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Abstract

Recent experiments have shown that apical constriction (AC) during neural
tube closure (NTC) is driven by cell contractions preceded by asynchronous and
cell-autonomous Ca2+ flashes. Disruption of these Ca2+ signals and contractions
leads to neural tube defects, such as anencephaly. However, the inherent two-way
mechanochemical coupling of Ca2+ signaling and mechanics is poorly understood,
and live-cell imaging is difficult. Thus, models can help greatly but the few avail-
able partially reproduce experimental findings. We first study a modified imple-
mentation of the mechanochemical vertex model of Suzuki et al [196]; the modified
Suzuki model. We numerically implement it by developing CelluLink, a new open-
source (Python), user-friendly software package for vertex modelling. CelluLink’s
parallel processing enables fast yet thorough parameter sweeps, guided by an an-
alytically derived bifurcation diagram. CelluLink can be adapted to study other
multicellular challenges. Subsequently, in close collaboration with experimental-
ists, we develop a one-way mechanochemical model to study the effect of Ca2+

on mechanics. This model significantly improves upon the Suzuki model, repro-
ducing several experimental observations. We incorporate, for the first time, the
surface ectoderm and the experimental Ca2+ flash amplitude and frequency pro-
files. Furthermore, guided by experiments, we model the damping coefficient of
the vertices and cell-cell adhesion as functions of actomyosin concentration and
cell size. The one-way model successfully reproduces the significant reduction in
neural plate size during AC, within 2%-8% of the initial area. We then develop a
two-way mechanochemical model which captures the two-way coupling between
Ca2+ signals and mechanics. We incorporate stretch-sensitive Ca2+ channels, en-
abling the cell to respond to mechanical stimuli. The model reproduces the results
of the one-way model, but more accurately, the Ca2+ frequency and amplitude
arise from the interaction between the cells and are not imposed. We leverage
our models to propose a series of hypotheses for future experiments.
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Chapter 1

Introduction

1.1 Motivation

Neurulation, a key developmental process, takes place in the early stages of
embryogenesis, typically during the third week of gestation [141]. During neuru-
lation, the neural plate tissue transforms into the neural tube in a process known
as neural tube closure (NTC) (Figure 1.1). The neural tube is the embryonic
precursor to the central nervous system, which is made up of the brain and spinal
cord. The failure of NTC results in neural tube defects, like Anencephaly and
Spina Bifida (Figure 1.2), which are among the most common congenital malfor-
mations, affecting over 300,000 births annually, worldwide [41].

NTC is facilitated by a process in which the cells of the anterior neural plate
undergo a dramatic change in size, apical constriction (AC) [33]. During AC,
the apical side of a cell contracts, causing the cell to take on a wedged shape
(Figure 1.3) [120]. This shape change is coordinated across many cells of the
neuroepithelial layer and generates the force required to bend or fold the cell
layer.

Experiments have shown that AC during NTC is driven by Ca2+-induced cell
contractions and that disrupting the Ca2+ signals leads to malformations [33, 196].
However, this interplay of Ca2+ signalling and cell mechanics and its effect on NTC
is poorly understood. Furthermore, live-cell imaging is difficult since NTC entails
the neural plate folding in on itself. In this scenario, mathematical modelling
and simulations are indispensable. However, there are very few models of Ca2+

signalling in AC [96, 196], and they only capture a small number of the behaviours

1
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Figure 1.1: Schematic depicting a neural plate undergoing NTC. The cells of the
neural plate undergo AC, causing the neural plate to fold and form the neural

tube. Source: [142].
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(a) Spina Bifida. (b) Anencephaly.

Figure 1.2: Disruptions in NTC lead to neural tube defects in embryos, such as
Spina Bifida and Anencephaly. Spina Bifida encompasses a spectrum of defects,
including myomeningocele, illustrated in Figure 1.2a, where the spinal cord and

meninges protrude through a spinal opening. This condition often results in
neurological impairments like paralysis and issues with bladder and bowel

control. Figure 1.2b depicts Anencephaly, a fatal condition where the infant is
born without parts of the brain and skull. Source: [22, 210].
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Figure 1.3: Schematic depicting a group of cells undergoing AC. Constriction of
the apical side of cells in an epithelial layer generates enough force to initiate
invagination. The wedge shape results when constriction of the apical side of

the cell squeezes the cytoplasm, expanding the basal side.

observed experimentally.
The aim of this doctoral thesis is to develop new mathematical models of the

anterior neural plate during the AC phase of NTC based on the data available
from experiments. These models aim to accurately capture the mechanochemical
coupling between Ca2+ signalling and cellular mechanics, reproducing a variety
of experimentally observed behaviours in silico. The models can then be used
to study processes at the sub-cellular, cellular, and tissue level, which would be
difficult or impossible to explore experimentally, and identify future directions for
in vivo experiments.

The research for this thesis was undertaken in collaboration with Dr. Neophy-
tos Christodoulou and Prof. Paris Skourides, experimentalists at the University
of Cyprus, and guided by frequent discussions with Prof. Philip Maini and Prof.
Ruth Baker, at the University of Oxford.
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1.2 The cellular machinery

Ca2+ signalling is an indispensable method of information transfer within the
human body [17]. In this project, we focus on the role of Ca2+ signalling in NTC
and its interplay with mechanical forces at the cell and tissue-level. Before we
address the current state of research in the field, it is worth visiting the cellular
machinery driving Ca2+ signalling and tissue morphogenesis to gain familiarity
with the terminologies used and mechanisms involved.

1.2.1 Ca2+ signalling

In a typical cell, the resting concentration of Ca2+ in the cytosol is maintained
at ≈ 100nM. This is between 20,000 to 100,000 times lower than the Ca2+ con-
centration of the extracellular fluid [37], and between 1,000 to 8,000 times lower
than the Ca2+ concentration of the endoplasmic reticulum (ER) [20], the major
store of Ca2+ in the cell.

Due to the extremely low cytosolic Ca2+ concentration, the entry of minute
quantities of Ca2+ ions from the ER or from the extracellular fluids causes rapid,
distinctive, and readily reversible changes in the cytoplasmic Ca2+ concentra-
tion, which manifest as transients, oscillations, and waves. This enables Ca2+ to
serve as a very fast, potent intracellular signal, a second messenger1, for various
functions e.g. muscle contraction, blood clotting, wound healing, fertilization,
embryogenesis, and cancer [17].

The different types of Ca2+ fluctuations in cells exhibit distinct characteristics
in terms of duration, amplitude, frequency, and spatial propagation. A Ca2+

transient (also referred to as a Ca2+ flash or Ca2+ pulse) occurs when the cytosolic
Ca2+ concentration rises transiently, transitioning the cell from a low Ca2+ state
(inactivated) to a high Ca2+ state (activated) [33, 196]. Ca2+ oscillations refer
to repetitive, rhythmic fluctuations in cytosolic Ca2+ concentration [53], while
Ca2+ waves are propagating waves of increased cytosolic Ca2+ concentration that
spread spatially across cells or tissues [14].

The Ca2+ signalling process is initiated when the concentration of cytosolic
Ca2+ rises. When Ca2+ acts as the primary messenger, the process is triggered
when Ca2+ enters the cell through ion channels on the plasma membrane. When

1Second messenger A molecule that relays signals received at receptors on the cell’s surface
to target molecules or structures inside the cell.
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Figure 1.4: The PLC pathway for Ca2+ signalling (R - Receptor, G - GPCR).
Source: [185].

Ca2+ acts as the secondary messenger, the cell is stimulated to release Ca2+ ions
from intracellular stores, such as the ER, when an agonist2 binds to a receptor
on the plasma membrane [37].

The most common signalling pathway that leads to an increase in the cyto-
plasmic Ca2+ concentration is the phospholipase-C (PLC) pathway (Figure 1.4),
which is activated as follows [5]:

1. Upon stimulation, i.e., agonist-receptor binding, the receptor (located on
the plasma membrane) activates the PLC enzyme via the G protein-coupled
receptors (GPCR).

2. PLC hydrolyses the membrane phospholipid phosphatidylinositol 4,5-bipho-
sphate (PIP2) to form the water soluble inositol 1,4,5-triphosphate (IP3),
and lipid soluble diacylglycerol (DAG).

3. IP3 diffuses to the ER and binds to an IP3 receptor.
2Agonist A molecule that binds to a receptor on a cell, triggering a response from the cell.
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4. The IP3 receptor (IPR) then activates and begins to serve as a channel to
release Ca2+ from the ER into the cytosol.

In all non-muscle cells that exhibit Ca2+ waves, the inositol 1,4,5-triphosphate
receptor (IPR)/Ca2+ channel governs the mechanism of Ca2+ release from the
ER. The release of Ca2+ via IPR channels can stimulate the release of additional
Ca2+ from the ER, often by binding to the IPR and increasing its open probability
[70]. This leads to the autocatalytic3 release of Ca2+ from the ER, in a process
called Ca2+-induced Ca2+ release (CICR) [185].

Since Ca2+ itself is an activator of the IPR, the rate of IP3-induced Ca2+ release
(IICR) was shown to be enhanced when cytosolic Ca2+ concentration is within a
certain range [70]. However, if the Ca2+ concentration exceeds the upper bound
of this range, the rate of IICR will be suppressed e.g. for brain cells, this value is
between 100nM (inactivated state) and 1µM [66].

The Ca2+ signalling process is terminated when ATP-dependent Ca2+ pumps,
located in the plasma membrane (plasma membrane Ca2+ ATPases - PMCAs)
and in the membranes of organelles such as the ER (sarco/endoplasmic reticulum
Ca2+ ATPases - SERCAs), actively transport Ca2+ ions against their concentra-
tion gradient out of the cytoplasm and into the extracellular space or back into
intracellular calcium stores. This process thereby decreases the cytoplasmic Ca2+

concentration and restores Ca2+ homeostasis [185].
While Ca2+ signalling appears deterministic and tightly regulated at the cell

and tissue scale, several stochastic elements contribute to variability and complex-
ity in signalling dynamics. Essentially, Ca2+ flashes are emergent properties of
the interaction of channel-level stochastic processes [54]. Some of these stochastic
elements are:

• Channel gating: The opening and closing of IPR channels can exhibit
stochastic behaviour, leading to variability in the timing and magnitude
of Ca2+ fluxes [54].

• Buffering: The binding of Ca2+ ions to intracellular buffering proteins, such
as calmodulin, can exhibit stochastic interactions due to the random colli-
sion of ions and proteins. This can influence Ca2+ dynamics by modulating
the duration and amplitude of Ca2+ flashes [40].

3Autocatalytic reaction A chemical reaction is said to be autocatalytic if one of the
reaction products is also a catalyst for the same or a coupled reaction.
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• Feedback regulation: Feedback mechanisms within Ca2+ signalling pathways,
such as the Ca2+-dependent opening and closing of ion channels or activa-
tion of Ca2+-regulated enzymes, can introduce stochasticity into signalling
dynamics [54].

1.2.2 Cell mechanics

Figure 1.5: Schematic depicting the ratchet-like mechanism proposed by Martin
et al [121]. Actin filaments (red) coalesce across the apical cortex, forming a
network. Myosin (green) accumulates on this actin network. Myosin activity
causes the actin filaments to contract, pulling on the cell boundaries, which

leads to a reduction in apical surface area.

The cell cortex is a specialized region near the cell membrane in animal cells
[198]. It is a dynamic and structurally complex layer primarily composed of
cytoskeletal elements, such as actin filaments, and associated proteins, such as
myosin. The actin filaments form a network just beneath the cell membrane.
This actin cytoskeleton provides structural support and contributes to the de-
termination of cell shape. When myosin molecules attach to the actin filaments,
they function as motors and contract the actin filament, which pulls on the junc-
tions of the cell boundary, reducing the area of the cell [46, 121]. The degree of
assembly and crosslinking of the actomyosin bundles determines the mechanical
properties, shape, and size of the cell [24].

During AC, actin filaments accumulate in the apical cortex, providing a sub-
strate for the binding of myosin molecules (collectively referred to as the apical
actomyosin network) [121]. The motor activity of the myosin molecules causes
actin filament contraction, which results in a reduction of the cell’s apical surface
area. The relaxation of the apical area results from the exhaustion of the myosin
motors, which detach from the actin filaments, allowing for the relaxation of the
actin network back to a ‘rest area’ [121].
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If the actin network is reassembled during contraction, the network can no
longer relax to its previous rest area, and instead settles into a smaller rest area.
The repeated assembly and disassembly of the actomyosin bundles results in
pulsed contractions of the apical area. Thus, AC proceeds incrementally via a
ratchet-like mechanism of contraction and stabilization [121]. The process is de-
picted in Figure 1.5. Despite the dynamic nature of the contractions in individual
cells, the behaviour of the system at the tissue level is continuous i.e. the tissue
area decreases monotonically [121].

1.2.3 Coupling of Ca2+ signalling and mechanics

Ca2+ can regulate the activity of the actomyosin network [136]. When a Ca2+

transient occurs in a cell, it changes the structure of the actomyosin bundles in
the cell cortex, triggering them to generate contractile stresses [138]. The forces
generated by the myosin motors (tension) and actin filaments (elastic forces) are
in the piconewton range [9, 38].

At low Ca2+ levels (≈ 100nM), the actomyosin network is highly crosslinked4

and stable [66]. As Ca2+ concentration rises, the network begins to contract
actively. If the Ca2+ level is too high (in the micromolar range), however, the
network becomes so weakly crosslinked that it cannot support any more stress
[136]. Thus, there is a ‘window’ of Ca2+ concentration which is optimal for con-
tractile activity.

Actomyosin-based contractions have been documented in response to Ca2+

release in both embryonic and cultured cells [33, 82, 89, 196, 215] and it has
become clear that Ca2+ is responsible for contractions in both muscle and non-
muscle cells, albeit through different mechanisms [40].

In striated muscle cells, cell contraction is mediated by the binding of Ca2+

to troponin but in non-muscle cells (and in smooth muscle cells), contraction
is mediated by phosphorylation of the regulatory light chain of myosin. This
phosphorylation promotes the assembly of myosin into filaments, and it increases
myosin activity. Myosin light-chain kinase (MLCK), the enzyme responsible for
this phosphorylation, is itself regulated by calmodulin5 [173]. Elevated cytosolic
Ca2+ promotes the binding of calmodulin to MLCK, resulting in its activation.

4Crosslinking The process of chemically joining two or more molecules by a covalent bond.
5Calmodulin A Ca2+-binding protein found freely floating in the cytoplasm of the cell.
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This activation leads to the subsequent phosphorylation of the myosin regulatory
light chain, followed by myosin contraction.

In some tissues, these Ca2+-induced contractions result in distinct changes in
cell shape. One such example is AC [213], which is the subject of our modelling
problem. AC is essential for tissue and organ development, playing a critical role
not only during NTC [33, 196] but also in other processes [170] such as wound
healing in Xenopus [47], eye patterning in Drosophila [172], and gastrulation in
Drosophila [42] and C. elegans [165].

To date, there have been many studies exploring the role of Ca2+ signalling in
tissue morphogenesis. Here, we look at some experimental studies that explore
the relationship between Ca2+ and tissue mechanics in the context of fertilization
and embryogenesis.

Starting from the Ca2+ waves manifesting in the egg during fertilization [49],
Ca2+ plays a vital role in every stage of embryonic development. Throughout
fertilization and embryogenesis, Ca2+ signals evoke mechanical responses in cells
and tissues [4, 33, 215]. This influences morphogenesis and, ultimately, impacts
organogenesis.

In fertilization, experiments have shown that an increase in Ca2+ concentration
is sufficient to induce many of the inherent processes [23, 191, 192]. Indeed,
in some cases of fertilization failure that might occur during intra-cytoplasmic
sperm injection (ICSI) cycles in IVF treatment, oocyte activation can be induced
manually by injecting Ca2+ [97].

The amplitude and frequency of the Ca2+ oscillations at the time of fertilization
affect the processes occurring in the later stages of embryonic development. In
a study involving fertilized eggs implanted in surrogate rabbit mothers, it was
observed that the morphology of the developing embryos depended upon the
stimulating Ca2+ wave patterns of the initial hours following fertilization [199].

The importance of Ca2+ signalling in the later stages of embryonic develop-
ment is also well known and backed by empirical evidence. For instance, Ca2+

waves accompany convergent extension movements during gastrulation [215] and
Ca2+ transients regulate the following processes: apical-basal cell thinning in the
enveloping layer cells [228], morphological patterning in the brain [166, 218], and
NTC [33, 196].

It is no surprise, therefore, that experimentally induced changes in intracellular
Ca2+ concentration were found to perturb the following morphogenetic processes:
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neural fold formation in Xenopus [132], cell rearrangements during somitogenesis
in chicken [31] and zebrafish [109], tissue folding during sea urchin gastrulation
[103], convergent extension movements during gastrulation in Xenopus [79, 215]
and zebrafish [102], epiboly progression in zebrafish [30, 161] and newt [201], and
elongation of the egg chamber in Drosophila [80]. Crucially, it was observed that
pharmacological inhibition of Ca2+ led to defects in the embryo [33, 196, 215].

Conversely, the ability of cells to sense and respond to forces by elevating
their cytosolic Ca2+ concentration is also well established. Ca2+ release can be
triggered by straining the cytogel, a phenomenon called ‘stretch activation’ [136].
Stretch sensitive Ca2+ channels (SSCCs) on the cell membrane allow Ca2+ to flow
into the cytosol from the extracellular space. They are activated when exposed
to mechanical stimulation and they close either by relaxation of the mechanical
force or by adaptation to the mechanical force [11, 54, 78, 131].

Mechanically stimulated Ca2+ waves have been observed propagating through
developing rat brain glial cells [25, 26, 27], developing epithelial cells in Drosophila
wing discs [139], and many other cell types [16, 168, 169, 209, 225, 226]. These
studies show that different types of mechanical stimuli, from shear stress to direct
mechanical stimulation, can elicit Ca2+ elevation (although the sensing mecha-
nism may differ in each case).

Therefore, it is clear that cytosolic Ca2+ concentration can be elevated not
only due to the action of chemical signals (extrinsic to the cell), as discussed in
Section 1.2.1, but also because of mechanical stresses.

Since mechanical stimulation elicits Ca2+ release and Ca2+ elicits contrac-
tions, which are sensed as mechanical stimuli by the cell, it can be inferred that
there must exist a two-way mechanochemical feedback between Ca2+ and
cell contraction. Furthermore, this indicates that cells communicate not only
through chemical signalling but also through mechanochemical transduction6.

Now, we briefly review two studies [33, 196] that are of particular importance to
this thesis because they focus specifically on the role played by Ca2+ in reshaping
cells undergoing AC during NTC.

Christodoulou and Skourides’ study [33] of Ca2+ flashes during NTC in Xeno-
pus embryos revealed that the contraction pulses in cells undergoing AC are trig-
gered by ‘cell-autonomous’ Ca2+ flashes and that the contraction pulses are driven

6Mechanochemical transduction The conversion of mechanical signals into biochemical
responses or vice versa.
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by the contraction of a transient apical actin network. They observed that the
Ca2+ flashes are typically restricted to single cells and that cell contraction typ-
ically followed within a minute of the occurrence of a Ca2+ flash. Additionally,
they provided evidence that the cell autonomy and asynchrony of contractions
are required for the correct spatial distribution of constriction and, as a result,
are critical for tissue morphogenesis.

Suzuki et al [196] examined the role of intracellular Ca2+ signalling during NTC
in Xenopus by live-recording the dynamics of the actin complex in neuroepithelial
cells during AC in the vertebrate neural plate. They show that intracellular Ca2+

signalling is essential for Xenopus neural tube formation and that there are two
types of Ca2+ fluctuations, a single-cell and a multicellular wave-like transient,
in the developing neural plate. They observed that transient increases in Ca2+

concentration induced cortical F-actin (filamentous actin) remodelling, leading to
AC and accelerating NTC.

Because of their importance to this doctoral work, the studies above will be
covered in detail in Chapter 2, where we will describe the full range of character-
istic behaviours observed in the anterior neural plate during NTC.

Based on observations in [33, 196], we understand that cells are chemically
isolated from one another, meaning that Ca2+ transients from one cell cannot
propagate to another. Therefore, any model aiming to simulate the constricting
anterior neural plate during the AC phase of NTC must be able to resolve indi-
vidual cells. Essentially, we are interested in studying how changes in the shape
and size of individual cells impact the rate and extent of tissue morphogenesis.

In the following section, we will review some key Ca2+ signalling models and
mechanical models to determine the most suitable modelling approach for our
specific problem.

1.3 Mathematical models

1.3.1 Ca2+ signalling

Ca2+ oscillations and waves appear over diverse timescales and lengthscales
and pose many interesting mathematical questions. A multitude of deterministic
and stochastic Ca2+ signalling models have been presented in the literature for
various cell types and at various scales [54, 60, 98].
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Figure 1.6: A schematic diagram for Ca2+ dynamics, depicting Ca2+ fluxes into
and out of the cytosol. Jrelease and Jserca denote Ca2+ flux from the ER into the
cytosol and Ca2+ flux from the cytosol to the ER, respectively. Jpm and Jinflux

denote Ca2+ efflux from and influx to the cytosol across the plasma membrane,
respectively. ce and c denote the Ca2+ concentration in the ER and cytosol,

respectively.

A typical Ca2+ dynamics schematic (Figure 1.6) describes the various Ca2+

fluxes into and from the cytoplasm. Using the conservation of Ca2+, a simple
model could be constructed as follows [185]:

dc

dt
= Jrelease − Jserca + Jinflux − Jpm, (1.1)

dce

dt
= γ(Jserca − Jrelease), (1.2)

where c denotes the cytosolic Ca2+ concentration, ce denotes the Ca2+ concentra-
tion in the ER, Jrelease and Jserca denote Ca2+ flux from the ER to the cytosol and
Ca2+ flux from the cytosol to the ER, respectively, Jpm and Jinflux denote Ca2+

efflux from and influx to the cytosol across the plasma membrane, respectively,
and γ denotes the ratio of the cytoplasmic volume to the ER volume.

Equations (1.1) and (1.2) equate the temporal rates of change of c and ce to the
influx and efflux of cytosolic Ca2+ and Ca2+ in the ER, respectively. Additional
Ca2+ fluxes such as mitochondrial and buffer fluxes can be added in the same
manner. Also, the conservation equations for c and ce can be coupled to other
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equations that describe, for instance, the cytosolic IP3 concentration, the fraction
of active IPRs on the ER, and the states of the ATPase pumps or Ca2+ buffers
[12, 48, 52, 75, 111].

In some cell types, Ca2+ oscillations occur practically uniformly across the
cell, meaning that at any time, the measurement of the Ca2+ concentration at
any point of the cell would yield the same value [185]. More often, however,
the Ca2+ signal takes the form of a wave moving across the cell. To account
for Ca2+ diffusion, the model must include a diffusion term. It is frequently
assumed that Ca2+ diffuses with constant diffusion coefficient, Dc, and that the
cellular cytoplasm is isotropic and homogeneous. Adding the diffusion term to
Equation (1.1), the resulting reaction-diffusion equation for Ca2+ is

∂c

∂t
= Dc∇2c + Jrelease − Jserca + Jinflux − Jpm. (1.3)

Below, we briefly review some seminal models of Ca2+ signalling. The Gold-
beter model [75] is based on CICR from intracellular stores and shows how sus-
tained oscillations of cytosolic Ca2+ may arise as a result of a rise in IP3, triggered
by external stimulation. The model contains only two variables (concentrations
of free Ca2+ in the cytosol and in the ER) and predicts the occurrence of peri-
odic Ca2+ spikes in the absence of IP3 oscillations, indicating that repetitive Ca2+

spikes do not necessarily require the concomitant, periodic variation of IP3 and
can be induced by external stimulation.

The De Young-Keizer model [48] was developed to investigate the properties
of the IPR/Ca2+ channel. The rate constants in the equations were tuned to
fit kinetic and equilibrium data and it was found that the model successfully
reproduced a variety of in vivo and in vitro experiments [74, 133, 184, 204]. The
model incorporates a positive-feedback mechanism of Ca2+ on IP3 production by
the PLC pathway. This was noted to enrich the properties of the oscillations and
led to Ca2+ oscillations accompanied by IP3 oscillations.

Atri et al [12] constructed two models: an ODE model for Ca2+ oscillations
and a PDE model for Ca2+ waves. The two-variable ODE model expresses oscil-
lations of cytosolic Ca2+ and is based on Ca2+ release via the IPR/Ca2+ channel.
The variables represent cytosolic Ca2+ concentration and the percentage of IPRs
that have not been inactivated, respectively. The PDE model incorporates IP3

dynamics by introducing a third variable, cytosolic IP3 concentration, and adding
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diffusion terms for Ca2+ and IP3. The ODE model exhibits Ca2+ oscillations for a
constant value of IP3 concentration and the PDE model produces circular, planar,
and spiral waves of Ca2+ which annihilate upon collision. Both models reproduce
a number of crucial experiments [66, 72, 90, 104, 156].

The Li-Rinzel model [111] reduces the nine-variable De Young-Keizer model
to a two-variable system. Similar to the Atri ODE model, the variables represent
cytosolic Ca2+ concentration and the percentage of IPRs that have not been
inactivated. This was achieved by using the method of multiple scales to solve
the equations of the De Young-Keizer model on a succession of faster time scales
to reduce it to a 2D system. The reduced system is analogous in form to the
Hodgkin-Huxley equations for plasma membrane electrical excitability [84].

1.3.2 Cell mechanics

Tissue morphogenesis is an area of great fascination for many applied mathe-
maticians and mathematical biologists. Often involving a large number of cells,
this phenomenon poses a significant modelling challenge that requires an interdis-
ciplinary effort from both experimental biologists and mathematical modellers.
The models used to study tissue-level deformations can be broadly grouped into
two classes:

• Discrete or cell-based models

• Continuum models

Cell-based models are used to capture cell shapes and the interplay of intra-
cellular and intercellular forces within a tissue. They allow for a more detailed
description of the cellular and sub-cellular dynamics that influence tissue scale
behaviour and can be broadly categorized as on-lattice or off-lattice models. Con-
tinuum models coarse-grain such detail to derive a system of PDEs that describe
the tissue as a continuum, prioritizing global properties and behaviours.

Cell-based models

• On-lattice models: On-lattice models such as cellular automata or cellular
Potts restrict the spatial arrangement of the cells to a fixed grid. The me-
chanical interactions are carried out according to deterministic or stochastic
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rules (cellular automata) or by minimizing the total energy of the system
(cellular Potts), resulting in cells being displaced from one grid box to an-
other.

• Off-lattice models: Off-lattice models allow for the continuous movement of
cells in space and evolve the system in time according to force laws gov-
erning the mechanical interactions between the individual cells. Examples
of off-lattice models are vertex models and centre-based models e.g. node-
based models, which can be modelled as overlapping spheres, or mesh-based
models, where the cell centres are denoted by mesh points and the polygonal
cell area is determined by Voronoi tessellations with respect to the centres
of the neighbouring cells.

These models treat cells, or sub-cellular components, as discrete entities and
are the natural candidates for studying the regulation of cell-level processes in
tissue dynamics. However, they are less amenable to mathematical analysis than
continuum models. The precise rules and methods of implementation differ be-
tween modelling approaches and must be adapted to suit the requirements of the
biological system under study. Five of the most widely used approaches are listed
below:

1. Cellular automata: Each lattice site (or grid box) can contain at most a
single cell (Figure 1.7a). The system is evolved discretely, using a fixed
time-stepping or event-driven approach, with the new state of each cell de-
termined using deterministic or stochastic rules and the state of the system
at the previous timestep. The computational simplicity of this approach
makes it the method of choice for simulating large numbers of cells [107].

2. Cellular Potts: Each cell can be represented by several lattice sites, allowing
for more realistic cell shapes (Figure 1.7b). The shape of each cell is evolved
via some form of energy minimization. Unlike cellular automata, the cellular
Potts model can incorporate mechanical processes such as cell membrane
tension, cell-cell and cell-substrate adhesion, and cell volume conservation.
The cellular Potts model has been used to study biological processes ranging
from cell sorting [73] and morphogenesis [93] to tumour growth [180].

3. Overlapping spheres: Cells are treated as particles which are free to move
in space (Figure 1.7c). The centre of each cell is tracked over time. The
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(a) Cellular automata. (b) Cellular Potts.

(c) Overlapping spheres. (d) Voronoi tessellation.

(e) Vertex model.

Figure 1.7: Schematics of the five most widely used cell-based models: (a)
Cellular automata (on-lattice), (b) Cellular Potts (on-lattice), (c) Overlapping
spheres (off-lattice), (d) Voronoi tessellation (off-lattice), and (e) Vertex model

(off-lattice).
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overlapping spheres approach views cells as spherical in the absence of any
interactions but which deform upon cell-cell or cell-substrate contact [50].

4. Voronoi tessellation: The shape of each cell is defined to be the set of
points in space that are nearer to the centre of the cell than the centres of
any other cell (Figure 1.7d); a Delaunay triangulation [15] is performed to
connect those cell centres that share a common face, thus determining the
neighbours of each cell. In both, overlapping spheres and Voronoi tessella-
tions, Monte Carlo methods [51] or Langevin equations [227] may be used
to simulate cell dynamics.

5. Vertex models: Each cell is modelled as a polygon, with the edges repre-
senting the cell’s membrane (Figure 1.7e). Vertex models track the vertices
of the polygon and update the position of each vertex according to tensions
in the cell membrane, resulting from cell-cell adhesion forces, cell elastic-
ity, compressibility, and cytoskeletal contractility. Additional rules can be
implemented to govern cell neighbour rearrangements, growth, mitosis, and
cell death. These models are commonly used to describe tightly packed
epithelial cell sheets [62].

Continuum models

The continuum description of a tissue can either be conceptualized from first
principles or derived from an existing vertex model by coarse-graining. The for-
mer method assumes the tissue ad hoc as a material of a certain type e.g. porous
[100], elastic [63], poroelastic [181], hyperelastic [143], viscoelastic [135], etc. In
the latter approach, local dynamics are averaged over the lengths of several cell
diameters, disregarding features such as cellular junctions and the density of cel-
lular adhesions and instead treating the tissue as a continuous material, however,
many technical challenges lie in deriving a continuum model from a discrete cell
model. In both cases, the resulting PDE model of the tissue can be computa-
tionally solved using the Finite Element Method [96] or, in some cases, treated
by rigorous mathematical analysis [55].

Both cell-based and continuum models have been successfully employed in
modelling a broad range of morphogenetic events, such as angiogenesis [135, 207],
neurulation [28, 29], tissue invagination [91], dorsal closure [57], and salivary gland
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tubulogenesis [56].
The simulations conducted in these studies demonstrate that tissue motions

are highly sensitive to the mechanical properties of the constituent cells. These
findings suggest that Spina Bifida and other neural tube defects may result from
abnormalities in the mechanical processes underlying morphogenesis [29]. It also
suggests that modest interventions might be sufficient to prevent neural tube de-
fects [28]. These interventions might involve introducing compounds that regulate
gene expression, signalling pathways, or cellular behaviours involved in neural
tube formation, aiming to correct any aberrations or deficiencies that could lead
to defects.

A key advantage of cell-based models is the ease with which they can be coupled
to continuum models [214], as they can be easily modified to incorporate chemical
signalling. Vertex and cellular Potts models frequently couple descriptions of
morphogen (or nutrient) transport and signalling to cell behaviour [2, 83, 148,
167, 171]. For example, Aegerter-Wilmsen et al. [2] coupled a vertex model of
cell proliferation and rearrangement with a differential algebraic equation model
for a protein regulatory network to describe the interplay between mechanics and
signalling in regulating tissue size in the Drosophila wing imaginal disk.

The coupling of the vertex model with chemical signalling is of particular
interest to us as it directly links to our aim of developing a mechanochemical
model that captures the coupling between cytosolic Ca2+ and cellular mechanics
during NTC.

After comparing the modelling approaches described above, we decided to
develop and explore vertex models as they were deemed best suited to address
the modelling requirements outlined in Section 1.2.3.

Since we are interested in studying how changes in cell shape and size impact
tissue morphogenesis, our model must be able to resolve individual cells. A con-
tinuum model is naturally ill-suited for studying such a problem. Given our focus
on dynamic changes in cell shape, both the cellular automata and overlapping
spheres modelling approaches would be unsuitable for us. The epithelial cells of
the anterior neural plate are tightly packed and resemble polygons (similar to
the epithelial cells depicted in Figure 1.8); these shapes are best captured by a
Voronoi tessellation or vertex model. A cellular Potts model is more suited to
loosely packed cells with unpredictable shapes and would also be more compu-
tationally expensive than a Voronoi tessellation or vertex model. Ultimately, we
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(a) t = 0s. (b) t = 600s.

Figure 1.8: Snapshots of the ventral epithelium of a Drosophila embryo
undergoing ventral furrow formation. Source: [186].

decided to choose the vertex model over the Voronoi tessellation model because
it is better suited to tightly packed cells and due to its lower computational cost.

1.3.2.1 Vertex models

Originally used to study the physics of foams [108, 203, 216, 217], vertex models
have been adapted to model and study epithelial tissues as well. They have been
used to great effect in modelling tissue morphogenetic events in a number of
biological systems such as: growth regulation in the Drosophila wing disc [1],
ventral furrow formation in the Drosophila embryo [186], amphibian neurulation
[29], and notochord morphogenesis in Xenopus [220] to name a few.

In a vertex model, a tissue is represented by a collection of non-overlapping
connected polygons whose vertices are free to move and each polygon corresponds
to a cell, i.e., the tissue is represented as a convex polygonal partitioning of the
plane (Figure 1.9). The main simplification, compared to models of foams, is that
most implementations of the vertex model of tissues assume that contacts between
neighbouring cells are straight lines, whereas in foam modelling, the interfaces
between foam cells are curved. However, there have also been several studies
where this assumption has been removed and cell-cell junctions were allowed to
be curved [92, 157].

Another modelling assumption is that neighbouring cells share a single edge,
whereas in real tissues, junctions between two neighbouring cells consist of two
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Figure 1.9: The 2D vertex model. The epithelial sheet is represented as a
polygonal tiling of the plane with no holes or overlaps. The dots represent

nodes, or vertices, and the lines connecting them represent edges. The shape of
the nth cell changes when its vertices are displaced as a consequence of the

forces acting on them.
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(a) 2D apical vertex
model.

(b) 3D apical vertex
model.

(c) 2D lateral vertex
model.

(d) 3D vertex model.

Figure 1.10: Vertex models can be classified into four types, depending on their
geometrical representation of tissues: (a) 2D apical vertex model, (b) 3D apical

vertex model, (c) 2D lateral vertex model, (d) 3D vertex model.

separate cell membranes that can be independently regulated [187]. In the vertex
model, typically, three junction lines meet at a vertex. However, vertices with
a higher number of contacts are also possible, e.g., multicellular rosettes, where
four or more cells share a common vertex [18]. The model tissue is, therefore, a
mesh consisting of polygons (cells), edges (cell junctions), and vertices (meeting
points of three or more cells).

Four types of vertex models have been used to study epithelial morphogenesis.
They are listed as follows:

1. 2D apical vertex model (Figure 1.10a) - Represents only the apical surface
of a cell in a 2D space [3, 62, 138, 167, 189],

2. 3D apical vertex model (Figure 1.10b) - Represents only the apical surface of
a cell in a 3D space, allowing for out-of-plane configurations [134, 153, 208],



1.3. MATHEMATICAL MODELS 23

3. 2D lateral vertex model (Figure 1.10c) - Represents only a cross-section of
a tissue [59, 145, 160, 164],

4. 3D vertex model (Figure 1.10d) - Represents the full 3D description of a
cell, by modelling the apical surface, basal surface, and lateral faces of the
cell [128, 147].

It should be noted that during NTC, the apical surface of the anterior neural
plate bends out of the 2D plane. However, based on discussions with our experi-
mental collaborators, Neophytos Christodoulou and Paris Skourides, we decided
to describe it using a 2D apical vertex model. We found this approach sufficient
to capture the experimentally observed behaviours we were interested in. For the
purposes of this work, we aim to develop models that capture: (i) the effect of
the deformation of the surface ectoderm on the constricting neural plate [34], and
(ii) the two-way coupling between Ca2+ signalling and cellular mechanics, along
with its impact on NTC.

Moreover, a prior study [196] has already employed a 2D apical vertex model
to successfully reproduce key experimental behaviours and offer insights into the
effect of Ca2+ fluctuations on the rate of NTC. This study will be discussed further
in Section 1.3.3 and Chapter 3.

The extension to a 3D apical vertex model or a full 3D vertex model can be
explored in future works (Chapter 9). For brevity, we will use the term ‘vertex
model’ to refer to the 2D apical vertex model throughout this thesis.

In the vertex model, the vertices are represented by a set of points {r1, ..., rNV
}.

It is straightforward to express the cell area and the cell perimeter in terms of
the vertex coordinates. The vertex positions together with their connectivities
uniquely determine the energy of the epithelial sheet, EV M , which can be ex-
pressed as:

EV M(t) =

Ncells(t)∑
n=1

(
αn

(
An − A(0)

n

)2 + βn

(
Pn − P (0)

n

)2
)

+
∑
<i,j>

Γ<i,j>l<i,j>,

(1.4)
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where Ncells(t) is the total number of cells at time t, An and Pn are the area and
perimeter of the nth cell, respectively, and A

(0)
n and P

(0)
n are the target area and

perimeter values of the nth cell. αn and βn are the area modulus and perimeter
modulus, respectively, with units of energy per area squared and energy per length
squared.

The index < i, j > in the last term denotes that the sum is over all pairs of
vertices that are connected. Γ<i,j> denotes the interaction energies between two
cells through the cell-cell interface, and can take on different values for homotypic
and heterotypic interfaces and for ‘boundary’ interfaces between cells and the
surrounding medium. l<i,j> denotes the length of the cell-cell interface.

In the model, different cells can have different area and perimeter moduli, as
well as different target areas and perimeters. This allows for the modelling of
tissues consisting of different types of cells.

The first and second terms in the first sum, i.e., the area energy and the
perimeter energy, represent the compressibility of the cell and contractility of the
cell boundary, respectively. These energy terms depend on factors that determine
the cell’s compressibility and contractility, for instance, they could be determined
by the cytosolic pressure [115] or the contractile properties of the actomyosin
bundles in the cell cortex [58, 62, 154]. It should be noted that the moduli αn and
βn need not be constant; they may change due to the remodelling of actomyosin
bundles [34, 119].

The second sum represents the adhesive forces between neighbouring cells that
share a given edge. Γ<i,j> can take positive and negative values depending on
whether the dominating term is surface tension or the adhesive forces at the cell
boundary, respectively [69]. The surface tension could be dependent on the force
generated by cortical actin contraction (triggered by myosin activity) [119, 196].

If the tissue features cell growth and/or contraction, these could be captured
by regulating A

(0)
n and P

(0)
n . For example, during AC, the actin cytoskeleton is

reconfigured by the rearrangement of the cortical actin filaments. This causes the
cell to contract irreversibly [32, 119, 121], which can be modelled by decreasing
A

(0)
n and P

(0)
n [196].

The main assumption of the vertex model is that the tissue will always be in
a configuration which minimises the total energy (Equation (1.4)). Determining
the minimum energy configuration is a non-trivial multidimensional optimisation
problem and, with the exception of a few very simple cases, it can only be solved
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numerically. A basic implementation of the vertex model, therefore, needs to use
advanced multidimensional numerical minimisation algorithms to determine the
positions of vertices that minimise the total energy for a given set of parameters
αn, βn, and Γ<i,j>. This approach assumes that the tissue evolves quasistatically,
so that the minimum energy of the system is obtained instantaneously between
cell rearrangement events [62].

In the quasistatic approach, the tissue is assumed to relax instantly to the
closest mechanical equilibrium state after each perturbation of the tissue (which
could be caused by cell division, cell death, or cell-cell intercalation [62]). The
relaxation to the closest mechanical equilibrium state can be implemented using
high-dimensional minimization methods, such as the conjugate gradient method
[8]. The system evolves through a sequence of equilibrium configurations, which
always results in a net zero force on the vertices at each iteration. While this
approach is suitable for studying some problems, it is unable to fully describe
effects that are inherently related to being out of equilibrium, such as dorsal
closure, convergent extension, and AC.

During AC, actin filaments and myosin motors undergo constant assembly and
disassembly in response to signalling pathways, leading to continuous remodelling
of the cytoskeleton and dynamic changes in cellular morphology [121]. This dy-
namic remodelling is essential for processes such as NTC, where cells undergo
coordinated contraction to alter tissue shape and structure.

Since we aim to capture the temporal evolution of the shape of the tissue and
the constituent cells during AC, the quasistatic approach is clearly unsuitable
for us. To introduce dynamics into the vertex model [68, 86, 219], force balance
is applied on each vertex to derive its equation of motion, making the standard
assumption that inertial terms are small compared to dissipative terms (as cells
move in dissipative environments with very small Reynolds number [162]).

Since the cells are tightly packed, the stochastic motion of individual ver-
tices is dominated by strong cell-cell coupling forces and cytoskeletal forces alike.
Within the cell, there can be multiple mechanisms for dampening vertex motion,
including viscous forces, actomyosin stiffness, and cell-cell or cell-ECM adhesions.
For simplicity, these effects are commonly combined into a single ‘viscosity’ pa-
rameter, i.e., the damping coefficient η. We assume that the damping force is
proportional to the vertex velocity, with coefficient η.

The force on the ith vertex is derived from the energy function (Equation (1.4)),
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which is balanced with a viscous drag term, leading to a first-order equation of
motion

η
dri

dt
= −∂EV M(t)

∂ri
= Fi(t), (1.5)

where η is a damping coefficient, ri is the position vector of the ith vertex, and
Fi(t) is the total force acting on vertex i at time t which is assumed to equal the
sum of all forces coming from the cell area and perimeter elasticities and from the
connections with all neighbouring vertices j ∈ Ni(t) adjacent to i at that time.

From the above, it is clear that the expression for the force is local, i.e., comput-
ing the force does not require including cells and vertices beyond the immediate
neighbourhood of a given vertex. This is extremely beneficial from a computa-
tional standpoint as one can readily utilise standard force cut-off techniques, such
as cell and neighbour lists [6], in order to speed up force computations.

Numerical methods should be selected to ensure convergence and accuracy.
In many studies, the forward Euler method is preferred due to its low compu-
tational cost, high speed, and because it satisfies the convergence and accuracy
requirements of the implemented model [68, 69, 150]. Equation (1.5) can be
solved numerically using a simple forward Euler method with sufficiently small
timestep, δt, to ensure numerical stability:

ri(t + δt) = ri(t) + δt

η
Fi(t). (1.6)

Higher-order explicit (or implicit) methods are more computationally intensive,
and require modifications to account for cell death and division changing the
size of the dynamical system over each time step, but could allow larger time
steps to be used while maintaining stability [13]. In Chapter 6, we compare the
forward Euler method with a second-order predictor-corrector method in terms
of convergence and computational speed.

In addition to incorporating dynamics, a number of implementations of the
vertex model [44, 68, 187] introduce topology (connectivity) changing moves to
manage events such as cell edge rearrangement (T1 swap), cell removal (T2 swap),
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vertex-edge intersection (T3 swap), cell concavity (node switch), mitosis, and cell
death. However, as these events do not occur concomitantly with AC during NTC
[32, 34], we do not incorporate them into our models.

1.3.3 Coupling of Ca2+ signalling and mechanics

In Section 1.3.1, we reviewed some seminal models of Ca2+ signalling. In Sec-
tion 1.3.2, we presented the most frequently used mechanical modelling frame-
works for cell and tissue modelling. Since we are interested in the interplay of Ca2+

signalling and mechanics, in this section, we will review a few mechanochemical
models that combine Ca2+ signalling and cell and tissue mechanics.

Narciso et al [140] studied the relationship between the spatiotemporal prop-
erties of Ca2+ transients and the mechanical characteristics of the Drosophila
wing disc by adapting the Atri model [12] for Ca2+ waves. The Atri model was
originally developed for intracellular Ca2+ dynamics. To study intercellular Ca2+

dynamics, Narciso et al [140] incorporated the passage of Ca2+ and IP3 into neigh-
bouring cells via gap junctions [222] into the model. Their model demonstrated
that intercellular Ca2+ transients follow lines of mechanical tension and, in doing
so, reflect the mechanical state of the underlying tissue.

The ODE model developed by Kaouri et al [95] builds on early continuum
models that couple Ca2+ dynamics to the cell mechanics and replaces the hypo-
thetical bistable Ca2+ release [135, 136, 137, 152] with the modern, experimentally
validated IP3-mediated Ca2+ dynamics of the Atri model [12]. In this model, em-
bryonic cells and tissue are assumed to behave as a linear, viscoelastic material.
A novel contribution of this work is that it expresses the ‘stretch-activation’ Ca2+

flux in the early mechanochemical models as a bottom-up contribution from SS-
CCs [11, 54, 78, 131] on the cell membrane (Section 1.2.3). The Ca2+-induced
contraction stress is modelled with a Hill function, assuming that the mechan-
ical responsiveness of the cytosol to Ca2+ saturates for high Ca2+ levels. This
model demonstrates that mechanical effects can cause Ca2+ oscillations to van-
ish (implying information loss), resulting in the failure of key processes during
embryogenesis, like AC.

In a later study, Kaouri et al [96] extended their previous model [95] to two
spatial dimensions to study anterior neural plate morphogenesis during the AC
phase of NTC. The governing equations consist of an advection-diffusion-reaction
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system for Ca2+ concentration which is coupled to a force balance equation for
the tissue. The experimentally observed asynchronous Ca2+ flashes [33, 196] are
implemented as a random distribution of Ca2+ ‘sparks’ in the model. Their sim-
ulations reproduce important experimental features, such as the spatiotemporal
correlation between Ca2+ transients and tissue deformation and the monotonic
reduction of the apical surface area of the anterior neural plate.

Since it is a continuum model, however, it is unable to resolve individual cells
and capture crucial cell-level behaviours. As the model cannot implement cell
boundaries, Ca2+ waves freely diffuse over multiple cells. However, experiments
have established that Ca2+ transients from one cell cannot propagate to another
[33]. Additionally, the model fails to capture the ‘pulsed’ cell contractions, which
are a characteristic feature of AC [121].

Suzuki et al [196] developed a mechanochemical vertex model to investigate the
impact of different types of Ca2+ transients on AC during NTC in the Xenopus
neural plate. The behaviour of their model was found to be in agreement with
their experimental observations [196]. For instance, in their model, a considerable
relaxation event follows the Ca2+-induced contractions of apical cell surface area
and perimeter, and the simulated Ca2+ transients accelerate AC. Furthermore,
their model suggests that spatially and temporally random Ca2+ transients at
the single-cell level are able to reduce the overall tissue size more effectively than
multicellular Ca2+ transients.

Despite its successes, however, their model has some significant limitations.
For instance, in the model, a Ca2+ transient triggers cell contraction immedi-
ately, whereas in reality, a Ca2+ transient precedes cell contraction [33, 95, 196],
i.e., there is a latency between the occurrence of a Ca2+ transient and the on-
set of cell contraction. Moreover, the model fails to incorporate the increasing
frequency and amplitude of Ca2+ transients, which have been observed in ex-
periments [32, 95]. The model also does not account for the two-way feedback
between Ca2+ and cell mechanics since cell contractions do not have any effect on
Ca2+ flashes in the model. Lastly, the model does not consider the surface ecto-
derm, a crucial structure in the developing embryo. During AC, the contraction
of the apical surface of the anterior neural plate exerts a force on the cells of the
surface ectoderm, deforming and displacing them. Consequently, the cells of the
surface ectoderm exert a resistive force on the anterior neural plate, influencing
morphogenesis during NTC [34].



1.4. AIMS AND OBJECTIVES 29

The AC phase of NTC takes approximately 40 to 60 minutes. To ensure
the successful completion of NTC, the apical surface of the anterior neural plate
must contract to within 2% to 8% of its initial area within this timeframe [32, 34].
However, to date, no model of NTC [96, 196] has demonstrated this key behaviour.

In this work, therefore, we aim to develop new mechanochemical vertex models
that will address these limitations.

As far as we are aware, the Suzuki et al [196] model is the only mechanochemical
vertex model that incorporates Ca2+ signalling, making it an excellent foundation
from which to start developing our models. Therefore, we will review their exper-
imental results in Chapter 2 and conduct a detailed review and critical analysis
of their model and simulation results in Chapter 3.

1.4 Aims and objectives

As live-cell imaging of the apical surface of the anterior neural plate is chal-
lenging due to AC occurring in the final stages of NTC, when the neural plate
is highly folded, it is essential to develop an accurate mathematical model. This
model can enable the computational study of phenomena that cannot be investi-
gated in vivo.

The primary aim of this doctoral thesis is to develop mechanochemical vertex
models of the anterior neural plate based on the data available from experiments.
These models aim to capture the coupling between Ca2+ signalling and cellular
mechanics, reproducing a variety of experimentally observed behaviours in silico.

As it is difficult to study vertex models analytically, except for very simple
cases, we must explore their behaviour computationally. Currently, there are
limited software packages designed for vertex models. Additionally, implementing
new model features in the existing software packages can be challenging, making
them less conducive to the development of new models. So, we opted to develop
our own software package, providing us with greater convenience for testing and
modifying our models by incorporating desired features.

In line with the motivations outlined above, we set the following objectives for
this doctoral study:

1. Develop a software package, optimised to carry out parameter sweeps, for
vertex models.
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2. Revise the modelling assumptions of Suzuki et al [196] to create a model
that better reflects the biology and has a simpler structure. We refer to this
model as the modified Suzuki model.

3. Implement the modified Suzuki model using the created software and vali-
date the simulation results by comparing them with the results of Suzuki et
al [196]. This serves as a form of validation for both our software package
and the modified Suzuki model.

4. Derive a bifurcation diagram for the modified Suzuki model by performing
single-cell analysis for a structurally simple tissue - a hexagonal lattice.

5. Conduct a parameter sweep for the modified Suzuki model to investigate
the effects of various parameters on both the final tissue area and the time
taken to reach the final area.

6. Develop a new mechanochemical vertex model drawing on insights from the
bifurcation diagram and the results obtained through the parameter sweep.
The model should address the limitations of the Suzuki et al [196] model,
highlighted in Section 1.3.3. Since this model only captures the effect of
Ca2+ on cellular mechanics and not vice versa, we refer to it as the one-way
coupling model or the one-way model.

7. Develop a new mechanochemical vertex model that incorporates the two-
way coupling between Ca2+ and cellular mechanics and reproduces all the
behaviours captured by the one-way coupling model. We refer to this model
as the two-way coupling model or the two-way model.

8. Propose new hypotheses and potential directions for future experiments
on the basis of the simulation results from both the one-way and two-way
models.

Our model-building approach in this thesis involves building up complexity
sequentially. We first construct the one-way model as an important intermediate
step towards building the two-way model, to study the effect of Ca2+ on cell
mechanics and tissue behaviour; this offers valuable insights for the development
of the two-way model.

In the two-way model, the effect of Ca2+ on cell mechanics is modelled in the
same manner as the one-way model. Additionally, we incorporate the effect of
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cell mechanics on Ca2+ signalling. To capture this feedback, we assume that
stretching a cell induces a Ca2+ flash through stretch-sensitive Ca2+ channels
that sense the mechanical deformation.

Although the two-way model supersedes the one-way model, the latter is very
useful for studying the effect of Ca2+ on cell mechanics in the absence of the two-
way coupling. For example, a future study aiming to incorporate more sophis-
ticated Ca2+ dynamics, such as IP3-mediated Ca2+ dynamics, into the two-way
model could begin by first integrating these dynamics into the one-way model.
Insights gained from this preliminary step could then be used to inform modifi-
cations to the one-way model, which could subsequently be implemented in the
two-way model.

1.5 Thesis overview

In the initial chapters (Chapters 1, 2, 3), we conduct an extensive literature
review. Subsequent chapters (Chapter 4 onwards) are devoted to fulfilling the
objectives outlined in Section 1.4 sequentially.

In Chapter 1, we introduce the biological challenge that motivates the work un-
dertaken in this doctoral thesis, summarises key developments in Ca2+ signalling
with emphasis on the interplay of Ca2+ signalling and mechanics in embryogene-
sis, and review a few key mathematical models which have been used to simulate
these processes in silico.

In Chapter 2, we present the experimental findings of Christodoulou and Sk-
ourides [33] as well as Suzuki et al [196]. We summarize the behaviours exhibited
by the constricting anterior neural plate during the AC phase of NTC since the
primary aim of this doctoral work is to develop mathematical models capable of
reproducing these observed behaviours in silico.

In Chapter 3, we provide a detailed description of the 2D mechanochemical ver-
tex model developed by Suzuki et al [196], which we refer to as the Suzuki model.
We conclude this chapter with a critical analysis of their simulation results, high-
lighting the necessity of developing new mechanochemical vertex models of AC
during NTC. We use the Suzuki model as a foundation to develop new models in
Chapters 7 and 8.

In Chapter 4, we compare some of the available computational tools for cell-
based modelling and introduce CelluLink, a new software package for vertex mod-
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els. We first explore the algorithm underlying CelluLink and then provide an
overview of its key features and functions.

In Chapter 5, we revise the modelling assumptions of the Suzuki model to cre-
ate the modified Suzuki model. We then simulate the modified Suzuki model in
CelluLink and compare its behaviour to the Suzuki model. Additionally, we ana-
lytically derive a bifurcation diagram for the modified Suzuki model and conduct
a systematic parameter sweep to numerically investigate the parameter sensitivity
of the modified Suzuki model.

In Chapter 6, we compare the performance of the two numerical schemes cur-
rently available in CelluLink: the forward Euler method and a predictor-corrector
method based on an Euler/trapezoidal pair. Based on the results of this com-
parison, we adopt the forward Euler method for the simulations in subsequent
chapters due to its higher speed and lower computational cost.

In Chapter 7, we develop a new 2D mechanochemical vertex model for the
constriction of the apical surface of the anterior neural plate during the AC phase
of NTC. Starting with the modified Suzuki model as a foundation, we incorpo-
rate the surface ectoderm and make progressive modifications to facilitate the
contraction of the anterior neural plate despite the resistive force exerted by the
surface ectoderm. We then incorporate frequency and amplitude profiles for Ca2+

flashes into the model, based on the experimental data provided in Chapter 2.
Since this model only captures the effect of Ca2+ on cellular mechanics and not
vice versa, we refer to it as the one-way model.

In Chapter 8, we extend the one-way model by incorporating the experimen-
tally validated ‘stretch activation’ mechanism into the behaviour of the neural
plate cells, creating a new model. Since this model captures the bilateral feed-
back or two-way mechanochemical coupling between Ca2+ flashes and cellular
mechanics, we refer to it as the two-way model.

In Chapter 9, we summarize the outcomes of this doctoral work, present our
conclusions, and suggest potential avenues for future work.



Chapter 2

Experimental results on the role
of Ca2+ in NTC

Under basal conditions, intracellular Ca2+ concentration in the neuroepithelial
cells is maintained at a low level and increased transiently (i.e., a Ca2+ ‘flash’) by
Ca2+ influx through membrane-localized Ca2+ channels or by a release of Ca2+

from the endoplasmic reticulum (ER) via IP3-receptor channels [37]. Inhibiting
Ca2+ influx causes neural tube closure (NTC) to fail due to insufficient folding
of the neural plate [106, 182], whereas inducing an increase in intracellular Ca2+

promotes the folding of the neural plate [65, 132]. However, prolonged elevation
of intracellular Ca2+ causes improper folding, resulting in the failure of NTC
[33]. Since these morphological changes at the tissue level are accompanied by
changes in the shapes of the constituent cells, it has long been proposed that
intracellular Ca2+ signalling and its coupling with mechanics regulates apical
constriction (AC).

The papers by Christodoulou and Skourides [33, 34] and Suzuki et al [196]
investigate this relationship between Ca2+ and changes in cell shape in the context
of embryogenesis. These works are of particular importance to us because they
study the role played by Ca2+ in reshaping the cells undergoing AC during NTC.

This chapter summarizes the findings of the aforementioned papers and high-
lights key aspects of the behaviour of intracellular Ca2+, along with the cor-
responding changes in cell and tissue shape, observed during NTC. The new
mathematical models developed in this doctoral work (Chapters 7 and 8) aim to
reproduce these behaviours in silico.

33
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2.1 Christodoulou and Skourides

Christodoulou and Skourides’ study [33] of Ca2+ flashes during NTC is of
vital importance for this doctoral work because that is precisely the phenomenon
we are trying to model. In this work, they allow Xenopus laevis embryos to
develop to Stage 14 and then image the neural plate (via confocal microscopy
and fluorescence microscopy) during NTC. They use live imaging data combined
with gain- and loss-of-function approaches to study AC during neurulation. Their
findings are described below.

Over the course of AC during NTC, a subset of cells in the neural plate expe-
rience cell-autonomous and asynchronous contraction pulses, which are driven by
transient apical actin polymerization events. Ca2+ flashes are seen to occur just
before the narrowing of the apical cell surface and accumulation of apical actin1,
suggesting that they trigger the contraction pulses probably by inducing apical
actin polymerization and/or contraction. AC during NTC occurs in a stepwise
fashion, where the surface area of individual cells is initially reduced (contraction
pulse), followed by a slight increase and stabilization (stabilization step).

They observe that the surface areas of small regions within the neural plate
that do not display contraction pulses also decrease over time. Based on the
results of their analysis, they suggest that surface area reduction in the absence
of apical actin-driven AC stems from mediolateral junction shrinkage.

So, both mediolateral cell junction shrinkage and cell-autonomous and asyn-
chronous contraction pulses occur simultaneously during NTC and contribute to
the overall reduction of apical cell surface area in the neural plate.

The majority of the Ca2+ flashes during NTC are cell autonomous and asyn-
chronous, similar to the contraction pulses and apical actin enrichment events
described above. However, synchronized Ca2+ flashes are also present but they
occur with lower frequency, either in small groups of two to five neighbouring
cells or in larger groups of cells (Figure 2.1). The Ca2+ flashes are restricted to
the neuroepithelium and their frequency is higher in regions like the neural folds,
where cells display the highest apical cell surface area reduction. The typical Ca2+

flash is short lived (≈ 40s) and the frequency of Ca2+ flashes increases gradually
as NTC progresses faster, becoming extremely frequent during the late stages

1Apical actin enrichment was found to occur within one minute after a Ca2+ flash and never
before or during a Ca2+ flash [33].
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(a) Types of Ca2+ signalling patterns seen during NTC.

(b) Quantification of the different types of
Ca2+ signalling patterns.

Figure 2.1: Figure 2.1a visualises the different types of Ca2+ signalling patterns
seen during NTC: (i) single-cell Ca2+ transients (scale bar: 50µm), (ii) Ca2+

transients over 2-4 cells (scale bar: 50µm), and (iii) Ca2+ transients over a
group of cells (scale bar: 100µm). Cell cortices are tracked using mem-GFP

(green) and Ca2+ levels are tracked using GECO-RED (red). For each case, the
images in the top and bottom rows show the tissue without and with mem-GFP
expression, respectively. The left and right columns show the tissue before and
after the occurrence of Ca2+ flashes, respectively. The data for Figure 2.1b was
recorded using 150 Ca2+ events taken from 3 embryos undergoing NTC. Source:

[33].



2.1. CHRISTODOULOU AND SKOURIDES 36

Figure 2.2: Frequency of Ca2+ flashes and NTC velocity over time during NTC.
NTC velocity is measured as the speed at which the periphery of the tissue, i.e.

the neural plate, moves towards the centre of the tissue. Source: [33].

(Figure 2.2 & 2.7) i.e. the frequency of the Ca2+ flashes generated during NTC
correlates with the rate at which NTC occurs.

The constricting cells are not only able to contain Ca2+ transients without
depolarizing neighbouring cells but they also do not respond to the Ca2+ el-
evation of their neighbours. Christodoulou and Skourides suggest that this is
because the gap junctions2 close transiently upon detecting an elevated level of
intracellular Ca2+ [151] and prevent the propagation of Ca2+ to neighbouring
cells, enabling cell-autonomous intracellular Ca2+ flashes. Thus, cell autonomy is
achieved through the isolation of constricting cells from the surrounding tissue.

Cytosolic Ca2+ levels are linked with the rate of constriction and the pulsed
asynchrony displayed by cells undergoing AC stems from the asynchronous and
cell-autonomous Ca2+ transients. It was found that the pharmacological elevation
of cytosolic Ca2+ levels led to higher rates of AC due to synchronous and contin-
uous cellular contractions. However, the elevated rate of AC causes the failure
of NTC, suggesting that asynchronous and cell-autonomous pulsed contractions
are essential for the correct spatial and temporal distribution of the constriction
and, consequently, the correct morphogenesis of the neural tube.

2Gap junctions Specialized low-resistance intercellular channels that are responsible for
the propagation of tissue-level Ca2+ waves [110].
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To summarize, their data suggests that the contraction events are triggered by
cell-autonomous Ca2+ flashes and the imaging of actin dynamics reveals that the
contraction pulses are driven by the contraction of a transient apical actin net-
work. Additionally, they provide evidence that the cell autonomy and asynchrony
of contraction are required for the correct spatial distribution of constriction and,
as a result, are critical for tissue morphogenesis.

2.2 Suzuki et al

Most works on AC are either experimental studies [33, 120] or explorations of
mathematical models [68, 95, 134, 186]. The 2017 article by Suzuki et al [196] sets
itself apart by presenting experiments and a mathematical model. The objective
of their study was to investigate the role of intracellular Ca2+ signalling during
NTC in the Xenopus embryo (Figure 2.3).

Changes in intracellular Ca2+ concentration have been observed during devel-
opment in several organisms, including Xenopus [89, 105, 118, 179, 215]. There-
fore, Suzuki et al hypothesised that Ca2+ signalling correlates to cellular morpho-
genesis, spatially and temporally. To test this hypothesis, they investigated intra-
cellular Ca2+ patterns during NTC using live cell-imaging analysis via spinning-
disc confocal microscopy and fluorescence microscopy.

The Ca2+ signals were observed to occur in the neural plate rather than in
the non-neural surface ectoderm3. It should be noted that, although the surface
ectoderm does not experience any Ca2+ activity, it significantly impacts neural
plate morphogenesis. The surface ectoderm cells are stretched and displaced due
to neural plate contraction, and in turn, exert a resistive force on the neural plate,
influencing morphogenesis during NTC [34].

Spatially, two types of Ca2+ signals were observed in the neural plate; the first
signal was at the single-cell level and lasted less than 40s and the other originated
from one or a few cells and propagated radially, in a wavelike manner, over the
neighbouring cells. The range of propagation of these multicellular waves could
vary from a few cells to hundreds of cells, and they could last up to 100s. Also,
waves having a larger range of propagation were noted to spread at higher speeds.

3Surface ectoderm A structure consisting of layers of cells that lies lateral to the neural
plate. It plays a key role in the development of the skin and certain parts of the nervous system
in the early embryo.
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Figure 2.3: Time-lapse imaging data of a Xenopus laevis embryo undergoing
NTC (dorsal view). The elapsed time (minutes) is shown at the bottom right of

each panel. The shaded regions in the top left image demarcate the anterior
neural plate (green), posterior neural plate (red), and the surface ectoderm

(brown). Source: [196].

This result validates the observation made in Christodoulou and Skourides [33].
Upon quantifying the number of Ca2+ transients, it was found that the number

of single-cell transients increased significantly in the last 100 minutes before NTC
was completed, such that the number of multicellular transients was an order of
magnitude smaller than that of single-cell transients throughout NTC. Based on
this, the NTC process was divided into an early and a late phase (Figure 2.4).

The pharmacological agents 2APB and nifedipine block IP3-mediated and volt-
age dependent Ca2+ channels, respectively. Examination of their effects on Ca2+

fluctuations revealed that the IP3R pathway regulates both types of Ca2+ tran-
sients, whereas voltage-dependent Ca2+ channels primarily regulate single-cell
transients (Figure 2.4).
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(a) Number of Ca2+ transients
during NTC (data points averaged

over 20s intervals).

(b) Number of single-cell Ca2+

transients in the early and late
phases of NTC.

(c) Number of multicellular Ca2+

transients in the early and late phases
of NTC.

Figure 2.4: Number of Ca2+ transients in the neural plate over the course of
NTC: (a) the mean number of Ca2+ transients during NTC (the smoothed
curves represent the mean values taken over 20s intervals, the shaded area

indicates the standard deviation), (b) the number of single-cell Ca2+ transients
in the early and late phases of NTC, (c) the number of multicellular Ca2+

transients in the early and late phases of NTC. Source: [196].
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Figure 2.5: Temporal profiles of the mean fluorescent intensities of R-GECO
(red), Lifeact-EGFP (green), and relative change in apical area (blue) of a single

cell during NTC. The intensities of R-GECO and Lifeact-EGFP measure
cytosolic Ca2+ concentration and F-actin distribution, respectively. In response

to an increase in the Ca2+ level, the apical surface area of the cell decreases
rapidly. Simultaneously, the F-actin level in the cell cortex increases. Even after
Ca2+ drops to basal levels, F-actin levels remain high, preventing the cell from

relaxing to its original area. Source: [196].

Overall, they showed that single-cell Ca2+ transients were more frequent in the
late phase than in the early phase of NTC, whereas the spatial scale (range of
propagation) of the Ca2+ transients was larger in the early phase than in the late
phase. These results suggest that the effect of Ca2+ fluctuations on NTC was
derived from both single-cell and multicellular transients in the early phase, but
mostly from single-cell transients in the late phase.

Similar to Christodoulou and Skourides [33], Suzuki et al observed that mesh-
like F-actin structures developed in the center of the cell immediately following
a Ca2+ transient. The actin structures were maintained for several minutes, even
after Ca2+ concentration had dropped back to basal levels within a few tens of
seconds. Furthermore, the surface area of the cell decreased rapidly (contraction
pulse) and then stabilized within a minute (stabilization step) after the occurrence
of a Ca2+ transient (Figure 2.5), which was also observed in [33].

Based on this, Suzuki et al suggest that the rapid activation and prolonged
F-actin remodelling induced by Ca2+ may be the mechanism of AC and NTC
by which relaxation to the original state (i.e. before Ca2+ transients occurred)
is suppressed [196]. This behaviour is captured by the ratchet-like mechanism,
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which will be explored in Section 3.1.4. These experimental results indicate that
the Ca2+ fluctuations effectuate a decrease in the total apical area of the neu-
ral plate by regulating the localization of F-actin which, in turn, is involved in
regulating both cell properties and mechanical processes.

To sum up, Suzuki et al showed that: (i) the occurrence of a Ca2+ transient is
followed by cell contraction and; (ii) two types of active Ca2+ signalling patterns
- single-cell transients and multicellular waves, modulate AC via cortical F-actin
remodelling, thereby contributing differently to NTC. Their experimental results
were in line with the findings of Christodoulou and Skourides [33].

2.3 Summary

Based on the findings of Christodoulou and Skourides [33, 34] and Suzuki et
al [196], the characteristic behaviours observed in the neural plate during the AC
phase of NTC have been summarized below. The mathematical models in the
following chapters shall attempt to capture these behaviours and reproduce them
in silico.

• The cells of the anterior neural plate experience cell-autonomous and asyn-
chronous Ca2+ flashes that drive AC during NTC.

• In addition to the single-cell Ca2+ flashes, Ca2+ waves that propagate over
groups of cells are also observed during NTC, but they occur more infre-
quently compared to the single-cell flashes.

• The amplitude and frequency of Ca2+ flashes increases gradually over the
course of NTC.

• The occurrence of a Ca2+ flash is followed by cellular contraction.

• Each individual cell contracts in a pulsed manner, whereas the tissue con-
tracts monotonically without any recovery phases.

• Cell-autonomy and the asynchrony of Ca2+ flashes are necessary for suc-
cessful NTC; conversely, continuous and synchronized contractions lead to
the failure of NTC.

• The contraction of the anterior neural plate stretches the surface ectoderm,
which, in turn, exerts a force opposing the contraction of the neural plate.
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Figure 2.6: Normalised Ca2+ oscillation amplitude (measured in a.u. or
arbitrary units) and normalised apical surface area (measured in a.u.) of a

single cell during AC. The Ca2+ oscillation amplitude, representing cytosolic
Ca2+ concentration, was measured using the fluorescence intensity of the

non-ratiometric Ca2+ sensor (GECO-RED). For normalization, all values were
divided by the highest intensity value. To normalise the surface area, all the area
values (measured in µm2) were divided by the largest area value. Source: [95].

• The AC phase of NTC takes approximately 40 to 60 minutes, during which
the apical surface of the anterior neural plate contracts to within 2% to 8%
of its initial area.

Figure 2.6 shows the effect of a Ca2+ transient on the area of a single cell on
the apical side of the neural plate. Ca2+ elevation always precedes the initiation
of a contraction pulse. At t = 0s, Ca2+ begins to rise and, at t ≈ 50s, the area
starts decreasing. The area reduction is followed by relaxation and stabilization
of the cell at a smaller surface area i.e. the cell can not recover its original size.
This pulsed contraction is only observed for individual cells, the tissue on the
whole contracts monotonically without any recovery phases [32, 33, 196]. The
image is from Kaouri et al [95], based on the experiments of Christodoulou and
Skourides [33], and validates the observations of Suzuki et al [196].

Figure 2.7 shows that the reduction in cell surface area corresponds to an
increase in Ca2+ oscillation frequency. The data was taken from 10 cells on
the apical surface of the neural plate. The surface area of each cell and average
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Figure 2.7: Mean Ca2+ oscillation frequency (measured in min−1) and mean
normalised apical surface area (measured in a.u.) measured over 10 cells on the
apical surface of the neural plate. Ca2+ oscillation frequency increases over time

during AC and this increasing frequency correlates to a reduction in apical
surface area. The average surface area of each cell was evaluated for four time

intervals; 0-10, 10-20, 20-30, and 30-40 minutes. For normalization, for each cell,
the average surface area in each time period was divided by the average surface
area of the first period (0-10 minutes). The Ca2+ oscillation frequency in each
cell was calculated by counting the number of Ca2+ oscillations in each time

interval. This value was then divided by 10 since there are 10 minutes in each
time interval. Source: [95].
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Figure 2.8: Mean Ca2+ oscillation amplitude (measured in a.u.) increases over
time during AC (measured over the same 10 cells as in Figure 2.7). The Ca2+

oscillation amplitude, representing cytosolic Ca2+ concentration, was measured
using the fluorescence intensity of the non-ratiometric Ca2+ sensor

(GECO-RED). The fluorescence intensity of GECO-RED was measured per
Ca2+ oscillation in each of the cells over time. For normalization, the values

were then divided by the highest intensity value. Source: [95].
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Ca2+ oscillation frequency were calculated in 10-minute intervals over a 40-minute
window in the late stage of NTC. This image is also from Kaouri et al [95], based
on the experiments of Christodoulou and Skourides [33], and is in agreement with
the observations of Suzuki et al [196].

Figure 2.8 shows that Ca2+ oscillation amplitude, representing cytosolic Ca2+

concentration, increases over time in the late stage of NTC. Suzuki et al [196] did
not investigate changes in the Ca2+ oscillation amplitude or its impact on cell and
tissue area. However, any mathematical model aiming to capture the two-way
coupling between Ca2+ and mechanics must take into account the amplitude of
the Ca2+ transients.

The studies discussed in this chapter [33, 196] propose a new role of active
Ca2+ fluctuations in accelerating AC. They reveal that AC during neurulation in-
volves cell-autonomous and asynchronous pulsed contractions that are preceded
by flashes of Ca2+. These Ca2+ pulses also correlate with the accumulation of
F-actin in the medial region of the neuroepithelial cells, suggesting that Ca2+

regulates AC by influencing actin dynamics and/or myosin contractility. Phar-
macologically elevating the level of intracellular Ca2+ disrupts the dynamics and
spatial distribution of constriction events, ultimately blocking NTC [33]. This
evidence indicates that neuroepithelial cells must cycle through periods of high
and low Ca2+ to enable pulsating contractions, which leads to the successful com-
pletion of NTC.

To further investigate how distinct Ca2+ fluctuation patterns affect AC and
persistent epithelial remodelling, Suzuki et al [196] constructed a mathemati-
cal model of the apical surface of the anterior neural plate based on the well-
established vertex modelling framework. We shall explore the features of this
model and their simulation results in Chapter 3.



Chapter 3

The Suzuki model

Embryonic epithelial tissues undergo complex morphogenetic movements like
in-plane reshaping, bending, and folding through the coordinated action of the
individual epithelial cells. Computational modelling techniques are used, in con-
junction with experimental approaches, to investigate these morphologies in silico
and explore experimentally intractable questions.

To this end, a variety of modelling approaches have been used to simulate
cell–cell mechanical interactions, ranging from FEM-based continuum models to
cell-based models (Section 1.3.2). In combination with their experiments, Suzuki
et al [196] use a vertex model to study the effect of distinct Ca2+ fluctuation
patterns on epithelial remodelling during apical constriction (AC).

To our knowledge, the Suzuki et al [196] model is the only mechanochemical
vertex model that incorporates Ca2+ signalling, making it an excellent foundation
for developing our models. In this chapter, we first review their mathematical
model in detail, then discuss the key experimental behaviours reproduced by their
simulations and highlight the model’s limitations.

3.1 Vertex model

In order to evaluate the differences in the effect and function of the two different
types of Ca2+ transients on tissue deformation, Suzuki et al [196] constructed
a cell-based mechanochemical neural tube closure (NTC) model (which will be
referred to as the Suzuki model hereafter). The model is based on the vertex
model, a well-known framework used to describe multicellular tissue dynamics
[62, 138, 146, 163].

46
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The Suzuki model employs a simple implementation of the Ca2+ fluctuations
- at any given time, a cell having a baseline value of Ca2+ concentration has
a probability of experiencing a spike in its Ca2+ level. The effect of this Ca2+

transient on the cell mechanics is simulated by increasing the line tension of the
cell edges.

Additionally, to regulate the cells’ natural surface area and perimeter, the
model introduces a ratchet-like mechanism, which is a novel feature of this math-
ematical model. This mechanism is essential for capturing the experimentally-
observed ratcheting behaviour of cells [120], where cells contract progressively in
a stepwise manner. The ratchet-like mechanism ensures that once a cell contracts
past a certain point, it cannot expand back to its original size, thereby stabilizing
the contraction.

3.1.1 Modelling assumptions

The tissue under study - the anterior neural plate, is modelled as a two-
dimensional, viscoelastic cell sheet comprising 256 cells, in line with observations
that the anterior neural plate typically consists of ≈ 250 epithelial cells [33].
Tissue polarities are not defined for simplicity.

It should be noted that, in reality, NTC involves three-dimensional morpho-
logical changes in the tissue and cells that have planar anterior-posterior and
dorso-ventral cell polarities [87, 88, 146, 196]. The model assumes no cell prolif-
eration or cell death but models a topology altering operation - the T1 process i.e.
cell edge rearrangement, which finds frequent use in vertex models [62, 68, 138].

Another simplification of the model is the binary nature of the intracellular
Ca2+ concentration - a cell is either in a low Ca2+ (inactivated) state or a high
Ca2+ (activated) state. This is in-line with older models where Ca2+ evolution is
modelled with a hypothetical bistable reaction-diffusion process in which chemical
signals (extrinsic to the cell) or the application of stress can switch the Ca2+ state
from low to high stable concentration [135, 136, 137, 152]. However, in the Suzuki
model, the Ca2+ concentration affects cellular contraction unilaterally i.e. Ca2+

triggers cell contraction but not vice versa, so the impact of stress on the Ca2+

level of the cell is neglected.
Since the Suzuki model is only concerned with the unilateral effect of Ca2+

on cellular contractions, it is acceptable to work with the simplified Ca2+ signals
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described above. However, it should be noted that more recent models of Ca2+ sig-
nalling incorporate more sophisticated Ca2+ dynamics e.g. IP3-mediated CICR,
that have been verified experimentally [12]. Future mechanochemical models,
with a two-way feedback between Ca2+ signalling and mechanics, should incor-
porate more sophisticated Ca2+ dynamics into the model (Chapter 9).

3.1.2 The potential energy term

The Suzuki model considers the following mechanical components: the elastic-
ity of the cell apical surface area (UA), the elasticity of the cell apical perimeter
(UP ), and the line tension generated on each edge of the cell (UL), all of which
are often employed in other vertex models [62, 138, 146, 163]. The mechanical
potential energies derived from these three components are modelled as follows.
The potential energy for the cell area is given by:

UA =

Ncells∑
n

KA
n

2

(
An

A0
n

− 1
)2

A0
n, (3.1)

where An and A0
n are the cell apical surface area and its natural/preferred apical

surface area, respectively, and KA
n is the coefficient of elasticity for the area.

The potential energy for the cell perimeter is given by:

UP =

Ncells∑
n

KP
n

2

(
Pn

P 0
n

− 1
)2

P 0
n , (3.2)

where Pn and P 0
n are the cell apical perimeter and its natural/preferred apical

perimeter, respectively, and KP
n is the coefficient of elasticity for the perimeter.

The quadratic terms in the energy expressions UA and UP represent the quadratic
components in the Taylor series expansion of the energy function around the equi-
librium state. These terms give rise to linear restoring forces upon perturbation
of the system, which is a reasonable assumption when modelling the elasticity of
epithelia for small deformations [62, 81, 196].
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Figure 3.1: Schematic of part of the neural plate (10 cells), as represented in a
vertex model. The three physical attributes: cell perimeter (Pn), cell area (An),
and edge length (L<ij>

n ) determine the mechanical potential energies: UP , UA,
and UL, respectively, in the Suzuki model. The edge L<ij>

n is bound by vertices
i and j.

Generally, formulations of the vertex model use deformations of the cell area
(An − A0

n) and perimeter (Pn − P 0
n) to define the potential energies [62, 115, 138].

In comparison, Equations (3.1) and (3.2) describe the potential energies using the
strains of the cell area (An

A0
n

− 1) and perimeter (Pn

P 0
n

− 1), similar to [146].
In the studies that define the energy terms using deformation, the values of nat-

ural area and natural perimeter do not change much over the simulation runtime
[68]. Whereas, tissue contraction in the Suzuki model is driven by the ratchet-
like mechanism (which will be described in detail in Section 3.1.4) which greatly
reduces the natural area and natural perimeter over the course of the simulation.

When the energy terms are modelled using deformation, the restorative elastic
forces depend on changes in area and perimeter. For small cell sizes, these changes
are correspondingly small, leading to weaker elastic forces relative to the line
tension as natural area and natural perimeter approach zero. This imbalance can
cause excessive contraction of the cell edges, resulting in numerical instability.

In contrast, using strain in the energy terms makes the elastic forces dependent
on changes in area and perimeter relative to their natural values. Consequently,
the strength of the elastic forces remains consistent across different length scales
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and the model maintains stability for large changes in the values of natural area
and natural perimeter.

The potential energy due to the line tension generated at the cell-cell junctions
is given by:

UL =

Ncells∑
n

edge∑
<ij>

T <ij>
n L<ij>

n , (3.3)

where T <ij>
n and L<ij>

n are the line tension and the length of each cellular edge
connecting the ith and jth vertices, respectively. A cell-cell junction is formed by
the adhesion of two cells, and is, thus, composed of two cellular edges derived
from the two associating cells. Therefore, the line tension on a cell-cell junction
is determined by the sum of the two line tensions derived from the two cellular
edges.

Thus, the total potential energy, U , is

U = UA + UP + UL. (3.4)

U represents the potential energy U(r(t)) of the apical surface of the tissue
at some time instant t. As is typical of vertex models, the apical surface of
the tissue comprises a collection of non-overlapping connected polygons i.e. the
cells (see Figure 3.1). The vertices of these polygons are represented by a set of
positions r = ( r1 r2 ... rNV

). The force on the ith vertex Fi is derived from the
phenomenological energy function (Equation (3.4)):

Fi = −∂U

∂ri
, (3.5)

where ri = ( xi yi ) is the position vector of the ith vertex, and
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∂U

∂ri
=
(

∂U

∂xi

∂U

∂yi

)
. (3.6)

The force Fi is balanced with a viscous drag term, leading to a first-order
equation of motion

µ
dri

dt
= −∂U

∂ri
, (3.7)

where µ is the damping coefficient.
Like most vertex models to date, the Suzuki model assumes that all effects

of friction (i.e. between neighbouring cells as well as between the cells and the
substrate and the extracellular matrix) can be modelled by a single constant.
While this may appear to be a major simplification, the resulting model is capable
of capturing many key features of real epithelial tissues.

Equation (3.7) is a first order equation since the mass terms have been omitted.
This overdamped limit is commonly applied to biological systems, since the inertial
effects (acceleration) are typically several orders of magnitude smaller than the
effects arising from the cell-cell interactions [15]. The force on vertex i depends
on the position of its neighbouring vertices, resulting in a set of coupled non-
linear ordinary differential equations. Since the system (Equation (3.7)) lacks an
analytical solution (as far as we are aware), it has to be solved numerically.

3.1.3 Cell activation

In the Suzuki model, a Ca2+ transient (or Ca2+ flash) occurs when the intra-
cellular Ca2+ concentration in a cell rises from a low level to a high level. Based
on their experiments, Suzuki et al [196] conclude that a Ca2+ flash temporally
regulates certain mechanical parameters in the cell. In their model, they assume
that the Ca2+ flash modifies the line tension of the cellular edges.

After every unit time interval, each cell has a finite probability of experiencing
a Ca2+ flash. This probability is determined by a predefined parameter pc, where
pc is the probability of cell activation per unit time. Each cellular edge in the
activated cell then has a finite probability of being activated, according to a
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predefined probability pe. Finally, the line tension of the activated cell edge is
elevated by some constant amount ξ (edge activation).

The activation period is determined by the constant τ , which is predefined for
every simulation. When an inactivated cell experiences a Ca2+ flash, it becomes
activated for the duration τ . When an activated cell experiences a Ca2+ flash, its
remaining activation period is prolonged by τ .

Prior to activation, the cell edges experience a non-zero baseline value of line
tension. The expression for line tension on the activated cell edge is

T <ij>
n = T0

<ij>
n + ξ, (3.8)

where T0
<ij>
n is the line tension of an inactivated cell edge, i.e., the baseline value

of line tension, and ξ is determined at the start of each edge activation and held
constant for the duration of the activation period. After the activation period
elapses, the line tension of the activated cell edge relaxes to its baseline value.

3.1.4 The ratchet-like mechanism

For a cell operating under the mechanisms established in Sections 3.1.2 and
3.1.3, a temporary increase in line tension would decrease the apical surface area
and perimeter of the cell. However, after the line tension returns to its baseline
value, the apical surface area and perimeter of the cell would recover. In contrast,
during NTC, the apical surface area of a cell gradually decreases and does not
recover. Thus, the apical cell surface has a constrictive nature.

A possible mechanism for maintaining the decrease in the apical surface area,
despite the effect of a restoring force, is a ratchet-like mechanism that stabilizes
the apical cell membrane, as reported in [120, 123, 170], such that once the
cell apical surface contracts, the surface area (and perimeter) does not recover.
To model the ratchet-like stabilization mechanism, Suzuki et al [196] took into
consideration both the cell natural surface area (A0

n) and the cell natural perimeter
(P 0

n). The natural area and natural perimeter are the values of area and perimeter
that the cell would attain in the absence of line tension.

The assumption they made was that A0
n could be decreased but not increased,

as observed in the experiments. The decrease in A0
n was assumed to be determined
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Figure 3.2: Regulation of the natural cell area by the ratchet-like stabilization
mechanism in the Suzuki model. The lighter region represents the cell natural
area, A0

n, and the darker region represents the cell area, An. When the area
drops below the threshold specified in Equation (3.9), the cell natural area is

reduced accordingly.

relative to the cell surface area (An); when A0
n is sufficiently large in comparison

with An, A0
n tends to decrease according to the following differential equation:

dA0
n

dt
=

κA(An − ωAA0
n), if (An − ωAA0

n) < 0,

0, if (An − ωAA0
n) ≥ 0,

(3.9)

where κA is a constant, and ωA is a threshold parameter that determines whether
or not A0

n should be decreased. Under normal simulation conditions, A0
n is larger

than An. For A0
n to decrease, dA0

n

dt
< 0 . Thus, when ωA ≥ 1, A0

n will always
decrease.

Similarly, for the cell’s natural perimeter, we have the following differential
equation:

dP 0
n

dt
=

κP (Pn − ωP P 0
n), if (Pn − ωP P 0

n) < 0,

0, if (Pn − ωP P 0
n) ≥ 0,

(3.10)

where κP is a constant, and ωP is a threshold parameter that determines whether
or not P 0

n should be decreased.
To prevent the cell surface area and perimeter from becoming negative, Suzuki

et al [196] limited the minimum values of A0
n and P 0

n to 0.3 and 2.0, respectively.
It should be noted, however, that this approach only sets a strict lower bound on
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Figure 3.3: Regulation of the natural cell perimeter by the ratchet-like
stabilization mechanism in the Suzuki model. The dashed line represents the
cell natural perimeter, P 0

n , and the solid line represents the cell perimeter, Pn.
When the perimeter drops below the threshold specified in Equation (3.10), the

cell natural perimeter is reduced accordingly.

the cell natural area (A0
n) and perimeter (P 0

n), the cell area (An) and perimeter
(Pn) are free to contract below zero, which is unrealistic and risks making the
simulation unstable.

The model behaviour can, thus, be summarised as follows. Under equilibrium
conditions, the elastic force on any vertex, arising from the adjacent cells’ area
and perimeter elasticity, is cancelled out by the line tensions of the connecting
edges. When a cell experiences a Ca2+ transient, the tension of its activated
edges, T0

<ij>
n , is elevated by a constant value, ξ, for a finite time duration, τ (the

activation period), disrupting this equilibrium. As a result, the cells associated
with the activated edges contract their perimeters and areas to restore equilib-
rium. In the absence of the ratchet-like mechanism, the deformed cells would
revert to their original shape and size upon the relaxation of the line tension,
at the end of the activation period. However, if the conditions for activating
the ratchet-like mechanism are met within the activation period (Equations (3.9)
and (3.10)), the deformed cells’ natural area and natural perimeter are assigned
smaller values and the tissue then tends to a new equilibrium state.

3.2 Computational results

To simulate the vertex model, Suzuki et al [196] program their simulation in
C. They generate the initial cell configurations using Voronoi diagrams - 256 cells
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Figure 3.4: The initial configuration of the tissue modelled by Suzuki et al using
Voronoi diagrams. The cells are modelled as irregular polygons having 5, 6, 7 or

8 sides. Source: [196].

are positioned in an almost circular region (Figure 3.4). This circular region
approximates the apical surface of the anterior neural plate, which later develops
into the brain [32]. The model simulates the temporal evolution of the batch of
cells by solving Equation (3.7) for every vertex using the forward Euler method.

Using their vertex model, Suzuki et al [196] examined the combined effect of the
Ca2+ transient (Pulse) and the constrictive nature of the apical cell surface (Acn),
i.e., the ratchet-like mechanism, on the modelled epithelial tissue (Figure 3.5).
The activation of the ratchet-like mechanism (+ Acn) prevents recovery of cell size
and allows the tissue to contract. The presence of Ca2+ flashes (+ Pulse) expedites
the contraction. Without the Acn component, the tissue does not change size
regardless of the presence of the Ca2+ signal. Adding the Acn component causes
the tissue to gradually decrease in size, and the combined effect of Ca2+ and Acn
components accelerates the size decrease (Figure 3.5a).

Figure 3.5a depicts the effects of Ca2+ transients and the constrictive nature of
the apical cell surface on tissue constriction. The subfigures also have snapshots
of the modelled tissue at the end of the simulation in each case. Figure 3.5b
displays the reduction in tissue area (as a percentage of the initial area) for each
case.

At the single-cell level, it was found that after the contractions of area and
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(a) Tissue sizes over simulation runtime.

(b) Tissue constriction at the end of
the runtime.

Figure 3.5: The effects of Ca2+ transients (Pulse) and the constrictive nature of
the apical cell surface (Acn) on the modelled epithelial tissue. -/+ Pulse

indicates the absence/presence of Ca2+ flashes, +/- Acn indicates the whether
the ratchet-like mechanism was active/inactive in the model. *** indicates a
statistically significant difference (by the two-sided Student’s t-test) and n.s.
indicates a non-significant difference. Model parameters: Table 3.1. Source:

[196].
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Parameter Value
Cells 256

pc 0.025
δt 0.2

KA
n 0.3

KP
n 0.2

µ 1
κA 1
κP 0.001
ωA 0.6
ωP 0.8

A0
n (initial) 1

P 0
n (initial) 5

A0
n (minimum) 0.3

P 0
n (minimum) 2

T0n 0.1
ξ 0.05
τ 5

Table 3.1: Parameter values for Figures 3.5, 3.7, and 3.8.
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(a) Sparsely distributed Ca2+

transients.
(b) Densely distributed Ca2+

transients.

Figure 3.6: Examples of sparse and dense spatial distributions of Ca2+

transients. Activated cells are coloured. The density of the distributions can be
regulated with the parameter pc, the frequency of cell activation per unit time.

perimeter were induced by Ca2+, a considerable relaxation event also occurred,
in which the area and perimeter recover to new values, slightly lower than their
original values. This was indeed observed during an AC event after a single
Ca2+ transient in vivo [196]. A key point to note is that this relaxation event
is only observed at the level of a single-cell while the tissue experiences only a
monotonic decrease in size without any noticeable relaxation phase [121]. The
model captures this accurately.

These results suggest that the Suzuki model reproduces the in vivo experiments
qualitatively, in which Ca2+ transients accelerate AC and, hence, decrease the
tissue size when the stabilization mechanisms are present.

In comparing dense (pulses having higher spatial and temporal frequency, this
corresponds to a high pc value in the model) versus sparse pulses (Figure 3.6),
Suzuki et al [196] found that dense pulses induced tissue deformation more rapidly
within the activation period. They performed this comparison by gradually in-
creasing pc and found that the area reduction was larger for higher values of pc,
regardless of the value of pe (Figure 3.7). However, over the entire course of the
simulation, dense pulses were found to be less effective than sparse pulses when
the same number of total pulses were used in both cases (Figure 3.8).

Figure 3.8 depicts the change in tissue size over simulation runtime for different
Ca2+-activation windows. The simulated tissue is subjected to the same number
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Figure 3.7: The constriction of tissue area (%) at the end of simulation runtime
plotted as a function of the frequency of cell activation (pc) for different values

of the frequency of edge activation (pe). At low values of pc, increasing pc

greatly decreases the final tissue area. At higher values of pc (> 0.1), the drop
in final area is not as sharp. Model parameters: Table 3.1. Source: [196].

of Ca2+ flashes (pulses) over different ‘activation windows’. Outside the activation
windows, the tissue is inactive, i.e., it does not experience any Ca2+ flashes. Since
the total number of Ca2+ flashes experienced by the tissue within the activation
window is the same for each case, each case uses a different value of pc (0 - 2000:
0.025, 400 - 1600: 0.0417, 600 - 1400: 0.0625, 800 - 1200: 0.125, 900 - 1100: 0.25).
Comparing the different activation windows, it can be seen that while denser
pulses produce a sharp drop in tissue area over a small period of time, sparser
pulses yield a greater reduction in tissue area over the entire runtime.

These results suggest that random Ca2+ fluctuations at the single-cell level
decrease the tissue size more effectively than multicellular Ca2+ fluctuations. This
is in agreement with the well-established experimental results of Christodoulou
and Skourides [33].

We note here that the term ‘multicellular Ca2+ fluctuations’ used in the para-
graph above may be misleading. Suzuki et al [196] refer to a dense spatial
distribution of Ca2+ pulses as a multicellular fluctuation. However, this is not
entirely accurate. As described in Chapter 2, a multicellular Ca2+ transient orig-
inates from one or a few cells and propagates over the neighbouring cells. So,
a mathematical model attempting to emulate a multicellular transient needs to,
at the very least, provide a mechanism for and demonstrate the propagation of
Ca2+ across cell boundaries. Thus, in any prospective model, adjacent cells must
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Figure 3.8: Change in tissue size over the simulation runtime for different
Ca2+-activation windows, i.e., in the cases depicted, the modelled tissue

experiences Ca2+ flashes over activation windows of 2000, 1200, 800, 400, and
200 a.u. (arbitrary units or non-dimensional units). The total number of Ca2+

flashes experienced by the tissue over the runtime is the same in each case.
Model parameters: Table 3.1. Source: [196].

demonstrate some form of intercellular communication via Ca2+ signalling.
Overall, the study done by Suzuki et al [196] provides insight regarding the

effect of Ca2+ fluctuations on the rate of tissue constriction, but it does not
investigate the time taken by the tissue to achieve maximum constriction and its
final size (Figure 3.7 plots tissue area at the end of simulation runtime but it
should be noted that the model allows for further constriction). However, both
the factors are vital for successful NTC and investigating them by means of a
parameter sweep is a key objective of this doctoral work and will be performed
in Chapter 5.

In spite of the success of the model, it has its limitations. As seen in Fig-
ure 2.6, Ca2+ flashes precede cellular contractions in vivo. In the model, however,
a Ca2+ flash immediately triggers cellular contraction by elevating the line ten-
sion without any latency. Also, in Figure 2.7, it can be seen that the frequency
of occurrence of Ca2+ flashes increases over time. Whereas, in all of their simu-
lations, Suzuki et al [196] assign pc a constant value during the period in which
Ca2+ flashes are active. Additionally, Suzuki et al [196] model the neural plate
in isolation, without considering the effects of any surrounding tissue. However,
in reality, the neural plate is attached to and bounded by a layer of cells that
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exerts a force on it during NTC. These cells form a part of the surface ectoderm,
a crucial structure in the developing embryo [32]. In the following chapters, we
will use the Suzuki model as a foundation and sequentially build up complexity
to develop new mechanochemical models for NTC that address these limitations.



Chapter 4

CelluLink:
Algorithm and features

From a modelling viewpoint, tissue morphogenesis is a problem of collective cell
behaviour, in which the tissue evolves based on the deterministic and/or stochas-
tic rules that the individual cells follow. Cell-based modelling is a useful com-
putational tool for studying collective cell behaviour [10, 125] but because most
cell-based simulations cannot be solved analytically, insight into their behaviour
must be obtained via simulations. Individual simulations with visual output, in
the form of animations and time-series plots for instance, can give some initial
intuition about the behaviour and parameter sensitivity of the model. However,
to obtain a more systematic overview of the range of behaviours the model can
exhibit, along with its parameter sensitivity, it becomes necessary to rerun the
simulation many times for different parameters, and, in case of stochastic mod-
els, to obtain statistical measures of the model results by rerunning many random
instantiations of the model.

In this chapter, we introduce CelluLink, a new software package for vertex
models. We first explore the algorithm underlying CelluLink and then provide
an overview of its key features and functions.

4.1 Existing computational software

Compared to the plethora of software applications available for continuum-
based models, software tools for cell-based modelling have more limited availabil-
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Software Open
Source

GUI CA CP PM VT VM Source

CompuCell3D ✓ ✓ ✓ [200]
Morpheus ✓ ✓ ✓ [190]
EPISIM ✓ ✓ [195]
CellSys ✓ ✓ [85]
PhysiCell ✓ ✓ [71]
Biocellion ✓ [94]
EmbryoMaker ✓ ✓ ✓ [117]
VirtualLeaf ✓ ✓ ✓ [127]
LAMMPS ✓ ✓ [206]
TissueForge ✓ ✓ ✓ ✓ [175, 176]
SAMoS ✓ ✓ ✓ ✓ [15]
cellGPU ✓ ✓ ✓ [193]
Chaste ✓ ✓ ✓ ✓ ✓ ✓ [39]
Tyssue ✓ ✓ [205]
CelluLink ✓ ✓

Table 4.1: A comparison of software tools for cell-based modelling. GUI:
graphical user interface. CA: cellular automata. CP: cellular Potts. PM:

particle model. VT: Voronoi tessellation. VM: vertex model.

ity. Table 4.1 compares some of the commonly used software tools for cell-based
modelling.

The computational tools listed in Table 4.1 have been used to successfully
model and investigate a variety of phenomena like the dynamics of intestinal
homeostasis and carcinogenesis [7], the biomechanical characterization of epithe-
lial tissue development and wound healing [202], and in studies of epithelia mor-
phogenesis in Drosophila melanogaster [76, 122, 129]. However, most of the time,
models are developed independently by research groups for a specific biological
question and are either difficult to adapt to other systems or not made available
for public use.

Of particular interest to us were Chaste and Tyssue. Chaste (Cancer, Heart
And Soft Tissue Environment) is an open source simulation package for the nu-
merical solution of mathematical models arising in physiology and biology, with
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a particular focus on the continuum modelling of cardiac electrophysiology (‘Car-
diac Chaste’), discrete cell-based modelling of soft tissues (‘Cell-based Chaste’),
and modelling of ventilation in lungs (‘Lung Chaste’). Simulations are written
as ‘tests’ in C++, and can be run on all major operating systems via a Docker
image. Chaste provides libraries for common scientific computing infrastructure
such as linear algebra operations, finite element meshes, and ordinary and partial
differential equation solvers.

Tyssue is a library written in Python 3 that provides a unified interface to
implement bio-mechanical models of living tissues. Its main focus is on vertex
based epithelium models, allowing users to model the mechanical behaviour of
2D, apical 3D or full 3D epithelia. As far as we are aware, it is the only publicly
available software for the simulation of 3D vertex models. Tyssue implements
common cellular processes such as cell elimination, division, or rearrangements
based on the methodologies used in Brodland and Veldhuis [19], Okuda et al [149],
and Finegan et al [67]. The dynamical behaviour of the epithelium is described
either by solving the equations of motion for the cell vertices or by finding the
quasi-static equilibrium of the tissue as the solution of a gradient descent problem.

However, while running test suites in Chaste in straightforward enough, mak-
ing modifications to the existing models in the Chaste library requires extensive
experience with C++ development. Tyssue provides detailed documentation for
running the vertex models, but lacks a feature for implementing intercellular sig-
nalling. Considering these factors, we decided to create our own computational
tool, CelluLink, as it would afford us more convenience in modifying our model
and adding desired features.

4.2 Features of the software

In the initial plan for this doctoral work, we envisioned constructing a 3D vertex
model with two-way coupling between Ca2+ and cellular mechanics. However,
owing to the complexity of such an undertaking and the time constraints of the
doctoral program, we decided to restrict our scope to the two-dimensional vertex
model. Accordingly, we focussed on only implementing the features essential to
our modelling problem in the current version of CelluLink. Additional features
(Voronoi diagram generator, topology changing events, and ray tracing for three-
dimensional cells, for instance) can be implemented in future releases. Moreover,
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(a) Hexagon-shaped tissue. (b) Rectangle-shaped tissue.

Figure 4.1: Examples of the two types of tissue configurations available in
CelluLink.

users are welcome to contribute to the development of CelluLink.

Current version

• Tissue generator (2D): Hexagonal honeycomb lattice of cells arranged in a:
(i) hexagon-shaped tissue, or (ii) rectangle-shaped tissue.

• Solvers: (i) Forward Euler, (ii) Backward Euler, and (iii) Predictor-corrector
schemes.

• Parallel processing: Simulations for different parameter sets run in parallel.

• Data visualisation: (i) Time series plots for tissue area, tissue perimeter,
average cell area, average cell perimeter, and tissue energy, (ii) Animation
folder contains frames depicting tissue evolution. Additional plots and fig-
ures can be generated easily from the simulation data saved in the output
directories.

In the case of vertex models, it is non-trivial to determine model parameters
experimentally. So, we test the model for a range of experimentally plausible
parameter values [45, 126]. These systematic parameter studies allow us to predict
the response of the system to pharmaceutical treatments [99, 174], or to evaluate
the behaviour of the tissue. Thus, systematic parameter studies are a critical
tool for analysing vertex models. However, as vertex models grow in size and
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complexity, performing such parameter studies poses a challenge both in terms
of computational power and data storage.

Bearing this in mind, CelluLink has been designed to utilize the multiprocess-
ing libraries in Python to run large parameter sweeps for vertex models on desktop
machines or computational clusters. In case the model incorporates stochastic ef-
fects, statistical measures can be obtained by running many random instantiations
of the model for the same parameter value. Each simulation is run as a separate
process. In this manner, a predefined number of processes can be run in parallel.
The parallel processing feature will be explained in greater detail in Section 4.3,
along with the algorithm flowchart.

4.3 The algorithm

A computational tool that lacks a GUI will always pose a challenge for new
users, especially those lacking programming experience [61]. This is why, out of
all the available software options for vertex models, there is no single software
whose usage is predominant compared to the others. Modellers generally favour
the software that either offers the desired features or one that uses a program-
ming/scripting language they are familiar with. And even then, there is a learning
curve to be overcome. It is no surprise then, that in a large number of studies
involving vertex models, the research team just develops their own code in-house
[62, 196].

Taking cognizance of this fact, the CelluLink source code takes a procedural
programming approach rather than an object-oriented one. While object-oriented
programming is indisputably powerful, it can be difficult to: (i) follow the flow of
control and, (ii) modify the existing code to implement new functionality. Proce-
dural programming is based on the concept of the procedure call. Procedures (a
type of routine or subroutine) simply contain a series of computational steps to be
carried out. Any given procedure might be called at any point during a program’s
execution, including by other procedures or itself. Examples of these procedures
will be provided when we discuss the algorithm flowcharts in Figures 4.5 & 4.6.

The development of CelluLink draws inspiration from Durney et al [55, 56, 57].
In their work, they develop a two-dimensional vertex model for Drosophila dor-
sal closure and a three-dimensional vertex model for Drosophila salivary gland
tubulogenesis. Both models are developed in Python and utilise the NetworkX
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package. The NetworkX package was designed for the study of complex net-
works and contains functions and commands for the creation and manipulation
of graphs.

Figure 4.2: Indexing scheme used in CelluLink to assign numeric values to the
cells and vertices of the vertex model. The vertex at the bottom left corner of
the tissue is assigned 0. As we move to the right along the cell edge, the index
goes up by one for the next vertex. On reaching the end of that row, we move
to the leftmost vertex on the row above it and resume assigning indices. The

cells are assigned indices in a similar manner. The black and red lines depict the
connectivities of the vertex and cell graphs respectively.

Similarly, CelluLink is written in Python 3 and utilises the NetworkX package
to store the data associated with the cells and vertices of the vertex model in
graph-like data structures. The vertex of each polygon i.e. a cell, is imagined as
a node and the connection between a pair of vertices i.e. a cell edge, is imagined
as an edge in the vertex graph V = (VV , EV), where VV and EV are the sets of
nodes and edges of the vertex graph, respectively.

Also, each cell is imagined as a node and the connection between two cells
that share an edge, is imagined as an edge in the cell graph C = (VC, EC), where
where VC and EC are the sets of nodes and edges of the cell graph, respectively.
The nodes of the graphs V and C are assigned indices according to the numbering
scheme visualised in Figure 4.2.

The nodes and edges of the NetworkX graphs can each hold a number of data
structures. This proves very useful in storing, accessing, and manipulating the
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Figure 4.3: Arrangement of cells in the hexagon-shaped tissue configuration.
The cells are arranged in concentric layers, where layer 0 has only one cell - the

cell at the centre of the modelled tissue.

data associated with the vertices and cells. For instance, each node of V holds a
2-tuple describing the position of the corresponding vertex, and a list of integers
representing the indices of the cells which share that vertex.

The impact of the initial shape of the tissue on tissue evolution and final
shape varies across vertex models. However, in our modelling challenge, due to
the absence of topological transitions [34] and low adhesion [196], the final shape
is simply a smaller version of the initial shape. Therefore, the choice of initial
shape directly affects the final shape.

So, all the simulations in this doctoral work model the tissue in the hexagonal
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rather than the rectangular configuration because they more closely resemble
the circular shape of the tissue under study i.e. the apical surface of the anterior
neural plate. To model this tissue, we imagine the constituent cells to be arranged
in concentric layers (Figure 4.3) such that the relationship between the number
of layers and the number of cells in the tissue is

cells = 1 + 6
layers∑
n=0

n = 1 + 3(layers)(layers + 1), (4.1)

and the total number of vertices in the tissue is given by

vertices = 6
layers∑
n=0

(2n + 1) = 6(layers + 1)2. (4.2)

Figure 4.4 provides an overview of CelluLink’s algorithm. The ability to par-
allelize large parameter sweeps is CelluLink’s most important feature and its
implementation greatly influenced the software design process. The parallel pro-
cessing feature utilises the multiprocessing package to spawn child processes
and manage communication between them.

To elucidate the working of the parallelization feature, let us consider a typical
parameter sweep for the Suzuki model. The model has 16 free parameters: pc,
δt, KA

n , KP
n , µ, κA, κP , ωA, ωP , A0

n (initial), P 0
n (initial), A0

n (minimum), P 0
n

(minimum), T0n, ξ, τ . First, we set the default values for each parameter. Then,
we define a list of values for each parameter that we’d like to sweep over:

pc = [value 1, value 2, ... ],
δt = [value 1, value 2, ... ],
...
τ = [value 1, value 2, ... ].

Then, the simulation runs for an instance of the model with pc = value 1
and all other parameters set to their default values. In this manner, a single
instance of the model is run in a child process. A separate child process runs for
an instance of the model with pc = value 2 and all other parameters set to their
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default values, and so on. These child processes run in parallel and the main
process only allows a predefined number of parallel child processes at a time so
as to not overburden the CPU.

If we are interested in examining stochastic effects, it becomes necessary to
run many instances of the model for the same parameter value. For example, to
examine the stochastic effects for pc = value 1, we’d have to repeatedly run the
model with pc = value 1 and all other parameters set to their default values. In
this case as well, each run would be performed by a distinct child process.

Figure 4.5 depicts the flow chart of the algorithm for CelluLink’s main process.
The main process is written within the main() function. The process starts by
initialising the following variables: layers (number of concentric cell layers), hs

(cell edge length), simtime (duration of time for which the model is simulated),
samples (number of runs for the same parameter value), and num_proc (number
of child processes allowed to run in parallel). All units are non-dimensional.

Since CelluLink uses procedural programming, the main process then calls a
sequence of functions to execute the next steps of the algorithm. The top-level
results directory is created by the create_results_dir() function, the tissue is
generated by calling the generate_tissue() function which defines the cell and
vertex graphs, and the set_sim_params() function is called to assign the model
parameters their default values and to create a list containing the values over
which the parameter sweep will run. The total number of child processes that
will be required is given by samples × num_par, where num_par is the number
of values over which the parameter sweep will run.

Figure 4.6 depicts the flow chart of the algorithm for a child process (solver).
This algorithm also calls a sequence of functions to execute the tasks associated
with each step. For the sake of brevity, they will not be listed here. The CelluLink
source code along with all the function definitions can be found on GitHub1.
Modifications or additions can be made to the model by changing an existing
function and/or by writing new ones.

The solver process starts by creating an output directory (within the top-
level results directory) to store the simulation data for the associated parameter
value. Then, it iterates the following sequence of actions over the full range of
timesteps:

1GitHub repository: https://github.com/Yudhajit-95/CelluLink

https://github.com/Yudhajit-95/CelluLink
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Figure 4.4: A high-level process flow diagram of CelluLink’s algorithm.
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Figure 4.5: Flow chart of the algorithm for CelluLink’s main process. The boxes
with the dashed borders depict child processes spawned by the main process.
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Figure 4.6: Flow chart of the algorithm for CelluLink’s child processes. Each
child process runs a different instance of the vertex model simulation.
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(i) Initialise or update the attributes that define cell state e.g. Ca2+ concen-
tration level,

(ii) Calculate position vector ri for all vertices for the next timestep by solving
the force balance equation (Equation (3.7)) using the numerical scheme of
choice e.g. forward Euler or predictor-corrector,

(iii) Implement any changes in topology (It is to be noted that this feature
is not currently available in CelluLink. However, it is listed here for the
sake of completeness - to demonstrate where it can be implemented in the
algorithm.),

(iv) Calculate area An and perimeter Pn for all cells, and net area Atissue, perime-
ter Ptissue, and total energy of the tissue U ,

(v) Calculate the natural area A0
n and natural perimeter P 0

n for all cells for the
next timestep by solving the ODEs of the ratchet-like mechanism (Equa-
tions (3.9) & (3.10)) using the numerical scheme of choice e.g. Forward
Euler or Backward Euler,

(vi) Write the data from the previous steps to the output directory,

(vii) Update the position vector ri for all vertices, and update the natural area
A0

n and natural perimeter P 0
n for all cells.

After completing this sequence for the final timestep, the data in the output
directory is read to generate snapshots of the tissue at different timesteps and
time series plots of interest e.g. tissue area versus time, tissue perimeter versus
time. Upon completing these actions, the solver process terminates.

4.4 Testing the software

A Python script containing the CelluLink main() function can be run from
any command line interface. Figure 4.7 shows an instance where the script is
being executed via an Anaconda Prompt terminal to simulate one of the models
developed in this thesis - the modified Suzuki model, which will be studied in
detail in Chapter 5.
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Figure 4.7: CelluLink running in a terminal window. In this instance, CelluLink
is being run via Anaconda Prompt on Windows 10.

Suzuki_FE_Parallel_TestOutput.py, the Python script being executed,
contains the main() function. Each parameter in the model is assigned a

numeric value, as displayed in the parameter index table (Table 4.2). This
visual aid helps the user monitor the progress of the simulations being run for

the corresponding parameter values e.g. ‘P 0 - 0: 0.8%’ indicates that the
simulation for pc = 0 is 0.8% complete.
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Parameter Index number Variable name
pc 0 cell_prob
δt 1 dt

KA
n 2 Ka

KP
n 3 Kp

µ 4 mu
κA 5 Ca
κP 6 Cp
ωA 7 Wa
ωP 8 Wp

A0
n (initial) 9 An_ini

P 0
n (initial) 10 Pn_ini

A0
n (minimum) 11 An_min

P 0
n (minimum) 12 Pn_min

T0n 13 rest_force
ξ 14 actv_xi
τ 15 flash_time

Table 4.2: The parameter index table for the modified Suzuki model. The
numerical index and variable name assigned to each parameter is listed above.



4.4. TESTING THE SOFTWARE 77

Parameter Value
Cells 271

pc 0.025
δt 0.2

KA
n 0.3

KP
n 0.2

µ 1
κA 1
κP 0.001
ωA 0.6
ωP 0.8

A0
n (initial) 1

P 0
n (initial) 5

A0
n (minimum) 0.3

P 0
n (minimum) 2

T0n 0.1
ξ 0.05
τ 5

Table 4.3: Parameter values for Figures 4.8 and 4.9.
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(a) t = 0. (b) t = 1440.

(c) t = 2880. (d) t = 4320.

(e) t = 5760. (f) t = 7199.

Figure 4.8: The time evolution of the tissue in the modified Suzuki model is
visualized through images captured at the end of five equally spaced time

intervals. The green-coloured cells have been activated by Ca2+ whereas the
yellow-coloured cells are in an inactivated state. The images have been

generated by CelluLink, using the Matplotlib package. Model parameters:
Table 4.3.
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(a) Average cell area versus time. (b) Average cell perimeter versus time.

(c) Tissue area versus time. (d) Tissue perimeter versus time.

(e) Tissue energy versus time.

Figure 4.9: The average cell area, average cell perimeter, tissue area, tissue
perimeter, and total energy of the tissue visualised in Figure 4.8. Model

parameters: Table 4.3.
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The terminal displays the progress of every solver process that is currently
running. Each process writes the data from the cell and vertex graphs as well as
the time series data for the average cell area, average cell perimeter, tissue area,
tissue perimeter, and total energy of the tissue to text files in the corresponding
output directory.

At the end of each solver process, CelluLink reads the data files produced
over the course of the simulation and generates the following figures using the
Matplotlib package: Snapshots of the tissue at t = 0 and at the end of five
equally-spaced time intervals between t = 0 and the final timestep (Figure 4.8),
and time series plots of average cell area, average cell perimeter, tissue area, tissue
perimeter, and tissue energy (Figure 4.9). These figures are saved to the output
directory corresponding to the solver process. The images in Figures 4.8 and 4.9
were generated by simulating the modified Suzuki model using the forward Euler
method.

In this chapter, we compared some of the available computational tools for
cell-based modelling and developed CelluLink, a new software package for ver-
tex models, and tailored it to meet the requirements of the models explored in
this doctoral work. The CelluLink source code employs procedural programming
rather than the object-oriented programming paradigm. This makes it easier to
modify the code and affords users more convenience in implementing new features
and models. CelluLink’s most powerful feature is that it has been designed to
leverage parallel processing to make parameter sweeps more convenient. All of
the models in the following chapters will be simulated using CelluLink.



Chapter 5

The modified Suzuki model

In Chapter 3, we reviewed the Suzuki model in detail and highlighted its lim-
itations. In this chapter, we begin addressing these limitations by revising some
of the assumptions of the Suzuki model to better reflect the biology and simplify
its structure, creating a model we refer to as the modified Suzuki model. We then
simulate the modified Suzuki model in CelluLink and compare its behaviour to
the Suzuki model.

The simplified structure of the modified Suzuki model allows us to study it
analytically. So, we derive a bifurcation diagram to explore the behaviour of the
model at equilibrium. For the sake of simplicity, we do not consider the effects of
the ratchet-like mechanism and Ca2+ in this analysis. Since there is no straight-
forward methodology that directly relates experimentally measurable quantities
e.g. Young’s modulus, traction stress etc. to the vertex model parameters, the bi-
furcation diagram becomes a useful aid in identifying parameter regimes for which
the modified Suzuki model yields a stable hexagonal network - which corresponds
to a biologically realistic tissue.

We then use the results obtained from the analytical work to investigate the
conditions required to activate the ratchet-like mechanism and ensure that the
tissue contracts to its target size. Finally, we conduct a systematic parameter
sweep of the modified Suzuki model to numerically investigate how the parameters
impact the rate of tissue contraction and the final size attained by the tissue in
the presence of both the ratchet-like mechanism and Ca2+ activity. This study
informs our understanding of the parameter sensitivity of the modified Suzuki
model and helps us identify the parameter ranges over which the modified Suzuki
model is stable.

81
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5.1 Modelling assumptions

Based on our discussions with our experimental collaborators, Neophytos Chris-
todoulou and Paris Skourides (University of Cyprus), and bearing in mind the
ease of implementation of certain features, we revised some of the assumptions
of the Suzuki model (Chapter 3) in order to make the model more biologically
accurate. Our modelling assumptions are as follows:

• Shape of the modelled tissue
Suzuki et al [196] modelled the initial configuration of their tissue using
Voronoi diagrams. The constituent cells were modelled as irregular polygons
having 5, 6, 7, or 8 sides, and positioned in an approximately circular region.
In contrast, we model the cells as regular hexagons arranged in a honeycomb
lattice such that the modelled tissue is hexagon-shaped because:

(i) The symmetry of a regular polygon allows us to study the steady-
state behaviour of the cells analytically and identify bifurcations (Sec-
tion 5.3).

(ii) It is more straightforward to implement a hexagonal honeycomb lattice
than a Voronoi diagram generator in CelluLink.

(iii) It is sufficient to approximate the circular shape of the anterior neural
plate we are modelling.

• Number of cells
Based on experimental observations, it is reasonable to assume that the
anterior neural plate consists of ≈ 250 cells [33]. Suzuki et al [196] modelled
their tissue as a sheet comprised of 256 cells. However, our choice of tissue
shape imposes a constraint on the number of cells that can make up our
hexagon-shaped tissue (Equation (4.1)) i.e. the closest we can get to 250
cells is 271 cells, which is still a reasonably good approximation.

• Cell size
The tissue modelled in Suzuki et al [196] has an initial area of 200 a.u.
(arbitrary units or non-dimensional units) and comprises 256 cells of differ-
ent sizes. So, the initial average cell area can be taken as 200

256 ≈ 0.78 a.u.
Therefore, we assign each cell, modelled as a regular hexagon in our model,
an initial area = 0.78, resulting in an edge length ≈ 0.55 for the hexagon.
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In Xenopus, the average apical surface area of anterior neural plate cells at
the onset of apical constriction (AC) is 250 µm2 [33, 34].

• Neighbour exchanges
The Suzuki model takes into account the effect of neighbour exchanges,
implemented via the T1 process. However, neighbour exchanges are char-
acteristic of cell intercalation1 events, which drive convergent extension on
the posterior neural plate [34]. In contrast, we are interested in modelling
AC, which occurs on the anterior neural plate. Since, cell intercalation and
AC do not occur concomitantly, we choose to ignore the effect of neighbour
exchanges.

• Probability of edge activation
Imaging data from the Xenopus embryo reveals that almost all segments of
the cell membrane contract in vivo simultaneously during cell contraction
[32, 33]. Therefore, we decided to neglect the parameter pe, probability of
cell edge activation, used by Suzuki et al [196] for the sake of simplicity. In
effect, we considered a special case of that parameter (pe = 1), where all
cell edges would experience elevated line tension in an activated cell.

• Cell activation period
In Suzuki et al [196], if an activated cell experienced a Ca2+ transient before
its current activation period elapsed, its remaining activation time would
be extended by τ . In reality, very high levels of cytosolic Ca2+ for extended
periods of time can trigger apoptosis2, so cells have innate mechanisms to
remove the excess Ca2+. A cell would thus dissipate previously accumulated
Ca2+ prior to experiencing another elevation in Ca2+ level. In our model,
therefore, an activated cell is not allowed to experience a Ca2+ transient
until its activation period expires.

Since our implementation of the Suzuki model uses the same equations for
vertex dynamics and the ratchet-like mechanism (Equations (3.7)-(3.10)) but dif-
fers with regards to our implementation of cell activation and the cell and tissue
shape, we refer to it as the modified Suzuki model. As is typical of vertex
models, all quantities are expressed in arbitrary or non-dimensional units.

1Cell intercalation A process that occurs throughout animal development and in which
neighbouring cells exchange places.

2Apoptosis A form of programmed cell death occurring in multicellular organisms.
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5.2 Comparing with the Suzuki model

To compare with the Suzuki model, we simulate the modified Suzuki model in
CelluLink to reproduce some of the key results of Suzuki et al [196] (Figures 5.1a &
5.2a). This also serves as the most straightforward way to test whether CelluLink
is functioning as intended. All of the simulations in this chapter were performed
using the forward Euler method. Figures 5.1b & 5.2b capture the results depicted
in Figures 5.1a & 5.2a, respectively.

Figure 5.1b depicts a successful reproduction of the effect of the Ca2+ transients
(Pulse) and ratchet-like mechanism (Acn) on the simulated tissue. As seen in 5.1a,
without the Acn component, i.e., in the absence of the ratchet-like mechanism,
the tissue does not contract regardless of the presence of the Pulse component.
The Acn component is essential for tissue contraction in the model and the Pulse
component expedites the rate of contraction.

The plots for (−Pulse, −Acn), (+Pulse, −Acn), and (−Pulse, +Acn) in Fig-
ure 5.1b show good agreement with the corresponding cases in Figure 5.1a. In the
plot for (+Pulse, +Acn) in Figure 5.1b, we note that the reduction in tissue area
is steeper compared to the corresponding case in Figure 5.1a. This discrepancy
most likely arises as a result of the differences in our respective implementations
of the vertex model.

Upon close inspection of the results of Suzuki et al [196], it can be observed
that cells do not exchange neighbours during tissue contraction over the course
of their simulation i.e. the T1 process is not utilized. Therefore, it is unlikely
that the difference in the rate of tissue contraction is an outcome of not including
T1 transitions. Additionally, Suzuki et al [196] had also set pe = 1 for their
simulation. So, it is possible that the discrepancy stems from our choice of tissue
shape, the number of cells, our assumption regarding the cell activation period,
or some combination of these factors.

Figure 5.2b shows the successful reproduction of another key result of the
Suzuki model and shows that while denser pulses produce a sharp drop in tissue
area over a small period of time, sparser pulses yield a greater reduction in tissue
area over the entire runtime. On comparing Figures 5.2a & 5.2b, it can be seen
that there is greater spacing between the line plots in the case of the latter. This
difference too stems from the steeper reduction in tissue area observed in our
implementation of the vertex model.
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Parameter Value
Cells 271

pc 0.025
δt 0.2

KA
n 0.3

KP
n 0.2

µ 1
κA 1
κP 0.001
ωA 0.6
ωP 0.8

A0
n (initial) 1

P 0
n (initial) 5

A0
n (minimum) 0.3

P 0
n (minimum) 2

T0n 0.1
ξ 0.05
τ 5

Table 5.1: Parameter values for Figures 5.1b and 5.2b.
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(a) The effect of the Ca2+ transients and ratchet-like mechanism on tissue
contraction in the Suzuki model [196].

(b) The effect of the Ca2+ transients and ratchet-like mechanism on tissue
contraction in the modified Suzuki model.

Figure 5.1: The effect of the Ca2+ transients (Pulse) and ratchet-like mechanism
(Acn) on tissue contraction in the Suzuki and modified Suzuki models. -/+
Pulse indicates the absence/presence of Ca2+ flashes, +/- Acn indicates the
whether the ratchet-like mechanism was active/inactive in the model. Model

parameters: Table 5.1.
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(a) Time evolution of the simulated tissue for different
activation windows in the Suzuki model [196].

(b) Time evolution of the simulated tissue for different
activation windows in the modified Suzuki model.

Figure 5.2: Tissue contraction over the simulation runtime for different
Ca2+-activation windows in the Suzuki and modified Suzuki models. Since the
total number of Ca2+ flashes experienced by the tissue within the activation

window is the same for each case, each case uses a different value of pc (0 - 2000:
0.025, 400 - 1600: 0.0417, 600 - 1400: 0.0625, 800 - 1200: 0.125, 900 - 1100:

0.25). Model parameters: Table 5.1.
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5.3 Deriving the bifurcation diagram

To explore the full range of equilibrium behaviours displayed by the modified
Suzuki model, we derive its bifurcation diagram using the results of Magno et
al [115]. Their analytical study revealed the complete spectrum of single-cell
behaviour and tissue packing for their 2D vertex model. We follow the derivation
for their bifurcation diagram and then apply their results to the modified Suzuki
model.

The derivation in Magno et al [115]

In their analysis, Magno et al [115] start with the phenomenological energy
function used to model cell surface mechanics, which takes the general form

E = λa(a − A)2 + λp(p − P )2 + Jp, (5.1)

where p and a are the perimeter and area of the cell. The function uses five
parameters for the cellular properties: J , an energy per contact length due to
adhesion to other cells or the surrounding medium; P , the membrane target length
(resting length); and A, the target cell area (resting area); and the constants
λp and λa (comparable to elastic constants), which weigh the relative tension
contributions of actin-myosin contraction and cell deformations, respectively.

The term λa(a − A)2 is associated with the cell’s compressibility or pressure
- the energy possessed by the cell by virtue of its area deviation relative to the
target area, the term λp(p − P )2 is associated with the contractility of the cell
cortex i.e. the cortical tension, and the term Jp is associated with the adhesion
between two interfaces, such as cell-cell or cell-extracellular contacts i.e. the
adhesion-driven tension.

To derive the equations for a hexagonal cell shape, we start by writing the
equations for a general family of shapes, for which the perimeter and area can be
parametrised as p = kpl and a = kal2, respectively, where l is an arbitrary length
factor for any cell shape (l could be the radius, for a circular cell shape, or the
edge length, for a polygonal cell shape). Substituting a = kal2, p = kpl, A = kaL2

a

and P = kpLp into Equation (5.1) yields
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E = λa

(
kal2 − kaL2

a

)2 + λp (kpl − kpLp)2 + Jkpl, (5.2)

where Lp and La are the reciprocal target lengths of the target perimeter P and
area A. From the energy function (Equation (5.2)), we will derive two important
quantities that will aid us in understanding the cell behaviour at equilibrium -
the interfacial tension and pressure.

The cell’s interfacial tension (γ), the work required to extend the membrane
by a unit area, is expressed in 2D as the change in energy per unit perimeter
length and depends on both the cortical and the adhesion-driven tension:

γ = ∂E

∂p

= J + 2kpλp (l − Lp) . (5.3)

The interfacial tension can be split up into a length-independent component,
J − 2kpλpLp, and a component which depends linearly on the perimeter length,
2kpλpl. We can thus write

γ = τ + 2kpλpl, (5.4)

where τ is defined as the length-independent component of the interfacial tension.
The sign of τ is undetermined, while the length-dependent component is always
non-negative.

Under positive interfacial tension, energy reduction leads to reduction in the
length of the interfaces resulting in perimeter minimization. When the interfacial
tension is negative, the tendency of reducing the perimeter for a determined
area is lost, as there is no additional energy cost in increasing the length of
the interfaces – in fact, the tendency is to increase the length of the interfaces,
causing cells which are constrained in area irregular and unpredictable shapes.
From Equation (5.4), it follows that for the interfacial tension to be positive at
the equilibrium length l∗, the following condition needs to be satisfied:
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τ + 2kpλpl∗ > 0

=⇒ l∗ > − τ

2kpλp

. (5.5)

The pressure (Π) within the cell that contributes to a force per unit membrane
area can be represented as the work required (from an external agent) per unit
area decrease or, equivalently, the decrease in energy per unit area increase:

Π = −∂E

∂a

= −2kaλa

(
l2 − L2

a

)
. (5.6)

So, to predict the qualitative behaviour of the cell, with regard to its shape,
it is important to determine the sign of the interfacial tension at the equilibrium
length l∗. To determine the equilibrium length, we first take the derivative of
E (Equation (5.2)) with respect to l and substitute the expressions from Equa-
tions (5.3) and (5.6) which gives us

∂E

∂l
= 2λak2

a

(
l2 − L2

a

)
2l + 2λpk2

p (l − Lp) + Jkp

= 2kal
(
2kaλa

(
l2 − L2

a

))
+ kp (J + 2λpkp (l − Lp))

= −2kalΠ + kpγ. (5.7)

The equilibrium length (l∗) can then be found by solving for ∂E
∂l

= 0 as follows,

∂E

∂l

∣∣∣∣
l=l∗

= −2kal∗Π (l∗) + kpγ (l∗) = 0. (5.8)

From Equation (5.8), it is clear that at equilibrium kpγ (l∗) = 2kal∗Π (l∗). The
requirement γ (l∗) > 0 therefore also implies that l∗Π (l∗) > 0, and thus

− 2kaλal∗ (l∗2 − L2
a

)
> 0

=⇒ l∗ < La, (5.9)
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since we are only considering cases where l∗ > 0 as it is nonsensical to consider
l∗ < 0. By combining the inequalities (Equations (5.5) and (5.9)), we obtain the
requirement for an equilibrium length l∗ to have a positive interfacial tension,
which is

− τ

2kpλp

< l∗ < La. (5.10)

Two conclusions can be drawn from this inequality. First, a solution is only
possible when

− τ

2kpλp

< La

=⇒ τ > −2kpλpLa. (5.11)

Consequently, the interfacial tension at l∗ > 0 is going to be negative for
any τ < −2kpλpLa, independently of the specific value of l∗. Secondly, when
τ > −2kpλpLa, Equation (5.10) is always fulfilled, and hence it follows that the
interfacial tension at l∗ has to be positive. This gives us our first bifurcation
line at

τ = −2kpλpLa. (5.12)

The condition τ > −2kpλpLa thus determines an important parameter range
in which the cell is stable and its shape is predictable. When the cell becomes
unstable, its shape is hard to predict and will critically depend on the specific
implementation of the cell surface and surface dynamics within the diverse model
formalisms. It should be noted that even if the cell shape becomes unpredictable,
there is no inherent conflict between fulfilling the area constraint (equivalent to
solving Π(a∗) = 0) and fulfilling the effective perimeter constraint (equivalent to
solving γ(p∗) = 0). When the cell shape is stable, the equilibria can be analysed
as follows next.

The number of roots of the cubic equation ∂E
∂l

= 0 (i.e. the equilibria) can
be determined by analysing the properties of the cubic function ∂E

∂l
. To aid our

analysis, we can rearrange the terms of Equation (5.7) as follows,
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∂E

∂l
= kp (J + 2λpkp (l − Lp)) + 2kal

(
2kaλa

(
l2 − L2

a

))
= kp

(
τ + 2λpkpl − 2ka

kp

l(−2λaka(l2 − L2
a))
)

= kp

(
τ + 2λpkpl + βl(l2 − L2

a)
)

= kp

(
τ + βl

(
l2 −

(
L2

a −
k2

pλp

2k2
aλa

)))
= kp

(
τ + βl

(
l2 − 3ϵ

))
, (5.13)

where β = 4k2
aλa

kp

and ϵ = L2
a

3 −
k2

pλp

6k2
aλa

. Since, Equation (5.13) lacks a second
degree term, it is a special form of cubic equation - the depressed cubic equation.

With Equation (5.13), we can assess how the number of equilibria depends
on the two composite parameters, τ and ϵ. If ϵ < 0, the right-hand side term
βl (l2 − 3ϵ) cannot become negative (since it is nonsensical to consider l < 0),
so by itself this term does not give rise to non-trivial equilibria. A non-trivial
equilibrium can only occur when τ balances the monotonically increasing right-
hand side term. In this case, the equilibrium length l∗ is positive if τ < 0. This
solution is unique and stable (since ∂2E

∂l2
> 0 for l = l∗ results in a local minima).

If τ > 0, the only solution to Equation (5.13) is negative. Consequently, for ϵ < 0
and τ > 0, the only equilibrium is the trivial solution l∗ = 0 which is stable,
whereas when ϵ < 0 and τ < 0, the trivial solution l∗ = 0 is unstable.

If ϵ > 0, the right-hand side term βl (l2 − 3ϵ) does not increase monotonically
and, hence, there can be three real roots. Conveniently, the possible equilibria
and their stability can be understood by visualising the value τ as a vertical
shift of the cubic function ∂E

∂l
. By starting with τ = 0 (for which ∂E

∂l
is an anti-

symmetric function) and then shifting the curve vertically, all possible equilibria
combinations occur successively.

As the curve transitions from τ < 0 to τ > 0, the number of equilibria changes
from two to three. Magno et al [115] note that this transition is a non-standard
bifurcation that bears resemblance to a transcritical bifurcation but does not for-
mally correspond to it. So, they refer to it as a ‘pseudo-transcritical’ bifurcation.
Consequently, the second bifurcation line is defined by the condition

τ = 0, (5.14)
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Condition Equilibria
τ < −2kpλpLa -

−2kpλpLa < τ < 0 1 stable, 1 unstable (trivial)

0 < τ < 2βϵ
3
2

ϵ > 0
1 stable, 1 unstable,

1 stable (trivial)
ϵ < 0 1 stable (trivial)

2βϵ
3
2 < τ 1 stable (trivial)

Table 5.2: The possible equilibria for a cell whose energy function is described
by Equation (5.2), and the conditions that must be satisfied to obtain them.

with τ < 0 resulting in an unstable trivial equilibrium, and τ > 0 resulting in a
stable one.

Upon increasing the value of τ further, we will encounter a transition from three
equilibria to one equilibrium. This transition corresponds to a fold bifurcation,
which takes place when the minimum of the ∂E

∂l
function equals zero. The value

of l at which ∂E
∂l

has a minimum can be determined by setting ∂2E
∂l2

= 0. In other
words, the third bifurcation line can be found when the inflection point of the
energy function coincides with the equilibrium length l∗. Taking the derivative of
Equation (5.13) with respect to l, we get

∂2E

∂l2 = 3kpβ
(
l2 − ϵ

)
. (5.15)

Setting ∂2E
∂l2

= 0, we find that l =
√

ϵ at the inflection point. Thus, the
aggregate parameter ϵ can be interpreted as the inflection point of the energy
function squared, with negative values of ϵ implying that there is no inflection
point (as described previously). The third bifurcation line is then given by:

∂E

∂l

∣∣∣∣
l=

√
ϵ

= 0

=⇒ kp

(
τ − 2βϵ

3
2

)
= 0

=⇒ τ = 2βϵ
3
2 . (5.16)

Thus, we obtain all the possible equilibrium states for a cell whose energy
function is described by Equation (5.2). The equilibria and the corresponding
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conditions that must be satisfied to obtain them have been summarised in Ta-
ble 5.2. Note that in the case where τ < −2kpλpLa, the shape of the cell is
hard to predict, and the parametrisations p = kpl and a = kal2 may no longer
necessarily apply. Therefore, we can no longer use Equation (5.13) to derive the
equilibria. Note that because we model the cells as hexagons, we can parametrise
the perimeter p and area a as P = 6l and a = 3

√
3

2 l2. Thus, we will take kp = 6
and ka = 3

√
3

2 moving forward.

Deriving the bifurcation diagram for the modified Suzuki model

To apply these results to the modified Suzuki model, we start by introducing
a mapping between the notation used by Magno et al [115] and the one used in
the Suzuki model. Recall the energy function used in the Suzuki model:

U =

Ncells∑
n

KA
n

2

(
An

A0
n

− 1
)2

A0
n +

Ncells∑
n

KP
n

2

(
Pn

P 0
n

− 1
)2

P 0
n +

Ncells∑
n

edge∑
<ij>

T <ij>
n L<ij>

n .

(3.4 expanded)

Equation (3.4) describes the energy of the entire tissue being modelled. Magno
et al [115] found that tissue properties are a manifestation of the mechanical
properties of individual cells and not of collective cell behaviour. So, knowledge
of the expected cell shape combined with single cell analysis is sufficient to account
for the whole range of observed tissue behaviour. Following that line of thought,
we perform single cell analysis for the modified Suzuki model where the energy
function for a single cell is given by

Ucell = KAA0

2

(
A

A0 − 1
)2

+ KP P 0

2

(
P

P 0 − 1
)2

+ TP

= KA

2A0

(
A − A0)2 + KP

2P 0

(
P − P 0)2 + TP. (5.17)

where we drop the subscript n since we are analysing a single cell. Drawing a
correspondence with the notation of Magno et al [115], we get
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λa → KA

2A0 , (5.18a)

λp → KP

2P 0 , (5.18b)

J → T, (5.18c)

A
(
= kaL2

a

)
→ A0, (5.18d)

P (= kpLp) → P 0. (5.18e)

To derive the bifurcation diagram for the modified Suzuki model, we must
define meaningful aggregate parameters. So, we nondimensionalise the energy
function (Equation (5.17)) and obtain the expression for nondimensional energy

U = Ucell

KP P 0

= 1
2

KAA0

KP P 0

(
A

A0 − 1
)2

+ 1
2

(
P

P 0 − 1
)2

+ TP

KP P 0

= 1
2K(a − 1)2 + 1

2(p − 1)2 + Tp, (5.19)

where a = A

A0 , p = P

P 0 , K = KAA0

KP P 0 and T = T

KP
are the normalised area,

normalised perimeter, normalised area elasticity and normalised line tension, re-
spectively. We shall derive the bifurcation diagram for the modified Suzuki model
using the aggregate parameters K and T . In the notation of Magno et al [115],
K and T correspond to

K → λa

λp

(
kaL2

a

kpLp

)2

, (5.20)

T → J

2λpkpLp

. (5.21)

The relationship between K and T is given by

K = KAA0

TP 0 T . (5.22)

Recall that the first bifurcation line, that determines negative or positive in-
terfacial tension, is given by
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τ = −2kpλpLa. (5.12 revisited)

The length-independent component of interfacial tension is defined as τ =
J − 2kpλpLp. Substituting this expression into Equation (5.12) gives us

J = 2kpλp(Lp − La). (5.23)

Substituting Equation (5.23) into Equation (5.21), we get

T = 2kpλp(Lp − La)
2kpλpLp

= 1 − La

Lp

= 1 − kp√
ka

√
A0

P 0 (substituting 5.18d and 5.18e)

= 1 − 3.722
√

A0

P 0 , (5.24)

which is the first bifurcation line (B1) for the modified Suzuki model.
Similarly, we use the condition

τ = 0 (5.14 revisited)

to obtain the corresponding expression for J :

J = 2kpλpLp. (5.25)

Substituting Equation (5.25) into Equation (5.21) then gives us the second
bifurcation line (B2) for the modified Suzuki model:

T = 1. (5.26)

For the third bifurcation line, we use the condition

τ = 2βϵ
3
2 , (5.16 revisited)
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where β = 4k2
aλa

kp

and ϵ = L2
a

3 −
k2

pλp

6k2
aλa

, to obtain the corresponding expression
for J :

J = 2kpλpLp + 8k2
aλa

kp

ϵ
3
2 . (5.27)

After rewriting Equation (5.22) in the notation of Magno et al [115] and rear-
ranging the terms, we substitute Equation (5.27) to get

T =
((

2kpλpLp + 8k2
aλa

kp

ϵ
3
2

)
kpLp

2λa(kaL2
a)2

)
K

=
(

λp

λa

(
kpLp

kaL2
a

)2

+ 4Lp

L4
a

ϵ
3
2

)
K. (5.28)

Rearranging the terms of Equation (5.28), we obtain an expression for ϵ:

ϵ =
(

L4
a

4Lp

T − 1
K

) 2
3

. (5.29)

Recalling the original definition of ϵ, the terms can be rearranged as follows,

ϵ = L2
a

3 −
k2

pλp

6k2
aλa

= L2
a

3

(
1 −

λpk2
p

2λak2
aL2

a

)
= L2

a

3

(
1 − 1

2
L2

a

L2
p

λp

λa

(
kpLp

kaL2
a

)2
)

= L2
a

3

(
1 − 1

2

(
La

Lp

)2 1
K

)
. (5.30)

By equating the right-hand sides of Equations (5.30) and Equation (5.29) and
rearranging the terms, we get the third bifurcation line (B3) for the modified
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Suzuki model:

T = 1 + 4
27

Lp

La

(
1 − 1

2K

(
La

Lp

)2
) 3

2

K

= 1 + 4
27

√
ka

kp

P 0
√

A0

(
1 −

k2
pA0

2kaP 02
1
K

) 3
2

K

= 1 + 0.0398 P 0
√

A0

(
1 − 6.9284 A0

P 02
1
K

) 3
2

K. (5.31)

The three bifurcation lines: B1, B2, and B3 divide the T -K parameter space
into four regions as visualised in Figure 5.3. The intersection of B2 and B3 can
be found by setting T = 1 in Equation (5.31), which gives us K = 6.9284 A0

P 02 .
It is interesting to note that, unlike the bifurcation lines derived in [62] and

[115], the bifurcation lines for the modified Suzuki model depend upon the target
area A0 and target perimeter P 0. Most likely, this is because the potential energy
terms in the Suzuki model and, by extension, the modified Suzuki model are
modulated by additional target area and target perimeter terms, respectively
(Section 3.1.2).

The conditions corresponding to the regions are summarised in Table 5.3.
When (T , K) lies in Region I, the cell shape is unpredictable at equilibrium.
In the multicellular case, Region I would yield a soft network because the system
is ‘soft’ with vanishing shear modulus and behaves more like a liquid in which
a cell’s shape can change without any change in the value of the cell’s energy
function and cells can move past one another easily [62]. In Region II, the cell
shape is a regular hexagon at equilibrium, which results in a hexagonal network in
the multicellular case. In Region IV, the cell contracts until it vanishes. Region
III can yield either a stable hexagonal network like Region II or a vanishing cell
like Region IV, depending upon the initial condition.

To validate our analytical results, we simulate the modified Suzuki model for
different values of T , corresponding to the different regions of the parameter space,
leaving all the other parameters unchanged. Note that we do not consider the
effects of Ca2+ and the ratchet-like mechanism for this analysis. The parameter
values used in the simulation are listed in Table 5.4.

However, the equilibrium state is determined not only by the mechanical pa-
rameter but also by the initial condition. In this case, the initial condition is
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Figure 5.3: The parameter space for the modified Suzuki model in terms of the
aggregate parameters T and K. The bifurcation lines B1, B2, and B3 divide the

parameter space into four regions. The small windows depict the number and
the nature of the equilibria corresponding to each region i.e. the roots of the
cubic equation ∂Ucell

∂L
= 0, where L is the edge length of the hexagonal cell.

Stable and unstable equilibria are indicated by the solid and hollow circles,
respectively. In Region I, the cell shape is unpredictable so it is meaningless to

solve the cubic equation for equilibria. Cell behaviour under equilibrium
conditions will depend on both, the region of the parameter space the model is

operating in and, the initial condition of the cell.
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Region Condition
Region I T < 1 − 3.722

√
A0

P 0

Region II 1 − 3.722
√

A0

P 0 < T < 1

Region III 1 < T < 1 + 0.0398 P 0
√

A0

(
1 − 6.9284 A0

P 02
1
K

) 3
2

K

Region IV
K > 6.9284 A0

P 02 1 + 0.0398 P 0
√

A0

(
1 − 6.9284 A0

P 02
1
K

) 3
2

K < T

K < 6.9284 A0

P 02 1 < T

Table 5.3: The four regions of the parameter space of the modified Suzuki
model, as visualised in Figure 5.3, and the conditions that correspond to them.

the initial edge length of the regular hexagonal cell lin. To estimate the required
value of lin, we must calculate the equilibria of the system by solving for the roots
of ∂Ucell

∂l
= 0. By taking the partial derivative of Equation (5.17) (considering

P = 6l and A = 3
√

3
2 l2) with respect to l and equating it to zero, we obtain the

cubic equation(
9
4

KA

A0

)
l3 +

(
6KP

P 0 −
√

3
2 KA

)
l +
(
T − KP

)
= 0. (5.32)

Using the parameter values in Table 5.4, we know that K = 0.3. For this value
of K, the bifurcation points are at T = 0.2556, T = 1, and T = 1.0012. So, we
arbitrarily choose four values of T that lie in distinct regions of the parameter
space: 0.1, 0.5, 1.0005, and 1.1. These values of T correspond to T = 0.02, T =
0.1, T = 0.2001, and T = 0.22. In each of the cases, other than T = 0.2001, we can
take the initial condition lin = 0.55. In the case of T = 0.2001, Equation (5.32)
has the following roots: −0.1738, 0.005053, and 0.1687, indicating that the system
has a stable equilibrium at 0, an unstable equilibrium at 0.005053, and a stable
equilibrium at 0.1687. So, we must run the simulation for two initial conditions,
lin = 0.005 and lin = 0.55, to observe the different cell behaviours.

Figure 5.4 depicts the equilibrium cell sizes corresponding to each region of
the parameter space of the modified Suzuki model. Figure 5.4a shows that the
cell expands from its initial size due to the negative interfacial tension but is a
regular hexagon at equilibrium despite the fact that the associated parameter
combination lies in Region I, where the cell shape should be unpredictable. This
regularity in shape arises as a result of the symmetry of the single cell. Since the
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(a) T = 0.02, lin = 0.55 (Region I) (b) T = 0.1, lin = 0.55 (Region II)

(c) T = 0.2001, lin = 0.55 (Region
III)

(d) T = 0.2001, lin = 0.005
(Region III)

(e) T = 0.22, lin = 0.55 (Region
IV)

Figure 5.4: Cell sizes at equilibrium for different values of line tension T ,
corresponding to the different regions of the parameter space of the modified

Suzuki model depicted in Figure 5.3. Model parameters: Table 5.4.
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(a) T = 0.02, lin = 0.55 (Region I) (b) T = 0.1, lin = 0.55 (Region II)

(c) T = 0.2001, lin = 0.55 (Region
III)

Figure 5.5: Tissue configurations at equilibrium for different values of line
tension T , corresponding to the different regions of the parameter space of the
modified Suzuki model depicted in Figure 5.3. The tissue is comprised of 271

cells. Model parameters: Table 5.4.
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cell is a regular hexagon at equilibrium, its edge length can be calculated using
Equation (5.32).

Parameter Value
δt 0.2

KA 0.3
KP 0.2
µ 1
A0 1
P 0 5

Table 5.4: Parameter values for Figures 5.4 and 5.5.

Figure 5.4b shows that the cell is a regular hexagon at equilibrium, as expected.
In Figure 5.4c, we see that the cell contracts from its initial size and becomes a
smaller regular hexagon at equilibrium. In Figures 5.4d and 5.4e, we see that the
cell contracts from its initial size until it vanishes. All of the observations are in
line with our predictions.

Figure 5.5 depicts the equilibrium tissue configurations corresponding to each
region of the parameter space of the modified Suzuki model. The tissue is com-
prised of 271 cells. Figure 5.5a shows a soft network, and Figures 5.5b and
5.5c show hexagonal networks. Upon running the simulations for T = 0.2001,
lin = 0.005 and T = 0.22, lin = 0.55, the tissue was observed to contract but
the simulation became unstable before the tissue could vanish. Most likely, this
instability arises because the vertex displacements become too large relative to
the cell edge lengths, for small cell sizes.

5.4 Activating the ratchet-like mechanism

In Section 5.3, we studied the equilibrium behaviour of the tissue in the mod-
ified Suzuki model. For a given set of values of KA

n , KP
n , T0n, A0

n, and P 0
n , we

can determine the equilibrium edge length of a cell and, therefore, its equilibrium
area and equilibrium perimeter.

The analysis in Section 5.3 did not consider the ratchet-like mechanism (Sec-
tion 3.1.4), for simplicity. However, the ratchet-like mechanism drives tissue con-
traction in the modified Suzuki model by decreasing A0

n and P 0
n upon activation.
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Parameter Value
Cells 271

pc 0
δt 0.2

KA
n 0.3

KP
n 0.2

T0n 0.1
µ 1
κA 1
κP 0.001
ωA 0.6
ωP 0.8

A0
n (initial) 1

P 0
n (initial) 5

A0
n (minimum) 0.3

P 0
n (minimum) 2

Table 5.5: Parameter values for Figures 5.6 and 5.7.

Essentially, the ratchet-like mechanism must activate if the equilibrium area
and perimeter fall below the mechanism’s predetermined thresholds. This section
visualizes the conditions required to activate the ratchet-like mechanism, driving
A0

n and P 0
n from their initial values to their final values.

The ratchet-like mechanism dictates that, when a cell’s area An falls below a
predetermined threshold value, the cell’s natural area A0

n is reduced according to
Equation (3.9):

dA0
n

dt
=

κA(An − ωAA0
n), if (An − ωAA0

n) < 0,

0, if (An − ωAA0
n) ≥ 0,

(3.9 revisited)

where κA is a constant, and ωA is a threshold parameter that determines whether
or not A0

n should be decreased.
Similarly, when a cell’s perimeter Pn falls below a predetermined threshold

value, the cell’s natural perimeter P 0
n is reduced according to Equation (3.10):

dP 0
n

dt
=

κP (Pn − ωP P 0
n), if (Pn − ωP P 0

n) < 0,

0, if (Pn − ωP P 0
n) ≥ 0,

(3.10 revisited)
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where κP is a constant, and ωP is a threshold parameter that determines whether
or not P 0

n should be decreased.
This reduction of A0

n and P 0
n causes a cell to contract irreversibly. It should

be noted that a permanent increase in line tension T0n would also cause the cell
to contract irreversibly but Suzuki et al [196] decide to maintain the coefficients
of elasticity for the cell area KA

n and the cell perimeter KP
n , along with T0n, as

constants over the course of the simulation. Instead, they reduce A0
n and P 0

n to
facilitate tissue contraction. This reduction of A0

n and P 0
n corresponds to the

Ca2+-induced F-actin remodelling observed in experiments (Section 2.2).
For A0

n to decrease, An − ωAA0
n < 0 and, similarly, for P 0

n to decrease, Pn −
ωP P 0

n < 0. However, over the course of tissue contraction, it may happen that
these criteria are no longer satisfied and, consequently, the cells stop contracting
before reaching their target area and perimeter values. To ensure that the cells
attain their target sizes, we need to choose appropriate values for the threshold
constants ωA and ωP .

To understand how the ratchet-like mechanism drives tissue contraction in the
Suzuki model and the modified Suzuki model, we consider the case of a tissue
evolving over time from t = 0 to t = 7200 in the modified Suzuki model, for the
parameters listed in Table 5.5. At t = 0, each cell in the tissue has A0

n = 1 and
P 0

n = 5. The activation of the ratchet-like mechanism causes the A0
n and P 0

n of
each cell to reduce over time until every cell has A0

n = 0.3 and P 0
n = 2. This

reduction of the A0
n and P 0

n of every cell results in the monotonic contraction of
the entire tissue.

The plots in Figure 5.6 let us visualise the activation condition for the ratchet-
like mechanism. The plot lines were generated by solving Equation (5.32) for
the equilibrium length l, which allows us to express the equilibrium cell area and
equilibrium cell perimeter as Aneq = 3

√
3

2 l2 and Pneq = 6l, respectively.
Figure 5.6a depicts the equilibrium cell area Aneq as a function of A0

n for
different values of P 0

n . While a cell is contracting from initial state (A0
n = 1,

P 0
n = 5) to final state (A0

n = 0.3, P 0
n = 2), the value of Aneq must lie in the

region between the curves P 0
n = 5 and P 0

n = 2. However, the reduction in A0
n will

only be triggered when Aneq lies below the red line i.e. Aneq < ωAA0
n. Clearly,

towards the beginning of the simulation, Aneq > ωAA0
n. Therefore, initially, A0

n

is not reduced.
Figure 5.6b depicts the equilibrium cell area Pneq as a function of P 0

n for
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(a) Equilibrium cell area as a function of the natural area.

(b) Equilibrium cell perimeter as a function of the natural perimeter.

Figure 5.6: Equilibrium cell area Aneq as a function of the natural area A0
n,

plotted for different values of the natural perimeter P 0
n , and equilibrium cell

perimeter Pneq as a function of the natural perimeter P 0
n , plotted for different

values of the natural perimeter A0
n. If Aneq lies below the red line in

Figure 5.6a, it triggers the reduction of A0
n. Similarly, if Pneq lies below the red

line in Figure 5.6b, it triggers the reduction of P 0
n . The plot lines were obtained

for the values of KA
n , KP

n , T0n, ωA, ωP , A0
n (initial) , P 0

n (initial), A0
n

(minimum), P 0
n (minimum) as listed in Table 5.5.
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(a) Tissue area versus time.

(b) Tissue perimeter versus time.

Figure 5.7: The effect of the ratchet-like mechanism on the time evolution of the
total area and perimeter of the simulated tissue. T1 marks the time at which

the cells’ natural area begins reducing, T2 marks the time at which all the cells
attain the minimum value of natural area, and T3 marks the time at which all
the cells attain the minimum value of natural perimeter. Model parameters:

Table 5.5.
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different values of A0
n. While a cell is contracting from initial state (A0

n = 1,
P 0

n = 5) to final state (A0
n = 0.3, P 0

n = 2), the value of Pneq must lie in the region
between the curves A0

n = 1 and A0
n = 0.3. Since Pneq will always lie below the red

line, Pneq < ωP P 0
n is satisfied at all times. Therefore, P 0

n decreases continuously
until it reaches the minimum value P 0

n = 2.
Since the equilibrium area and equilibrium perimeter are not independent of

one another, the reduction in P 0
n will cause both Aneq and Pneq to decrease until

Aneq drops below the red line in Figure 5.6a. This causes A0
n to start decreasing as

well. The reduction in A0
n and P 0

n of each cell affects the overall rate of contraction
of the tissue, as depicted in Figure 5.7.

T1 marks the time tT 1 at which the cells’ area Aneq begins dropping below
their respective ωAA0

n values. As a result, their A0
n values start decreasing. T2

marks the time tT 2 at which all the cells attain the minimum value of A0
n, and

T3 marks the time tT 3 at which all the cells attain the minimum value of P 0
n .

From t = 0 to t = tT 1, tissue contraction is driven only by the reduction in P 0
n .

From t = tT 1 to t = tT 2, tissue contraction is driven by the reduction in both A0
n

and P 0
n . From t = tT 2 to t = tT 3, tissue contraction is again driven only by the

reduction in P 0
n . After t = tT 3, the tissue does not contract because every cell

has attained the minimum value for A0
n and P 0

n .

5.5 Parameter sweep

In Section 5.3, we derived the relationship between the cell’s mechanical param-
eters and its equilibrium length. However, with the introduction of the ratchet-
like mechanism and Ca2+ activity, an analytical treatment of the model becomes
much more difficult. Instead, we must rely on numerical methods to observe the
effect of a mechanical parameter on tissue behaviour. Therefore, we conduct a
systematic parameter sweep - we perform simulations of the model for a range
of values of a certain parameter while maintaining all other parameters at their
default values, and observe the effect of varying that parameter on the final area
attained by the tissue and the time taken to attain that area.

Table 5.6 lists the experimentally determined material properties for the neu-
ral plate. ENP is the Young’s modulus, T̂0 is the traction stress, and α is the
viscosity. It would be reasonable to perform the parameter sweep for the range
of experimentally valid values however, at present, there is no straightforward



5.5. PARAMETER SWEEP 109

Parameter Mean Range Source
ENP 44.23 Pa 32.61 − 55.85 Pa [229]
T̂0 - 50 − 450 Pa [144, 224]
α 0.0044 Pa.s 0.0016 − 0.0072 Pa.s [229]

Table 5.6: Experimentally determined material properties for the neural plate.

methodology that relates the Young’s modulus and traction stress to the vertex
model parameters.

While prior studies using vertex models have analytically derived expressions
for the shear and bulk moduli of the tissue [81, 124, 194] and parametrised their
simulations to match experimental results [81], the parametrisation process in
those studies is non-trivial and beyond the scope of this work. Nevertheless, they
highlight potential methods by which the vertex models developed in this thesis
could be similarly parametrised in future studies.

For simplicity, we decided to relate the measured quantities to analogous pa-
rameters in the vertex model. For instance, the Young’s modulus is analogous
to the elastic constants KA

n and KP
n since they determine the extent to which

the material deforms in response to the application of a stress. Similarly, the
traction stress is analogous to the line tension T0n since they are associated with
the deforming force.

Because we lack reference values to relate the experimentally measured quan-
tities and vertex model parameters, we consider the parameter values used by
Suzuki et al [196] (Table 5.8) to correspond to the mean values in Table 5.6.
We then determine the range of experimentally-valid values using the ranges pre-
sented in Table 5.6. For example, if we consider that KA

n = 0.3 corresponds to the
mean value ENP = 44.23 Pa, we determine the range of KA

n values to sweep over
as follows: the lowest value of KA

n is given by 32.61
44.230.3 = 0.2212 and the highest

value of KA
n is given by 55.85

44.230.3 = 0.3788. Similarly, we determine the ranges for
the other parameters KP

n , T0n, and µ (Table 5.7).
We conduct the parameter sweep by varying the parameter of interest while

maintaining all the other parameters at their default values, as listed in Table 5.8.
The parameters of interest are pc: the frequency of cell activation per unit time,
KA

n : the coefficient of area elasticity, KP
n : the coefficient of perimeter elasticity,

µ: the damping coefficient of the tissue, T0n: the line tension, and ξ: the Ca2+-
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Parameter Analogous to Mean Range
KA

n ENP 0.3 0.2212 − 0.3788
KP

n ENP 0.2 0.1474 − 0.2526
T0n T̂0 0.1 −
µ α 1 0.3672 − 1.6328

Table 5.7: Experimentally-valid parameter ranges for the vertex model.

induced elevation in the line tension. The results of the parameter sweep have
been summarised in Table 5.9.

In Figures 5.8a and 5.9a, pc is varied from 0 to 1. For low values of pc i.e.
pc < 0.1, increasing pc sharply speeds up the tissue contraction and decreases the
final area attained by the tissue. For higher values of pc i.e. pc > 0.1, increasing
pc does not produce any significant increase in the rate of tissue contraction and
decreases the final area attained by the tissue, but to a lesser extent than the
smaller values of pc.

Suzuki et al [196] also measure the effect of pc on tissue contraction (Figure 3.7).
Compared to Figure 5.9a, they observe a much steeper decrease in the final area
attained by the tissue, for small values of pc. This discrepancy could result from
the fact that they record their values of tissue area at t = 2000 whereas Figure 5.8a
clearly indicates that the tissue attains its final area much later than that for the
lower values of pc.

In Figures 5.8b and 5.9b, KA
n is varied from 0.2 to 0.4 to cover the range listed

in Table 5.7. We observe that increasing KA
n slows down the tissue contraction

and increases the final area attained by the tissue. In Figures 5.8c and 5.9c, KP
n is

varied from 0.16 to 0.26 to stay as close as possible to the range listed in Table 5.7.
It was found that the model became unstable and caused the simulation to fail
for KP

n ≤ 0.15. We observe that increasing KP
n slows down the tissue contraction

and increases the final area attained by the tissue similar to KA
n but to a greater

extent. Since the elastic forces within the neural plate oppose the line tension and
try to restore the cell areas, these behaviours are in line with our expectations.

In Figures 5.8d and 5.9d, µ is varied from 0.8 to 3.6. It was found that the
simulation failed for µ < 0.8. This is because lowering the damping coefficient
results in large vertex displacements. These displacements then grow unchecked,
rendering the model unstable. This instability could be fixed by using a smaller
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Parameter Value
Cells 271

pc 0.025
δt 0.2

KA
n 0.3

KP
n 0.2

T0n 0.1
µ 1
κA 1
κP 0.001
ωA 0.6
ωP 0.8

A0
n (initial) 1

P 0
n (initial) 5

A0
n (minimum) 0.3

P 0
n (minimum) 2

ξ 0.05
τ 5

Table 5.8: Parameter values for Figures 5.8 and 5.9.
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(a) AC completion time versus pc. (b) AC completion time versus KA
n .

(c) AC completion time versus KP
n . (d) AC completion time versus µ.

(e) AC completion time versus T0n. (f) AC completion time versus ξ.

Figure 5.8: The effect of varying the parameters pc, KA
n , KP

n , µ, T0n, and ξ on
the time taken by the tissue to complete apical constriction (AC) and attain its

final area. Model parameters: Table 5.8.
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(a) Final area versus pc. (b) Final area versus KA
n .

(c) Final area versus KP
n . (d) Final area versus µ.

(e) Final area versus T0n. (f) Final area versus ξ.

Figure 5.9: The effect of varying the parameters pc, KA
n , KP

n , µ, T0n, and ξ on
the final area attained by the tissue upon the completion of apical constriction

(AC). Model parameters: Table 5.8.



5.5. PARAMETER SWEEP 114

Parameter sweep - summary
Increasing parameter Rate of contraction Final area

pc Increases Decreases
KA

n Decreases Increases
KP

n Decreases Increases
µ Decreases No change

T0n Increases Decreases
ξ Increases No change

Table 5.9: The effect of increasing the parameters pc, KA
n , KP

n , µ, T0n, and ξ on
the rate of tissue contraction and final tissue area.

time step-size δt however, it would increase the computation time. So we decide to
limit ourselves to the same δt value used by Suzuki et al [196] and instead explore
the behaviour of the model for higher values of µ. We observe that increasing
µ slows down the tissue contraction in a linear manner and has no effect on the
final area attained by the tissue.

In Figures 5.8e and 5.9e, T0n is varied from 0.08 to 0.12. Ideally, we would have
varied T0n over a range in which the value of the upper limit is nine times larger
than the value of the lower limit, in accordance with the range of T̂0 in Table 5.6,
but T0n was found to be an extremely sensitive parameter and taking a value
outside the range 0.08 ≤ T0n ≤ 0.12 destabilises the model. We observe that
increasing T0n in the stable range speeds up the tissue contraction and decreases
the final area attained by the tissue.

In Figures 5.8f and 5.9f, ξ is varied as a fraction of T0n, from 0.05T0n to 0.65T0n.
We found that the model becomes unstable for ξ > 0.65T0n. We observe that
increasing ξ speeds up the tissue contraction but does not have much effect on
the final area attained by the tissue.

In this chapter, we revised the modelling assumptions of the Suzuki model
to better reflect the biology, and developed a new model, the modified Suzuki
model. We then simulated the modified Suzuki model in our open-source software,
CelluLink, and compared it to the Suzuki model. Despite the revised modelling
assumptions, the modified Suzuki model behaves very similarly to the Suzuki
model and reproduces its key behaviours. The modified Suzuki model still exhibits
the same limitations as the Suzuki model and thus necessitates the development of
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a new mechanochemical model of NTC, which we will undertake in Chapter 7. To
inform the development of the new model, we studied how varying the parameters
impacted tissue contraction in the modified Suzuki model.

We derived a new bifurcation diagram for the modified Suzuki model by per-
forming single-cell analysis in the absence of the ratchet-like mechanism and Ca2+

activity. This helped to understand how the relative strengths of parameters KA
n ,

KP
n , and T0n impact the final area of the tissue. Thereafter, we studied the effect

of the ratchet-like mechanism on the model, visualized the conditions required
to activate it, and observed its impact on the rate of tissue contraction. This
visualization helps us choose the threshold constants ωA and ωP that enable a
cell to contract by driving A0

n and P 0
n from their initial to final values. Finally,

we incorporated Ca2+ activity and conducted a systematic parameter sweep to
test the parameter sensitivity of the modified Suzuki model. The insights from
these studies will guide parameter selection for the new mechanochemical model
in Chapter 7.



Chapter 6

Comparing numerical methods
for vertex models

In Chapter 4, we developed CelluLink, the computational tool that will allow
us to simulate the vertex models under study. In this chapter, we elaborate
upon the numerical schemes currently available in CelluLink - the forward Euler
method and a predictor-corrector method based on an Euler/trapezoidal pair.

In Chapters 4 and 5, all of the simulations were performed using the forward
Euler method due to its higher speed and ease of implementation. Before pro-
ceeding to the development of a new mechanochemical model for NTC in Chap-
ter 7, we compare the forward Euler method, an explicit method, with an implicit
method to determine the better choice for simulating vertex models.

We start by reviewing some fundamental concepts relating to one-step numer-
ical methods. Then, we discretise the equations of the modified Suzuki model
(Equations (3.7), (3.9), and (3.10)). Finally, we apply the two numerical schemes
to simulate Equations (3.7), (3.9), and (3.10) and compare their performance.

6.1 Convergence of one-step methods

Before investigating the properties of the numerical schemes available in Cel-
luLink, it would be prudent to review some important concepts relating to one-
step numerical methods.

Numerical methods are designed to approximate the solutions of locally well-
posed initial value problems. These problems are of the form

116
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y′ = f(t, y), y (t0) = y0, y ∈ Rd. (6.1)

Well-posedness means that there exists a unique solution y(t; t0, y0) that sat-
isfies Equation (6.1) on a maximal interval of existence [t0, t0 + T∗), for 0 < T∗ ≤
+∞, that depends continuously on (t0, y0) ∈ Rd+1. To guarantee local well-
posedness [155], we will assume that f(t, y) is continuous in its first argument, t,
and locally uniformly Lipschitz continuous in its second argument, y, i.e.,

∥f (t, y1) − f (t, y2)∥ ≤ L ∥y1 − y2∥ , (6.2)

for some L > 0 and any y1, y2 in the neighbourhood of y0.
If the function f(t, y) is not explicitly dependent on t, then the Lipschitz condi-

tion would typically still be interpreted in the same manner, but the dependency
on t would be ignored. In this case, the Lipschitz condition,

∥f (y1) − f (y2)∥ ≤ L ∥y1 − y2∥ , (6.3)

would be sufficient to guarantee local well-posedness.
In Equation (3.7) of the modified Suzuki model, the Lipschitz condition holds

because the potential energy of the apical surface of the tissue, U , is twice con-
tinuously differentiable with respect to ri. Therefore, Fi is Lipschitz continuous
in ri.

Discretisation methods employ approximations of Equation (6.1) to construct
a discrete set of y-values (y(k), k = 0, 1, ...) in such a manner that y(k) should
approximate y(tk), at a corresponding set of t-values tk, as the separation of the
timesteps δtk = tk+1 − tk tends uniformly to zero. For the purpose of this review,
we will restrict ourselves to the case where δtk does not vary with k. In this case,
δt is called the discretisation parameter or step-size.

Discretisation methods are broadly categorized as explicit or implicit. Con-
cisely put, an explicit method obtains the successive values of y(k+1) paramet-
rically in terms of given or previously computed quantities and is represented
symbolically in the form
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y(k+1) = H (f , tk, . . . , tk+1−l, yk, . . . , yk+1−l) . (6.4)

In contrast, an implicit method defines y(k+1) as the solution of the equation

G (f , tk+1, . . . , tk+1−l, yk+1, . . . , yk+1−l) = 0 (6.5)

that cannot in general be recast in the explicit form above.
Discretisation methods are also characterized by the number m of previously

computed quantities, or steps, that the method uses to compute each subsequent
approximate value of the solution and by the number of evaluations r of the vector
field f , or stages, that are used per time-step.

Generally, r-stage one-step methods can be written in the form that charac-
terizes methods known as Runge-Kutta methods [155]. Given numerical initial
values y0, these methods take the specific form

y(k+1) = y(k) + δt
r∑

i=1

γiy′
(k,i), k = 0, 1, . . . (6.6)

where

y′
(k,i) = f

(
tk + αiδt, y(k) + δt

r∑
j=1

βijy′
(k,j)

)
and αi =

r∑
j=1

βij.

If βij = 0 for j ≥ i, the method is explicit; otherwise it is implicit. The strategy
behind these methods is to obtain better approximations of y(tk+1) by sampling
the vector field f(t, y) at r points in the vicinity of the solution curve emanating
from (tk, yk). Each additional sample provides cumulatively better estimates of
the solution curve. The analytical initial value is sufficient to initialize a one-step
method, and no storage of previously computed values is required.
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Having established the general form of r-stage one-step methods, we can now
address the theoretical question of whether the values obtained by applying a
method converge to the analytical solution y(t0 + T ), as the step-size δt tends
to zero and the number of steps increases in such a way that the time interval
they represent remains fixed. We call a method convergent if and only if, for any
initial value problem (6.1) satisfying condition (6.2) and any T > 0 such that
t0 + T ∈ [t0, t0 + T∗), the values y(k) obtained from the method satisfy

∥∥y (t0 + T ) − y(k)
∥∥ → 0 (6.7)

as k → ∞ and δt = T/k. Note that condition (6.7) implies that y(k) exists for
sufficiently large k. This is only an issue for implicit methods. If a method is
explicit, y(k) is defined for any δt > 0 and k > 0.

The order of accuracy of a convergent method refers to how rapidly errors
decrease in the limit as the step-size tends to zero. We say that such a method
converges with order of accuracy P , and the method is called a P th-order accurate
method, if and only if there exists a C > 0 depending only on y, its derivatives,
and T , such that

∥∥y (t0 + T ) − y(k)
∥∥ ≤ CδtP = C

(
T

k

)P

(6.8)

as k → ∞ and no such estimate holds for any greater value of P . The dependence
of C on T can be removed by considering only closed subintervals of the max-
imal interval of existence. The potential significance of accuracy is immediate:
if the increase in computational effort per step required to achieve higher-order
accuracy is outweighed by reducing the number of steps required to obtain an ap-
proximation within a desired tolerance, the overall computation can be performed
more efficiently.

To solve the force balance equation in a vertex model, at every timestep, the
force on each vertex is computed and then the vertex positions are updated syn-
chronously. This synchronous update can cause vertices to cross cell edges, leading
to overlapping edges and unrealistic cell shapes. So, while this approach works
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well enough for small forces and displacements, it becomes problematic with larger
forces, as vertex displacements can be so large as to cause instability. These insta-
bilities can be resolved by adjusting the parameters to ensure the model operates
in a stable regime or by performing appropriate topological transitions (T1, T2,
or T3 swaps) [62, 115, 188].

The theoretical convergence and practical efficiency of a numerical method
are usually analysed in terms of accuracy and absolute stability. However, the
instability issues mentioned above result from parameter choices and/or the im-
plementation of the vertex model. Consequently, investigating the stability of the
numerical scheme would not provide much practical insight into the stability of
the vertex model. Therefore, in Sections 6.3 and 6.4, we will only explore the rate
of convergence of the numerical schemes in CelluLink.

6.2 Discretising the system

To simulate the modified Suzuki model, CelluLink needs to solve Equations (3.7)-
(3.10). Since Equations (3.9) & (3.10) are first order linear ordinary differential
equations, it is straightforward to solve them using an explicit or implicit nu-
merical scheme of choice. The challenge lies in solving Equation (3.7), the force
balance equation for the vertices, which drives the evolution of the tissue:

µ
dri

dt
= −∂U

∂ri
= Fi. (3.7 revisited)

Equation (3.7) represents a system of coupled non-linear ordinary differential
equations. Since it lacks an analytical solution (as far as we are aware), it must
be solved numerically. We consider two numerical schemes for this purpose - the
forward Euler method, an explicit scheme, and a predictor-corrector method, an
r-stage explicit scheme that is approximate to an implicit scheme for sufficiently
large r.

Prior to implementing a numerical scheme, we must discretise the equations
to be solved. Equations (3.9) & (3.10) are discretised using forward differences
for time-stepping, resulting in the following set of equations for the natural area
and natural perimeter of the nth cell, respectively:
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A0
n(k+1) − A0

n(k)

δt
=

κA(An(k) − ωAA0
n(k)), if (An(k) − ωAA0

n(k)) < 0,

0, if (An(k) − ωAA0
n(k)) ≥ 0,

(6.9)

P 0
n (k+1) − P 0

n (k)

δt
=

κP (Pn(k) − ωP P 0
n (k)), if (Pn(k) − ωP P 0

n (k)) < 0,

0, if (Pn(k) − ωP P 0
n (k)) ≥ 0,

(6.10)

where A0
n(k) and P 0

n (k) are the discrete approximations of the natural area A0
n(tk)

and natural perimeter P 0
n(tk), from the continuous equations, at tk = t0 + kδt,

where δt is the size of the timestep. Taking t0 = 0, we have tk = kδt. We will use
this formalism to denote the discrete approximations of continuous variables.

To discretise Equation (3.7), we use a forward differences scheme for time-
stepping and centred differences for the first spatial derivative, which gives us the
discrete equations of motion, along the x and y directions, for the ith vertex:

µ
xi(k+1) − xi(k)

δt
= −

U
(
xi(k) + δx

2

)
− U

(
xi(k) − δx

2

)
δx

, (6.11)

µ
yi(k+1) − yi(k)

δt
= −

U
(
yi(k) + δy

2

)
− U

(
yi(k) − δy

2

)
δy

, (6.12)

where xi(k) and yi(k) are the discrete approximations of xi(tk) and yi(tk), the
components of the displacement vector ri of the ith vertex, and δx and δy are the
spatial step-sizes.

Since the vertex model is an off-lattice model, the movement of the vertices
is not confined to a grid. Unlike in the case of partial differential equations, our
choice of spatial step-size does not have much bearing on the properties of our
numerical scheme so long as the step-sizes are sufficiently small. Therefore, we
use the same values of δx and δy for all the simulations in this doctoral work.
Taking into account the size of the tissue we are modelling, we choose sufficiently
small spatial step-sizes δx = δy = 0.01.
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Ideally, calculating the exact gradient of the potential energy U is preferable to
approximating spatial derivatives with finite differences. This is especially impor-
tant during topological transitions, as it yields more accurate force calculations.
However, since cell-cell intercalation, cell death, and cell division do not occur
during apical constriction (AC), the corresponding topological transitions (T1,
T2, and T3 swaps) are not implemented in our model.

So, for ease of implementation and to reduce computational cost, we use a
finite difference approximation for the spatial derivatives. The centred difference
approximation, which is second-order accurate, combined with sufficiently small
spatial step-sizes, provides an accurate approximation of the spatial derivatives.

6.3 Forward Euler method

The Euler method (also called the forward Euler method) is a numerical pro-
cedure for solving ordinary differential equations with a given initial value. The
Euler method is a first-order method, which means that the local error (error per
step) is proportional to the square of the step-size, and the global error (error at a
given time) is proportional to the step-size. The Euler method often serves as the
basis to construct more complex methods like the predictor-corrector method, as
we shall see in Section 6.4.

Consider an initial value problem as described by Equation (6.1). The forward
Euler method is used to find a numerical solution to the problem as follows. First,
set y(0) = y(t0) = y0. Next, choose a suitable step-size δt so that tk = t0 + kδt.
Then, one step of the forward Euler method from tk to tk+1 is given by

y(k+1) = y(k) + δtf(tk, y(k)). (6.13)

The value of y(k) is an approximation of the solution to the ordinary differential
equation at time tk i.e. y(k) ≈ y(tk). From Equation (6.13), it is clear that the
state of the system at any given timestep can be calculated if the state of the
system at the previous timestep is known. In other words, the Euler method is
explicit.

Since the forward Euler method seems to be the most frequently used numerical
scheme for vertex models [55, 68, 196], it was the first numerical scheme to be
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Parameter Value
Cells 271
KA

n 0.3
KP

n 0.2
T0n 0.1
µ 1
κA 1
κP 0.001
ωA 0.6
ωP 0.8

A0
n (initial) 1

P 0
n (initial) 5

A0
n (minimum) 0.3

P 0
n (minimum) 2

Table 6.1: Parameter values for Figures 6.1, 6.2, 6.3, and 6.4.

implemented in CelluLink. Given the fact that xi(0) and yi(0) are known for all i,
the forward Euler method can be used to compute the positions of the vertices
at all subsequent timesteps. The expressions for the vertex positions at the kth

timestep are obtained by rearranging the discrete equations (6.11) and (6.12) as
follows,

xi(k+1) = xi(k) − δt

µ

U
(
xi(k) + δx

2

)
− U

(
xi(k) − δx

2

)
δx

, (6.14)

yi(k+1) = yi(k) − δt

µ

U
(
yi(k) + δy

2

)
− U

(
yi(k) − δy

2

)
δy

. (6.15)

Since A0
n(0) and P 0

n (0) are known for all n, the natural area and natural perime-
ter of the cells are also updated using the forward Euler method. The expressions
for the natural area and natural perimeter at the kth timestep are obtained by
rearranging the discrete equations (6.9) and (6.10) as follows,
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(a) pc = 0. (b) pc = 0.025.

Figure 6.1: Time evolution of the tissue area for δt = 0.8, 0.4, 0.2, and 0.1 for
both pc = 0 and pc = 0.025. When the modified Suzuki model is solved using
the forward Euler method for Equations (3.7), (3.9), and (3.10), the solution

converges. Model parameters: Table 6.1.

A0
n(k+1) =

A0
n(k) + δtκA(An(k) − ωAA0

n(k)), if (An(k) − ωAA0
n(k)) < 0,

A0
n(k), if (An(k) − ωAA0

n(k)) ≥ 0,
(6.16)

P 0
n (k+1) =

P 0
n (k) + δtκP (Pn(k) − ωP P 0

n (k)), if (Pn(k) − ωP P 0
n (k)) < 0,

P 0
n (k), if (Pn(k) − ωP P 0

n (k)) ≥ 0.
(6.17)

Using the forward Euler method, we simulated the modified Suzuki model for
δt = 0.8, 0.4, 0.2, and 0.1 both, in the absence of Ca2+ flashes (Figure 6.1a) and,
in the presence of Ca2+ flashes (Figure 6.1b). Apart from pc and δt, all other
parameters were set to the values listed in Table 6.1. From a visual inspection of
Figures 6.1a and 6.1b, it can be seen that the numerical scheme converges. The
convergent error for δt = 0.8 is prominently visible between t = 0 and t ≈ 2000
in Figure 6.1b.

To calculate the rate of convergence of this method, we simulated the mod-
ified Suzuki model for δt = 0.1, 0.2, ..., 1 (Figure 6.2) for pc = 0 since the
stochastic effects introduced by the Ca2+ flashes would make it difficult to mea-
sure the error for pc ̸= 0. We define the convergent error corresponding to
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Figure 6.2: Convergence error (C.E.) versus the size of the timestep (δt). The
red crosses mark the error values obtained for the different time step-sizes when

the modified Suzuki model is solved using the forward Euler method for
Equations (3.7), (3.9), and (3.10). Both the axes use a logarithmic scale. Model

parameters: Table 6.1.

each value of δt using the L2 norm such that C.E. =
∥∥r (tk) − r(k), δt

∥∥
2 where

r = (x1, y1, x2, y2, ... , xNV
, yNV

). Recalling Equation (6.8), if C.E. = CδtP ,
then taking the log of both sides of the equation, we get

log(C.E.) = log C + P log δt. (6.18)

We use the solution corresponding to the smallest timestep (δt = 0.1) as the
best estimate of the true solution r(tk) at timestep k = 10800. We chose to
measure the positions of the vertices at t = 10800 because we estimated that the
tissue would reach a steady size by then. Using the numpy.polyfit() function
in Python, we fit a straight line to the data points in Figure 6.2 and obtained
an estimate for its slope. The function uses the least squares method to fit a
polynomial to the given set of data points. Since the slope corresponds to the
order of accuracy P in Equation (6.18), we find that P = 1.27 for this method.
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6.4 Predictor-corrector method

While the forward Euler method is undoubtedly effective in simulating vertex
models, it is only a first-order explicit scheme. Because we were interested in
examining the performance of a higher-order implicit scheme when applied to the
vertex model, we decided to implement a simple predictor-corrector scheme in
CelluLink. The predictor-corrector algorithm proceeds in two steps:

1. The initial, predictor step, uses an explicit method to estimate the value
of the unknown function y at the k + 1th timestep. We treat this as the
‘zeroth’ stage of the method and the estimate is denoted by y(k+1,r) where
r = 0.

2. The next, corrector step refines the initial estimate by using the predicted
value of the function and an implicit method to interpolate the unknown
function value at the same timestep. This corrected value is denoted by
y(k+1,r). The correction step can be applied repeatedly until the approx-
imation y(k+1,r) satisfies some criteria, for instance, the error lies within
the desired tolerance level. In this sense, the predictor-corrector scheme
becomes a good approximation to an implicit scheme.

The predictor-corrector scheme in CelluLink uses the forward Euler method in
the predictor step and the trapezoidal rule in the corrector step. In contrast to
the Euler method which is first-order accurate, the trapezoidal rule is a second-
order method. For an initial value problem as described by Equation (6.1), the
trapezoidal rule is given by the formula

y(k+1) = y(k) + 1
2δt
(
f(tk, y(k)) + f(tk+1, y(k+1))

)
, (6.19)

where δt is the size of the timestep. From Equation (6.19), it is clear that the
state of the system at the kth timestep cannot be expressed explicitly in terms of
the state of the system at the previous timesteps. Therefore, the trapezoidal rule
is an implicit method.

Using the predictor-corrector scheme, the force balance equation for the vertex
model can be solved in the following manner. In the prediction step, the forward
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Euler method is used to obtain initial estimates for the positions of the vertices
at the k + 1th timestep. The initial estimates are given by

xi(k+1,0) = xi(k) − δt

µ

U
(
xi(k) + δx

2

)
− U

(
xi(k) − δx

2

)
δx

, (6.20)

yi(k+1,0) = yi(k) − δt

µ

U
(
yi(k) + δy

2

)
− U

(
yi(k) − δy

2

)
δy

. (6.21)

In the corrector step, the trapezoidal rule is used to refine the initial estimates
xi(k+1,0) and yi(k+1,0) from the predictor step. From Equations (3.7), (6.11), and
(6.12), we recall the discrete approximations of the first spatial derivative terms
and denote them by Dx and Dy such that,

∂U(xi, yi)
∂xi

≈ Dx(xi, yi) =
U
(
xi + δx

2 , yi

)
− U

(
xi − δx

2 , yi

)
δx

, (6.22)

∂U(xi, yi)
∂yi

≈ Dy(xi, yi) =
U
(
xi, yi + δy

2

)
− U

(
xi, yi − δy

2

)
δy

. (6.23)

The corrected values of the initial estimates from the predictor step can be
found using the expressions

xi(k+1,r) = xi(k) − δt

2µ

(
Dx(xi(k), yi(k)) + Dx(xi(k+1,r−1), yi(k+1,r−1))

)
, (6.24)

yi(k+1,r) = yi(k) − δt

2µ

(
Dy(xi(k), yi(k)) + Dy(xi(k+1,r−1), yi(k+1,r−1))

)
, (6.25)
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where xi(k+1,r) and yi(k+1,r) are the discrete approximations of the vertex position
after r correction stages. We implement a tolerance condition wherein we rerun
the correction step until both of the following inequalities are satisfied: |xi(k+1,r)−
xi(k+1,r−1)| < 10−8 and |yi(k+1,r) −yi(k+1,r−1)| < 10−8. We implement an additional
condition and restrict the method to a maximum of 10 correction steps to prevent
large computational times per timestep.

To ensure robustness throughout the implementation of the vertex model, the
differential equations for the ratchet-like mechanism are also solved using an im-
plicit method, the backward Euler method. Like the forward Euler method, the
backward Euler method is also first-order accurate. For an initial value problem
described by Equation (6.1), the backward Euler method is given by

y(k+1) = y(k) + δtf(tk+1, y(k+1)). (6.26)

Applying the backward Euler method, the natural area and natural perimeter
of a cell are calculated using the expressions

A0
n(k+1) =


A0

n(k) + δtκAAn(k+1)

1 + δtκAωA

, if (An(k) − ωAA0
n(k)) < 0,

A0
n(k), if (An(k) − ωAA0

n(k)) ≥ 0,

(6.27)

P 0
n (k+1) =


P 0

n (k) + δtκP Pn(k+1)

1 + δtκP ωP

, if (Pn(k) − ωP P 0
n (k)) < 0,

P 0
n (k), if (Pn(k) − ωP P 0

n (k)) ≥ 0.

(6.28)

Using the implicit methods, we simulated the modified Suzuki model for δt =
0.8, 0.4, 0.2, and 0.1 both, in the absence of Ca2+ flashes (Figure 6.3a) and, in the
presence of Ca2+ flashes (Figure 6.3b). Apart from pc and δt, all other parameters
were set to the values listed in Table 6.1. From a visual inspection of Figures 6.3a
and 6.3b, it can be seen that the numerical scheme converges. On comparing
Figures 6.1b and 6.3b, the lack of a noticeable separation between the plot lines
in the case of the latter indicates that the predictor-corrector method is more
accurate than the forward Euler method.
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(a) pc = 0. (b) pc = 0.025.

Figure 6.3: Time evolution of the tissue area for δt = 0.8, 0.4, 0.2, and 0.1 for
both pc = 0 and pc = 0.025. When the modified Suzuki model is solved using

the predictor-corrector method for Equation (3.7) and using the backward Euler
method for Equations (3.9) and (3.10), the solution converges. Model

parameters: Table 6.1.

Naturally, the predictor-corrector method is more computationally expensive
than the forward Euler method. Near the start of the simulation, each computa-
tional step of the predictor-corrector method takes ≈ 7 times longer to execute
than a step of the forward Euler method since the predictor-corrector method
requires ≈ 6 iterations of the corrector until it converges. As the simulation pro-
gresses, each step of the predictor-corrector method becomes progressively less
computationally expensive. Near the end of the simulation, ≈ 2 iterations of the
corrector are sufficient for the scheme to converge.

To calculate the rate of convergence of this method, we follow the same proce-
dure that we used for the forward Euler method in Section 6.3 and obtain order
of accuracy P = 1.69. Comparing this to the order of accuracy obtained for the
forward Euler method (P = 1.27), we can see that the predictor-corrector method
has a higher order of accuracy than the forward Euler method, as expected.

The higher accuracy of the predictor-corrector method is also evident when we
compare the magnitude of the errors of both methods for δt = 0.1 i.e. C.E. ≈ 10−8

for the forward Euler method and C.E. ≈ 10−5 for the predictor-corrector method.
This implies that, with respect to r(k), δt for k = 10800 and δt = 0.1, the C.E.

values are far larger in the case of the predictor-corrector method.
Although the C.E. values are larger in the case of the predictor-corrector
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Figure 6.4: Convergence error (C.E.) versus the size of the timestep (δt). The
red crosses mark the error values obtained for the different time step-sizes when

the modified Suzuki model is solved using the predictor-corrector method for
Equation (3.7) and using the backward Euler method for Equations (3.9) and
(3.10). Both the axes use a logarithmic scale. Model parameters: Table 6.1.

method when the tissue has reached steady state, interestingly, when the tis-
sue size is changing rapidly (from t = 0 to t = 2000 in Figures 6.1b and 6.3b),
the differences between the numerically approximated solutions of the predictor-
corrector method are far less prominent than those of the forward Euler method.

For the purposes of our modelling challenge, we are only interested in the final
area of the tissue and the time taken to attain it. In Figures 6.1 and 6.3, it can
be seen that each solution takes roughly the same amount of time to arrive at a
steady tissue size. It can also be seen that the final value of the tissue area is
roughly the same for all the solutions. For the forward Euler method, the final
areas converge to ≈ 31.907, and for the predictor-corrector method, the final
areas converge to ≈ 31.806. The values provided correspond to δt = 0.1 for each
method and are the best estimates of the true solution in each case.

Since the final tissue area can, at minimum, be 2% of its initial value (Sec-
tion 1.3.3) i.e. 0.02×212.98 ≈ 4.26 and the difference between the best estimates
of the final area is ≈ 0.1, we can say that both the numerical schemes provide
similar results, with regards to our modelling problem. Additionally, on further
testing, it was observed that both numerical schemes failed for δt > 1.5. This
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instability, arising as a result of large vertex displacements that grow unbounded,
is inherent to the vertex model itself.

Based on the factors mentioned above, we chose to perform the simulations
in the following chapters using the forward Euler method owing to its higher
speed and lower computational cost. Additionally, we elected to use a time step-
size of δt = 1 for the simulations since the corresponding C.E. is in the order
of 10−7. In making these choices, we prioritised the reduction of computation
time per simulation since the development of the new models in hapters 7 and 8
necessitated many parameter sweeps.



Chapter 7

The one-way model

In our review of the Suzuki model (Chapter 3), we observed that despite its
successes, the model had certain limitations. Many of these limitations were in-
herited by the modified Suzuki model (Chapter 5). To address these shortcomings
and capture the range of behaviours observed in vivo (listed in Section 2.3), we
require a new mechanochemical model of apical constriction (AC) during neural
tube closure (NTC).

Following discussions with our experimental collaborators, Neophytos Christod-
oulou and Paris Skourides (authors of [33, 34]), we decided to model AC over 60
minutes. Consequently, the models presented in Chapters 7 and 8 were designed
to illustrate that the simulated anterior neural plate contracts to within 2% to
8% of its initial area by t = 6000.

The AC phase of NTC takes approximately 40 to 60 minutes [34]. Since the
vertex model employs non-dimensional units, we opted to use the simulation
results of the modified Suzuki model as a reference to establish a relationship be-
tween non-dimensional time units and minutes. In Figure 4.9, it can be seen that
the simulated neural plate in the modified Suzuki model completes AC around
t = 5000. So, we equate t = 5000 to 50 minutes for the sake of convenience.
Therefore, t = 100 corresponds to 1 minute.

In this chapter, we develop a new mechanochemical vertex model for the con-
striction of the anterior neural plate during AC. The model incorporates the sur-
face ectoderm, actomyosin accumulation in the cell cortices, a damping function
for the vertices, and an adhesion force for the cell edges, successfully demonstrat-
ing the desired tissue contraction along with most of the experimentally observed
behaviours. Since this model captures only the effect of Ca2+ on cellular mechan-

132
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ics and not vice versa, we refer to it as the one-way coupling model or the one-way
model.

Starting from the modified Suzuki model, we build complexity by progressively
incorporating features to reflect several experimental observations. After each
addition, we demonstrate its effect on the model, highlight its limitations and
discrepancy with experiments, and justify the need for adding the next feature.

For instance, after adding the surface ectoderm to the modified Suzuki model,
we observe that AC stalls in the simulated neural plate. We conclude that this
stalling occurs because the neural plate cannot generate enough force to resist
the increasing elastic forces from the deforming surface ectoderm. To address
this, we introduce the Ca2+-induced increase in the cells’ elastic constants and
line tension. This modification is supported by experimental evidence that the
neural plate is stiffer than the surrounding surface ectoderm and that its stiffness
increases with the accumulation of actomyosin during AC [34, 196].

In a similar fashion, we derive and implement two other additions: a damping
function for the motion of the vertices, and an adhesion term for the energy
function. For the first time, we model the damping coefficient as a function of
actomyosin concentration, which increases as actomyosin accumulates in the cell
cortex [121, 196], and the adhesion force as a contribution from the cell’s internal
pressure and adherens junctions [21, 114, 116], which increases as cell edge length
decreases.

We then incorporate experimental Ca2+ frequency and amplitude profiles [33,
95] and model the Ca2+-induced elevation in line tension as a function of the Ca2+

flash amplitude. Finally, we discuss our results and propose new hypotheses for
experimental testing, highlighting potential avenues for future research.

7.1 Adding the surface ectoderm

The first step towards developing a new model is the incorporation of the
surface ectoderm. This layer of cells plays a key role in the development of the
skin and certain parts of the nervous system in the early embryo. During AC,
the contraction of the apical surface of the neural plate exerts a force on the cells
of the surface ectoderm, deforming and displacing them. Consequently, the cells
of the surface ectoderm exert a resistive force on the neural plate, influencing
morphogenesis during NTC [34].
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While the surface ectoderm comprises multiple cell layers, we model it as a
single layer surrounding the neural plate for simplicity and to reduce compu-
tational costs. During the simulation, the outer edge of the surface ectoderm
layer remains fixed, while the inner edge is pulled inwards by the contraction of
the neural plate. The increasing elastic forces, resulting from the deformation
of the surface ectoderm cells, exert a resistive force on the neural plate. Also,
the surface ectoderm cells do not experience Ca2+ flashes, and the ratchet-like
mechanism does not apply to them.

In Section 5.5, we establish a connection between experimentally measurable
quantities and analogous parameters in the vertex model since no methodology
equates them directly, as per our knowledge. For example, we consider Young’s
modulus as analogous to the elastic constants KA

n and KP
n because they determine

how the material deforms in response to stress. Similarly, we equate traction stress
with the line tension T0n as both are associated with the deforming force.

Wiebe and Brodland [221] measured the Young’s modulus of the surface ec-
toderm to be 0.55 times that of the neural plate, so we set KA

n (SE) = 0.55KA
n

and KP
n (SE) = 0.55KP

n , where KA
n (SE) and KP

n (SE) are the coefficients of elastic-
ity for the area and perimeter of the surface ectoderm cells (SE cells), and KA

n

and KP
n are the coefficients of elasticity for the area and perimeter of the neural

plate cells (NP cells). Since we found no evidence to suggest a significant dif-
ference in traction stress between the surface ectoderm and neural plate, we set
T0n(SE) = T0n, where T0n(SE) and T0n are the baseline values of line tension for
the surface ectoderm cells and neural plate cells, respectively.

To examine the impact of the surface ectoderm on neural plate morphogenesis,
we integrate it into the modified Suzuki model and simulate the model using the
same mechanical parameters as Suzuki et al [196]. We make adjustments to
some parameters to ensure the neural plate contracts to 2% of its initial area.
Additionally, we establish a relationship between the natural area A0

n and the
natural perimeter P 0

n of the cells to simplify the model. Since we model the cells
as regular hexagons, the relationship between A0

n and P 0
n is

P 0
n = 6

(
3− 3

4
(
2A0

n

) 1
2
)

, (7.1)

where the expression 3− 3
4 (2A0

n)
1
2 represents the edge length of a regular hexagon

with area A0
n.
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Parameter Value
SE Cells 60
NP Cells 271

pc 0.025
δt 1

KA
n (SE) 0.17

KP
n (SE) 0.11

T0n(SE) 0.1
KA

n 0.3
KP

n 0.2
T0n 0.1
µ 1
κA 1
κP 0.001
ωA 0.6
ωP 0.8

A0
n (initial) 0.785

P 0
n (initial) 3.3

A0
n (final) 0.015

P 0
n (final) 0.456

ξ 0.05
τ 5

Table 7.1: Parameter values for Figure 7.1.
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(a) t = 0. (b) t = 5999.

(c) NP area versus time.

Figure 7.1: The effect of the surface ectoderm on AC in the modified Suzuki
model. Depicted above are the snapshots of the apical surface of the anterior
neural plate and surface ectoderm layer at the beginning and the end of the

simulation along with a graph showing the time evolution of the apical surface
area of the anterior neural plate. The shaded green region on the graph

corresponds to 2-8% of the initial area of the anterior neural plate. Model
parameters: Table 7.1.
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Instead of arbitrarily selecting the initial values of A0
n and P 0

n , as done by
Suzuki et al, we assign them the values of area and perimeter corresponding to
the cell edge length Ln at t = 0 i.e. A0

n = 3
√

3
2 Ln

2 and P 0
n = 6Ln. Since Ln = 0.55

at t = 0 (determined in Section 5.1), the initial values of A0
n and P 0

n are 0.785
and 3.3, respectively. Based on our desired final size for the neural plate, the final
value of A0

n is 0.02 × 0.785 = 0.015, and therefore, according to Equation (7.1),
the final value of P 0

n is 0.456.
From Figure 7.1, it is evident that the addition of the surface ectoderm cells

(red-brown) completely arrests AC in the modified Suzuki model. Although the
neural plate cells (yellow) are individually contracting due to the effect of the
Ca2+ flashes (green), this contraction does not lead to an irreversible reduction in
the cells’ apical surface area. We suspect two probable causes for the cessation of
AC. First, the neural plate is unable to generate sufficient force to counteract the
growing force resulting from the deformation of the surface ectoderm cells. And,
second, the ratchet-like mechanism is unable to reduce A0

n and P 0
n to a sufficient

degree.
To counteract the growing force from the surface ectoderm, the model must

account for the increasing contractile forces within the neural plate. The ex-
periments of Christodoulou and Skourides [34] have demonstrated that the con-
tractility of, and tension in, neural plate cells increases over the course of AC.
This indicates that the parameters KA

n , KP
n , and T0n should increase during the

simulation runtime.
The increasing values of KA

n , KP
n , and T0n correspond to the accumulation

of actomyosin bundles in the apical cortex of neural plate cells following their
activation by a Ca2+ flash [33, 196]. KA

n and KP
n relate to elastic forces, repre-

senting the medioapical and junctional actin networks, respectively. Meanwhile,
T0n denotes the contractile force aiming to reduce cell edge length, characterizing
the contractile action of myosin motors attached to the junctional actin network.

Based on the simulation results of Suzuki et al [196], which utilize KA
n = 0.3,

KP
n = 0.2, and T0n = 0.1, we opt for a ratio of 3:2:1 for both the initial and

final values of KA
n , KP

n , and T0n. Our initial attempts to increase KA
n , KP

n ,
and T0n from their initial values of 0.3, 0.2, and 0.1, respectively, resulted in
poor outcomes. Even slight increments from these initial values generated strong
forces, leading to large vertex displacements that rapidly destabilized the model.
So, we set the final values of KA

n , KP
n , and T0n to 0.3, 0.2, and 0.1, and commenced
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testing suitable initial values for the model.
Based on our tests, we chose initial values of 0.03, 0.02, and 0.01 for KA

n ,
KP

n , and T0n. As before, we set KA
n (SE) = 0.55KA

n , KP
n (SE) = 0.55KP

n , and
T0n(SE) = T0n. The values of KA

n (SE), KP
n (SE), and T0n(SE) remain constant

throughout the simulation. We chose these initial values because using higher
initial values for KA

n , KP
n , and T0n led to significant stretching of cells at the

corners and edges of the neural plate after the completion of AC, contrary to
experimental observations.

A quick check confirms that our parameter choices for the initial and final
values of KA

n , KP
n , and T0n are appropriate for modelling a realistic tissue since

they result in a stable hexagonal network, as indicated by the bifurcation diagram
derived in Section 5.3.

Region II of the bifurcation diagram (Figure 5.3) corresponds to a stable hexag-
onal network. The pair of aggregate parameters

(
K, T

)
lies within Region II when

1 − 3.722
√

A0

P 0 < T < 1, regardless of the value of K, where K and T are defined
as

K = KA
n A0

n

KP
n P 0

n

, (7.2)

T = T0n

KP
n

. (7.3)

Since we have established a relationship between A0
n and P 0

n (Equation (7.1)),(
K, T

)
will lie in Region II if the following condition is satisfied: 1.13 × 10−4 <

T < 1. The initial values KA
n = 0.03, KP

n = 0.02, T0n = 0.01, A0
n = 0.785, and

P 0
n = 3.3 yield K = 0.357 and T = 0.5. The final values KA

n = 0.3, KP
n = 0.2,

T0n = 0.1, A0
n = 0.015, and P 0

n = 0.456 yield K = 0.049 and T = 0.5. In both
cases,

(
K, T

)
will lie in Region II, as the ratio of T0n to KP

n is 1:2.
We define the increments of KA

n , KP
n , and T0n with the following equations:

dKA
n

dt
=

RA, if cell is activated,

0 , if cell is not activated,
(7.4)

dKP
n

dt
=

RP , if cell is activated,

0 , if cell is not activated,
(7.5)
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dT0n

dt
=

RT , if cell is activated,

0 , if cell is not activated,
(7.6)

where RA, RP , and RT are constants.
To determine the values of these constants, we use the data from Figures 2.6

and 2.7. Based on discussions with the experimentalists who provided the data
for the figures [32], we learnt that each neural plate cell experiences a minimum
of 15 Ca2+ flashes during the 60-minute period of AC, and that each Ca2+ flash
lasts, on average, 40 seconds (Section 2.1).

Since 1 minute corresponds to a time interval ∆t = 100 in the simulation,
a Ca2+ flash should last for ∆t = 67. Therefore, we set the activation period
τ = 67. This implies that a cell would be activated for a total time duration of
∆t ≈ 1000 over the simulation runtime. So, we determine RA as follows:

RA =
KA

n (final) − KA
n (initial)

total activation time

= 0.3 − 0.03
1000

= 2.7 × 10−4. (7.7)

We attempted to calculate RP and RT using the same approach. However,
we found that if RT changed at the same timescale as RA, the resulting T0n

would not be sufficient to preserve cell integrity, leading to overlapping cell edges
and destabilizing the model. Moreover, if the timescales over which RP and
RT changed were too disparate, cells would contract sharply and assume erratic
shapes during contraction, deviating from experimentally observed behaviour. So,
we set RP = RT since both parameters are linked to the junctional actomyosin,
and calculate RP as follows:

RP =
KP

n (final) − KP
n (initial)

0.1 × total activation time

= 0.2 − 0.02
100

= 1.8 × 10−3. (7.8)

Following this, we must derive a relationship between the flashes per minute
per cell, denoted by the parameter fpm, and the probability of cell activation
pc. If we consider the simulation runtime ∆t = 6000 to be divided into smaller
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Parameter Value
SE Cells 60
NP Cells 271

pc 0.17
δt 1

KA
n (SE) 0.02

KP
n (SE) 0.01

T0n(SE) 0.01
RA 0.0003
RP 0.002
RT 0.002

KA
n (initial) 0.03

KP
n (initial) 0.02

T0n (initial) 0.01
KA

n (final) 0.3
KP

n (final) 0.2
T0n (final) 0.1

µ 1
κA 1
κP 0.001
ωA 0.6
ωP 0.8

A0
n (initial) 0.785

P 0
n (initial) 3.3

A0
n (final) 0.015

P 0
n (final) 0.456

kξ 0.5
τ 67

Table 7.2: Parameter values for Figure 7.2.
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(a) t = 0. (b) t = 5999.

(c) NP area versus time.

Figure 7.2: The effect of the introduction of growth laws for KA
n , KP

n , and T0n

on AC. Depicted above are the snapshots of the apical surface of the anterior
neural plate and surface ectoderm layer at the beginning and the end of the

simulation along with a graph showing the time evolution of the apical surface
area of the anterior neural plate. The shaded green region on the graph

corresponds to 2-8% of the initial area of the anterior neural plate. Model
parameters: Table 7.2.
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intervals of duration ∆t = τ , then pc can be defined as

pc =


60 × fpm

T60/τ
, if 60 × fpm

T60/τ
≤ 1,

1 , if 60 × fpm

T60/τ
> 1,

(7.9)

where T60 is the simulation time interval corresponding to 60 minutes. We take
T60 = 6000, τ = 67, and fpm = 0.25, because a cell experiences 15 flashes in 60
minutes, therefore, pc ≈ 0.17. The value of pc is evaluated for each cell at the
start of every τ -sized interval.

Finally, because T0n increases over the course of the simulation, the Ca2+-
induced elevation in line tension ξ must also increase accordingly, to produce
enough cell contraction to activate the ratchet-like mechanism. So, we redefine ξ

in Equation (3.8) as follows:
ξ = kξT0n, (7.10)

where kξ is a positive constant. Since Suzuki et al set ξ = 0.5T0n, we adopt the
same parameterization and set kξ = 0.5.

Figure 7.2 illustrates that implementing the growth laws for KA
n , KP

n , and
T0n enables the neural plate to partially overcome the resistive force exerted by
the surface ectoderm, resulting in some contraction. However, this contraction is
insufficient to achieve the required reduction of the apical surface of the anterior
neural plate to within 2% to 8% of its initial area (visualised by the shaded green
region in Figure 7.2c).

It should be noted that individual cells in the surface ectoderm do not deform
to the extent shown in Figure 7.2b. The deformation of the single layer of surface
ectoderm cells in Figure 7.2b represents the total deformation of all cells in the
surface ectoderm due to the contraction of the neural plate [34].

Although the Ca2+ flashes elevate the values of KA
n , KP

n , and T0n in neural
plate cells, the cell contractions induced by Ca2+ fail to activate the ratchet-like
mechanism for the reduction of A0

n and P 0
n . To address this, we not only reselect

suitable parameters for the ratchet-like mechanism but also simplify its structure.
As we have already established a relationship between A0

n and P 0
n (Equa-

tion (7.1)), we can omit the equation governing the reduction in P 0
n (Equa-

tion (3.10)) and concentrate solely on the equation governing the reduction in
A0

n, as our focus is on the reduction in the apical surface area of the cells.
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While the exact process underlying the equations of the ratchet-like mechanism
remains unknown, the equations proposed by Suzuki et al (Equations (3.9) and
(3.10)) show good agreement with experimental observations [223]. Therefore, we
adopt their equation for the reduction in A0

n (Equation (3.9)) and modify it to
reduce complexity. Due to the lack of experimental data, we model the reduction
in A0

n as a linear decay, for simplicity. This ensures that the rate of reduction of
A0

n remains constant regardless of the cell area. The revised equation governing
the reduction of A0

n is

dA0
n

dt
=

−κA , if (An − ωAA0
n) < 0,

0 , if (An − ωAA0
n) ≥ 0,

(7.11)

where, similar to Equation (3.9), κA is a positive constant and ωA is a threshold
parameter that determines whether or not A0

n should be decreased. Since the
smallest area that a cell can attain over the course of AC is 2% of its initial
area, we limit the minimum value of A0

n to 0.015 (A0
n(final)). The value of P 0

n is
updated using Equation (7.1) whenever A0

n changes according to Equation (7.11).
The activation of the ratchet-like mechanism captures the reconfiguration of the
actomyosin network, leading to a decrease in the natural area A0

n and natural
perimeter P 0

n .
For simplicity, we set ωA = 1 and determine the rate constant κA employing

an approach similar to the one used to determine RA:

κA =
A0

n(initial) − A0
n(final)

total activation time

= 0.785 − 0.015
1000

= 7.7 × 10−4. (7.12)

Upon trying to simulate the vertex model with these modifications in place,
we discovered that the model quickly became unstable when cell sizes became
too small. After analyzing the data from the failed simulations, we deduced that
the instability arose from the increasing strength of the forces on the vertices,
accompanied by the simultaneous decrease in cell edge lengths. This dual effect
eventually led to vertex displacements exceeding the lengths of connected edges,
causing cell edges to overlap, and ultimately rendering the model unstable.
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For brevity, we will refer to this instability as the small-edge instability. Since
it stems from the introduction of dynamics into the vertex model, the bifurcation
diagram in Chapter 5 does not provide insights into the parameter choices leading
to this instability. Given this limitation, our only recourse was to explore the
model numerically through parameter sweeps. From the results, it became evident
that cell integrity was compromised when both KA

n and KP
n were considerably

higher than T0n. However, setting a high value for T0n resulted in small-edge
instabilities.

Other studies employing vertex models have incorporated topology-changing
events, such as the T1 transition (neighbour exchange), T2 transition (cell death),
mitosis (cell division), and Node switch, to reconfigure vertex connections before
cell edges reach a critically small size. These works have applied vertex models
to simulate wound healing in cat corneal endothelium and regulation of tissue
size in the Drosophila wing disc [2, 68, 101, 138, 163]. These biological processes
involve cell-cell intercalation, mitosis, and apoptosis, all of which are effectively
captured by the aforementioned topological transitions. However, the process of
AC during NTC does not entail such topological events [32, 33, 34]. Consequently,
the application of topological transitions to prevent the occurrence of small cell
edges is not applicable in our study.

Therefore, we reasoned that other mechanisms must be at play to preserve cell
integrity for small cell sizes. Since the instability arises from cell edges contracting
too rapidly relative to the experimental timescale, we hypothesize that either
the damping coefficient µ increases as cells contract, an additional force term
counteracts the line tension when cell edges become very small, or a combination
of both.

After consulting with our experimental collaborators [32], we learnt that the
accumulation of actomyosin in the apical cortex inhibits vertex movement [121].
This justifies implementing µ as a function of cell size. Likewise, the force op-
posing the line tension could stem from the cell’s internal pressure. As the apical
surface area decreases, compression of the cytosol raises internal pressure, exert-
ing a force that tends to increase cell edge length. Moreover, adherens junctions
may also generate an adhesion force that counteracts the line tension.

The absence of strong adhesion, especially in the presence of tension, can result
in the loss of mechanical integrity during tissue morphogenesis. Apical adherens
junctions play a pivotal role in mediating mechanical coupling between epithelial
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cells. These junctions contain adhesion receptors (e.g., E-Cadherin) that facilitate
homophilic adhesion between the cells of the epithelial layer [24]. The applica-
tion of tension triggers the formation of adhesion complexes1, increasing the size
of adherens junctions and strengthening cell-cell adhesion [21, 114, 116]. Addi-
tionally, elevated Ca2+ activity can enhance the function of adhesion receptors
like E-Cadherin, further contributing to the elevation of adhesion strength within
adherens junctions [77].

In Sections 7.1.1 and 7.1.2, we will derive expressions for the damping co-
efficient µ and adhesion as functions of the cell size. Due to the current lack
of knowledge about the precise mechanisms underlying these processes and the
dearth of associated experimental data, these expressions will be derived using
available information on cell sizes.

7.1.1 Deriving the damping function

As discussed previously, small-edge instabilities occur when vertex displace-
ments become significantly larger than the lengths of connected edges. As the
simulation progresses, cells contract, while KA

n , KP
n , and T0n progressively in-

crease from 0.03 to 0.3, 0.02 to 0.2, and 0.01 to 0.1, respectively, due to ac-
tomyosin accumulation. The higher values of these parameters lead to stronger
forces on vertices, causing larger displacements that eventually exceed the lengths
of connected edges. This compromises cell integrity and destabilizes the model.

It is easy to understand that edge overlaps can occur only when the displace-
ment of a vertex exceeds half the length of the smallest edge connected to it
(Figure 7.3). As long as µ can produce sufficient damping to limit vertex dis-
placement to less than half the length of the smallest connected edge, the model
integrity should remain uncompromised.

From previous simulations (Figures 4.8 and 7.1), we know that the model is
stable for KA

n = 0.3, KP
n = 0.2, T0n = 0.1, and µ = 1, when cell edge lengths are

set to 0.55, at the start of the simulation. Therefore, as the cells contract, the
value of µ should be increased to effectively dampen vertex motion and maintain
stability. Since these models are stable at the start of the simulation, clearly µ = 1
results in vertex displacements less than or equal to 0.55

2 = 0.275 for KA
n = 0.3,

1Adhesion complexes Multi-protein structures at cell junctions that facilitate and regulate
cell-cell adhesion.



7.1. ADDING THE SURFACE ECTODERM 146

Figure 7.3: Schematic depicting the maximum allowable range for vertex
displacement. The red dashed circles have a radius equal to half the length of

the smallest edge connected to the vertex at the center of the circle. If the
displacement of the vertex is confined to the area enclosed by the circle, edge

overlaps cannot occur.
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KP
n = 0.2, T0n = 0.1.
After introducing the growth laws for KA

n , KP
n , and T0n, their initial values

are set to 0.03, 0.02, and 0.01, respectively. This adjustment results in one-tenth
of the force and, consequently, vertex displacement at the start of the simulation
compared to the previous case. Naturally, this implies that the model would be
stable for µ = 1. As the simulation progresses and cell edge lengths decrease, an
equation is needed to govern a proportional increase in µ.

At the start of the simulation, cell edge lengths are set to 0.55. Therefore,
vertex displacements should be less than or equal to 0.55

2 = 0.275 to maintain
stability. Towards the end of the simulation, the mechanical parameters of a cell
are KA

n = 0.3, KP
n = 0.2, T0n = 0.1, A0

n = 0.015, and P 0
n = 0.456. Setting

KA = 0.3, KP = 0.2, T = 0.15, A0 = 0.015, and P 0 = 0.456 in Equation (5.32)
gives the minimum edge length of a cell, which is l = 0.02. It is important to
note that T should be set to 0.15 to account for the Ca2+-induced elevation in
line tension.2

(
9
4

KA

A0

)
l3 +

(
6KP

P 0 −
√

3
2 KA

)
l +
(
T − KP

)
= 0. (5.32 revisited)

Since the minimum edge length is 0.02, the vertex displacement should be
≤ 0.02

2 = 0.01. This implies that µ should increase by a factor of 0.275
0.01 ≈ 30 over

the course of cell contraction.
To derive the equation for µ, we begin by defining a new quantity - the natural

length of the cell L0
n. We set L0

n = P 0
n

6 since the cells are hexagons. At the start of
the simulation, L0

n = 0.55 and µ = 1. After a cell has contracted to its minimum
size, P 0

n = 0.456 =⇒ L0
n = 0.076, and µ = 30.

We use L0
n as a measure of the accumulation of actomyosin in the apical cortex

of a cell; the smaller the value of L0
n, the greater the amount of actomyosin.

Assuming that the damping effect of actomyosin varies inversely with L0
n, we

employ the method for deriving the equation of a straight line to establish a
relationship between the damping coefficient µ and the natural length L0

n.
Consider the equation of a straight line,
2Since the surface ectoderm resists the contraction of the neural plate, the actual value of

minimum edge length will be slightly greater than 0.02.
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y − y1

y2 − y1
= x − x1

x2 − x1
, (7.13)

where (x1, y1) and (x2, y2) are the x and y coordinates of two known points. Re-
placing x, y, (x1, y1), and (x2, y2) with 1

L0
n
, µ, ( 1

0.55 , 1), and ( 1
0.076 , 30), respectively,

we get
µ − 1
30 − 1 =

(
1

L0
n

− 1
0.55

)
÷
(

1
0.076 − 1

0.55

)
µ = 1 + 2.56

(
1

L0
n

− 1.81
)

= 2.56
L0

n

− 3.65. (7.14)

It should be noted that, according to Equation (7.14), µ can drop to 0 or even
take on negative values (for L0

n ≥ 0.7). A negative damping coefficient would
cause the vertex to move in the opposite direction to the applied force, which is
unrealistic. However, since AC only involves the reduction of L0

n, this does not
affect the robustness of our model.

Equation (7.14) provides the damping effect of a single cell on a vertex. As
a vertex is associated with multiple cells, its damping coefficient results from
the contributions of all associated cells. Treating the damping effects of cells as
dampers in parallel, we sum their contributions to calculate the vertex’s damping
coefficient as follows:

µi =

Ci∑
n

2.56
L0

n

− 3.65, (7.15)

where µi is the damping coefficient for the ith vertex, and Ci represents the set of
cells that share the ith vertex. n represents the cell index, denoting that the sum
is over all cells that meet at the ith vertex.

7.1.2 Deriving the adhesion term

In Section 7.1.1, we derived the damping coefficient for a vertex, which varies
inversely with the length of the edges connected to the vertex. However, there is
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still no mechanism in place to prevent cell edges from contracting to a point for
high values of tension. This could happen when the Ca2+-induced elevation in
line tension is high enough to temporarily force a high degree of contraction in
the edge or if a cell is forced to contract due to the high interfacial tension from
an adjacent cell, but the actomyosin accumulation within the cell is not sufficient
to dampen the motion of the vertices by the required amount.

In the absence of topology-altering processes, there must be a force that op-
poses the excessive contraction of a cell edge when it becomes too small. This
force should be negligible compared to the line tension for larger edge lengths but
needs to dominate the line tension as the edge length decreases.

Note that this force could originate from either the cell’s internal pressure,
adherens junctions, or a combination of both. However, since this force opposes
tension, promoting an increase in edge lengths and interfacial contact between
cells, we simply refer to it as adhesion for convenience.

Based on the profile described above, it is reasonable to model adhesion using
a sigmoidal curve, commonly used to describe stress profiles in epithelial morpho-
genesis [95, 96, 136]. So, we assume that the adhesion force has the form

σ (l) = a

b + ( c l )n , (7.16)

where l is the edge length, and a, b, c, and n are positive constants.
The parameter n controls the steepness of the sigmoid. A larger value of n

results in a steeper increase in adhesion as l decreases. Additionally, since we
need to incorporate adhesion into the line energy UL (Equation (3.3)), it would
be prudent to select a value of n that yields a straightforward antiderivative of
σ(l). The highest integer value of n for which a simple antiderivative of σ(l) exists
is 2, so we set n = 2.

Since we limit the minimum value of P 0
n to 0.456, the minimum value of L0

n is
0.076. To penalize the contraction of edge length beyond this limit, the adhesion
at L0

n(final) = 0.076 should match the maximum value of line tension Tn(final):
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σ(L0
n(final)) = Tn(final)

= T0n(final) + ξ (substituting 3.8)

= (1 + kξ) T0n(final) (substituting 7.10)

= 0.15. (7.17)

Since we want the adhesion force to be significantly stronger than line tension
for small l, we assume the asymptotic limit of the sigmoid to be slightly greater
than 1, i.e., σ(0) = a

b
= 1. Based on this assumption, we set a and b to 1 for the

sake of simplicity. Rearranging the terms of Equation (7.16), c can be determined
as follows:

c =
(

a

σ(l) − b

) 1
n
(

1
l

)

=
(

1
σ(L0

n(final))
− 1
) 1

2
(

1
L0

n(final)

)

=
(

1
0.15 − 1

) 1
2
(

1
0.076

)
= 31.32. (7.18)

The method outlined above provides an expression for the adhesion force,
tailored for a maximum line tension Tn(final) = 0.15. However, studies indicate
that adherens junctions grow and reinforce adhesion in response to tension [21,
114, 116]. Consequently, we scale the adhesion force σ as follows to obtain the
expression for the scaled adhesion force at a cell-cell junction:

S<ij>
n

(
T <ij>

n , L<ij>
n

)
= T <ij>

n

0.15 · σ(L<ij>
n )

= T <ij>
n

0.15 · 1
1 +

(
31.32L<ij>

n

)2 , (7.19)

where n denotes the cell index, and <ij> denotes the edge connecting vertices i

and j. The scaling has been performed so that the adhesion S<ij>
n is equal to

the line tension T <ij>
n at the cell-cell junction for junction length L<ij>

n = 0.076
(Figure 7.4).

We then subtract S<ij>
n from T <ij>

n and integrate the result with respect to
L<ij>

n to find its antiderivative. This yields the updated expression for the poten-
tial energy of a cell-cell junction UL, replacing Equation (3.3).
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Figure 7.4: Scaled adhesion force at a cell-cell junction S<ij>
n versus the

junction length L<ij>
n . At L<ij>

n = L0
n(final) = 0.076, adhesion is equal to the line

tension T <ij>
n .

UL =

Ncells∑
n

edge∑
<ij>

(∫ L<ij>
n

0

(
T <ij>

n − S<ij>
n

)
dL<ij>

n

)

=

Ncells∑
n

edge∑
<ij>

(
T <ij>

n L<ij>
n − T <ij>

n

4.69 · arctan(31.32L<ij>
n )

)
(7.20)

It is important to note that with the inclusion of the adhesion term in the
update of UL, Equation (5.32) is no longer applicable for determining a cell’s
edge length at equilibrium (in the absence of the surface ectoderm). Instead, the
equilibrium edge length is now L0

n since UA = UP = UL = U = 0 in Equation (3.4)
when all edge lengths are equal to L0

n.
After incorporating the damping and adhesion mechanisms (Equations (7.15)

and (7.20)), along with the revised ratchet-like mechanism (Equation (7.11)), into
the vertex model, we observe that the small-edge instability has been eliminated
and the neural plate contracts to a much greater degree (Figure 7.5) than before
(Figure 7.2).
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Parameter Value
SE Cells 60
NP Cells 271

pc 0.17
δt 1

KA
n (SE) 0.02

KP
n (SE) 0.01

T0n(SE) 0.01
RA 0.0003
RP 0.002
RT 0.002

KA
n (initial) 0.03

KP
n (initial) 0.02

T0n (initial) 0.01
KA

n (final) 0.3
KP

n (final) 0.2
T0n (final) 0.1

κA 0.0008
ωA 1

A0
n (initial) 0.785

A0
n (final) 0.015

kξ 0.5
τ 67

Table 7.3: Parameter values for Figure 7.5.
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(a) t = 0. (b) t = 5999.

(c) NP area versus time.

Figure 7.5: The impact of the revised ratchet-like mechanism on AC. The
revision of the ratchet-like mechanism necessitates the introduction of the

damping and adhesion mechanisms. Depicted above are the snapshots of the
apical surface of the anterior neural plate and surface ectoderm layer at the

beginning and the end of the simulation along with a graph showing the time
evolution of the apical surface area of the anterior neural plate. The shaded

green region on the graph corresponds to 2-8% of the initial area of the anterior
neural plate. Model parameters: Table 7.3.
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However, although the apical surface area of the anterior neural plate comes
very close, reaching 12% of the initial area, it still falls short of the required
range (visualised by the shaded green region in Figure 7.5c) upon the comple-
tion of AC. This shortcoming likely arises from our simplified implementation of
Ca2+ signalling, where we use a constant frequency of Ca2+ flashes per minute
per cell (fpm), although in reality, the frequency of Ca2+ flashes increases as
AC progresses. We will address this in the following section by introducing an
experimentally observed Ca2+ frequency profile into the model.

To test the effectiveness of the damping and adhesion mechanisms, we ran
simulations with each component removed in turn. The small-edge instability
returned when either component was removed, demonstrating the necessity of
both for the model’s stability.

These mechanisms could also be applied to model other phenomena where
implementing topological transitions is not feasible, similar to AC during NTC.
For instance, lens pit invagination during the development of the eye [158, 159]
and tissue folding during the development of the gut [32, 36].

In this section, we concentrated on enhancing the mechanical aspects of the
vertex model to facilitate the contraction of the neural plate despite the resistive
force exerted by the surface ectoderm. In the following sections (Sections 7.2
and 7.3), we will address the chemical aspect by incorporating frequency and
amplitude profiles for Ca2+ signalling, derived from experimental data.

7.2 Modelling the Ca2+ frequency

To incorporate the Ca2+ frequency profile into the model, we refer to the
experimental data from Christodoulou and Skourides (Figure 2.7) [33, 95]. It
should be noted that the data in Figure 2.7 represents the behaviour of a small
number of cells contracting over 40 minutes, whereas the entire process of AC
can take up to 60 minutes. So, following discussions with the authors of [33], we
extrapolated the data to establish the following Ca2+ frequency profile for the
flashes:

fpm (t) =

 0.25 , if 0 ≤ t < 4000 ,

5 × 10−5(t − 4000) + 0.25 , if 4000 ≤ t ≤ 6000 ,
(7.21)
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where, as before, fpm denotes the number of flashes per minute per cell. From
t = 0 to t = 4000, fpm = 0.25. From t = 4000 to t = 6000, the value of fpm

increases linearly from 0.25 to 0.35.
Additionally, we acknowledge that the model developed thus far does not ac-

curately depict the behaviour where Ca2+ flashes precede cellular contractions.
Instead, a cell contracts as soon as it transitions from a low to a high Ca2+ state.
However, experimental observations clearly show that cellular contraction follows
the occurrence of a Ca2+ flash; in other words, there is a latency between the two
events.

In non-muscle cells, such as neuroepithelial cells, contraction is mediated by
calmodulin [40]. When Ca2+ binds to calmodulin, it induces a structural change in
calmodulin. This activated form of calmodulin then interacts with and regulates
the activity of MLCK, which in turn activates myosin [173] (Section 1.2.3). This
activation enables myosin to interact with actin filaments, ultimately leading to
the contraction of actomyosin complexes.

The process involves positive cooperativity, where the binding of Ca2+ to one
calmodulin molecule facilitates the binding of Ca2+ to adjacent calmodulin molecu-
les, enhancing the overall response [43, 112]. Moreover, myosin pulses have been
shown to correlate with transient fluctuations of cell shape and area in epithelial
cells [24]. This suggests that Ca2+ flashes directly lead to actomyosin contractions
by facilitating myosin activity.

The ‘motor-like’ activity of myosin temporarily elevates the line tension. There-
fore, we revise the mechanism governing the Ca2+-induced elevation of line tension
in the model (Equation (7.10)) as follows:

ξ (tc) =


kξT0n

(tc/τ)n

0.01 + (tc/τ)n , if 0 ≤ tc ≤ τ ,

kξT0n0.99 , if τ < tc ≤ 2τ ,

0 , if 2τ < tc ≤ 3τ ,

(7.22)

where ξ(tc) is the Ca2+-induced elevation in line tension as a function of time, n is
a positive integer, kξ, T0n, τ retain their usual meanings, and tc = 0 denotes the
instant when the cell transitions from a low to a high Ca2+ state. The sigmoidal
function is defined with an asymptotic limit of 1, and it reaches 99% of that value
at tc = τ , i.e, when the cell transitions from a high to a low Ca2+ state. After the
cell reverts to a low Ca2+ state, ξ maintains its value for a duration of ∆t = τ
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before dropping to 0, indicating the exhaustion of the myosin motors. Following
this, the value of ξ is maintained at 0, again, for ∆t = τ . We estimate these time
durations visually from Figure 2.6 since no studies provide precise measurements
for these events.

The entire sequence of events described above constitutes a Ca2+ oscillation,
having a time period Tosc = 3τ , where a Ca2+ flash lasts for ∆t = τ , followed by
a refractory period that lasts for ∆t = 2τ , during which no Ca2+ flash occurs.
Since the duty ratio of the Ca2+ oscillation can be found using the expression

duty = τ

Tosc

, (7.23)

we calculate the duty ratio to be 0.33.
The sigmoidal function in Equation (7.22) is commonly used in the Hill equa-

tion, which is employed to study the kinetics of many enzyme-catalyzed reactions
and transporter-mediated processes. For brevity, we shall refer to it as an n-th
degree Hill function. The Hill coefficient n provides a measure of the cooperativ-
ity of substrate binding to the protein, n > 1 suggests that two or more binding
sites exist in the protein and that there is positive cooperativity with respect to
substrate binding. Based on observations from our simulation results, we deter-
mined that n = 10 provided the closest match to the Ca2+ profile depicted in
Figure 2.6.

Based on our new definition for a Ca2+ oscillation, we must revise the previ-
ously defined relationship between fpm and pc (Equation (7.9)). If we consider
the simulation runtime ∆t = 6000 to be divided into smaller intervals of duration
∆t = Tosc, then pc can be defined as

pc =


60 × fpm

T60/Tosc

, if 60 × fpm

T60/Tosc

≤ 1,

1 , if 60 × fpm

T60/Tosc

> 1,

(7.24)

where T60 is the simulation time interval corresponding to 60 minutes, as before.
The value of pc is evaluated for each cell at the start of every Tosc-sized interval.

Upon updating our definition of the Ca2+-induced elevation of line tension, we
can now address an experimentally observed behaviour that the modified Suzuki
model and, by extension, the model we have developed so far (Section 7.1) have
been unable to capture.
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It has been observed that the pharmacological elevation of cytosolic Ca2+ lev-
els leads to synchronous and continuous cellular contractions, resulting in the
failure of NTC. This suggests that asynchronous and cell-autonomous pulsed
contractions are essential for the correct morphogenesis of the neural tube [33]
(Chapter 2).

Contrary to this observation, the Suzuki model and the modified Suzuki model
demonstrate maximal contraction of the apical surface area of the neural plate
when pc = 1, which corresponds to the scenario where all cells experience an
elevated level of Ca2+ (Figures 3.7 and 5.9). This is because synchronous Ca2+

flashes across the neural plate induce a simultaneous increase in the line tension of
all cells. Consequently, cell edges contract to minimize the total potential energy
of the neural plate (Equation (3.4)).

To reproduce this behaviour in silico, we need to revise some of our mod-
elling assumptions based on experimental evidence. We base our revisions on the
following observations:

(i) Actomyosin bundles can be rearranged by the application of a mechanical
force [64, 212].

(ii) Ca2+ flashes occur just before a cell contraction pulse but never during the
stabilization step [33].

Therefore, we hypothesize that the Ca2+-induced elevation in line tension (ξ)
causes the rearrangement of actomyosin bundles, and this rearrangement - indi-
cated by permanent changes in KA

n , KP
n , T0n, A0

n, and P 0
n - can only occur when

the Ca2+ level in the cell is not elevated. So, we modify the growth laws for
KA

n , KP
n , and T0n (Equations (7.4)-(7.6)) and the ratchet-like mechanism (Equa-

tions (7.11)), as follows:

dKA
n

dt
=

RA, if ξ (tc) ̸= 0 ∧ cell is not activated,

0 , otherwise,
(7.25)

dKP
n

dt
=

RP , if ξ (tc) ̸= 0 ∧ cell is not activated,

0 , otherwise,
(7.26)

dT0n

dt
=

RT , if ξ (tc) ̸= 0 ∧ cell is not activated,

0 , otherwise,
(7.27)
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Parameter Value
SE Cells 60
NP Cells 271

duty 0.33
δt 1

KA
n (SE) 0.02

KP
n (SE) 0.01

T0n(SE) 0.01
RA 0.0003
RP 0.002
RT 0.002

KA
n (initial) 0.03

KP
n (initial) 0.02

T0n (initial) 0.01
KA

n (final) 0.3
KP

n (final) 0.2
T0n (final) 0.1

κA 0.0008
ωA 1

A0
n (initial) 0.785

A0
n (final) 0.015

kξ 0.5
τ 67

Table 7.4: Parameter values for Figures 7.6 and 7.7.
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(a) t = 0. (b) t = 5999.

(c) Ca2+ flash frequency versus time.

(d) NP area versus time.

Figure 7.6: The effect of introducing the Ca2+ frequency profile into the vertex
model. Depicted above are the snapshots of the apical surface of the anterior
neural plate and surface ectoderm layer at the beginning and the end of the
simulation along with graphs showing the time evolution of the number of

flashes per minute per cell (averaged over the 271 neural plate cells) and the
time evolution of the apical surface area of the anterior neural plate. The

shaded green region on the latter corresponds to 2-8% of the initial area of the
anterior neural plate. Model parameters: Table 7.4.
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(a) t = 0. (b) t = 5999.

Figure 7.7: The effect of the continuous elevation of cytosolic Ca2+ on AC. The
continuous elevation of cytosolic Ca2+ inhibits the contraction of the apical

surface of the anterior neural plate, resulting in the failure of NTC. Depicted
above are the snapshots of the apical surface of the anterior neural plate and

surface ectoderm layer at the beginning and the end of the simulation. Except
for duty, all model parameters have the same values as listed in Table 7.4. For a

sustained elevation in Ca2+ levels (pc = 1), we set fpm = 1.5 and duty = 1
(Equation (7.24)).
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dA0
n

dt
=

−κA , if (An − ωAA0
n) < 0 ∧ cell is not activated,

0 , otherwise,
(7.28)

where RA, RP , RT , and κA are the corresponding rate constants and retain their
values from Equations (7.7), (7.8), and (7.12), respectively. As before, we limit
the minimum value of A0

n to A0
n(final) = 0.015. The value of P 0

n is updated using
Equation (7.1) whenever A0

n changes according to Equation (7.28).
We then simulate the vertex model with these modifications in place (Fig-

ure 7.6). Figure 7.6c depicts the number of flashes per minute per cell (aver-
aged over all the cells of the neural plate), measured over time windows of size
∆t = 1000. The error bars indicate the range of variation in the number of flashes
per minute per cell. The average frequency of Ca2+ flashes remains nearly con-
stant from t = 0 to t = 4000, then linearly increases from t = 4000 to t = 6000,
resembling the prescribed frequency profile (Equation (7.21)). Although the av-
erage number of flashes per minute per cell is slightly less than the prescribed
frequency profile. In Figure 7.6d, we see that the apical surface area of the an-
terior neural plate contracts even more than in Figure 7.5, reaching 9% of the
initial area upon the completion of AC, though still falling slightly short of the
required range.

Figure 7.7 illustrates the effects of incorporating Equations (7.25)-(7.28) into
the vertex model. The continuous elevation of cytosolic Ca2+ inhibits the con-
traction of the apical surface of the anterior neural plate, leading to the failure of
NTC. This underscores the crucial role of the Ca2+ refractory period and asyn-
chronous Ca2+ flashes in the proper morphogenesis of the neural tube, consistent
with experimental observations [33].

7.3 Modelling the Ca2+ amplitude

To incorporate the Ca2+ amplitude profile into the model, we again refer to the
experimental data from Christodoulou and Skourides (Figure 2.8) [33, 95]. As was
the case for the Ca2+ frequency profile (Figure 2.7), the data in Figure 2.8 repre-
sents the behaviour of a small number of cells contracting over 40 minutes. So,
we extrapolate the data to 60 minutes to establish the following Ca2+ amplitude
profile for the flashes:
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amp (t) =

 2.5 × 10−5(t) + 0.6 , if 0 ≤ t < 4000 ,

1 × 10−4(t − 4000) + 0.7 , if 4000 ≤ t ≤ 6000 ,
(7.29)

where amp denotes the amplitude of a Ca2+ flash. In [95], all Ca2+ flash am-
plitudes were normalized by dividing them by the highest amplitude measured
during AC. From t = 0 to t = 4000, the value of amp increases linearly from 0.6
to 0.7. From t = 4000 to t = 6000, the value of amp increases linearly from 0.7
to 0.9.

In Section 7.2, we highlighted the role of Ca2+ in inducing actomyosin con-
tractions by binding to calmodulin, which leads to the activation of myosin. As
actomyosin accumulates in the apical cortex of neural plate cells during AC, the
amount of Ca2+ required to activate it increases concomitantly. If an insufficient
amount of actomyosin is activated, the resulting elevation in line tension is un-
able to overcome the elastic forces from the accumulated actomyosin. Hence, the
amplitude of Ca2+ flashes must increase to trigger sufficient contraction in the
cell’s apical surface area.

Therefore, we update the mechanism governing the Ca2+-induced elevation of
line tension (Equation (7.22)) as follows:

ξ (tc) =


kξf (amp) (tc/τ)10

0.01 + (tc/τ)10 , if 0 ≤ tc ≤ τ ,

kξf (amp) 0.99 , if τ < tc ≤ 2τ ,

0 , if 2τ < tc ≤ 3τ ,

(7.30)

where ξ(tc) is the Ca2+-induced elevation in line tension as a function of time,
and tc = 0 denotes the instant when the cell transitions from a low to a high Ca2+

state. The constants kξ and τ retain their usual meanings, and f(amp) represents
the actomyosin activation as a function of Ca2+ flash amplitude.

As AC commences, the actomyosin level in the apical cortex is at its lowest
(corresponding to T0n = 0.01). At this stage, a Ca2+ flash with an amplitude of
amp = 0.6 is sufficient to activate the existing actomyosin. Towards the end of
AC, the actomyosin level in the apical cortex reaches its peak (T0n = 0.1). At
this stage, a Ca2+ flash with an amplitude of amp = 0.6 activates only a fraction
of the total actomyosin. To fully activate the increased amount of actomyosin
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Parameter Value
SE Cells 60
NP Cells 271

duty 0.33
δt 1

KA
n (SE) 0.02

KP
n (SE) 0.01

T0n(SE) 0.01
RA 0.0003
RP 0.002
RT 0.002

KA
n (initial) 0.03

KP
n (initial) 0.02

T0n (initial) 0.01
KA

n (final) 0.3
KP

n (final) 0.2
T0n (final) 0.1

κA 0.0008
ωA 1

A0
n (initial) 0.785

A0
n (final) 0.015

kξ 4
τ 67

Table 7.5: Parameter values for Figures 7.8, 7.9, 7.10, 7.11, 7.12, 7.13, and 7.14.
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Figure 7.8: The effect of varying kξ on the final area attained by the apical
surface of the anterior neural plate upon the completion of AC, i.e., at t = 6000.
The shaded green region on the graph corresponds to 2-8% of the initial apical
surface area of the anterior neural plate. Except for kξ, all model parameters

have the same values as listed in Table 7.5.

accumulated in the apical cortex, a Ca2+ flash with an amplitude of amp = 0.9
is required.

Since the precise mechanism governing the relationship between Ca2+ flash
amplitude and actomyosin activation is unknown, we use an exponential function
that fits the known data points f(0.6) = 0.01 and f(0.9) = 0.1. This approach
uses T0n as a measure of the actomyosin level. So, we define f(amp) as follows:

f (amp) = 1 × 10−4 exp (7.68 amp) . (7.31)

Taken together, Equations (7.30) and (7.31) imply that a sufficiently high Ca2+

amplitude can fully activate the actomyosin accumulated in the apical cortex
(represented by T0n). Subsequently, the Ca2+-induced activity of the myosin
motors elevates the line tension to kξT0n within the time interval ∆t = τ . It
is reasonable to assume that the maximum tension generated depends on the
actomyosin level so we set the upper limit of ξ(tc) to kξT0n, i.e.,

ξ (tc) =

 ξ (tc) , if 0 ≤ ξ (tc) ≤ kξT0n ,

kξT0n , if kξT0n < ξ (tc) ,
(7.32)



7.3. MODELLING THE CA2+ AMPLITUDE 165

After incorporating these modifications into the vertex model, we conducted
a parameter sweep for kξ. Starting at kξ = 0.5, we doubled its value successively
until identifying the smallest value of kξ that achieved the desired degree of con-
traction. In Figure 7.8, it can be seen that the apical surface area of the anterior
neural plate contracts to 5.5% of its initial value for kξ = 4. Since this area is
within the desired range of 2% to 8%, we set kξ to 4.

With this final modification, we conclude the development of a mechanochemi-
cal vertex model that captures the impact of Ca2+ on the constriction of the apical
surface area of the anterior neural plate, incorporating experimentally valid Ca2+

frequency and amplitude profiles, during the AC phase of NTC. Since this model
only captures the unilateral effect of Ca2+ signalling on cellular mechanics and,
consequently, tissue contraction, we call it the one-way coupling model or the
one-way model.

Figure 7.9 visualises the time evolution of the apical surface of the anterior
neural plate and surface ectoderm layer in the one-way model. The cell at the
centre of the neural plate is marked with a red border. We demonstrate the effect
of Ca2+ flashes on the apical surface area of cells by monitoring the area of the
‘marked’ cell along with the Ca2+ flashes it experiences.

Figure 7.10c depicts the cell undergoing pulsed contractions due to the in-
fluence of Ca2+ flashes. Although individual cells contract in a pulsed manner,
the anterior neural plate contracts monotonically without recovery phases (Fig-
ure 7.10d), in line with experimental findings [33, 121]. The apical surface of the
anterior neural plate contracts to 5.5% of its initial area, ultimately achieving the
desired contraction and resulting in successful NTC.

Due to the folding of the anterior neural plate during NTC, it becomes chal-
lenging to track its apical surface area through live-cell imaging. Therefore,
Christodoulou and Skourides [33] evaluated the rate of NTC by measuring the
speed at which the periphery of the neural plate moved toward its centre (Fig-
ure 2.2). Similarly, we track the distance between the centroids of the cell at the
centre of the neural plate and a cell at the edge of the neural plate (represented
by the red line in Figures 7.9a-7.9f). The velocity of NTC is indicated by the rate
at which this distance changes, visualised in Figure 7.10e.

In Figure 7.10e, the NTC velocity is initially depicted as negative. This is
because the cells at the centre and edge initially move away from each other due
to the spontaneous contraction of surrounding cells. However, as AC progresses,



7.3. MODELLING THE CA2+ AMPLITUDE 166

(a) t = 0. (b) t = 1200.

(c) t = 2400. (d) t = 3600.

(e) t = 4800. (f) t = 5999.

Figure 7.9: Depicted above are the snapshots of the apical surface of the
anterior neural plate and surface ectoderm layer in the one-way model. The

time evolution of the cells are visualised through images captured at the end of
five equally-spaced time intervals. The cell at the centre of the neural plate is

marked with a red border. Figure 7.10c illustrates the impact of Ca2+ flashes on
the area of the ‘marked’ cell. The red line represents the distance between the
centroids of the cell at the centre of the neural plate and a cell at the edge of
the neural plate. The rate of change of this distance indicates the velocity of

NTC (Figure 7.10e). Model parameters: Table 7.5.
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(a) Ca2+ flash frequency versus time. (b) Ca2+ flash amplitude versus time.

(c) Effect of Ca2+ flashes on the area
of the ‘marked’ cell in Figure 7.9.

(d) NP area versus time.

(e) NTC velocity versus time.

Figure 7.10: Time series data for the anterior neural plate visualised in
Figure 7.9. Figures 7.10a and 7.10b visualise the Ca2+ frequency and amplitude

profiles, respectively. The number of flashes per minute per cell and the
amplitude of the flashes were averaged over the 271 cells of the neural plate.
The shaded green region in Figure 7.10d corresponds to 2-8% of the initial

apical surface area of the anterior neural plate. Model parameters: Table 7.5.
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(a) Range, mean, and standard
deviation versus time.

(b) Coefficient of variation versus
time.

Figure 7.11: Descriptive statistics for the one-way model. The plots above
visualise the range, mean, standard deviation, and coefficient of variation for

100 samples of the time evolution data of the apical surface area of the anterior
neural plate. Model parameters: Table 7.5.

the cells move towards each other at an increasing rate, indicating an acceleration
of NTC, which aligns with the observation in [33].

Figures 7.10a and 7.10b showcase the successful integration of Ca2+ frequency
(Equation (7.21)) and amplitude (Equation (7.29)) profiles into the model. As
AC progresses, both the frequency and amplitude of Ca2+ flashes increase as
intended, consistent with experimental findings [33]. The measurements of flashes
per minute per cell and flash amplitude (averaged over all cells in the anterior
neural plate) were taken over time windows of size ∆t = 1000. The error bars
indicate the range of variation in the number of flashes per minute per cell and
the amplitude of the flashes.

Owing to the randomness of the Ca2+ flashes, the one-way model is a stochastic
model. Therefore, to gain an accurate understanding of the model’s behaviour, it
is necessary to run many stochastic iterations. So, we performed 100 simulations
of the one-way model for the parameters listed in Table 7.5. We then calculated
the range, mean, and standard deviation for the samples of the neural plate area
at every timestep (Figure 7.11a). From Figure 7.11a, it is evident that there is
very little variation in the neural plate area across iterations. As the neural plate
area decreases over time and the slope becomes gentler, the variation in the neural
plate area also decreases. Accordingly, the coefficient of variation also decreases
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slowly over time (Figure 7.11b).
Given that there is very little variation in the neural plate area across stochastic

iterations, all of which are performed using the same parameter values, data from
a single iteration of the model offers a sufficiently accurate representation of the
model’s behaviour.

7.4 Discussion

In this chapter, we developed a new mechanochemical vertex model for the
apical constriction (AC) of the anterior neural plate during NTC. Beginning with
the modified Suzuki model, we made progressive modifications to allow for con-
traction despite the resistive force from the surface ectoderm. Furthermore, we
incorporated experimentally validated frequency and amplitude profiles for Ca2+

flashes into the model. Given that Ca2+ signals influence a cell’s mechanical prop-
erties but not vice versa, we refer to it as the one-way model. The parameters of
the model are listed in Table 7.5 and the equations of the model are as follows:

Ca2+ frequency profile

fpm (t) =

 0.25 , if 0 ≤ t < 4000 ,

5 × 10−5(t − 4000) + 0.25 , if 4000 ≤ t ≤ 6000 ,

(7.21 revisited)

where fpm: number of flashes per minute per cell.

Duty ratio of Ca2+ oscillation

duty = τ

Tosc

, (7.23 revisited)

where duty: duty ratio of a Ca2+ oscillation, τ : cell activation period, and Tosc:
time period of a Ca2+ oscillation.
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Probability of cell activation

pc =


60 × fpm

T60/Tosc

, if 60 × fpm

T60/Tosc

≤ 1,

1 , if 60 × fpm

T60/Tosc

> 1,

(7.24 revisited)

where pc: probability of cell activation, and T60: simulation time interval corre-
sponding to 60 minutes.

Ca2+ amplitude profile

amp (t) =

 2.5 × 10−5(t) + 0.6 , if 0 ≤ t < 4000 ,

1 × 10−4(t − 4000) + 0.7 , if 4000 ≤ t ≤ 6000 ,
(7.29 revisited)

where amp: Ca2+ flash amplitude.

Ca2+-induced elevation in line tension

ξ (tc) =


kξf (amp) (tc/τ)10

0.01 + (tc/τ)10 , if 0 ≤ tc ≤ τ ,

kξf (amp) 0.99 , if τ < tc ≤ 2τ ,

0 , if 2τ < tc ≤ 3τ ,

(7.30 revisited)

and

ξ (tc) =

 ξ (tc) , if 0 ≤ ξ (tc) ≤ kξT0n ,

kξT0n , if kξT0n < ξ (tc) ,
(7.32 revisited)

where ξ: Ca2+-induced elevation in line tension, T0n: baseline value of line tension,
kξ: scaling factor for T0n, and

f (amp) = 1 × 10−4 exp (7.68 amp) . (7.31 revisited)
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Energy function

U = UA + UP + UL, (3.4 revisited)

where U : total potential energy, UA: potential energy of the cell areas, UP : poten-
tial energy of the cell perimeters, UL: potential energy of the cell-cell junctions,
and

UA =

Ncells∑
n

KA
n

2

(
An

A0
n

− 1
)2

A0
n, (3.1 revisited)

UP =

Ncells∑
n

KP
n

2

(
Pn

P 0
n

− 1
)2

P 0
n , (3.2 revisited)

UL =

Ncells∑
n

edge∑
<ij>

(
T <ij>

n L<ij>
n − T <ij>

n

4.69 · arctan(31.32L<ij>
n )

)
, (7.20 revisited)

where KA
n : area elasticity coefficient, An: area of the cell, A0

n: natural area of the
cell, KP

n : perimeter elasticity coefficient, Pn: perimeter of the cell, P 0
n : natural

perimeter of the cell, T <ij>
n : line tension at the cell edge, and L<ij>

n : length of
the cell edge.

Damping function

µi =

Ci∑
n

2.56
L0

n

− 3.65, (7.15 revisited)

where µi: damping coefficient for the ith vertex, Ci: set of cells sharing the ith

vertex, and L0
n: natural length of the cell.
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Force on the ith vertex

Fi = −∂U

∂ri

= µi
dri

dt
, (3.7 revisited)

where Fi: force on the ith vertex, and ri: position of the ith vertex.

Growth laws for KA
n , KP

n , and T0n

dKA
n

dt
=

RA, if ξ (tc) ̸= 0 ∧ cell is not activated,

0 , otherwise,
(7.25 revisited)

dKP
n

dt
=

RP , if ξ (tc) ̸= 0 ∧ cell is not activated,

0 , otherwise,
(7.26 revisited)

dT0n

dt
=

RT , if ξ (tc) ̸= 0 ∧ cell is not activated,

0 , otherwise,
(7.27 revisited)

where RA: growth rate of KA
n , RP : growth rate of KP

n , and RT : growth rate of
T0n.

Ratchet-like mechanism

dA0
n

dt
=

−κA , if (An − ωAA0
n) < 0 ∧ cell is not activated,

0 , otherwise,

(7.28 revisited)

and

P 0
n = 6

(
3− 3

4
(
2A0

n

) 1
2
)

. (7.1 revisited)

where κA: contraction rate of A0
n, and ωA: threshold parameter for the activation

of the ratchet-like mechanism.
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(a) Final NP area versus Ca2+ flash
amplitude.

(b) Final NP area versus FPM per
cell.

Figure 7.12: The effect of varying the Ca2+ flash amplitude (amp) and the
number of flashes per minute per cell (fpm) on the final area attained by the
apical surface of the anterior neural plate upon the completion of AC, i.e., at
t = 6000. The shaded green region corresponds to 2-8% of the initial apical

surface area of the anterior neural plate. Model parameters: Table 7.5.

Having completed the development of the one-way model, we use it to inves-
tigate the impact of the amplitude and frequency of Ca2+ flashes on neural plate
morphogenesis. To study the effect of Ca2+ flash amplitude on AC, we disable
the Ca2+ amplitude profile (Equation (7.29)) and, instead, set a constant value
for amp. We then perform a parameter sweep for amp, taking 11 equally spaced
values between amp = 0.6 and amp = 0.9.

From Figure 7.12a, it is evident that the anterior neural plate fails to contract
adequately at the end of AC when amp < 0.7. This underscores the necessity
of increasing the amplitude of Ca2+ flashes throughout AC to achieve successful
NTC.

Similarly, to study the effect of Ca2+ flash frequency on AC, we disable the
Ca2+ frequency profile (Equation (7.21)) and, instead, set a constant value for
fpm. We then perform a parameter sweep for fpm, taking 11 equally spaced
values between fpm = 0.25 and fpm = 0.35.

From Figure 7.12b, it can be seen that the anterior neural plate contracts
sufficiently for all fpm values in this range, suggesting that the increasing Ca2+

flash frequency might be a feature of AC but not necessary for successful NTC.
However, as NTC progresses, Christodoulou and Skourides [33] observe a grad-
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(a) Ca2+ flash frequency versus time. (b) NTC velocity versus time.

Figure 7.13: The time evolution of the number of flashes per minute per cell
(averaged over the 271 neural plate cells) and the NTC velocity, for fpm = 0.25.

Model parameters: Table 7.5.

ual increase in the frequency of Ca2+ flashes along with the rate of NTC (Fig-
ure 2.2).

To investigate the relationship between Ca2+ flash frequency and the rate of
NTC, we examined NTC velocity while maintaining a constant value of fpm =
0.25 throughout the duration of AC (Figure 7.13). The results showed an increase
in NTC velocity, despite there being no change in the average number of flashes
per minute per cell. Thus, the one-way model suggests that an increase in Ca2+

flash frequency is not the driving factor behind the increase in NTC velocity.
This aligns with the findings of Suzuki et al [196], where they suggest that

the effect of Ca2+ fluctuations on tissue morphogenesis is independent of fluctu-
ation frequency (Figure 3.7). Furthermore, the parameter sweeps in Section 5.5
also demonstrate that pc is a low-sensitivity parameter (Figure 5.9a), i.e., small
changes in pc and, therefore, Ca2+ flash frequency have minimal impact on the
final area attained by the neural plate.

However, in Figures 3.7 and 5.9a, we observe that the model is highly sensitive
to changes in pc for very small values of pc. Additionally, Figure 7.7 suggests
that changes in pc sharply impact the final area attained by the neural plate as
pc approaches 1.

As pc is no longer a free parameter in the one-way model, we cannot conduct a
parameter sweep for pc to study the effects of low and high cell activation times on
AC. Instead, we adopt a different approach: performing a parameter sweep for the
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Figure 7.14: The effect of varying the duty ratio of the Ca2+ flashes (duty), for
constant Tosc, on the final area attained by the apical surface of the anterior
neural plate upon the completion of AC, i.e., at t = 6000. The shaded green
region corresponds to 2-8% of the initial apical surface area of the anterior

neural plate. Except for duty and τ , all model parameters have the same values
as listed in Table 7.5.

duty ratio (duty) while keeping the time period of the Ca2+ oscillation constant
(Tosc = 201, corresponding to 120 seconds, as estimated from Figure 2.6). Since
duty and Tosc are related by Equation (7.23), changing duty also implies a change
in the value of the activation time (τ). Finally, we set fpm = 0.5 to achieve
pc = 1 (Equation (7.24)).

The results of our parameter sweep (Figure 7.14) demonstrate that the anterior
neural plate contracts sufficiently for 0.2 < duty < 0.95. Within this range,
changing the value of duty does not significantly impact the final area attained
by the neural plate. However, for duty < 0.025 and 0.95 < duty, the model
exhibits high sensitivity to changes in duty, effectively demonstrating that NTC
fails for sustained depletion or elevation in Ca2+ levels.

On the basis of established facts regarding the behaviour of sub-cellular ma-
chinery (Section 1.2), we developed a model that replicates a wide range of be-
haviours exhibited by the anterior neural plate during the AC phase of NTC
(Chapter 2). Table 7.6 compares the one-way model with the Suzuki model in
terms of their ability to reproduce experimentally observed behaviours in silico.
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Behaviours captured
Suzuki
model

One-way
model

Pulsed contractions at the cell-level Yes Yes
Monotonic contraction at the tissue-level Yes Yes
NTC velocity increases with time Yes Yes
NP contracts to 2-8% of initial area when SE absent Yes Yes
NP contracts to 2-8% of initial area when SE present No Yes
Latency between Ca2+ flash and cell contraction No Yes
Frequency of Ca2+ flashes increases with time No Yes
Amplitude of Ca2+ flashes increases with time No Yes
NTC fails for sustained elevation of Ca2+ No Yes

Table 7.6: Comparing the one-way model and the Suzuki model in terms of
their ability to capture experimentally observed behaviours.

The table highlights that the one-way model significantly outperforms the Suzuki
model, capturing a broader range of behaviours.

Based on our simulation results and consultation with our experimental collab-
orators, we propose the following hypotheses for experimental testing, providing
new directions for future research:

• Actomyosin exhibits persistent enrichment at cell-cell junctions, in con-
trast to the transient enrichment cycles followed by dissipation observed
in medioapical actomyosin. This is essential for preserving cell and tissue
integrity during AC.

• As cell-cell junctions decrease in size, apical adherens junctions exert a force,
counteracting line tension, to prevent the cell surface from collapsing.

• The amplitude of a Ca2+ flash determines the extent of myosin activity and,
thereby, cell contraction.

• A refractory period, characterized by a low Ca2+ level, is essential to alter
the cell’s mechanical properties and activate the ratchet-like mechanism.
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In spite of the successes of the one-way model, we acknowledge that NTC is a
phenomenon that entails the folding of the neural plate in three dimensions. As
such, a 2D vertex model is inadequate for fully capturing neural plate morphogen-
esis. For instance, the one-way model is unable to capture the spatial distribution
of constriction in the anterior neural plate.

Some regions of the anterior neural plate display increased constriction un-
der normal conditions during AC. These regions, known as constriction foci, are
located along the periphery (neural folds) and in the medial region of the ante-
rior neural plate. Elevating Ca2+ levels pharmacologically disrupts the normal
constriction patterning, causing the distribution of foci to become random. This
disruption leads to NTC failure and severe defects in the embryo. These results
suggest that asynchronous and cell-autonomous contraction pulses are necessary
for the correct temporal and spatial distribution of constriction and, as a result,
correct morphogenesis of the neural plate [33].

To capture the spatial distribution of constriction, we considered modelling the
constriction foci as regions of elevated cellular constriction. However, experimen-
tal data reveals that upon the completion of AC, all cells will have constricted
uniformly [32, 34]. In a 2D vertex model, this would result in the same final
tissue shape regardless of the initial spatial patterning of constriction. This is be-
cause the neural plate undergoes three-dimensional folding along the constriction
foci, rendering it impractical to capture this morphogenetic behaviour with a 2D
model.

Moreover, the one-way model only captures the one-sided impact of Ca2+ sig-
nalling on cellular mechanics. However, the ‘stretch activation’ of Ca2+ is a
well-documented phenomenon [11, 54, 78, 131], i.e., straining the cytogel induces
a Ca2+ flash within a cell. There is also ample evidence to suggest that the
mechanical stimulation of cells results in elevated Ca2+ levels [16, 139, 209, 225].

Additionally, during AC, regions of the anterior neural plate exhibiting the
highest reduction in apical cell surface area also displayed the highest Ca2+ flash
frequency. Hence, it is reasonable to hypothesize the existence of a mechanochem-
ical feedback loop regulating Ca2+ signalling during AC. In this loop, Ca2+-
induced contraction in one cell mechanically stimulates adjacent cells, inducing
Ca2+ flashes in them, leading to their contraction, and so forth.

Therefore, an ideal model of AC during NTC would involve a 3D vertex model
incorporating bilateral feedback or two-way coupling between Ca2+ signalling and



7.4. DISCUSSION 178

cellular mechanics. While a complete 3D model is beyond the scope of this work,
we take a step in this direction by incorporating a simple mechanism to simulate
the behaviour of stretch sensitive Ca2+ channels, creating a two-way coupling
model in the following chapter.



Chapter 8

The two-way model

In Chapter 7, we developed a novel mechanochemical vertex model of apical
constriction (AC) during neural tube closure (NTC). In this model, Ca2+ sig-
nalling impacts cellular mechanics but not vice versa, so we refer to it as the
one-way model.

In the one-way model, the Ca2+ frequency and amplitude profiles were imposed
upon the model. However, there is ample evidence to suggest that there exists
a bilateral feedback or two-way coupling between Ca2+ signalling and cellular
mechanics [54, 78, 131, 139], i.e., the Ca2+ frequency and amplitude profiles should
emerge as a natural consequence of the model’s behaviour.

In this chapter, we extend the one-way model to create a new model that
captures the two-way coupling between Ca2+ signals and cellular mechanics.

8.1 Modelling the SSCCs

We incorporate the feedback from cellular mechanics on Ca2+ signalling by in-
troducing the action of the ‘stretch activation’ mechanism into the model. Stretch
sensitive Ca2+ channels (SSCCs) on the cell membrane trigger the Ca2+-induced
Ca2+ release (CICR) mechanism by allowing an influx of Ca2+ from the extracel-
lular space [136].

From studies on human retinal pigment epithelial cells [211] and on epithelial
cells in the Xenopus neural plate [95], it is known that SSCCs on the cell mem-
brane open as a response to the dilatation, or stretching, of the cytosol. Thus,
the ‘stretch activation’ serves to oppose the stretching of the cytosol by inducing
a Ca2+ flash within the cell, to trigger cell contraction.

179
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The cited studies [95, 136, 211] utilize continuum models that characterize the
Ca2+ influx through SSCCs as being directly proportional to the dilatation of the
cytosol. To our knowledge, there are currently no vertex models that consider
the effect of SSCC activation on cytosolic Ca2+ levels.

So, we propose a simple mechanism for SSCC-driven cell activation as follows:
when the strain of a cell edge is greater than a predefined limit, the SSCCs on the
edge are opened, and the edge is activated. If an edge is activated, the cell has a
non-zero probability of experiencing a Ca2+ flash at every timestep. The greater
the number of activated edges in a cell, the higher this probability. Conversely,
if no edges are activated, the probability of a Ca2+ flash occurring in the cell is
zero. Therefore, we define the stretch indices for an edge and a cell as

SI<ij> =


1 , if L<ij>

n − L0
n

L0
n

> 0.1,

0 , if L<ij>
n − L0

n

L0
n

≤ 0.1,

(8.1)

SIn =

edge∑
<ij>

SI<ij>, (8.2)

where SI<ij> is the stretch index of the cell edge connecting vertices i and j,
L<ij>

n is the length of the cell edge connecting vertices i and j, L0
n is the natural

length of the cell (as defined in Section 7.1.1), and SIn is the stretch index of the
cell. Since we model the cells as hexagons, SIn can range from 0 to 6. Given the
absence of experimental data, we estimated the strain limit to be 0.1 based on
insights from our simulation results.

To determine the probability of SSCC-driven cell activation pn (SIn), we must
derive a new relationship between the flashes per minute per cell fpm and the
probability of cell activation pc. If the time period of a Ca2+ oscillation is Tosc,
then pc is given by

pc =


(

60fpm

T60 − 60fpm Tosc

)
δt , if 60fpm ≤ T60 − 60fpm Tosc,

1 , otherwise,

(8.3)
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where δt is the size of the timestep, and T60 is the simulation time interval cor-
responding to 60 minutes. The value of pc is evaluated for each cell at every
timestep.

From the Ca2+ frequency profile (Equation (7.21)), we know that the minimum
value of fpm is 0.25. By substituting this value into Equation (8.3), we obtain
pc = 0.005. We consider this to be the smallest non-zero value of pn, which repre-
sents the probability of cell activation when only one edge is activated. Therefore,
the probability of SSCC-driven cell activation is

pn (SIn) = 0.005 SIn. (8.4)

The amount of actomyosin in the cell cortex plays a pivotal role in determining
the sensitivity of the SSCCs [35]. The increasing cortical tension due to the accu-
mulation of actomyosin in the apical cortex during AC heightens the sensitivity
of the SSCCs [113, 177].

Owing to the absence of experimental data, we estimate the increase in SSCC
sensitivity using the Ca2+ frequency profile. From the frequency profile, we know
that the maximum value of fpm is 0.35. Substituting this value into Equa-
tion (8.3), we find pc = 0.015 =⇒ 3 × 0.005. So, it can be asserted that the
SSCC sensitivity scales by a factor of 3 near the end of AC, when the amount of
cortical actomyosin (represented by KA

n ) is at its highest.
According to the frequency profile, the frequency of Ca2+ flashes begins to

increase at t = 4000. By this time, each cell will have experienced approximately
10 Ca2+ flashes. Using Equation (7.25) and parameter values from Table 7.5, we
can approximate the value of KA

n in a cell as follows: KA
n (initial) + RA(10 τ) =

0.21. Therefore, we assert that the sensitivity of the SSCCs in a cell increases
significantly when KA

n = 0.21 and modify Equation (8.4) as follows:

pn

(
SIn , KA

n

)
=
(
1 + 2H

(
KA

n − 0.21
))

0.005 SIn, (8.5)

where H is the Heaviside step function. The term
(
1 + 2H

(
KA

n − 0.21
))

transi-
tions from 1 to 3 at KA

n = 0.21 and represents the sensitivity of the SSCCs as a
function of cortical actomyosin (Figure 8.1).

The sensitivity of the SSCCs is likely best represented by a sigmoidal curve,
commonly used in biological models. However, for simplicity, we model SSCC
sensitivity as a transition from a low to a high value at a specific actomyosin
concentration (represented by KA

n ). Since we are not interested in the steepness of
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Figure 8.1: Probability of SSCC-driven cell activation pn versus the area
elasticity coefficient KA

n , which represents the concentration of cortical
actomyosin in the cell. SIn is the stretch index of the cell.

the curve, we approximate SSCC sensitivity using the Heaviside function instead
of a sigmoid to avoid introducing an additional parameter for steepness.

To our knowledge, there are no studies examining the influence of cortical
actomyosin enrichment on the opening of the SSCCs, the CICR mechanism and,
consequently, on the amplitude of Ca2+ flashes. However, it is understood that the
amplitude of Ca2+ flashes needs to increase to counteract the elastic forces from
the accumulating cortical actomyosin and facilitate cell contraction (Section 7.3).
Through discussions with our experimental collaborators, we hypothesize that
the accumulation of cortical actomyosin signals, even if indirectly, the increase in
Ca2+ flash amplitude.

Since the precise relationship between cortical actomyosin level and Ca2+ flash
amplitude is unknown, we assume a linear relationship between them for simplic-
ity. The Ca2+ amplitude profile indicates that amp = 0.6 at the start of AC when
cortical actomyosin levels are at their lowest (corresponding to KA

n = 0.03), and
amp = 0.9 towards the end of AC when cortical actomyosin levels are at their
highest (corresponding to KA

n = 0.3). So, we fit a linear function to the known
data points amp (0.03) = 0.6 and amp (0.3) = 0.9, which gives us the Ca2+ flash
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amplitude as a function of the cortical actomyosin level:

amp
(
KA

n

)
= 1.11 KA

n + 0.57. (8.6)

With this final modification, we conclude the development of a mechanochem-
ical vertex model that captures the two-way coupling between Ca2+ signals and
cellular mechanics in the anterior neural plate during the AC phase of NTC.
In this model, Ca2+ flashes signal the onset of cell contraction. Contraction in
one cell strains the cytosol of neighbouring cells, inducing a Ca2+ flash in them,
triggering their contraction to counteract cytosol straining. Since this model cap-
tures the bilateral feedback or two-way mechanochemical coupling between Ca2+

signals and cellular mechanics, we call it the two-way model.
Figure 8.2 visualises the time evolution of the apical surface of the anterior

neural plate and surface ectoderm layer in the two-way model. At t = 0, 10% of
the neural plate cells are activated in the two-way model. We considered this to
be a reasonable estimate based on our observations of the Ca2+ frequency profile
in the one-way model. The absence of this initial activation prevents the apical
surface of the neural plate from contracting (Figure 8.4). So, we introduce a new
parameter, α, to represent the fraction of neural plate cells activated at t = 0,
and we set α = 0.1.

This initial activation might stem from the mechanical forces generated dur-
ing the convergent extension phase preceding AC [33, 34], or it could result from
chemical signals such as the Sonic Hedgehog, which plays a crucial role in regu-
lating Ca2+ activity during neurulation [178].

In Figure 8.2, the cell at the centre of the neural plate is marked with a red bor-
der. Figure 8.3c depicts the ‘marked’ cell undergoing pulsed contractions due to
the influence of Ca2+ flashes. Although individual cells contract in a pulsed man-
ner, the anterior neural plate contracts monotonically without recovery phases
(Figure 8.3d), similar to the one-way model. The apical surface of the anterior
neural plate contracts to 3% of its initial area, achieving the desired contraction
and resulting in successful NTC.

As evidenced in Figures 8.3a and 8.3b, the Ca2+ frequency and amplitude
profiles arise naturally in the two-way model as a consequence of the interactions
between the cells. The measurements of flashes per minute per cell and flash
amplitude (averaged over all cells in the anterior neural plate) were taken over
time windows of size ∆t = 1000. The error bars indicate the range of variation
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Parameter Value
SE Cells 60
NP Cells 271

α 0.1
duty 0.33
δt 1

KA
n (SE) 0.02

KP
n (SE) 0.01

T0n(SE) 0.01
RA 0.0003
RP 0.002
RT 0.002

KA
n (initial) 0.03

KP
n (initial) 0.02

T0n (initial) 0.01
KA

n (final) 0.3
KP

n (final) 0.2
T0n (final) 0.1

κA 0.0008
ωA 1

A0
n (initial) 0.785

A0
n (final) 0.015

kξ 4
τ 67

Table 8.1: Parameter values for Figures 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, and 8.8.
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(a) t = 0. (b) t = 1200.

(c) t = 2400. (d) t = 3600.

(e) t = 4800. (f) t = 5999.

Figure 8.2: Depicted above are the snapshots of the apical surface of the
anterior neural plate and surface ectoderm layer in the two-way model. The

time evolution of the cells are visualised through images captured at the end of
five equally-spaced time intervals. The cell at the centre of the neural plate is

marked with a red border. Figure 8.3c illustrates the impact of Ca2+ flashes on
the area of the ‘marked’ cell. The red line represents the distance between the
centroids of the cell at the centre of the neural plate and a cell at the edge of
the neural plate. The rate of change of this distance indicates the velocity of

NTC (Figure 8.3e). Model parameters: Table 8.1.
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(a) Ca2+ flash frequency versus time. (b) Ca2+ flash amplitude versus time.

(c) Effect of Ca2+ flashes on the area
of the ‘marked’ cell in Figure 8.2.

(d) NP area versus time.

(e) NTC velocity versus time.

Figure 8.3: Time series data for the anterior neural plate visualised in
Figure 8.2. Figures 8.3a and 8.3b visualise the Ca2+ frequency and amplitude

profiles, respectively. The number of flashes per minute per cell and the
amplitude of the flashes were averaged over the 271 cells of the neural plate.

The shaded green region in Figure 8.3d corresponds to 2-8% of the initial apical
surface area of the anterior neural plate. Model parameters: Table 8.1.
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(a) t = 0. (b) t = 5999.

(c) NP area versus time.

Figure 8.4: Without the initial activation of cells in the anterior neural plate,
i.e., for α = 0, AC does not occur in the two-way model. Depicted above are the
snapshots of the apical surface of the anterior neural plate and surface ectoderm
layer at the beginning and the end of the simulation along with a graph showing

the time evolution of the apical surface area of the anterior neural plate. The
shaded green region on the graph corresponds to 2-8% of the initial area of the
anterior neural plate. Except for α, all model parameters have the same values

as listed in Table 8.1.
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(a) Range, mean, and standard
deviation versus time.

(b) Coefficient of variation versus
time.

Figure 8.5: Descriptive statistics for the two-way model. The plots above
visualise the range, mean, standard deviation, and coefficient of variation for

100 samples of the time evolution data of the apical surface area of the anterior
neural plate. Model parameters: Table 8.1.

in the number of flashes per minute per cell and the amplitude of the flashes.
In the two-way model, similar to the one-way model, NTC velocity increases

over the course of AC. Figure 8.3e shows an initial negative NTC velocity as
cells at the center and edge move apart due to the spontaneous contraction of
the surrounding cells. Subsequently, the cells move towards each other at an
increasing rate, indicating an acceleration of NTC as AC progresses.

Owing to the randomness of the Ca2+ flashes, the two-way model is a stochastic
model. Similar to the one-way model, we conducted 100 simulations of the two-
way model for the parameters listed in Table 8.1. We then calculated the range,
mean, and standard deviation for the samples of the neural plate area at every
timestep (Figure 8.5a). From Figure 8.5a, it is evident that there is very little
variation in the neural plate area across iterations. Accordingly, the coefficient of
variation is small (Figure 8.5b). Notably, it does not exhibit a distinct increasing
or decreasing trend, unlike the one-way model.

Given that there is very little variation in the neural plate area across stochastic
iterations, all of which are performed using the same parameter values, data from
a single iteration of the model offers a sufficiently accurate representation of the
model’s behaviour.
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8.2 Discussion

In this chapter, we developed a new vertex model that captures the two-way
mechanochemical coupling between Ca2+ signals and cellular mechanics in the
anterior neural plate during the AC phase of NTC. To our knowledge, this is
currently the only vertex model that captures this two-way feedback.

We extended the one-way model developed in Chapter 7 by incorporating
‘stretch activation’ as a characteristic of the neural plate cells. The ‘stretch
activation’ mechanism is driven by the action of the SSCCs located on the cell
membrane. This modification led to the natural emergence of Ca2+ frequency and
amplitude profiles within the model, arising from the interactions between cells.
The parameters of the two-way model are listed in Table 8.1 and the equations
of the model are as follows:

Probability of cell activation

pn

(
SIn , KA

n

)
=
(
1 + 2H

(
KA

n − 0.21
))

0.005 SIn, (8.5 revisited)

where pn: probability of cell activation, H: Heaviside step function, KA
n : area

elasticity coefficient, and

SIn =

edge∑
<ij>

SI<ij>, (8.2 revisited)

where SIn: stretch index of the cell, and

SI<ij> =


1 , if L<ij>

n − L0
n

L0
n

> 0.1,

0 , if L<ij>
n − L0

n

L0
n

≤ 0.1,

(8.1 revisited)

where SI<ij>: stretch index of the cell edge, L<ij>
n : length of the cell edge, and

L0
n: natural length of the cell.

Ca2+ flash amplitude

amp
(
KA

n

)
= 1.11 KA

n + 0.57. (8.6 revisited)
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where amp: Ca2+ flash amplitude.

Ca2+-induced elevation in line tension

ξ (tc) =


kξf (amp) (tc/τ)10

0.01 + (tc/τ)10 , if 0 ≤ tc ≤ τ ,

kξf (amp) 0.99 , if τ < tc ≤ 2τ ,

0 , if 2τ < tc ≤ 3τ ,

(7.30 revisited)

and

ξ (tc) =

 ξ (tc) , if 0 ≤ ξ (tc) ≤ kξT0n ,

kξT0n , if kξT0n < ξ (tc) ,
(7.32 revisited)

where ξ: Ca2+-induced elevation in line tension, τ : cell activation period, T0n:
baseline value of line tension, kξ: scaling factor for T0n, and

f (amp) = 1 × 10−4 exp (7.68 amp) . (7.31 revisited)

Energy function

U = UA + UP + UL, (3.4 revisited)

where U : total potential energy, UA: potential energy of the cell areas, UP : poten-
tial energy of the cell perimeters, UL: potential energy of the cell-cell junctions,
and

UA =

Ncells∑
n

KA
n

2

(
An

A0
n

− 1
)2

A0
n, (3.1 revisited)

UP =

Ncells∑
n

KP
n

2

(
Pn

P 0
n

− 1
)2

P 0
n , (3.2 revisited)

UL =

Ncells∑
n

edge∑
<ij>

(
T <ij>

n L<ij>
n − T <ij>

n

4.69 · arctan(31.32L<ij>
n )

)
, (7.20 revisited)
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where An: area of the cell, A0
n: natural area of the cell, KP

n : perimeter elasticity
coefficient, Pn: perimeter of the cell, P 0

n : natural perimeter of the cell, and T <ij>
n :

line tension at the cell edge.

Damping function

µi =

Ci∑
n

2.56
L0

n

− 3.65, (7.15 revisited)

where µi: damping coefficient for the ith vertex, and Ci: set of cells sharing the
ith vertex.

Force on the ith vertex

Fi = −∂U

∂ri

= µi
dri

dt
, (3.7 revisited)

where Fi: force on the ith vertex, and ri: position of the ith vertex.

Growth laws for KA
n , KP

n , and T0n

dKA
n

dt
=

RA, if ξ (tc) ̸= 0 ∧ cell is not activated,

0 , otherwise,
(7.25 revisited)

dKP
n

dt
=

RP , if ξ (tc) ̸= 0 ∧ cell is not activated,

0 , otherwise,
(7.26 revisited)

dT0n

dt
=

RT , if ξ (tc) ̸= 0 ∧ cell is not activated,

0 , otherwise,
(7.27 revisited)

where RA: growth rate of KA
n , RP : growth rate of KP

n , and RT : growth rate of
T0n.
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Ratchet-like mechanism

dA0
n

dt
=

−κA , if (An − ωAA0
n) < 0 ∧ cell is not activated,

0 , otherwise,

(7.28 revisited)

and

P 0
n = 6

(
3− 3

4
(
2A0

n

) 1
2
)

. (7.1 revisited)

where κA: contraction rate of A0
n, and ωA: threshold parameter for the activation

of the ratchet-like mechanism.
To test the effectiveness of the two-way coupling, we disable the ‘stretch acti-

vation’ mechanism by setting pn = 0 in the two-way model. From Figure 8.6, it
is clear that disabling the ‘stretch activation’ mechanism completely arrests AC.
Therefore, the two-way coupling between Ca2+ signals and cellular mechanics is
vital for successful NTC.

Table 8.2 compares the two-way model with the one-way model in terms of
their ability to reproduce experimentally observed behaviours in silico. The table
highlights that the two-way model not only replicates all the behaviours of the
one-way model but also exhibits additional behaviours.

In particular, the two-way mechanochemical coupling makes it possible to cap-
ture the experimentally observed multicellular Ca2+ transients [33, 196], discussed
in Chapter 2, that the Suzuki model was unable to reproduce (Section 3.2). In
the case of a single-cell Ca2+ transient, a single cell is activated spontaneously.
In contrast, a multicellular Ca2+ transient involves the coordinated activation of
a group of cells through mechanochemical transduction.

Figure 8.7 demonstrates an instance of a multicellular Ca2+ transient. At
t = 2400, a single cell within the red circle is activated. By t = 2420, the originally
activated cell triggers the activation of three nearby cells through mechanochem-
ical transduction. In this manner, a Ca2+ wave has propagated from one cell to
its neighbours. Subsequently, at t = 2460, these newly activated cells, in turn,
activate their neighbours. Finally, at t = 2480, the initially activated cells start
to deactivate as they enter their refractory periods.

Based on our simulation results and consultation with our experimental collab-
orators, we propose the following hypotheses for experimental testing, providing
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(a) t = 0. (b) t = 5999.

(c) NP area versus time.

Figure 8.6: The effect of disabling the ‘stretch activation’ mechanism on AC.
Without the two-way coupling, contracting cells are unable to induce Ca2+

flashes in their neighbours. Depicted above are the snapshots of the apical
surface of the anterior neural plate and surface ectoderm layer at the beginning
and the end of the simulation along with a graph showing the time evolution of
the apical surface area of the anterior neural plate. The shaded green region on
the graph corresponds to 2-8% of the initial area of the anterior neural plate.

Model parameters: Table 8.1.
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Behaviours captured
One-way

model
Two-way

model

Pulsed contractions at the cell-level Yes Yes
Monotonic contraction at the tissue-level Yes Yes
NTC velocity increases with time Yes Yes
NP contracts to 2-8% of initial area when SE absent Yes Yes
NP contracts to 2-8% of initial area when SE present Yes Yes
Latency between Ca2+ flash and cell contraction Yes Yes
NTC fails for sustained elevation of Ca2+ Yes Yes
Frequency of Ca2+ flashes increases with time Yes∗ Yes
Amplitude of Ca2+ flashes increases with time Yes∗ Yes
Two-way coupling between Ca2+ and mechanics No Yes
Ca2+ wave propagation No Yes
Multicellular Ca2+ transients No Yes
∗ Ca2+ frequency and amplitude profiles imposed

Table 8.2: Comparing the two-way model and the one-way model in terms of
their ability to capture experimentally observed behaviours.
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(a) t = 2400. (b) t = 2420.

(c) t = 2440. (d) t = 2460.

(e) t = 2480. (f) t = 2500.

Figure 8.7: Visualising a multicellular Ca2+ transient and Ca2+ wave
propagation in the two-way model. Depicted above are the snapshots of the
apical surface of the anterior neural plate and surface ectoderm layer. The

region of interest is demarcated by the red circle. A multicellular Ca2+ transient
is facilitated by the propagation of a Ca2+ wave among the cells inside the

circle. Model parameters: Table 8.1.
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Figure 8.8: The average number of Ca2+ flashes per cell in each layer of the
anterior neural plate. The average number of flashes was determined by

calculating the total number of flashes experienced (over the entire duration of
AC) by all the cells in a layer and then dividing it by the total number of cells
in that layer. The error bars indicate the range of variation in the number of
flashes experienced by the cells in that layer. Model parameters: Table 8.1.

new directions for future research:

• The level of cortical actomyosin in a cell influences the amplitude of in-
duced Ca2+ flashes, either by modulating the opening of the SSCCs or by
impacting the Ca2+-induced Ca2+ release (CICR) mechanism.

• At low levels of cortical actomyosin, SSCC sensitivity remains fairly con-
stant, but beyond a certain threshold of cortical actomyosin, SSCC sensi-
tivity increases sharply.

• During AC, intercellular Ca2+ signalling between anterior neural plate cells
occurs via mechanochemical transduction.

• A fraction of anterior neural plate cells must be activated to initiate AC.
This initial activation could be caused by mechanical forces generated dur-
ing convergent extension or chemical signals.

In spite of the successes of the two-way model, it has its limitations. For
instance, it has been observed that the frequency of Ca2+ flashes is higher in
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areas of increased constriction, like the neural folds and the medial region [33].
These regions correspond to the edges (layer 9) and centre (layer 0)1 of the neural
plate in our model. Therefore, layers 9 and 0 should demonstrate a significantly
higher number of Ca2+ flashes on average than the other layers.

However, Figure 8.8 reveals that the average number of flashes per cell is fairly
consistent across all layers., i.e., no layer exhibits a significantly higher Ca2+ flash
frequency than the others. This is because the two-way model cannot capture the
spatial distribution of constriction in the neural plate. Like the one-way model,
the two-way model cannot model the constriction foci of the neural plate for the
reasons given in Section 7.4.

As discussed in Section 7.4, an ideal model of AC during NTC would be a
3D vertex model that incorporates the two-way coupling between Ca2+ signalling
and cellular mechanics. In this chapter, we progressed towards that model by
developing a 2D vertex model that captures the two-way coupling between Ca2+

signalling and cellular mechanics.

1The layers of the modelled neural plate are visualised in Figure 4.3.



Chapter 9

Summary, conclusions, and
future work

In this doctoral work, we investigated the crucial role played by the coupling
between Ca2+ signalling and cellular mechanics in the apical constriction (AC) of
anterior neural plate cells during neural tube closure (NTC).

This work builds on the efforts of experimental biologists who explored the
relationship between Ca2+ and cell mechanics in neural plate cells undergoing AC
during NTC. Their findings present evidence that cell-autonomous Ca2+ flashes
trigger cell contraction events, and emphasize the critical role of cell autonomy
and asynchrony in the success of NTC [33, 196].

During the AC phase of NTC, the constricting anterior neural plate exhibits
a variety of characteristic behaviours [33, 196]. This doctoral thesis introduces
two new mathematical models capable of replicating most of the behaviours doc-
umented in [33] and [196] in silico.

This concluding chapter reemphasizes the outcomes of this doctoral work, com-
ments on limitations, and proposes directions for future work.

Summary and conclusions

In Chapter 1, we start by introducing the biological challenge that motivates
the work undertaken in this doctoral thesis. Then, we examine some seminal
works to understand the landscape of the field and explore state-of-the-art devel-
opments as reflected in the existing literature. This review encompasses discus-
sions on both experimental and mathematical modelling studies. In the process of

198
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surveying the literature, we review the biological mechanisms underpinning intra-
cellular Ca2+ dynamics and the sub-cellular structures responsible for generating
the forces driving cellular deformation.

In Chapter 2, we provide a summary of the observations made by Christodoulou
and Skourides [33] and Suzuki et al [196]. These studies detail the distinctive be-
haviours displayed by the constricting anterior neural plate during the AC phase of
NTC, and are of particular importance since the central objective of this doctoral
work is to develop mathematical models capable of reproducing these behaviours
in silico.

In Chapter 3, we provide a detailed description of the 2D mechanochemical
vertex model developed by Suzuki et al [196], followed by a critical analysis of their
simulation results. We conclude that, despite its successes, the Suzuki model has
several limitations, with a notable one being its omission of the surface ectoderm
layer bounding the neural plate. This underscores the necessity of developing a
new mechanochemical vertex model of AC during NTC.

In Chapter 4, we justify the development of a novel software package for ver-
tex models—CelluLink—substantiated through a comprehensive comparison of
existing computational tools. CelluLink is a newly designed Python package for
vertex models that prioritizes user-friendly modifications and facilitates the im-
plementation of new features by its use of the procedural programming paradigm.
A standout attribute of CelluLink lies in its utilization of parallel processing, en-
abling the execution of large parameter sweeps for vertex models on desktop
machines or computational clusters. This chapter provides a detailed exposition
of CelluLink’s features and algorithm.

In Chapter 5, we revise the modelling assumptions of the Suzuki model to
better reflect the biology and simplify its structure, creating the modified Suzuki
model. We then simulate the modified Suzuki model in CelluLink and compare
its behaviour to the Suzuki model. Since the simplified structure of the modified
Suzuki model enables analytical study, we derive a bifurcation diagram to explore
its behaviour at equilibrium. Utilizing the results obtained from this analytical
work, we then explore the conditions required to activate the ratchet-like mech-
anism and visualize its impact on the rate of contraction of the apical surface of
the anterior neural plate. Finally, we conduct a systematic parameter sweep of
the modified Suzuki model to numerically investigate the effects of varying model
parameters on both the final area achieved by the apical surface of the anterior
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neural plate and the time taken to reach that final area.
These studies inform our understanding of the parameter sensitivity of the

modified Suzuki model, enabling us to identify the parameter ranges for which
the model is stable and yields the desired contraction. The insights gained from
Chapter 5 guide the parameter estimation for the new mathematical models in
subsequent chapters.

In Chapter 6, we review key concepts related to the convergence of one-step
numerical methods. We then compare the performance of two numerical schemes
used to simulate the modified Suzuki model - the forward Euler method and
a predictor-corrector method based on an Euler/trapezoidal pair. Based on the
results of this comparison, we adopt the forward Euler method for the simulations
in subsequent chapters due to its higher speed and lower computational cost.

In Chapter 7, we develop a new 2D mechanochemical vertex model for the
constriction of the apical surface of the anterior neural plate during the AC phase
of NTC. Starting with the modified Suzuki model as a foundation, we incorpo-
rate the surface ectoderm and make progressive modifications to facilitate the
contraction of the neural plate despite the resistive force exerted by the surface
ectoderm.

To maintain cell integrity when large forces are generated within cells with
small surface areas, we develop and implement: (i) a damping function for the
motion of the vertices, and (ii) an adhesion term for the energy function. For the
first time, we derive the damping coefficient of the vertices as a function of the
accumulating actomyosin, and the adhesion term as a contribution from the cell’s
internal pressure and adherens junctions.

Additionally, we incorporate frequency and amplitude profiles for Ca2+ flashes
into the model, based on the experimental data provided in Chapter 2. Since this
model only captures the effect of Ca2+ on cellular mechanics and not vice versa,
we refer to it as the one-way model.

In Chapter 8, we extend the one-way model by incorporating the experimentally-
validated ‘stretch activation’ mechanism into the behaviour of the neural plate
cells, creating a new model. Since this model captures the bilateral feedback or
two-way mechanochemical coupling between Ca2+ signals and cellular mechanics,
we refer to it as the two-way model. In contrast to the one-way model, where
the Ca2+ frequency and amplitude profiles are imposed upon the model, the Ca2+

frequency and amplitude profiles in the two-way model emerge as a natural con-
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sequence of the interactions between cells.
To our knowledge, our two-way model is currently the only vertex model that

captures the two-way feedback between Ca2+ signals and cellular mechanics in
the anterior neural plate during the AC phase of NTC.

In summary, the key achievements of this doctoral work include the creation of
a novel computational tool for vertex models called CelluLink, and the develop-
ment of two new mathematical models for AC during NTC – the one-way model
and the two-way model.

Both models are capable of reproducing a large number of experimentally ob-
served behaviours, described in Chapter 2, in silico. The full range of behaviours
captured by the one-way and two-way models are listed in Tables 7.6 and 8.2,
respectively.

In mathematical biology, experiments shape the development of mathematical
models, and these models, in turn, suggest hypotheses for experimental testing
or provide new insights with regards to phenomena that cannot be investigated
through experimental means, fostering a dynamic interplay that drives both the-
oretical understanding and experimental investigation.

Accordingly, the one-way model proposes the following hypotheses for experi-
mental testing, providing new directions for future research:

• Actomyosin exhibits persistent enrichment at cell-cell junctions, in con-
trast to the transient enrichment cycles followed by dissipation observed
in medioapical actomyosin. This is essential for preserving cell and tissue
integrity during AC.

• As cell-cell junctions decrease in size, apical adherens junctions exert a force,
counteracting line tension, to prevent the cell surface from collapsing.

• The amplitude of a Ca2+ flash determines the extent of myosin activity and,
thereby, cell contraction.

• A refractory period, characterized by a low Ca2+ level, is essential to alter
the cell’s mechanical properties and activate the ratchet-like mechanism.

Similarly, the two-way model proposes the following hypotheses for experimen-
tal testing:
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• The level of cortical actomyosin in a cell influences the amplitude of in-
duced Ca2+ flashes, either by modulating the opening of the SSCCs or by
impacting the Ca2+-induced Ca2+ release (CICR) mechanism.

• At low levels of cortical actomyosin, SSCC sensitivity remains fairly con-
stant, but beyond a certain threshold of cortical actomyosin, SSCC sensi-
tivity increases sharply.

• During AC, intercellular Ca2+ signalling between anterior neural plate cells
occurs via mechanochemical transduction.

• A fraction of anterior neural plate cells must be activated to initiate AC.
This initial activation could be caused by mechanical forces generated dur-
ing convergent extension or chemical signals.

Future work

In spite of the successes of the one-way and two-way models, they have some
limitations. Given that NTC involves the three-dimensional folding of the neural
plate, 2D vertex models prove inadequate in fully capturing neural plate morpho-
genesis.

Notably, the models are unable to capture the spatial distribution of constric-
tion foci on the anterior neural plate. However, the neural plate folds along the
constriction foci during AC. Therefore, it is essential for a biologically accurate
model to generate constriction foci through the two-way coupling between Ca2+

signals and cellular mechanics.
It has been observed that the frequency of Ca2+ flashes is higher in regions

of increased constriction, such as the constriction foci [33]. However, since the
one-way and two-way models are unable to generate constriction foci, they cannot
reproduce this behaviour.

Therefore, we posit that either a 3D apical vertex model or a full 3D vertex
model, incorporating the two-way coupling between Ca2+ signalling and cellular
mechanics, would be required to capture the spatial distribution of constriction
foci on the anterior neural plate.

In the one-way and two-way models, cells are modelled as hexagons, resulting
in the anterior neural plate having a hexagonal shape. However, in reality, the
anterior neural plate is circular, and its cells can take on various polygonal shapes.
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Although the hexagonal approximation serves the purpose of this doctoral work,
for a more accurate representation of the shape of the anterior neural plate,
cells should be modelled as polygons with different numbers of sides. This could
be achieved by generating initial cell configurations using Voronoi diagrams and
placing the cells in a circular region [196].

The Suzuki model and, by extension, the models developed in this doctoral
work, operate with simplified bistable Ca2+ dynamics, where a cell is either in a
low Ca2+ (inactivated) state or a high Ca2+ (activated) state. While this sim-
plification suffices for the current doctoral work, it should be noted that more
recent models of Ca2+ signalling incorporate more sophisticated Ca2+ dynamics,
such as IP3-mediated CICR which has been validated by experiments [12, 95, 96].
Moreover, when a cell undergoes activation in our models, the Ca2+ concentration
remains elevated for a fixed duration, τ , before returning to baseline. In reality,
the duration of cell activation is governed by the CICR mechanism. Therefore, a
biologically accurate model should incorporate IP3-mediated Ca2+ dynamics.

This would be an important step in developing a model to assess the effects
of potential treatments, such as clinical interventions. These interventions could
involve pharmacologically increasing Ca2+ levels to induce cell contractions in
regions of the neural plate that do not contract sufficiently or suppressing elevated
Ca2+ levels in regions contracting too rapidly.

During NTC, two types of multicellular Ca2+ transients have been observed
in the anterior neural plate: short-range Ca2+ waves that propagate over two
to five cells and long-range Ca2+ waves that propagate over tens of cells [33].
While the two-way model successfully demonstrates short-range Ca2+ waves, it
fails to reproduce long-range Ca2+ waves. A model with more sophisticated Ca2+

dynamics, such as IP3-mediated CICR, may address this limitation.
The Suzuki model and the models developed in this doctoral work assume that

the ratchet-like mechanism is area-dependent. However, the transcription factors
Snail and Twist play crucial roles in the contraction and stabilization phases of
apical constriction (AC), respectively. Their activities are temporally coordinated
to drive productive AC [121], indicating that gene regulatory networks play a vital
role in the functioning of the ratchet-like mechanism.

Intracellular signalling pathways, such as the ones that govern IP3-mediated
CICR and gene expression, are typically modelled using differential equations and
can be easily integrated into continuum models. It is more challenging to inte-
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grate them into cell-based models, however, the approaches taken in the following
studies could potentially be used to introduce these signalling pathways into the
two-way model.

Smith et al [183] propose a method to incorporate morphogen diffusion into
the vertex model framework to study the role of morphogen dynamics in the
development of the Drosophila imaginal wing disc. In their study, they treat
the nodes and edges of the vertex model as a mesh over which the morphogen
reaction-diffusion equations are solved using the finite element method.

Moore et al [130] investigate the effect of juxtacrine signalling1 on bilayer
patterning in developing mammary organoids. In their study, they incorporate
an ODE model for Notch-Delta signalling into the overlapping spheres framework.
The bilayer is represented by a graph, where each node corresponds to a cell, and
a spatially-discrete ODE system is solved for each cell.

While their study investigates intercellular signalling over a cell-centre model,
their approach can also be applied to model intracellular signalling in vertex
models. In the one-way and two-way models, each cell corresponds to a node
in the cell graph (Section 4.3). Since constricting cells are isolated from their
neighbours due to the closure of gap junctions [151], a spatially-discrete system
of ODEs for IP3-mediated CICR [12] could be solved for each cell to compute the
cytosolic Ca2+ concentration at every timestep.

In spite of the utility offered by vertex models, experimental validation of the
model’s parameter choices remains a significant challenge in this field. Currently,
there is no straightforward methodology that directly relates experimentally mea-
surable tissue properties (continuum-level parameters), such as Young’s modulus
and traction stress, to the mechanical parameters of the vertex model (cell-level
parameters).

Prior studies have analytically derived expressions for the shear and bulk mod-
uli of the tissue in their vertex models [81, 124, 194] and parametrised their model
simulations to match experimental results [81]. The two-way model could be
parametrised using a similar approach.

Alternatively, conducting in silico stress tests could elucidate the relationship
between cell-level and continuum-level parameters in the vertex model. For exam-
ple, Honda and Nagai [87] explored the viscoelastic properties of a cell aggregate

1Juxtacrine signalling A mechanism of cell communication where cells interact by direct
contact, transmitting signals through membrane-bound molecules.
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through a stress test on their 3D vertex model. By analysing the deformation
curves obtained from the stress test, they were able to determine the viscosity
and elastic constants of the cell aggregate. A similar method could be employed
to establish a connection between the properties of the anterior neural plate and
the cell-level parameters in the two-way model.

To conclude, we envision that the ideal model of AC during NTC will be a
3D vertex model that incorporates the two-way coupling between Ca2+ signalling
and cellular mechanics. In this doctoral thesis, we take a significant step in this
direction by developing a 2D vertex model with two-way coupling between Ca2+

signalling and cellular mechanics, laying the foundation for future work.
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