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ABSTRACT  

Transition metal complexes, particularly copper(II) compounds have received an 

increasing attention for cytotoxic effect. Copper compounds coordinated to various 

types of ligands exhibit considerable nuclease activity that is mostly measured by using 

the Agarose Gel Electrophoresis (AGE) of pDNA digested by the compounds of interest.  

In attempt to gain more insight into the cytotoxicity of transition metal complexes, 

namely their binding and cleavage capacity towards DNA, copper(II) compound 

[Cu(L)Cl](CH3OH) was prepared using a Schiff base ligand, 2-(pyridin-2-

yl)hydrazono)methyl)phenol. The latter has been synthesized by condensation reaction 

between 2-hydrazinopuridine and salicylaldehyde and characterized by x-ray 

crystallography, mass spectrometry (MS), NMR and IR spectroscopy. [Cu(L)Cl](CH3OH) 

DNA binding properties were examined by spectrophotometric DNA titration (UV-visible 

spectroscopy) and EtBr displacement assay (fluorescence spectroscopy) using ct-DNA. 

The nuclease activity was evaluated by conversion of the Sc DNA into Nck and Lin 

forms using the AGE of pBR322 and pA1 DNA.   

A new method for evaluating the extent of DNA cleavage within living cells has been 

developed. The method was studied on Mach1 E. coli bacteria cells using vanadyl 

acetylacetonate, VIVO(acac)2, and copper(II) complex, [Cu(L)Cl](CH3OH). This new 

technique consists of bacterial cells culture, exposure of bacterial cells to concerned 

compounds, pDNA purification, and the AGE of pDNA extracted from exposed cells.  

DNA binding results show that the complex interacts with ct-DNA. The calculated values 

of intrinsic binding (Kb) and Stern-Volmer quenching (Ksv) constants were of 5.98 x 104 

M-1 and 399.9 M-1, respectively. In contrary to pRB322 DNA, [Cu(L)Cl](CH3OH cleaves 

pA1 pDNA cleavage in presence of mercaptopropionic acid (MPA). Furthermore, 

VIVO(acac)2 DNA cleavage inside living cells was observed by using the new developed 

procedure.  

Keywords: Copper(II) complexes, DNA cleavage, cytotoxicity, agarose gel 

electrophoresis, living cells, method development.   
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I. INTRODUCTION  

I.1. Objectives  

Cytotoxicity of transition metal coordination compounds has been widely studied 

previously [1,2,3]. In most cases DNA cleavage activity of metal complexes is directly 

correlated to their cytotoxicity properties with, sometimes, anti-tumour potential [4,5]. 

Agarose gel electrophoresis (AGE) remains the most commonly used technique for 

characterization of the interactions (e.g., cleavage) between chemicals, such as metal 

complexes, and DNA [6].  

Plasmid DNA (pDNA) is mostly employed in AGE experiments. pDNA, isolated from 

bacteria cells, is digested with the concerned compound. DNA cleavage is then checked 

by monitoring the conversion of supecoiled (Sc) DNA to nicked (Nck) and linear (Lin) 

DNA. However, little is known in regard to the detection of the DNA damage by metal 

coordination compounds inside living cells. Therefore, this study was designed to 

address this point. The overall aim of this work has been to evaluate the DNA cleavage 

activity of copper-based complexes within living cells. 

To achieve this general aim, three specific objectives were established:   

1. To synthesize potential copper therapeutic complexes 

2. To evaluate their DNA cleavage efficiency, and 

3. To develop a method of evaluating the extent of DNA cleavage inside living cells.     

I.2. Evaluation of DNA cleavage  

DNA damage can take place in both eukaryotic and prokaryotic cells. The causes of 

DNA degradation vary from natural basis such as apoptosis [7,8] to cleavage induced 

by genotoxic or cytotoxic agents including some metal complexes [1,9]. Techniques 

have been developed to detect breakage events in DNA strands. Some methods 

assess DNA degradation inside cells [10] while others analyse cleavage for isolated or 

extracellular DNA (e.g., pA1 DNA, pRB322 DNA) from cells [11,12].   

Assessment of DNA cleavage conducted on purified DNA from cells can be carried out 

by different analytical methodologies such as agarose or polyacrylamide gel 
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electrophoresis, atomic force microscopy (AFM), UV-Visible (UV-vis), fluorescence, and 

CD spectroscopy. So far, there are not many techniques to detect DNA cleavage within 

living cells. Comet assay is the most used for studying DNA degradation in bacterial or 

tumor cells [13]. However, each of these techniques may present some drawbacks that 

may hamper their effectiveness.  

     I.2.1. Methods and limitations 

The agarose (or polyacrylamide) gel electrophoresis is the most common employed 

technique in evaluation of DNA cleavage studies. This analytical method is widely used 

in analysis of DNA-chemicals interactions because of its safety, simplicity and low cost. 

It does not require sophisticated materials and equipments to perform. Furthermore, gel 

electrophoresis provides detailed results which are easy to interpret [14]. AGE provides 

advantages of having the unaltered nucleic acid during size separation process and 

sample recovery for ultimate studies. Limitations of this technique are related to the 

risks of unpredictable migration of DNA cleavage fragments that could complicate 

interpretations [15].   

AFM is a method also employed in characterization of DNA interactions with chemical 

compounds [16]. AFM imaging is carried out in air and aqueous solution without 

staining, shadowing or labelling. In contrast to electrophoresis, AFM identifies shorter 

DNA fragments produced by cleaving chemicals. Moreover, it gives information about 

DNA structure modifications with good resolution and accuracy. The use of AFM may 

be limited by generation of artefacts which do not reflect the sample in reality [17].  

DNA cleavage activity of metal complexes can be predicted indirectly through binding 

properties. Techniques such as UV-vis, fluorescence or circular dichroism (CD) 

spectroscopy are commonly employed to study the interactions with DNA [18,19]. 

However, these techniques do not allow detecting the cleavage itself in DNA strands. 

Even if spectroscopic procedures provide crucial information, they require 

complementary studies to confirm the DNA strand breakage.  
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     I.2.2. Assessment in cells  

Techniques have emerged for evaluating the occurrence of DNA breakage in cells. 

Those methodologies are well developed in cancer researches where they are 

frequently referred to as in situ methods [8]. Immunological or cytometric procedures 

have been reported to be effective for detection of DNA damages in humans. A 

concrete instance is the use of antibodies against carcinogen-DNA adducts to assess 

DNA damages in cells exposed to carcinogenic chemicals as well as UV light or 

oxidizing agents [20]. Other examples are cytometric methodologies detecting DNA 

damage induced by genotoxic agents or DNA fragmentation happening during 

apoptosis in individual cell [21]. The latter methods are capable of estimating the extent 

of the DNA damage and relating it to cell cycle phase and induction of apoptosis.    

So far DNA cleavage in microorganism cells is rarely assessed. Few techniques are 

available to detect the DNA breakage in bacteria. Comet assay is one of the most 

employed to study DNA strand breakage in eukaryotic cells [22] as well as in bacteria 

(e.g., Escherichia coli) [23,24]. This procedure is applied in testing new chemicals 

genotoxicity, identification of environmental genotoxins, human epidemiology 

researches, or studies in DNA damage and repair. Comet assay also known as single-

cell gel electrophoresis technique operates by removal of all cellular content except the 

DNA. Broken DNA strands are then released from supercoiling and pulled out in form of 

tail by electrophoresis at high pH (figure I.1). The extent of this tail is stained with a 

fluorescent dye and analysed by fluorescence microscopy [25].  

 

Figure I.1. Comet assay micrographs of (a) undamaged cells, and (b) cells with DNA damaged. DNA 
stained with SYBR

® 
Green; observation at 250x magnification on fluorescence microscopy [26].  
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I.3. Biochemistry of Copper 

     I.3.1. Overview of copper 

Copper (Cu) is a transition metal element found in fourth period on the table of elements 

with atomic number and atomic weight of 29 and 63.546, respectively. Cu has two 

stable isotopes, 63Cu and 65Cu with corresponding natural abundances of 69.2 and 

30%. It can exist in three oxidation states which include essentially Cu(0), Cu(I), and 

Cu(II). The capability of releasing or absorbing an electron provides copper with the 

important role in oxidation-reduction (REDOX) reactions and free radicals scavenging 

events [27].  

Copper is an essential nutrients which is involved in many functions of plants, animals 

and humans. In organism, under the oxidizing conditions of extracellular environment, 

copper exists as Cu2+ while inside the cell it likely exists in the reduced form (Cu+) 

oxidation state [28]. Imbalance of this element in organism can lead to life threatening 

conditions [29].  

     I.3.2. Copper in human health and diseases  

Copper (Cu) has been known since 1930s as an essential trace element in mammalian 

nutrition. Biological Cu content may vary from parts per billion (ppb) to parts per million 

(ppm) with adult body containing about 80 mg absorbed from diet (figure I.2). Absorbed 

Cu is bound to amino acids or small peptides. In systemic circulation 95% of plasma Cu 

is transported by copper-transporting protein known as ceruloplasmin. The remaining 

quantity is bound to albumin or amino acids [30,31]. 
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Figure I.2. Pathway of copper in the body - The blocks in Menkes and Wilson diseases (Mercer, J.F.B. 
TRENDS, 2001) 

Copper (Cu) plays fundamental role in the biological activity of cuproenzymes. Cu is 

involved in composition of macromolecules structure by coordination chemistry. Among 

important physiological Cu-based enzymes include ceruloplasmin, cytochrome C 

oxidase, dopamine β-monoxygenase, lysyl oxidase, peptidylglycine α-amidating 

monooxygenase, superoxide dismutase, or tyrosinase. These proteins are essentials in 

fetal/infant development and growth, brain development and function, immunity, bone 

strength, cholesterol and glucose metabolism, myocardial contractility, maintenance of 

hair and skin, and the formation of pigments [30-32].    

Essentiality of Cu in human organism does not exclude some unwanted activities that 

may arise from imbalance or malfunction. When it is attached to histidine, cysteine, and 

methionine moieties Cu binding can lead to inactivation of many proteins. Reactive 

oxygen species (ROS) such as superoxide and hydroxyl radicals, produced by Cu 

mediated Fenton-like chemistry, may cause damaging consequences if they are not 

detoxified efficiently [33,34]. The following equations show the example of Fenton-like 

equation mediated by Cu compounds: 
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LCu(II) + H2O2 → LCu(I) + ●OOH + H+                   Equation (1) 

LCu(I) + H2O2 → LCu(II) + ●OH + H-                     Equation (2) 

Where L = organic ligand 

Fortunately the organism is protected by some molecules ensuring the maintenance of 

copper homeostasis. This is the role of macromolecules such as copper-transporting P-

type ATPases (ATP7A; MNK), Menkes and Wilson proteins, and copper chaperones. 

Cu imbalance has been associated to some known conditions including Menkes 

disease (i.e., copper deficiency disorder) and Wilson disease (i.e., copper toxicosis 

condition). Nutritional copper deficiency may also lead to a decrease of systemic Cu 

carrier protein, ceruloplasmin, which can result in anemia [35,36].    

     I.3.3. Copper(II) complexes as potential therapeutic agents 

It has been proved that chemical-metal redox system generates ROS which can cause 

DNA breakage. Cu-mediated oxidation also results in ROS formation with DNA 

damaging effect [37,38]. A number of Cu(II) coordination compounds demonstrate DNA 

cleavage activity depending on the nature of ligand. Actually an appropriate ligand (L) 

would allow not only a reduction of LCu(II) but also an oxidation of LCu(I) [33,39]. Some 

compounds need the activating agents to initiate DNA cleavage activity while others do 

not. A cytotoxic complex, [CuII(pyrimol)Cl] (i.e., Hpyramol = 4-methyl-2N-(2-pyridyl 

methyl)amino-phenol), was reported to have the DNA cleavage activity without 

intervention of an activating agent DNA [40]. 

 Oxidative properties of Cu(II) coordination compounds has evolved very interesting 

applications. Rosa F. Brissos and colleagues have reviewed potential uses of Cu(II) 

complexes in oxidative catalysis, cancer chemotherapy, and Alzheimer’s disease [41]. 

In another study Cu(II)-based coordination with NSAIDs showed that they are much 

more effective with less side effect (e.g., gastric upset) compared to their parent anti-

inflammatory agents [42]. Other report claims that coordination chemistry of Cu(II) could 

be a remedy to antibiotic resistant species such as methicillin resistant staphylococcus 

aureus (MRSA) [43]. Furthermore, Cu(II) complexes showed properties of antiviral [44] 

and enzyme inhibitors [45].   
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Promising Cu(II) complexes are already in different phases of clinical trials. Kubiak, K. 

et al. reported a significant increase activity of antioxidant enzymes (i.e., catalase and 

superoxide dismutase) in patients with colorectal cancer treated by pyrazoles based 

Cu(II) coordination compounds [46].  University of Utah has already completed Phase I 

study of co-administration of disulfilam with copper gluconate for the treatment of 

refractory malignancies that have metastasized to the liver. In other clinical study 

Copper-L-histidine has been tested in phase II clinical trial for the treatment of Menkes 

disease [47].   

     I.3.4. Biological activity of Cu(II) complexes with Schiff base ligands 

Schiff bases, named after German-Italian chemist Hugo Joseph Schiff (1834-1915), are 

also known as imines or azomethines. They have a general formula of R3R2C=NR1 

where R2 and R3 represent alkyl, aryl, heteroaryl, hydrogen whereas R1 can be an 

alkyl, aryl, heteroaryl, hydrogen or metallo (usually Si, AL, B, Sn) [48]. Uncomplexed 

imines have a wide range of biological activity with potential applications in treatment of 

diseases such as malaria, bacterial, fungal or viral infections [49].  

Complexes between Schiff bases and Cu(II) are attracting many scientists due to their 

therapeutic potential. Hydrazine derivatives and their corresponding Cu(II) coordination 

compounds have been studied by Rosa F. Brissos and colleagues [50]. Their findings 

showed that some of these ligands and their complexes were very cytotoxic to several 

cancer cell lines as it was evidenced by IC50 values. Bernadette S. Creaven et al. 

investigated Cu(II) complexes of quinolinone-derived Schiff ligands in-vitro using human 

hepatic carcinoma cell line and microorganisms. These compounds showed anti-tumor 

and antimicrobial activities against the fungus, Candida albicans, Gram-positive and 

Gram-negative bacteria [51]. Another study conducted by Yan Xiao and co-workers, 

Glutamine Schiff base Cu complex demonstrated a selective inhibition of proteasomal 

chymotrypsin-like activity (i.e., a valid antitumor approach) and cell death in breast 

cancer cells [52].  
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I.4. Analytical techniques 

     I.4.1. Principles of Agarose Gel Electrophoresis (AGE)  

Gel electrophoresis is a simple and a powerful technique used to separate 

macromolecules (e.g., nucleic acids, nucleotides, amino acids, proteins, peptides) on 

the basis of size, electrical charge and other physical properties. The molecules in 

electrophoresis move across a span of gel under the influence of voltage applied to the 

electrodes (cathode and anode) at the extremes of the gel (figure I.3). AGE has been 

used for decades in a variety of studies such as drug-resistance, plasmid propagation, 

and genetic analysis of plasmid [53,54]. Nowadays, different biochemical laboratories 

use extensively this technique for characterizing pDNA cleavage activity of chemical 

compounds (e.g., transition metal coordination compounds). 

 

Figure I.3. Principles of gel electrophoresis 

AGE is basically composed of an agarose gel, electrophoretic buffer (e.g., Tris-acetate-

ethylenediaminetetraacetic acid (EDTA), Tris-borate-EDTA, or Tris-phosphate-EDTA) at 

approximately 50 mM and pH 7.5 – 78, macromolecular samples (e.g., DNA, protein, 

etc), a dye or DNA stain (e.g., ethidium bromide (EtBr), SYBR green, etc), and a loading 

buffer commonly made of xylene, cyanol and bromophenol [15].  

Agarose, a purified seaweed polysaccharide polymer without charges, is the most 

commonly used in gel electrophoresis. It is not soluble in cold water but becomes 

completely soluble in boiling water. Agarose is not a toxic substance, and hence safe to 

manipulate. Moreover, with AGE procedure there is possibility of recovering unaltered 

nucleic acid sample for ultimate studies [15,55].     
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Agarose gel is prepared by suspension of dry agarose powder in aqueous buffer. The 

mixture is boiled until a clear solution is obtained after melting the agarose. This solution 

is poured onto a gel-tray and allowed to cool down to room temperature in order to have 

a rigid gel. The obtained agarose gel contains large pores size where molecules can 

pass across during electrophoresis [56].  

     I.4.2. Fluorescence spectroscopy  

At room temperature, most substances molecules are at their lowest vibration level of 

the ground state. When they absorb energy, some molecules will move electrons from 

ground state (S0) to an excited state (Sn). Relaxation from excited state to grounds will 

be accompanied by an emission of photos. This emission process is called 

luminescence and can be divided into fluorescence or phosphorescence (figure I.4). 

Fluorescence spectroscopy is an analytical procedure which basically measures the 

emitted light (photos) by a sample of substance after being excited. 

 

Figure I.4. Jabronski diagram representing electronic transitions 
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Fluorescence occurs when an emission is a result of an electron relaxation from excited 

singlet state to ground state. This means that the excited electron has opposite spin to 

the second electron in the ground-state orbital. Therefore, relaxation of excited electron 

back to the ground state orbital will be allowed. Phosphorescence results from triplet 

excited states where the electron in excited orbital has the same spin orientation as the 

electron in the ground state. Electron relaxation requires that spin orientation changes, 

otherwise the return of excited electron to the ground state is forbidden. The magnitude 

of emissive rates of fluorescence is faster than that of phosphorescence, 108 s-1 and 103 

to 100 s-1, respectively [57,58].   

Fluorescence intensity may be decreased in a process known as quenching. Quenching 

may occur due to the collision by other molecules (i.e., quenchers) added in the 

fluorescence system. Quenchers can also decrease the fluorescence by formation of 

non-fluorescent complex with fluorophore (i.e., fluorescent chemical compound) [58]. 

The dynamic quenching is concentration-dependent as it is described in the Stern-

Volmer equation:    

         
Io

I
 = 1 + Ksv [Q]       Equation (3) 

In the above expression I0 and I are, respectively, the fluorescence intensities in the 

absence and presence of a quencher. Plotting I0/I as a function of [Q] yields a linear plot 

with a slope equal to Stern-Volmer quenching (KSV).  

Fluorescence spectroscopy technique is commonly employed in DNA interaction 

studies. EtBr has been widely used as a model in fluorescence spectrocopy procedures. 

By interacting with DNA, the fluorescence of EtBr intensifies significantly [59]. The 

displacement of EtBr by quencher substances, such as metal complexes, decreases the 

fluorescence intensity and this can be quantified by applying the Stern-Volumer 

equation [57]. Therefore, fluorescence-based EtBr displacement assay helps to study 

the potential interactions between DNA and chemical compounds.  
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     I.4.3. Ultraviolet Visible (UV-vis) Spectroscopy  

Organic chemical molecules with conjugated systems (i.e. alternating single and double 

bonds) absorb light in the ultraviolet (150–400 nm) or in the visible region (400–800 nm) 

of the electromagnetic radiation [60]. When an electromagnetic radiation passes across 

a sample of this substance, the intensity of radiation is decreased. The measurement of 

the energy decrease is known as absorbance. The absorbed energy is associated to 

the electrons excitation process from ground (i.e., lower energy level) to excited (i.e., 

higher energy level) state [61].    

The absorbance of a solute in solution is concentration dependant. A spectroscopic 

evaluation of absorbance provides qualitative and quantitative information on substance 

[62]. According to Beer-Lambert law, the absorbance, A, is a linear function of the molar 

concentration, c, of the substance: 

A =  ε x l x c                Equation (4) 

Where ε represents the molar absorption coefficient (M-1 cm-1) and l is the cell path 

length (cm).  

UV-Vis absorption spectroscopy is used to measure DNA interactions with chemical 

compounds. Assessment of these interactions can be carried out by recording the 

absorption spectra in free and bound states. Comparison of absorption spectrum of free 

to bound compound provides information for predicting any potential interactions with 

DNA [18]. This information is mathematically estimated by calculating intrinsic binding 

constant (Kb) using the following equation:    

[DNA ]

εa−εf
 = 

[DNA ]

εo−εf
 + 

1

Kb (εo−εf)
           Equation (5)  

Where [DNA] is the concentration of DNA in base pairs, εa corresponds to extinction 

coefficient observed  at the given DNA concentration, εf is the extinction coefficient of 

the free complex in solution (Abs/[Complex]), and ε0 is the extinction coefficients of 

complex when it is fully bound to DNA. The plot of [DNA]/(εa - εf) versus [DNA] gives a 

slope corresponding to 1/((εa - εf) and y-intercept equal to 1/Kb (εa - εf) , respectively. 

Therefore, the constant Kb is the ratio of the slope to intercept.  
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       I.4.4. Nuclear magnetic resonance spectroscopy (NMR) 

In NMR process, molecules, atoms, electrons, or nuclei are excited from the lower 

energy to upper levels. The energy change ΔE associated with a given transition is 

related to the frequency ν of the radiation by ΔE = γhH where H represents applied 

magnetic field, h Plank’s constant, and proportionality constant γ which is typical of 

each variety of nucleus. The nuclear resonance is observed when the frequency ν = 

γH/2π. Depending on molecular environments, same kind of nuclei may absorb 

different energy. The differences in absorption-line positions are called chemical shifts, 

δ. The magnitude of these differences is always determined taking into account a 

standard such as tetramethylsilane [63].  

NMR spectroscopy provides information about the specific nuclear isotope, structure 

around nucleus and motional dynamics of the matter containing the nuclei. Information 

collected from each magnetic nucleus reports on itself and on its neighborhoods (e.g., 

connectivity information). NMR is essentially useful in determination of structures of 

organic molecules, organometallic complexes, proteins, and nucleic acid oligomers [64].    

       I.4.5. Electrospray ionization mass spectrometry (ESI-MS; positive mode) 

Mass spectrometry (MS) is a technique used in analytical chemistry to determine a 

molecular mass, structures, or isotopic abundance of substance. MS is based on ions 

formation from either organic or inorganic compounds. These ions are then separated 

by their mass-to-charge ratio (m/z) which helps to detect them qualitatively and 

quantitatively by respective m/z and abundance. The analyte is thermally ionized by 

electric fields or impacting energetic electron, ions, or photons. Ionization of molecule 

(M) can be achieved by removal or addition of an electron to give species, respectively, 

M•+ and M•- (equation 6).The mass of these species is practically identical to that of 

original molecule since an electronic mass is very small [65,66].  

M + e− → M•+ + 2e−   Equation (6) 

All molecules in sample should be ionized before being analyzed in a spectrometer.  

These ions should be also in gas phase prior to their introduction into the vacuum of a 

mass spectrometer. Gaseous or heat-volatile substances are simply handled while heat 
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labile compounds may decompose upon heating. Therefore, soft ionization technique 

such as electrospray Ionization (ESI) is used to produce gas phase ions of thermally 

labile molecules without fragmentation [67].     

A mass spectrometer is composed of three basic components including ion source, 

mass analyzer, and detector (figure I.5). Sample is firstly ionized in an ionization source 

of spectrometer. Then sample ions are separated in the mass analyzer based on m/z 

ratio. In the second analyzer some ions are fragmented and the fragments are 

analyzed. The abundance of emerging ions from the last analyzer is measured. These 

ions are converted into electric signals by a detector. Finally these signals are 

transmitted to computer where they can be read and interpreted [68]. 

 

Figure I.5. The basic components of mass spectrometer  

 

       I.4.6. X-ray crystallography 

X-ray crystallography is used to determine the structure of a crystalline solid in three-

dimensional space. X-ray wavelength which is on order of 1 angstrom (Å) is employed 

in this technique. In crystal lattice the atoms are arranged in regular and periodic 

manner. The interatomic distance is on order of 1 Å which is a magnitude of x-ray 

electromagnetic radiation. When an X-ray beam is passed through the crystal, a 

diffracted light provides an equivalent pattern which reflects the structure of crystal. This 

pattern is then mapped onto electronic density map. Analysis of the map provides the 

exact arrangement of atoms in the crystals.  
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Instrument for X-ray chromatography is typically made of a source which shoots x-rays 

at single crystal, a device to select and restrict the wavelengths, a holder for the sample, 

a detector collecting the diffraction patterns, a signal converter, and readout. In order to 

determine the molecular structure by x-ray chromatography, single crystal of substance 

is required. In organometallic chemistry a reaction is conducted in solvent under heating 

so that a product is obtained in solution. Crystals grow as long as solution is cooling 

down while the solvent slowly evaporates [69,70].  

       I.4.7. Infrared spectroscopy (IR) 

Infrared (IR) spectral region extends from the red end of visible spectrum to the 

microwave region with wavenumbers ranging from around 14.000 to 20 cm-1, or 

wavelength from 0.7 to 500 μm. IR region is divided into near (NIR), middle (IR or mid-

IR) and far (FIR) sub-regions. Analytical applications by IR in chemistry are essentially 

carried out in the middle region, 4000 to 500 cm-1 or 2.5 to 20 μm [71].  

Depending on applied energy all molecules in a matter perform movement of translation 

from place to place, rotation in space, and vibration. IR spectroscopic studies of 

substances are based on vibration motion which involves either a change in bond angle 

(bending) or bond length (stretching) (figure I.6) [72].   

 

Figure I.6. Stretching and bending vibration 

When an IR radiation from a continuous source passes through the sample 

compartement of the spectrometer (figure I.7) some photos are absorbed and do not 

reach the detector. IR spectrum displays these missing photos (i.e., absorptions) as 

series of well-defined, characteristic, and reproducible absorptions bands. The non 

absorbed photons are then transmitted to the detector unaltered. IR spectrum is 

displayed by a detector as a percent transmittance (%T) on the Y-axis, and IR 

frequency in terms of wavenumber (cm-1) on the X-axis [71]. 
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Figure I.7. Basic elements of a Spectrometer 

Each chemical compound has its unique infrared spectrum. Some laboratories and 

research centers have established libraries of reference spectra [73,74]. In principle one 

could match the obtained spectrum of an unknown compound with the library and find 

the identity of that chemical compound. A correlation table gathering stretching motions 

of bonds can be also used when it is a new compound or in case of absence of 

spectrum in database.   

I.5. Cells culture techniques 

Cells are the basis of all living things from unicellular (e.g., bacteria) to multicellular 

organisms (e.g., animals and plants). Animal and plant cells have some common 

structures such as nucleus, cytoplasm, cell membrane, mitochondria and ribosomes. 

Protective cell wall is common for both plant and bacterial cells. However, the bacterial 

cell wall is more flexible than that found in plant cells [75].  

Bacteria are procaryotic cell which simply means unorganized Nucleus. They do have 

DNA located in an area known as nucleoid [76,77]. In microbes genetic information is 

carried in chomosomal DNA whereas other extra information is located in a pDNA. The 

plasmid plays a central role in protecting bacterial cells in distress situation such as 

resistances on antibiotics [78] and heavy metals [79].  

Under favorable conditions cells grow in terms of development and reproduction. This 

implies the increase in cytoplasmic constituents and cell populations. Cells can be 

grown in order to have a larger number which is needed for biochemical studies [80]. 

Microbial cell culture is one of research tools in molecular biology for various purposes. 

The culture should fulfil maximum preriquisites  allowing cells to grow. These conditions 
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include nutritional components of the culture medium, correct pH and temperature [81]. 

Bacteriologists extensively use a medium known as Luria-Bertani (LB) broth which 

provide advantages of fast growth and good growth yields for many species [82]. 

It is important to mention that the growth of bacterial culture is composed of consecutive 

phases which are accompanied by variation of growth rate [83]. Escherichia coli (E. coli) 

growth curve presents four major phases including lag phase, log or exponential growth 

phase, stationary phase (or saturation phase), and death phase (figure I.8). At early log 

phase E. coli cells are used to make competent cells and cell stocks. In contrary,  at 

stationary phase cells stop growing and metabolic products accumulate. At this phase 

cells have a good amount of pDNA. Therefore, at saturation phase E. coli cells are used 

in plasmid production [84].  

 

Figure I.8. E. coli cells growth curve with its phases. http://www.exptec.com/ retrieved on 13-06-2015 

 

Plasmids are used to multiply or express genes. They are also used in production of 

large amounts of protein or studying the nuclease activity of chemical compounds. In 

order to be used pDNA  are basically extracted from bacteria and used as extracellular 

DNA. The process of DNA isolation from bacteria consists of cell lysis and DNA 

solubilization followed by enzymatic or chemical methods to remove contaminating 

proteins, ribonucleic acid (RNA), and other macromolecules [85].  

http://www.exptec.com/
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II. EXPERIMENTAL PART 

II.1. Methodology  

In this work a Schiff base ligand LH, 2-(pyridin-2-yl)hydrazono)methyl)phenol, and its 

complex with copper(II) were synthesized according to literature [50]. Compound 

[Cu(L)Cl](CH3OH) was prepared by coordination reaction between copper(II) chloride 

dihydrate (i.e., CuCl2.2H2O) with ligand LH. DNA-binding and nuclease activity of 

[Cu(L)Cl](CH3OH) were investigated by spectrophotometric DNA titration, fluorescence-

based EtBr displacement assay, and AGE using Sc DNA. Furthermore, DNA cleavage 

testing of metal complexes (i.e., copper and vanadium based coordination compounds) 

in cells was performed. MACH-1 E. coli cells were cultivated and then treated by 

[Cu(L)Cl](CH3OH) and VO(acac)2. A technique known as “Boiling lysis miniprep” was 

employed for bacterial DNA purification from E. coli cells. The obtained DNA was then 

electrophoresed to check the nuclease activity of complexes on E. coli bacteria.  

II.2. Synthesis and characterization  

    II.2.1.Materials 

Solvents and reagents of analytical grade were commercially purchase and used as 

received. They were obtained from Aldrich, Acros Organics, Panreac Quimica SA, TCI 

Europe, Liofilchem s.r.l., Merck KGaA, Carl Roth GmbH + Co. KG, or BDH Ltd. pBR322 

DNA was purchased from Roche Farma S.A. Calf thymus DNA (ct-DNA) was 

purchased from Sigma-Aldrich. pA1 DNA (100 μg/mL) was prepared by Nataliya 

Butenko at University of Algarve.  

    II.2.2. Physical measurements 

Proton (1H) spectra were recorded at room temperature with Varian Mercury 400 MHz 

spectrometer. Proton chemical shifts are expressed in parts per million (ppm, δ scale) 

and are referenced to the solvent peak. IR spectra (in KBr pellets) were recorded using 

a Nicolet-5700 FT-IR (in the range of 4000-400 cm-1), UV-vis experiments were 

performed with a Varian Cary-100 (at University of Barcelona) and Varian Carl-50 (at 

University of Algarve) spectrophotometers. The fluorescence measurements were 

carried out with iHR 320 spectrofluorometer.  
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[Cu(L)Cl](CH3OH) was dissolved at room temperature in DMSO solvent (5 mM), and the 

solution was frozen in liquid nitrogen. ESI-MS was carried out using a LC/MSD-TOF 

spectrometer (Agilent Technologies) equipped with an electrospray ionization (ESI) 

source at the Serveis Cientificotècnics of the Universitat de Barcelona. X-ray data were 

recorded at 190(2) K on a Bruker APEX II equipped with a CCD area detector and a 

graphite monochromator (MoKα radiation λ = 0.71073 Å). 

    II.2.3. Synthesis and characterization of ligand (LH)  

10 mmol of 2-hydrazinopuridine and 10 mmol of salicylaldehyde were dissolved in 10 

mL of methanol. The two solutions were then mixed in a 100-mL round-bottom flask. 

Condensation reaction in refluxed methanol between 2-hydrazinopuridine and 

salicylaldehyde was performed on a magnetic stirrer hot plate (90ºC) (figure II.1). After 

4 hours pure ligand was filtrated and dried under vacuum.  

Yield: 1.225g (5.7mmol, 57%). 1NMR (DMSO, 400MHz): δ=10.86 (S, 1H), 10.54 (S, 

1H), 8.26 (S, 1H), 8.09-8.11 (m, 1H), 7.60-7.2 (m, 1H), 7.54 (dd, Ј= 7.7, 1.5Hz, 1H), 

7.20-7.14 (m, 1H), 7.01 (d, J= 8.4, 1H), 6.88-6.82 (m, 2H), 6.75 (ddd, J=7.1, 5.0, 0.8Hz, 

1H)ppm. IR (KBr, cm-1): 3186, 3103, 3054, 2982, 1602, 1541, 1492, 1446, 769. MS 

(ESI+): m/z=214.0824 ([C12H11N3O+H]+). 

 

Figure II.1. Synthesis of 2-(pyridin-2-yl)hydrazono)methyl)phenol (LH) by Schiff based reaction between 
2-hydroxybenzaldehyde and 2-hydrazinopyridine. 

    II.2.4. Synthesis and characterization of complex [Cu(L)Cl](CH3OH)  

A methanolic solution (10 mL) of ligand LH (100 mg, 0.467 mmol) was added to 

methanolic solution (10 mL) of copper(II) chloride dihydrate (64 mg, 0.38 mmol) and 

refluxed on the magnetic stirrer hot plate (90oC). The resulting dark green reaction 

mixture was filtered and the filtrate left for the solvent to slowly evaporate. After two 
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days, dark green crystals of [Cu(L)Cl](CH3OH) were obtained and isolated by filtration 

under vacuum.  

Yield: 77.92 mg (46.8%) IR (KBr, cm-1): 3373, 3171, 3126, 3083, 3038, 2934, 1625, 

1600, 1571, 1531, 1479 1445, 756. MS (ESI+): m/z=275 ([C12H10N3OCu-Cl]+). 

    II.2.5. X-Ray crystallography of complex [Cu(L)Cl](CH3OH)  

Crystals of complexes [CuLCl].CH3OH was picked up on Pasteur pipette and used for 

data collection. Data were recorded at 190(2) K on a Bruker APEX II equipped with a 

CCD area detector and a graphite monochromator (MoKα radiation λ = 0.71073 Å). 

    II.2.6. Stability test of [Cu(L)Cl](CH3OH) 

[Cu(L)Cl](CH3OH) stability has been tested by UV-vis spectroscopy technique for 0.3 

mM in 0.5% DMSO and in 100% DMSO. Samples solutions were diluted in cuvettes to 

0.045 mM before recording UV-vis absorption spectra in the range of 200-500 nm.  

Instrumentation: cary 50 spectrophotometer, 2 quartz cuvettes 

Preparation of solutions 

Stock solution of 0.3 mM [Cu(L)Cl](CH3OH) in 0.5% was prepared by sonicating (3 

minutes) 2.6 mg of [Cu(L)Cl](CH3OH) crystals in 125 μL of DMSO. The resulting 

solution was transferred into 25-mL volumetric flask and then the volume has been 

adjusted with MilliQ water.   

A stock solution of 0.3 mM [Cu(L)Cl](CH3OH) in 100% DMSO was prepared by 

sonication (3 minutes) of 2.6 mg of [Cu(L)Cl](CH3OH)crystals in 1 mL of DMSO. The 

resulting solution was then transferred into 25-mL volumetric flask. The volume (25 mL) 

was adjusted by addition of DMSO.  

Solutions for baselines were 0.5% DMSO solution (0.125 mL DMSO + 24.875 mL MilliQ 

water) and 100% DMSO solvent.  

Procedure: Baselines were recorded by filling 2 quartz cuvettes with solvents (0.5% or 

100% DMSO). The baseline spectra were saved in a file to be reused for subsequent 

samples spectra measurement. After measuring baselines, one of the cuvettes was 
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filled with 1 mL of 0.045 mM solution of either 0.5 % DMSO or 100% DMSO. Between 

measurements, cuvette was always washed by solvent and then solution was passed 

before filling it with sample solution. UV-vis spectra were recorded between 200 and 

500 nm for 0.0, 0.5, 1.0, 2.0, 4.0, 24.0 hours by Scan Software Version 02.00(25). Scan 

rate was 4800 nm/min while the data interval was 1 nm.  

II.3. DNA binding studies 

    II.3.1. UV-visible spectroscopy  

Preparation of solution: Cacodylate buffer and [Cu(L)Cl](CH3OH)preparation is 

described in the section of Agarose gel electrophoresis 

Procedure: Two quartz cuvettes were used: one cuvette was loaded with 3 mL of 1mM 

cacodylate/20 mM NaCl buffer (pH 7.19) and the other one with 25 μM solution of 

[Cu(L)Cl](CH3OH) in cacodylate buffer (pH 7.19). The absorption titrations were 

performed by sequential addition of increasing amount (from 0 to 50 μM) of ct-DNA 25 

μM [Cu(L)Cl](CH3OH) solution.   

The A260/A280 ratio was calculated in order to determine the purity of ct-DNA. ct-DNA in 

1mM cacodylate/20 mM NaCl buffer (pH 7.19) gave a ratio of 1.87:1 of UV absorbance 

at 260 and 280 nm, which indicates that the DNA was sufficiently free from protein [86]. 

The electronic absorption spectra were recorded from 200 to 500 nm using Varian Cary 

100 Scan UV-vis spectrophotometer. Increasing amount of ct-DNA were added to a 25-

µM solution of [Cu(L)Cl](CH3OH), mixed by pipetting (three times), and left for five 

minutes to equilibrate at room temperature.  

    II.3.2. Fluorescence spectroscopy 

Relative binding affinity of complex [Cu(L)Cl](CH3OH) to ct-DNA was studied by 

fluorescence spectral method with EtBr-bound DNA in 1 mM cacodylate/20 mM NaCl 

buffer (pH 7.21). The complex stock solution was prepared in 100% DMSO. The 

experiments were carried out at constant concentrations of ct-DNA and EtBr, 

respectively, 25 µM and 25.36 mM, by adding increasing amount of [Cu(L)Cl](CH3OH) 

(from 0 to 100 µM). The solution of ct-DNA and EtBr in 1mM cacodylate/20 mM NaCl 

buffer (pH 7.21) was incubated for 1 h at 37ºC before spectra recording. Fluorescence 
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spectra were recorded at room temperature with excitation and emission wavelengths, 

λext and λem, of 514 and 610 nm, respectively. 

II.4. Cell culture 

    II.4.1. Preparation of Luria-Bertani (LB) medium 

LB medium was prepared by dissolution, under stirring, tryptone enzymatic (10 g), yeast 

(5 g) and sodium chloride (10 g) in 1L of water. pH was adjusted to 7.38 with 2.097 M 

NaOH and then autoclaved for 20 minutes at 121ºC in RAYPA steam sterilizer. After 

sterilization the mixture of LB broth was split into six bottles (three of 100 and three 250 

mL blue screw cap bottles) and stored at 4ºC in fridge.  

    II.4.2. Growing bacteria in a culture 

150 μL of ampicillin was added to 150 mL of LB broth and shaken well to mix. 100 mL of 

the mixture was then transferred to 500 mL Erlenmeyer (autoclaved). Aliquot of Mach-1 

E. coli bacteria cells was taken on ice from -78ºC freezer. After thawing bacteria an 

inoculation loop was used to seed Mach-1 cells in LB medium. Erlenmeyer containing 

culture was covered by aluminium foil and placed at 37ºC and 210 rpm in Innova 4230 

Refrigerated-shaker. After 13 h (overnight) optical density (OD) of the cell culture was 

monitored. The bacterial culture was opened under flame and 1 mL of sample was 

pipetted and diluted 1:10 before OD measurement. OD was measured using plastic 

cuvettes in SHIMADZU UV-1700 spectrophotometer at 600 nm.   

     II.4.3. Treatment of E. coli bacteria by [Cu(L)Cl](CH3OH) and VO(acaca)2 

Preparation of solutions  

2 mM VO(acac)2 and 2 mM [Cu(L)Cl](CH3OH) stock solutions were prepared by 

dissolving 26.5 mg and 34.4 mg, respectively, in 50 mL of MilliQ water. 

[Cu(L)Cl](CH3OH) crystals were sonicated (three minutes) in 250 μL DMSO and then 

adjusted to 50 mL by MilliQ water. Therefore, the final solutions consisted of 0.5% 

DMSO.  

MPA solution (2 mM) was prepared by diluting 17.5 μL in 100 mL of MilliQ water.  
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Dilutions were performed accordingly from stock solutions in order to have the required 

concentrations of compounds. For VO(acac)2 solutions of 0.25, 0.5, 1, and 2 mM have 

been prepared whereas 2 mM [Cu(L)Cl](CH3OH) and 2 mM MPA stock solutions were 

used without further dilution.  

Treatment: After 13 h of incubation the the bacterial culture OD600 of 1.6 was 

measured. Under flame, grown cells were aliquoted into ten 50 mL conical screw cap 

tubes (falcon) which were labelled 1 to 10 for samples identification. After loading 

compounds in the culture samples (table II.1) tubes with mixtures were placed back at 

37ºC and 210 rpm in Innova 4230 Refrigerated-shaker. Then after 1, 2, 4, and 8 h of 

incubation 2 mL of culture was taken from each sample and aliquoted into 2 separate 

eppendorfs (1.5 mL and 0.5 mL). Eppendorfs with 1.5 mL were placed in support and 

stored in freezer (-20ºC) while 0.5 mL was immediately used to measure absorbance 

(OD600) of samples.  

Table II.1. Composition of sample culture after loading compounds   

Components      1 2 3 4 5 6 7 8 9 10 

E. coli culture (mL) 5 5 5 5 5 5 5 5 5 5 

Fresh LB (mL) 5 4.95 4 4 3 4 4 4 4 0 

100% DMSO (μL) 0 50 0 0 0 0 0 0 0 0 

100% DMSO (mL) 0 0 0 0 0 0 0 0 0 5 

2 mM MPA (mL) 0 0 1 0 1 0 0 0 0 0 

2 mM [Cu(L)Cl](CH3OH) (mL) 0 0 0 1 1 0 0 0 0 0 

0.25 mM VO(acac)2 (mL) 0 0 0 0 0 1 0 0 0 0 

0.50 mM VO(acac)2 (mL) 0 0 0 0 0 0 1 0 0 0 

1.00 mM VO(acac)2 (mL) 0 0 0 0 0 0 0 1 0 0 

2.00 mM VO(acac)2 (mL) 0 0 0 0 0 0 0 0 1 0 
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II.5. DNA purification 

DNA was isolated from Mach-1 E. coli cells according to “boiling lysis miniprep” 

technique [87]. All materials were autoclaved for 20 minutes at 121ºC in RAYPA steam 

sterilizer.  

Instruments: CT 15RE centrifuge, boiling plate, 500 mL Erlenmeyer, micropipettes and 

tips, 10 mL plastic pipettes, toothpicks, 1.5 mL microcentrifuge tubes (Eppendorfs), 

gloves, and ice. 

Chemicals and reagents: STET, Lysozyme stock solution, isopropanol, 70% ethanol, 

RNAase (10 mg/mL), Millipore (MilliQ®) water.  

Preparation of STET solution: 100 mL of STET solution was prepared in MilliQ water 

with 8% (wt/vol) sucrose, 5% (wt/vol) Triton X-100, 50 mM EDTA, pH 8.0, and 50 mM 

Tris-HCl, pH 8.0. After the preparation STET solution was sterilised and stored at 4ºC.  

Preparation of Lysozyme stock solution (10 mg/mL): 10 mL of lysozyme stock 

solution was prepared by dissolving 100 mg of lyzozyme, 2.75 mL of 1 M Trish-HCl, pH 

8.0 and 7.5 mL of MilliQ water. The resulting solution was then sterilized in autoclave 

and stored at -20ºC. 

Extraction of DNA from bacteria: It important to remind that 1.5 mL was sampled 

(from each treated and control bacterial sample), transferred in 1.5-mL eppendorfs, and 

then stored at -20ºC. Isolation of DNA from Mach-1 E. coli cells was carried out in 

following steps:   

1. Take samples of bacterial culture in 1.5-mL eppendorfs from freezer (-20ºC) and 

thaw them.  

2. Pellet the cells by spinning at 4ºC for 1 minute at 11,000 rpm in CT 15RE 

microcentrifuge and discard supernatant.  

3. Resuspend the bacterial pellets in 700 μL of STET and 25 μL of lysozyme stock 

solution. Voltex to achieve complete suspension.  

4. Place tube on ice for 5-10 minutes.  

5. Place eppendorfs in a boiling water bath (100ºC) for 1 min. 
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6. Spin at 4ºC in CT 15RE microcentrifuge for 10 minutes at 11,000 rpm.  

7. Pull out snot pellet with sterilized toothpicks. 

8. Add 700 μL of room temperature isopropanol. Mix tubes by inversion  

9. Spin at 20ºC in a CT 15RE microcentrifuge for 10 minutes at 11,000 rpm. A small 

white/clear pellet forms.  

10.  Remove supernatant.  

11.  Wash with 70% ethanol 

12.  Dry pellet and resuspend in 50 μL MillQ water containing 20 μg/mL RNAase A.  

II.6. Agarose Gel Electrophoresis (AGE) 

Interaction between DNA and metal complexes [Cu(L)Cl](CH3OH) was studied by AGE 

at University of Barcelona and at University of Algarve under different electrophoretic 

conditions. The complex was tested on isolated pDNA (i.e., pBR322 and pA1) and 

inside living cells using Mach-1 E. coli bacterial culture. Cell culture was carried out at 

University of Algarve.  

    II.6.1. AGE at University of Barcelona  

Instrumentation: BIORAD horizontal tank, PHARMACIA GPS 200/400 variable 

potential power supply, BIORAD Gel DocTMEZ Imager, and incubator.  

Preparation of solutions  

500 mL of 1mM cacodylate/20 mM NaCl buffer (pH=7.21) has been prepared by 

dissolving 107 mg of sodium cacodylate trihydrate and 584.4 mg of sodium chloride 

(NaCl) in MilliQ water. pH was adjusted to 7.19 by adding drops of concentrated HCl. 

The cacodylate buffer solution was labelled and stored at 4ºC.  

Stock solution of 20 mM [Cu(L)Cl](CH3OH) was prepared by sonicating (3 minutes) 6.2 

mg of [Cu(L)Cl](CH3OH) crystals in 1 mL DMSO. The resulting solution was diluted to 

different concentrations (i.e., 2.0, 1.0, 0.5, 0.25, and 0.05 mM 10% DMSO) by addition 

of cacodylate buffer (pH=7.19).  
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Ascorbic acid stock solution (100 mM) was prepared by dissolving 7.2 mg powder in 

420 μL of cacodylate buffer (pH=7.19). Afterwards stock solution was diluted to 1 mM 

by cacodylate buffer before being loaded in samples.  

pBR322 DNA was purchased from Roche and has been diluted before being used. 5 μL 

(1.325 μL pRB322 DNA + 3.675 μL MilliQ water) was added in each sample.  

Agarose gel preparation: 1.5 g of agarose powder was transferred into 250-mL 

Erlenmeyer and dissolved in 150 mL 1x TAE. The mixture was heated in microwave 

oven for approximately 2 minutes at 800W. The solution was cooled down by swirling 

the flask by hand. The liquid was poured in the horizontal mould, any bubbles were 

removed using a pipette tip, and then left for 1 hour to solidify.  

AGE procedure 

Each sample was composed of 20 μL made of 13 μL of cacodylate buffer, 5 μL of 

pBR322 DNA, and 2 μL of [Cu(L)Cl](CH3OH) solution (2.0, 1.0, 0.5, 0.25, and 0.05 mM) 

10% DMSO. Volume of cacodylate buffer was decreased to 11 μL in samples where 

ascorbic acid (2 μL) was added. The mixtures containing pBR322 with 

[Cu(L)Cl](CH3OH) 0-200 µM were incubated for 24 h at 37oC. Samples with DNA alone 

and of DNA in the presence of ascorbic acid were used as controls.  

After 23 h of incubation 2 µL of ascorbic acid (1 mM) was added to the chosen samples. 

After the incubation 4 µL of loading buffer was added into samples to stop the reaction. 

Samples were then electrophoresed in 1% in TAE (Tris-acetate–EDTA) buffer for 1.5 

hour at 1.5 V cm-1, using a BIORAD horizontal tank connected to a PHARMACIA GPS 

200/400 variable potential power supply. Afterwards, the DNA was stained with SYBR 

safe and the gel was photographed with a BIORAD Gel DocTMEZ Imager.  
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    II.6.2. AGE at University of Algarve 

Instrumentation: Electrophoresis chamber and power supply (CONSORT E143) were 

used to perform AGE. The visualization and photographing of gels bands were made by 

Alphalmagel from Alpha Innotech.  

Densitometry: Lanes’ densitometry (1-D Multi) in AlphaEaseFCTM software (Alpha 

Innotech) was used to analyse gel images after electrophoresis. This tool has been 

used to measure and quantify the intensity of bands in each lane of the electrophoresis 

gel image.  

Preparation of solutions  

Stock solution of 80 mM [Cu(L)Cl](CH3OH) was prepared by sonication (6 minutes) of 

27.6 mg crystals in 1 mL of DMSO. Stock solution was then diluted correctly using 

MilliQ water to obtain 5 solutions (1% DMSO) of different concentration (i.e., 800, 400, 

200, 100, and 50 μM).  

Vanadium acetylacetonate, 100 μM VO(acac)2, was used to linealize DNA for linear 

control band. It was prepared by dissolution of 1.3 mg crystals in 50 mL of MilliQ water.  

2 mM 3-mercaptopropionic acid (MPA), which was used as an activating agent, has 

been prepared by diluting 17.5 mL of MPA > 99% in 100 mL MilliQ water.  

100 mM solution of phosphate buffer was prepared by dissolving 1.74 g of di-potassium 

hydrogen phosphate (K2HPO4 99%) in 100 mL solution using MilliQ water. pH was 

adjusted to 7.39 by 0.1 M nitric acid (HNO3) with verification by pH meter.  

3-(N-Morpholino)propanesulfonic acid (MOPS buffer), stock solution of EtBr (50 

mg/mL), and loading buffer have been prepared by Nataliya Butenko.  

A 10x stock of TBE (89 mM Tris-borate and 1 mM EDTA, pH 8.0) was prepared in milliQ 

water and stored at 4ºC. 0.5x TBE (that has been used to dissolve agarose powder) 

was prepare by dilution of TBE buffer stock solution (10x TBE).  
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Agarose gel preparation: 1% agarose gel was in 0.5x TBE with 30 μL EtBr (or 2 

μg/mL EtBr). Gel has been prepared by dissolution of 1.5 g agarose powder in 150 mL 

of 0.5x TBE in Erlenmeyer on a hot plate. A gel casting plate was used to form a mould 

while combs with 15 or 17 teeth were chosen to make gel wells for samples loading. 

After dissolving agarose the mixture was cooled down by swirling movement in hand on 

tap water to approximately 60ºC and 30 μL EtBr was added. The solution was then 

poured into the mould and left at room temperature to gelify. In one hour gel solidified, a 

comb was carefully removed and a gel was submerged into 0.5x TBE (~ 1 mm depth) in 

the electrophoresis chamber.   

AGE procedure: 2 methods have been used: (1) First procedure was the treatment of 

extracellular (isolated) pA1 DNA by complex [Cu(L)Cl](CH3OH) and to check a DNA 

cleavage. (2) The second method was to treat Mach-1 E. Coli bacteria cells with 

complexes [Cu(L)Cl](CH3OH) or VO(acac)2 and then purify pA1 DNA. Afterwards, the 

isolated DNA was electrophoresed to detect the cleavage activity of complexes. DNA 

cleavage activity has been evaluated by monitoring the conversion of Sc pDNA to Nck 

and Lin DNA. 

1. AGE of free pDNA (outside bacteria cell) – The composition of each reaction 

sample (in each gel’s well) was 6 μL of MilliQ water, 2 μL of 100 mM of buffer 

solution (i.e., Phosphate buffer or MOPS), 2 μL (100 μg/mL) of supercoiled pA1 

DNA and 10 μL of the aqueous solution of [Cu(L)Cl](CH3OH) with concentrations 

of 800, 400, 200, 100, and 50 μM. Volume of water has been reduced to 4 μL in 

samples containing the activating agent (MPA). The Lin DNA control was used 

as a reference of linearized DNA form. Linear control sample was always made 

of a mixture of 2 μL of 10 mM phosphate buffer, 10 μL of VO(acac)2, 2 μL of pA1 

DNA and 6 μL of MilliQ water.   

The samples were incubated at 37ºC for 1 h, wrapped in aluminium foil. After 

incubation the reactions were quenched by adding 5 μL of loading buffer. 

Samples were then loaded to 1% agarose gel in a horizontal electrophoresis tank 

submerging in 0.5x TBE buffer. They have been electrophoresed for 3 h at 110 V 
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using a power supply (CONSORT E143). The visualization and photographing of 

gels bands were performed by Alphalmagel from Alpha Innotech.    

 

2. AGE of pDNA isolated from Mach-1 E. coli treated by complex [Cu(L)Cl](CH3OH)  

or VO(acac)2 – In order to check the cleavage activity of these compounds inside 

living cell, pDNA was extracted (by boiling lysis method) from treated E. coli 

bacteria and electrophoresed in the agarose gel. The samples were composed of 

7 μL of pDNA (extracted from bacteria) and 13 μL of MilliQ water. Lin DNA 

control sample was always used as a reference of Lin DNA band in gel. It was 

made of 2 μL of 100 μg/mL pA1 DNA (prepared by Nataliya Butenko from 

untreated bacteria), 2 μL of phosphate buffer, 10 μL 100 μM VO(acac)2, and 6 μL 

of MilliQ water. 5 μL of loading buffer were added in all samples before 

introducing them into the gel. It is important to clarify that only samples for Lin 

DNA control were incubated for 1 h at 37ºC. The samples were electrophoresed 

for 3 h at 110 V using a power supply (CONSORT E143). The visualization and 

photographing of gels bands were carried out by using Alphalmagel from Alpha 

Innotech.   
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III. RESULTS AND DISCUSSION 

III.1. Synthesis and characterisation  

    III.1.1. Ligand synthesis and structure 

The NNO ligand LH, 2-(pyridine-2-yl)hydrazono)methyl)phenol, was synthesized on the 

basis of compound LH1, 2- tertbutyl-6-(pyridine-2-ylhydrazonomethyl)phenol, reported 

by Rosa F. Brissos et al. [50]. It was prepared by Schiff-base condensation reaction 

between 2-hydrazinopuridine and salicyladehyde with a moderate good yield of 57%. 

Characterization (by NMR spectroscopy, IR spectroscopy, and MS spectrometry) 

proved a successful synthesis of this ligand. The compounds LH and LH1 structurally 

share specific common chemical moieties such as pyridine, phenol, and imine functional 

groups (figure III.1). The ligand LH was designed without tert-butyl substituent to 

evaluate the impacts of this ligand on DNA cleavage properties of the corresponding 

copper(II) coordination system and hence its potential cytotoxicity.    

              

Figure III.1. Representation of 2-(pyridine-2-yl)hydrazono)methyl)phenol (LH) and 2- tertbutyl-6-(pyridine-
2 ylhydrazonomethyl)phenol (LH1).  

 

    III.1.2. Complex synthesis and structure 

Copper(II) complex, [Cu(L)Cl](CH3OH), was synthesized by coordination reaction 

between copper(II) chloride dehydrate and the ligand LH, 2-(pyridine-2-

yl)hydrazono)methyl)phenol in methanol. The structural presentation of the synthesized 

complex, determined by single-crystal X-ray diffraction, is shown in figure III.2 and bond 

lengths and bond angles are listed in table III.2 and table III.3. The Cu(II) atom is 
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located at the center of a square planar coordination environment which consists of 

oxygen atom (O1) of phenolate, nitrogen atom (N1) of imine group, and nitrogen atom 

(N3) of pyridine group. Nitrogen atoms N1 and N3, oxygen O1 and chlorine Cl1 occupy 

the corners of a square plane around Cu(II) center.  

 

Figure III.2. Representation of molecular structure of coordination compound [Cu(L)Cl](CH3OH) 

 

The bonds lengths of Cu-O, Cu-N and Cu-Cl vary from 1.899(11) to 2.268(4) Å whereas 

the coordination angles range from 81.33(5) to 95.73(4) degrees. As it was expected 

the coordination bonds and angles around Cu(II) center are closely related to those of 

copper complex, [Cu(L1)Cl](CH3OH), prepared with ligand LH1 [50]. However, there is a 

slight increase of bond angle N3-Cu1-Cl1 (95.73º) and a decrease of bond length Cu1 

Cl1 (2.2678 Å) in [Cu(L)Cl](CH3OH) compared to 97.38º and 2.2537 Å, respectively, in 

[Cu(L1)Cl](CH3OH). This deviation of bond angles and bond lengths is very likely 

attributed to the absence in LH of tert-butyl substituent, a very bulky and kinetic 

stabilizer in chemistry [88].     
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Table III.1. Crystal data and structure refinement details for [Cu(L)Cl](CH3OH).  

Empirical formula CuC13H14ClN3O2 

Formula weight  343.26 

Crystal system  Monoclinic 

Monochromator   Silicon 111 

Temperature  100(2)K 

Wavelength  0.7749 Å 

Space group  P21/c 

Unit cell dimensions  a = 13.2654(5) Å       α=90° 

b = 7.5563(3) Å         β = 110.327(2)°  

c = 14.3194(5) Å         γ= 90°  

Volume  1345.95(9) Å
3
 

Z 4 

Absorption coefficient 2.307  

F(000)               700 

Crystal size  0.210 x 0.100 x 0.070 mm 

Reflections collected  3618 

Goodness - of -  fit on F
2
 1.024 

 

Table III.2. Selected interatomic distances (Å) of [Cu(L)Cl](CH3OH) and complex [Cu(L1)Cl](CH3OH)  
from literature [50].  

Bonds Bond lengths (Å): [Cu(L)Cl](CH3OH) Bond lengths (Å): [Cu(L1)Cl](CH3OH)   

Cu1 O1 1.8991(11) 1.8768(18) 

Cu1 N1 1.9568(13) 1.950(2) 

Cu1 N3 1.9886(13) 1.983(2) 

Cu1 Cl1 2.2678(4) 2.2537(6) 

 

Table III.3. Selected interatomic angles (º) for [Cu(L)Cl](CH3OH) and related complex [Cu(L1)Cl](CH3OH)  
from literature [50].  

Bonds Bond Angles (º): [Cu(L)Cl](CH3OH) Bond angles (º): [Cu(L1)Cl](CH3OH)   

O1 Cu1 N1 92.02(5) 91.27(8) 

N1 Cu1 N3 81.33(5) 80.94(9) 

O1 Cu1 Cl1 90.31(4) 90.92(6) 

N3 Cu1 Cl1 95.73(4) 97.38(6) 
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    III.1.3. Stability test of [Cu(L)Cl](CH3OH)  

The UV-vis measurement of [Cu(L)Cl](CH3OH) 0.045 mM, carried out in 0.5% DMSO, 

resulted in two absorption bands linked to π-π* intraligand transitions (i.e., 270 nm and 

327 nm) and metal-to-ligand charge transfer (MLCT), absorption (i.e., 385 nm). In the 

UV region the absorption increased after half hour and remained constant throughout 

24 hours of measurement (figure III.3).  

 

Figure III.3. Plot of normalized absorption spectra of [Cu(L)Cl](CH3OH) solution measured in 0.5% DMSO 
at different duration after the preparation.  

In 100% DMSO the compound exhibits one slightly split intraligand absorption band at 

333 nm and two absorption bands linked to MLCT transitions (i.e., 406 nm and 470 nm). 

The absorption spectra measured in 100% DMSO are shifted upward (in UV region) 

and towards right side (in visible region) compared to the dissolution of the complex in 

0.5% DMSO as showed by upward and rightward arrows, respectively  (figure III.4).   
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Figure III.4. Plot of normalized absorption spectra of [Cu(L)Cl](CH3OH) solution measured in 100% 
DMSO at different duration after the preparation. A spectrum (in red) of the complex dissolved in 0.5% 
DMSO after 24 hrs is also presented to compare the absorptions peaks.  

Comparing these two absorption spectra (in 0.5% and 100% DMSO), it is clear that the 

behavior of the compound differs according to the percentage of DMSO. The 

appearance of the electronic band at 470 nm and the displacement of absorption peaks 

when the complex is dissolved solely in DMSO suggest a formation of new chemical 

species. This absorption band is absent in spectra recorded in 0.5% DMSO medium. 

Actually, the small size and good polarity nature of DMSO makes it a good ligand to 

form metal complexes [89]. Copper DMSO complexes, through its oxygen atom, have 

been reported previously [90].  

Looking at the stability of the compound along time, except for 470 nm peak for 100% 

DMSO solution, no significant changes are observed in both dissolutions (i.e., 0.5% and 

100%DMSO). This findings suggest that the ligand L remains likely coordinated to 

centre Cu(II)  in complex [Cu(L)Cl](CH3OH) within tested period of 24 hours and hence 

the compound stability. Absorption spectra measured in 0.5% and 100% DMSO were 

normalized, respectively, to 385 nm and 407 nm which allow a better comparison of 

bands intensities.    
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III.2. DNA-binding studies  

    III.2.1. UV-visible (UV-vis) pectroscopy  

Spectrophotometric titration by UV-vis spectroscopy is the most commonly employed 

technique for assessing the interaction of DNA with small ligand molecules such as 

metal complexes [91]. This technique can be conducted by monitoring the changes in 

absorption properties of the metal complex or the DNA molecules [18]. Therefore, the 

DNA-binding behaviour of [Cu(L)Cl](CH3OH) was investigated by this method.   

Basically, metal complexes show specific absorption bands in the UV region, 250-300 

nm, attributed to π-π* intraligand transitions, and in the visible region (350-450) 

assigned to the exchange of an electron between the ligand and the metal (also known 

as MLCT) absorption [92,93]. The interaction between [Cu(L)Cl](CH3OH) and ct-DNA 

has been evaluated by examining the modification of the maximum absorption bands in 

region 330-410 nm. The absorption titration was carried out by sequential addition of 

increasing concentration (0 – 50 μM) of ct-DNA to a constant concentration (25 μM) of 

the complex.  

From plot of [DNA]/(a-f) vs [DNA] (figure III.5) the intrinsic binding constant (Kb) of 

[Cu(L)Cl](CH3OH) has been calculated using Benesi-Hildebrand equation [94] and 

adapted by Brissos et al. [50]:  

[DNA ]

εa−εf
 = 

[DNA ]

εo−εf
 + 

1

Kb (εo−εf)
           Equation (5) 

Where [DNA] is concentration of DNA in base pairs, Kb represents the binding constant, 

εa, εf, and ε0 correspond to Aobserved/[complex], the extinction coefficient of the free 

complex, and the extinction coefficient for the complex fully bound to DNA, respectively.  
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Figure III.5. Plot of [DNA]/(ea-ef) vs. [DNA] for the titration of ct-DNA with complex [Cu(L)Cl]CH3OH. 
Concentration of complex and ct-DNA were 25 μM and 0 – 50 μM, respectively.   

 

Kb value of 5.92 ± 0.31 (104 M-1) has been calculated from the slope (0.00171) to the 

intercept (2.88751 x 10-8). The error associate with Kb has been determined from the 

measurement in triplicate for the complex. The obtained Kb of [Cu(L)Cl](CH3OH) is 

around 4-fold less than 2.67 ± 0.15 (105 M-1) observed for [Cu(L1)Cl](CH3OH) reported 

by Rosa F. Brissos and colleagues [50]. Given that tert-butyl group is absent in LH 

structure, this difference in DNA binding behaviours between [Cu(L)Cl](CH3OH) and 

[Cu(L1)Cl](CH3OH) was likely to happen. The tert-butyl substituent has been reported to 

cause a dramatic acceleration of a chemical reaction compared to hydrogen as 

substituent [88].   

Calculated Kb value is also lower (100-folds) than that of methyl green, which is a 

known major groove binder, and whose binding constant Kb is in order of 106 M-1 [95]. 

Kb of [Cu(L)Cl](CH3OH) differs by a factor of almost 10,000 compared to classical minor 

groove binders such as Hoechst 33258 and DAPI (Kb in the order of 108 M-1) [96]. 
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However, the binding behaviour of [Cu(L)Cl](CH3OH) is highly comparable to that 

reported of two square planar copper complexes (Kb = 5.63 x 104M-1 or Kb = 1.07 x 105 

M-1) [97].   

Naturally, complex DNA binding by intercalation results in hypochromism (i.e., decrease 

in absorption intensity by a chromophore) accompanied by red shift [98,99]. So far, the 

spectroscopic data of complex [Cu(L)Cl](CH3OH) shows the hypochromism without red 

shift (figure III.6). Therefore, the herein studied copper coordination compound most 

likely binds to DNA by groove mode or electrostatic interactions [50].   

 

Figure III.6. Absorption spectra of 25 μM [Cu(L)Cl](CH3OH) in 1mM cacodylate/20 mM NaCl (pH 7.19) in 
presence and in absence of increasing amount of ct-DNA. The inset shows an enlargement of the region 
330 – 410 nm where the metal-to-ligand-charge-transfer (MLCT) absorption is located. 
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    III.2.2. Fluorescence spectroscopy 

EtBr, a weak fluorescent when it is alone, is one of a most widely used dye to probe 

nucleic acids [100]. Upon binding to DNA, by intercalation between DNA base pairs, the 

fluorescence intensity of EtBr intensifies allowing the detection of the DNA-EtBr 

emission [57]. Substances acting as fluorescence quenchers, which is the case for 

some copper complexes, could decrease the fluorescence of EtBr-DNA in process 

known as quenching [58]. However, quenchers do not necessarily bind to DNA by 

intercalation. Groove binding or electrostatic interaction can be sufficient enough to 

decrease the emission intensity of EtBr-nucleic acid complex by releasing EtBr [50].  

Fluorescence-based EtBr displacement assay has been performed to study the 

potential interaction between ct-DNA and copper complex, [Cu(L)Cl]CH3OH. The 

emission intensity was recorded at constant concentration of ct-DNA (25 µM) and EtBr 

(25.36 mM) with addition of increasing amount of complex [Cu(L)Cl]CH3OH (0-100 μM). 

The emission intensity of EtBr-ctDNA narrowly decreases upon increasing addition of 

complex indicating the slow release of EtBr (figure III.7).  

 

Figure III.7. Emission spectra of the DNA-EtBr complex (25 µM and 25.36 mM), Iext = 514 nm, Iem = 610 
nm upon increase of [Cu(L)Cl](CH3OH) (0-100 μM). The downward allow shows the decreasing of 
fluorescence with the increase of [Cu(L)Cl]CH3OH amount.  
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Afterwards we have quantified the affinity of [Cu(L)Cl](CH3OH) to DNA compared to 

EtBr by using Stern-Volmer equation:  

         
Io

I
 = 1 + Ksv [Q]       Equation (3) 

In the above expression I0 and I are, respectively, the fluorescence intensities in the 

absence and presence of a quencher. Plotting I0/I as a function of [Q] yields a linear plot 

with a slope equal to KSV.  

KSV of 5.22 ± 0.30 (102 M-1) has been calculated. KSV was determined from the slope of 

the straight line of I0/I vs [complex] plot (figure III.8). The KSV error has been determined 

from the measurement in quadruplicate for the complex. This KSV value is almost 7-fold 

smaller than 3.50 ± 0.01 (103 M-1) obtained for [Cu(L2)Cl]CH3OH [50] suggesting a poor 

replacement of EtBr by [Cu(L)Cl]CH3OH. This finding is in agreement with DNA-binding 

test where the absence of tert-butyl substituent probably decreases [Cu(L)Cl](CH3OH) 

interaction with DNA.     

 

Figure III.8. Stern-Volmer fluorescence plot of I0/I vs. [complex] for the titration of DNA-EtBr with complex 
at λext = 514 nm and λem = 610 nm.  
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III.3. DNA-cleavage investigation 

pDNA, which is commonly found in bacteria, was used for DNA-cleavage studies. pDNA 

naturally exists in cyclic Sc double strand (form I). The cut of one strand results in a 

relaxed circular DNA (Nck or form II). When two complementary strands are cleaved a 

Lin DNA (form III) is generated. All of these three forms are simply visualized through 

the AGE followed by imaging [101]. Nuclease activity of [Cu(L)Cl](CH3OH) has been 

studied by this procedure. The conversion of Sc DNA to Nck and lin DNA was 

monitored in each AGE image for cleavage assessment. [Cu(L)Cl](CH3OH) has been 

studied in two series of different conditions to test its interaction with DNA.   

 The AGE image does not show form III band and the intensity of form I and form II 

bands remain unchanged as the complex concentrations increase (figure III.9). This 

suggests that [Cu(L)Cl](CH3OH) is unlikely a cleaver of  pBR322 DNA. Nevertheless, 

the absence of the linear control sample in this electrophoresis gel could mislead the 

observation of DNA bands since in some cases Lin and Sc DNA run very close 

together.  

  

Figure III.9. Cleavage of pBR322 DNA by increasing concentrations of [Cu(L)Cl](CH3OH), 5-200 µM, 
without reducing agent (lanes 2-6) and in the presence of 100 mM ascorbic acid (lanes 8-13) incubated 
for 24 h at 37

o
C and electrophoresed in 1.5 hour at 1.5 V/cm. Lanes 1, 7 and 8 are the controls for the 

native pDNA with no complex. Ascorbic acid was added 1 hour prior to the end of incubation.   
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The presence of ascorbic acid, as a reducing agent, is unlikely to change the binding 

behavior of [Cu(L)Cl](CH3OH). These results correlate with the findings reported for the 

related compound [Cu(L2)Cl](CH3OH) which also does not cleave DNA [50]. However, 

in contrary to [Cu(L2)Cl](CH3OH), the intensity bands (for both form I and form II) seems 

to decrease narrowly at 200 μM in absence of ascorbic acid. It is important to clarify that 

[Cu(L)Cl](CH3OH) was tested in 1 mM cacodylate/20 mM NaCl buffer (pH=7.21) where 

as [Cu(L2)Cl](CH3OH) was studied in 40 mM HEPES-10 mM MgCl2 buffer (pH 7.2).     

Cleavage activity of [Cu(L)Cl](CH3OH) was also studied in different conditions. The AGE 

was conducted using pA1 DNA instead of commercial pBR322 DNA (figures III.10). 

pA1 DNA consists of a full-length cDNA from Cytochrome P450 CYP3A1 inserted in the 

PBS plasmid vector [12]. Unexpectedly, [Cu(L)Cl](CH3OH) cleaves pA1 DNA into Nck 

(form II) and scarcely into lin (form III) in presence of MPA 100 μM. The increase of the 

complex concentration is unlikely to promote a significant change in DNA breakage 

regardless of the employed buffers (figure III.11 and figure III.12).       

 

Figure III.10. Cleavage of pA1 DNA by [Cu(L)Cl](CH3OH) in increasing complex concentrations 25-400 
µM in 10 mM MOPS buffer (lanes 4-8) and in 10 mM phosphate buffer,PO

4-
, (lanes 10-14). The 

compound was tested in presence of MPA 200 µM as an activating agent. Samples were incubated for 1 
h at 37ºC and electrophoresed for 3 h at 107 V. Vanadium complex, 50 mM VO(acac)2 in phosphate 
buffer, was used to linearize DNA for Linear controls (lanes 2 and 15). Pure pDNA was used in lane 1 and 
16 for supercoiled and nicked DNA controls.      
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Figure III.11. Quantification (in %) of bands from the pA1 DNA cleavage by [Cu(L)Cl](CH3OH) under 
MOPS buffer at different concentration of complex. Lane Densitometry (1-D Multi) in AlphaEaseFCTM 
software (Alpha Innotech) was used to analyse gel image after electrophoresis.  

 

 

       

Figure III.12. Quantification (in %) of AGE bands from the pA1 DNA cleavage by [Cu(L)Cl](CH3OH) 
under phosphate buffer at different concentration of complex. Lane Densitometry (1-D Multi) in 
AlphaEaseFCTM software (Alpha Innotech) was used to analyse gel image after electrophoresis.   

The change in DNA cleavage behavior of [Cu(L)Cl](CH3OH) is probably due to the used 

pDNA. Actually, commercial pBR322 DNA is formulated with EDTA which is a well 

known chelating agent for metal ions. Furthermore, EDTA has been reported to prevent 

DNA breackage by copper coordination compounds [102]. Therefore, the AGE 

experiments conducted with pBR322 do not show DNA cleavage while the ones carried 

out with pA1 DNA, which is prepared in Millipore water, revealing an obvious cleaving 

activity.   
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III.4. Evaluation of plasmid DNA cleavage in living cells  

A method has been developed in attempt to assess the DNA cleavage in living cells. E. 

coli bacterial cells, which are popular organisms of preference in microbiology [103], 

were used to carry out this study. Mach-1 E. coli cells were cultivated and treated by 

copper(II) coordination compounds, [Cu(L)Cl](CH3OH), and by vanadyl acetylacetonate, 

VIVO(acac)2, which is known for its powerful pDNA cleaving activity without any 

activating agent [12]. In order to check the breakage of DNA in exposed bacterial cells 

to complexes, a “boiling lysis miniprep” procedure has been used as the basis of this 

methodology to isolate pDNA [87]. The obtained pDNA was then electrophoresed in 

standard AGE [15]. It is important to mention that electrophoresis samples do not 

require an additional incubation; after purifying pDNA an electrophoresis is immediately 

carried out.   

This experiment has been carried out in four important steps including (1) Multiplication 

of bacteria number by microbiological culture, (2) Treatment of bacterial cells by 

compounds of interest, (3) Purification of pDNA from exposed bacterial cells, and finally 

(4) the AGE of isolated pDNA.  

    III.4.1. Bacterial culture of E. coli cells  

Mach-1 E. coli bacteria cells have been inoculated in LB broth which is prefered culture 

medium by bacteriologists for promoting bacterial fast growth and good growth yield for 

many species [82]. An overnight culture (13 hours) of Mach-1 E. coli cells in LB broth 

resulted in the OD600 of 1.6. This OD value indicates that bacteria cells were likely at the 

late exponential (log) phase or early stationary phase of Mach1 E. coli cell growth curve 

(figure III.13) [84,104]. Middle exponential growth phase, ranging from 0.5 to 1 OD600, 

was hypothetically fixed as the ideal target to treat bacterial cells with compounds. 

Actually, at this stage bacterial cells grow in balanced way with proportional increase of 

cytoplasmic components as well as pDNA [105].  
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Figure III.13. Bacterial cells growth curve of Mach1 - T1 E. coli cells compared to standard cloning 

strains (this figure was adapted from Invitrogen life technologies) [104]. The green curve shows the 
growth of E. coli bacteria cells with stationary phase starting around 1.6 OD600.   

 

   III.4.2. Treatment of Mach1 E. coli cells by [Cu(L)Cl](CH3OH) and VIVO(acac)2 

The overnight grown Mach1 bacteria were treated by copper(II) and Vanadium(IV) 

coordination compounds, [Cu(L)Cl](CH3OH) and VIVO(acac)2, respectively. Since the 

obtained bacteria from overnight culture were harvested at late exponential phase 

(OD600 of 1.6), a flesh LB broth was used to dilute the medium at the time of the 

treatment (check table I.1 in methodology). It is well documented that after 

replenishment of culture nutrients bacteria cells enter lag phase, halt the degenerative 

process, and then prepare for new exponential division [106]. The overnight culture was 

reinoculated 1:2 (5 mL of culture were diluted to 10 mL with compounds solutions and a 

fresh LB medium) and then incubated to regrow bacteria with complexes. Samples were 

taken on the basis of time intervals (0, 1, 2, 4, and 8 h) for absorbance (OD600) 

measurement (figure III.14 and figure III.15) and pDNA isolation.   



44 
 

 

Figure III.14. Plot of absorbance at 600 nm (OD600) vs. sampling time (hours) for the microbial culture of 
Mach1 E. coli cells treated by 200 μM [Cu(L)Cl](CH3OH) and 25 – 200 μM of VO(acac)2. Numbers 1-10 
represent samples of E. coli cells treated with compounds of different concentrations: (1) untreated cells 
(control), (2) 0.5 % DMSO (control), (3) 200 μM MPA (control), (4) 200 μM [Cu(L)Cl](CH3OH),  (5) 200 μM 
[Cu(L)Cl](CH3OH) + 200 μM MPA, (6) 25 μM VO(acac)2, (7) 50 μM VO(acac)2, (8) 100 μM VO(acac)2, (9) 
200 μM VO(acac)2, (10) 50% DMSO (control). 
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Figure III.15. Spectroscopic absorbance of exposure samples (treated culture) measured after 0, 2, 4, 
and 8 hours of incubation at 600 nm (OD600) by spectrophotometer. Numbers 1-10 represent samples of 
E. coli cells treated with compounds of different concentrations: (1) untreated cells (control), (2) 0.5 % 
DMSO (control), (3) 200 μM MPA (control), (4) 200 μM [Cu(L)Cl](CH3OH),  (5) 200 μM [Cu(L)Cl](CH3OH) 
+ 200 μM MPA, (6) 25 μM VO(acac)2, (7) 50 μM VO(acac)2, (8) 100 μM VO(acac)2, (9) 200 μM 
VO(acac)2, (10) 50% DMSO (control).  

 

Samples of Mach1 E. coli bacterial cells treated with Cu(L)Cl](CH3OH) in the presence 

and in the absence of the activating agent (i.e., samples 4 and 5, respectively) and 50% 

DMSO (sample 10) show the decrease in absorbance at 600 nm (OD600). Bacterial cells 

in these samples were probably killed or their growth was inhibited under the exposure 

conditions. Actually, these findings suggest the probable antimicrobial activity of 

copper(II) coordination compounds [51,107] and inhibitory effect of DMSO at high 

concentration [108] that have been reported previously. In other samples cells growth 

was observed as it was evidenced by the almost doubling of their optical densities 

(OD600).    
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    III.4.3. Extraction of plasmid DNA (pDNA) from bacterial cells 

A recommended procedure, “boiling lysis miprep”, for preparation of small amount of 

pDNA has been used to isolate DNA from exposed bacteria. In this technique bacteria 

containing pDNA are broken and open by treatment with lysozyme (glycoside 

hydrolases), triton X-100 (a nonionic detergent), EDTA and heat [87,109].  Only pDNA 

get out of cell while chromosomal DNA stays stuck on the bacterial cell membrane. The 

purification is basically conducted by spinning of centrifuge tube (i.e., eppendorf tube) in 

a microfuge which allow the formation of pellets (i.e., chromosomal DNA and bacterial 

debris) to the bottom. pDNA is then recovered by isopropanol precipitation [110]. The 

full steps followed in pDNA purification from bacteria cells are described in the previous 

chapter of methodology in this work report (check section II.7 DNA purification).  

pDNA concentration in each sample was measured by absorption spectroscopy at 260 

nm (A260) after being purified (table III.4).  

Table III.4. pDNA concentration (μg DNA/mL) of samples calculated from their absorbance at 260 nm 
measured after DNA isolation. An absorbance (A260) of 1 was considered to be equivalent to 50 μg 
DNA/mL of DNA.  

Time 
(h) 

DNA 
control 

0.5% 
DMSO 

MPA 
control 

[Cu(L)Cl](CH3OH) 
(μM) 

VO(acac)2 (uM) 50% 
DMSO 

200 w/o 
MPA 

200 with 
MPA 

25 50 100 200 

1 990 367.5 667.5 375 562.5 420 615 645 457.5 322.5 

2 810 1012.5 862.5 637.5 562.5 1155 870 480 960 457.5 

4 510 307.5 637.5 435 450 375 735 442.5 652.5 585 

8 307.5 277.5 795 217.5 247.5 262.5 502.5 637.5 615 330 

 

The absorbance at 260 nm (A260) of 1 in 1-cm quartz cuvette is equivalent to 50 μg of 

DNA/mL [111]. Therefore, DNA concentration in samples has been calculated by 

multiplying A260 with 50 μg/mL. Values of pDNA concentrations in samples show 

irregular variation in times of sampling (figure III.16). This is most likely due to the 

quality of DNA isolated from E. coli cells. Small insoluble particles were noticed in some 

Eppendorf tubes containing final purified DNA justifying the irregularity in A260 values. 

Actually, it has been reported that the quality of DNA purified by “boiling lysis miniprep” 

is low. However, this procedure provides pDNA that is convenient enough for nuclease 
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studies [87,112]. The quality of purified pDNA can be improved by ensuring the spinning 

duration and re-suspension, two important processes that intervene in miniprep 

purification. Longer spins make it difficult to re-suspend cells while incomplete re-

suspension affects negatively the yield of pDNA [87].     

 

Figure III.16. pDNA concentrations measured in samples by absorbance spectroscopy. Numbers 1-10 
represent samples of E. coli cells treated with compounds of different concentrations: (1) untreated cells 
(control), (2) 0.5 % DMSO (control), (3) 200 μM MPA (control), (4) 200 μM [Cu(L)Cl](CH3OH),  (5) 200 μM 
[Cu(L)Cl](CH3OH) + 200 μM MPA, (6) 25 μM VO(acac)2, (7) 50 μM VO(acac)2, (8) 100 μM VO(acac)2, (9) 
200 μM VO(acac)2, (10) 50% DMSO (control).  

 

    III.4.4. Agarose Gel Electrophoresis (AGE) 

The agarose gels electrophoresis were carried out after pDNA purification from bacterial 

culture exposed to 200 μM [Cu(L)Cl](CH3OH) and 25-200 μM VO(acac)2 samples. The 

cleavage was evaluated by checking formation of pDNA cleavage bands, the Lin (form 

II) and Nck (form III), in gel electrophoretic image.  
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a. [Cu(L)Cl](CH3OH) 

Intensity of DNA bands seems to disappear for samples of E. Coli cells treated by 

complex [Cu(L)Cl](CH3OH) after 4 and 8 h of exposure (lanes 9, 10, 12, and 13 in 

figure III.17) suggesting DNA interactions with the complex. Nevertheless, the image 

shows some amount of pDNA entrapped in wells. The experiment was repeated in the 

replicate gels but the observed DNA interaction with [Cu(L)Cl](CH3OH) was still 

maintained (See figure B5 in annex). The electrophoresis findings are in agreement 

with spectroscopic absorbance (OD600) which has suggested the antimicrobial activity of 

[Cu(L)Cl](CH3OH) for E. coli cells treated with this compound. In fact, the apparent 

antimicrobial activity of this complex is more likely to occur through inhibition of DNA 

replication [113] which could explain the decrease of pDNA bands intensity. However, 

additional studies are required to confirm this potential activity of [Cu(L)Cl](CH3OH) 

against microbes. Furthermore, this compound is unlikely to cleave pDNA within living 

cells in presence and in absence of an activating agent (mercaptopropionic acid).   

 

Figure III.17. AGE of pDNA purified from E. coli bacterial cells which were treated by 200 μM 
[Cu(L)Cl](CH3OH) in absence (lanes 7-10) and presence (lanes 11-13) of 200 μM MPA as an activating 
agent. The control samples (lanes 1, 2, 14 & 15) are composed of pA1 DNA which was not purified during 

this experiment. Controls were pre-incubated at 37C for 1 h before being electrophoresed. The other 
samples (lanes 3-13) were electrophoresed after DNA purification from treated E. coli cells.    
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b. VO(acac)2 

Vanadyl acetylacetonate, VO(acac)2, is a known vanadium(IV) coordination compound 

which has showed a significant cleavage activity for pDNA [12]. It does not require any 

activating agent, air, or photoirradiation to degrade pDNA. Mach1 E. coli bacterial cells 

were treated by increasing concentrations (25-200 μM) of VO(acac)2 for assessment of 

pDNA breakage inside living cell. As it was expected the AGE of pDNA purified from the 

exposed E. coli cells shows Lin DNA bands (figure III.18). The gel image shows some 

amount of pDNA which are stuck in gel’s wells and did not move due to unknown 

reasons. However, the DNA bands in some lanes are clear enough to identify the 

digestion of Sc DNA into Nck and Lin DNA.    

 

Figure III.18. AGE of pDNA purified from E. coli bacterial cells treated by VO(acac)2 at different 
concentrations (50-200 μM). pA1 DNA (not prepared from this experiment) was used in controls (lanes 1, 
2, 15 & 16) to localize linear, nicked, and supercoiled DNA bands. Control samples were incubated at 

37C for 1 h before electrophoresis. Other sample solutions (lanes 3-14) were electrophoresed after 
purification of pDNA from treated E. coli cells.  
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IV. CONCLUSION  

This work has been designed with original motivation of evaluating the cytotoxicity of 

transition metal complexes. Inspired by a Schiff base compound, 2- tertbutyl-6-(pyridine-

2-ylhydrazonomethyl)phenol [50], the new ligand was synthesized and coordinated with 

copper(II) to obtain a  complex that has been tested for cytotoxicity behaviour. Given 

that the AGE remain the most common used procedure for testing cleavage in purified 

pDNA, a new method was developed in this study for evaluating the extent of pDNA 

digestion within living bacterial cells.  

The overall outcomes of this work are provided in the following points of conclusion:  

 The intended complex was obtained. The copper(II) coordination compound, 

[Cu(L)Cl](CH3OH), has been successfully synthesized from a Schiff base ligand, 2-

(pyridine-2-yl)hydrazono)methyl)phenol. Analytical characterizations using IR, NMR 

spectroscopy, MS, and X-ray crystallography have confirmed the identity of this 

complex. UV-vis and fluorescence spectroscopic studies showed that the complex 

most likely binds to DNA by electrostatic interactions or groove mode as evidenced 

by Kb and KSV constants.  

 

 DNA cleavage properties of [Cu(L)Cl](CH3OH) has been observed on pA1 

DNA. The complex is not able to digest commercial pRB322 DNA. The presence of 

the reductant (Ascorbic acid) does not promote the cleavage of pDNA. Actually, the 

presence of EDTA, which is well known metal ions chalator, in formulations of 

commercial pRB322 DNA has been suspected to prevent [Cu(L)Cl](CH3OH) from 

exerting its nuclease effects on pDNA. This assumption was enhanced by the fact 

that the complex cleaves pA1 DNA which is diluted solely in water. However, it 

requires an activating agent, MPA, to break DNA strands. A narrow linearization of 

pDNA was observed at higher concentration of the complex.    
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 There is a way of evaluating DNA cleavage within living cells. A new method 

has been developed to measure the extent of DNA cleavage within living cells. This 

procedure is based on (1) microbial culture, (2) treatment of living bacterial cells by 

concerned chemical compound, (3) purification of pDNA from exposed bacterial 

cells, and (4) the AGE of pDNA to check the extent of cleavage. This technique 

shows advantage of studying chemicals in cytoplasmic conditions where nuclease 

behaviours of some compounds could deviate from those observed when tested in 

extracellular media. The latter was the case for [Cu(L)Cl](CH3OH) whose nuclease 

studies reveal DNA cleavage properties on pA1 DNA in presence of MPA but 

behaves differently within Mach1 E. coli bacterial cells. However, the developed 

technique may present some drawbacks mainly the low quality of isolated pDNA 

depending on purification methodology. This technique also takes long time (at least 

5 days) to obtain nuclease activity findings compared to usual AGE (at least in 1 

day).   
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ANNEXES  

A. Images of gels: Plasmid DNA cleavage activity of complex 
[Cu(L)Cl](CH3OH)  

 

 

Figure A1. DNA cleavage activity of 50 µM [Cu(L)Cl](CH3OH) in 10% DMSO in 10 mM PBS and 10 mM 
MOPS buffers (pH 7.1) in the presence of activating agents: 200 μM oxone (Ox) and 200 μM MPA. 

 

 

 

Figure A2. DNA cleavage activity of 50 µM [Cu(L)Cl](CH3OH) in H2O (narrowly soluble in water), in 10 
mM PBS and 10 mM MOPS buffers (pH 7.1) in the presence of activating agents: 200 μM oxone (Ox) and 
200 μM MPA.  
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Figure A3. DNA cleavage activity of increasing concentration (50, 100 and 200 µM) of [Cu(L)Cl](CH3OH)  
in 10% DMSO at in 10 mM PBS and 10 mM MOPS buffer (pH 7.1) in the presence of activating agent: 
200 μM oxone (Ox) and 200 μM MPA.   

 

 

 

Figure A4. DNA cleavage activity of 100 and 200 µM [Cu(L)Cl](CH3OH) in H2O, narrowly soluble in 
water, (lanes 3-7) and in 0.5% DMSO (lanes 8-12) in 10 mM PO4 buffer (pH 7.39) in the presence of 
activating agents: 200 μM oxone (Ox) and 200 μM MPA. 
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Figure A5. DNA cleavage activity of [Cu(L)Cl](CH3OH) 200 µM in 1% DMSO (lanes 6-8) and 100 µM in 
0.5% DMSO (lanes 9-11) in 10 mM MOPS buffer (pH 7.1) in presence of activating agents:  200 μM 
oxone (Ox) and 200 μM MPA.    

 

 

Figure A6. DNA cleavage activity of increasing concentrations (25-400 µM) of [Cu(L)Cl](CH3OH) in 0.5 % 
in 10 mM MOPS buffer (pH 7.1) and 10 mM PO4 buffer (7.39) , in the presence of activating agent MPA 
(200 μM). 
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Figure A7. DNA cleavage activity of increasing concentration (100-1000 µM) of [Cu(L)Cl](CH3OH) diluted 
in 0.5 % DMSO in 10 mM MOPS buffer (pH 7.1) in the presence of activating agent MPA (200 μM). The 
complex precipitates above 400 μM).  
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B. Images of gels: Evaluation Of plasmid DNA cleavage within living cells   
 

 

Figure B1. DNA cleavage activity of VO(oda)(phen) (10, 50, 100 μM) and VOSO4 (100 μM) within living 
cells (Mach1 E. coli bacteria) 

 

 

Figure B2. DNA cleavage activity of VO(oda)(phen) (10, 25, 50 μM) and VOSO4 (100 μM) within living 
cells (Mach1 E. coli bacteria).  
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Figure B3. DNA cleavage activity of VO(oda)(phen) (10, 25, 50, and 100 μM), VOSO4 (100 μM), and 
VO(acac)2 (100 μM) within living cells (Mach1 E. coli bacteria).  

 

 

 

Figure B4. (Replicate of Fig B3) DNA cleavage activity of VO(oda)(phen) (10, 25, 50, and 100 μM), 
VOSO4 (100 μM), and VO(acac)2 (100 μM) within living cells. Electrophoresis samples of DNA were used 
immediately without further dilution in Millipore water.  
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Figure B5. AGE of pDNA purified from E. coli bacterial cells which were treated by 200 μM 
[Cu(L)Cl](CH3OH) in absence (lanes 2-5) and presence (lanes 6-9) of 200 μM MPA as an activating 
agent.  

 

 

 

Figure B6. Effect of different dilutions DMSO (0.5 and 50 %) on pDNA within E. coli bacterial cells 
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Figure B7. AGE of pDNA purified from E. coli bacterial cells which were treated by increasing 
concentrations (25, 50, 100, and 200 μM) of VO(acac)2.   
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C. Stability test of [Cu(L)Cl](CH3OH) 

 

Figure C1. Plot of absorption spectra of [Cu(L)Cl](CH3OH) solution measured in 0.5% DMSO at different 
duration after the preparation. 

 

 

Figure C2. Plot of absorption spectra of [Cu(L)Cl](CH3OH) solution measured in 100% DMSO at different 
duration after the preparation. 
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