
UNIVERSIDADE DO ALGARVE

Route Planning in Wireless Sensor Networks for Data

Gathering Purposes

Andriy Mazayev

Master Thesis in Computer Science Engineering

Work done under the supervision of: Profa Noélia Correia (FCT/DEEI) e Profa Gabriela
Schütz (ISE/DEE)

2015

Statement of Originality

Route Planning in Wireless Sensor Networks for Data Gathering Purposes

Statement of authorship: The work presented in this thesis is, to the best of my knowl-
edge and belief, original, except as acknowledged in the text. The material has not been
submitted, either in whole or in part, for a degree at this or any other university.

Candidate:

———————————
(Andriy Mazayev)

Copyright c©Andriy Mazayev. A Universidade do Algarve tem o direito, perpétuo e sem
limites geográficos, de arquivar e publicitar este trabalho através de exemplares impressos
reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que
venha a ser inventado, de o divulgar através de repositórios cientı́ficos e de admitir a sua
cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde
que seja dado crédito ao autor e editor.

i

N E T W O R K I N G

Work done at Research Center of Electronics Optoelectronics and Telecommunications
(CEOT)

ii

Abstract

Recent studies have shown that mobile elements (ME) in wireless sensor networks (WSN)
can drastically reduce energy consumption in such type of networks and thus prolong the
sensor network lifetime. Most recent mobile elements used for data gathering are called
unmanned aerial vehicle (UAV), commonly known as drones. Although these elements
are far faster than terrestrial mobile elements, and used in a wide range of situations, there
is a small number of studies on the effectiveness of their use.

In this thesis, after making an analysis of some of the solving methods that might
be useful for data gathering, an algorithm is proposed that can provide an efficient use
of UAV elements in WSNs. A performance analysis and comparison with existing ap-
proaches is done. Results show that the proposed algorithm is able to solve the data
gathering problem efficiently presenting, for most data sets and time delivery deadline
ranges, a high certainty degree regarding the quality of the solution.

Keywords: mobile elements, wireless sensor networks, routing, optimization

iii

Resumo

As redes de sensores têm vindo a ganhar importância em vários setores da nossa so-
ciedade, sendo a aplicação mais visı́vel a monitorização ambiental. Estas redes têm
inúmeras aplicações que vão desde a detecção de fogos, medições do nı́vel de emissões de
radiação, detecções de danos estruturais e muito mais, sendo capazes de fazer medições
de forma sistemática, e possibilitando desta forma, tomar decisões antecipadas e, assim,
evitar acidentes que podem custar vidas humanas.

O envio de dados recolhidos pelos sensores é tradicionalmente feito através de múltiplos
saltos (multi hop). Este método baseia-se na passagem dos dados de dispositivo para dis-
positivo, através da infraestrutura da rede, permitindo que a informação viage desde a
fonte até ao destino graças à passagem dos dados entre elementos vizinhos. Para en-
contrar a forma mais eficiente e rápida de fazer chegar a informação ao destino foram
propostos, e estão disponı́veis na literatura, vários algoritmos que tentam garantir o uso
eficaz dos recursos da rede durante o envio dos dados. No entanto, nem mesmo os algo-
ritmos mais eficientes são capazes de resolver um problema inerente a esta arquitectura: a
entrega dos dados está dependente de vários elementos intermediários. Para além disso, o
próprio meio ambiente em que as redes de sensores são utilizadas pode ser um obstáculo
durante a comunicação. Possı́veis acidentes tais como fogos ou desabamentos podem
danificar os canais de comunicação e, desta forma, tornar uma rede de sensores inuti-
lizável. As desvantagens presentes na abordagem clássica de recolha de dados levou os
investigadores a procurarem outras alternativas.

Estudos recentes têm mostrado que a utilização de elementos móveis em redes de
sensores sem fio pode reduzir drasticamente o consumo de energia neste tipo de redes
e, assim, prolongar o seu tempo de vida. As abordagens mais recentes no processo de
recolha dos dados numa rede de sensores têm recaı́do sobre o veı́culo aéreo não tripulado,
frequentemente conhecido como drone. Embora estes elementos sejam mais velozes do
que os elementos móveis terrestres, e devido à sua natureza que permite a sua utilização
numa vasta gama de situações, há um pequeno número de estudos sobre a eficácia da sua
utilização.

Ao contrário da abordagem multi salto, onde os algoritmos procuram caminhos efi-
cientes dentro da própria infraestrutura de rede, a abordagem que envolve elementos
móveis necessita de algoritmos que criem caminhos para os próprios elementos móveis.
O processo de desenho e criação das rotas é conhecido por problema de recolha de dados

iv

(Data Gathering Problem). O problema de recolha de dados a ser resolvido nesta tese
pode ser descrito como o processo de criação de caminhos para um conjunto de veı́culos
aéreos não tripulados que têm de recolher dados alojados nos sensores. Terão que ser
considerados os seguintes aspectos:

• Janelas temporais de cada sensor. Intervalo de tempo em que o drone tem que visitar
o sensor em causa;

• Volume dos dados a serem enviados pelos sensores;

• Tempo de vida útil dos dados. Intervalo de tempo máximo permitido para que a
informação seja entregue no destino;

• Conjunto de veı́culos aéreos. Cada veı́culo aéreo tem a sua capacidade de memória,
isto é, limite máximo da quantidade de dados que um drone é capaz de recolher.

O processo de criação dos caminhos tem que respeitar todas as restrições temporais
dos sensores e, ao mesmo tempo, terá que ser minimizada a distância necessária para
recolher os dados de todos os sensores.

A utilização dos veı́culos aéreos não tripulados é uma abordagem recente e, talvez
por isso, ainda não ganhou a merecida atenção. Como tal, de momento, não existem
standards de medição de desempenho de diferentes algoritmos capazes de resolver este
tipo de problemas. Nesta tese, tentamos preencher esta lacuna propondo um padrão de
medição de desempenho que pode ser utilizado por todos.

São apresentadas duas formalizações matemáticas do problema, uma genérica que
pode ser utilizada em vasta gama de situações com semelhantes restrições e uma formaliz-
ação estendida que representa o problema a ser resolvido nesta tese. A formalização
genérica permite, identificar este problema com o do encaminhamento de veı́culos com
janelas temporais (Vehicle Routing Problem with Time Windows).

É feita ainda uma análise aprofundada de algumas classes de algoritmos já existentes
que podem ser úteis na resolução deste tipo de problemas. Heurı́sticas construtivas, de
melhoramento e meta-heurı́sticas são introduzidas e alguns dos seus principais métodos
são discutidos. Com base nestes métodos foi desenvolvida uma heurı́stica hı́brida capaz de
criar caminhos eficientes não só para o problema recolha de dados numa rede de sensores
mas também capaz de resolver o problema de encaminhamento de veı́culos. A heurı́stica
apresentada é baseada em três etapas de optimização. A primeira, pré-optimização, que
com base nos dados de entrada, cria uma boa solução parcial que será utilizada nos passos
seguintes. A segunda fase, designada por optimização, que recebe a solução parcial criada
no passo anterior, é responsável pela construção de uma solução inicial que satisfaça
todas as restrições de entrada. A última fase, pós-optimização, que recebe como dado de
entrada a solução obtida durante a optimização, através de uma combinação de métodos

v

tanto determinı́sticos como não determinı́sticos explora de forma eficiente o espaço de
procura em busca da melhor solução.

Para medir o desempenho da heurı́stica hı́brida desenvolvida nesta tese foi feito um
extensivo conjunto de testes considerando de redes de sensores de várias dimensões, redes
com 25, 50, 75 e 100 sensores, e diferentes nı́veis de restrições temporais. Os resultados
obtidos mostram que o algoritmo proposto é capaz de resolver o problema de recolha de
dados de forma bastante eficiente apresentando, para a maioria dos conjuntos de dados e
para diferentes intervalos de prazos de entrega, um alto grau de certeza relativamente à
qualidade da solução.

Termos chave: elementos móveis, redes de sensores sem fio, encaminhamento, optimização

vi

Acknowledgements

I would like to thank my parents for their encouragement, education, for their belief in
me and for their effort to make my graduation possible. Also, I am grateful to my sister
for providing me support during all this time. And finally, I would like to thank my little
niece for making my days brighter with her smile.

Special thanks to all my friends that have been by my side since the beginning of this
journey. Thanks for your support, all the funny moments that we lived and just for being
there for me when I needed it. Without you nothing of this would have been possible.

In academic environment I would like to thank my supervisors, Noélia Correia and
Gabriela Schütz. Without their support and guidance I would not have been able to finish
this project. Their experience and advices were invaluable.

Thank you all.

vii

Contents

Statement of Originality i

Abstract iii

Resumo iv

Acknowledgements vii

List of Publications 1

1 Introduction 2
1.1 Background . 2
1.2 Data Gathering Approaches . 3

1.2.1 Classical Networks . 3
1.2.2 Networks with Terrestrial Elements 3
1.2.3 Network with UAV Elements 4

1.3 Network Design Problems in Sensor Networks 4
1.3.1 Topology Design . 4
1.3.2 Network Layer . 5

1.4 Problem Definition . 6
1.4.1 Practical Applications . 7

2 Mathematical Optimization 8
2.1 Introduction . 8
2.2 Combinatorial Optimization . 8
2.3 NP-Hardness . 9
2.4 Mathematical Formulation . 10

3 Solving Methods 14
3.1 State Of The Art . 14
3.2 Vehicle Routing Problem . 15
3.3 Two Step-Algorithm Approaches . 15

3.3.1 Clustering First . 16

viii

3.3.2 Routing Second . 16
3.4 Heuristics . 18

3.4.1 Constructive Heuristics . 18
3.4.2 Nearest Neighbour Heuristic 19
3.4.3 Clarke and Wright Savings Heuristics 19
3.4.4 Push Forward Insertion Heuristic (PFIH) 20

3.5 Improvement Heuristics . 22
3.5.1 Ruin and Recreate Principle 22
3.5.2 Local Search . 23

3.6 Meta-heuristics . 24
3.6.1 Genetic Algorithms . 26
3.6.2 Tabu Search . 27
3.6.3 Simulated Annealing . 28
3.6.4 Multiple Ant Colony Systems (MACS) 29
3.6.5 Guided Local Search . 30

4 Data Gathering in WSNs 31
4.1 Introduction . 31
4.2 Extended Problem . 31

4.2.1 Input and Output . 33
4.3 Proposed Hybrid Heuristic Algorithm 34

4.3.1 Problem Limits . 34
4.3.2 Adapted Push Forward Insertion Heuristic 34
4.3.3 Seeded Partial Solution . 35
4.3.4 Improvement Methods . 36
4.3.5 Node Ejection . 38
4.3.6 Band Neighbourhood Ejection 39
4.3.7 Overall Procedure . 40

5 Performance evaluation 43
5.1 Introduction . 43
5.2 Data Set and Best Known results . 43

5.2.1 Generating Data Sets . 43
5.2.2 Best Known Results . 44

5.3 Getting the Results . 45
5.3.1 Heuristic Results . 45
5.3.2 Exact Results . 45

5.4 Analysis of the Results . 46
5.4.1 Optimal vs Heuristic Solutions for Sets C1 and C2 with 25 Nodes 46

ix

5.4.2 Heuristic Solutions for all Sets with 25 Nodes 48
5.4.3 Best known vs Heuristic results with 100 Nodes 51

6 Conclusion and Future Work 54
6.1 Conclusion . 54
6.2 Future Work . 54

A Appendix A-1

x

List of Figures

1.1 Choke point. 6
1.2 Problem illustration. 7

2.1 Graph representation. 10

3.1 Example of a problem before clustering process. 16
3.2 Example of a problem after clustering. 17
3.3 Example of a problem solution. 17
3.4 Solution produced by constructive heuristic. 18
3.5 Example of route merging between node i and j. 20
3.6 Solution produced by improvement heuristics. 23
3.7 Intra route operators (Carić et al., 2008). 24
3.8 Inter route operators (Carić et al., 2008). 25
3.9 Solution produced by meta-heuristic. 26
3.10 Entropy rate. 28
3.11 Multiple ant colony systems Gambardella et al. (1999). 29

4.1 Seeded partial solution. 36
4.2 Solution representation . 37
4.3 2-Opt operator. 37
4.4 Crossover operator. 38
4.5 Band neighbourhood ejection. 40

5.1 Average distance increase factor. 49
5.2 Lowest distance increase factor. 49
5.3 Highest distance increase factor. 50
5.4 Average number of UAVs increase factor. 50
5.5 Lowest number of UAVs increase factor. 51
5.6 Highest number of UAVs increase factor. 51

xi

List of Tables

1.1 Comparison between different data gathering approaches. 4

2.1 Solutions for perimeter minimization. 9

5.1 Heuristic’s performance for delivery limit equal to ∆3 and ∆4 47
5.2 Heuristic’s performance for delivery limit equal to ∆5 and ∆6 48
5.3 Results obtained with the proposed method for instances with infinite de-

livery limit of the Solomon’s benchmark with 100 nodes. 53

A.1 Adapted Solomon instances with 25 nodes A-2
A.2 Adapted Solomon instances with 50 nodes A-3
A.3 Adapted Solomon instances with 75 nodes A-4
A.4 Adapted Solomon instances with 100 nodes A-5

xii

List of Algorithms

1 Nearest neighbour heuristic. 19
2 Clarke and Wright savings heuristic. 21
3 Push forward insertion heuristic. 22
4 Local search. 25
5 Genetic algorithm. 26
6 Tabu search. 28
7 Simulated annealing. 29

8 Seeded partial solution. 35
9 Band neighbourhood ejection. 39
10 Routing algorithm. 42

xiii

List of Publications

1. Pedro J.S. Cardoso, Gabriela Schütz, Andriy Mazayev, Emanuel Ey, ”Solutions
in under 10 seconds for vehicle routing problems with time windows using com-
modity computers”, 8th International Conference on Evolutionary Multi-Criterion
Optimization, EMO 2015; Guimarães, Portugal, 29 March – 1 April 2015.

2. Pedro J.S. Cardoso, Gabriela Schütz, Jorge Semião, Jânio Monteiro, João Ro-
drigues, Andriy Mazayev, Emanuel Ey, Micael Viegas, Carlos Neves, Sérgio Anastácio,
”Integration of a food distribution routing optimization software with an enterprise
resource planner”, International Conference on Geographical Information Systems
Theory, Applications and Management, Barcelona, Spain, 28-30 April, 2015.

3. Pedro J. S. Cardoso, Gabriela Schütz, Andriy Mazayev, Emanuel Ey, Tiago Corrêa,
”A Solution for a Real-time Stochastic Capacitated Vehicle Routing Problem with
Time Windows”, 15th International Conference on Computational Science, Reyk-
javı́k, Iceland, 1–13 June (accepted).

4. Andriy Mazayev, Noélia Correia, Gabriela Schütz, ”Heuristic Approach for Data
Gathering in Wireless Sensor Networks”, IEEE International Conference on Com-
munications, London, United Kingdom, 8–12 June (accepted).

1

C H A P T E R 1

Introduction

1.1 Background

Sensor networks are ad-hoc networks composed of sensors that are connected wirelessly.
The main goal of sensors it to capture the state of the environment (temperature, humidity,
luminosity, etc.) and to relay this information to an entity (sink node or base station) more
suited for data processing, visualization, analysis and decision making upon the informa-
tion received. A sensor node, also called node, is a small sensing capable device with
limited processing capability, reduced memory capacity and bandwidth, and a limited
source of energy (Rodrigues and Neves, 2010). Despite of all these hardware limitations,
sensors are very useful nowadays. They are cheap, small in size, easy to install and highly
flexible. This allows them to be used in a high range of situations, from simple luminosity
measurements to radiation measurements in atomic plants (Chin et al., 2010).

Since sensor nodes are limited in processing capabilities, local data analysis may not
be a viable option and, therefore, it becomes crucial to forward the data to a device with
higher capabilities for further processing. Usually this is done by the network infrastruc-
ture itself without any third part involved in this operation. This type of data forwarding
is called multi-hop and it involves one or more nodes to forward the data from a sensor to
a sink node. In such cases, a power consumption problem arises. In order to send the data
from one point to another, other nodes must first receive the information and then forward
it, even without having anything do to with the data itself. It is known that, in sensors net-
works, the transmission process is the one spending more energy. Hence, the lifetime of a
network is reduced if data is simply forwarded with no energy concern in mind. Replac-
ing the energy source of a sensor may not be viable because of the surrounding conditions
where the sensors are installed (atomic plant, underground, etc.). In most cases once the
sensor is discharged there is nothing left to be done. All these constraints mean that data
transmission must be thoughtful and must be used only when necessary in order to extend
network operation.

Another and more recent approach to gather the data in sensor networks involves mo-
bile elements. By moving directly to the source, receiving the information directly from

2

1.2 Data Gathering Approaches

it and then delivering it to the destination, mobile elements allow multi-hop communica-
tion, which is energetically inefficient, to be avoided and thus the lifespan of a network to
be extended. A mobile element can be of terrestrial type, travelling over the land, or an
aerial element, called unmanned aerial vehicle (UAV).

This thesis focus on data gathering in WSNs using elements of UAV type. The goal is
to develop an algorithm that can design a set of efficient paths to gather the data generated
by sensor nodes, which are scattered over a given area. More specifically, the contribu-
tions of this thesis are:

• A mathematical formalization of the data gathering problem is presented;

• A deep analysis of the existing solving methods, useful in these kind of problems,
is done;

• A hybrid heuristic algorithm is proposed;

• A standardized benchmark is introduced to measure the performance of the pro-
posed algorithm;

• A head-to-head comparison between the results obtained by the proposed algorithm
and the optimal solutions is done

1.2 Data Gathering Approaches

As stated earlier there are two approaches to gather the information in a sensor network.
Each of these has it own pros and cons that will be discussed in the following subsections.

1.2.1 Classical Networks

In classical networks the data is transferred through the network infrastructure itself from
the sensor node to the base station. Due to energy concerns the throughput in a sensor
network is very limited, normally reaching only a few Kbps. Transmission is the most
energy demanding task that sensor nodes perform. This means that any communication,
and specially multi-hop communication, must be avoided and used only when it is strictly
necessary to maintain network operation for a long time. The main advantage of this
approach is the small delay on data delivery, which can reach a few seconds or even less.

1.2.2 Networks with Terrestrial Elements

In this approach mobile robots are used to collect the data from sensors for a later delivery
to a base station for further processing. In this case bandwidth is higher, capable to achieve

3

1.3 Network Design Problems in Sensor Networks

few Mbps. The most prominent issue with this approach is a time delay between receiving
the data from all sources and delivering it to destination. Since the travelling speed of
terrestrial elements is considerably low, in most cases inferior to one meter per second
(Tekdas et al., 2009) (Richard Pon, 2005) the delay between sensing the data at the sensor
and processing it at the base station is significant. It may take several hours to gather all
the data and deliver it to a base station.

Similarly to the previous approach a power consumption problem also arises. Power
consumption at mobile elements is very high since mobile elements may have consider-
able size and must visit all the nodes to gather the information. However, in this case,
replenishing the power source of the mobile element is not a problem since it is easily
accessible. This approach can fully eliminate multi-hop communication at the expense of
delay.

1.2.3 Network with UAV Elements

A UAV approach is in all similar to the approach stated above. The main advantage in this
case is the drastic reduction of the delay. Since we are talking about an element with fly-
ing capabilities its travelling speed is much higher than terrestrial elements. Therefore, it
can collect data scattered across all the sensors much more efficiently and quickly. Some
research has been done on the use of UAVs in WNS (Sujit et al., 2013), (Pignaton de Fre-
itas et al., 2010), (Costa et al., 2012). However, the UAV approach has still not reached
the deserved attention.

Performance metrics Multi-Hop Terrestrial Element UAV

Delay
Low

(second)
High

(hours)
Medium
(minutes)

Energy Consumption
High

(non rechargeable)
High

(rechargeable)
High

(rechargeable)

Bandwidth
Medium

(few Kbps)
Medium-High

(few Mbps)
Medium-High

(few Mbps)

Table 1.1: Comparison between different data gathering approaches.

1.3 Network Design Problems in Sensor Networks

1.3.1 Topology Design

Designing an efficient sensor network may be a problem by itself. How to know where to
put the sensors in order to achieve a good performing network? What to do if sensor nodes
are scattered or randomly placed? The physical distribution of nodes can be a difficult

4

1.3 Network Design Problems in Sensor Networks

task by itself. In case of random sensor distribution there is no guaranty whatsoever that
multi-hop based protocols will work. Some of the sensor nodes may be out of range of the
network thus compromising its quality. A network should always be carefully designed
and optimized in order to work properly, which usually involves environment analysis
and studies. Different topologies have been proposed to maintain the reliability of the
sensor network (Mamun, 2012). In a star topology the sensor nodes maintain a direct
communication line with the base station. This basic approach is suitable for simple
cases. However, due to direct communication limitation this topology in not capable to
cover extensive areas and requires predetermined positioning of nodes. A tree topology
is capable to solve this coverage issue. As in a star topology, each node has a single
communication path toward the base station but in this case other nodes can act like
forwarding elements and thus the covered area is extended. However, the topology is
not fault tolerant because if a single routing node fails the sensor nodes will lose their
communication path toward the base station. The mesh topologies, by adding redundant
communication paths, remediate the reliability issues of tree topologies at the expense of
additional hardware.

The use of mobile elements that can go directly to a source and gather the information
could greatly relief the process of topology design because of routing flexibility.

1.3.2 Network Layer

Even if the topology is well designed there are still issues with sensor networks. How to
correctly disseminate the data? How to efficiently forward data provenient from another
node? The layer responsible for creation of paths between a source and a destination
is called network layer. This layer is strongly influences the efficient use of network
infrastructure. The process of data delivery through the network is called routing. In
case of predetermined node distribution it is possible to create delivery paths a priori.
However, in a random distribution that can result in non uniform topologies the sensors
must be able to determine their positions, discover their neighbours and identify paths to
a base station, which can be a difficult task.

Another critical issue in wireless sensor networks are choke points (Figure 1.1). As
shown in Figure 1.1 a sensor node where choking occurs not only has to send its own
data to a base station but also has to forward the data from many other nodes. As a
result the power consumption of this node will be extremely high and it will deplete its
power source much quicker than the other sensor nodes. When this occurs the network
becomes unusable since the information does not reach its destination. Moreover, if a
sensor network is composed of sensor nodes of different types and different sampling rates
then network traffic becomes unbalanced resulting in performance inefficiency. Paths
must be designed in a balanced way in order to extend the life span of a network. To solve

5

1.4 Problem Definition

Figure 1.1: Choke point.

the issue presented in Figure 1.1 traffic could be split between two sensors nodes that are
in the vicinity of the base station.

Another approach to deliver the data can be achieved with a mobile element. In this
case, instead of designing paths for a multi-hop communication, the paths are designed
for the mobile element itself. This way, the mobile element travels throughout all the
network in an efficient way and gathers all the information directly from the source before
delivering it to a base station. An optimization of paths is a crucial point of a good
performing sensor network.

After exposing all these issues it is now possible to generally describe the problem to
be solved in this thesis.

1.4 Problem Definition

Given a set of nodes distributed on a surface with respective coordinates and their time
restrictions, given a sink node with its own coordinates and also a set of UAVs that can
freely travel over the surface, the goal is to create paths in such a way that:

• All node are visited only once

• All routes begin and end at the sink node

• All time restrictions are respected

• The number of mobile elements is kept minimum during the data gathering process

• Total travelling distance is minimized

In this thesis it is assumed that the distance between any pair of nodes can be given
by the euclidean distance, which may not be possible in reality but since we are trying to
make a theoretical demonstration euclidean distance will suffice. Also, the distribution of

6

1.4 Problem Definition

Figure 1.2: Problem illustration.

nodes may be random (R), clustered (C) or both random and clustered (RC). Finally, each
sensor nodes has its own unique time restrictions.

The problem described in this section is NP-hard. A more detailed description of this
implication will be done in Chapter 2.

1.4.1 Practical Applications

Due to the existence of some delay when using mobile elements the approach presented
in this thesis should not be used in critical situations, such as fire, radiation, structural
damage monitorization and detection when it is required response at the time. In these
cases every second counts and, therefore, the classical multi-hop approach is preferable.
However, even in these cases, due to structural damage and possible disruptions in com-
munication channels drones may become handy as they do not require additional infras-
tructure to gather the data. In other cases where the delay is not an important aspect
mobile elements can and should be used.

At the research center where this thesis was developed, this problem, is expected to be
applied, in the future, to detect the cork tree decease at an early stage. This project is just
starting at the Center of Electronics Optoelectronics and Telecommunications (CEOT)
and is currently in an early development stage.

The UAV approach can also be used to forecast eventual wildfire occurrences and to
warn about the necessity to perform prevention measures. In order to accomplish this it
is necessary to place temperature, humidity and wind sensors over the area being mon-
itorized and periodically gather the data from them. In Portugal, especially during the
summer, the wildfire is a common event and monitorization could reduce drastically the
number of fire incidents.

7

C H A P T E R 2

Mathematical Optimization

2.1 Introduction

Mathematical optimization is a field of mathematics whose goal, depending of the prob-
lem to be solved, is to minimize or maximize the value of the objective function through
the combination of feasible variables. Generally, a mathematical optimization can be
described in the following way:

minx∈Sf(x) (2.1)

where:

• f(x) is the objective function;

• S is the set of feasible values that x can take;

• x, depending of the problem, can be integer or real.

The expression 2.1 means that variable x can only take values of set A and for each of
these values the objective function gives a quantitative description about the solution. In
this case in particular, the goal is to find x in such way that the f(x) is minimum.

The duality theorem allows to rewrite the function 2.1 as maximization problem.
However, since we are tackling a cost minimization problem, the remaining part of this
report will only focus on minimization functions.

2.2 Combinatorial Optimization

Combinatorial optimization is one of the branches of the mathematical optimization.
Likewise the mathematical optimization, the goal is to minimize the cost of the objective
function. However, in combinatorial optimization the variables are discrete and belong to
a finite set.

8

2.3 NP-Hardness

For a better understanding of the combinatorial optimization concept let us take a look
at a simple example.

Minimize the perimeter of a square in such a way that the product of length and width
is equal to 10.

min2x+ 2y (2.2)

subject to:

xy = 10 (2.3)

x, y ∈ N (2.4)

Table 2.2 presents the set of possible solutions for the problem stated above.

Solution x y Perimeter
1 1 10 22
2 2 5 14
3 10 1 22
4 5 2 14

Table 2.1: Solutions for perimeter minimization.

As shown in Table 2.2, all solutions are feasible since all of them satisfy the con-
straints. However, only solution 2 and 4 minimize the perimeter and thus only these two
solutions suit this problem.

2.3 NP-Hardness

Routing and scheduling problems complexity have been largely explored and studied and
it has been consistently proven that routing problems are NP-hard. NP problems are not
solvable in polynomial time O(nk) where n is the input size of a problem and k is some
constant. In fact, NP class consists of a set of problems whose solution can be efficiently
verified but finding the actual solution is a quite difficult task.

The fact that the problem studied in this thesis is NP-hard implies that alternative ap-
proaches are required to solve it, namely heuristic methods. A more detailed explanation
about routing and scheduling problems complexity can be found in (Lenstra and Kan,
1981).

9

2.4 Mathematical Formulation

2.4 Mathematical Formulation

A generic data gathering problem consists in collecting the data of a set of nodes using
a set of UAVs. The problem can be represented by a graph G = {N,A} where N =

{0, 1, . . . , n, n+ 1} is a set of vertices, A ⊂ {(i, j) : i, j ∈ N} is a set of edges and
C = N \ {0, n+ 1} is the set of sensor nodes (Ombuki et al., 2006).

Figure 2.1: Graph representation.

Nodes 0 e n + 1 represent the base station, starting and ending points for all UAV’s
paths. The remaining nodes 1, 2, ..., n represent the sensor nodes that must be visited. If
in a real case the starting and ending points are the same then node n + 1 can be seen as
a virtual node for formulation purposes. The set of edges of a graph, represented by A,
contains all possible link between all the nodes, including the base station, of the problem.
In this case in particular it is assumed that the graph is complete, i.e., it is possible to travel
from a node ni ∈ N to any other node from nj ∈ N \ ni

Each edge has its own cost cij and a time tij, (i, j) ∈ A. The cost cij represents the
cost associated to a travel between the vertex i and vertex j. Similarly, tij represents the
time required to travel from vertex i to vertex j. In this case, and for theoretical purposes,
it is assumed that the cij = tij = dij where dij is the euclidean distance between vertices i
and j. But the developed algorithm is generic and can perform optimization even in cases
where the equality is not met.

The set of UAVs is denoted by V and each UAV v ∈ V has it own buffer size qv. Each
sensor node n, represented by a vertex at the graph, has data dn to be gathered, n ∈ C.
Each sensor node n can have a time window [stn, etn], where stn and etn represent the
start time and end time of a sensor node, respectively. An UAV can arrive to a node n
before its start time but it will have to wait until sti to receive the data. In the other hand,
an UAV is not allowed to arrive to a node n after end time etn.

All UAVs must start at the base station within the range [st0, et0] and arrive to a base
station within [stn+1, etn+1]. These intervals represent time windows of a base station.

10

2.4 Mathematical Formulation

In this particular case, the start time restriction is irrelevant because base stations are,
normally, always active and we can assume that st0 = 0, i.e., all routes start at instant
0. However, to design a generic algorithm that could operate even in cases when a base
station has other time windows, this restriction should be taken into account.

The model described results in a problem with three decision variables, x, v and a. For
each edge (i, j), where i 6= j, i 6= n+ 1, j 6= 0, and for each UAV v, the decision variable
xijv is equal to 1 if UAV v travels from node i to node j, 0 otherwise. The decision
variable aiv represents the arrival time of UAV v ∈ V to node i, i ∈ C. The decision
variable ϑv is equal to 1 if current UAV is required to gather the data, 0 otherwise.

The goal of the gathering problem is to gather the data from nodes C by using UAVs
from V in a way that the distance during the gathering process is minimized. This con-
straint can be expressed using a cost function because smaller distance implies smaller
costs. However, these requirements must comply with the following constraints:

• Buffer size of UAV

• Time windows

• Each node must be visited only once

• All routes begin at node 0 and end at the node n+ 1

The problem is formulated as follows:

min
∑
v∈V

∑
i∈N\{n+1}

∑
j∈N\{0}

cijxijv (2.5)

Subject to:∑
v∈V

∑
j∈N\{0}

xijv = 1, ∀i ∈ C (2.6)

∑
v∈V

∑
i∈N\{n+1}

xijv = 1, ∀j ∈ C (2.7)

∑
i,j∈sXs

xijv ≤ |S| − 1, ∀v ∈ V, S ⊆ {1, ..., n} , 2 ≤ |S| ≤ n− 1 (2.8)∑
i∈C

di
∑

j∈N\{0}

xijv < qv, ∀v ∈ V (2.9)

∑
j∈N\{0}

x0jv = ϑv, ∀v ∈ V (2.10)

∑
i∈N\{n+1}

xihv −
∑

j∈N\{0}

xhjv = 0, ∀v ∈ V, ∀h ∈ C (2.11)

11

2.4 Mathematical Formulation∑
i∈N\{n+1}

xi,n+1,v = ϑv, ∀v ∈ V (2.12)

a0v = 0, ∀v ∈ V (2.13)

aiv + si + tij −K(1− xijv) ≤ ajv, ∀v ∈ V, ∀i ∈ N \ {n+ 1} ,∀j ∈ N \ {0} , i 6= j

(2.14)

ϑvsti ≤ aiv ≤ ϑveti, ∀v ∈ V, ∀i ∈ N (2.15)

xijv ∈ {0, 1}, ϑv ∈ {0, 1}, aiv ≥ 0, ∀v ∈ V, ∀i ∈ N,∀j ∈ N (2.16)

Where:

Sets

V = {1, 2, ..., v} set of UAVs
N = {0, 1, ..., n, n+ 1} set of nodes including

the base station
C = {1, 2, ..., n} set of nodes
A = {(i1, j1) : i, j ∈ N, i 6= j} set of edges

Constants

di amount of data to be gathered
at node i ∈ N

sti start of the time window
of node i ∈ N

eti end of the time window
of node i ∈ N

qv buffer size of UAV v ∈ V
cij cost of travelling from node i

to j, i, j ∈ N
tij travel time from node i

to j, i, j ∈ N
si service time at node i ∈ C
K is a large value

Decision variables

xijv one if UAV v ∈ V
travels from node i to
node j, i, j ∈ N

aiv arrival time of UAV v ∈ V
to node i ∈ N

ϑv one if vehicle v ∈ V
is required to gather the data

The objective function (2.5) indicates that the costs must be minimized. Constraints
(2.6) and (2.7) indicate that each node must be visited by a single UAV. Constraints (2.8)

12

2.4 Mathematical Formulation

avoid the formation of subcircuits. Constraints (2.9) indicate that buffer size of the UAV
v can not be exceeded. Constraints (2.10), (2.11) and (2.12) are flow restrictions. The
first one (2.10) indicates that all UAVs must start at the base station, the second one
(2.11) indicate that UAV can not stay at the node, i.e., the UAV must arrive to a node,
gather the data and depart. Constraints (2.12) indicate that paths must end at the base
station. Constraints (2.13) indicate that all UAVs start gathering process at instant zero.
Constraints (2.14) indicate that UAV v can not arrive at node j before aiv + si + tij if it
travels from node i to node j. Constraints (2.15) state that time window restriction must
be met. Finally, the (2.16) restrictions define variables.

Note that this formalization can be applied to many gathering problems. In the fol-
lowing sections this will be adapted to the data gathering problem in WSNs using UAVs,
where data collected can also have a period of validity (Time-To-Live), which is not in-
cluded in this formalization.

13

C H A P T E R 3

Solving Methods

Most of the research on data gathering in WSNs uses adaptations or variations of the Ve-
hicle Routing Problem (VRP) that was and continues to be a hot topic in the optimization
field. The main reason is attached to economic grounds. More and more transport com-
panies are embracing software utilities which can improve their business models in many
aspects such as cost reduction and more efficient use of resources during the distribution
and/or gathering of the goods. Another but not less important reason is the inexistence
of a good performing algorithm which could solve all routing problems seamlessly. This
simple fact draws the attention of researchers from all over the globe.

Mobile element routing have not draw much attention in academic field. As result,
when compared with other optimization problems, such as the VRP, mobile element rout-
ing is just a drop in an ocean. Due to little research about mobile element routing in WSNs
and due to its similarity with the VRP we will gather knowledge about solving methods
in a known and largely studied area and adapt them to the mobile element routing.

3.1 State Of The Art

In this section we will take a look at some of the mobile element routing problems tackled
by researchers.

In Data Gathering problem (Bhadauria and Isler, 2009) all sensor nodes must be vis-
ited in such way that the expended time to perform this task is minimum. This problem is
a variation of k-Travel Salesman Problem.

Time-constrained Mobile Element Scheduling (Almi’ani et al., 2010) state that all
sensor nodes must be visited within their own time window, i.e., period of time when sen-
sor is awake and capable to communicate. This problem is a straightforward adaptation
of VRP-TW in a sensor network.

In Deadline Scheduling (Somasundara et al., 2007) a set of sensor nodes with limited
buffer size and different sampling rate must be visited before their buffer overflows. In
Calibration Scheduling (Bychkovskiy et al., 2003) sensor nodes must be visited and cali-
brated before the error of sensed data exceeds a certain threshold. These problem can also

14

3.2 Vehicle Routing Problem

be viewed as VRP-TW where the deadline to visit a node represents a time window.
In Rendezvous Planning (Xing et al., 2008) there are intermediate buffer nodes (ren-

dezvous points) where the data from the sensor nodes is stored. In this problem the data
generated by sensors must be delivered to a base station within a certain deadline. The
delivery is done by mobile elements that travel to rendezvous points to gather the data
and deliver it to destination. This problem can be viewed as simplified VRP-PD (Pickup
and Delivery) where the data must be picked up at rendezvous points and delivered to the
destination.

As seen, all these are adaptations of VRP. Therefore we will take a close look at the
original problem and its solving methods and then apply them to a WSN with mobile
elements problem.

3.2 Vehicle Routing Problem

In the VRP the goal is to find the best set of routes to visit all the clients distributed across
a certain geographical area. However, in order to understand this definition it is necessary
to define clearly what is the ”best route”. Best route is one that results in a minimum
usage of resources without violating any of restrictions imposed by the problem. Usually
VRP has time and capacity restrictions.

• Time Restriction (Time Windows) - the vehicle must visit the clients in a time win-
dow defined by clients. Time windows can correspond to a normal working day.
For example, let us assume that there is a client with the following time window -
from 9 a.m. until 5 p.m.. This means that the distribution vehicle is obliged to visit
and serve this client during this time window. In case of a mobile element routing in
sensor networks this could correspond to a state when the sensor is in awake mode
and is performing some activity. Similarly to a vehicle in VRP, the UAV must visit
a sensor when it is active and has some data to send, or due to a deadline to visit a
node with a limited buffer size.

• Restriction Capabilities (Capacitated Problem) - this restriction limits the number
of visiting clients. A vehicle can not serve a client if it does not have the capacity
to transport the required goods. In sensor networks with mobile elements this could
correspond to data to be gathered by the UAV. An UAV can not visit and gather the
data of a sensor node if its buffer does not have the capacity to receive the data.

3.3 Two Step-Algorithm Approaches

By nature, the human being has difficulty to process large quantities of information. Usu-
ally this task is done through the decomposition of the data into smaller and independent

15

3.3 Two Step-Algorithm Approaches

parts followed by processing and analysis of those parts. This strategy is called divide-
and-conquer. The division step implies the decomposition of a problem in small parts and
conquer stands for a resolution of decomposed parts which, when combined, result in a
solution to the original problem. This simple method has large applications in science,
and computer science is no exception, not even the most powerful computers are able to
solve, in a reasonable time, optimization problems with extremely large number of vari-
ables. In order to accelerate the search for the solution a two step algorithm can be used,
Cluster First - Route Second.

3.3.1 Clustering First

Clustering is done in the initial phase, before solving the problem. At this stage all nodes
(clients or sensor nodes) are equal and belong to a single set (Figure 3.1).

Figure 3.1: Example of a problem before clustering process.

The clustering process is done according to some criteria, normally by geographical
localization but it also could be done following any other criteria that can allow the cluster
formation based on the similarity features of the nodes (Figure 3.2).

Upon the completion of clustering stage, the original problem is decomposed in a
set of independent sub-problems with a smaller size and easier to solve. Normally, each
cluster can be seen as a travelling salesman problem (TSP) (Baker, 1983) to which time
windows restrictions can be added.

3.3.2 Routing Second

Once the clustering is complete and the problem is divided, each of the clusters can be
separately solved. For each cluster, a mobile element or a set of mobile elements will

16

3.3 Two Step-Algorithm Approaches

Figure 3.2: Example of a problem after clustering.

be assigned. They will be responsible for the data collection from their cluster (Figure
3.3). During this step a numerous amount of methods can be applied, exact approaches or
heuristic and meta-heuristics.

Figure 3.3: Example of a problem solution.

The two step algorithm facilitates the search of the solutions as it divides the prob-
lem in a set of independent sub-problems. The division of the original problem reduces
drastically the search space, which consequently results in a more efficient search of the
solution for the original problem.

17

3.4 Heuristics

3.4 Heuristics

Heuristics are a set of algorithmic methods whose goal is to find the optimum solution
for an optimization problem. These methods have a certain degree of ”knowledge” about
the problem, which allows them to perform a relatively small search in the search space.
Usually heuristics are capable to generate acceptable solutions in short periods of time.

However, it is important to mention that there is no guarantee that the solution found
is optimum or even if it is near it. The only way to evaluate the quality of the generated
solution is to solve the problem and find the optimum solution but, as seen earlier in
Chapter 2.3, this is a difficult task.

3.4.1 Constructive Heuristics

Constructive heuristics build the solution in an iterative way. These heuristics start with
an empty solution and at each iteration the current solution is extended. This process is
repeated until the complete solution is constructed. Usually constructive heuristics are
greedy and do not possess backtracking mechanics, i.e., once an element is inserted in the
solution it is impossible to remove it.

Figure 3.4: Solution produced by constructive heuristic.

Figure 3.4 is an example of what a constructive heuristic can produce. As shown, the
solution generated can be far from optimum and could offer a lot of space for improve-
ments. Improvements that can be done by other set of heuristics, which will be addressed
in Chapter 3.5.

18

3.4 Heuristics

3.4.2 Nearest Neighbour Heuristic

Nearest neighbour heuristic is probably the most intuitive and, perhaps because of that,
it is the easiest to understand. As the name suggests, the idea behind this algorithm is to
choose always the closest node to the current position of the mobile element. However,
a possible time restriction must be taken into account, meaning that choosing the closest
node is not a straightforward process. In order to find the closest neighbour the following
cost function can be used (Jaheruddin, 2010):

cij = δ1dij + δ2tij + δ3vij (3.1)

Where:

• cij travelling cost between node i and j

• dij distance between node i and j

• tij time difference between completing node i and staring node j

• vij remaining time until last possible start of j following i

• δ1 + δ2 + δ3 = 1 and δ1 ≥ 0, δ2 ≥ 0, δ3 ≥ 0

The nearest neighbour heuristic can be described in a generic way by Algorithm 1.

Algorithm 1: Nearest neighbour heuristic.
input : G = (N ,A) and set of UAVs V .
output: Feasible solution

1 Start with first mobile element at the base station

2 while there are nodes to be visited do
3 while mobile element is not full or there are nodes to visit do
4 Find closest and unvisited node to current node
5 Assign closest node to the current mobile element
6 end
7 Choose next mobile element
8 end

3.4.3 Clarke and Wright Savings Heuristics

The main concept of this method is to reduce costs by merging two or more routes in a
single one (Florêncio, 2011). However route merging must comply to all the restrictions
imposed by the problem being solved.

19

3.4 Heuristics

Figure 3.5: Example of route merging between node i and j.

The economy of resources by route merging can be quantified by a mathematical
formula. For a better understanding of the formula let us apply it to Figure 3.5. In case
(a) the travelling cost can be expressed in a following way:

da = c0i + ci0 + c0j + cj0 (3.2)

Where cab is the cost of travelling from node a to a node b. Similarly for case (b):

db = c0i + cij + cj0 (3.3)

The amount of saved resources is given by the difference between the resources used
in case (a) and in case (b)

Sij = da − db = ci0 + c0j − cij (3.4)

However, before merging the two paths it is necessary to check if the resulting route
will be able to satisfy all the restrictions imposed by the problem. There are cases where
one route can be merged with two or more other routes. In this case, the tie is broken by
the value of Sij , route with the highest value of Sij is chosen, as the goal is to minimize the
costs. A generic description of Clarke and Wright savings heuristic is done in Algorithm
2.

The Clarke and Wright algorithm has two variations, the sequential one and parallel
one. In the parallel version multiple routes are built simultaneously. Usually, the parallel
version produces sightly better results.

3.4.4 Push Forward Insertion Heuristic (PFIH)

Push forward insertion heuristic (PFIH) is a greedy heuristic presented by Solomon (1987).
This method has been implemented and tested by several authors (Thangiah et al., 1993),
(Russell, 1995), (Thangiah, 1999), (Tan et al., 2001). The operational sequence of this
algorithm is quite simple. First step is to classify and define the sequence by which
nodes will be inserted in the solution. Usually, this is done by the following cost function

20

3.4 Heuristics

Algorithm 2: Clarke and Wright savings heuristic.
input : G = (N ,A) and set of UAVs V .
output: Feasible solution

1 Create a direct route for each node

2 while cost saving merge exists do
3 Choose a route
4 Compute all possible cost saving merges for current route
5 Sort all merges by Sij

6 while current route is mergeable do

7 if merge does not violate restrictions then
8 Merge routes
9 end

10 end
11 Next route
12 end

Thangiah et al. (1994):

ci = −α× di,0 + β × eti + γ((pi/360)× di,0) (3.5)

Where:

• ci PFIH cost of node i.

• di,0 distance between node i and base station.

• eti upper limit of time window of node i.

• pi polar angle between node i and the base station.

• α + β + γ = 1

Different α, β and γ values can be used to give more or less importance to formula
parcels, resulting in distinct ordering of the nodes. For instance, large values of α will
make more preferable nodes farther from the depot. Larger values of β will make nodes
with earlier closing window preferable. Larger values of γ will make preferable to insert
the nodes in a circular spanning mechanism (like a ”radar”). Normally, α is set to 0.7, β
to 0.1 and γ to 0.2. However, these values were empirically established by Thangiah et al.
(1994), Ghoseiri and Ghannadpour (2009) and other values can be used. Given the cost
of all nodes, insertion is quite straightforward (Algorithm 3).

Usually this method is used to establish the upper bound of the problem. The solution
produced by this heuristic is mostly used as input information in other methods for further
improvements.

21

3.5 Improvement Heuristics

Algorithm 3: Push forward insertion heuristic.
input : G = (N ,A) and set of UAVs V .
output: Feasible solution

1 Calculate PFIH cost for each node
2 Sort all the nodes by their PFIH cost

3 while there are nodes to be visited do
4 if number of routes != 0 then
5 Insert in the route where the insertion causes minimal distance increase
6 if not possible then
7 Create new route
8 Insert current node into recently created route
9 end

10

11 else
12 Create new route
13 Insert current node into recently created route
14 end
15

16 end

3.5 Improvement Heuristics

Unlike constructive heuristics that start with an empty solution and build a new solution
in an iterative way, improvement heuristics start with an already existing and feasible
solution. At each iteration the improvement heuristic explores the neighbourhood of the
current solution to find a better one.

The main problem with this process and with all improvement methods in general is
that they do not possess mechanisms to escape local optimums. When a local optimum
is found, the algorithm enters in a stagnation stage, i.e, all neighbours are worse than the
current solution and no further improvement is possible. Figure 3.6 represents the search
direction of the improvement heuristic, the sequence of the explored neighbours and the
solution produced by it.

In this example the improvement heuristic received as input the solution produced in
Figure 3.4.

3.5.1 Ruin and Recreate Principle

Since the constructive heuristics are usually greedy methods, i.e., at each iteration the
decision is made by a local criteria, the final solution may be far from optimum. Hence
solutions produced by constructive heuristics offer room for improvements most of the
times. The ruin and recreate principle (Schrimpf et al., 2000) is a two step improvement
method that can be used to improve current solution. During the first stage of this method

22

3.5 Improvement Heuristics

Figure 3.6: Solution produced by improvement heuristics.

a set of nodes is ejected from the solution. There are many criteria to eject a set of nodes:

• Random ejection - from each route a random number of nodes is ejected;

• PFIH cost based ejection (obtained after execution of PFIH (Chapter 3.4.4) - from
each route nodes are ejected by their PFIH;

• Proximity ejection - a node is selected and a set if its neighbours is ejected.

During the second stage, recreate principle, the solution is restored in best possible
way. In other words, during this stage ejected nodes are reinserted into solution. Usually
the reinsertion is done by constructive heuristics but other methods can be used. Despite
of the simplicity of this method its systematic repetition could greatly improve the solution
given as input.

3.5.2 Local Search

Local search is an improvement heuristic and as such it needs an initial solution as input.
This set of methods perform a set of operations on a given solution aiming to improve it
(Carić et al., 2008). Local search operators can be divided in two large sets - intra routes
and inter routes.

Intra routes operators (Figure 3.7) perform operations on a single route at the time.
These operators rearrange the sequence of the nodes in a route in order to make it more
efficient. Some of the intra routes operators are:

23

3.6 Meta-heuristics

• Relocate

• Exchange

• 2-Opt

• Or-Opt

Figure 3.7: Intra route operators (Carić et al., 2008).

On the other hand, inter route operators (Figure 3.8) perform operations on two routes.
These methods swap or rearrange the nodes between two routes in order to improve their
quality and, consequently, to improve the solution. Some of the inter route operators are:

• Relocate

• Exchange

• Cross-Exchange

• Icross-Exchange

• 2-Opt*

Algorithm 4 describes generically the sequence of steps of the local search methods.
As stated earlier, improvement heuristics can stop when it is not possible to improve

the current solution. Like the constructive heuristics there is no guarantee that the pro-
duced solution is the global optimum. Improvement heuristics do not possess mechanisms
to escape local minimums and to explore new directions. Escaping mechanisms and tech-
niques belong to a different set of heuristics, usually called meta-heuristics.

3.6 Meta-heuristics

Meta-heuristics are a set of procedures that combine heuristic and non-deterministic meth-
ods in order to perform an efficient search in the search space. Heuristic methods allow

24

3.6 Meta-heuristics

Figure 3.8: Inter route operators (Carić et al., 2008).

Algorithm 4: Local search.
input : Feasible Solution
output: Best solution found

1 while stopping criteria is not satisfied do
2 Apply intra routes operators on current solution
3 Apply inter routes operators on current solution

4 if new solution is better than current solution then
5 Replace current solution with new solution
6 end
7

8 end

meta-heuristics to perform guided search to where a good solution might be. On the other
hand, non-deterministic methods are used to escape local minimums and to explore new
search directions. Usually meta-heuristics are used in combinatorial optimization prob-
lems, in which routing problems are included.

Figure 3.9 represents the application of meta-heuristics to the solution produced by
improvement heuristics in Figure 3.6. In this example the solution found by the meta-
heuristic is indeed the global optimum but actually, in real cases there is no guarantee of
its optimality.

It is important to mention that the input given to a meta-heuristic can be produced by
any other methods, it does not have to be necessarily produced by improvement heuristics.
Figure 3.9 is just an example of a possible sequence of steps to find an optimum solution.

25

3.6 Meta-heuristics

Figure 3.9: Solution produced by meta-heuristic.

3.6.1 Genetic Algorithms

Genetic algorithm is a meta-heuristic inspired on nature and on the way species evolve.
According to the observations of Darwin, stronger species have greater probability to
survive and to produce descendants at least as strong as their parents. In a similar way,
weak species tend to produce weak descendants that tend to disappear over time. Genetic
algorithms follow the idea described above and adapts it to solve numerous optimization
problems.

Genetic methods systematically apply a set of operators (genetic operators) on a pop-
ulation (set of possible solutions) in order to find an optimal or a near optimal solution
(Ombuki et al., 2006).

Algorithm 5: Genetic algorithm.
input : G = (N ,A) and set of UAVs V .
output: Best solution found

1 Generate initial population

2 while stopping criteria is not satisfied do
3 Apply selection operators on initial population
4 Apply crossover on a newly formed population
5 Apply mutation operators on population from crossover
6 Replace initial population with a new one
7 end

Genetic algorithms are easy to implement and when all of the parameters are properly
tuned it can produce good results. However, tuning genetic algorithms is a difficult and a
time consuming task, it requires large set of tests in order to discover the best combination

26

3.6 Meta-heuristics

of parameters. Also it is important to notice that for different input the best combination
of parameters may not be the same, meaning that it may be necessary to repeat the tun-
ing process again. Another issue with genetic algorithms are the super individuals, i.e.,
solutions that are far better that the rest of the population. These solutions can quickly
dominate the population and cause early convergence.

A more detailed description about different steps of genetic algorithms can be found
in paper made by (Moura, 2008).

3.6.2 Tabu Search

Tabu search is an iterative meta-heuristic that performs an efficient space search by ex-
ploring neighbours of the solution given as input (Tam and Ma, 2008). The tabu search
accepts neighbours that are slightly worse than current solution. The admissibility of an
inferior solution may seem as a bad strategy, however this method allows to escape local
minimums and to explore new search directions.

To avoid exploration in an already explored directions, all solutions generated by tabu
search are placed, for a certain number of iterations, in a tabu list. Tabu list is a mecha-
nism that makes the search more efficient and guided. This way, each time a new solution
is generated it is necessary to check if it is already on the tabu list. If a newly produced so-
lution is better than the current one but, is already in the tabu list, then it will be dismissed.
Tabu list can also be called as short term memory, since it only ”blocks” solutions for a
short period of time. Besides the short term memory, tabu search has also an intermediate
memory and a long term memory, which make the search even more efficient.

• Intermediate memory - contains rules of intensification that allow to perform guided
search in a direction where an optimum solution might be. Intensification rules
perform only small changes in current solution in order to avoid deviation from the
current search direction.

• Long term memory - contain rules of diversification that allow the algorithm to
explore new search directions. Diversification rules are a set of methods that can
change the current solution in a drastic way and thus explore new search direc-
tions. Normally, diversification rules are used when tabu search enters the stagna-
tion phase.

Tabu search is a widely studied method and was largely applied in vehicle routing
optimization problems. Results obtained by (Bräysy and Gendreau, 2002) show that tabu
search is capable to find good solutions in short periods of time.

27

3.6 Meta-heuristics

Algorithm 6: Tabu search.
input : G = (N ,A) and set of UAVs V .
output: Best solution found

1 while stopping criteria is not satisfied do
2 Generate neighbourhood
3 Select best neighbour
4 Update current solution
5 Update tabu memory
6 end

3.6.3 Simulated Annealing

Simulated annealing is a set of procedures inspired on thermodynamic laws that describe
atom’s behaviour at different temperature levels (Lin et al., 2011). When the temperature
is high the atoms can move more easily, in routing optimization this state corresponds
to a stage when it is possible to make drastic changes in the current solution. A lower
temperature reduces the atoms movements (Figure 3.10). In optimizations problems this
correspond to a neighbourhood exploration, i.e., only small changes are made in the cur-
rent solution.

Figure 3.10: Entropy rate.

The main limitation of this method is the fact that it is difficult to discover when the
temperature must be reduced. Despite that, results obtained by Chiang and Russell (1996)
in VRP are very promising.

28

3.6 Meta-heuristics

Algorithm 7: Simulated annealing.
input : G = (N ,A) and set of UAVs V .
output: Best solution found

1 while temperature != lower bound do
2 while number of tries for current temperature != 0 do

3 Randomize according to the current temperature

4 if new solution is better that current solution then
5 Replace current solution with new solution
6 end
7

8 end
9 Decrease temperature by specified rate

10 end

3.6.4 Multiple Ant Colony Systems (MACS)

This algorithm is based on the behaviour of ant colonies, where ants cooperate to achieve a
certain goal. In multi ant colony systems (MACS), each colony tries to minimize a single
objective of the original problem (Gambardella et al., 1999). For instance, in vehicle
routing problems, one colony minimizes the number of mobile elements required and the
other one minimizes the travelling time. However, optimizing each objective separately
does not solve the original problem. This requires a cooperation between the ant colonies
which is done by pheromones exchange that are left by each colony.

Figure 3.11: Multiple ant colony systems Gambardella et al. (1999).

Research by Gambardella et al. (1999) has a more detailed description about MACS
and its methods.

29

3.6 Meta-heuristics

3.6.5 Guided Local Search

This method (Mills et al., 2003) is quite similar to the Local Search (Chapter 3.5.2). The
main difference is that Guided Local Search can penalize the current solution in order to
escape local optimums. When the algorithm enters into a stagnation phase, i.e., is trapped
in local optimum, an augmented cost function is used. The idea behind the augmented
cost function is to penalize neighbourhood solutions and consequently make all neigh-
bourhood less attractive than other solutions located in more distant neighbourhoods and
thus, deviate the search direction to other search spaces. The augmented cost function can
be expressed in the following way:

h(s) = g(s) + λ×
n∑

i=1

Pfi × Ifi (3.6)

Where:

• s current solution

• g original cost function

• { f1, ..., fn } is a set of attributes that a solution possess

• Binary indication function Ifi , which determines if a certain attribute is present in a
solution.

• Penalization value Pfi , which penalizes solutions that have attribute fi. Initially set
to 0 but is adapted with time.

The parameter λ can be adapted to allow diversification or intensification of the search.
Higher the value of λ more diverse will be the search, inversely lower the value of λ more
directional and guided will be the search. Research performed by Kilby et al. (1997) show
that this method is capable to find near optimum solutions in multiple cases of Solomon
benchmark (Solomon, 1987).

30

C H A P T E R 4

Data Gathering in WSNs

4.1 Introduction

In previous sections the main challenges of the data gathering process have been stated.
The mathematical formulation of the problem tackled in this thesis was introduced and
some of general solving methods have been explored. In this section, the tackled problem
will be reformulated, to incorporate the particularities of using mobile elements in WSNs,
and a new hybrid heuristic approach to design paths for mobile elements in WSN will be
presented and discussed.

4.2 Extended Problem

Given a set of sensor nodes that collect data about surrounding environment and a set o
UAVs that will gather the data, the goal is to design an efficient set of paths to gather the
data without violating the problem constraints.

Each sensor node has it own coordinates that identify its position. Moreover, each
node has different buffer size to store the information and different sampling rate. This
means that each node will fill its own buffer at different times. If the buffer size and
the sampling are known then, it is possible to estimate the time window in which the
buffer will be almost full and when it will be necessary to transfer the data to another
entity, in this case the UAV. The transfer process changes according to the buffer size and
throughput. By knowing these two informations it is possible to find out the time required
to transfer the data from the sensor node to a UAV. To avoid losing the stored data, each
node must be visited by an UAV within its own time window. Once the data is transferred
to the UAV it must be delivered to the base station, for further processing, within a certain
deadline. The deadline can be seen as a Time To Live (TTL), and in this case it is a time
label. The data must be delivered to a base station within that TTL. However, if TTL is
large the UAV can visit and gather the data from other nodes. The TTL restriction, which
must be added to the initially discussed mathematical formalization of the data gathering
problem (see Chapter 2.4), can be expressed mathematically as shown in expression 4.1.

31

4.2 Extended Problem

∑
j∈N\{0}:ajv≥aiv

∑
h∈N\{0}

tjhxjhv ≤ DLi, ∀i ∈ C, ∀v ∈ V (4.1)

However, the constraint 4.1 can not be given as input to Mixed Integer Linear Pro-
gramming (MILP) optimizers like CPLEX (IMB CPLEX, 2015) or Gurobi (Gurobi, 2015)
as these solvers does not support the summation indexes that include variables. However,
this limitation could be overcome by rewriting the constrain 4.1 as follows.

kiiv = dli ×
∑

j∈N\{0}

xijv, ∀i ∈ C, ∀v ∈ V (4.2)

kliv − sj − tij +K(1− xijv) ≥ kljv, ∀l ∈ C, ∀v ∈ V, ∀i ∈ C, ∀j ∈ N \ {0} (4.3)

kiiv ≥ 0, xijv ∈ {0, 1}, ∀i, j ∈ N,∀v ∈ V (4.4)

where:

Sets

V = {1, 2, ..., v} set of UAVs
N = {0, 1, ..., n, n+ 1} set of nodes including

the base station
C = {1, 2, ..., n} set of nodes

Constants

dli delivery limit of node i
tij travel time between node i and j
si service time at node i
K is a large value

Decision variables

xijv one if UAV v ∈ V
travels from node i to
node j, i, j ∈ N

kijv remaining delivery limit time
if vehicle v ∈ V
is carrying data belonging to node i ∈ C

The expanded constraints 4.2 and 4.3,originated from 4.1, ensure that the delivery
limit value, of data collected at any node i ∈ C, decreases until the base station is reached.
This decrease takes the travel and service time into consideration. Since all variables are
non negative, data will not arrive outdated to the base station.

Overall, the problem to be solved is a Data Gathering Problem (DGP) applied to
WSNs. In this case in particular, such DGP can be stated as a Vehicle Routing Problem
with Time Windows (VRPTW), described in Chapter 2.4, with extra constraints so that:

32

4.2 Extended Problem

data collected from a specific node reaches the base station within a certain time, called
delivery limit and denoted by dlni

. That is, data has an expiration, or time-to-live (TTL),
label meaning that it can not arrive outdated at the base station. Vehicle routing and
scheduling problems are known to be NP-hard, see (Lenstra and Kan, 1981), meaning
that the DGP will also be hard to solve within an acceptable period of time.

4.2.1 Input and Output

Now that the problem has been clearly defined, it is possible to identify what will be the
input and the output for the purposed algorithm. The input information must contain:

• A set of sensor nodes. Where each node has:

– geographical coordinates

– buffer size

– time windows - start and end time

– delivery limit (TTL)

• A set of UAVs characterized by its:

– Travelling speed

– Buffer size

• A graph with information about the edges linking the sensor nodes

• Throughput during data transfer

With these input parameters, the algorithm must minimize the distance and the number
of paths required to gather the data from all sensor nodes. The output must provide
detailed information about the obtained solution:

• Number of paths

• Total distance

• Distance of each route

• Duration of each path

• Sequence of visited nodes

• Arrival time to each sensor node

• Departure time from each node

33

4.3 Proposed Hybrid Heuristic Algorithm

4.3 Proposed Hybrid Heuristic Algorithm

4.3.1 Problem Limits

Since this thesis tackles the combinatorial optimization problem it becomes necessary
to establish the limits of the solution. Finding the optimum solution requires solving
the mathematical problem with exact methods, which as seen in Chapter 2 is already a
difficult task by itself. However, establishing an upper bound of the problem is more
accessible. Usually, to set the upper bound constructive heuristics are used, because they
are fast and, if well designed, can produce good results. In this thesis a customized Push
Forward Insertion Heuristic (Chapter 3.4.4) was used to set the upper bound.

4.3.2 Adapted Push Forward Insertion Heuristic

The classical PFIH cost function was described in Chapter 3.4.4 but this cost function
does not take into account the delivery limit constant. Hence, in order to have a more
precise and more suitable way to evaluate each node, some modifications had to be done.
The extension involves the addition of two parameters, the difference between end (eti)
and start (sti) times of each node and the delivery limit (dli) of each one. The λ and τ
are additional weight parameters. Larger values of λ will make more preferable nodes
with smaller time windows to be inserted first in the solution. In the same way, larger
values of τ will make preferable nodes with small delivery limit. Despite the increase
of the number of weight parameters their sum is always equal to 1. The expression 4.5
represents the extended cost function.

ci = −α× di,0 + β × eti + γ((pi/360)× di,0) + λ(eti − sti) + τ × dli (4.5)

A series of tests were performed to search the best combination for α, β, λ, γ and τ
values and the best combination found looks as follows:

• α = 0.4;

• β = 0.2;

• λ = 0.1;

• γ = 0.1;

• τ = 0.2.

All simulations and the results shown in the following sections use these values as these
provided, in most of cases, the best results for the DGP under consideration.

34

4.3 Proposed Hybrid Heuristic Algorithm

The fact of PFIH being a greedy heuristic combined to the way the algorithm starts
(empty solution) produces, in many occasions, solutions far from optimum which offer a
lot of space for improvements. One way to improve the performance of the constructive
algorithms is to create an initial partial solution, done as discussed next.

4.3.3 Seeded Partial Solution

Since the PFIH is capable of inserting nodes in any position of the routes, provided fea-
sibility, it is possible to create a partial solution a priori, i.e., before the execution of the
algorithm. However, the creation of the partial solution should not be randomly generated
(Cardoso et al., 2015).

Given the buffer size of the nodes,
∑

i∈C di, and the UAVs buffer size, qv it is possible
to estimate the minimum required number of paths to solve the problem by making a
simple math division. This estimation of the number of paths is a lower bound since
time restrictions and possible temporal conflicts are not taken into account. The PFIH
algorithm will latter take those conflicts into account and solve them by starting a new
path or paths, if necessary. An excessive and unnecessary number of initial paths can
reduce the quality of the solution. Thus, the use of such estimation of initial paths ensures
the quality of the final solution.

Once the number of initial paths is computed it is necessary to choose a set of nodes
with as many elements as the number of initial paths. Then nodes from such set are
inserted into the initial paths, one node per path (BS, node, BS). This way, at this stage,
each UAV will only gather the data from a single node. The choice of nodes is based on
their geographical location. This process is summarized in Algorithm 8.

Algorithm 8: Seeded partial solution.
input : Set of nodes (C), depot and set of UAVs (V)
output: Feasible partial solution

1 AvgBuffSizeNode←− Calculate average node buffer size
2 AvgBuffSizeUAV ←− Calculate average UAV buffer size
3 NumInitialRoutes←− (AvgBuffSizeNode× numSeeds)÷AvgBuffSizeUAV
4 SeedList←− add BS

5 for i← 1 to NumInitialRoutes do
6 FarthestNode←− find farthest node from all nodes in SeedList
7 SeedList←− add FarthestNode
8 end

The process described in Algorithm 8 allows to choose a set of well dispersed nodes
that will be used to create a partial solution. Once the partial solution is built, the cus-
tomized PFIH will receive the partial solution, the list of remaining nodes and the graph as
input. Despite these changes, the PFIH algorithm functionality is maintained. In its next

35

4.3 Proposed Hybrid Heuristic Algorithm

step the PFIH evaluates each of remaining nodes and inserts each one in a path where the
insertion causes the minimum increment of distance and the feasibility is satisfied. Figure
4.1 sketches the partial solution produced by the method described (right side) that was
created for the problem presented at the left side.

Figure 4.1: Seeded partial solution.

A simple test set was developed to study the performance of the PFIH algorithm with
and without a partial initial solution. The obtained results have shown that the creation of
a partial solution, especially in clustered cases as shown in Figure 4.1, by the Algorithm
8 and the subsequent use of it in PFIH algorithm improves considerably the quality of the
solution.

4.3.4 Improvement Methods

Once the extended PFIH algorithm is executed a feasible solution is produced that in
most cases, can be optimized by improvement methods. The methods that were used to
improve the solution will be discussed in the following sections.

Intra Route Operator

An intra route operator, as the name suggests, performs operations on a single path (Chap-
ter 3.5.2). One of the most commonly used operators from this set of methods is the 2-Opt
operator. This operator goes through all paths, one by one, and rearranges the sequence
by which the nodes are visited in order to reduce the distance of the path. Figure 4.2 could
represent a solution, produced by PFIH described previously, for a hypothetical problem.
The base stations represent the start and the end points of each path. At each path, nodes
are visited according to the sequences shown in Figure 4.2. Thereby, to gather the data of
11 nodes three paths were necessary. The first one has a length of 35.86 units, the second
one of 23.78 and the third of 48.61. The total distance distance is 108.25 units.

36

4.3 Proposed Hybrid Heuristic Algorithm

Figure 4.2: Solution representation

Figure 4.3: 2-Opt operator.

To illustrate the use of 2-Opt, let use see Figure 4.3 that could represent a solution
produced by 2-Opt when applied to a solution from Figure 4.2. As one can see, the
sequence by which the nodes are visited have suffered changes. The sequence of the first
path changed from BS → 3→ 11→ 7→ 2→ BS to BS → 11→ 7→ 3→ 2→ BS,
leading to a distance reduction from from 35.86 to 32.89 units. The second path only
suffered a small change, node 9 swapped with node 1. However, this slight change has
reduced the distance of the second path in 4.03 units. The third path did not suffer any
changes, i.e., any possible alteration would increase the distance of the path. After the
execution of 2-Opt the total distance decreased from 108.25 to 101.25 units.

Inter Route Operator

Inter route operator performs a set of operations over a pair of routes in order to reduce
the total distance of the solution. These methods reallocate a node, or a set of nodes

37

4.3 Proposed Hybrid Heuristic Algorithm

from one path to another in order to optimize the current solution. The implementation of
this method was inspired by the genetic algorithms (Chapter 3.6.1), more precisely on a
crossover operator called One Point Crossover (Magalhães-Mendes, 2013). This method
receives two paths as input, for a later node reallocation, and returns two new paths. This
operator is shown in Figure 4.4. The input paths are BS → 4→ 8→ 1→ 5→ 3→ BS

and BS → 7 → 2 → 6 → 9 → BS. The crossover point is located at the third position.
The output, two new routes, is BS → 4 → 8 → 6 → 9 → BS and BS → 7 → 2 →
1→ 5→ 3→ BS

Figure 4.4: Crossover operator.

In summary, the local search operators (Chapter 3.5.2) are responsible for path opti-
mization, i.e., distance reduction. They are not capable to reduce the number of paths. In
order to reduce the number of path other methods should be used, as discussed next.

4.3.5 Node Ejection

In order to reduce the number of paths it is necessary to eject a set of nodes and reinsert
them in a solution without violating the constraints of the problem. But how to eject
nodes? Eject all nodes from a certain path and then reinsert them? If so, how to choose
the right path? Randomly? It could work in some cases but usually in order to insert a
node or a set of nodes in an existing path it is necessary to reallocate some of the nodes
from the current path to other paths. And how about randomly eject a certain number of

38

4.3 Proposed Hybrid Heuristic Algorithm

nodes from the solution? In this case, there is no guarantee that this approach will work
properly. Normally, completely random approaches are not a good fit for a combinatorial
optimization problems.

In order to avoid random approaches the band neighbourhood ejection, inspired on
the ruin and recreate principle described in Chapter 3.5.1, method was developed, which
will be discussed in next.

4.3.6 Band Neighbourhood Ejection

Band neighbourhood ejection is a generalization method of the radial ejection presented
in (Schrimpf et al., 2000). The methods select a path and for each node located in it,
ejects a certain number of neighbour nodes. The ejection is based on the proximity and
similarity of the nodes.

Algorithm 9: Band neighbourhood ejection.
input : Feasible solution
output: List of ejected nodes and a partial solution

1 Create roulette
2 Run roulette
3 Eject nodes from the chosen route
4 Set the number of neighbours to eject per node of the chosen route
5 foreach ejected node do
6 for i← 1 to NumNeighToEject do
7 Find a similar neighbour
8 Eject it from the solution
9 end

10 end

In more detail, the first step will be to choose a path where the ejection will start. The
path is chosen by a roulette method, inspired by the rank selection of genetic algorithm
selection methods (Jebari and Madiafi, 2013). To build a roulette it is necessary to sort the
paths of the solution in an ascending order, from the shortest to the longest one. Next step
is to give each path its own ”slice” in the roulette. We consider that shortest paths (less
customers) are defective so they will have a bigger ”slice” in roulette. The probabilities
of ejection for the i-worst route, previously sorted by the number of nodes, is calculated
according to expression 4.6 where n is the number of paths.

2i

n(n+ 1)
(4.6)

Once the route is chosen and the nodes to be ejected are known it becomes necessary
to find the neighbours from other paths that will also be ejected.

39

4.3 Proposed Hybrid Heuristic Algorithm

Removing nodes from more distant neighbourhoods with completely different time
restrictions, becomes inefficient since the probability of a future reinsertion and the con-
sequent reduction of the number of paths and distance is considerably low. This means
that only similar neighbours should be ejected. A similar neighbour is a node that is
located in the proximity of the current node, also with similar time restrictions.

Figure 4.5 shows the band neighbourhood ejection procedure on a hypothetical ex-
ample. The zoomed region is where the band ejection took place. After this procedure 5
nodes were ejected from the solution.

Figure 4.5: Band neighbourhood ejection.

Algorithm 9 provides a more detail description of this procedure.

4.3.7 Overall Procedure

Now that the core of the algorithm has been described it is time to put all pieces together
and see how the algorithm really works. First let us take a look at Algorithm 10 and then
discuss its particularities.

Lines 1 to 3 are the initialization steps of PFIH algorithm. The first step (Line 1)
generates an evenly spaced partial solution. The second step (Line 2) is when the weights
of cost function are defined. This step establishes the sequence by which the sensor nodes
will be inserted in the solution. Once this is done, the PFIH is ready to go. In Line 3,
the PFIH algorithm is executed and returns a feasible solution. The returned solution is
stored in a variable called CurrentSolution. The remaining instructions of the algorithm
are designed to improve the CurrentSolution, but in order not to loose the progress, a

40

4.3 Proposed Hybrid Heuristic Algorithm

copy of CurrentSolution is stored in a variable called BackUpSolution (Line 4). The
variable BestSolution (Line 5) stores the best solution found by the algorithm.

In Line 6 the tabu list (see Chapter 3.6.2) is initialized and the CurrentSolution is
inserted into this list. The goal of this list is to avoid unnecessary exploration of already
explored search directions. By not accepting the already discovered solutions the search
direction is guided into new areas of the search space. The not acceptance of already
explored solutions is assured in Line 17. However, after a certain number of iterations,
the solutions located in the tabu list will be acceptable again (Line 18). This way we
also ensure that the algorithm is not guided in a completely opposite direction, away from
the optimum solution. The varNoSucces (Line 7) is a control variable that counts the
number of iterations without any improvement.

In this algorithm the stopping criteria is the elapsed time timeElapsed (Line 8), al-
though this is not mandatory and it can be easily changed to any other stopping criteria.
The variable threshold (Line 9) plays an important role in the performance of the algo-
rithm. The threshold sets a limit on how worse the distance of CurrentSolution can be
when compared with BackUpSolution. The threshold variable can not be set too high
because it would misguide the search. However, a well chosen threshold can be very
useful. The acceptance of a slightly worse solution, allows the algorithm to escape from
local optimums without deviating from the search direction.

The remaining instructions of the algorithm works in the following way: a double loop
is executed (Lines 11 and 12) until the stopping criteria is satisfied (Line 10). The dou-
ble loop was inspired on the simulated annealing (see Chapter 3.6.3) and means that for
each ejectionRate, which sets the number of neighbours to eject from the solution, the
algorithm can perform a certain number of tries varNoSucces to improve the current so-
lution. However, contrary to the simulated annealing, each time the solution is improved
we consider that the search is in a right direction and the varNoSucces is reset. In Line
13 a set of nodes is ejected, accordingly to ejectionRate, and stored in the variable called
ejectedNodesList. Next, in Line 14, the nodes are reinserted with PFIH algorithm in the
CurrentSolution. The improvement methods are applied on the newly formed solution.
The first one, 2Opt, is a classical intra route operator (Line 15) and the other one, one
point crossover, is an inter route operator (Line 16). The condition in Line 17 ensures that
we are not searching for a solution in an already explored search space. The remaining
conditions, from Line 19 until Line 38, assess the quality of a newly formed solution and
accordingly to the assessment discard or store the solution.

41

4.3 Proposed Hybrid Heuristic Algorithm

Algorithm 10: Routing algorithm.
input : G = (N ,A) and set of UAVs V .
output: Final solution

1 SeededSolution←− Generate seeded partial solution
2 Define values of α , β , λ , γ , τ for PFIH and sort nodes by their PFIH cost
3 CurrentSolution←− RunPFIH(SeededSolution)
4 BackUpSolution←− CurrentSolution
5 BestSolution←− CurrentSolution
6 tabuList←− CurrentSolution
7 varNoSucces←− 0
8 timeElapsed←− currentT ime
9 threshold←− Define value of threshold

10 while timeElapsed < timeLimit do
11 for ejectionRate← lowerLimit to upperLimit do
12 while varNoSucces < varLimit do

13 ejectedNodesList←− BandNeighbourhoodEjection(ejectionRate)
14 CurrentSolution←− PFIH(CurrentSolution, ejectedNodesList)
15 Apply 2-Opt to CurrentSolution
16 Apply Crossover to CurrentSolution

17 if CurrentSolution does not exists in tabuList then

18 Update tabuList

19 if CurrentSolution number of paths ≤ BackUpSolution number of paths
then

20 if CurrentSolution distance ≤ BackUpSolution distance ×threshold
then

21 BackUpSolution←− CurrentSolution
22 varNoSucces←− 0

23 else
24 CurrentSolution←− BackUpSolution
25 increment varNoSucces
26 end
27

28 if CurrentSolution distance ≤ BestSolution distance then
29 BestSolution←− CurrentSolution
30 varNoSucces←− 0

31 end
32 else
33 CurrentSolution←− BestSolution
34 increment varNoSucces
35 end
36

37 else
38 increment varNoSucces
39 end
40

41 end
42 end
43 end

42

C H A P T E R 5

Performance evaluation

5.1 Introduction

In previous sections the problem tackled in this project has been presented and some real
life applications have also been introduced. Beside that, a mathematical formalization
of the problem and heuristic approach have been presented. In this chapter we will take
a look at the data sets used to measure the performance of the heuristic algorithm. For
performance measure either the optimal or the best known results for the VRPTW are
used as reference. We also draw some conclusions and highlight some of our findings
about the algorithm.

5.2 Data Set and Best Known results

Due to the relatively recent use of mobile elements for data gathering in WSNs there is
no standardized data set to be used meaning that there is no effective way to compare
performance between different algorithms. The most common approach in the sensor
network community is to generate a large number of topologies and report average results.
However, we believe that it is important to use data sets from the scientific community,
even if adapted to DGP under analysis.

5.2.1 Generating Data Sets

To evaluate the presented algorithm the set of VRPTW instances, from Solomon’s bench-
mark (Solomon, 2015b), have been used. Namely, instances with 100 nodes in the form
of random (R), clustered (C) and random-clustered (RC) geometric distributions. The
VRPTW instances provide, for each node, the coordinates, demand, time window and
service time. For the vehicles, in this case UAVs, there is also information about their
capacity. There are 6 sets of instances. Sets R1 and R2 have randomly generated geo-
graphical data, sets C1 and C2 have clustered geographical data, and sets RC1 and RC2
have a mix of randomly and clustered geographical data. Problem sets R1, C1 and RC1

43

5.2 Data Set and Best Known results

have a short scheduling horizon while sets R2, C2 and RC2 have a long scheduling hori-
zon, allowing more sensor nodes to be serviced by the same UAV. At each set, the vehicle
(UAV in our case) capacity and service time does not change between instances.

These instances, however, do not include the delivery limit of nodes, dlni
. For a

network scenario (instance) we define a range of delivery limits as follows. The lowest
delivery limit should take into consideration the time required to return to the depot, i.e.,
dlMIN = maxni∈N{d(n0,ni)}. Also, using a delivery limit that exceeds the end time value
of the base station would reduce the problem to the classic VRP. This value determines the
arriving deadline to the base station, which must be accomplished, meaning that delivery
limits higher than this value will have no effect on the solution, as it would not restrict the
problem. That is, dlMAX = etn|N|−1

. Therefore, the delivery limits for a network scenario
(instance) should take values from dlMIN to dlMAX , dlGAP = dlMAX − dlMIN being
the gap between these bounds. To evaluate different slack levels for the delivery limit at
nodes the following six ranges have been used:

∆1 = [dlMIN , dlMIN + 20%dlGAP]

∆2 = [dlMIN + 20%dlGAP , dlMIN + 40%dlGAP]

∆3 = [dlMIN + 40%dlGAP , dlMIN + 60%dlGAP]

∆4 = [dlMIN + 60%dlGAP , dlMIN + 80%dlGAP]

∆5 = [dlMIN + 80%dlGAP , dlMIN + 100%dlGAP]

∆6 =∞

These ranges have been applied to every network scenario (instance) under analysis.
For a specific scenario the delivery limit of a node will be a random number at the range
under consideration. This means that each instance of the original VRPTW problem will
give rise to six instances of the data gathering problem under study, each with a different
delivery limit range.

The ∆6 is a special case of delivery limit. When the delivery limit is set to infinite the
problem becomes a classic VRPTW. Although the main goal of this thesis is to solve the
problem with the delivery limit, it is important to see the behaviour of the algorithm in all
cases, even when the delivery limit is infinite (∆6).

5.2.2 Best Known Results

Best known results for VRPTW, used in the following section for comparison, have been
extracted from Sintef web site (VRPTW, 2015), which maintains an updated list of the
best known results and the list of methods used to obtain them. Currently there is no
known algorithm that is capable to find the best solution for all the instances of Solomon’s

44

5.3 Getting the Results

benchmark. At the time this thesis is being written the best known list is composed of 19
different algorithms.

5.3 Getting the Results

5.3.1 Heuristic Results

The proposed heuristic has been applied 25 times to each generated instance, and for all
data sets. The results shown in the following sections are an average performance of these
executions. Tests were performed on a commodity computer (Core i7-4770 with 16GB of
RAM). In all cases, the execution time, per instance generated, of the proposed heuristic
did not exceed 10 seconds.

5.3.2 Exact Results

Our initial approach to obtain the exact results was to try to solve the original mathemat-
ical formalization previously described using the CPLEX package. However, we noticed
that for data sets with just 25 nodes and 25 vehicles the mathematical representation con-
tained over a half of million of restrictions. In case of data sets with 100 nodes the number
of restrictions exceeded several millions. The enormous amount of restrictions combined
with the complexity of the problem made impossible for CPLEX to solve it and find the
optimum solution.

To reduce the number of restrictions and to somehow facilitate the search for the
optimum solution we first established the upper bound number of UAVs with the proposed
heuristic. This way, the solution returned by the proposed algorithm gave us the maximum
number of UAVs required to solve the problem. If the proposed algorithm, which may
find suboptimal solutions, uses a certain number of drones then CPLEX, which always
finds the optimal solution, would never use more drones than the proposed heuristic. This
way, instead of having all data sets with 25 UAVs, each instance had its own number of
mobile elements accordingly to the solution obtained by the heuristic.

This approach proved to be correct because it allowed us to reduce the number of
restrictions for problems with 25 nodes to a 100 thousand instead of a half a million.
However, even after this procedure CPLEX was not able to solve all of the benchmark’s
instances.

When nodes are distributed randomly, as happens in sets R1, R2, RC1, and RC2,
CPLEX is not able to find the optimal solution due to RAM limitations, in this case it
was 64GB. Same happens for the C1 and C2 sets when the delivery limit is tight, namely
between ∆1 and ∆2 and some other isolated cases with wider delivery limits.

45

5.4 Analysis of the Results

This means that we can only compare the performance of the algorithm in clustered
cases (C1 and C2) with delivery limit higher than ∆2.

A distributed version of CPLEX was used to obtain the optimal results. All tests
were performed on two commodity computers (Core i7-4770 with 16GB of RAM) and
on a server (Xeon E5-2690 with 32GB of RAM) giving in total 32 logical processors and
64GB of RAM.

5.4 Analysis of the Results

5.4.1 Optimal vs Heuristic Solutions for Sets C1 and C2 with 25
Nodes

Tables 5.1 and 5.2 show the optimal and heuristic values obtained for clustered instances
with ∆3, ∆4, ∆5 and ∆6, respectively. The coloured rows highlight the instances where
there is more similarity between heuristic and optimal values throughout different values
of ∆.

For ∆3 CPLEX was unable to find optimal solutions for three instances, i.e., the results
are non available (N/A). In these cases CPLEX exceeded the 64GB of memory with an
average of 35% of search space still to explore, which means that the solutions found
in the remaining 65% could be sub-optimal and they were not used in the comparison.
As for the performance of the proposed heuristic we can notice that for ∆3 it requires in
average more 21% of UAVs. Although this might sound an high value we highight that an
increase from 2 to 3 UAVs leads to an increase of 50%. For example, solutions found by
the heuristic for instances C101, C102, C105, C106 and C107 require an additional UAV
to visit all the nodes. As for the instance C108 the minor difference in the number of paths
indicates that most of the 25 solutions generated by the heuristic have the same number
of UAVs as the optimal solution. For the remaining 5 instances, that are comparable, the
heuristic found solutions with the same number of paths/UAVs. However, in this cases
the heuristic could not find the optimal solution as the distance variation it this set of
problems is, in average, located in the range of 8%. In summary, for delivery limit equal
to ∆3, we can state that the algorithm need more tuning in order to obtain better results.
However the heuristic has the advantage of finding solution much faster.

For ∆4, delivery limit range between 60%-80%, the CPLEX was capable to obtain
solutions for all instance except one (C104). It is also visible that as the delivery limit
gets wider the distance required to visit all of the nodes decreases. For 9 of these instance
the heuristic was able to use the same number of UAVs as the optimal solutions, and
for two of these instances, namely C108 and C109, the solutions found were actually
optimal in terms of distance. When compared with ∆3, we can notice that the algorithm
performs better in minimizing the number of UAVs, as the number of instances with

46

5.4 Analysis of the Results

optimal number of UAVs increased from 5 to 9. In average, for this set, the proposed
method requires 0.5 or 20% more UAVs and 7% more distance to visit all the nodes.

Table 5.1: Heuristic’s performance for delivery limit equal to ∆3 and ∆4

DeliveryLimit ∆3 ∆4

Time Windows CPLEX Heuristic CPLEX Heuristic
Name Min. Avg. Max. P D P D P D P D
C101 37 60 89 4 249.20 5 265.65 3 198.60 5 213.10
C102 43 325 1135 3 216.35 4 234.34 3 193.92 3.92 211.82
C103 43 588 1136 N/A N/A 4 273.62 3 192.10 3 194.59
C104 43 852 1136 N/A N/A 4 261.58 N/A N/A 3 192.23
C105 75 121 117 4 249.20 5 261.19 3 195.14 3 206.63
C106 29 156 387 4 249.20 5 272.58 3 195.14 5 202.30
C107 189 189 189 4 223.08 5 236.97 3 202.87 3.04 221.64
C108 149 243 353 4 259.62 4.16 279.33 3 195.14 3 195.15
C109 360 360 360 N/A N/A 4 261.85 3 191.81 3 191.81
C201 160 160 160 2 228.19 3 247.29 2 215.54 3 237.29
C202 160 937 3289 2 220.52 2 236.00 2 215.54 2 230.82
C203 160 1714 3290 2 220.52 2 236.00 2 215.54 2 231.54
C204 160 2492 3291 2 215.34 2 233.29 2 215.34 2 233.29
C205 320 320 320 2 225.66 2 241.59 2 215.54 2 234.94
C206 299 486 707 2 215.54 3 235.05 2 215.54 3 235.05
C207 177 612 1253 2 221.09 3 239.12 2 215.34 3 231.56
C208 640 640 640 2 215.37 2 236.15 2 215.37 2 234.94

Average 2.79 229.21 3.48 250.09 2.50 205.53 3.00 217.57

Coloured: higher similarity between heuristic and optimal values throughout different ∆ values.

In case of delivery limit within ∆5 range, we can observe that the algorithm performs
quite well. In all comparable instances the number of UAVs required by heuristic is equal
to optimal and in 11 cases it was able to find optimal solutions. In average the algorithm
requires around 1% more distance when compared with the optimum.

Finally, when delivery limit is in ∆6 range, when the problem comes down to a classic
VRP, the proposed algorithm performs almost flawlessly. The heuristic found optimal
solutions for all except the C202 and C208 instances, where the distance difference is 3%
and 1% respectively.

Taking everything into account and analysing the highlighted rows it is possible to
state that the heuristic performs better under the following conditions:

- Low/medium maximum time window sizes, but only when the minimum and aver-
age time window sizes approach the maximum time window size (C108);

- Very high maximum time window sizes (C202, C203, C204);

- When the maximum, average and minimum time window sizes are equal, but only
for the highest values (C205,C208).

In general, considering the performance of the algorithm with different ∆ ranges we
might get an indication that different strategies could exist for different types of sets. That
is, sets with highly variable time windows could render λ the dominant factor, while for

47

5.4 Analysis of the Results

Table 5.2: Heuristic’s performance for delivery limit equal to ∆5 and ∆6

DeliveryLimit ∆5 ∆6

Time Windows CPLEX Heuristic Optimal (Solomon, 2015a) Heuristic
Name Min. Avg. Max. P D P D P D P D
C101 37 60 89 3 191.81 3 191.81 3 191.30 3 191.81
C102 43 325 1135 3 190.74 3 191.81 3 190.30 3 190.74
C103 43 588 1136 3 190.74 3 190.74 3 190.30 3 190.74
C104 43 852 1136 N/A N/A 3 188.53 3 186.90 3 187.45
C105 75 121 117 3 191.81 3 191.81 3 191.30 3 191.81
C106 29 156 387 3 191.81 3 191.81 3 191.30 3 191.81
C107 189 189 189 3 191.81 3 191.81 3 191.30 3 191.81
C108 149 243 353 3 191.81 3 191.81 3 191.30 3 191.81
C109 360 360 360 3 191.81 3 191.81 3 191.30 3 191.81
C201 160 160 160 2 215.54 2 228.96 2 214.70 2 215.54
C202 160 937 3289 2 215.54 2 220.52 2 214.70 2 220.52
C203 160 1714 3290 2 220.26 2 220.26 2 214.70 2 215.54
C204 160 2492 3291 2 213.93 2 213.93 2 213.10 2 213.93
C205 320 320 320 2 215.54 2 215.54 2 214.70 2 215.54
C206 299 486 707 2 215.54 2 218.90 2 214.70 2 215.54
C207 177 612 1253 2 215.34 2 215.54 2 214.50 2 215.54
C208 640 640 640 2 215.37 2 229.43 2 214.50 2 215.57

Average 2.50 203.71 2.53 205.00 2.53 201.82 2.53 202.80

Coloured: higher similarity between heuristic and optimal values throughout different ∆ values.

the remaining sets other factors would dominate. That is, α, β, γ, λ and τ should dynam-
ically follow the intrinsic nature of the sets and additional operators might be necessary
to find optimal solutions for all considered instances.

The complete table of results can be seen in Appendix.

5.4.2 Heuristic Solutions for all Sets with 25 Nodes

The following plots relate to the total distance travelled by the UAVs, and the total number
of paths/UAVs required, obtained by the heuristic approach for all sets. Sets C1, C2,
R1, R2, RC1 and RC2 include between 8 and 12 instances and, although the capacity of
UAVs and service time is the same for all instances of a set, the demand, time window and
delivery limit of nodes will be different from instance to instance. This means that there
might be different performances for different instances. For this reason, the solution’s
distance and number of UAVs of instance i undergoes the following formulas so that the
increasing factor (IF) of each instance is obtained:

IFDistance
i =

Distancei −Distance∗i
Distance∗i

(5.1)

IFNumUAV
i =

NumUAVi −NumUAV ∗i
NumUAV ∗i

(5.2)

where Distancei and NumUAVi is the distance and number of UAVs obtained by the
proposed hybrid heuristic and Distance∗i and NumUAV ∗i are the best known solutions
identified by heuristics for the VRPTW, obtained from Solomon (2015b). The best known
results from VRPTW have been used because no DGP best known results are known, and

48

5.4 Analysis of the Results

C1 C2 R1 R2 RC1 RC2
0

0.5

1

1.5

2

2.5

3

3.5

Sets of Instances

A
vg

 D
is

ta
nc

e
In

cr
ea

se
 F

ac
to

r

Figure 5.1: Average distance increase factor.

C1 C2 R1 R2 RC1 RC2
0

0.5

1

1.5

2

2.5

3

3.5

Sets of Instances

Lo
w

es
t

D
is

ta
nc

e
In

cr
ea

se
 F

ac
to

r

Figure 5.2: Lowest distance increase factor.

also because DGP gets similar to VRPTW as the delivery limit approaches infinity.
Figure 5.1 relates to distances and shows the average distance increase factor, consid-

ering all instances of a set, for all sets under analysis and different delivery limit ranges.
Figures 5.2 and 5.3 show the lowest and highest distance increase factors from all in-
stances of a set, for all sets under analysis and different delivery limit ranges. These can
be seen as the lower and upper bounds of algorithm’s performance. From these three plots
it is possible to observe that, as the delivery limit range becomes less tight the more the
solutions obtained by the hybrid heuristic closely approximate the best known solutions
for the VRPTW. Therefore, we can state that the proposed hybrid heuristic algorithm is
expected to be a good approach for the DGP. The clustered sets C1 and C2 are the ones
for which the hybrid heuristic performs worse. Therefore, this algorithm is more suitable
when nodes are dispersed.

Concerning the lowest and highest distance increase factors, at Figures 5.2 and 5.3,
the smallest the difference between them the higher the certainty degree for a specific
set. That is, if a small difference is obtained for a specific set then the outcome of the

49

5.4 Analysis of the Results

C1 C2 R1 R2 RC1 RC2
0

0.5

1

1.5

2

2.5

3

3.5

Sets of Instances

H
ig

he
st

 D
is

ta
nc

e
In

cr
ea

se
 F

ac
to

r

Figure 5.3: Highest distance increase factor.

C1 C2 R1 R2 RC1 RC2
0

1

2

3

4

5

6

7

8

Sets of Instances

A
vg

 U
A

V
s

In
cr

ea
se

 F
ac

to
r

Figure 5.4: Average number of UAVs increase factor.

algorithm is more predictable whatever the network scenario (instance), fitting into that
set, is used. Therefore, although the clustered sets perform worse, its performance is quite
good, with a high certainty degree, for many ranges (∆2 to ∆5). The certainty degree is
also high for the other sets.

Figures 5.4, 5.5 and 5.6 also relate to average, lowest and highest increase factors, but
now concerning the number of UAVs. We can observe that sets R2, C2 and RC2 with a
long scheduling horizon, allowing more sensor nodes to be serviced by the same UAV,
are the ones with an higher increase factor. This is so because delivery limits override the
long scheduling horizon remove, avoiding UAVs to serve many sensor nodes. Therefore,
the gap between DGP and VRPTW solutions will be higher. However, for ranges ∆2

to ∆5 the number of UAVs reduces significantly, also with high certainty degree. Since
with sets R1, C1 and RC1, with short scheduling horizon, the hybrid heuristic algorithm
closely approaches the best known solutions for the VRPTW, we can reconfirm that the
proposed hybrid heuristic algorithm is expected to be a good approach for the DGP.

50

5.4 Analysis of the Results

C1 C2 R1 R2 RC1 RC2
0

1

2

3

4

5

6

7

8

Sets of Instances

Lo
w

es
t

U
A

V
s

In
cr

ea
se

 F
ac

to
r

Figure 5.5: Lowest number of UAVs increase factor.

C1 C2 R1 R2 RC1 RC2
0

1

2

3

4

5

6

7

8

Sets of Instances

H
ig

he
st

 U
A

V
s

In
cr

ea
se

 F
ac

to
r

Figure 5.6: Highest number of UAVs increase factor.

5.4.3 Best known vs Heuristic results with 100 Nodes

Since, due to technical restrictions, it is impossible to study the performance of the al-
gorithm in problems with more than 25 nodes with delivery limit. Let us take a look at
the performance of the algorithm in larger problems without the delivery limit, namely at
classic VRP problem with 100 nodes.

Table 5.3 summarizes the performance of the algorithm for each instance of Solomon’s
benchmark. As one can notice, the algorithm performs quite well in clustered cases (C1
and C2). The number of paths is equal to the best known solutions and the distance
difference is negligible.

As for random instances (R1 and R2) it is noticeable that the proposed algorithm
performs better in distance minimization than in minimization of the number of paths. In
the majority of random instances our algorithm was able to get better distance than the
best know algorithms. In R211 instance, by having an additional vehicle the proposed
algorithm reduced the distance by an already considerable 9%.

51

5.4 Analysis of the Results

For the mixed case, random and clustered instances (RC1 and RC2), the tendency
remains. At the expense of an additional path the algorithm is able approach the best
known distance and, in some cases, even improve it.

Considering all instances and their best known solutions obtained by 19 different algo-
rithms, in average the proposed algorithm requires 6.5% more UAVs to produce solutions
with the same distance as best known results.

52

5.4 Analysis of the Results

Table 5.3: Results obtained with the proposed method for instances with infinite delivery limit of
the Solomon’s benchmark with 100 nodes.

Best Found (VRPTW, 2015) Heuristic ∆

Instance P D P D ∆ P % ∆ D %
C101 10 828.94 10 828.94 0.0% 0.0%
C102 10 828.94 10 828.94 0.0% 0.0%
C103 10 828.06 10 828.07 0.0% 0.0%
C104 10 824.78 10 827.82 0.0% 0.4%
C105 10 828.94 10 828.94 0.0% 0.0%
C106 10 828.94 10 828.94 0.0% 0.0%
C107 10 828.94 10 828.94 0.0% 0.0%
C108 10 828.94 10 830.33 0.0% 0.2%
C109 10 828.94 10 828.94 0.0% 0.0%
C201 3 591.56 3 591.56 0.0% 0.0%
C202 3 591.56 3 591.56 0.0% 0.0%
C203 3 591.17 3 591.17 0.0% 0.0%
C204 3 590.60 3 595.44 0.0% 0.8%
C205 3 588.88 3 588.88 0.0% 0.0%
C206 3 588.49 3 592.48 0.0% 0.7%
C207 3 588.29 3 588.29 0.0% 0.0%
C208 3 588.32 3 588.43 0.0% 0.0%
R101 19 1650.80 19 1680.91 0.0% 1.8%
R102 17 1486.12 17.84 1495.55 4.9% 0.6%
R103 13 1292.68 14 1223.96 7.7% -5.3%
R104 9 1007.31 10 1000.05 11.1% -0.7%
R105 14 1377.11 14.76 1402.19 5.4% 1.8%
R106 12 1252.03 12.8 1273.16 6.7% 1.7%
R107 10 1104.66 11 1082.28 10.0% -2.0%
R108 9 960.88 10 992.43 11.1% 3.3%
R109 11 1194.73 12 1178.74 9.1% -1.3%
R110 10 1118.84 11.44 1112.70 14.4% -0.5%
R111 10 1096.72 11 1081.36 10.0% -1.4%
R112 9 982.14 10 988.12 11.1% 0.6%
R201 4 1252.37 4 1296.11 0.0% 3.5%
R202 3 1191.70 4 1099.59 33.3% -7.7%
R203 3 939.50 3 947.28 0.0% 0.8%
R204 2 825.52 3 762.00 50.0% -7.7%
R205 3 994.42 3 1051.33 0.0% 5.7%
R206 3 906.14 3 937.19 0.0% 3.4%
R207 2 890.61 3 869.22 50.0% -2.4%
R208 2 726.82 2.92 723.35 46.0% -0.5%
R209 3 909.16 3 925.63 0.0% 1.8%
R210 3 939.37 3 985.94 0.0% 5.0%
R211 2 885.71 3 805.18 50.0% -9.1%

RC101 14 1696.94 15.16 1676.87 8.3% -1.2%
RC102 12 1554.75 13.72 1495.30 14.3% -3.8%
RC103 11 1261.67 11 1291.23 0.0% 2.3%
RC104 10 1135.48 10 1195.32 0.0% 5.3%
RC105 13 1629.44 14 1626.79 7.7% -0.2%
RC106 11 1424.73 12.48 1411.87 13.5% -0.9%
RC107 11 1230.48 11.96 1244.28 8.7% 1.1%
RC108 10 1139.82 11 1149.98 10.0% 0.9%
RC201 4 1406.94 5 1360.35 25.0% -3.3%
RC202 3 1365.65 4 1233.88 33.3% -9.6%
RC203 3 1049.62 3 1134.94 0.0% 8.1%
RC204 3 798.46 3 833.90 0.0% 4.4%
RC205 4 1297.65 4 1353.76 0.0% 4.3%
RC206 3 1146.32 4 1104.13 33.3% -3.7%
RC207 3 1061.14 3.4 1071.50 13.3% 1.0%
RC208 3 828.14 3 885.77 0.0% 7.0%

Average 7.23 1021.19 7.71 1020.92 6.5% 0.0%

53

C H A P T E R 6

Conclusion and Future Work

6.1 Conclusion

This thesis addressed some of the existing issues of a generic data gathering problem
within the WSN. As shown, classic multi hop approach may be useful due to its ability to
rapidly deliver data to the desired destination. However, potential environment disasters
can damage the communication channels and thus prevent the delivery of data. As shown,
unmanned aerial vehicles (UAVs) can overcome these limitations as they do not require
any additional infrastructure to gather the data. Some real life applications of UAVs in
WSNs have been introduced and discussed in Chapter 1.

Two mathematical formalizations have been provided, one (in Chapter 2 for a generic
data gathering problem, which may be used in a large set of similar problems, and an
extended one (in Chapter 4) that describes the problem tackled in this thesis.

A deep analysis of the main classes of algorithms have been presented and some of
the main approaches to solve routing problems have been presented in Chapter 3.

A custom hybrid heuristic capable to solve the DGP have been presented and its par-
ticularities have been described and discussed. Results obtained show that the proposed
algorithm is capable to solve the DGP problem with an acceptable performance and, be-
sides that, the algorithm is capable to achieve great results when compared with the classic
VRP benchmark.

I hope that the research done in this thesis adds something new, no matter how small,
to the state of the art algorithms used in the optimization area and that it enhances our
knowledge on the data gathering problems.

6.2 Future Work

In this thesis a single base station routing problem was considered. Future work will fo-
cus on making the algorithm more generic and capable to deal with other routing problem
variations such as multiple depots and dynamic nodes that can appear during the execu-
tion of the algorithm. Also the current algorithm can be more tuned to improve the results

54

6.2 Future Work

obtained and other solving methods can be incorporated in it. In addition, the algorithm
can include the communication range of the sensor nodes and thus allow to reduce the
distance travelled by the mobile element. Another interesting feature that can be incor-
porated is the self managing node clusters where one of the nodes act as collector of the
data. This would avoid the need to visit all nodes.

Ultimately the possibilities are endless.

55

Bibliography

Almi’ani, K., Viglas, A., and Libman, L. (2010). Mobile element path planning for
time-constrained data gathering in wireless sensor networks. In Advanced Information

Networking and Applications (AINA), 2010 24th IEEE International Conference on,
pages 843–850. IEEE.

Baker, E. K. (1983). Technical note—an exact algorithm for the time-constrained travel-
ing salesman problem. Operations Research, 31(5):938–940.

Bhadauria, D. and Isler, V. (2009). Data gathering tours for mobile robots. In Intelligent

Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages
3868–3873. IEEE.

Bräysy, O. and Gendreau, M. (2002). Tabu search heuristics for the vehicle routing prob-
lem with time windows. Top, 10(2):211–237.

Bychkovskiy, V., Megerian, S., Estrin, D., and Potkonjak, M. (2003). A collaborative
approach to in-place sensor calibration. In Information Processing in Sensor Networks,
pages 301–316. Springer.

Cardoso, P., Schütz, G., Mazayev, A., and Ey, E. (2015). Solutions in under 10 seconds for
vehicle routing problems with time windows using commodity computers. In Gaspar-
Cunha, A., Henggeler Antunes, C., and Coello, C. C., editors, Evolutionary Multi-

Criterion Optimization, volume 9019 of Lecture Notes in Computer Science, pages
418–432. Springer International Publishing.

Carić, T., Galić, A., Fosin, J., Gold, H., and Reinholz, A. (2008). A modelling and opti-
mization framework for real-world vehicle routing problems. Vehicle Routing Problem,
15.

Chiang, W.-C. and Russell, R. A. (1996). Simulated annealing metaheuristics for the
vehicle routing problem with time windows. Annals of Operations Research, 63(1):3–
27.

Chin, J.-C., Rao, N. S., Yau, D. K., Shankar, M., Yang, Y., Hou, J. C., Srivathsan, S., and
Iyengar, S. (2010). Identification of low-level point radioactive sources using a sensor
network. ACM Transactions on Sensor Networks (TOSN), 7(3):21.

56

BIBLIOGRAPHY

Costa, F. G., Ueyama, J., Braun, T., Pessin, G., Osório, F. S., and Vargas, P. A. (2012).
The use of unmanned aerial vehicles and wireless sensor network in agricultural appli-
cations. In Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE Inter-

national, pages 5045–5048. IEEE.

Florêncio, J. C. P. F. (2011). Análise comparativa de algoritmos de otimização para o
problema de roteamento de veı́culos. Trabalho de Graduação.

Gambardella, L. M., Taillard, É., and Agazzi, G. (1999). Macs-vrptw: A multiple colony
system for vehicle routing problems with time windows. In New ideas in optimization.
Citeseer.

Ghoseiri, K. and Ghannadpour, S. (2009). Hybrid genetic algorithm for vehicle routing
and scheduling problem. Journal of Applied Science, 9(1):79–87.

Gurobi, O. (2015). Gurobi. http://www.gurobi.com/. Accessed 06/04/2015.

IMB CPLEX, I. I. C. O. S. (2015). Cplex. http://www-
03.ibm.com/software/products/en/ibmilogcpleoptistud/. Accessed 06/04/2015.

Jaheruddin, S. (2010). Friendly Interchange Heuristic for Vehicle Routing Problems with

Time Windows. PhD thesis, Tilburg University.

Jebari, K. and Madiafi, M. (2013). Selection methods for genetic algorithms. Interna-

tional Journal of Emerging Sciences, 3(4).

Kilby, P., Prosser, P., and Shaw, P. (1997). Guided local search for the vehicle routing
problem.

Lenstra, J. K. and Kan, A. (1981). Complexity of vehicle routing and scheduling prob-
lems. Networks, 11(2):221–227.

Lin, S.-W., Yu, V. F., and Lu, C.-C. (2011). A simulated annealing heuristic for the truck
and trailer routing problem with time windows. Expert Systems with Applications,
38(12):15244–15252.

Magalhães-Mendes, J. (2013). A comparative study of crossover operators for genetic
algorithms to solve the job shop scheduling problem. WSEAS Transactions on Com-

puters, 12(4):164–173.

Mamun, Q. (2012). A qualitative comparison of different logical topologies for wireless
sensor networks. Sensors, 12(11):14887–14913.

Mills, P., Tsang, E., and Ford, J. (2003). Applying an extended guided local search to the
quadratic assignment problem. Annals of Operations Research, 118(1-4):121–135.

57

BIBLIOGRAPHY

Moura, A. (2008). A multi-objective genetic algorithm for the vehicle routing with
time windows and loading problem. In Intelligent Decision Support, pages 187–201.
Springer.

Ombuki, B., Ross, B. J., and Hanshar, F. (2006). Multi-objective genetic algorithms for
vehicle routing problem with time windows. Applied Intelligence, 24(1):4–5.

Pignaton de Freitas, E., Heimfarth, T., Netto, I. F., Lino, C. E., Pereira, C. E., Ferreira,
A. M., Wagner, F. R., and Larsson, T. (2010). Uav relay network to support wsn con-
nectivity. In Ultra Modern Telecommunications and Control Systems and Workshops

(ICUMT), 2010 International Congress on, pages 309–314. IEEE.

Richard Pon, Maxim A. Batalin, J. G. (2005). Networked infomechanical systems: A
mobile embedded networked sensor platform. IEEE, page 6.

Rodrigues, J. J. and Neves, P. A. (2010). A survey on ip-based wireless sensor network
solutions. International Journal of Communication Systems, 23(8):963–981.

Russell, R. A. (1995). Hybrid heuristics for the vehicle routing problem with time win-
dows. Transportation science, 29(2):156–166.

Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., and Dueck, G. (2000). Record break-
ing optimization results using the ruin and recreate principle. Journal of Computational

Physics, 159(2):139–171.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems
with time window constraints. Operations research, 35(2):254–265.

Solomon, M. M. (2015a). Optimal solutions for c1 and c2 problems.
http://web.cba.neu.edu/ msolomon/c1c2solu.htm. Accessed 06/04/2015.

Solomon, M. M. (2015b). Vrptw benchmark problems.
http://web.cba.neu.edu/ msolomon/problems.htm. Accessed 06/04/2015.

Somasundara, A. A., Ramamoorthy, A., and Srivastava, M. B. (2007). Mobile ele-
ment scheduling with dynamic deadlines. Mobile Computing, IEEE Transactions on,
6(4):395–410.

Sujit, P., Lucani, D., and Sousa, J. (2013). Joint route planning for uav and sensor network
for data retrieval. In Systems Conference (SysCon), 2013 IEEE International, pages
688–692. IEEE.

Tam, V. and Ma, K. (2008). An effective search framework combining meta-heuristics
to solve the vehicle routing problems with time windows. Vehicle Routing Problem,
page 35.

58

BIBLIOGRAPHY

Tan, K., Lee, L., and Ou, K. (2001). Artificial intelligence heuristics in solving vehicle
routing problems with time window constraints. Engineering Applications of Artificial

Intelligence, 14(6):825–837.

Tekdas, O., Isler, V., Lim, J. H., and Terzis, A. (2009). Using mobile robots to harvest
data from sensor fields. IEEE Wireless Communications, 16(1):22.

Thangiah, S. R. (1999). A hybrid genetic algorithms, simulated annealing and tabu search
heuristic for vehicle routing problems with time windows. Practical handbook of ge-

netic algorithms, 3:347–381.

Thangiah, S. R., Osman, I. H., and Sun, T. (1994). Hybrid genetic algorithm, simulated
annealing and tabu search methods for vehicle routing problems with time windows.
Computer Science Department, Slippery Rock University, Technical Report SRU CpSc-

TR-94-27, 69.

Thangiah, S. R., Osman, I. H., Vinayagamoorthy, R., and Sun, T. (1993). Algorithms for
the vehicle routing problems with time deadlines. American Journal of Mathematical

and Management Sciences, 13(3-4):323–355.

VRPTW, S. (2015). Sintef. https://www.sintef.no/projectweb/top/vrptw/solomon-
benchmark/100-customers/. Accessed 06/04/2015.

Xing, G., Wang, T., Xie, Z., and Jia, W. (2008). Rendezvous planning in wireless
sensor networks with mobile elements. Mobile Computing, IEEE Transactions on,
7(12):1430–1443.

59

A P P E N D I X A

Appendix

[This page intentionally left blank]

Appendix

Table A.1: Adapted Solomon instances with 25 nodes
Delivery Limit ∆1 ∆2 ∆3 ∆4 ∆5

Instance Paths Distance Paths Distance Paths Distance Paths Distance Paths Distance
C101 14 689.80 7 351.16 5 265.65 5 213.10 3 191.81
C102 10 505.19 6 324.82 4 234.34 3.92 211.82 3 191.81
C103 10 532.27 5 306.68 4 273.62 3 194.59 3 190.74
C104 10 524.27 5 290.84 4 261.58 3 192.23 3 188.53
C105 10 505.61 7 351.25 5 261.19 3 206.63 3 191.81
C106 10 559.40 7 353.37 5 272.58 5 202.30 3 191.81
C107 11 603.87 6.48 342.85 5 236.97 3.04 221.64 3 191.81
C108 11 578.92 6 316.90 4.16 279.33 3 195.15 3 191.81
C109 9 456.68 6 315.12 4 261.85 3 191.81 3 191.81
C201 8 518.49 4 351.69 3 247.29 3 237.29 2 228.96
C202 9 558.28 4 293.18 2 236.00 2 230.82 2 220.52
C203 6 437.05 4 291.65 2 236.00 2 231.54 2 220.26
C204 6 414.80 3 269.76 2 233.29 2 233.29 2 213.93
C205 9 532.81 4 311.48 2 241.59 2 234.94 2 215.54
C206 7 457.52 4 314.47 3 235.05 3 235.05 2 218.90
C207 7 442.34 4 323.03 3 239.12 3 231.56 2 215.54
C208 6 458.18 3 278.56 2 236.15 2 234.94 2 229.43
R101 15 841.72 10 676.88 9 631.79 8 618.33 8 618.33
R102 11 691.10 8 630.69 7 559.71 7 554.96 7 548.11
R103 10 665.50 6 553.02 6 506.59 6 471.91 5 455.70
R104 9 633.28 6 520.24 5 468.09 4 428.38 4 417.96
R105 12 758.83 8 614.78 6 531.54 6 531.54 6 531.54
R106 10 681.98 7 577.50 5 503.64 5 470.17 5 466.48
R107 9 648.32 7 539.24 5 464.14 4 441.96 4 425.27
R108 10 647.92 6 506.51 4 435.05 4 413.47 4 398.30
R109 10 690.47 6 501.28 5 481.75 5 459.85 5 442.63
R110 9 622.79 6.04 510.10 5 455.12 5 445.18 4.84 445.33
R111 10 673.35 6 516.82 5 464.34 4 435.56 4 429.70
R112 8 599.01 6 474.31 4 423.22 4 394.55 4 394.10
R201 8 702.02 5.8 567.69 4.8 519.10 3 474.37 3 474.37
R202 8 687.44 4 508.85 3.32 481.09 3 437.16 2 457.74
R203 8 630.10 4 477.46 3.32 451.00 2 412.46 2 400.40
R204 5.24 519.60 3 390.29 3 375.73 2 371.51 2 356.09
R205 6 561.26 4 451.13 3 411.42 3 394.06 2 405.98
R206 6 522.91 3 444.54 2.84 396.22 2.64 377.44 2 378.18
R207 5 494.60 3 407.34 2.96 390.74 2 369.37 1.44 383.00
R208 5.52 488.94 3 378.37 2 350.78 1 347.82 1 329.33
R209 6 525.17 3.36 411.99 2 381.01 2 371.56 2 371.62
R210 6 599.51 4 464.08 3 423.42 2 412.52 2 410.60
R211 4 445.49 2 366.06 2 352.59 2 352.09 1.12 362.29

RC101 9 788.35 7 619.62 5 483.35 4.28 475.94 4.36 479.27
RC102 9 758.15 6 541.61 4 449.00 3 352.74 3 352.74
RC103 9 738.50 6 529.48 4 395.07 3 333.92 3 333.92
RC104 8 677.41 6 516.91 4 388.83 3 309.22 3 307.14
RC105 9 749.25 6 576.58 5 507.18 4 412.38 4 412.75
RC106 8 718.26 5.92 519.69 4 403.11 3 346.51 3 346.51
RC107 7 650.83 5 471.95 3.12 320.22 3 298.95 3 298.95
RC108 7 604.46 5 463.58 3 299.19 3 294.99 3 294.99
RC201 11.48 1017.82 5 525.90 4 519.02 3.92 413.70 3 361.24
RC202 6.96 674.38 4.96 468.75 3 399.86 3 338.87 2 376.12
RC203 6 632.79 3 465.23 2 391.48 2.52 342.32 2 356.35
RC204 5 526.88 2 406.53 2 351.78 1.08 330.82 1.88 315.71
RC205 8 707.41 4.84 514.65 3 418.13 3 346.56 2 386.15
RC206 6 579.85 3 453.18 3.08 391.37 3 325.10 2 344.93
RC207 5 492.40 3 406.53 3 305.45 2 308.57 2 308.57
RC208 4 366.49 2.16 292.66 2 272.51 2 269.57 1.76 280.42

A-2

Appendix

Table A.2: Adapted Solomon instances with 50 nodes
Delivery Limit ∆1 ∆2 ∆3 ∆4 ∆5

Instance Paths Distance Paths Distance Paths Distance Paths Distance Paths Distance
C101 23 1450.37 12 788.66 8 570.26 7 481.47 5 363.25
C102 20.04 1152.44 11 689.70 7.44 500.88 6 415.68 5 387.26
C103 19.12 1128.04 10 633.07 7.2 536.12 5 408.77 5 363.92
C104 18 1031.69 10 614.52 7 504.11 5 368.03 5 359.96
C105 19.72 1134.73 11 721.95 8 539.54 6 418.14 5 363.25
C106 20.48 1193.88 11 686.24 8 546.19 6 517.26 5 363.25
C107 20.4 1252.69 11 724.87 8 499.24 6 422.59 5 363.25
C108 19.32 1186.86 10.2 677.34 7.96 526.96 6 402.33 5 363.25
C109 18.2 1086.92 10 635.00 7 522.56 6 403.82 5 363.25
C201 14 1017.25 6 590.28 5 495.62 4 412.39 3 375.21
C202 12.96 1015.57 5 574.71 3 548.77 3 391.27 2 427.85
C203 10 938.92 5 535.97 4 419.11 2 499.89 2 418.64
C204 9 749.59 5 498.23 3 412.55 3 395.71 2 371.54
C205 12.04 926.58 5.68 583.58 4 501.51 3.96 411.05 2 441.06
C206 10 848.60 6 575.57 4 471.20 3 405.55 2 416.23
C207 10.92 850.53 5 558.70 4 418.74 3 433.82 2 442.00
C208 11.44 912.77 5.52 520.17 4 418.07 3 427.21 2 352.29
R101 25 1682.23 18 1291.82 13 1113.72 12 1051.79 12 1051.62
R102 21 1460.81 14.24 1167.41 11 969.99 10 932.87 10 925.40
R103 18 1324.06 11.84 947.05 9.04 864.61 8 810.80 8 784.56
R104 16 1182.24 10 822.09 8 733.75 6.12 663.56 6 632.21
R105 21.04 1472.02 14.04 1156.62 10.48 974.82 9 914.31 9 914.31
R106 18.96 1353.22 12.24 1034.95 9.44 891.80 8 803.24 7 882.01
R107 17.4 1269.58 11.44 913.89 8.64 789.70 7 736.59 6 744.08
R108 15 1081.49 10 821.42 7 687.60 6 649.40 6 621.85
R109 19 1359.12 12 985.48 9 828.36 8 805.81 7.92 801.58
R110 16.32 1233.08 10.28 892.32 8.04 758.65 7 713.20 7 708.29
R111 16 1175.30 11 896.76 8 761.39 7 719.01 7 709.53
R112 15 1098.42 9.4 812.58 8 698.69 6.32 668.39 6 640.59
R201 13 1271.26 6 987.27 5 882.38 3 896.04 3 863.96
R202 11.48 1177.17 5 854.96 4 783.71 3 774.28 2 816.78
R203 10 1052.57 4 845.08 3 770.65 2 755.98 2 663.60
R204 8 820.05 3.2 577.05 3 524.67 2 527.66 2 509.25
R205 10 1044.98 4.8 813.00 3 793.58 3 717.98 2 747.07
R206 8.92 955.09 4 771.91 3 693.91 2 668.94 2 658.74
R207 8 853.06 4 698.18 3 624.01 2 615.08 2 594.35
R208 7.72 785.95 3.56 565.54 2.08 541.43 2 507.97 2 494.17
R209 8.76 943.68 4.2 703.91 3 655.00 2 670.24 2 661.34
R210 10.16 995.89 5 762.58 3 711.39 2 724.91 2 675.41
R211 7 744.32 4 597.83 3 566.79 2 566.28 2 561.25

RC101 19 1753.05 12 1167.15 9 974.13 8 948.70 8 948.73
RC102 18 1675.47 11 1092.62 8 927.01 7 823.97 7 823.97
RC103 17 1544.14 10 975.97 8 845.43 6 713.13 6 712.56
RC104 14 1282.08 10 929.83 7 776.42 5 554.25 5 549.34
RC105 17 1524.64 11.92 1117.90 8 919.14 8 858.26 8 856.97
RC106 17 1587.57 10 962.93 8 876.92 7 803.09 6 724.65
RC107 16 1455.09 10 936.41 7 746.15 6 645.54 6 645.51
RC108 14.96 1326.85 9 872.41 7 777.72 6 599.17 6 599.17
RC201 14.68 1633.38 6 1057.78 4 1082.01 4 787.20 3 840.07
RC202 10.92 1288.03 5.88 933.36 4 888.89 3 784.82 2 885.72
RC203 9.12 1175.93 4.96 833.41 4 713.46 3 621.15 2 674.42
RC204 7 825.72 4 596.56 3 549.77 2 488.48 2 479.87
RC205 11.04 1377.30 6 990.51 4 927.34 3 819.33 3 761.38
RC206 9.92 1156.58 5 806.32 4 725.13 3 668.50 2 777.90
RC207 9.04 1048.38 5 740.01 3 637.80 3 583.93 2 655.81
RC208 7 712.69 3.76 534.54 3 513.43 2 534.48 2 494.89

A-3

Appendix

Table A.3: Adapted Solomon instances with 75 nodes
Delivery Limit ∆1 ∆2 ∆3 ∆4 ∆5

Instance Paths Distance Paths Distance Paths Distance Paths Distance Paths Distance
C101 34.16 2375.28 17.32 1194.55 12 903.16 10 828.34 8 688.04
C102 32.64 2126.47 16.16 1131.95 11 813.11 8 718.63 8 666.91
C103 30.04 1972.37 14.96 1046.99 11.04 892.73 8 686.36 8 666.06
C104 28 1843.50 15 1097.14 10.04 834.40 8.08 702.44 7 674.72
C105 29.88 2093.62 16.48 1143.01 11.6 895.44 9 712.83 8 650.35
C106 30.36 2059.37 16.16 1098.66 12.08 922.12 9.08 724.88 8 664.46
C107 29.84 2063.68 16.24 1172.01 11 829.22 9 709.90 8 662.27
C108 29.6 1988.45 15.68 1126.92 11 856.24 8.52 711.08 8 660.10
C109 27.36 1836.82 15.12 1096.38 10.96 861.28 8 686.18 8 640.80
C201 20.44 1419.58 8 771.43 6 659.16 6 635.72 3 545.28
C202 19 1662.92 8 770.97 5 656.78 4 624.27 3 520.64
C203 15.24 1366.17 7 801.49 5 642.44 4 593.66 3 516.01
C204 13.68 1184.08 7 737.93 4.92 614.07 4 562.30 3 514.20
C205 19.44 1388.64 8 817.14 6 664.38 5 597.87 3 519.88
C206 16.12 1421.55 7.84 818.02 6 651.78 4 612.21 3 510.71
C207 14.52 1256.14 7.28 855.17 5 732.73 4 644.78 3 529.78
C208 16.4 1325.24 7 787.00 5 662.51 4 620.90 3 519.50
R101 35 2399.67 24.44 1814.86 17.96 1549.43 16 1439.76 16 1436.66
R102 28.88 2104.93 20.28 1636.05 14.72 1376.69 14 1304.21 14 1296.17
R103 25 1849.85 16 1336.46 12.52 1151.10 11 1061.52 11 1039.59
R104 22.96 1688.11 14.24 1146.84 11 982.10 9.04 885.86 8 826.84
R105 29.12 2136.62 18.72 1530.76 13.72 1293.63 12 1181.15 12 1169.51
R106 25.92 1863.46 17.04 1402.22 12.56 1198.91 11 1096.69 10 1130.37
R107 23.68 1760.51 15 1251.30 11.6 1066.76 9.32 953.25 9 938.67
R108 21.28 1600.16 14.36 1185.28 10 944.61 8.6 861.71 8 812.84
R109 24 1819.61 15.32 1289.39 12 1106.51 10 1044.99 10.12 1031.44
R110 23 1678.86 14.76 1205.78 11 1036.81 9.8 961.66 9.24 956.71
R111 23 1715.58 14.96 1236.52 11 985.26 9 947.46 9 909.49
R112 22 1626.25 13 1100.68 10.44 966.48 9 876.55 8 844.40
R201 16.08 1697.89 7.96 1242.38 6 1164.24 4 1120.65 3 1152.01
R202 14.72 1540.65 7 1085.22 5 1094.60 4 995.85 3 1012.17
R203 14.6 1435.79 6.56 1004.82 4 963.38 3 901.43 3 831.99
R204 10.96 1069.78 5 754.65 4 688.70 3 677.26 2 739.87
R205 12.64 1374.08 6.28 1009.83 5 927.22 3 943.29 3 901.80
R206 12.04 1257.56 6 933.10 4 856.81 3 823.19 2 886.80
R207 11.04 1168.35 5.52 899.12 4 808.99 3 774.28 2 791.55
R208 10 998.83 4.92 717.24 3.6 665.37 2.08 648.11 2 628.51
R209 12.68 1255.15 5.96 864.80 4 795.67 3 808.76 3 797.09
R210 12.08 1307.32 6 964.97 4 895.62 3 877.80 3 846.20
R211 10 986.41 5 765.95 3.64 719.67 3 697.29 2 737.62

RC101 28 2459.94 18.44 1752.84 13.76 1478.96 12.16 1399.62 12.16 1394.89
RC102 26.04 2325.62 16.36 1599.64 12.96 1355.90 11 1280.14 11 1259.17
RC103 24.04 2126.48 15.6 1482.59 11 1215.08 10 1102.63 9.6 1092.62
RC104 21 1884.91 14.88 1404.59 10.44 1130.87 9 978.99 8 960.49
RC105 24.52 2166.54 17 1588.80 12.8 1340.66 11 1256.26 11 1260.18
RC106 25 2252.71 14.08 1411.18 11.6 1232.13 10 1141.39 10 1141.06
RC107 22.64 2049.30 13.8 1336.45 10 1098.03 9 1015.05 9 1013.16
RC108 20.68 1816.21 12.96 1222.80 10 1048.37 8.96 939.55 8.96 940.60
RC201 18.2 2091.13 8.36 1433.34 7 1268.36 5 1181.64 4 1178.23
RC202 14 1671.93 8 1242.96 5 1303.06 4 1117.57 3 1168.73
RC203 12.12 1509.94 6.24 1045.07 5 967.77 3 1004.67 3 907.49
RC204 10.48 1165.95 5 781.02 4 719.20 3 691.37 2 716.94
RC205 14.24 1788.46 7.8 1317.91 6 1160.50 4 1133.43 4 1086.07
RC206 12.88 1518.24 6.16 1093.83 5 953.38 4 894.81 3 948.44
RC207 11.92 1412.33 6 980.92 4.92 872.20 4 813.07 3 859.19
RC208 10 1079.78 5.32 786.23 3.96 711.93 3 694.78 2.96 696.00

A-4

Appendix

Table A.4: Adapted Solomon instances with 100 nodes
Delivery Limit ∆1 ∆2 ∆3 ∆4 ∆5

Instance Paths Distance Paths Distance Paths Distance Paths Distance Paths Distance
C101 47.08 3463.35 22.8 1657.09 18 1326.34 14 996.91 10 849.64
C102 42.6 3121.97 21.12 1599.80 14.84 1195.29 11 1002.29 10 854.68
C103 39.44 2878.63 19.72 1495.05 14.44 1253.59 11 916.45 10 844.07
C104 38.64 2829.74 20.04 1535.83 14 1152.26 11 904.92 10 834.08
C105 40.04 3164.93 21.68 1594.27 15.96 1263.00 11 950.83 10 828.94
C106 39.24 3004.81 20.88 1583.93 15.88 1304.47 11 982.30 10 852.76
C107 39.84 3078.72 21.72 1683.31 15 1207.30 11 921.79 10 844.39
C108 38.56 2906.63 20.92 1633.45 14.56 1236.96 11 909.92 10 844.74
C109 36.64 2706.23 20.2 1630.68 14.12 1214.72 11 878.07 10 828.94
C201 25.28 2081.75 9.16 964.22 6 797.92 6 710.20 5 662.28
C202 23.92 2068.95 9 1177.24 6 800.25 6 712.30 4 647.33
C203 19.68 1859.31 9.36 1006.44 6 734.66 5 719.81 4 634.37
C204 18.4 1696.39 9 1066.89 6 790.09 4 754.55 4 633.63
C205 24.44 1917.87 10 994.84 6.24 777.28 6 721.04 4 637.87
C206 20.68 1869.35 9.16 986.11 6.12 765.74 6 702.89 4 604.87
C207 19.2 1713.67 9.12 979.20 6 744.58 5 748.61 4 641.38
C208 21.08 1816.41 9.36 1011.24 6.44 774.29 5 723.33 4 634.04
R101 42.52 2828.45 27.2 2085.44 22.28 1795.68 19.12 1692.06 19 1668.62
R102 33.88 2428.67 24.52 1916.38 18 1557.85 18 1485.05 18 1481.16
R103 30.6 2166.97 21 1638.87 16.04 1398.02 14 1266.28 14 1224.80
R104 29.08 2023.20 18.8 1406.02 13 1170.00 11.76 1067.21 10 1003.89
R105 34.48 2474.71 22 1736.22 16.32 1498.30 15 1413.60 14.88 1391.16
R106 30.76 2209.09 20.08 1626.95 15.24 1400.36 13 1287.63 13 1261.18
R107 28.88 2073.33 18.88 1489.53 14.04 1243.14 11.64 1150.69 11 1082.59
R108 27.04 1902.98 18 1406.39 12.96 1129.36 10.88 1005.54 10 992.17
R109 30.04 2157.38 19.04 1536.45 14.08 1278.57 12.64 1195.68 12.04 1196.31
R110 28.52 2004.49 18 1413.11 14 1224.77 11.96 1121.38 11.48 1113.82
R111 29.08 2055.14 18 1431.01 13.12 1172.30 11.8 1108.76 11 1073.33
R112 27 1893.08 16.68 1311.73 13 1111.36 11 1028.09 10 986.28
R201 19.92 2039.68 9.24 1410.64 7 1338.59 5 1287.85 4 1256.83
R202 17 1698.22 8 1294.42 6 1214.22 4 1231.60 4 1112.26
R203 15.88 1505.56 7.96 1097.80 5 1030.62 4 1002.68 3 961.34
R204 12.72 1262.23 6.16 909.02 5 806.90 3 800.57 3 776.39
R205 15.16 1577.83 7.6 1136.15 5 1093.29 4 1016.09 3 1053.29
R206 14.6 1430.21 6.96 1035.71 5 979.24 4 927.16 3 940.56
R207 13.16 1299.29 6.96 991.46 5 902.26 3.92 865.70 3 838.48
R208 12.16 1160.38 6 830.33 4.28 781.73 3 739.93 3 722.30
R209 14.52 1424.34 6.88 991.65 4.88 913.18 3.96 897.66 3 947.07
R210 14.52 1497.62 7.4 1085.27 5 1009.11 4 964.50 3 960.68
R211 11.92 1136.39 6.52 854.73 4 797.62 3 801.57 3 790.70

RC101 33 2911.31 22.64 2169.93 17.04 1796.31 15.08 1674.31 15.4 1679.15
RC102 32.6 2858.28 20.2 1970.73 15.88 1633.19 14 1513.51 13.96 1502.84
RC103 29 2556.72 19.04 1827.01 14 1458.17 11.88 1299.62 11 1286.41
RC104 26.24 2309.99 17.36 1655.58 13.2 1374.72 11 1198.62 10 1164.60
RC105 31.88 2719.21 20.76 1998.15 16 1606.10 14.4 1612.90 14 1572.04
RC106 30 2667.60 18.4 1777.32 14.76 1514.94 13.04 1419.69 12.4 1416.36
RC107 27.96 2439.95 17.88 1667.33 13.32 1385.62 12 1266.81 11.92 1248.14
RC108 26.12 2246.16 16 1511.38 13 1290.53 11 1161.49 11 1149.13
RC201 20.88 2446.02 9.88 1604.33 7 1501.50 6 1418.19 5 1349.73
RC202 15.72 1943.40 9.36 1420.80 6.92 1310.61 5 1200.43 4 1186.46
RC203 16.2 1827.80 8.08 1199.87 6 1102.32 5 1013.03 3 1106.82
RC204 12.88 1420.52 7 934.24 5 881.12 4 832.90 3 831.96
RC205 18.24 2069.66 9.44 1537.86 7 1339.94 5 1295.02 4 1344.19
RC206 15.92 1854.87 8 1294.43 6 1186.89 4.92 1096.91 4 1089.63
RC207 14.16 1669.47 7.4 1176.31 5.32 1058.45 4.68 1012.81 3.48 1054.26
RC208 12.8 1373.58 6 878.41 4 895.28 3.92 810.35 3 873.84

A-5

	Statement of Originality
	Abstract
	Resumo
	Acknowledgements
	List of Publications
	Introduction
	Background
	Data Gathering Approaches
	Classical Networks
	Networks with Terrestrial Elements
	Network with UAV Elements

	Network Design Problems in Sensor Networks
	Topology Design
	Network Layer

	Problem Definition
	Practical Applications

	Mathematical Optimization
	Introduction
	Combinatorial Optimization
	NP-Hardness
	Mathematical Formulation

	Solving Methods
	State Of The Art
	Vehicle Routing Problem
	Two Step-Algorithm Approaches
	Clustering First
	Routing Second

	Heuristics
	Constructive Heuristics
	Nearest Neighbour Heuristic
	Clarke and Wright Savings Heuristics
	Push Forward Insertion Heuristic (PFIH)

	Improvement Heuristics
	Ruin and Recreate Principle
	Local Search

	Meta-heuristics
	Genetic Algorithms
	Tabu Search
	Simulated Annealing
	Multiple Ant Colony Systems (MACS)
	Guided Local Search

	Data Gathering in WSNs
	Introduction
	Extended Problem
	Input and Output

	Proposed Hybrid Heuristic Algorithm
	Problem Limits
	Adapted Push Forward Insertion Heuristic
	Seeded Partial Solution
	Improvement Methods
	Node Ejection
	Band Neighbourhood Ejection
	Overall Procedure

	Performance evaluation
	Introduction
	Data Set and Best Known results
	Generating Data Sets
	Best Known Results

	Getting the Results
	Heuristic Results
	Exact Results

	Analysis of the Results
	Optimal vs Heuristic Solutions for Sets C1 and C2 with 25 Nodes
	Heuristic Solutions for all Sets with 25 Nodes
	Best known vs Heuristic results with 100 Nodes

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix

