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Introduction

Background on Lithium-Ion Battery Research

Due to growing concerns about the environment and sus-
tainability, there is an urgent need for advanced energy stor-
age technology to facilitate the adoption of new Electric 
Vehicles (EVs) and smart grids [1]. A Lithium-ion Battery 
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Abstract
Machine	Learning	has	garnered	significant	attention	in	lithium-ion	battery	research	for	its	potential	to	revolutionize	vari-
ous	 aspects	 of	 the	 field.	 This	 paper	 explores	 the	 practical	 applications,	 challenges,	 and	 emerging	 trends	 of	 employing	
Machine	Learning	in	lithium-ion	battery	research.	Delves	into	specific	Machine	Learning	techniques	and	their	relevance,	
offering	 insights	 into	 their	 transformative	potential.	The	applications	of	Machine	Learning	 in	 lithium-ion-battery	design,	
manufacturing, service, and end-of-life are discussed. The challenges including data availability, data preprocessing and 
cleaning challenges, limited sample size, computational complexity, model generalization, black-box nature of Machine 
Learning models, scalability of the algorithms for large datasets, data bias, and interdisciplinary nature and their mitiga-
tions are also discussed. Accordingly, by discussing the future trends, it provides valuable insights for researchers in this 
field.	For	example,	a	 future	 trend	 is	 to	address	 the	challenge	of	 small	datasets	by	 techniques	 such	as	Transfer	Learning	
and N-shot Learning. This paper not only contributes to our understanding of Machine Learning applications but also 
empowers	professionals	in	this	field	to	harness	its	capabilities	effectively.
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(LIB) stores energy through reversible lithium-ion reduc-
tion. In a standard cell, graphite serves as the negative elec-
trode, acting as an anode during discharge. The positive 
electrode is often a metal oxide that acts as a cathode during 
discharge [2]. Figure 1 illustrates the most commonly used 
LIB. The schematic shows the movement of lithium-ions in 
the electrolyte, shuttling reversibly between the two elec-
trodes of the device.

LIBs that include LiCoO2 cathode and graphite anode are 
at the forefront of modern energy storage systems, power-
ing a wide range of applications. To ensure their optimal 
performance, it is crucial to develop advanced models, opti-
mization	techniques,	and	management	strategies.	LIBs	have	
become a transformative technology due to their excep-
tional advantages in high operating potential and energy/
power density. LIBs are widely used in modern society, 
from small-scale applications like mobile phones and lap-
tops to large-scale applications like EVs and microgrids 
[2]. Despite the energy density of conventional LIBs near-
ing the theoretical maximum, their performance and cost 
remain unsatisfactory [3].	 Consequently,	 extensive	 efforts	
have been dedicated to explore new electrode and electro-
lyte materials in order to enhance the capabilities of current 
LIBs [4].

Overview of Machine Learning and its Relevance in 
Scientific Research

Machine	 Learning	 (ML)	 is	 a	 branch	 of	Artificial	 Intelli-
gence (AI) which focuses on the use of data and algorithms 
to imitate the way that humans learn, gradually improving 

its accuracy. ML methods enable computers to learn without 
being explicitly programmed and have multiple applications 
in	scientific	research,	such	as	data	analysis,	pattern	recog-
nition, anomaly detection and simulation [5]. ML can also 
help scientists gain new insights and understand from large 
and complex datasets [6].

ML has recently emerged as a powerful tool in LIB 
research. It has been used to accelerate materials develop-
ment, such as screening fast ion conductor candidates and 
filtering	electrolytes	in	consideration	of	suppression	of	den-
drite formation in lithium metal anodes [7]. More examples 
of using ML in LIB research are presented in Chap. 5. ML 
algorithms commonly used in battery research include 
supervised and unsupervised learning [8]. Major ML tech-
niques	 including	 Supervised	 and	 Unsupervised	 learning	
are explained later in this chapter. These approaches have 
gained attention due to the high complexity of the LIB cell 
production chain and advancements in digitalization and 
information technology [9]. The main objective of using 
ML in LIB research is to accelerate the design and optimi-
zation of the next generation of batteries [10]. Chapter 4 of 
this paper addresses the current challenges of LIB technol-
ogy while Chap. 5 focuses more on how ML can address 
those	challenges	as	well	as	the	knowledge	gaps	in	the	field.

By harnessing the power of algorithms and data analysis, 
researchers have been able to unravel complex relationships 
and patterns within LIBs. Various ML methods such as Arti-
ficial	 Neural	 Networks	 (ANN),	 support	 vector	 machine,	
and random forest, have been applied to predict LIB perfor-
mance, optimize material synthesis, and enhance electrolyte 
design [11].

As historical investigations into materials have pre-
dominantly depended on either trial and error experiments 
or fortunate discoveries, both of which necessitate a large 
number of laborious trials that are time consuming, expen-
sive	 and	 inefficient	 [12]. Figure 2 shows the process of 
efficiency	 enhancement	 in	 materials’	 research	 from	 trial	
and	error	to	first	principles,	high-throughput	screening	and	
ML approach. In the past decades, computational chemis-
try	such	as	first	principles	calculations,	molecular	dynamics	
and	Monte	Carlo	techniques	have	become	a	major	approach	
to aid and enhance experimental research for materials 
exploration and design. However, the current models are not 
capable of predicting many real world materials challenges 
due to poor scaling of calculations and high computational 
costs [13].	This	is	explained	in	more	details	in	section	5.8.	
Thus,	it	is	crucial	to	accelerate	materials’	research	by	finding	
new approaches and methods. Using ML is a new approach 
to	accelerate	LIB’s	research	by	processing	the	data	and	find-
ing	correlations	between	different	factors	and	variables.

Fig. 1	 Illustration	of	 the	widely	utilized	LIB	configuration	 featuring	
LiCoO2 cathode and graphite anode during the discharge state
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Different ML Techniques used in LIB Research

Researchers have made great progress in predicting how 
batteries will behave for improving their performance, and 
managing	 them	 efficiently	 by	 using	 ML	 techniques.	 ML	
techniques	have	been	 applied	 to	LIB	 research	 for	 various	
purposes, such as screening fast ion conductor candidates 
[7], predicting ionic conductivity [10], and designing solid-
state electrolytes [14]. Detailed examples are presented in 
Chap. 3 and 4 of this paper. Some of the common ML tech-
niques	used	in	LIB	research	are:

 ● Supervised	 learning:	 a	 technique	 that	 learns	 from	 la-
belled data and predicts the output for new inputs. Su-
pervised learning algorithms can be used to predict the 
ionic conductivity of a material based on its chemical 
composition [10].

 ● Unsupervised	learning:	a	technique	that	learns	from	un-
labeled	 data	 and	finds	 patterns	 or	 clusters	 in	 the	 data.	
Unsupervised learning algorithms can be used to group 
materials with similar properties or structures [7].

 ● Artificial	 Neural	 Network	 (ANN):	 composed	 of	 node	
layers, containing an input layer, one or more hidden 
layers, and an output layer to learn complex features 
from data. ANN algorithms can be used to model the 
electrochemical behavior of batteries based on experi-
mental data [15].

 ● Reinforcement	 learning:	 a	 technique	 that	 learns	 from	
trial and error and optimizes the actions based on re-
wards or feedback. Reinforcement learning algorithms 
can be used to design optimal experiments for material 
synthesis or characterization [14].

Main Contributions in this Research

This paper provides a comprehensive review of the cur-
rent	state	and	future	trends	in	using	ML	techniques	in	LIB	
research. The paper discusses the applications, challenges, 
and	opportunities	in	applying	ML	techniques	to	LIB	research.	
Chapter 1, starts with a background about LIB, ML and a 
general	description	of	using	ML	techniques	in	LIB	research.	
Chapter 2 describes the applications of ML in design such as 
materials optimization, in manufacturing, service, and end 
of life at recycling stage. The most common applications 
of	ML	techniques	in	LIB	research	were	prediction	of	State	
Of Charge (SOC), State Of Health (SOH) and Remain-
ing Useful Life (RUL). Chapter 3 describes challenges of 
applying	ML	techniques	in	LIB	research.	It	is	included	but	
not limited to data availability, computational complexity, 
black-box nature, interpretability and explainability of the 
models. Data bias is a main challenge that is described in 
detail. Moreover, solutions are suggested to tackle the chal-
lenges. Chapter 4 is about the possible future trends. This 
chapter is including but not limited to ML models, lack of 
knowledge of micro-behavior and micro-mechanics, self-
improving models, big data, need for accuracy and incorpo-
ration	of	first	principal	models.

The	4	chapters	of	 this	paper	aim	to	explore	 the	signifi-
cance of using ML in LIB research by discussing its appli-
cations, challenges, gap in knowledge and potential future 
directions. In the existing literature, there are limitations 
found in ML methodologies and LIB technology-based 
review studies. The main objectives in this study are to 
highlight	 the	benefits	of	using	ML	in	LIB	research	and	to	
provide insights into how it can accelerate the discovery and 
development of lithium-based materials and technologies. 
This	research	has	3	main	contributions:	(i)	comprehensive	

Fig. 2	 The	advancement	of	techniques	in	materials	research
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Applications of ML in Lithium Research

The	application	of	ML	techniques	in	this	field	has	enabled	
researchers to gain deeper insights and enhance various 
aspects of the battery lifecycle, from materials design and 
fabrication to performance evaluation and optimization. 
Figure 3 provides a concise and easily comprehensible sum-
mary of ML applications throughout the entire lifecycle 
of LIBs. This includes an overview of existing methods, 
important considerations in LIB lifecycle including design, 
manufacturing,	service	and	end	of	life.	This	figure	also	pres-
ents some examples of using ML in LIB research through 
its lifecycle.

Particularly, the remarkable characteristics of ML 
approaches motivated the authors to employ data-driven 
approaches for summarizing the advancements in LIB tech-
nology throughout its entire lifecycle. The input characteris-
tics that are commonly used and their respective applications 
and ML models are summarized in Table 1. For example, 
Hsu et al. used NN to predict SOH and RUL in LIBs.

SOH, SOC, and RUL are metrics that are relevant across 
all phases of LIB lifecycle. Table 2 shows how they relate to 
each	of	the	lifecycle	stages:

In	General,	while	SOH,	SOC,	 and	RUL	are	 influenced	
by the initial design, they are metrics primarily used for 
ongoing monitoring, management, and end-of-life deci-
sions	throughout	the	battery’s	operational	life.	They	are	not	
confined	to	the	design	phase	but	are	integral	throughout	the	
entire lifecycle of the battery.

review	of	the	latest	advancements	in	ML	techniques	applied	
to LIB research by June 2023, with a focus on their practical 
applications and outcomes. (ii) Main challenges of research 
in	this	field	are	addressed.	(iii)	Research	gaps	are	identified.	
The	findings	presented	in	this	paper	will	serve	as	a	valuable	
resource	for	researchers	and	practitioners	in	the	field,	aiding	
in the design and optimization of lithium-based systems.

Unlike existing literature that focus on using machine 
learning in LIB research, this manuscript delves deeper into 
applications,	challenges,	and	future	trends,	offering	a	more	
comprehensive analysis of recent advancements in this area. 
Specifically,	 challenges	 and	 future	 trends	 of	 using	ML	 in	
Lib research is not studied in the available literature review. 
For example, the importance of the emerging N-Shot Learn-
ing	field	is	not	available	in	the	current	literature	review.

In conclusion, our manuscript distinguishes itself from 
other	recent	reviews	by	offering	a	novel	synthesis	of	litera-
ture, focusing on emerging research directions, providing 
in-depth analysis of controversies, and integrating multi-
disciplinary perspectives. This paper not only contributes 
to our understanding of Machine Learning applications but 
also	empowers	professionals	in	this	field	to	harness	its	capa-
bilities	effectively.

Fig. 3 LIB lifecycle research 
strategy and main applications of 
ML in LIB research
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Consequently,	 machine	 learning	 techniques	 applied	 to	
predict SOH, SOC, and RUL are applicable throughout all 
stages of the LIB lifecycle.

Design

ML has been employed to expedite the development of 
enhanced	 LIB.	 Rather	 than	 solely	 expediting	 scientific	
analysis through data pattern recognition, researchers have 
merged ML with empirical knowledge and physics-guided 
equations	to	uncover	processes	that	impact	LIB	design	[35]. 
The main trends in utilizing ML for design of LIBs are pre-
sented in below.

Optimizing Battery Materials and Design

ML has been applied to characterize battery performance 
[36], lifetime, and safety [37]. ML can be used to accel-
erate the understanding of new materials, chemistries [38], 
and cell designs [39]. For instance, ML has been used to 
increase battery life prediction accuracy by automatically 
generating	 equation	 components	 and	 narrowing	 down	 the	
selection from millions of possible combinations to identify 
a model that balances predictive accuracy with simplicity 
[38].	As	 another	 example,	ML	has	been	used	 in	quantita-
tive microscopy analysis to map the orientation and mor-
phology of sub-particle grains in 3D [39]. This combined 
approach	of	 electron	backscatter	diffraction	 (EBSD),	ML,	
and	modeling,	represents	the	first	demonstration	of	mapping	
and simulating dynamic phenomena within single electrode 
particles [39].

As another example, Naha et al. [40] used a supervised 
ML	 technique	 for	 internal	 short	 circuit	detection	of	LIBs.	
They	identified	and	extracted	a	set	of	features	that	encom-
passing the physics of Li-ion cell with short circuit fault. 
Then, a training feature set was generated with and without 
an external short-circuit resistance across the battery termi-
nals. They introduced internal short by mechanical abuse 
to	emulate	a	 real	user	scenario.	A	random	forest	classifier	
was trained with the training feature set. The minimum fault 
detection accuracy for the testing dataset was 97% [40].

The microstructure of a composite electrode controls the 
charging and discharging process of individual LIB par-
ticles. Visualization of LIB particles helps to understand 
electrode degradation mechanisms that are directly associ-
ated	with	 the	spatial	arrangement	of	different	components	
in the electrode, including carbon matrix, void, binder, and 
active particles. For instance, Jiand et al. used ML assisted 
statistical analysis, and experiment-informed mathematical 
modeling	 to	understand	 the	electrochemical	consequences	
of	 LIB	 particles’	 evolving	 (de)attachment	 with	 the	 con-
ductive matrix [41]. Figure 4 shows how a mix of active 

Table 1 ML models used in a range of research topics of LIBs
Inputs Application ML model
Capacity [16] SOC GPR
Early capacity-voltage data [17] SOC RNN
Statistical features [18] SOC XGBOOST, 

SVR
Currents, voltages & temperatures [19] SOC & 

SOC
LSTM

The optimal partition intervals [20] SOH SVM
Voltage, temperature and current [21] SOH GPR
Capacity [22] RUL LSTM
Eleven battery characteristics [23] RUL ELM
Cycle time, current variation over time, 
current value, voltage, & temperature 
[24]

SOH & 
RUL

CNN-LSTM

Impedance-related features [25] SOH & 
RUL

NN

The collected raw data [26] Capacity RF

Table 2 Relationship between SOH, SOC, and RUL metrics and each 
one of the LIB lifecycle phases
LIB life-
cycle phase

Metrics

Design 
phase

SOC:	This	metric	isn’t	a	primary	focus	during	the	
design	phase,	but	the	design	will	influence	how	SOC	
is managed and optimized through battery manage-
ment [27].
SOH and RUL:	The	design	decisions,	such	as	
choice	of	materials	and	cell	architecture,	significantly	
impact the robustness and longevity of the batteries. 
These design choices determine the initial SOH and 
influence	the	degradation	rate,	thus	affecting	the	RUL	
predictions. Proper design can enhance both the SOH 
and RUL by optimizing battery performance and 
durability over its lifecycle [28].

Manu-
facturing 
phase

The	manufacturing	quality	can	affect	initial	SOH,	
but typically SOC, SOH, and RUL are not directly 
monitored metrics at this stage. However, defects 
introduced	during	manufacturing	can	later	affect	
these metrics [29, 30].

Service 
phase

SOC:	Continuously	monitored	as	it	defines	the	cur-
rent charge level of the battery, crucial for opera-
tional management [31].
SOH:	Crucial	for	evaluating	the	battery	health	and	
efficiency	over	time,	particularly	during	the	service	
phase. It represents the current condition of the bat-
tery relative to its ideal conditions [32].
RUL:	Also,	vital	as	it	predicts	the	remaining	lifespan	
of the battery based on current usage patterns and 
historical data [32].

End of Life 
phase

SOH:	Determines	when	a	battery	should	be	retired	
from its primary use based on diminished health [33].
RUL:	At	this	point,	RUL	would	confirm	the	nearing	
end of usable life, facilitating decisions on recycling 
or repurposing [34].
SOC:	Less	critical	at	this	stage,	compared	to	other	
operational phases. This is mainly because the focus 
shifts towards ensuring batteries are safely disposed 
or prepared for recycling. However, it is important 
that batteries are discharged to safe levels before 
disposal to prevent any risks associated with high 
charge	states,	which	can	include	fire	hazards	[31].
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Battery Material Characterization

A	greater	number	of	 studies	apply	ML	 techniques	 to	esti-
mate the SOC, SOH and RUL of LIBs and less are focused 
on characterization instead of estimation. As an example for 
characterization of mechanism, Bhowmik et al. used a semi- 
supervised generative deep learning model to characterize 
formation Solid Electrolyte Interphase of battery [46]. As 
another	example,	Zhang	used	ML	techniques	to	characterize	
the degradation pattern of LIB from impedance spectros-
copy data [47].

Manufacturing

Various stages of LIB manufacturing, such as electrode 
production,	 cell	 assembly,	 cell	 finishing,	 evaluation,	 and	
screening,	have	benefitted	from	the	application	of	ML	tech-
niques.	ML	 techniques	offer	a	non-intrusive	 solution	with	
remarkable	accuracy	and	minimal	processing	requirements	
for optimizing and modeling engineering challenges within 
LIB manufacturing. For instance, Drakopoulos et al. uti-
lized a ML approach in their research to focus on develop-
ing graphite-based anode electrodes [48]. They established 
a	connection	between	manufacturing	protocols	and	the	final	
electrochemical and cycle life performance parameters by 
leveraging a ML model trained on a database containing 
input	 and	 output	 attributes.	 Consequently,	 they	 predicted	
and designed the formulation and manufacturing process 
to yield thick, high-coat-weight, graphite-based electrodes 
[48]. In another investigation, a study proposed an ensemble 
learning framework based on RUBoost ML method for clas-
sifying	electrode	quality	in	LIB	manufacturing	[49]. Their 
proposed	 framework	 effectively	 classified	 three	 important	
quality	indicators	including	(1)	electronic	conductivity,	(2)	
thickness, and (3) half-cell capacity, for both LiFePO4 and 
Li4Ti5O12 based electrodes. The models developed within 
their framework addressed class imbalance issues and accu-
rately	predicted	the	qualities	of	the	manufactured	electrode	
[49].

LiNi0.8Mn0.1Co 0.1 O2 (NMC) particles and inactive carbon/
binder domains build the porous electrode.

Lithium Metal Anode Design and Stability

A range of strategies have been reported to improve the sta-
bility and safety of Lithium metal as an anode. For instance, 
Ahmad	 et	 al.	 used	ML	 techniques	 to	 develop	 a	 computa-
tional screening method of inorganic solid electrolytes for 
suppression of dendrite formation in lithium metal anodes. 
Using	ML	techniques	helped	them	to	accelerate	the	process	
of screening by predicting the properties of solid electro-
lytes	through	the	identification	of	structure	− property rela-
tionships [42]. As another example, Kim et al. developed a 
ML model to facilitate the design process of electrolyte for 
lithium metal anodes. By using this approach, they extracted 
a	 previously	 unidentified	 insight	 that	 low	 solvent	 oxygen	
content can lead to superior cyclability [43].

Predicting Battery Performance Using ML Techniques

Predicting	the	performance	and	behavior	of	LIBs	is	signifi-
cantly important for their optimal utilization and integration 
into	various	applications.	ML	techniques	can	be	used	as	a	
powerful tool in this domain by enabling accurate predic-
tion and characterization of battery performance. ML has 
recently emerged as a promising modeling approach to 
determine the SOC, SOH and RUL of batteries [44]. Data-
driven modeling uses historical data, real-time data or both, 
for training a ML algorithm to predict the future behavior of 
LIBs [45]. The prediction of SOC, SOH and RUL is prob-
ably	 the	most	 common	 applications	 of	ML	 techniques	 in	
LIB research. Table 1 that is presented in Sect. 2, shows 
a range of ML models for various applications, including 
RUL, SOC and SOH estimation.

Fig. 4 3D microstructure of the 
composite battery cathode that is 
generated by help of ML. A mix 
of active NMC particles and inac-
tive carbon/binder domains build 
the porous electrode [41]
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and increase the yield of recycled materials [55]. Addition-
ally, ML can be used to identify impurities in recycled mate-
rials	and	predict	their	effect	on	battery	performance	[57].

Challenges in Applying ML to LIB Research

To apply the above-mentioned applications of ML in LIB 
research, there are many challenges and research areas that 
need to be addressed. These challenges and research areas 
require	interdisciplinary	and	systemic	approaches	that	con-
sider the technical and economic aspects of LIB studies.

Data Availability

Application of ML models to predict LIBs properties 
requires	 the	 availability	 of	 high-quality	 data.	 One	 of	 the	
challenges of explaining model predictions in LIB research 
for using ML is the availability of battery data. This is a cru-
cial hurdle in battery informatics and researchers have been 
working on mitigating the data scarcity challenge [15]. For 
example, LIB recycling data is very scarce and complex. 
The	presence	of	various	 recycling	methods,	differences	 in	
recycler producers, and variations in experimental setups 
pose	challenges	in	comparing	data	and	confirming	models	
[58]. Section 4.1 explains how integration of domain knowl-
edge and transfer learning can help to mitigate data scarcity.

Data Preprocessing and Cleaning Challenges

The next challenge are data pre-processing and cleaning that 
are critical in any ML project. These steps involve identify-
ing and correcting errors, inconsistencies, and missing val-
ues, transforming the data into a format that can be easily 
understood by the ML algorithm, and creating new features 
from the existing features in the data or reducing the dimen-
sionality	of	the	data.	Poor	data	quality	can	primarily	affect	
the accuracy and lead to false prediction [59]. Because of 
the importance of data pre-processing for using ML algo-
rithms in LIB, researchers have been trying to provide 
pre-processed databases. For example, Hargreaves et al. 
provided a pre-processed dataset for lithium-ion conductors 
and their conductivities, to be used by other researchers in 
this	field	[14]. Their dataset contains chemical composition, 
assigned	structural	label,	and	ionic	conductivity	at	a	specific	
temperature. This dataset saves time of researchers and aid 
experimentalists in prioritizing candidates for further inves-
tigation as lithium-ion conductors [14].

Service

Due	 to	 high	 efficiency	 of	 using	 ML	 models,	 researchers	
used	the	technique	to	enhance	LIB	services.

Lithium-ion Battery Modeling, Optimization, and 
Management

Battery cells can be optimized to maximize either energy 
or power, depending on their intended use. For instance, 
thicker electrode batteries exhibit bigger capacity while 
thinner electrode batteries are more suitable for power 
delivery [2].	Optimization	techniques	such	as	the	progres-
sive	quadratic	response	surface	method	have	been	used	to	
optimize design variables of existing electrode materials 
for enhanced power and capacity of LIBs [50]. Researchers 
used a range of ML models for fault detection and diagnosis 
process of LIBs that are presented in a research by Samanta 
et al. [51].

Early Detection of Battery Degradation Using ML

ML	techniques	have	been	widely	adopted	for	efficient,	reli-
able, and accurate prediction of battery degradation in LIBs 
[15]. For example, researchers have combined Gaussian 
process ML model with electrochemical impedance spec-
troscopy (EIS) to build an accurate battery forecasting sys-
tem [47]. This approach takes the entire EIS spectrum as 
input and automatically determines which spectral features 
predict degradation [47]. Another example is the use of deep 
extreme learning approach to predict battery degradation 
and RUL of LIBs [52].

End of life

ML in LIB Recycling

ML	has	great	potential	for	improving	the	efficiency	of	lith-
ium recycling [53]. By predicting battery lifetime and opti-
mizing the recycling process, it is possible to reduce waste 
and increase the yield of recycled materials. For instance, 
researchers used a data-driven ML algorithm to predict the 
lifetime of solid-state batteries [54]. This approach provides 
a	new	way	for	the	batch	classification,	echelon	utilization,	
and recycling of batteries [54]. ML algorithms have shown 
great promise in predicting the lifetime of solid-state bat-
teries [55]. In addition, ML algorithms such as ANN and 
random forests have been used to predict waste generation 
at the municipal level with high accuracy [56]. Furthermore, 
ML	techniques	can	be	used	to	optimize	the	recycling	process	
by predicting the optimal conditions for each step. This can 
help	reducing	the	amount	of	energy	required	for	recycling	
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structures,	 it	becomes	difficult	 to	 interpret	and	understand	
the underlying processes and decision-making mechanisms 
[67]. This lack of transparency limits the ability to gain 
insights into the relationships between input variables and 
model outputs, hindering the development of a compre-
hensive understanding of LIB behavior. This refers to the 
difficulty	in	understanding	the	decision-making	process	of	
these models [68]. While these models can provide accurate 
predictions,	their	inner	workings	can	be	difficult	to	interpret,	
limiting	their	usefulness	for	scientific	discovery	[69].

Interpretability	and	explainability	are	important	qualities	
for	ML	models	used	in	scientific	research.	These	qualities	
permit	 the	identification	of	potential	model	issues	or	limi-
tations, build trust in model predictions, and unveil unex-
pected	correlations	that	may	lead	to	scientific	insights	[58]. 
However, achieving interpretability and explainability can 
be challenging due to the complexity of ML models and the 
need for uncertainty estimates for model explanations [70]. 
Furthermore,	 quantifying	 and	 propagating	 uncertainties	
through the models is critical for assessing the reliability of 
predictions and making informed decisions. To overcome 
the	challenge,	when	Hargreaves	et	al.	couldn’t	interpret	the	
material data by visualization, they calculated errors of each 
prediction	and	plotted	via	histogram	to	quantify	the	distri-
bution of errors [14].

Quantification	of	uncertainty	is	a	method	to	address	the	
black-box nature and enhance interpretability and explain-
ability of ML models. However, it can be a challenge in 
LIB research. Battery systems exhibit inherent variability, 
and understanding the uncertainty in model predictions 
is crucial for decision-making and risk assessment [71]. 
Uncertainty	 quantification	methods	 play	 a	 pivotal	 role	 in	
reducing the impact of uncertainties during both optimiza-
tion and decision making processes [71]. However, the poor 
explainability of some ML models such as ANN models has 
hindered	their	adoption	in	safety	and	quality-critical	appli-
cations [72].	To	overcome	the	challenge	of	quantification	of	
uncertainty, Zhang et al. developed methods to enhance the 
explainability	of	ANN	models	through	uncertainty	quantifi-
cation-based frameworks [72].

Furthermore, lack of interpretability can be addressed 
by using methods known as explainable or interpretable 
ML	 (XML/IML)	 that	 aim	 to	 fill	 this	 gap	 in	 transparency.	
Faraji et al. presented a comprehensive review of XML/
IML methods in LIB research [73]. This lack of interpret-
ability hinders the ability to extract actionable insights and 
limits their practical implementation. While interpretability 
and explainability of data in LIB research is not considered 
comprehensively yet, it is expected that more researchers 
focus on the topic in future studies.

Limited Sample size

LIB research often involves a limited number of samples, 
particularly for novel materials or designs. This can lead to 
overfitting	in	training	the	ML	models,	where	the	model	cap-
tures noise in the data rather than true underlying patterns 
[60]. For example, Zhang et al. faced with the challenge 
of limited sample size in their research to predict RUL of 
LIBs.	They	used	a	dropout	technique	to	address	the	overfit-
ting challenge [61].

Computational Complexity

Another challenge is deriving models that are highly accu-
rate, have low computational complexity, and enable real-
time state and parameter estimation [62]. The application of 
ML	techniques	in	LIB	research	presents	challenges	related	
to	computational	requirements	and	complexity.	ML	models,	
particularly ANN models, can have millions or even billions 
of parameters, leading to considerable computational and 
memory	requirements	[63]. This can result in long training 
times and high energy consumption. Ensuring low-latency 
and real-time processing capabilities while maintaining 
model performance and accuracy is also a critical compu-
tational complexity challenge. Researchers are working on 
finding	 ways	 to	 increase	 performance	 without	 increasing	
computing power [63]. For instance, to keep the computa-
tional complexity of SOC estimations low, Lucchetta used 
Nonlinear Auto Regressive with eXogenous input with only 
one hidden layer and a few neurons [64].

Model Generalization

Generalization refers to the ability of a trained model to 
accurately make predictions on new or unseen data [65]. 
LIBs operate under various conditions, such as tempera-
ture, discharge rate, and cycling protocol. Ensuring that ML 
models generalize well across these diverse conditions is 
challenging	and	requires	careful	consideration	of	the	mod-
el’s	 architecture	 and	 training	 methodology.	 For	 example,	
Zhang et al. suggested a deep learning model that is capa-
ble of overcoming the generalization challenge to predict 
the life of LIBs [66]. Moreover, Schofer et al. developed a 
ML framework to predict life time of lithium-ion cells with 
improved generalization [65].

Black-Box Nature of ML Models, Their 
Interpretability and Explainability

One of the major challenges faced is the black-box nature 
of some ML models that may lead to lack of interpretabil-
ity and explainability. Due to their complex and non-linear 
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comprehensive material characterizations. Even when 
information is comprehensively presented in publications, 
accurately	associating	materials’	properties	with	 their	cor-
responding characterizations remains a complex task, often 
requiring	extensive	scanning	of	lengthy	articles.	This	inher-
ent need for cross- or co-referencing across various sections 
of	content	presents	a	significant	hurdle	in	the	transition	from	
human-readable to machine-readable formats. To tackle this 
quandary,	a	recent	development	involves	the	introduction	of	
a canonical ontology for materials synthesis. This ontology 
employs a controlled lexicon and establishes constrained 
relationships between concepts to address the challenge 
[78].

Anthropogenic Bias

Anthropogenic	bias	refers	to	the	influence	of	human	beings	
on	 nature,	 and	 how	 this	 influence	 can	 introduce	 bias	 into	
data, models, and systems. For example, if a dataset is col-
lected	 by	 humans,	 it	 may	 contain	 biases	 that	 reflect	 the	
beliefs, values, and perspectives of the people who collected 
the data. Scientists tend to focus on systems that have the 
highest likelihood of success and often choose to present 
the	most	 significant	 results	 to	 demonstrate	 their	 scientific	
points. This can result in an overrepresentation of certain 
domains and a lack of negative examples in published lit-
erature [79].

Realistically, only a small portion of the entire materials 
space should exhibit special functionality. Negative data, 
which is often not considered worthy of publication, can 
actually	benefit	ML	models	by	enabling	more	 trustworthy	
exploration of unknown domains [80]. Disregarding the 
abundance of negative data, anthropogenic bias in sampling 
fails to accurately represent the actual data distribution. 
When comparing ML models trained on biased human-
selected reactions to those trained on unbiased randomly 
generated reactions for synthesizing amine-templated metal 
oxides,	addressing	this	bias	significantly	enhanced	the	ML	
models and expedited the discovery of new materials [79].

Avoid the Bias

Ensuring the integrity of model performance while mitigat-
ing data bias and anthropogenic bias necessitates complete 
transparency	regarding	the	quantity	and	quality	of	data.	It’s	
crucial	 to	 exercise	 caution,	 as	 assessing	 the	 quantity	 and	
quality	 of	 datasets	 can	 be	 complex	 and	 subjective,	 influ-
enced by the choice of ML algorithms and intended appli-
cations [81]. Therefore, when reporting and evaluating ML 
research,	using	data	quantity	and	quality	should	not	be	used	
as judgment criteria. A more crucial step involves disclosing 
the data collection and pre-processing methodology, along 

Scalability of ML Algorithms for Large Datasets

The next challenge is scalability that refers to the ability of 
a system to handle an increasing amount of work or data 
without	a	decrease	in	performance.	Scalability	is	a	signifi-
cant challenge when applying ML algorithms to large data-
sets in LIB research [74]. The abundance of data generated 
from	experimental	and	computational	studies	requires	effi-
cient algorithms that can handle the volume, velocity, and 
variety of the data. Traditional ML algorithms often struggle 
to scale with large datasets, resulting in increased compu-
tation	 time	and	 resource	 requirements.	This	challenge	has	
led	to	the	development	of	scalable	ML	techniques	specifi-
cally tailored for big data applications in LIB research [74]. 
Traditional ML algorithms face critical challenges such as 
scalability to truly unleash the hidden value of big data [75]. 
In a successful case, Roman et al. designed scalable data-
driven models for battery SOH estimation by emphasizing 
the	value	of	confidence	bounds	around	the	prediction	[74].

Data bias

Data Collection bias

Data bias is the next challenge that refers to the systematic 
error introduced into the collected data due to the complex 
interplay among various factors that shape the overall char-
acteristics of battery materials [76]. The overall character-
istics of battery materials are shaped by numerous factors 
spanning various length scales, owing to the complex inter-
play among electronic, structural, and microstructural vari-
ables. For instance, the atomic-level crystalline structure 
and chemical composition dictate the conductivity of a solid 
electrolyte. As we zoom out to larger scales, aspects like 
particle morphology, size, and arrangement within the elec-
trolyte’s	microstructure	impact	its	conductivity.	On	the	scale	
of the battery cell, the interplay between the electrolyte and 
electrode, along with the formation of an interface layer 
between them, further contribute to conductivity variations 
[76].	The	interplay	of	these	factors	gives	rise	to	significant	
fluctuations	in	the	tested	conductivities,	even	among	mate-
rials that share identical compositions. As a result, this is 
introducing a bias into the collected data. As an illustration, 
the conductivity of garnet Li5La3Ta2O12, contingent upon 
the	 synthesis	 techniques	 and	 temperatures	 employed,	 can	
exhibit a range spanning two orders of magnitude, from 
10 − 6 to 10 –4 S cm − 1 [77].

This complexity underscores the necessity of augment-
ing	data	labeling	beyond	the	materials’	scope	by	extending	
it to encompass details regarding synthesis, processing, and 
characterization. Nonetheless, this poses a considerable 
challenge, given that not all data sources inherently include 
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application	 of	 ML	 techniques	 in	 LIB	 research	 requires	
expertise	from	multiple	fields,	including	materials	science,	
electrochemistry,	 data	 science,	 and	 engineering.	 Effective	
collaboration among these disciplines can be challenging 
but is essential for holistic progress [82].

Future Trends

LIB	research	has	made	significant	advancements	in	apply-
ing	ML	 techniques,	but	 it	 still	 faces	 important	knowledge	
gaps that need to be addressed to ensure the long-term 
viability and development of AI-powered systems in LIB-
related domains. The following section, explores these 
future trends and gaps. Figure 5 shows the future trends in 
LIB research that are addressed in this research.

ML Techniques for Small Datasets

In the realm of LIB research, certain domains yield sub-
stantial data volumes, whereas others may only possess 
small datasets. This discrepancy can arise from various 

with promoting open access to published data. In a recent 
study, Artrith et al. suggested a set of guidelines for report-
ing ML models [81]. These guidelines encompass detailing 
all data sources, documenting the data selection strategy, 
including access dates or version numbers, describing data 
cleaning procedures, and assessing the extent of data pre-
processing. They proposed a comprehensive checklist for 
the reporting and assessment of ML models that aim to 
establish a high standard for data reporting protocols within 
the materials domain [81].

The materials research community still needs time to 
fully understand and transition to improved communication 
of materials synthesis, in order to expand the impact of the 
insights contained in each published synthesis method and 
contribute	to	a	global	body	of	unified	knowledge	on	materi-
als synthesis. This can be the ultimate approach to avoid 
data bias.

Interdisciplinary Nature

The interdisciplinary nature of using ML in LIB research 
is another challenge to develop the technology. Successful 

Fig. 5 Future trends of using ML 
in LIB research
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data and features [93]. Researchers have used deep learning 
techniques	 to	 improve	 the	accuracy	and	efficiency	of	LIB	
research [94]. For instance, researchers have used a deep 
learning-based segmentation approach to achieve reliable 
segmentations of volumetric images of LIB electrodes [95]. 
The application of deep learning architectures can enhance 
the	accuracy,	efficiency,	and	understanding	of	complex	LIB	
systems by driving advancements in the technology. How-
ever, there might be computational complexity challenges 
which	were	discussed	earlier	in	section	3.4.	Table	3 presents 
examples of using deep learning in LIB research, includ-
ing the type of model used, the aim and the output. As the 
table suggests, deep learning used for a range of purposes 
from estimation of SOC to integration with physics-based 
models.

Reinforcement Learning for Optimization

Reinforcement learning (RL) is a type of ML that uses a 
feedback system to train a learning algorithm. RL pres-
ents opportunities for optimization in LIB systems using 
ML [101]. Among all of the available ML models, RL is 
highlighted here because researchers used RL for a range of 
applications in LIB research and they believe, this approach 
can	be	used	 to	 improve	 the	 efficiency	 and	quality	 of	LIB	
research. For example, Mishra et al. have used reinforce-
ment learning to optimize the performance of LIBs. This 
approach	improved	the	accuracy	and	efficiency	of	ML	mod-
els for LIB research [103]. RL has been applied to tasks 
such as battery management [102], optimal resource allo-
cation [101], and control of LIB systems [104]. Table 2 
demonstrates that RL is used in a range of applications. 
The table demonstrates that researchers used combination 
of	first	principles	models	and	ML	models	such	as	Entropy-
based	RL	that	will	be	discussed	in	section	4.6.

Active Learning

The next ML model with high potential of using in future 
is Active learning. It is a type of ML that actively selects 
valuable data points to construct a high-performance classi-
fier	while	keeping	the	size	of	the	training	dataset	to	a	mini-
mum [105]. Through the strategic selection of informative 
data points for labeling, active learning algorithms have the 
ability to substantially decrease the labeled data needed for 
model training. This is particularly valuable in LIB research, 
where data collection and labeling can be time-consuming 
and expensive [106]. By leveraging active learning, the dis-
covery of new materials, battery performance optimization, 
and experimental design can be accelerated. In addition, 
by	actively	querying	samples	 that	have	 the	highest	poten-
tial	 to	 enhance	 the	 model’s	 performance,	 active	 learning	

factors, including the expenses and time constraints associ-
ated	with	 testing,	 the	necessity	 for	specialized	equipment,	
or	the	extended	duration	required	for	specific	experiments.	
For	example,	conducting	tests	on	LIB	demands	significant	
time	 and	 financial	 resources.	 This	 is	 because	 specialized	
equipment,	 such	 as	 multi-channel	 cyclers,	 potentiostats,	
and thermal chambers, is essential [83], and a standard bat-
tery degradation reliability test can span over six months 
of continuous cycling [84].	 Consequently,	 datasets	 for	
these tests may be relatively limited in size. In these situ-
ations,	ML	 techniques	 that	 are	 capable	 of	 handling	 small	
datasets become notably valuable. Approaches such as 
Transfer Learning, N-shot Learning, Imbalance Unders-
ampling/Oversampling, Asymmetric Loss Function, and 
Ensemble Learning can be particularly advantageous. 
These approaches assist researchers in deriving meaningful 
insights and predictions from limited datasets. For example, 
MA et al. used Transfer Learning to predict LIB health sta-
tus with a high accuracy [85] or Zhang et al. used N-shot 
learning to estimate SOH because LIB degradation data is 
small [86]. Despite using few shot learning for a range of 
applications	in	LIB	research,	the	method	used	frequently	to	
predict lifetime of LIBs [87, 88]. For example, Tang et al. 
used	the	ML	technique	to	detect	abnormality	of	LIB	lifetime	
by	 using	 relatively	 small	 dataset	 of	 first-cycle	 aging	 data	
[89]. In the future, there will likely be more research that 
uses	 those	ML	 techniques	 to	make	 the	most	of	data	 from	
small datasets.

ML Techniques for Big Datasets

These	days,	big	fleets	of	EVs	are	using	LIBs.	Transmitting	
daily data to the cloud facilitates can help in improving LIB 
design, manufacturing and use. The cloud-based architec-
ture can periodically develop ML models, allowing for self-
teaching and self-improvement by leveraging server farms 
[90].	Also,	 advancements	 in	measurement	 techniques	will	
allow more high throughput experiments that will help to 
generate big data (Fig. 2) and the capability to make real-
time decisions regarding what to synthesize and test next by 
employing the outcome of the high throughput will acceler-
ate big data generation [91]. Thus, future research directions 
for	the	fields	that	big	data	is	available	will	be	important	in	
future [92]. They involve developing ML algorithms opti-
mized	 for	 bigger	 datasets	 through	 techniques	 like	ANN.	
Three	 main	 techniques	 to	 tackle	 big	 data	 challenges	 in	
future are explained in detail.

Deep Learning Architectures

Deep	learning	is	a	subset	of	ML	that	uses	artificial	Neural	
Networks with multiple hidden layers to analyze complex 
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interacting	 features	 and	 increase	 the	 effectiveness	 of	 test-
ing	 efforts	 [109]. Future research is expected to use ML 
techniques	 to	 investigate	 the	 micro-behavior	 and	 micro-
mechanics of LIBs and their interrelationships.

Self-Improving Models or Algorithms in Continuous 
Evolution

The	subsequent	 future	 trend	of	using	ML	in	LIB	research	
can be self-improving models. Due to the nonlinear inter-
actions among multiple factors, individually altering each 
parameter may not provide a comprehensive understanding 
[108]. On one hand, incorporating domain knowledge and 
corresponding testing technologies is necessary to ensure 
effective	 modeling	 efforts.	 On	 the	 other	 hand,	 when	 bat-
tery	 types	or	operating	conditions	change,	models	specifi-
cally	 designed	 for	 particular	 settings	 require	 recalibration	
or reconstruction. Furthermore, as tasks evolve, model re-
training becomes essential. Presently, advanced algorithms 
pave the way for self-improving models [110]. The concept 

empowers	 researchers	 to	 concentrate	 their	 efforts	 on	 the	
most informative data points, resulting in faster and more 
accurate predictions [105].

Researchers have used active learning to screen new 
functional materials for lithium solid-state electrolytes [15, 
99]	which	led	to	improved	accuracy	and	efficiency	of	ML	
models in LIB research [15].

Addressing Lack of Knowledge of Micro-Behavior 
and Micro-Mechanics

The	next	future	trend	in	the	field	can	be	addressing	lack	of	
knowledge micro-behavior and micro-mechanics. Data-
driven methods can be constructed without considering the 
underlying mechanisms of a system. However, batteries are 
complex systems with non-linear interactions between mul-
tiple factors [107]. Some electrochemical processes within 
batteries are not fully understood [108]. By investigating 
these internal mechanisms, it is possible to improve the 
ability to extract meaningful information from numerous, 

General ML 
model

Specific	ML	
Model

Aim Output

Deep 
learning

Feed Forward 
NN & Non-
linear Auto 
Regressive 
model with 
eXogenous 
input

To	propose	an	effective	and	online	
technique	for	modeling	of	LIB	and	
estimation of SOC

The proposed method is imple-
mented on a LIB cell and the results 
of simulation show a good accuracy 
and fast convergence of the pro-
posed method [96]

NN To estimate LIB parameters using an 
experimental charge and discharge 
tests	at	different	temperatures	
(24–40 °C) provided by NASA

A NN method estimated LIB 
parameters, due to its high capacity 
to solve complex problems [97]

Asymmetrical 
depth encode-
decoder 
convolutional 
NN (CNN)

To propose a deep learning approach 
with an asymmetrical depth, encode-
decoder CNN for real-world battery 
material datasets

This network achieves high accu-
racy	while	requiring	small	amounts	
of labeled data and predicts a 
volume of billions voxel within few 
minutes [98]

Physics-
Informed 
NNs (PINN)

To integrate the physics-based bat-
tery model and the ML model to 
leverage their respective strengths

The results indicate that PINN can 
estimate the SOC with a root mean 
square	error	in	the	range	(0.014-
0.2%), while the SOH has a range 
(1.1-2.3%), even with limited train-
ing data [35]

Reinforce-
ment 
Learning

Deep RL Estimate the stoichiometric range of 
a LIB

Provided	an	identifiability-improved	
current	input	profile,	even	under	dif-
ferent initial SOC conditions [99]

Entropy-
based RL

Predict the next-cycle battery capac-
ity and compare the numerical results 
from the proposed entropy-based RL 
models to those from two other data-
driven methods

Took into account vital information 
from past data and resulted in high 
accuracy [100]

Deep RL Optimize the battery energy arbitrage 
considering an accurate battery 
degradation model

Optimized control policy for stor-
age charging/discharging strategy 
[101]

Multi-Agent 
RL

Solve the traditional LIB scheduling 
problem

Trained the battery scheduling agent 
[102]

Table 3 Examples of using deep 
learning and reinforcement learn-
ing in LIB research
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batteries by leveraging knowledge learned from a source 
battery with a large amount of data [114]. This approach 
can	improve	the	accuracy	and	efficiency	of	ML	models	for	
LIB health management [85]. Ma et al. have developed a 
transfer learning framework to realize real-time personal-
ized health status prediction for unseen battery discharge 
protocols at any charge-discharge cycle [85]. In a separate 
research, Zhou et al., used transfer learning to estimate 
SOH [115]. By using common feature canonical variates, 
they used transfer learning as a bridge to transfer the knowl-
edge obtained by the source SOH estimate model, which 
was trained by data from the complete degradation process 
[115].	However,	another	 research	 that	used	Matrix	Profile	
Empowered	Online	Knee	Onset	 Identification,	shows	out-
performed results of the research that used transfer learning 
[116].

Knowledge	 transfer	 techniques	 are	 able	 to	 transfer	
knowledge from one lithium system to another by enhanc-
ing	the	predictive	capabilities	and	efficiency	of	the	models	
[117]. This approach can accelerate the development of 
accurate and robust models for LIB research [118]. Lever-
aging knowledge from related domains or materials pro-
vides valuable opportunities for enhancing the performance 
of ML models in LIB research.

Conclusion

In conclusion, this research underscores the transformative 
potential of machine learning (ML) in addressing the fun-
damental challenges of lithium-ion battery (LIB) optimiza-
tion.	By	leveraging	ML	techniques,	we	can	streamline	the	
exploration of chemical, formulation, and operational con-
dition	spaces,	significantly	reducing	the	need	for	extensive	
experiments and computations. This not only accelerates 
development cycles but also aids in identifying critical vari-
ables that impact battery behavior.

Outcome of this research can be used by the research-
ers	who	are	interested	to	leverage	ML	techniques	to	explore	
LIBs. As discussed earlier in this paper, although obsta-
cles	persist,	 extensive	 efforts	have	been	 invested	 in	 every	
aspect of the LIB life cycle, from micro-mechanisms to 
macro-operations, where ML algorithms play a vital role 
in explaining features, uncovering behaviors, optimizing 
parameters, determining operational status, and predicting 
cycle life. With initial steps taken and substantial progress 
achieved, we are optimistic about the prospects of a data-
based	LIB	exploration	 that	 is	healthy,	 safe,	 cost-effective,	
and environmentally friendly.

The notable contributions of this research are the explora-
tion of the opportunities and challenges of using ML in LIB 
research.	In	addition,	future	trends	of	using	ML	in	the	field	

of meta learning, inspired by human learning processes, 
leverages prior knowledge to facilitate the learning of new 
tasks, often referred to as learning to learn. Researchers 
have started using meta-models in LIB research [111], how-
ever more research is expected in future.

Incorporating First Principles Models with ML

The	 next	 trend	 will	 be	 incorporating	 the	 first	 principles’	
models	 with	 ML.	 This	 approach	 can	 present	 significant	
opportunities for advancing LIB research. By integrating 
the	 fundamental	principles	and	equations	 that	govern	LIB	
behavior into ML frameworks, the accuracy, interpret-
ability, and generalization of the models can be enhanced. 
Physics-based models provide a solid foundation for under-
standing the underlying mechanisms and interactions within 
the LIB system [10]. ML algorithms can then be utilized 
to capture complex non-linear relationships and learn from 
data to improve predictions and optimize battery perfor-
mance [112]. This hybrid approach combines the strengths 
of	both	first	principles	models	and	ML	models	by	enabling	
to overcome challenges such as limited data availability and 
the black-box nature of pure ML models that was discussed 
in	details	in	chapter	3.

Hybrid Models for Improved Accuracy and 
Interpretability

Afterwards, the hybrid models that integrate physics-based 
models with ML models present opportunities for improved 
accuracy and interpretability in LIB research. These mod-
els blend domain knowledge with data-driven approaches 
to perform physics-informed learning of LIB behavior. For 
example, researchers have proposed hybrid models that 
combine a single particle model with thermal dynamics with 
a feedforward ANN to achieve high-precision modeling for 
LIBs [113]. These hybrid models can provide considerable 
voltage predictive accuracy under a broad range of C-rates 
and can be conscious of the state-of-health to make predic-
tions	 throughout	a	battery’s	cycle	 life	 [113]. Furthermore, 
by	incorporating	feature	engineering	techniques	and	domain	
knowledge, hybrid models can capture relevant physical 
and chemical properties of lithium systems, leading to more 
accurate predictions and actionable results [113].

Transfer Learning and Knowledge Transfer

Eventually, transfer learning that is a ML approach that 
applies knowledge learned from a source domain to a new 
target domain has a high potential to enhance LIB research 
in future [114]. In LIB research, transfer learning can be used 
to	 reduce	 the	data	 requirement	 of	model	 training	 for	 new	
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17. Lu J et al. Sep., Battery degradation prediction against uncertain 
future conditions with recurrent neural network enabled deep 
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lithium-ion batteries from voltage relaxation. Nat Commun. Apr. 
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are presented to the researchers to accelerate the research 
by overcoming the challenges and. A road map of advanced 
ML models, addressing lack of knowledge of micro-behav-
ior and micro-mechanics, self-improving models, models 
for	big	data,	models	for	fewer	data,	incorporating	first	prin-
ciple models with ML, hybrid models, transfer learning and 
knowledge transfer presented, aiming to overcome current 
challenges and drive innovation.

This research not only contributes to the current state 
of	LIB	 research	but	also	 influences	 its	 trajectory.	 It	offers	
valuable insights and practical guidance for researchers 
and	practitioners	 in	 the	field,	 paving	 the	way	 for	 a	 future	
where	 ML-driven	 approaches	 redefine	 how	 we	 approach	
LIB optimization and research. As we continue to advance 
our understanding and application of ML in LIBs, we are 
confident	 that	 our	work	will	 inspire	 further	 developments	
in	theory,	practice,	and	research,	propelling	the	field	toward	
sustainable	and	efficient	energy	solutions.
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