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NASA	� National Aeronautics and Space 
Administration

NMC	� LiNi0.8Mn0.1Co 0.1 O2
PINN	� Physics-Informed Neural Networks
RF	� Random Forest
RL	� Reinforcement
RNN	� Recurrent Neural Network
RUL	� Remaining Useful Life
SOC	� State of Charge
SOH	� State of Health
SVM	� Support Vector Machine
SVR	� Support Vector Regression
XGBOOST	� Extreme Gradient Boosting

Introduction

Background on Lithium-Ion Battery Research

Due to growing concerns about the environment and sus-
tainability, there is an urgent need for advanced energy stor-
age technology to facilitate the adoption of new Electric 
Vehicles (EVs) and smart grids [1]. A Lithium-ion Battery 

Abbreviations
AI	 �Artificial Intelligence
CNN	� Convolutional Neural Network
EBSD	 �Electron Backscatter Diffraction
EIS	� electrochemical impedance spectroscopy
ELM	� Extreme Learning Machine
EV	� Electric Vehicle
GPR	� Gaussian Process Regression
HPC	� High-performance computing
LIB	� Lithium Ion Battery
LSTM	� Long Short-Term Memory
ML	� Machine Learning
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Abstract
Machine Learning has garnered significant attention in lithium-ion battery research for its potential to revolutionize vari-
ous aspects of the field. This paper explores the practical applications, challenges, and emerging trends of employing 
Machine Learning in lithium-ion battery research. Delves into specific Machine Learning techniques and their relevance, 
offering insights into their transformative potential. The applications of Machine Learning in lithium-ion-battery design, 
manufacturing, service, and end-of-life are discussed. The challenges including data availability, data preprocessing and 
cleaning challenges, limited sample size, computational complexity, model generalization, black-box nature of Machine 
Learning models, scalability of the algorithms for large datasets, data bias, and interdisciplinary nature and their mitiga-
tions are also discussed. Accordingly, by discussing the future trends, it provides valuable insights for researchers in this 
field. For example, a future trend is to address the challenge of small datasets by techniques such as Transfer Learning 
and N-shot Learning. This paper not only contributes to our understanding of Machine Learning applications but also 
empowers professionals in this field to harness its capabilities effectively.
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(LIB) stores energy through reversible lithium-ion reduc-
tion. In a standard cell, graphite serves as the negative elec-
trode, acting as an anode during discharge. The positive 
electrode is often a metal oxide that acts as a cathode during 
discharge [2]. Figure 1 illustrates the most commonly used 
LIB. The schematic shows the movement of lithium-ions in 
the electrolyte, shuttling reversibly between the two elec-
trodes of the device.

LIBs that include LiCoO2 cathode and graphite anode are 
at the forefront of modern energy storage systems, power-
ing a wide range of applications. To ensure their optimal 
performance, it is crucial to develop advanced models, opti-
mization techniques, and management strategies. LIBs have 
become a transformative technology due to their excep-
tional advantages in high operating potential and energy/
power density. LIBs are widely used in modern society, 
from small-scale applications like mobile phones and lap-
tops to large-scale applications like EVs and microgrids 
[2]. Despite the energy density of conventional LIBs near-
ing the theoretical maximum, their performance and cost 
remain unsatisfactory [3]. Consequently, extensive efforts 
have been dedicated to explore new electrode and electro-
lyte materials in order to enhance the capabilities of current 
LIBs [4].

Overview of Machine Learning and its Relevance in 
Scientific Research

Machine Learning (ML) is a branch of Artificial Intelli-
gence (AI) which focuses on the use of data and algorithms 
to imitate the way that humans learn, gradually improving 

its accuracy. ML methods enable computers to learn without 
being explicitly programmed and have multiple applications 
in scientific research, such as data analysis, pattern recog-
nition, anomaly detection and simulation [5]. ML can also 
help scientists gain new insights and understand from large 
and complex datasets [6].

ML has recently emerged as a powerful tool in LIB 
research. It has been used to accelerate materials develop-
ment, such as screening fast ion conductor candidates and 
filtering electrolytes in consideration of suppression of den-
drite formation in lithium metal anodes [7]. More examples 
of using ML in LIB research are presented in Chap. 5. ML 
algorithms commonly used in battery research include 
supervised and unsupervised learning [8]. Major ML tech-
niques including Supervised and Unsupervised learning 
are explained later in this chapter. These approaches have 
gained attention due to the high complexity of the LIB cell 
production chain and advancements in digitalization and 
information technology [9]. The main objective of using 
ML in LIB research is to accelerate the design and optimi-
zation of the next generation of batteries [10]. Chapter 4 of 
this paper addresses the current challenges of LIB technol-
ogy while Chap. 5 focuses more on how ML can address 
those challenges as well as the knowledge gaps in the field.

By harnessing the power of algorithms and data analysis, 
researchers have been able to unravel complex relationships 
and patterns within LIBs. Various ML methods such as Arti-
ficial Neural Networks (ANN), support vector machine, 
and random forest, have been applied to predict LIB perfor-
mance, optimize material synthesis, and enhance electrolyte 
design [11].

As historical investigations into materials have pre-
dominantly depended on either trial and error experiments 
or fortunate discoveries, both of which necessitate a large 
number of laborious trials that are time consuming, expen-
sive and inefficient [12]. Figure  2 shows the process of 
efficiency enhancement in materials’ research from trial 
and error to first principles, high-throughput screening and 
ML approach. In the past decades, computational chemis-
try such as first principles calculations, molecular dynamics 
and Monte Carlo techniques have become a major approach 
to aid and enhance experimental research for materials 
exploration and design. However, the current models are not 
capable of predicting many real world materials challenges 
due to poor scaling of calculations and high computational 
costs [13]. This is explained in more details in section ‎5.8. 
Thus, it is crucial to accelerate materials’ research by finding 
new approaches and methods. Using ML is a new approach 
to accelerate LIB’s research by processing the data and find-
ing correlations between different factors and variables.

Fig. 1  Illustration of the widely utilized LIB configuration featuring 
LiCoO2 cathode and graphite anode during the discharge state
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Different ML Techniques used in LIB Research

Researchers have made great progress in predicting how 
batteries will behave for improving their performance, and 
managing them efficiently by using ML techniques. ML 
techniques have been applied to LIB research for various 
purposes, such as screening fast ion conductor candidates 
[7], predicting ionic conductivity [10], and designing solid-
state electrolytes [14]. Detailed examples are presented in 
Chap. 3 and 4 of this paper. Some of the common ML tech-
niques used in LIB research are:

	● Supervised learning: a technique that learns from la-
belled data and predicts the output for new inputs. Su-
pervised learning algorithms can be used to predict the 
ionic conductivity of a material based on its chemical 
composition [10].

	● Unsupervised learning: a technique that learns from un-
labeled data and finds patterns or clusters in the data. 
Unsupervised learning algorithms can be used to group 
materials with similar properties or structures [7].

	● Artificial Neural Network (ANN): composed of node 
layers, containing an input layer, one or more hidden 
layers, and an output layer to learn complex features 
from data. ANN algorithms can be used to model the 
electrochemical behavior of batteries based on experi-
mental data [15].

	● Reinforcement learning: a technique that learns from 
trial and error and optimizes the actions based on re-
wards or feedback. Reinforcement learning algorithms 
can be used to design optimal experiments for material 
synthesis or characterization [14].

Main Contributions in this Research

This paper provides a comprehensive review of the cur-
rent state and future trends in using ML techniques in LIB 
research. The paper discusses the applications, challenges, 
and opportunities in applying ML techniques to LIB research. 
Chapter 1, starts with a background about LIB, ML and a 
general description of using ML techniques in LIB research. 
Chapter 2 describes the applications of ML in design such as 
materials optimization, in manufacturing, service, and end 
of life at recycling stage. The most common applications 
of ML techniques in LIB research were prediction of State 
Of Charge (SOC), State Of Health (SOH) and Remain-
ing Useful Life (RUL). Chapter 3 describes challenges of 
applying ML techniques in LIB research. It is included but 
not limited to data availability, computational complexity, 
black-box nature, interpretability and explainability of the 
models. Data bias is a main challenge that is described in 
detail. Moreover, solutions are suggested to tackle the chal-
lenges. Chapter 4 is about the possible future trends. This 
chapter is including but not limited to ML models, lack of 
knowledge of micro-behavior and micro-mechanics, self-
improving models, big data, need for accuracy and incorpo-
ration of first principal models.

The 4 chapters of this paper aim to explore the signifi-
cance of using ML in LIB research by discussing its appli-
cations, challenges, gap in knowledge and potential future 
directions. In the existing literature, there are limitations 
found in ML methodologies and LIB technology-based 
review studies. The main objectives in this study are to 
highlight the benefits of using ML in LIB research and to 
provide insights into how it can accelerate the discovery and 
development of lithium-based materials and technologies. 
This research has 3 main contributions: (i) comprehensive 

Fig. 2  The advancement of techniques in materials research
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Applications of ML in Lithium Research

The application of ML techniques in this field has enabled 
researchers to gain deeper insights and enhance various 
aspects of the battery lifecycle, from materials design and 
fabrication to performance evaluation and optimization. 
Figure 3 provides a concise and easily comprehensible sum-
mary of ML applications throughout the entire lifecycle 
of LIBs. This includes an overview of existing methods, 
important considerations in LIB lifecycle including design, 
manufacturing, service and end of life. This figure also pres-
ents some examples of using ML in LIB research through 
its lifecycle.

Particularly, the remarkable characteristics of ML 
approaches motivated the authors to employ data-driven 
approaches for summarizing the advancements in LIB tech-
nology throughout its entire lifecycle. The input characteris-
tics that are commonly used and their respective applications 
and ML models are summarized in Table 1. For example, 
Hsu et al. used NN to predict SOH and RUL in LIBs.

SOH, SOC, and RUL are metrics that are relevant across 
all phases of LIB lifecycle. Table 2 shows how they relate to 
each of the lifecycle stages:

In General, while SOH, SOC, and RUL are influenced 
by the initial design, they are metrics primarily used for 
ongoing monitoring, management, and end-of-life deci-
sions throughout the battery’s operational life. They are not 
confined to the design phase but are integral throughout the 
entire lifecycle of the battery.

review of the latest advancements in ML techniques applied 
to LIB research by June 2023, with a focus on their practical 
applications and outcomes. (ii) Main challenges of research 
in this field are addressed. (iii) Research gaps are identified. 
The findings presented in this paper will serve as a valuable 
resource for researchers and practitioners in the field, aiding 
in the design and optimization of lithium-based systems.

Unlike existing literature that focus on using machine 
learning in LIB research, this manuscript delves deeper into 
applications, challenges, and future trends, offering a more 
comprehensive analysis of recent advancements in this area. 
Specifically, challenges and future trends of using ML in 
Lib research is not studied in the available literature review. 
For example, the importance of the emerging N-Shot Learn-
ing field is not available in the current literature review.

In conclusion, our manuscript distinguishes itself from 
other recent reviews by offering a novel synthesis of litera-
ture, focusing on emerging research directions, providing 
in-depth analysis of controversies, and integrating multi-
disciplinary perspectives. This paper not only contributes 
to our understanding of Machine Learning applications but 
also empowers professionals in this field to harness its capa-
bilities effectively.

Fig. 3  LIB lifecycle research 
strategy and main applications of 
ML in LIB research
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Consequently, machine learning techniques applied to 
predict SOH, SOC, and RUL are applicable throughout all 
stages of the LIB lifecycle.

Design

ML has been employed to expedite the development of 
enhanced LIB. Rather than solely expediting scientific 
analysis through data pattern recognition, researchers have 
merged ML with empirical knowledge and physics-guided 
equations to uncover processes that impact LIB design [35]. 
The main trends in utilizing ML for design of LIBs are pre-
sented in below.

Optimizing Battery Materials and Design

ML has been applied to characterize battery performance 
[36], lifetime, and safety [37]. ML can be used to accel-
erate the understanding of new materials, chemistries [38], 
and cell designs [39]. For instance, ML has been used to 
increase battery life prediction accuracy by automatically 
generating equation components and narrowing down the 
selection from millions of possible combinations to identify 
a model that balances predictive accuracy with simplicity 
[38]. As another example, ML has been used in quantita-
tive microscopy analysis to map the orientation and mor-
phology of sub-particle grains in 3D [39]. This combined 
approach of electron backscatter diffraction (EBSD), ML, 
and modeling, represents the first demonstration of mapping 
and simulating dynamic phenomena within single electrode 
particles [39].

As another example, Naha et al. [40] used a supervised 
ML technique for internal short circuit detection of LIBs. 
They identified and extracted a set of features that encom-
passing the physics of Li-ion cell with short circuit fault. 
Then, a training feature set was generated with and without 
an external short-circuit resistance across the battery termi-
nals. They introduced internal short by mechanical abuse 
to emulate a real user scenario. A random forest classifier 
was trained with the training feature set. The minimum fault 
detection accuracy for the testing dataset was 97% [40].

The microstructure of a composite electrode controls the 
charging and discharging process of individual LIB par-
ticles. Visualization of LIB particles helps to understand 
electrode degradation mechanisms that are directly associ-
ated with the spatial arrangement of different components 
in the electrode, including carbon matrix, void, binder, and 
active particles. For instance, Jiand et al. used ML assisted 
statistical analysis, and experiment-informed mathematical 
modeling to understand the electrochemical consequences 
of LIB particles’ evolving (de)attachment with the con-
ductive matrix [41]. Figure  4 shows how a mix of active 

Table 1  ML models used in a range of research topics of LIBs
Inputs Application ML model
Capacity [16] SOC GPR
Early capacity-voltage data [17] SOC RNN
Statistical features [18] SOC XGBOOST, 

SVR
Currents, voltages & temperatures [19] SOC & 

SOC
LSTM

The optimal partition intervals [20] SOH SVM
Voltage, temperature and current [21] SOH GPR
Capacity [22] RUL LSTM
Eleven battery characteristics [23] RUL ELM
Cycle time, current variation over time, 
current value, voltage, & temperature 
[24]

SOH & 
RUL

CNN-LSTM

Impedance-related features [25] SOH & 
RUL

NN

The collected raw data [26] Capacity RF

Table 2  Relationship between SOH, SOC, and RUL metrics and each 
one of the LIB lifecycle phases
LIB life-
cycle phase

Metrics

Design 
phase

SOC: This metric isn’t a primary focus during the 
design phase, but the design will influence how SOC 
is managed and optimized through battery manage-
ment [27].
SOH and RUL: The design decisions, such as 
choice of materials and cell architecture, significantly 
impact the robustness and longevity of the batteries. 
These design choices determine the initial SOH and 
influence the degradation rate, thus affecting the RUL 
predictions. Proper design can enhance both the SOH 
and RUL by optimizing battery performance and 
durability over its lifecycle [28].

Manu-
facturing 
phase

The manufacturing quality can affect initial SOH, 
but typically SOC, SOH, and RUL are not directly 
monitored metrics at this stage. However, defects 
introduced during manufacturing can later affect 
these metrics [29, 30].

Service 
phase

SOC: Continuously monitored as it defines the cur-
rent charge level of the battery, crucial for opera-
tional management [31].
SOH: Crucial for evaluating the battery health and 
efficiency over time, particularly during the service 
phase. It represents the current condition of the bat-
tery relative to its ideal conditions [32].
RUL: Also, vital as it predicts the remaining lifespan 
of the battery based on current usage patterns and 
historical data [32].

End of Life 
phase

SOH: Determines when a battery should be retired 
from its primary use based on diminished health [33].
RUL: At this point, RUL would confirm the nearing 
end of usable life, facilitating decisions on recycling 
or repurposing [34].
SOC: Less critical at this stage, compared to other 
operational phases. This is mainly because the focus 
shifts towards ensuring batteries are safely disposed 
or prepared for recycling. However, it is important 
that batteries are discharged to safe levels before 
disposal to prevent any risks associated with high 
charge states, which can include fire hazards [31].
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Battery Material Characterization

A greater number of studies apply ML techniques to esti-
mate the SOC, SOH and RUL of LIBs and less are focused 
on characterization instead of estimation. As an example for 
characterization of mechanism, Bhowmik et al. used a semi- 
supervised generative deep learning model to characterize 
formation Solid Electrolyte Interphase of battery [46]. As 
another example, Zhang used ML techniques to characterize 
the degradation pattern of LIB from impedance spectros-
copy data [47].

Manufacturing

Various stages of LIB manufacturing, such as electrode 
production, cell assembly, cell finishing, evaluation, and 
screening, have benefitted from the application of ML tech-
niques. ML techniques offer a non-intrusive solution with 
remarkable accuracy and minimal processing requirements 
for optimizing and modeling engineering challenges within 
LIB manufacturing. For instance, Drakopoulos et al. uti-
lized a ML approach in their research to focus on develop-
ing graphite-based anode electrodes [48]. They established 
a connection between manufacturing protocols and the final 
electrochemical and cycle life performance parameters by 
leveraging a ML model trained on a database containing 
input and output attributes. Consequently, they predicted 
and designed the formulation and manufacturing process 
to yield thick, high-coat-weight, graphite-based electrodes 
[48]. In another investigation, a study proposed an ensemble 
learning framework based on RUBoost ML method for clas-
sifying electrode quality in LIB manufacturing [49]. Their 
proposed framework effectively classified three important 
quality indicators including (1) electronic conductivity, (2) 
thickness, and (3) half-cell capacity, for both LiFePO4 and 
Li4Ti5O12 based electrodes. The models developed within 
their framework addressed class imbalance issues and accu-
rately predicted the qualities of the manufactured electrode 
[49].

LiNi0.8Mn0.1Co 0.1 O2 (NMC) particles and inactive carbon/
binder domains build the porous electrode.

Lithium Metal Anode Design and Stability

A range of strategies have been reported to improve the sta-
bility and safety of Lithium metal as an anode. For instance, 
Ahmad et al. used ML techniques to develop a computa-
tional screening method of inorganic solid electrolytes for 
suppression of dendrite formation in lithium metal anodes. 
Using ML techniques helped them to accelerate the process 
of screening by predicting the properties of solid electro-
lytes through the identification of structure − property rela-
tionships [42]. As another example, Kim et al. developed a 
ML model to facilitate the design process of electrolyte for 
lithium metal anodes. By using this approach, they extracted 
a previously unidentified insight that low solvent oxygen 
content can lead to superior cyclability [43].

Predicting Battery Performance Using ML Techniques

Predicting the performance and behavior of LIBs is signifi-
cantly important for their optimal utilization and integration 
into various applications. ML techniques can be used as a 
powerful tool in this domain by enabling accurate predic-
tion and characterization of battery performance. ML has 
recently emerged as a promising modeling approach to 
determine the SOC, SOH and RUL of batteries [44]. Data-
driven modeling uses historical data, real-time data or both, 
for training a ML algorithm to predict the future behavior of 
LIBs [45]. The prediction of SOC, SOH and RUL is prob-
ably the most common applications of ML techniques in 
LIB research. Table  1 that is presented in Sect.  2, shows 
a range of ML models for various applications, including 
RUL, SOC and SOH estimation.

Fig. 4  3D microstructure of the 
composite battery cathode that is 
generated by help of ML. A mix 
of active NMC particles and inac-
tive carbon/binder domains build 
the porous electrode [41]
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and increase the yield of recycled materials [55]. Addition-
ally, ML can be used to identify impurities in recycled mate-
rials and predict their effect on battery performance [57].

Challenges in Applying ML to LIB Research

To apply the above-mentioned applications of ML in LIB 
research, there are many challenges and research areas that 
need to be addressed. These challenges and research areas 
require interdisciplinary and systemic approaches that con-
sider the technical and economic aspects of LIB studies.

Data Availability

Application of ML models to predict LIBs properties 
requires the availability of high-quality data. One of the 
challenges of explaining model predictions in LIB research 
for using ML is the availability of battery data. This is a cru-
cial hurdle in battery informatics and researchers have been 
working on mitigating the data scarcity challenge [15]. For 
example, LIB recycling data is very scarce and complex. 
The presence of various recycling methods, differences in 
recycler producers, and variations in experimental setups 
pose challenges in comparing data and confirming models 
[58]. Section 4.1 explains how integration of domain knowl-
edge and transfer learning can help to mitigate data scarcity.

Data Preprocessing and Cleaning Challenges

The next challenge are data pre-processing and cleaning that 
are critical in any ML project. These steps involve identify-
ing and correcting errors, inconsistencies, and missing val-
ues, transforming the data into a format that can be easily 
understood by the ML algorithm, and creating new features 
from the existing features in the data or reducing the dimen-
sionality of the data. Poor data quality can primarily affect 
the accuracy and lead to false prediction [59]. Because of 
the importance of data pre-processing for using ML algo-
rithms in LIB, researchers have been trying to provide 
pre-processed databases. For example, Hargreaves et al. 
provided a pre-processed dataset for lithium-ion conductors 
and their conductivities, to be used by other researchers in 
this field [14]. Their dataset contains chemical composition, 
assigned structural label, and ionic conductivity at a specific 
temperature. This dataset saves time of researchers and aid 
experimentalists in prioritizing candidates for further inves-
tigation as lithium-ion conductors [14].

Service

Due to high efficiency of using ML models, researchers 
used the technique to enhance LIB services.

Lithium-ion Battery Modeling, Optimization, and 
Management

Battery cells can be optimized to maximize either energy 
or power, depending on their intended use. For instance, 
thicker electrode batteries exhibit bigger capacity while 
thinner electrode batteries are more suitable for power 
delivery [2]. Optimization techniques such as the progres-
sive quadratic response surface method have been used to 
optimize design variables of existing electrode materials 
for enhanced power and capacity of LIBs [50]. Researchers 
used a range of ML models for fault detection and diagnosis 
process of LIBs that are presented in a research by Samanta 
et al. [51].

Early Detection of Battery Degradation Using ML

ML techniques have been widely adopted for efficient, reli-
able, and accurate prediction of battery degradation in LIBs 
[15]. For example, researchers have combined Gaussian 
process ML model with electrochemical impedance spec-
troscopy (EIS) to build an accurate battery forecasting sys-
tem [47]. This approach takes the entire EIS spectrum as 
input and automatically determines which spectral features 
predict degradation [47]. Another example is the use of deep 
extreme learning approach to predict battery degradation 
and RUL of LIBs [52].

End of life

ML in LIB Recycling

ML has great potential for improving the efficiency of lith-
ium recycling [53]. By predicting battery lifetime and opti-
mizing the recycling process, it is possible to reduce waste 
and increase the yield of recycled materials. For instance, 
researchers used a data-driven ML algorithm to predict the 
lifetime of solid-state batteries [54]. This approach provides 
a new way for the batch classification, echelon utilization, 
and recycling of batteries [54]. ML algorithms have shown 
great promise in predicting the lifetime of solid-state bat-
teries [55]. In addition, ML algorithms such as ANN and 
random forests have been used to predict waste generation 
at the municipal level with high accuracy [56]. Furthermore, 
ML techniques can be used to optimize the recycling process 
by predicting the optimal conditions for each step. This can 
help reducing the amount of energy required for recycling 
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structures, it becomes difficult to interpret and understand 
the underlying processes and decision-making mechanisms 
[67]. This lack of transparency limits the ability to gain 
insights into the relationships between input variables and 
model outputs, hindering the development of a compre-
hensive understanding of LIB behavior. This refers to the 
difficulty in understanding the decision-making process of 
these models [68]. While these models can provide accurate 
predictions, their inner workings can be difficult to interpret, 
limiting their usefulness for scientific discovery [69].

Interpretability and explainability are important qualities 
for ML models used in scientific research. These qualities 
permit the identification of potential model issues or limi-
tations, build trust in model predictions, and unveil unex-
pected correlations that may lead to scientific insights [58]. 
However, achieving interpretability and explainability can 
be challenging due to the complexity of ML models and the 
need for uncertainty estimates for model explanations [70]. 
Furthermore, quantifying and propagating uncertainties 
through the models is critical for assessing the reliability of 
predictions and making informed decisions. To overcome 
the challenge, when Hargreaves et al. couldn’t interpret the 
material data by visualization, they calculated errors of each 
prediction and plotted via histogram to quantify the distri-
bution of errors [14].

Quantification of uncertainty is a method to address the 
black-box nature and enhance interpretability and explain-
ability of ML models. However, it can be a challenge in 
LIB research. Battery systems exhibit inherent variability, 
and understanding the uncertainty in model predictions 
is crucial for decision-making and risk assessment [71]. 
Uncertainty quantification methods play a pivotal role in 
reducing the impact of uncertainties during both optimiza-
tion and decision making processes [71]. However, the poor 
explainability of some ML models such as ANN models has 
hindered their adoption in safety and quality-critical appli-
cations [72]. To overcome the challenge of quantification of 
uncertainty, Zhang et al. developed methods to enhance the 
explainability of ANN models through uncertainty quantifi-
cation-based frameworks [72].

Furthermore, lack of interpretability can be addressed 
by using methods known as explainable or interpretable 
ML (XML/IML) that aim to fill this gap in transparency. 
Faraji et al. presented a comprehensive review of XML/
IML methods in LIB research [73]. This lack of interpret-
ability hinders the ability to extract actionable insights and 
limits their practical implementation. While interpretability 
and explainability of data in LIB research is not considered 
comprehensively yet, it is expected that more researchers 
focus on the topic in future studies.

Limited Sample size

LIB research often involves a limited number of samples, 
particularly for novel materials or designs. This can lead to 
overfitting in training the ML models, where the model cap-
tures noise in the data rather than true underlying patterns 
[60]. For example, Zhang et al. faced with the challenge 
of limited sample size in their research to predict RUL of 
LIBs. They used a dropout technique to address the overfit-
ting challenge [61].

Computational Complexity

Another challenge is deriving models that are highly accu-
rate, have low computational complexity, and enable real-
time state and parameter estimation [62]. The application of 
ML techniques in LIB research presents challenges related 
to computational requirements and complexity. ML models, 
particularly ANN models, can have millions or even billions 
of parameters, leading to considerable computational and 
memory requirements [63]. This can result in long training 
times and high energy consumption. Ensuring low-latency 
and real-time processing capabilities while maintaining 
model performance and accuracy is also a critical compu-
tational complexity challenge. Researchers are working on 
finding ways to increase performance without increasing 
computing power [63]. For instance, to keep the computa-
tional complexity of SOC estimations low, Lucchetta used 
Nonlinear Auto Regressive with eXogenous input with only 
one hidden layer and a few neurons [64].

Model Generalization

Generalization refers to the ability of a trained model to 
accurately make predictions on new or unseen data [65]. 
LIBs operate under various conditions, such as tempera-
ture, discharge rate, and cycling protocol. Ensuring that ML 
models generalize well across these diverse conditions is 
challenging and requires careful consideration of the mod-
el’s architecture and training methodology. For example, 
Zhang et al. suggested a deep learning model that is capa-
ble of overcoming the generalization challenge to predict 
the life of LIBs [66]. Moreover, Schofer et al. developed a 
ML framework to predict life time of lithium-ion cells with 
improved generalization [65].

Black-Box Nature of ML Models, Their 
Interpretability and Explainability

One of the major challenges faced is the black-box nature 
of some ML models that may lead to lack of interpretabil-
ity and explainability. Due to their complex and non-linear 
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comprehensive material characterizations. Even when 
information is comprehensively presented in publications, 
accurately associating materials’ properties with their cor-
responding characterizations remains a complex task, often 
requiring extensive scanning of lengthy articles. This inher-
ent need for cross- or co-referencing across various sections 
of content presents a significant hurdle in the transition from 
human-readable to machine-readable formats. To tackle this 
quandary, a recent development involves the introduction of 
a canonical ontology for materials synthesis. This ontology 
employs a controlled lexicon and establishes constrained 
relationships between concepts to address the challenge 
[78].

Anthropogenic Bias

Anthropogenic bias refers to the influence of human beings 
on nature, and how this influence can introduce bias into 
data, models, and systems. For example, if a dataset is col-
lected by humans, it may contain biases that reflect the 
beliefs, values, and perspectives of the people who collected 
the data. Scientists tend to focus on systems that have the 
highest likelihood of success and often choose to present 
the most significant results to demonstrate their scientific 
points. This can result in an overrepresentation of certain 
domains and a lack of negative examples in published lit-
erature [79].

Realistically, only a small portion of the entire materials 
space should exhibit special functionality. Negative data, 
which is often not considered worthy of publication, can 
actually benefit ML models by enabling more trustworthy 
exploration of unknown domains [80]. Disregarding the 
abundance of negative data, anthropogenic bias in sampling 
fails to accurately represent the actual data distribution. 
When comparing ML models trained on biased human-
selected reactions to those trained on unbiased randomly 
generated reactions for synthesizing amine-templated metal 
oxides, addressing this bias significantly enhanced the ML 
models and expedited the discovery of new materials [79].

Avoid the Bias

Ensuring the integrity of model performance while mitigat-
ing data bias and anthropogenic bias necessitates complete 
transparency regarding the quantity and quality of data. It’s 
crucial to exercise caution, as assessing the quantity and 
quality of datasets can be complex and subjective, influ-
enced by the choice of ML algorithms and intended appli-
cations [81]. Therefore, when reporting and evaluating ML 
research, using data quantity and quality should not be used 
as judgment criteria. A more crucial step involves disclosing 
the data collection and pre-processing methodology, along 

Scalability of ML Algorithms for Large Datasets

The next challenge is scalability that refers to the ability of 
a system to handle an increasing amount of work or data 
without a decrease in performance. Scalability is a signifi-
cant challenge when applying ML algorithms to large data-
sets in LIB research [74]. The abundance of data generated 
from experimental and computational studies requires effi-
cient algorithms that can handle the volume, velocity, and 
variety of the data. Traditional ML algorithms often struggle 
to scale with large datasets, resulting in increased compu-
tation time and resource requirements. This challenge has 
led to the development of scalable ML techniques specifi-
cally tailored for big data applications in LIB research [74]. 
Traditional ML algorithms face critical challenges such as 
scalability to truly unleash the hidden value of big data [75]. 
In a successful case, Roman et al. designed scalable data-
driven models for battery SOH estimation by emphasizing 
the value of confidence bounds around the prediction [74].

Data bias

Data Collection bias

Data bias is the next challenge that refers to the systematic 
error introduced into the collected data due to the complex 
interplay among various factors that shape the overall char-
acteristics of battery materials [76]. The overall character-
istics of battery materials are shaped by numerous factors 
spanning various length scales, owing to the complex inter-
play among electronic, structural, and microstructural vari-
ables. For instance, the atomic-level crystalline structure 
and chemical composition dictate the conductivity of a solid 
electrolyte. As we zoom out to larger scales, aspects like 
particle morphology, size, and arrangement within the elec-
trolyte’s microstructure impact its conductivity. On the scale 
of the battery cell, the interplay between the electrolyte and 
electrode, along with the formation of an interface layer 
between them, further contribute to conductivity variations 
[76]. The interplay of these factors gives rise to significant 
fluctuations in the tested conductivities, even among mate-
rials that share identical compositions. As a result, this is 
introducing a bias into the collected data. As an illustration, 
the conductivity of garnet Li5La3Ta2O12, contingent upon 
the synthesis techniques and temperatures employed, can 
exhibit a range spanning two orders of magnitude, from 
10 − 6 to 10 –4 S cm − 1 [77].

This complexity underscores the necessity of augment-
ing data labeling beyond the materials’ scope by extending 
it to encompass details regarding synthesis, processing, and 
characterization. Nonetheless, this poses a considerable 
challenge, given that not all data sources inherently include 
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application of ML techniques in LIB research requires 
expertise from multiple fields, including materials science, 
electrochemistry, data science, and engineering. Effective 
collaboration among these disciplines can be challenging 
but is essential for holistic progress [82].

Future Trends

LIB research has made significant advancements in apply-
ing ML techniques, but it still faces important knowledge 
gaps that need to be addressed to ensure the long-term 
viability and development of AI-powered systems in LIB-
related domains. The following section, explores these 
future trends and gaps. Figure 5 shows the future trends in 
LIB research that are addressed in this research.

ML Techniques for Small Datasets

In the realm of LIB research, certain domains yield sub-
stantial data volumes, whereas others may only possess 
small datasets. This discrepancy can arise from various 

with promoting open access to published data. In a recent 
study, Artrith et al. suggested a set of guidelines for report-
ing ML models [81]. These guidelines encompass detailing 
all data sources, documenting the data selection strategy, 
including access dates or version numbers, describing data 
cleaning procedures, and assessing the extent of data pre-
processing. They proposed a comprehensive checklist for 
the reporting and assessment of ML models that aim to 
establish a high standard for data reporting protocols within 
the materials domain [81].

The materials research community still needs time to 
fully understand and transition to improved communication 
of materials synthesis, in order to expand the impact of the 
insights contained in each published synthesis method and 
contribute to a global body of unified knowledge on materi-
als synthesis. This can be the ultimate approach to avoid 
data bias.

Interdisciplinary Nature

The interdisciplinary nature of using ML in LIB research 
is another challenge to develop the technology. Successful 

Fig. 5  Future trends of using ML 
in LIB research
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data and features [93]. Researchers have used deep learning 
techniques to improve the accuracy and efficiency of LIB 
research [94]. For instance, researchers have used a deep 
learning-based segmentation approach to achieve reliable 
segmentations of volumetric images of LIB electrodes [95]. 
The application of deep learning architectures can enhance 
the accuracy, efficiency, and understanding of complex LIB 
systems by driving advancements in the technology. How-
ever, there might be computational complexity challenges 
which were discussed earlier in section ‎3.4. Table 3 presents 
examples of using deep learning in LIB research, includ-
ing the type of model used, the aim and the output. As the 
table suggests, deep learning used for a range of purposes 
from estimation of SOC to integration with physics-based 
models.

Reinforcement Learning for Optimization

Reinforcement learning (RL) is a type of ML that uses a 
feedback system to train a learning algorithm. RL pres-
ents opportunities for optimization in LIB systems using 
ML [101]. Among all of the available ML models, RL is 
highlighted here because researchers used RL for a range of 
applications in LIB research and they believe, this approach 
can be used to improve the efficiency and quality of LIB 
research. For example, Mishra et al. have used reinforce-
ment learning to optimize the performance of LIBs. This 
approach improved the accuracy and efficiency of ML mod-
els for LIB research [103]. RL has been applied to tasks 
such as battery management [102], optimal resource allo-
cation [101], and control of LIB systems [104]. Table  2 
demonstrates that RL is used in a range of applications. 
The table demonstrates that researchers used combination 
of first principles models and ML models such as Entropy-
based RL that will be discussed in section ‎4.6.

Active Learning

The next ML model with high potential of using in future 
is Active learning. It is a type of ML that actively selects 
valuable data points to construct a high-performance classi-
fier while keeping the size of the training dataset to a mini-
mum [105]. Through the strategic selection of informative 
data points for labeling, active learning algorithms have the 
ability to substantially decrease the labeled data needed for 
model training. This is particularly valuable in LIB research, 
where data collection and labeling can be time-consuming 
and expensive [106]. By leveraging active learning, the dis-
covery of new materials, battery performance optimization, 
and experimental design can be accelerated. In addition, 
by actively querying samples that have the highest poten-
tial to enhance the model’s performance, active learning 

factors, including the expenses and time constraints associ-
ated with testing, the necessity for specialized equipment, 
or the extended duration required for specific experiments. 
For example, conducting tests on LIB demands significant 
time and financial resources. This is because specialized 
equipment, such as multi-channel cyclers, potentiostats, 
and thermal chambers, is essential [83], and a standard bat-
tery degradation reliability test can span over six months 
of continuous cycling [84]. Consequently, datasets for 
these tests may be relatively limited in size. In these situ-
ations, ML techniques that are capable of handling small 
datasets become notably valuable. Approaches such as 
Transfer Learning, N-shot Learning, Imbalance Unders-
ampling/Oversampling, Asymmetric Loss Function, and 
Ensemble Learning can be particularly advantageous. 
These approaches assist researchers in deriving meaningful 
insights and predictions from limited datasets. For example, 
MA et al. used Transfer Learning to predict LIB health sta-
tus with a high accuracy [85] or Zhang et al. used N-shot 
learning to estimate SOH because LIB degradation data is 
small [86]. Despite using few shot learning for a range of 
applications in LIB research, the method used frequently to 
predict lifetime of LIBs [87, 88]. For example, Tang et al. 
used the ML technique to detect abnormality of LIB lifetime 
by using relatively small dataset of first-cycle aging data 
[89]. In the future, there will likely be more research that 
uses those ML techniques to make the most of data from 
small datasets.

ML Techniques for Big Datasets

These days, big fleets of EVs are using LIBs. Transmitting 
daily data to the cloud facilitates can help in improving LIB 
design, manufacturing and use. The cloud-based architec-
ture can periodically develop ML models, allowing for self-
teaching and self-improvement by leveraging server farms 
[90]. Also, advancements in measurement techniques will 
allow more high throughput experiments that will help to 
generate big data (Fig. 2) and the capability to make real-
time decisions regarding what to synthesize and test next by 
employing the outcome of the high throughput will acceler-
ate big data generation [91]. Thus, future research directions 
for the fields that big data is available will be important in 
future [92]. They involve developing ML algorithms opti-
mized for bigger datasets through techniques like ANN. 
Three main techniques to tackle big data challenges in 
future are explained in detail.

Deep Learning Architectures

Deep learning is a subset of ML that uses artificial Neural 
Networks with multiple hidden layers to analyze complex 
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interacting features and increase the effectiveness of test-
ing efforts [109]. Future research is expected to use ML 
techniques to investigate the micro-behavior and micro-
mechanics of LIBs and their interrelationships.

Self-Improving Models or Algorithms in Continuous 
Evolution

The subsequent future trend of using ML in LIB research 
can be self-improving models. Due to the nonlinear inter-
actions among multiple factors, individually altering each 
parameter may not provide a comprehensive understanding 
[108]. On one hand, incorporating domain knowledge and 
corresponding testing technologies is necessary to ensure 
effective modeling efforts. On the other hand, when bat-
tery types or operating conditions change, models specifi-
cally designed for particular settings require recalibration 
or reconstruction. Furthermore, as tasks evolve, model re-
training becomes essential. Presently, advanced algorithms 
pave the way for self-improving models [110]. The concept 

empowers researchers to concentrate their efforts on the 
most informative data points, resulting in faster and more 
accurate predictions [105].

Researchers have used active learning to screen new 
functional materials for lithium solid-state electrolytes [15, 
99] which led to improved accuracy and efficiency of ML 
models in LIB research [15].

Addressing Lack of Knowledge of Micro-Behavior 
and Micro-Mechanics

The next future trend in the field can be addressing lack of 
knowledge micro-behavior and micro-mechanics. Data-
driven methods can be constructed without considering the 
underlying mechanisms of a system. However, batteries are 
complex systems with non-linear interactions between mul-
tiple factors [107]. Some electrochemical processes within 
batteries are not fully understood [108]. By investigating 
these internal mechanisms, it is possible to improve the 
ability to extract meaningful information from numerous, 

General ML 
model

Specific ML 
Model

Aim Output

Deep 
learning

Feed Forward 
NN & Non-
linear Auto 
Regressive 
model with 
eXogenous 
input

To propose an effective and online 
technique for modeling of LIB and 
estimation of SOC

The proposed method is imple-
mented on a LIB cell and the results 
of simulation show a good accuracy 
and fast convergence of the pro-
posed method [96]

NN To estimate LIB parameters using an 
experimental charge and discharge 
tests at different temperatures 
(24–40 °C) provided by NASA

A NN method estimated LIB 
parameters, due to its high capacity 
to solve complex problems [97]

Asymmetrical 
depth encode-
decoder 
convolutional 
NN (CNN)

To propose a deep learning approach 
with an asymmetrical depth, encode-
decoder CNN for real-world battery 
material datasets

This network achieves high accu-
racy while requiring small amounts 
of labeled data and predicts a 
volume of billions voxel within few 
minutes [98]

Physics-
Informed 
NNs (PINN)

To integrate the physics-based bat-
tery model and the ML model to 
leverage their respective strengths

The results indicate that PINN can 
estimate the SOC with a root mean 
square error in the range (0.014-
0.2%), while the SOH has a range 
(1.1-2.3%), even with limited train-
ing data [35]

Reinforce-
ment 
Learning

Deep RL Estimate the stoichiometric range of 
a LIB

Provided an identifiability-improved 
current input profile, even under dif-
ferent initial SOC conditions [99]

Entropy-
based RL

Predict the next-cycle battery capac-
ity and compare the numerical results 
from the proposed entropy-based RL 
models to those from two other data-
driven methods

Took into account vital information 
from past data and resulted in high 
accuracy [100]

Deep RL Optimize the battery energy arbitrage 
considering an accurate battery 
degradation model

Optimized control policy for stor-
age charging/discharging strategy 
[101]

Multi-Agent 
RL

Solve the traditional LIB scheduling 
problem

Trained the battery scheduling agent 
[102]

Table 3  Examples of using deep 
learning and reinforcement learn-
ing in LIB research
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batteries by leveraging knowledge learned from a source 
battery with a large amount of data [114]. This approach 
can improve the accuracy and efficiency of ML models for 
LIB health management [85]. Ma et al. have developed a 
transfer learning framework to realize real-time personal-
ized health status prediction for unseen battery discharge 
protocols at any charge-discharge cycle [85]. In a separate 
research, Zhou et al., used transfer learning to estimate 
SOH [115]. By using common feature canonical variates, 
they used transfer learning as a bridge to transfer the knowl-
edge obtained by the source SOH estimate model, which 
was trained by data from the complete degradation process 
[115]. However, another research that used Matrix Profile 
Empowered Online Knee Onset Identification, shows out-
performed results of the research that used transfer learning 
[116].

Knowledge transfer techniques are able to transfer 
knowledge from one lithium system to another by enhanc-
ing the predictive capabilities and efficiency of the models 
[117]. This approach can accelerate the development of 
accurate and robust models for LIB research [118]. Lever-
aging knowledge from related domains or materials pro-
vides valuable opportunities for enhancing the performance 
of ML models in LIB research.

Conclusion

In conclusion, this research underscores the transformative 
potential of machine learning (ML) in addressing the fun-
damental challenges of lithium-ion battery (LIB) optimiza-
tion. By leveraging ML techniques, we can streamline the 
exploration of chemical, formulation, and operational con-
dition spaces, significantly reducing the need for extensive 
experiments and computations. This not only accelerates 
development cycles but also aids in identifying critical vari-
ables that impact battery behavior.

Outcome of this research can be used by the research-
ers who are interested to leverage ML techniques to explore 
LIBs. As discussed earlier in this paper, although obsta-
cles persist, extensive efforts have been invested in every 
aspect of the LIB life cycle, from micro-mechanisms to 
macro-operations, where ML algorithms play a vital role 
in explaining features, uncovering behaviors, optimizing 
parameters, determining operational status, and predicting 
cycle life. With initial steps taken and substantial progress 
achieved, we are optimistic about the prospects of a data-
based LIB exploration that is healthy, safe, cost-effective, 
and environmentally friendly.

The notable contributions of this research are the explora-
tion of the opportunities and challenges of using ML in LIB 
research. In addition, future trends of using ML in the field 

of meta learning, inspired by human learning processes, 
leverages prior knowledge to facilitate the learning of new 
tasks, often referred to as learning to learn. Researchers 
have started using meta-models in LIB research [111], how-
ever more research is expected in future.

Incorporating First Principles Models with ML

The next trend will be incorporating the first principles’ 
models with ML. This approach can present significant 
opportunities for advancing LIB research. By integrating 
the fundamental principles and equations that govern LIB 
behavior into ML frameworks, the accuracy, interpret-
ability, and generalization of the models can be enhanced. 
Physics-based models provide a solid foundation for under-
standing the underlying mechanisms and interactions within 
the LIB system [10]. ML algorithms can then be utilized 
to capture complex non-linear relationships and learn from 
data to improve predictions and optimize battery perfor-
mance [112]. This hybrid approach combines the strengths 
of both first principles models and ML models by enabling 
to overcome challenges such as limited data availability and 
the black-box nature of pure ML models that was discussed 
in details in chapter ‎3.

Hybrid Models for Improved Accuracy and 
Interpretability

Afterwards, the hybrid models that integrate physics-based 
models with ML models present opportunities for improved 
accuracy and interpretability in LIB research. These mod-
els blend domain knowledge with data-driven approaches 
to perform physics-informed learning of LIB behavior. For 
example, researchers have proposed hybrid models that 
combine a single particle model with thermal dynamics with 
a feedforward ANN to achieve high-precision modeling for 
LIBs [113]. These hybrid models can provide considerable 
voltage predictive accuracy under a broad range of C-rates 
and can be conscious of the state-of-health to make predic-
tions throughout a battery’s cycle life [113]. Furthermore, 
by incorporating feature engineering techniques and domain 
knowledge, hybrid models can capture relevant physical 
and chemical properties of lithium systems, leading to more 
accurate predictions and actionable results [113].

Transfer Learning and Knowledge Transfer

Eventually, transfer learning that is a ML approach that 
applies knowledge learned from a source domain to a new 
target domain has a high potential to enhance LIB research 
in future [114]. In LIB research, transfer learning can be used 
to reduce the data requirement of model training for new 
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are presented to the researchers to accelerate the research 
by overcoming the challenges and. A road map of advanced 
ML models, addressing lack of knowledge of micro-behav-
ior and micro-mechanics, self-improving models, models 
for big data, models for fewer data, incorporating first prin-
ciple models with ML, hybrid models, transfer learning and 
knowledge transfer presented, aiming to overcome current 
challenges and drive innovation.

This research not only contributes to the current state 
of LIB research but also influences its trajectory. It offers 
valuable insights and practical guidance for researchers 
and practitioners in the field, paving the way for a future 
where ML-driven approaches redefine how we approach 
LIB optimization and research. As we continue to advance 
our understanding and application of ML in LIBs, we are 
confident that our work will inspire further developments 
in theory, practice, and research, propelling the field toward 
sustainable and efficient energy solutions.
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