultsPath, V) 

 arcpy.FeatureVerticesToPoints_management(line, oV, 'START') 

 

### Process: Point Distance 

 Distance_between_points = str('Dist_') + name 

 SAVEdistance_between_points = os.path.splitext(Distance_between_points)[0] + 

".DBF" 

 arcpy.PointDistance_analysis('Vertice.shp', SAVEraster_cell_to_points, 

SAVEdistance_between_points, '#') 

 

### Process: Join field 

 arcpy.JoinField_management(SAVEraster_cell_to_points, 'FID', 

SAVEdistance_between_points, 'NEAR_FID', '#') 

 

### Process: Add XY 

 arcpy.AddXY_management(SAVEraster_cell_to_points) 

 

### Process: Sort field 

 sort_field = str('Sort_') + name 

 SAVEsort_fields = os.path.splitext(sort_field)[0] + ".SHP" 

 arcpy.Sort_management(SAVEraster_cell_to_points, SAVEsort_fields, [['DISTANCE', 

'ASCENDING']]) 

 

### Process: Add Field 

 arcpy.AddField_management(SAVEsort_fields, 'Z', 'DOUBLE', '10', '6', '#', '#', 

'NON_NULLABLE', 'NON_REQUIRED', '#') 
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### Process: Delete field 

 arcpy.DeleteField_management(SAVEsort_fields, ['INPUT_FID', 'NEAR_FID', 

'POINTID', 'FREQUENCY']) 

 

### Process: Add Field 

 arcpy.AddField_management(SAVEsort_fields, 'AREA', 'DOUBLE', '10', '6', '#', '#', 

'NON_NULLABLE', 'NON_REQUIRED', '#') 

 

### Process: Add Field 

 arcpy.AddField_management(SAVEsort_fields, 'Z_MIN', 'DOUBLE', '10', '6', '#', '#', 

'NON_NULLABLE', 'NON_REQUIRED', '#') 

 

### Process: Calculate Z min 

 arcpy.CalculateField_management(SAVEsort_fields, 'Z_MIN', Profile_plane_height, 

'PYTHON_9.3', '#') 

 

### Process: Calculate Z (= GRID_CODE + Zmin) 

 if Profile_plane_height < 0: 

 

 arcpy.CalculateField_management(SAVEsort_fields, 'Z', '!GRID_CODE! + 

abs(!Z_MIN!)', 'PYTHON_9.3', '#') 

 else: 

 arcpy.CalculateField_management(SAVEsort_fields, 'Z', '!GRID_CODE!', 

'PYTHON_9.3', '#') 

 

### Process: New shapefile with Z value > Profile_plane_height 

 Name_new_sort_shapefile = str('shp_') + name 

 Save_Name_new_sort_shapefile = os.path.splitext(Name_new_sort_shapefile)[0] + 

".SHP" 
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 arcpy.Select_analysis(SAVEsort_fields,Save_Name_new_sort_shapefile,'"Z" >= 

"Z_MIN"') 

 

### Process: Calculate Area 

 fc = Save_Name_new_sort_shapefile 

 H = [] 

 CrossDist = [] 

 area = [] 

 cursor = arcpy.SearchCursor(fc, '', '') 

 for row in cursor: 

 H.append(row.Z) 

 CrossDist.append(row.DISTANCE) 

 for h in range (0,len(H)-1): 

 h1=H[h] 

 h2=H[h+1] 

 cd1=CrossDist[h] 

 cd2=CrossDist[h+1] 

 if h1>h2: 

  A=(h2*(cd2-cd1))+((0.5*(h1-h2))*(cd2-cd1)) 

 else: 

  A=(h1*(cd2-cd1))+((0.5*(h2-h1))*(cd2-cd1)) 

 area.append(A) 

 

 del row, cursor 

 rows = arcpy.UpdateCursor(fc) 

 C = -1 
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 for row in rows: 

 row.setValue('AREA',area[C]) 

 C = C + 1 

 rows.updateRow(row) 

 del row, rows 

 

### Process: Add Field 

 arcpy.AddField_management(Save_Name_new_sort_shapefile, 'A_TOTAL', 

'DOUBLE', '10', '6', '#', '#', 'NON_NULLABLE', 'NON_REQUIRED', '#') 

 

### Process: Area TOTAL 

 fc = Save_Name_new_sort_shapefile 

 area_total = [] 

 cursor = arcpy.SearchCursor(fc, '', '') 

 for row in cursor: 

 area_total.append(row.AREA) 

 

 del row, cursor 

 rows = arcpy.UpdateCursor(fc) 

 C = -1 

 

 for row in rows: 

 row.setValue('A_TOTAL',sum(area_total)) 

 C = C + 1 

 rows.updateRow(row) 

 del row, rows 
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### Process: Minus 

 rasterList = arcpy.ListRasters('Cp*', 'GRID') 

 for rasterL in rasterList: 

 # Set local variables 

 if len(rasterList)>=2: 

 

 for R in range(0, len(rasterList)-1): 

 R1 = rasterList[R] 

 R2 = rasterList[R+1] 

 #Minus 

 Minus_name = str('M_') + name 

 RM = arcpy.ValidateTableName(Minus_name, toolResultsPath) 

 oRM = os.path.join(toolResultsPath, RM) 

 

 arcpy.Minus_3d(R1, R2, oRM) 

 

### Process: Make Raster Layer 

 min_Layer_name = str('MINlyr_') + name 

 min_Layer = arcpy.MakeRasterLayer_management(oRM, min_Layer_name) 

 

### Process: Set the symbology of the output 

 MinLayerWithSymbology = 

arcpy.ApplySymbologyFromLayer_management(min_Layer, MinusSymbologyPath) 

 

### Process: Save to layer file 

 SAVE_MIN_layer = os.path.splitext(min_Layer_name)[0] + ".LYR" 

 arcpy.SaveToLayerFile_management(MinLayerWithSymbology, SAVE_MIN_layer) 
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### Process: surface volume 

 surface_volume = 'Total_Volume' 

 save_surface_volume = os.path.splitext(surface_volume)[0] + ".CSV" 

 arcpy.SurfaceVolume_3d(oRC,save_surface_volume,"ABOVE",Plane_Height,"1","0") 

 

### Process: surface volume from MINUS rasters 

# surface_volume_minus = 'Total_Volume_Minus' 

# save_surface_volume_minus = os.path.splitext(surface_volume_minus)[0] + ".CSV" 

# rasterList_minus = arcpy.ListRasters('M_*', 'GRID') 

# for rasterMinus in rasterList_minus: 

# arcpy.SurfaceVolume_3d(rasterMinus, save_surface_volume_minus, 'ABOVE', 

Plane_Height, '1', '0') 

 

### Process: Input surface information 

 

arcpy.AddSurfaceInformation_3d('LineClip.shp',oRC,"AVG_SLOPE","BILINEAR","#

","1","0") 

 

### Process: Join Avg_Slope to shapefile 

 

arcpy.JoinField_management(Save_Name_new_sort_shapefile,"FID","LineClip.shp","F

ID","Avg_Slope") 

 

### Process: Make graph 

 # Set local variables 

 graph_name = str('GRF_') + name 

 outMakegraph_IMG = os.path.splitext(graph_name)[0] + ".JPG" 
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 # Create the graph 

 graph = arcpy.Graph() 

 # Add a vertical line series to the graph 

 graph.addSeriesLineVertical(SAVEsort_fields, 'GRID_CODE', 'DISTANCE') 

 # Specify the title of the left axis 

 graph.graphAxis[0] = "Elevation" 

 # Specify the title of the bottom axis 

 graph.graphAxis[2] = "Cross-Distance" 

 # Specify the subtitle of the graph 

 graph.graphPropsGeneral.subtitle = name 

 # Output a graph, which is created in-memory 

 arcpy.MakeGraph_management(templatePath, graph, graph_name) 

 # Save the graph as an image 

 arcpy.SaveGraph_management(graph_name, outMakegraph_IMG, 

"MAINTAIN_ASPECT_RATIO", "600", "375") 

 

### Process: Make graph Series 

 List_feature = arcpy.ListFeatureClasses('Sort_*') 

 for series in range(0, len(List_feature)-1): 

 

 first_profile = List_feature[0] 

 second_profile = List_feature[-1] 

 

 # Set local variables 

 graphSeries_name = "Profile Graph" 

 outMakegraphSeries_IMG = os.path.splitext(graphSeries_name)[0] + ".JPG" 

 # Create the graph 
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 graphseries = arcpy.Graph() 

 # Add a vertical line series to the graph 

 graphseries.addSeriesLineVertical(first_profile, 'GRID_CODE', 'DISTANCE') 

 graphseries.addSeriesLineVertical(second_profile, 'GRID_CODE', 'DISTANCE') 

 # Specify the subtitle of the graph 

 first_profile_split = first_profile.split('_') 

 second_profile_split = second_profile.split('_') 

 first_profile_name = first_profile_split[1] 

 second_profile_name = second_profile_split[1] 

  

 first_BPG = first_profile_name.split('.') 

 second_BPG = second_profile_name.split('.') 

 first_BPG_name = first_BPG[0]  

 second_BPG_name = second_BPG[0]  

 graphseries.graphPropsGeneral.subtitle = first_BPG_name + ', ' + second_BPG_name 

 # Output a graph, which is created in-memory 

 arcpy.MakeGraph_management(templategraphSeries, graphseries, graphSeries_name) 

 # Save the graph as an image 

 arcpy.SaveGraph_management(graphSeries_name, outMakegraphSeries_IMG, 

"MAINTAIN_ASPECT_RATIO", "600", "375") 

 

#_____________________________________________________________________ 

 

### Process: Convert table to excel. ONLY FOR ARCGIS 10.2!!!!!!!!! 

 TableToExcelname = name 

 outTableToTable = os.path.splitext(TableToExcelname)[0] + ".xls" 
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 arcpy.TableToExcel_conversion(Save_Name_new_sort_shapefile, 

outTableToTable,"ALIAS","CODE") 

#_____________________________________________________________________ 

 

 # Process: Delete data from disk 

 arcpy.Delete_management(outFeatureClass) 

 arcpy.Delete_management('LineClip.shp') 

 arcpy.Delete_management(oEM) 

 arcpy.Delete_management(SAVEraster_cell_to_points) 

 arcpy.Delete_management('Vertice.shp') 

 arcpy.Delete_management(SAVEdistance_between_points) 

 #arcpy.Delete_management(SAVEsort_fields) 

 

 

 i = i + 1 

 

 


