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RESUMO: 

 

O clima tem um papel fundamental na forma como molda a distribuição global 

dos organismos, sendo por isso importante conhecer e compreender os limites de 

tolerância dos mesmos a variações ambientais. Devido à dificuldade de amostragem em 

ecossistemas profundos, existe ainda uma grande lacuna no que diz respeito aos factores 

que controlam a distribuição das espécies que neles habitam, nomeadamente as 

comunidades bentónicas. O Mediterrâneo é um ecossistema que apresenta 

características muito particulares, abrigando uma vasta diversidade de organismos 

essencialmente associados às comunidades coralígenas. A Paramuricea clavata é uma 

das espécies estruturantes mais importantes destas comunidades, tendo um papel muito 

importante no funcionamento e manutenção do ecossistema. Nos últimos anos, o 

aumento da temperatura observado no Mediterrâneo tem provocado eventos de 

mortalidade massiva junto das comunidades bentónicas, levando à perda de populações 

desta gorgónia. A distribuição conhecida desta espécie era até hoje restrita ao 

Mediterrâneo, principalmente na zona Norte.  Contudo, novas populações foram 

encontradas no Atlântico adjacente, junto a costa sul e oeste de Portugal e no mar 

Alboran, indicando uma distribuição mais ampla. Boosted Regression Tress (BRT) é 

um método de modelação recentemente aplicada na área da ecologia, que permite 

relacionar dados ambientais com dados de presença, possibilitando a descrição de 

padrões de distribuição para as espécies. Este método usa algoritmos que aprendem a 

relação existente entre os dados tipos de dados, permitindo a descrição do seu padrão. 

BRT resulta da junção de dois algoritmos, árvores de regressão e agregação, o que 

permite que o modelo final seja construído tendo em conta as interações existentes entre 

os dados. A flexibilidade do BRT permite contornar os principais problemas associados 

à modelação de dados ecológicos tais como: 1) capacidade de lidar com diferentes tipos 

de dados; 2) minimização da perda de função que ocorre devido à tendência de 

amostragem (sampling bias), existência de locais na área de estudo com maior numero 

de amostras que outros; 3) é dos métodos menos afetados pela resolução dos dados; e 4) 

reduz o sobre-ajuste do modelo aos dados da amostra (overfitting), por considerar todas 

as possíveis combinações destes. Por ser uma técnica que tem revelado boa capacidade 

de previsão da distribuição, nós utilizamos o BRT para descrever o habitat adequado 

para a P. clavata. Deste modo, determinámos quais as variáveis mais relevantes para 
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descrição da distribuição desta espécie e quais os seus limites de tolerância. O método 

mostrou-se eficaz, apresentado um excelente poder preditivo (AUC: 0.98; TSS: 0.96; 

sensibilidade: 0.98, especificidade: 0.98). O habitat adequado para esta gorgónia é 

caracterizado por uma topografia de fundo complexa, elevada produtividade e 

hidrodinamismo de moderado a forte. Os nossos resultados revelaram a topografia do 

fundo, representada pelo declive, como sendo a variável mais importante para a 

caracterização do habitat desta espécie, apresentando uma contribuição de 21.5% e um 

intervalo de tolerância sem limite máximo, > 0.3⁰. Esta variável é um bom indicador da 

dinâmica que ocorre no fundo, sendo que elevações topográficas estão normalmente 

associadas a alterações no padrão das correntes, e a zonas de maior produtividade. A 

Temperatura tem também um papel muito importante (contribuição de 19%), contudo, o 

intervalo de tolerância é bastante restrito (12.3 a 26.5⁰C), limitando assim a sua área de 

distribuição. Através deste modelo, verificámos também que, apesar dos nossos dados 

de presença ocorrerem entre os 15 e 100 m de profundidade, esta consegue atingir os 

200 m. Este facto é interessante, visto que a partir de uma determinada profundidade as 

perturbações ocorridas à superfície não se fazem sentir com tanta intensidade. Neste 

sentido, a existência de populações profundas pode ser um indicador de zonas de 

refúgio. A distribuição da espécie ocorre numa estreita linha da costa, ao longo do 

Mediterrâneo e Atlântico adjacente, e também em ilhas e outras em elevações 

topográfica do fundo, como montes e bancos submarinos. Para além dos novos locais de 

presença ocorridos no Atlântico e mar Alboran, o nosso modelo prevê uma boa 

probabilidade de ocorrência para a região sul do Mediterrâneo, nomeadamente ao longo 

da costa de Marrocos, Argélia e costa noroeste da Tunísia. Para o Atlântico, a área entre 

Agadir, Marrocos, e a costa sudoeste da Península Ibérica revela também a 

possibilidade de ocorrência desta gorgónia. Tendo em conta que se tratam de regiões 

pouco estudadas, os nossos dados sugerem estas áreas como potenciais alvos para 

estudos futuros de monitorização e conservação destes habitats. Com as alterações 

climáticas previstas para o Mediterrâneo, há uma forte possibilidade de ocorrer perda de 

grande parte das populações da espécie, especialmente das que habitam zonas menos 

profundas. 
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ABSTRACT: 

 

Understand how the distribution of deep-sea species is shaped by environment is a 

challenge for ecologists, given the difficulty of sampling at these locations. 

Paramuricea clavata is a long-lived species that inhabits the Mediterranean 

coralligenous assemblages. Its known distribution was so far described as being 

restricted to Mediterranean Sea, however, new populations were found in the 

neighboring Atlantic Ocean, suggesting a wider distribution. BRT is a modeling 

technique that uses algorithms to describe the relation between environmental and 

presence data, in order to assess species distribution. This method has been applied to 

ecological studies, showing good accuracy in predicting suitable habitats, since it copes 

well with the major problems associated with niche modeling. We use BRT to describe 

the suitable habitat of Paramuricea clavata by determining the variables that limit its 

distribution, and the species’ tolerance range for these variables. Our results accurately 

revealed that the suitable habitat is mainly characterized by complex bottom topography 

(represented by slope) and temperature, presenting a wide range for the first variable (> 

0.3⁰) and a well-defined range for the second (12.3 to 26.5⁰C). In addition to the 

previous known distribution, new potential sites of occurrence were revealed in the 

Mediterranean Sea, along the coast of Morocco, Algeria, Tunisia and Strait of Sicily, 

and on the Atlantic coasts between Morocco and southwest Iberia. With this study we 

were able to describe, for the first time, the ecological niche and potential global 

distribution of this important structuring species. Moreover, our results contribute to the 

achievement of future studies of monitoring and conservation of benthic communities in 

poorly-sampled areas. With the predicted climate change for Mediterranean, the 

occurrence of mortality events in benthic communities will continue, especially to those 

found in shallower areas, putting P. clavata at risk. 

 

Keywords: Species range limits, ecosystem structuring species, Ecological Niche 

modeling (ENM), suitable habitat, Paramuricea clavata   
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1 INTRODUCTION 

 

 

1.1 Species distribution 

 

Understanding how organisms and their environments are related and interact 

with each other is one of the central issues of ecology science. The environment plays 

an important role in the spatial distribution of organisms, therefore, some organisms are 

found in several regions of the world while others are confined to certain areas (Fenchel 

& Finlay, 2004). For a habitat to be suitable, it must have to favor biological processes 

like reproduction, growth and survival, and so each species has specific ecological niche 

requirements and distribution pattern (Sexton, et al., 2009). Although most of species 

can be found in more than one region, their distribution is determined by physiological 

tolerance to environmental gradients and biotic interactions. These biotic and abiotic 

factors determined the range limits of species (Sexton, et al., 2009). 

 

Species range limits are defined by environmental tipping points, boundaries that 

characterize the tolerance range of a species to a particular environmental variable 

(Botero et al., 2015; Sexton et al., 2009). When these boundaries are exceeded, the 

habitat became unsuitable, occurring shifts and contractions on species ranges (Botero 

et al., 2015). In nature, all environmental variables have a range of variation to which 

the species survive, and they characterized its ecological niche. Although independent, 

these variables are correlated, since closer habitats are more similar than distant ones, 

not meaning that all the adjacent areas are suitable for a certain species. Identification of 

species’ tipping points is important for the understanding of population dynamics, 

allowing a better evaluation of the actual state of organisms, especially when facing 

climate change (Botero et al., 2015; Sexton et al., 2009). Within a species, the 

geographic distribution of individuals may be different, with some populations living in 

the center of their range, while others live at the margins. Populations occurring in the 

marginal range of their distribution are known as edge populations (Sexton et al., 2009). 

According to the latitude limit they occupy, these populations can be define as leading 

edge, if they occur in the upper latitudinal distribution limit, or rear edge, if they occur 

in the lower latitudinal limit. While leading edge populations represents the front of 
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colonization, rear edge represents the older populations that have persisted in the same 

region despite environmental oscillation, and so they present higher genetic diversity 

(Hampe & Petit, 2005). Species living at the rear edge are normally confined to smaller 

habitats surrounded by unsuitable environmental conditions, so they present a 

distinctive genetic pool diversity that reflects their evolutionary history (Hampe & Petit, 

2005). A slightly change in environmental conditions at the range edge can lead to 

transposition of species’ tolerance limits, putting these populations at risk of extinction 

(Botero et al., 2015). Because they already live closer to their limits, these organisms 

are good biological indicators of environmental change (Sexton et al., 2009; Woolbright 

et al., 2014), so studying them may give us a highlight of how organisms can behave 

when exposed to extreme environmental conditions (Sexton et al., 2009). 

 

In the last years, we have been experience climate oscillation. While some 

organisms are able to adapt this variation, others are shifting their distribution 

(Parmesan, 2006). One of the most affected regions with increasing temperature has 

been the Mediterranean Sea (Rivetti et al., 2014). It is characterized by unique climatic 

features, hosting a wide biodiversity despite its small area (Coll et al., 2010). This 

region has been affected by climate variations, being described several mass mortality 

events in benthic communities, especially in coralligenous assemblages (Bally & 

Garrabou, 2007; Cerrano et al., 2000; Cigliano & Gambi, 2007; Coma et al., 2009; 

Crisci et al., 2011; Cupido et al, 2008; Gambi et al., 2010; Garrabou et al., 2009; Huete-

Stauffer et al., 2011; Linares et al., 2005; Martin et al., 2002; Rivetti et al., 2014).  

These assemblages are composed of many structuring species, organisms that directly 

influence the equilibrium of their ecosystem, by making changes in the physical 

environment that allow the maintenance of other organisms (Crain & Bertness, 2006; 

Jones et al., 1994). The most important engineers are those who limit the habitat 

requirements to other species, being key species in the community structure (Crain & 

Bertness, 2006). Variations in environment conditions have impact not only on 

structuring species but in all the associated community, since they have the ability to 

control and maintain some ecosystem properties (Crain & Bertness, 2006). A better 

understanding of how these organisms live and how their habitats are composed is of 

major importance. Hereupon, many studies have been conducted to determine the 

habitat of these organisms through habitat suitability maps (HSM), produced from 

ecological modeling (Bryan & Metaxas, 2007; Davies & Guinotte, 2011; Davies et al., 
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2008; Giusti et al., 2014; Guinotte & Davies, 2014; Leverette & Metaxas, 2005; Vierod 

et al., 2014).  

 

 

 

1.2 Ecological niche modeling 

 

Ecological Niche Modeling (ENM) is a strategy used for estimating the potential 

distribution of species, based on the spatial variation of the environmental variables that 

promote their settlement. A statistical algorithm is applied to relate environmental data 

(predictors) with known occurrence data to classify regions with resembling 

environments (Guisan & Thuiller, 2005; Guisan & Zimmernann, 2000; Kearney & 

Porter, 2009; Pearson et al., 2007). With ENM it is possible to predict species’ 

distribution in unknown locations or in different time scales, by extrapolating in space 

and time. Besides the environmental niche, this modeling technique has also been 

widely used to address population ecology issues, like, species’ invasion (e.g. Peterson 

& Vieglais, 2001), predictions of past distribution based on biogeographic patterns (e.g. 

Neiva et al., 2014) and also, assessment of the impact of climate change in future 

distribution (e.g. Assis et al., 2014). 

 

Modeling techniques had a rapid growth in the last years due to technological 

advances and its applications had expanded to other areas, including ecology. The 

incorporation of Geographical Information Systems (GIS) in ecological studies, made 

possible to manipulate environmental and distribution data in a specific geographical 

space (Guisan & Thuiller, 2005). Several environmental variables have been measured 

over the years, making it possible to generate useful databases for modeling. (e.g., 

BODC, NOAA – NODC). Beside environmental data, species known occurrences 

datasets have also been created, by assigning to each occurrence point its geographic 

coordinates (e.g., GBIF, OBIS). Each variable is presented as a layer, and the study area 

is a result of the combination of multiple layers. The ability to use both data modeled in 

the same format is what makes possible to extrapolate in space and time (Elith & 

Leathwick, 2009; Guisan & Thuiller, 2005).  
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The estimation of species distribution using environmental information can be 

obtained from two types of models that use environmental information for the 

estimation of species distribution: 1) mechanistic model, the potential extent of species’ 

niche is evaluated considering the physiological traits of organisms in response to 

environmental conditions (Kearney & Porter, 2009); and 2) correlative models, describe 

the abiotic interactions between the organism and its local environment, requiring only 

information about environmental variables and species occurrences (Pearson et al., 

2007).  These two approaches provide different kinds of information, so before the 

development of the model, the study purpose must be settle. Correlatives are the most 

commonly and easier models to use, and also, the most appropriated model for the 

assessment and prediction of species’ spatial distribution (Kearney et al, 2010; Pearson 

et al., 2007). 

The assumptions behind ENM methods theory should be taken into consideration 

before models’ applications. First assumption relies on the choice of predictors, since 

the environmental variables chosen to describe species’ range limits determined the 

description level of the predictive model (Elith & Leathwick, 2009; Guisan & Thuiller, 

2005). Predictors selection must be carefully performed, since they have to direct or 

indirectly evidence the most important types of influences on species, such as: 1) 

regulators, factors that regulate the physiological adaptation of species to environmental 

conditions; 2) disturbances, any facts which has an impact on the functioning of the 

environmental system; and 3) resources, all the elements that provide energy for the 

persistence and survival of species (Guisan & Thuiller, 2005). When relevant variables 

are not considered, overprediction can occur with the species being described in places 

where, in fact, does not occur (Pearson et al., 2007). Second assumption states that the 

species is in a “pseudo-equilibrium with its environment” (Elith & Leathwick, 2009; 

Guisan & Thuiller, 2005). These assumptions have to be fulfilled taking into 

consideration the model's projections in time and space (Guisan & Thuiller, 2005). 

 

Ecological niche is an important concept to highlight when studying the 

distribution of species. There are two different approaches of this concept operating at 

different spatial scales, fundamental and realized niche (Guisan & Thuiller, 2005). 

Fundamental niche describes the abiotic interactions between the physical environment 

and resources of a potential area occupied by an organism, the suitable habitat 

(Hutchinson, 1957; Pearson et al., 2007). Because only part of the suitable habitat is 
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really occupied by organisms, another definition assigned is realized niche, which 

defines the areas where the species actually occurs in nature including biotic 

interactions and limiting factors (Hutchinson, 1957; Pearson et al., 2007). For the 

purpose of our work, we consider the fundamental niche concept, since it operates on a 

global scale, and because our data only includes environmental information. 

 

The basic process of modeling is to use occurrence data inserted in a geographic 

space, extrapolated to an environmental space and project them back to the geographic 

space. The choice of the modeling procedure should be made according with the 

purpose of the study. There are three different categories of modeling methods, based 

on the type of data used: presence-only, presence-absence and presence-pseudo-

absence. Since our modeling approach is based on the fundamental niche, we are 

interested in unsuitable conditions as well, so absence data is useful for model 

construction (Guisan & Thuiller, 2005). Therefore, for a better prediction of the suitable 

habitat we choose to use presence-pseudo-absence data. After deciding what type of 

data to be used, it is necessary to proceed to its treatment in order to optimize the 

performance of the model. In this step, both distribution and environmental data were 

transferred to the geographical space of the study area, with the appropriate spatial 

scale, resolution and extent. Spatial scale is directly related to the extent of the study 

area and resolution. Resolution defines the properties of data, so, it is determined 

according to the resolution available for both distribution and environmental data. The 

ideal is to use the same resolution for both data, and the finer resolution the better 

quality of model predictions (Elith & Leathwick, 2009; Guisan & Thuiller, 2005). 

Spatial scale is also dependent on the previous knowledge of the motion ability of the 

target species. When modelling highly mobile species, each cell of the geographic space 

must contain all the possible environments the species can inhabit, increasing the 

complexity of the model. Sessile organisms or with restricted motion ability are more 

easily to model because they occupied a narrow range of environments, and so, 

absences are more accurately obtained (Guisan & Thuiller, 2005).  

 

For the application of model algorithm, two different categories of modeling 

methods are available based on the type of data used, presence-only and presence-

absence. The main difference between these methods relies on the outcome distribution, 

where presence-only predictions described only sites where the species occur (e.g. 
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Ecological Niche Factor Analysis (ENFA), Bioclim and Domain), and presence-absence 

described both suitable and unsuitable conditions for occurrence (e.g. Generalized linear 

models (GLM), generalized additive models (GAM) and classification and regression 

tree analyses) (Hirzel and Le Lay, 2008; Lobo et al., 2010; Tsoar et al., 2007). We 

choose to use presence-pseudo-absence data for a better prediction of the suitable 

habitat, and the model algorithm explored is the machine learning method, Boosted 

Regression Trees (BRT).  

 

BRT is a modelling technique that combines probable models in order to optimize 

the performance of a single one (Elith et al, 2006; Leathwick et al, 2006). It is an 

advanced form of regression developed from Machine Learning approach, a technique 

known by its artificial intelligence (Friedman et al., 2000; Schapire, 2001). These 

algorithms relate known distribution and environmental data in order to learn the 

relationship between them, and then extrapolated to unknown locations. BRT method 

results from the merge of two algorithms, regression trees and boosting. In regression 

trees, also known as decision trees, the geographical space of the study area is divide in 

rectangles identifying regions with the most homogenous response, and then a constant 

is fitted to each region. Since this is a stagewise process, the input response of one 

variable is dependent on values of inputs higher in the tree, and so, the interactions 

between predictors are automatically modeled (Elith et al., 2008). For boosting, the 

decision trees previously modeled are gradually combined to minimize the loss of 

function, which is used to measure the error margin associated with models prediction, 

uncorrected previsions like false presences and false absences. The lower this value the 

better performance of the model (Elith et al., 2008). First decision tree added in this step 

represents the regression that better reduces the loss of function. The second decision 

tree is fitted to the residuals of the first one, and so on. In the end, the final model it’s 

the result of a linear combination of all the trees (Elith et al., 2008). This method is 

characterized by its affordable way to visualize the modeled information. Usually, BRT 

is performed several times to exclude the highest probability of error and to ensure that 

all the tested parameters are properly examined (Elith et al., 2008).  

 

Regression models are considered good predictors for modeling ecological data 

because they manage to quantify and illustrate the relationship between predictors and 

the response (Elith et al., 2008; De’ath, 2007; Moisen et al., 2006; Recknagel, 2001). 
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To measure the predictive performance of the models, a validation technique is required 

(Kohavi, 1995; Pearson et al., 2007). Cross-validation (CV) is an evaluation process of 

predictive models accuracy that divides the distribution data in two different sets, one 

for training the models and other for testing them. This procedure is repeated several 

times and, for each time, it trains and tests the model with a different sorted data, 

constructing a more accurate final model (Kohavi, 1995). For binary methods, the 

accuracy of the final model should be measure. True Skill Statistics (TSS) is a method 

used to access model accuracy though a confusion matrix that relates the presence 

records with variables in order to obtain true presence, false presence, true absence and 

false absence. From this matrix we get sensitivity, the proportion of true presences well 

predicted (omission errors), and specificity, proportion of true absences well predicted 

(commission errors), which are independent from each other and from prevalence, 

proportion of locations with presence records. After these settings, the potential 

distribution of species is described by the probability of its occurrence in each cell along 

the study area. 

 

 

 

1.3 Focal species: Paramuricea clavata 

 

The model species chosen for this study was Paramuricea clavata (Risso, 1826), 

currently known as red gorgonian (Figure ). This is a long-lived organism that normally 

dwells in vertical rocky walls, but can occur in horizontal substrate, both exposed to 

high hydrodynamics (Gori et al., 2011 spatial; Linares et al, 2008a). Associated with 

benthic coralligenous communities, P. clavata is essentially found in the Western 

Mediterranean Sea, and also in Adriatic, Aegean Sea and in the neighboring Atlantic 

Ocean (Appendix 1). They exhibit a bathymetric range that goes from 5 to 200m 

(Mokhtar-Jamaï et al., 2011), and present a latitudinal gradient in the depth limits, being 

the western populations shallower than the eastern ones (Linares et al., 2008a).  

 

P. clavata is a gonochoric surface brooder, meaning that each individual is 

unisexual and instead of remaining into the water column, the fertilized eggs stay 

attached to the mother colony (Coma et al., 1995; Linares et al., 2008b). The sex ratio  
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Figure 2 Focal species, Paramuricea clavata . 

 

within these organisms is 1:1, although, the gonadal development is different 

between sexes (Coma et al., 1995; Linares et al., 2008b). The development of female 

gonads takes between 13 to 18 months to reach maturity, while male gonads only need 

6 to 7 months to reach the same degree of ripeness (Coma et al., 1995). To avoid the 

loss of gametes in the reproductive season the spawning event is synchronized, being 

stimulated by the increased of seawater temperature and the lunar cycle, full and new 

moon. There are two different spawning events, with the first occurring in late May, 

beginning of June, and the second with an interval of 8 to 10 days (Coma et al., 1995; 

Linares et al., 2008b). After hatching, the larvae remain suspended in the water column 

for a short period of time (only a few minutes) and quickly settle near the mother colony 

(Coma et al., 1995). These organisms exhibit negative phototaxis, which means they go 

in the opposite direction of light looking for a place to settle, probably to elude 

competition with algae (Linares et al., 2008b). Although they present a mobile early life 

phase and are exposed to high currents speed, the feature describe above favors the 

sinking of the larva, thus reducing the potential dispersion of the species (Coma et al., 

1995; Linares et al., 2008b).  
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As sessile organisms, gorgonians assemblages depend on the physical 

environment to reach food resources, so the red gorgonian is considered a benthic 

suspension feeder (Ribes et al., 1999). This species shares its habitat with other 

suspension feeders that have different feeding strategies and different food target items, 

reducing competition between them (Gili & Coma, 1998). Moreover, suspension 

feeders usually have a diverse diet that allows them to explore different food sources, 

according to their availability in a water column (Coma et al., 1994; Ribes et al., 1999). 

P. clavata filters the surrounding waters and feed on suspension organisms ranging 

from above 3µm (nanoeukaryotes) to 700µm (zooplankton), and also on detrital POC 

(particulate organic carbon) (Coma et al., 1994; Gili & Coma, 1998; Ribes et al., 1999). 

While detrital POC and zooplankton represent an important food resource, live POC has 

low contribution probably due to the limited capture capacity of this species (Coma et 

al., 1994). They are considered an ecological success, because they practically don’t 

waste energy in food collection (Ribes et al., 1999), storing it to invest in growth and 

reproduction (Coma et al, 1998). 

 

The interaction between the substratum and water column made by these 

organisms, links the benthic and pelagic systems. Besides this connection, suspension 

feeders regulate abiotic and biotic process of their habitat, making them suitable for 

many other species (Dame et al, 2001; Gili & Coma, 1998). The ability of P. clavata to 

interfere with its habitat properties, considered it as ecosystem engineer species 

(Ballesteros, 2006; Cupido et al, 2008; Mistri & Ceccherelli, 1994). It is known that this 

gorgonian is sensitive to high temperatures and several reports showed an immediate 

response resulting in mass mortality events along the northern west Mediterranean Sea 

(Bally & Garrabou, 2007; Cerrano et al., 2000; Coma et al., 2009; Crisci et al., 2011; 

Cupido et al., 2008; Gambi et al., 2010; Garrabou et al., 2009; Huete-Stauffer et al., 

2011; Linares et al., 2005, Martin et al., 2002; Rivetti et al., 2014; Vezzulli et al., 

2010). If the increasing temperature continues, the future of these gorgonian and the 

associated community may be compromised. Recent knowledge of its occurrence in the 

Atlantic Ocean, along the Portuguese coast, aroused interest for their actual distribution, 

since this gorgonian was considered to be endemic of the Mediterranean Sea (Linares et 

al., 2008b; Mokhtar-Jamaï et al, 2011). This coupled with the warning situation in 
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which this species is found and the improvement of modeling techniques, challenges us 

to model its ecological niche. 

 

The goal of our study was to estimate the suitable habitat of a structuring 

species, P. clavata, in its global distribution. Specifically, we aimed to 1) determine 

the relative importance of several environmental variables in order to identify which 

best describe the fundamental niche of the species, and express this in terms of 

probability in a habitat suitability map; 2) predict the total distribution to uncover if 

there are other suitable habitat areas beyond the known occurrence sites reported in 

literature; and 3) determine the tipping points of the species at its global distribution. 
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2 MATERIAL AND METHODS: 

 

 

2.1 Study location  

 

The study area included the entire Mediterranean Sea and the adjacent Atlantic 

Ocean, from 24º71N and 36ºE to 51º85N and 18ºW, corresponding to the total 

distributional range of the red gorgonian, Paramuricea clavata (Figure 2). This area 

spans about 4000 km horizontally and encompasses the entire littoral coastlines, islands, 

underwater features such as submarine mountains and continental shelf slopes. 

Heterogeneous shores characterize the geography of the area; prominent capes and cliffs 

demarcate narrow continental shelves with steep slopes and vertical rocky walls, 

interspaced with flat shores, protected embayments, extended sandy or muddy areas, 

presenting distinct climate and ocean exposures. Populations of P. clavata are found 

growing over rocky substrates from 15 to about 200 m depth (Mokhtar-Jamaї et 

al.,2011; this study). 

 

 

 

 

Figure 2 Study area and location of the records points of Paramuricea clavata used in the model. 

Coordinates of the occurrence points and respective references are available in Appendix 1. 
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2.2 Distribution and environmental data 

 

We compiled a database with distributional records (presence data from 1980 to 

2014) of P. clavata from the literature (Figure ; Appendix 1) and online species 

databases (GBIF; OBIS). This was completed by a field survey because recent studies 

(Cúrdia, 2012; Rodrigues, 2008) and divers’ observations (http://www.deepreefs.com) 

indicated that the species could be present in the Atlantic Ocean, along the south and 

west coasts of Portugal. To discover the distribution along the Portuguese coastline, 

SCUBA dives performed by DeepReefs were made from Tavira (south Portugal) to the 

Berlengas islands (west Portugal). Additional observation records from Greece were 

obtained by expert knowledge (see Appendix 1). All coordinates were confirmed in 

QGIS 2.4 Chugiak, and points that occurred on land or at improbable depths were 

eliminated. The dataset included 164 occurrences gridded to 0.05 degrees’ resolution 

(about 5 km). Only one occurrence per cell was kept for modeling. Finally, to reduce 

possible spatial autocorrelation caused by more thoroughly sampled areas, data were 

visually assessed and some occurrence points were eliminated, keeping a relative 

balance between geographical regions (Barbet-Massin et al., 2012). The final dataset 

used for modeling included 50 occurrences of P. clavata. 

 

Eleven environmental variables were selected based on the known ecology and 

physiological tolerances of P. clavata (Table 1). Three-dimensional profiles of salinity, 

ocean temperature and current velocity were obtained from the Global Observed Ocean 

Physics Temperature Salinity Reprocessing (Guinehut et al, 2012), nutrients 

(phosphate, nitrate and silicate) were obtained from the World Ocean Database 2013 

(Levitus et al., 2013), and slope was calculated using the General Bathymetric Chart of 

the Oceans (GBCO; BODC, 2013). The environmental data were gridded to the same 

resolution of the distribution data (0.05 degrees) using trilinear interpolation (location 

and depth, as deduced from the GBCO), with a vertical coverage from 15 to 200 m. 

Environmental predictors were tested for correlation (pairwise Pearson et al. 

correlation), because when correlated variables are used for modeling it is not possible 

to identify which one has better predictive power (Dormann, 2011.), influencing the 

model performance (Farber & Kadmon, 2003; Fourcade et al., 2014; Guinotte & 

Davies, 2014). No predictors were eliminated prior to modeling since only nitrate and 
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phosphate minima presented a correlation higher than 0.8 (Appendix 2), but because 

nutrient limitation can influence the distribution and abundance of suspension feeders 

(e.g., Schoener, 1974), both variables were kept.  

 

Table 1 Data type and sources of the environmental variables used for modeling the distribution of 

Paramuricea clavata. 

Environmental Predictor 
Native resolution of 

grid 
Units Source 

Type of 

data 

Currents (minimum) 
0.25º m/s Guinehut et al., 2012 Raster 

Nitrates (maximum) 
1º µmol/L Levitus et al., 2013 Raster 

Nitrates (minimum) 
1º µmol/L Levitus et al., 2013 Raster 

Phosphates (maximum) 
1º µmol/L Levitus et al., 2013 Raster 

Phosphates (minimum) 
1º µmol/L Levitus et al., 2013 Raster 

Salinity (minimum) 
0.25º PSS Guinehut et al., 2012 Raster 

Silicates (maximum) 
1º µmol/L Levitus et al., 2013 Raster 

Silicates (minimum) 
1º µmol/L Levitus et al., 2013 Raster 

Slope 
0.08º Degrees BODC, 2013 Raster 

Temperature (maximum) 
0.25º °C Guinehut et al., 2012 Raster 

Temperatures (minimum) 
0.25º °C Guinehut et al., 2012 Raster 

 

 

2.3 Preparing pseudo-absences 

 

Boosted Regression Trees uses binary occurrence data (presence and absence) but 

accurate absence data were unavailable for P. clavata, so pseudo-absences were 

generated through a Mahalanobis Distance function (Farber et al., 2003). The function 

uses the presences and normalized environmental predictors (Calenge et al., 2008) to 

determine an Environmental Suitability Map (ESM), specifying for each cell how 

distant (in probability of occurrence) their local habitat is from the niche optimum. 

Pseudo-absences were randomly selected from the ESM cells that presented a 

probability ≤0.2. This threshold favors sensitivity (correctly predicted presences), over 

specificity (correctly predicted absences), a desirable criterion in conservation to avoid 

rare/important species being wrongly classified as absent (Jiménez-Valverde & Lobo, 

2007). Lower thresholds, e.g. 0.1 (Chefaoui & Lobo, 2007), may lead to over-prediction 

of the niche by selecting pseudo-absences from a very narrow set of conditions in those 

map cells. To produce a model with better accuracy and reduce over-prediction, we 

followed the recommendations of Chefaoui & Lobo (2007) for choosing pseudo-
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absences in areas distant from presence data, and of Barbet-Massin et al. (2012) for 

randomly selecting the same proportion of absence as presence data. After this data 

treatment, both distribution and environmental data are ready for the application of the 

model algorithm. 

 

 

2.4 Modeling procedure 

 

For prediction of the distribution of P. clavata a BRT model was developed. The 

performance of this model was optimized with four parameters: bag fraction, 

corresponding to the fraction of the training data randomly selected for the next tree to 

be fitted; learning rate (lr), responsible for shrinking the contribution of each tree added 

to the model; number of trees (nt), which corresponds to the number of iterations 

occurred in each model; and tree complexity (tc), which regulates the number of nodes 

in a tree and, hence, the level of interaction between predictors (De’ath, 2007; Elith et 

al., 2008).  

 

The best BRT model was built in two stages, one using all predictors (full model, 

see in Appendix 3) and the other selecting only the predictors with greater relevance to 

our species (reduced model, see in Appendix 3), to obtain the lowest model deviance. In 

the first stage, full model, the best combination of values for all model parameters were 

determined through a 10-fold cross-validation procedure over lr values of 0.01, 0.005, 

0.001 and 0.0005, tc from 1 to 11, corresponding to the number of environmental 

predictors, and a bag fraction of 0.5 (Elith et al., 2008). For each model, the optimal 

combination of parameters was determined. Each model run included a 10-fold cross 

validation comprising nine unique data subsets used for model training, and a unique 

omitted subset used for model testing (Elith et al., 2008). Model deviance accounts for 

the loss of function in fitted models, so lower deviance values correspond to a better 

model performance. The lower value of deviance obtained with the full model indicated 

a better model performance with the removal of the variables with lower contribution 

(Elith et al., 2008). For model reduction (reduced model), four predictors were removed 

to examine the change in model deviance. The best combination of values for all model 

parameters was again determined with a 10-fold cross-validation procedure, using the 
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same values for lr and bag fraction, but a tc from 1 to 7. The combination of parameters 

that corresponded to the lowest cross-validation deviance was used for the fit of the 

entire P. clavata training dataset to the optimal BRT model. After determined the best 

parameters and obtained the optimal predictive model, the HSM was produced. 

  

The final accuracy of the predictive models was verified through True Skill 

Statistics (TSS), by comparing the predicted distributions with the presence data. The 

measure of accuracy of this method is threshold-dependent since it is applied to binary 

data (presence-absence) (Allouche et al., 2006). Although a specific threshold could be 

established, we prefer to use all possible values (100), and the one with best TSS was 

chosen. The relative influence of each predictor used in the final BRT model was 

measured based on the number of times a predictor is selected for splitting the tree, 

weighted by the squared improvement to the model it produced, averaged over all trees 

(Elith et al., 2008). In order to visualize the effect of the predictors in the final model we 

produce partial dependence plots. This function produces a graphical representation of 

the interactions of each predictor when combined with the others in the final model 

(Elith et al., 2008). 

 

Environmental tipping points were determined (minimum and maximum levels 

with occurrences) for the variables that best described the niche of P. clavata by 

plotting the probability of occurrence versus the range of each predictor (Figure 3). The 

tipping point value was established according to the threshold that maximizes the model 

accuracy. 

 

Niche modeling and area calculations were performed in R version 3.1.1 (R 

Foundation for Statistical Computing, 2014) using the packages raster, rgdal, 

adehabitat, SDMTools, sp, dismo, parallel, doParallel and gbm. For a more detailed of 

the procedure, see the R script available in Appendix 3. 
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Figure 3 Partial dependence plots of the fitted values of the final predictor variables used for 

modeling. X-axis represents the range of each predictor and y-axis describes the influence of the 

predictor on the occurrence of Paramuricea clavata. The vertical dotted line corresponds to the 

tipping point. Temperatures were modeled as monotonic variables. 
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3 RESULTS 

 

 

3.1 Model performance 

 

In total, the depth of the 50 records used for modeling varied between 15 and 100 

m. The eleven environmental variables considered in the initial model were reduced to 

seven (Figure 4), which gave excellent prediction ability to the model (AUC: 0.98, TSS: 

0.96, specificity: 0.98, sensitivity: 0.98, deviance explained: 0.60) and allowed an 

accurate description of the species distribution. The global distribution of P. clavata 

was best explained by slope (21.8%), maximum and minimum ocean temperature 

(17.8% and 17.3%, respectively) (Figure 5).  BRT showed that the suitable habitat of P. 

clavata is also controlled by silicate (13.4%), current velocity (11.2%), phosphate 

(10.3%) and salinity (8.3%). 

 

 

Figure 4 Change in predictive deviance obtained in model reduction and confidence interval. Red 

dashed line represents the actual number of variables removed. The initial model contained eleven 

predictors, of which four were removed: maximum nitrate, minimum nitrate, maximum phosphate 

and minimum silicate. 
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Figure 5 Relative contribution (%) of each predictor for the production of the suitable habitat map of 

Paramuricea clavata, after model reduction. 

 

 

Partial dependence plots were produce to describe the response curve of each 

predictor in the final model, taking into consideration the interaction between all 

predictors (Figure 6). Analyzing all response curves, we clearly see a negative effect of 

the slope above 10º, meaning that below 200 m of depth, the habitat is unsuitable for P. 

clavata. Silicate, currents and phosphate didn’t present different response curves when 

interacting with the set of predictors. Since the variation of predictors is small for 

currents and phosphate, we must be careful when interpreting the data. With respect to 

the salinity curve, it presents a rapid change in the response when exceeds the tipping 

point, although, some individual may occur in areas below 36 (PSS). This variable is 

clearly dependent on the other predictors, considering that it shows little variation over 

the study area. When interacting with other predictors, the effect of minimum 

temperature is maintained, with the habitat being suitable above 12ºC. This indicates 

that the response of this predictor is independent of the others. The same is not observed 

for maximum temperature, since the critical value is lower than the obtained for the 

tipping point.   
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Figure 6 Response curves of fitted values to each predictor used for modeling. The range of each 

predictor is represented in the x-axis. The occurrence of Paramuricea clavata is represented in the 

y -axis, were 1 = presence, 0 = absence. 

 

 

3.2 The niche of Paramuricea clavata 

 

Our model allowed the estimation of tolerance levels for the environmental 

variables that best predict the distribution of P. clavata (summarized in Table 2) and a 

comparison with published limits. At the sites where this coral occurs (Appendix 1), the 

range of optimal conditions indicated by the model was mostly concordant with values 

obtained from the literature. Together, these values define the species-specific tipping 

points, here defined as the points at which the build-up of small changes in the 

environmental variable will culminate on a significant effect for the species, for 

example a small increase in the maximum temperature tolerated by P. clavata (26.5 ºC) 

will strongly decrease its probability of occurrence (partial dependence: Figure 3 and 6). 
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Table 2 Environmental predictors chosen to characterized the ecological limits of Paramuricea 

clavata and corresponding tipping points (TP) obtained from the model (TP.Mod.) and from a 

literature review (TP.Rev.). TP are levels beyond which the species is unlikely to occur. N.a. 

indicates data is not available. Occurrence range describes the predictor variation found within our 

presence data. Raster range describes the predictor variation along the study area. 

 

Environmental 

predictor 

Units Raster range 
Occurrences 

range 
TP.Rev TP.Mod References 

Slope Degrees 0.0005 - 34.63 0.26 - 12.40 Steep slope <0.26 
Garrabou et al., 

2002 

Max. 

Temperature 
°C 11.9 - 29.4 13.4 - 26.5 >25 >26.5 

Garrabou et al., 

2002; Kipson et 

al., 2014; Bally 

& Garrabou, 

2007 

Min. 

Temperature 
°C 8.8 - 19.5 12.4 - 15.9 12 <12.4 

Garrabou et al., 

2002; Gori et al., 

2013 

Max. Silicate µmol/L 1.42 - 51.77 2.48 - 11.92 N.a. >11.9 N.a. 

Current m/s 0.0004 - 0.42 0.007 - 0.34 0.104a <0.007 Ribes et al., 1999 

Min. Phosphate µmol/L 0 - 0.43 0.001 - 0.33 
Almost 

undetectable 
<0.001 

Ballesteros, 2006 

Salinity PSS 26.9 - 39.1 35.9 - 39.1 37 - 38 <35.9 Ballesteros, 2006 

ᵃ This was the only water flow value obtained in the literature and does not correspond to a true 

tipping point but rather to the local average current speed found in the cited study. 

 

 

 

The ecological limits found by our model indicated that P. clavata tolerates a 

wide range of a few environmental variables (e.g. slope and current velocity) but that it 

requires a well-defined range for other environmental predictors (e.g. ocean 

temperatures). Specifically for slope, no maximum was detected indicating that the 

species might occur in substrates with slope steeper than 18º, the maximum slope value 

in the presence model cells. The species can grow in vertical walls and overhangs. 

 

The model also indicated that this species habitat occurs in areas with maximum 

silicate concentration below 12 µM, some current velocity (>0.7 cm.s-1), that it is not 

excluded from oligotrophic areas which present an almost absence of phosphate, and, 

naturally, is dependent on marine waters. Although the species tolerates oligotrophic 

areas and low current speed, the fitted functions of nutrients and currents (Figure 6) 

show that it likely thrives better in areas with stronger water flow (current at about 20 

cm.s-1) and levels of phosphate minimum near 0.1 µM. 
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3.3 Predictive suitable habitat 

 

The niche modeling results showed that P. clavata has a restricted habitat along 

a widespread distribution. The construction of a habitat suitability map allowed 

identifying probable areas for P. clavata extending almost continually throughout the 

coastlines of the west Mediterranean Sea spreading eastwards until the Aegean Sea, and 

in the neighboring Atlantic Ocean from North Morocco to west Portugal, including off-

shore seamounts (Figure 7). The majority of highly suitable habitat was predicted to 

occur along the Catalan and Balearic coasts, along the Ligurian coastlines, including 

Corsica and Sardinia, along the west and south coasts of Italy, extending into Sicily and 

into the Ionian and Aegean Seas. Other significant regions of suitable habitat for P. 

clavata are found beyond already known locations, in the Alboran Sea, especially in the 

Moroccan and Algerian coastlines and in offshore seamounts and islands (e.g. Alboran 

Island), continuing along Tunisia and extending along the shallow sea bottom into 

Sicily. Although with a much lower probability and area, suitable habitat for P. clavata 

was also found along the Libyan and Egypt coasts, and a few lower probability cells in 

Israel, Lebanon, Syria, north Cyprus and southeastern Turkey. Major discontinuities in 

the species niche were found to occur in the southeastern Mediterranean, from the 

eastern Greek islands and Turkey to the Levantine Sea and in the northern Adriatic Sea. 

Additionally, the model identified the Atlantic distributional limits for P. clavata as 

located south of Agadir on the west coast of Morocco and north of the Berlengas islands 

in Portugal, although a discontinuity occurs between southwestern Morocco and the 

Strait of Gibraltar. The global estimated suitable habitat area for P. clavata is 239 626 

km2. 
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Figure 7 Predicted habitat suitability for Paramuricea clavata. Numbers refer to some locations 

mentioned in the text: 1 - Galicia (Spain), 2 - West Portugal, including Berlengas islands, Cape 

Espichel and Sines, 3 - Gorringe Bank (seamounts), 4 - Algarve Basin, including submerged caves 

and Tavira (south Portugal), 5 - Agadir (west Morocco), 6 - Alboran Sea, including islands and 

seamounts, 7 - Ligurian Sea and Pelagos Sanctuary, 8 - Tyrrhenian Sea and Vercelli seamount, 9 - 

Adriatic Sea, 10 - Ionian Sea, 11 - Aegean Sea, 12 - Levantine Sea with Cyprus to the left and the 

Syrian-Lebanon border to the right. Some numbers were placed near the site they are referring to, 

not to overlap suitable habitat areas. 
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4 DISCUSSION: 

 

 

4.1 Model performance: 

 

BRT was the model technique chosen for the prediction of the suitable habitat of 

P. clavata and it proved to have good predictive power by presenting high accuracy 

values. This machine learning approach allow the recognition of patterns and it is 

flexible when dealing with different types of predictors, which improves the accuracy 

of the models (Elith et al., 2008). Due to the characteristics it presents, this method has 

been used not only to predict the current distribution of species (e.g., Bryan & Metaxas, 

2007; Franklin et al., 2013), but also to infer how the distribution patterns varied in the 

past (e.g., Neiva et al., 2014) and how will they vary in the future (as a consequence of 

climate change) (e.g., Assis et al., 2014). Although ENM is an important tool to access 

the distribution pattern of the species, it presents some limitations that may condition 

the validation of the suitable habitat generated, such as sampling bias, loss of function, 

data resolution and overfitting. 

 

Our model was built based on the fundamental niche of the species, which means 

that suitable habitat obtained only reflects the environmental conditions favorable for 

the species presence. Biotic factors, such as competition and dispersion, are also 

important variables in shaping the distribution of species, because they can prevent their 

occurrence in habitat considered favorable (Elith & Leathwick, 2009; Pearson et al., 

2007). Thus, it is possible that some of the potential areas predicted for the occurrence 

of P. clavata are not actually occupied, because the species has not reach yet those 

places, or because the presence of other species leads to competition for food, which 

makes the habitat less efficient for the ecology of the species. So, models based on 

environmental variables do not include biological barriers of colonization, creating 

uncertainty about the model's predictive power (Araújo & Guisan, 2006; Mokhtar-Jamaï 

et al., 2011). However, we believe that our model has achieved good distribution limits 

of the species range, given that the obtained tipping points are in concordance with 

published data (Table 2), and they could explain the high value obtained for sensitivity.  

 



 

24 
 

Other concerns related to the good performance of the ENM are sampling bias, 

the choice of pseudo-absences, data resolution and overfitting (Elith et al., 2008; 

Pearson et al., 2007). The spatial distribution of both presence and pseudo-absences 

points influence the performance of the model. With respect to presence points, since 

we intended to predict the global distribution of P. clavata, some regions of our study 

area were more sampled than others, meaning that important locations of occurrence of 

the species may not be included for modelling. To minimize sampling bias, we didn’t 

include all the presence points in the model, and, BRT was programmed to reduce bias 

through its stagewise process, sequential modeling of the trees based on the residuals of 

the previous tree (Elith et al., 2008; De’ath, 2007). For the generation of pseudo-

absences, BRT overcomes the bias through a random selection of pseudo-absences 

based on a relation between the geographical space and the environmental variables. 

Regarding the appropriated number of pseudo-absences, it is recommended for BRT to 

use the same proportion of the presence records (Barbet-Massin et al, 2012), as we did.  

 

The environmental dataset chosen for the characterization of the fundamental 

niche of P. clavata doesn’t represent a full description of the abiotic requirements of 

the species. A limitation for variables selection is the availability of data and its 

resolution for modeling. For marine environments, the description of the sea floor is 

difficult to obtain, and so there are few available datasets with fine resolution for the 

characterization of deep ocean habitats (Bryan & Metaxas, 2007; Davies et al., 2008; 

Tittensor et al., 2009; Rengstorf et al., 2012; Vierod et al., 2014). Data resolution (cells 

grain size) is very important for the description of a physical space because that's what 

defines the data variability (Vierod et al., 2014). Finer resolution allows to capture with 

more detail the interactions between environmental variables and the occurrence, which 

coarse resolution does not detect, directly influencing the projection of suitable habitat 

(Guisan & Thuiller, 2005; Vierod et al., 2014; Rengstorf et al., 2012). Because the 

choice of grain size for environmental variables affects predictions, coarse data 

introduces uncertainty in the model (Guisan et al., 2007; Rengstorf et al., 2012; Vierod 

et al., 2014). It’s important that both distribution and environmental data to have the 

same resolution, especially when modeling benthic habitat where a small 

environmental variation can translate a different habitat, leading to overestimation of 

the suitable habitat (Guisan & Thuiller, 2005; Rengstorf et al., 2012). Although, given 

that the resolution available for variables is not the same, mixing them will lead to the 
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loss of information. The major limitation for modelling the deep-sea is the lack of data 

with good resolution, which causes uncertainty in model projections. Since benthic 

terrain characteristics are a good representation of the bottom dynamics, good 

resolution of these data allows the detection of small elevations and bottom features 

that locally alter the distribution of benthos (Vierod et al., 2014). Hard substrate is an 

important variable for the distribution of corals, including P. clavata. Since it presents 

high variability in small scale, this variable is difficult to measure and therefore there is 

insufficient data to use it as a predictor. To address this situation, terrain variables like 

slope and bathymetry can be used as a proxy of substrate type, low sediment deposition 

and can also give an insight about the most relevant position of the current flow. In this 

way they are good indicators of hydrodynamic and productive areas for benthic 

suspension feeders (Bryan & Metaxas, 2007; Dolan et al. 2008; Guinan et al. 2009; 

Rengstorf et al., 2012; Vierod et al.,2014; Wilson et al. 2007). Using a coarse 

resolution of this predictors leads to the loss of bottom detail features like steep slopes, 

seamounts and other small elevations, underestimating the importance of these 

predictors. While data resolution is a problem in many modeling techniques, BRT is 

considered to be one of the less affected by cells grain size (Guisan et al., 2007). 

 

Overfitting is another problem associated with SDM since this also decreases the 

predictive power of the models. While most of the models try to avoid this, BRT 

reduces overfitting through CV, by randomly splitting the distribution data in k equal 

parts/sets for training and testing the model. In this way, all the possible data 

combinations are used for model validation, which means that overfitted data is also 

considered (Elith et al., 2008). 

 

 

4.2 Characterization of Paramuricea clavata ecological niche 

 

The use of ENM for the description of the suitable habitat of species has become 

an efficient tool to determine where species occur. Several studies have been conducted 

to determine the suitable habitat of deep-water corals, however, the vast majority was 

made at a local scale (e.g. Bryan & Metaxas, 2007; Davies et al., 2008; Dolan et al., 

2008; Giusti et al., 2014; Leverette & Metaxas, 2005;). In this sense, this study was the 
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first not only in determining the environmental envelope that describes the suitable 

habitat of a very important structuring species of the Mediterranean coralligenous 

assemblages, P. clavata, but also in estimating its potential global distribution. We also 

identified the variables that best explain this distribution and determined the species 

tolerance range for these variables. Moreover, the compilation of known data with new 

occurrence points provided a unique opportunity to determine the potential suitable 

habitat for red gorgonian. 

 

The suitable habitat of P. clavata predicted by our model was mainly 

characterized by productive and hydrodynamic marine environments associated with a 

complex topography, occurring in a narrow coastline, around islands and seamounts, as 

well as other rocky elevations. Although sea bottom topography is characterized by 

several variables, in this model it was represented by the slope. This terrain variable was 

considered the most relevant predictor for the geographic distribution of P. clavata, 

presenting a wide range of tolerance with no maximum value attributed (according to 

Ballesteros, 2006; Gori et al., 2011). Coralligenous assemblages generally inhabit in 

sloping areas associated with rocky substrate, because these features allowed the change 

of speed and direction of currents (Leverette & Metaxas, 2005; Yesson et al., 2012). 

The restricted distribution of the red gorgonian is largely explained by the complexity 

and relief of the bottom, having high preference for vertical slopes (Gori et al., 2011). 

Depending on the variation of other conditions, like current speed and primary 

production, these assemblages may also occur in more horizontal locations, where the 

relief of the bottom may be less pronounced (Gori et al., 2011). Studies determining the 

suitable habitat for other octocoral species have also used slope as an environmental 

predictor for quantification of the bottom topography, presenting itself as a good proxy 

of the complexity of the seabed. (Bryan & Metaxas, 2007; Davies et al., 2008; Davies & 

Guinotte, 2011; Dolan et al., 2008; Giusti et al., 2014; Guinan et al., 2009; Leverette & 

Metaxas, 2005; Tong et al., 2012; Yesson et al., 2012).  

 

Besides slope, temperature was also considered very important in shaping the 

distribution of P. clavata. This variable is considered very important for the regulation 

of species’ biological processes, and so, the species tolerance range presented for this 

predictor was well defined, 12.4 - 26.5 ºC. In the case of P. clavata, temperature has a 

key role both in terms of food availability and reproductive success. With respect to the 
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reproductive success, this variable is extremely important since spawning events are 

synchronized by a temperature increase occurring between May and June (Coma et al, 

1995; Linares et al., 2008b). An abnormal variation in temperature can prevent the 

meeting of the gametes, since their development presents different time periods (Gori et 

al., 2007). For long-lived organisms like gorgonians, where reproductive success is very 

low, temperature oscillation may be crucial for their maintenance. Several mortality 

events were reported for populations of P. clavata as result of an irregular increase in 

seawater temperature (Cerrano et al., 2000; Coma et al, 2009; Crisci et al., 2011; 

Cupido et al, 2008; Gambi et al., 2010; Garrabou et al., 2009; Huete-Stauffer et al., 

2011; Linares et al., 2005; Martin et al., 2002; Rivetti et al., 2014; Vezzulli et al., 

2010), highlighting the importance of the maximum temperature for the survival of the 

species. Food availability is greater during winter because periods of heavy rain stir up 

the sediment and debris accumulated at the bottom, increasing the amount of dissolved 

and suspended matter. In summer, these flood events are reduced, leading to 

stratification of the water column, and thus, decreasing the levels of dissolved and 

suspended matter (Gasith & Resh, 1999). Since suspension feeders are properly adapted 

to the Mediterranean climate, they can survive periods of food scarcity in summer, by 

decreasing the metabolic activity (Coma et al., 1994; Ribes et al., 1999). To address this 

situation, they store energy during periods of greatest abundance of food, winter (Gori 

et al., 2013; Rossi et al., 2005). This explains the lower contribution of nutrients for the 

distribution, indicating that the hydrodynamics of the dwelling place is crucial to the 

survival of the species. Analyzing the data of the two temperatures along the study area, 

we noticed that they exhibit different gradients (see Appendix 4). The variation of the 

minimum temperature presented a latitudinal and longitudinal gradient, with minimum 

temperature increasing from north to south and from west to east. For maximum 

temperature, a vertical gradient was observed, with shallow areas presenting higher 

temperatures than deeper ones, and a longitudinal, from west to east. Comparing the 

two temperature gradients, we observed that this variable is highest in the south eastern 

Mediterranean, and in shallower areas. As we head towards the northwest of the 

Mediterranean Sea and Atlantic Ocean, or to greater depths, temperature decreases. This 

temperature gradient coupled with the strong association to slope, may explain the 

restricted suitable habitat for the red gorgonian. 
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Benthic communities are normally associated to areas exposed to moderate-high 

hydrodynamics (Gori et al., 2011). Currents are very important for feeding P. clavata 

because when they flow against vertical rocky walls, the direction and intensity of the 

flow speed change traversing the wall towards the top with higher velocity (Leichter & 

Witman, 1997). These currents transport microorganisms, influence the diffusion rate of 

nutrients and promote the re-suspension of the particulate matter, increasing the 

available food for this gorgonian and thus promoting its growth (Coma et al., 1998; 

Mistri, 1994). We used minimum current velocity as a representation of hydrodynamics, 

and the tipping point obtained was lower than expected (0.007ms-1). The coarse 

resolution data used for this predictor could explain the low value since, small local 

changes in direction and speed of currents caused by topographical elevations may not 

be taking into account, and because each cell represents the mean value of the region. 

Besides the feeding importance, currents are probably the main way of dispersion for 

this species, since the larvae presented phototaxis, and so, quickly settle down near the 

mother colony in order to avoid light (Linares et al., 2008).  

 

As suspension feeder, P. clavata feed essentially on microorganisms and 

suspended organic matter found in the water column. Prey capture and ingestion of 

detrital POC exhibit seasonal variation, with primary production peaks (and consequent 

zooplankton peak) occurring in spring and autumn (Coma et al., 1994), and the 

abundance and ingestion rates of POC being higher during winter and spring (Ribes et 

al., 1999). Productivity presented lower contribution for the persistence of red 

gorgonian, and was quantified in our model by minimum phosphate and maximum 

silicate concentrations. Phosphate is considered as one of the most important limiting 

factors for primary production in the Mediterranean Sea (Ballesteros, 2006). When 

available, this nutrient is quickly consumed by phytoplankton, and so, lower 

concentrations indicate the presence of primary producers (Davies et al., 2008; 

Montagna et al., 2006). High concentration levels of phosphate in the water could lead 

to an exponential growth of benthic communities, causing eutrophication and, 

consequently, habitat destruction (Davies et al., 2008). With concern to silicates, the 

amount of dissolved silica in the water could also be considered as a proxy of 

productivity, with high levels of dissolved silicate indicating lower levels of primary 

producers (Bonilla & Piñón, 2002; Davies et al., 2008).  In the presence of diatoms, 

dissolved silica concentrations decrease because these microorganisms use this element 
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for the formation of their frustule (Martin‐Jézéquel et al., 2000). Besides productivity 

indicators, diatoms include the diet of the red gorgonian (Ballesteros, 2006; Coma et al., 

1994; Ribes et al., 1999). Known as an oligotrophic system, the Mediterranean Sea 

exhibits low concentrations of nutrients (Coll et al., 2010). Concerning phosphates 

concentrations, they were low throughout the study area, even in the adjacent Atlantic 

Ocean. In contrast, silicate concentrations presented some variations, being higher in the 

northern Adriatic and along the coast of Tunisia, where the concentrations of 

phosphates are very small (see Appendix 5). This correlation allows a better evaluation 

of the importance of productivity in habitat description of P. clavata. 

 

Salinity (minimum) was considered the predictor with less relevance for the 

characterization of the suitable habitat of the red gorgonian, presenting a tipping point 

of 35.9 PSS. This result is explained by the gradient of the salinity data observed along 

the study area, which presents a small variation (see Appendix 6). There are few studies 

evaluating the importance of salinity for the distribution of octocorals (Berkelmans et 

al., 2012; Williamson et al., 2011), however, this predictor has been used to classify the 

type of environment in habitat modeling (Guinan et al., 2009; Martin et al., 2014; 

Rengstorf et al., 2012; Yesson et al., 2012). 

 

 

4.3 Predictive suitable habitat 

 

The predictive suitable habitat obtained for P. clavata described a wider 

distribution area than documented. Analyzing the HSM shown in figure X, we observed 

that the suitable habitat distribution along the Mediterranean Sea exhibited a latitudinal 

and longitudinal gradient, with the highest probability of occurrence of P. clavata in the 

Western Mediterranean. This gradient was observed in other studies (Gori et al., 2011; 

Linares et al., 2008a), indicating a good prediction by our model of the distribution 

pattern of this species. For the Atlantic Ocean distribution, only a latitudinal gradient 

was visible from Agadir (Morocco) to Berlengas islands. As was mention in the 

previous section, temperature plays a crucial role in shaping the distribution of the red 

gorgonian. When comparing temperature gradients (see Appendix 4) with the HSM a 

possible pattern was observed. Minimum temperature appeared to have greater 
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influence in the longitudinal distribution of P. clavata because both gradients 

conversely coincide, with the probability of occurrence increasing as the temperature 

decreases over the study area. Although depth has not been used for modeling, the 

upper depth limit described by Linares et al. (2008a) for distribution of this gorgonian 

also described a longitudinal gradient, with species occurring in deeper zones in the 

Eastern Mediterranean. For this pattern, maximum temperature has a greater influence 

on the vertical distribution, since higher temperatures occur at lower depths. In a general 

way, most of the suitable habitats occur with a minimum temperature between 11-14ºC 

and a maximum temperature of approximately 16ºC (see Appendix 4). In this sense, we 

can state that the two temperatures have regulate in the distribution of suitable habitats 

for P. clavata. 

 

For the Mediterranean Sea, our model shows new potential suitable habitats in the 

western side, especially in the Alboran Sea and continuing along the coasts of Algeria, 

Tunis until Sicily channel (Figure 7). The dynamics presented by these regions is 

directly influence by the exchange of the water masses between the North Atlantic 

Ocean and the Mediterranean Sea (Millot, 1999). For the Alboran Sea, our study has 

provided new occurrence points in the Alboran Island and near the Strait of Gibraltar, in 

Ceuta, which supports the probable presence of the red gorgonian along this sea area. 

The lack of scientific information concerning the biological composition of the Algerian 

coast, makes difficult to prove the presence of our species. However, given the high 

suitability shown along this coast, we search for more information around this region 

and found two online dive videos showing populations of P. clavata occurring near the 

coast of Oran and Habibas Island. Hereupon, we contacted the diver who published the 

videos and he confirmed the presence of P. clavata, also sending photos for visual 

confirmation of the species. This validation reinforces the accuracy of our model. With 

respect to the Strait of Sicily, this area was considered to be good for the proliferation of 

benthic communities, because elevated topographic features, like seamounts and banks, 

enable the settlement of several species, by providing shelter and food for their survival 

(UNEP/MAP, 2015). We didn´t find information to confirm our results, although, a 

study performed in the Tyrrhenian Sea have shown the presence of P. clavata in the 

Vercelli Seamount (Bo et al., 2011). This site was considered in our suitable habitat 

map as an area of high probability of occurrence, which confirms our predictions. While 

the western sub-basin proved to be highly suitable, the eastern side showed a different 
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pattern, with the northeast being more favorable then the southeast. Besides the lower 

probability of occurrence along the southeastern side, Martin et al. (2014) recently 

published a study concerning the spatial distribution of coralligenous habitats in the 

Mediterranean Sea, and they also obtained suitable habitats near the coast of Israel, 

Lebanon, Syria, and in the north of Cyprus Island. 

 

The main contribution of our work for the distribution of P. clavata was the new 

occurrence points found along the south and west coasts of Portugal and in the Gorringe 

Ridge. Berlengas islands were considered the northern distribution limit, since north of 

this region the species is absent and it is replaced by the sister-species P. macrospina 

from the Galicia region northwards (Altuna, 1994; 2010).  Our model also described 

suitable areas near the coast of Agadir, Morocco, but there are no studies proving the 

existence of the red gorgonian. Although, the geographic proximity and climatic 

influence of Mediterranean Sea make possible the occurrence of this species.  

 

The northern and central Adriatic Sea and the Libyan-Tunisian Gulf were 

considered as two unsuitable habitats for the red gorgonian, and these areas presented 

high values for maximum silica, which indicates low levels of productivity. This result, 

in agreement with other studies, suggest a negative correlation between the amount of 

dissolved silica and the occurrence of corals, although without a plausible explanation 

for this relationship (Bonilla & Piñón, 2002; Davies et al., 2008).  

 

 

4.4 Prediction of range-shifts 

 

One of the main problems we face today are climate fluctuations and the impact 

they have on the distribution of species. Climate change has leading to the occurrence of 

abnormal temperature increased periods, causing rapid responses by the species, 

particularly at the distribution level (Walther et al., 2002). Mediterranean Sea has been 

one of the most affected regions with climate change, and since it’s an ecosystem with 

very particular characteristics, small changes in its climate have direct influence on the 

species it hosts (Lejeusne et al., 2009; Rivetti et al., 2014). Several studies have been 

conducted in the Mediterranean Sea with the purpose of assessing the impact of these 
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climate oscillations in benthic communities (Cerrano et al., 2000; Cigliano & Gambi, 

2007; Crisci et al., 2011; Cupido et al, 2008; Gambi et al., 2010; Garrabou et al., 2009; 

Huete-Stauffer et al., 2011; Linares et al., 2005; Martin et al., 2002; Rivetti et al., 2014; 

Vezzulli et al., 2010). Mortality events observed in these studies occurred in the North-

western Mediterranean: Balearic, Tyrrhenian and Lingurian Sea. With X affected 

regions, Lingurian sea presented the highest number of events occurred. One of the 

species that suffered the greatest population loss was P. clavata. The main causes 

leading to the death of this gorgonian were the increase of seawater temperature in 

summer, and disease contraction from opportunistic pathogenic microorganisms 

(Cerrano et al., 2000; Crisci et al., 2011; Cupido et al, 2008; Gambi et al., 2010; 

Garrabou et al., 2009; Huete-Stauffer et al., 2011; Linares et al., 2005; Martin et al., 

2002; Vezzulli et al., 2010). As it was observed in this study, P. clavata presents a 

restricted temperature tolerance range, being sensitive to small changes in seawater 

temperature. During summer periods, where temperature reaches its highest values, 

suspension feeders have the ability to decrease their metabolic rate due to food scarcity 

(Coma et al., 1994; Ribes et al., 1999). In this condition they are more vulnerable to 

external variations, which may cause physiological stress in irregular warmer periods, 

allowing infection by pathogenic microorganisms (Cerrano et al., 2000; Gambi et al., 

2010; Garrabou et al., 2009; Huete-Stauffer et al., 2011; Martin et al., 2002; Vezzulli et 

al., 2010). Temperature oscillations have also direct impact on the reproductive cycle of 

P. clavata, since thermal stress affects the development of gametes, reducing the 

viability of embryos and larvae. Because this species is a slow growing organism, it 

depends on the reproductive success for the maintenance of their populations (Kipson et 

al., 2012). Comparing the HSM obtained for the red gorgonian with the areas affected 

by mortality events (Figure 8), we clearly see a match between mortality events and 

locations where the probability of the species occurrence was higher. This situation 

jeopardizes the persistence of our species, since much of their suitable habitat is already 

compromised. Likewise, the associated communities are also threatened. 

 

Due to the impact that climate change has so far in the Mediterranean Sea, several 

studies have been developed to determine the main changes predicted to occur in the 

future for this vulnerable ecosystem (e.g. Albouy et al., 2013; Giorgi & Lionello, 2008; 

Philippart et al., 2011; Sánchez et al., 2004). In a general way, a continuous increase in  
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Figure 8 Intersection of suitable habitat of Paramuricea clavata with mortality events in the 

Mediterranean Sea: Cerrano et al., 2000    ; Cigliano & Gambi, 2007     ; Coma et al., 2009   ; 

Crisci et al., 2011   ; Cupido et al, 2008    ; Gambi et al., 2010    ; Huete-Stauffer et al., 2011     ; 

Linares et al., 2005      ; Martin et al., 2002      

 

mean seawater temperature is expected. In a study conducted by Giorgi & Lionello 

(2008), besides temperature increase, a marked decrease in precipitation is observed, 

with increasing of dry periods (in agreement with Sánchez et al., 2004). An interannual 

variability is also predicted, especially in summer, which would lead to an increase of 

mortality events. Philippart et al., (2011) predicted that these mortality events will be a 

result of both extremely high and low temperatures. Moreover, these authors have also 

reported species distribution shifts, increase of epidemic events and the occupation of 

niches by invasive species. Predicted warming for Mediterranean waters alters the 

habitat availability for species, with tropical species being the most favored as the area 

of their suitable habitat increases. The invasion of tropical species in the Mediterranean 

puts at risk its biodiversity, as these invasive species will interfere with the normal 

habitat function (Raitsos et al., 2010).  

 

Albouy et al., (2013) described the impact of future climate change in 

Mediterranean fishes, and concluded that along the coastal area there was a significant 

loss in species richness. The main causes for this loss were: shifts in species 

distribution, reduction in species range size and loss of suitable habitats. In this study, 

the authors also determined the expected increase (in ºC) of sea surface temperatures 
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(mean, minimum and maximum) for two periods of future times, 2040-59 and 2080-99. 

A global warming is expected for the entire Mediterranean Sea, with an increase of 

about 1.4ºC in 2040-59 and 2.8ºC in 2080-99.  Aegean Sea showed higher temperature 

rise, being expected a variation of 1.6-2ºC for 2040 and 2.8-3.8ºC for 2080. Comparing 

these temperature data with our HSM, we observed that one of the places were P. 

clavata is most likely to occur, in the entire Mediterranean Sea and especially in the 

Eastern basin, coincides with the most affected area with temperature increase, the 

Aegean Sea. Given this hypothesis, there is a strong probability of these populations not 

persisting in the future. The upper depth limit of P. clavata in the Eastern 

Mediterranean is lower than the west, indicating that some populations may persist in 

deeper habitats during to climate change. Regions that provide environmental 

conditions for the persistence of the species act as refugia areas. (Assis et al., 2015; 

Bongaerts et al., 2010). Deep refugia are of great importance for the persistence of the 

species, not only to serve as shelter to face less favorable environmental conditions, but 

because they allow the survival of populations that present a unique and high genetic 

variability, rear edge populations (Assis et al., 2015_deep; Hampe & Petit, 2005). 

Considering the predicted rise in seawater temperature and taking into account the 

temperature tolerance range of the species, it is important to understand the impact 

climate change will have on the distribution of P. clavata. One of the main applications 

of ENM is the extrapolation of data in time and space, allowing the estimation of 

species’ distribution in the past and for the future (Elith & Leathwick, 2009). An 

example of the use of these models to predict the future distribution based on the 

increase temperature was carried out with Fucus vesiculosus. Currently, the distribution 

of this species occurs along the north coast of the Atlantic Ocean. When extrapolated to 

future, the distribution of this species suffers a major contraction especially on its lower 

limit, affecting rear edge populations (Assis et al., 2014). Given this scenario, there is a 

strong possibility that the most ancient lineages, as well as, the genetic variability 

presented by this species to be lost in the coming years. The same situation was reported 

for Saccorhiza polyschide. This species also occurs along the north Atlantic coats, and 

has some populations inhabiting in the Western Mediterranean (Assis et al., 2015). 

Observing the predicted distributions for the future all the Mediterranean populations 

were lost. As verified for F. vesiculosus, once again the populations that suffer greater 

loss were the ones at the rear edge. However, in the case of S. polyschide it is possible 
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that some populations may occur at greater depths, which means, in deep refugia areas, 

safeguarding the genetic diversity of this species. 

Just as these species are at risk of losing their older populations, P. clavata is in 

the same situation. The loss of rear edge populations has a major implication for the 

maintenance of the species, since they exhibit an old and distinct genetic variability. 

Although they don´t have direct influence in the recolonization of lost areas, these 

population retains the genes that allows them to adapt to new conditions. Therefore, 

identification of rear edge population is very important for understanding populations 

dynamics. 

 

 

5 CONCLUSION: 

 

BRT was used in this study to predict, with excellence, the suitable habitat P. 

clavata and determine the environmental tipping points of the seven selected variables 

(slope, temperature, currents, silicates, phosphates and salinity) considered the most 

relevant for the description of its niche. We choose this model due to its complexity, 

recognized as artificial intelligence, to understand and interpret environmental 

standards, minimizing the main associated problems.  

Detection of new points of occurrence in the Atlantic Ocean and Alboran Sea, 

areas until now unknown, provided a unique opportunity to investigate the global 

distribution of this species and to test the predictive performance of the BRT. In 

addition to the Atlantic and Alboran Sea, our study pointed to the occurrence of 

populations of P. clavata along the coast of Algeria and Seamount Vercelli, which were 

later confirmed. This validation leads us to conclude that the suitable habitat was well 

modeled, serving as a good indicator for conducting studies in Tunisia coast and along 

the Atlantic and Mediterranean coasts of Morocco, regions presenting high probability 

of occurrence of red gorgonian 

Massive mortality events occurred in the Mediterranean Sea in the last years, alert 

to the fragile situation in which these habitats are. With the prediction of a continuous 

rise in temperature, especially for the Mediterranean, the future of P. clavata is 

compromised given that it presents low tolerance to temperature variations. In addition 
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to climatic change, this gorgonian is also threatened by human activity, (e.g. diving, 

destructive fishing and pollution), affecting not only local populations but the species in 

its global range (Ballesteros, 2006; Mokhtar-Jamaï et al., 2011). The loss of unique 

traits of edge and deep populations compromise the ability to respond to environmental 

changes. Therefore, the results presented in this study may serve as a basis for future 

studies, like predicting past and future distribution in order to understand the ecological 

niche of this species, and develop for a better management approaches for its 

preservation. 
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7 APPENDIX: 

 

APPENDIX 1 

Table A.1.1 Location of record points and source. Depth is provided when available. LON – 

longitude; LAT – latitude. Reference ID provided in Table A.2. 

REFERENCE 

ID 
LON LAT LOCATION 

DEPTH 

(m) 

INCLUDED 

IN MODEL 

(1=YES) 

   

Atlantic 

  2 -9,546 39,472 Berlengas, Portugal 15 1 

2 -9,253 38,419 Cape Espichel, Portugal 39 1 

2 -9,252 38,419 Cape Espichel, Portugal 45 0 

2 -9,253 38,408 Cape Espichel, Portugal 24 0 

2 -9,226 38,407 Cape Espichel, Portugal 44 0 

2 -8,926 37,898 Sines, Portugal 50 1 

2 -8,919 36,972 Sagres, Portugal 59 0 

2 -8,920 36,971 Sagres, Portugal 59 0 

2 -8,922 36,967 Sagres, Portugal 60 1 

2 -8,704 37,004 Lagos, Portugal 61 1 

2 -8,492 37,063 Portimao, Portugal 37 1 

2 -8,505 36,999 Portimao, Portugal 50 0 

2 -8,599 36,996 Portimao, Portugal 60 0 

2 -8,500 36,992 Portimao, Portugal 49 0 

2 -8,489 36,991 Portimao, Portugal 48 0 

2 -8,528 36,988 Portimao, Portugal 55 0 

2 -7,635 37,057 Tavira, Portugal 30 1 

16 -11,596 36,368 Gorringe, Portugal 40 1 

   

Western Mediterranean 

  5 -5,313 35,752 Marinasmir, Morocco 40 0 

5 -5,248 35,642 Martyl, Morocco 35 0 

5 -5,300 35,918 Monte Hacho, Ceuta, Spain 26 1 

20 -3,218 35,831 Alboran, Spain 100 1 

20 -3,049 35,893 Alboran, Spain 46 0 

20 -2,982 35,959 Alboran, Spain 50 1 

20 -0,653 37,652 Cabo de Palos, Spain - 1 

20 -0,029 37,604 Alboran, Spain 100 1 

6 0,667 39,917 Columbretes Archipelago, Spain - 1 

5 0,670 39,892 Bajo del Carallot, Columbretes Island, Spain 40 0 

18 1,460 41,210 Barcelona, Spain - 1 

5 1,670 38,970 Bledes (Na Gorra), Ibiza Island, Spain 37 1 

18 2,700 39,520 Maiorca, Spain - 1 

5 2,960 39,124 L'Imperial, Cabrera Island, , Spain 40 1 



 

47 
 

4 3,217 42,200 Medes Islands (MPA), Spain 28 0 

5 3,219 42,233 Punta Falconera, Cap de Creus, Spain 25 1 

18 3,220 42,040 Catalan sea, Spain - 1 

5 5,239 43,331 Tombant Moulon Est, Cote Bleue, France 20 0 

5 5,338 43,207 Pharillons, Marseille, France 20-40 1 

5 5,390 43,173 Riou Sud, Marseille, France 20-40 0 

5 5,391 43,187 Grotte Peres, Marseille, France 10-20 0 

5 5,393 43,173 Imperiales de Terre, Marseille, France 8 0 

5 5,396 43,179 Petit Congloue, Marseille, France 10-20 0 

5 5,402 43,176 Grand Congloue, Marseille, France 7 0 

5 5,452 43,201 Morgiou, Marseille, France 30 0 

5 5,499 43,198 Castelvieil, Marseille, France 10 0 

9 5,750 43,080 

Plate aux Meros, Embiez Archipelago, 

France - 0 

9 5,751 43,074 Merveilleuse, Embiez Archipelago, France - 0 

9 5,766 43,073 Athena, Embiez Archipelago, France - 0 

9 5,774 43,071 

Pierre à Christian, Embiez Archipelago, 

France - 1 

5 6,363 43,019 Montremian, Port-Cros, France 20 0 

5 6,397 42,989 Gabinieri, Port-Cros, France 22 0 

14 6,398 42,987 Gabinieri, Port Cros National Park, France - 1 

5 6,407 42,995 Pointe du Vaisseau, Port-Cros, France 20 0 

18 6,630 43,270 Saint-Tropez, France - 1 

5 8,537 42,373 Garganellu, North Corsica, France 20 0 

5 8,546 42,380 Palazzu, North Corsica, France 28 0 

5 8,550 42,380 Palazzinu, North Corsica, France 25 0 

5 8,551 42,350 Baja Casju, North Corsica, France 25 0 

5 8,554 42,332 Punta Muchillina, North Corsica, France 20 1 

18 8,560 43,350 Corsica, France - 0 

1 8,625 41,718 Corsica, France - 1 

3 8,649 41,745 Corsica, France - 0 

17 9,260 41,350 Lavezzi islands, Corsica, France - 1 

18 8,910 44,390 Liguria, Italy - 1 

5 9,196 44,306 Altare, Portofino, Italy 25 0 

11 9,405 44,251 Punta Manara, Italy 56 1 

12 9,870 44,069 Gulf of La Spezia, Italy 21 0 

15 9,510 44,013 Tinetto Island, Italy 21 0 

15 9,505 44,012 Tinetto Shoal, Italy 21 1 

18 9,710 40,900 Sardinia, Italy - 1 

18 14,290 40,830 Tyrrenian sea, Italy - 1 

5 13,894 40,692 Sant'Angelo, Ischia Island, Italy 32 1 

10 16,118 38,749 Calabria, Italy 75 0 

10 16,124 38,745 Calabria, Italy 75 1 

10 15,829 38,363 Calabria, Italy 50 0 
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10 15,823 38,328 Calabria, Italy 50 0 

10 15,819 38,321 Calabria, Italy 50 1 

13 15,657 38,267 Punta Faro, Messina, Sicily, Italy 55 1 

   

Eastern Mediterranean 

  19 14,837 44,887 Prvic, Croatia 23-40 0 

19 14,493 44,725 Cutin Mali, Croatia 25-38 0 

19 14,734 44,704 Lun, Croatia 25-40 0 

5 15,111 44,018 Fulija Island, Dugi Otok, Croatia 40 1 

19 15,220 43,836 Obrucan, Croatia 25-55 0 

19 15,255 43,804 Balun, Croatia 27-60 0 

19 15,266 43,800 Mana, Croatia 27-60 0 

19 15,919 43,513 Mulo, Croatia 35-50+ 0 

19 15,942 43,511 Smokvica, Croatia 30-50+ 0 

19 15,969 43,493 Planka, Croatia 32-50+ 0 

21 24,831 34,753 South Crete, Greece 

very 

deep 1 

7 23,573 35,657 Gramvoussa island, Greece 95 1 

21 26,489 37,576 Fourni Island, Greece - 1 

7 24,613 38,106 S. Evia, Greece 61 1 

21 22,505 38,212 Korinthiakos Gulf, Greece - 1 

21 23,597 38,463 Evia Island, Greece - 1 

7 23,898 38,696 E. Evia, Greece 63 1 

3 26,551 38,949 Lesbos Island, Greece - 0 

1 26,590 38,960 Lesbos Island, Greece - 0 

8 26,534 38,969 Lesvos Island, Greece - 1 

1 26,510 39,050 Lesbos Island, Greece - 0 

7 24,108 39,075 N. Sporades, Greece 50 1 

1 23,850 39,130 Alonissos Island, Greece - 0 

3 23,950 39,147 Peristera Island, Greece - 0 

1 23,982 39,193 Peristera Island, Greece - 0 

8 26,443 39,306 Lesvos Island, Greece - 1 

8 26,147 39,337 Lesvos Island, Greece - 0 

21 24,135 39,345 Alonissos Island, Northern Sporades, Greece - 0 

7 26,437 39,358 N. Lesvos, Greece 48 0 

7 24,235 39,383 N. Sporades, Greece 60 1 

1 24,840 39,520 Agios Efstratios, Greece - 0 

3 24,848 39,548 Agios Efstratios, Greece - 1 

1 24,300 40,110 Agio Oros, Greece - 0 

1 24,290 40,120 Agio Oros, Greece - 0 

3 24,252 40,147 Agio Oros, Greece - 0 

3 24,241 40,150 Agio Oros, Greece - 1 

5 26,577 39,370 Ayvalik, Ezerbey Sigiligi, Turkey 24 0 
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Table A.1.2 References ID of the records used to model the niche of Paramuricea clavata. 

 
REFERENCE ID (dataset) 

1 GBIF Data Portal, www.gbif.net. 2014-03-10. Senckenberg: Collection Cnidaria SMF, 

207950808. 

2 This study. 

3 OBIS (2013). Global biodiversity indices from the Ocean Biogeographic Information System. 

Intergovernmental Oceanographic Commission of UNESCO. Web. http://www.iobis.org 

(consulted on 2014/03/10) 

4 Linares, C., Coma, R., Mariani, S., Díaz, D., Hereu, B. & Zabala, M. (2008). Early life history of 

the Mediterranean gorgonian Paramuricea clavata: implications for population dynamics. In 

Invertebrate Biology, 127, (pp.1-11). 

5 Mokhtar-Jamaï, K., Pascual, M., Ledoux, J.B., Coma, R., Féral, J.P. & Garrabou J. (2011). From 

global to local genetic structuring in the red gorgonian Paramuricea clavata: the interplay 

between oceanographic conditions and limited larval dispersal. In Molecular Ecology, 20, (pp. 

3291-3305). 

6 Agell, G., Rius, M., & Pascual, M. (2009). Isolation and characterization of eight polymorphic 

microsatellite loci for the Mediterranean gorgonian Paramuricea clavata. In Conservation 

genetics, 10(6), (pp. 2025-2027). 

7 Salomidi, M., Smith, C., Katsanevakis, S., Panayotidis, P., & Papathanassiou, V. (2009). Some 

observations on the structure and distribution of gorgonian assemblages in the eastern 

Mediterranean Sea. In Proceedings of the 1st Mediterranean symposium on the conservation of 

the coralligenous and other calcareous bio-concretions. Tabarka, Tunisia (pp. 242-245). 

8 Gerovasileiou, V., Sini, M. I., Poursanidis, D., & Koutsoubas, D. (2009). Contribution to the 

knowledge of Coralligenous communities in the NE Aegean Sea. In Proceedings of the 1st 

Mediterranean Symposium on the Coralligenous Conservation and other calcareous bio-

concretions. Tabarka, Tunisia (pp. 14-16). 

9 Rouanet, E., Lelong, P., Lecalard, C. & Martin, Y. (2009). Estimation of coralligenous 

assemblages' ecological state around Embiez archipelago. In Proceedings of the 1st 

Mediterranean Symposium on the Coralligenous Conservation and other calcareous bio-

concretions. Tabarka, Tunisia (pp. 239-241). 

10 Angiolillo, M., Canese, S., Salvati, E., Giusti, M., Cardinali, M., Bo, M. & Greco, S. (2009). 

Presence of corallium rubrum on coralligenous assemblages below 50m along Calabrian coast 

(South Italy). In Proceedings of the 1st Mediterranean Symposium on the Coralligenous 

Conservation and other calcareous bio-concretions. Tabarka, Tunisia (pp. 47-52). 

11 Coppo, S., Diviacco, G. & Tunesi, L. (2009). Environmental and conservation relevance of the 

Punta Manara coralligenous beds (Eastern Ligurian Sea). In Proceedings of the 1st 

Mediterranean Symposium on the Coralligenous Conservation and other calcareous bio-

concretions. Tabarka, Tunisia (pp. 76-82). 

12 Cupido, R., Cocito, S., Peirano, A. and Santangelo, G. (2009). Mortality and Resilience: A ten-

year monitoring of gorgonian population trends in the eastern Ligurian Sea. In Proceedings of 



 

50 
 

the 1st Mediterranean Symposium on the Coralligenous Conservation and other calcareous bio-

concretions. Tabarka, Tunisia (pp. 83-88). 

13 Giusti, M., Canese, S., Angiolillo, M., Bo, M., Salvati, E., Cardinali, M. & Greco, S. (2009). 

Three-dimensional distribution of Gerardia savaglia in relation to depth, orientation and slope of 

the substrata in the south Tyrrhenian Sea. In Proceedings of the 1st Mediterranean Symposium 

on the Coralligenous Conservation and other calcareous bio-concretions. Tabarka, Tunisia (pp. 

96-100). 

14 Linares, C., Coma, R., Garrabou, J., Bianchimani, O., Drap, P., Serrano, E. & Zabala, M. (2009). 

Contribution to the conservation of coralligenous communities through studies on population 

ecology of mediterranean gorgonians. In Proceedings of the 1st Mediterranean Symposium on 

the Coralligenous Conservation and other calcareous bio-concretions. Tabarka, Tunisia (pp. 

107-112). 

15 Cupido, R., Cocito, S., Manno, V., Ferrando, S., Peirano, A., Iannelli, M., Bramanti L. & 

Santangelo G. (2012). Sexual structure of a highly reproductive, recovering gorgonian 

population: quantifying reproductive output. In Marine Ecology Progress Series, 469, (pp. 25-

36). 

16 OCEANA (2014). The seamounts of the Gorringe Bank. 

17 Mistri, M. (1994). Ecological observations on a population of the Mediterranean gorgonian 

Paramuricea clavata (Risso, 1826). In Bolletino di zoologia, 61(02), (pp. 163-166). 

18 Rivetti, I., Fraschetti, S., Lionello, P., Zambianchi, E., & Boero, F. (2014). Global Warming and 

Mass Mortalities of Benthic Invertebrates in the Mediterranean Sea. In PloS one, 9(12), (pp. 1-

22). 

19 Kipson, S., Linares, C., Čižmek, H., Cebrián, E., Ballesteros, E., Bakran‐ Petricioli, T., & 

Garrabou, J. (2014). Population structure and conservation status of the red gorgonian 

Paramuricea clavata (Risso, 1826) in the Eastern Adriatic Sea. In Marine Ecology, (pp. 1-12). 

20 Branco, M. (2014). Title. B.Sc. Thesis, University of Algarve, Portugal. Pp. 

21 Vasilis Gerovasileiou and Maria Sini personal communication; Hellenic Center for Marine 

Research, Institute of Marine Biology, Biotechnology and Aquaculture, Greece 
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APPENDIX 2.  

 

 

Figura A.2.1 Correlation matrix of the environmental predictors chosen to describe the suitable 

habitat of Paramuricea clavata. From top to bottom: currents minimum (currents_min)(1), nitrate 

maximum (2) and minimum (3) (nitrate_max/min), phosphate maximum (4) and minimum (5) 

(phosphate_max/min), salinity minimum (6) (salinity_min), silicate maximum (7) and minimum (8) 

(silicate_max/min), slope (9) and temperature maximum (10) and minimum (11) 

(temperature_max/min). This matrix represents the pairwise Pearson et al. correlation coefficient 

between all predictors, r <= 0.4 indicates a weak correlation between variables and r >= 0.8 

corresponds to a strong correlation.
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APPENDIX 3. 

 

##Script developed for the prediction of the suitable habitat of Paramuricea clavata, 2015 

## Silva 2015 

## ------------------------------------------------------------------------------------------------------------------  

## 

## DEPENDENCES 

 

library(raster) 

library(rgdal) 

library(adehabitat) 

library(SDMTools) 

library(sp) 

library(dismo) 

library(parallel) 

library(doParallel) 

library(gbm) 

 

setwd("C:/Users/Inga/Desktop/Thesis/Final Version/Data treatment/Model_Proced_Out2015") 

 

## ------------------------------------------------------------------------------------------------------------------  

## Pairs Plot 

## ------------------------------------------------------------------------------------------------------------------  

 

rasters <- list.files("Data/Environment", pattern="tif", full.names = TRUE)#caminho para os rasters 

rasters <- stack(rasters) 

names(rasters) <- c("curr", 

                    "nit_max", 

                    "nit_min", 

                    "phos_max", 

                    "phos_min", 

                    "sal", 

                    "sil_max", 

                    "sil_min", 

                    "slope", 

                    "t_max", 

                    "t_min")#atribuir nomes aos rasters 

 

pairs(rasters)#matriz de correlacao das variaveis 

 

## ------------------------------------------------------------------------------------------------------------------  

## Managing occurrences and producing Pseudo-absences 

## ------------------------------------------------------------------------------------------------------------------  

 

model.cells <- raster("Data/Model cells Present.tif")#abrir 

model.cells.r <- as.data.frame(model.cells, xy=TRUE, centroids=TRUE) 

model.cells.r <- model.cells.r[!is.na(model.cells.r[,3]),] 

 

domain <- "crop.north" 

 

occurrences <- read.table("Data/Occurrences/pontos_paramuricea_14-jan-2015_croacia.txt", sep="\t", 

header = TRUE) 

occurrences$IncludedInModel[is.na(occurrences$IncludedInModel)] <- 0 

occurrences <- cbind(occurrences$LON[occurrences$IncludedInModel == 

1],occurrences$LAT[occurrences$IncludedInModel == 1]) 
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plot(occurrences) 

 

## ---------------------------------- 

##Preparing distribution data 

 

occurrences.final <- data.frame() 

 

for (i in 1:nrow(occurrences)) { 

  near.cells <- as.data.frame( sort( spDistsN1( as.matrix(model.cells.r[,1:2]),  

                                                as.matrix(occurrences[i,1:2]),longlat=TRUE),  

                                     decreasing = FALSE,index.return = TRUE))   

  occurrences.final <- rbind(occurrences.final,c(model.cells.r[near.cells[1,2],1], 

                                                 model.cells.r[near.cells[1,2],2],1)) 

}  

 

occurrences.r <- rasterize(occurrences.final[,1:2], model.cells) 

occurrences.r.points <- as.data.frame(occurrences.r, , xy=TRUE, centroids=TRUE) 

occurrences.r.points <- occurrences.r.points[ which(!is.na(occurrences.r.points[,3])) ,1:2 ] 

 

plot(occurrences.r.points) 

 

# -------------------- 

##Preparing environmental data 

 

raster.stack <- rasters 

names <- names(raster.stack) 

 

if(domain == "crop.north") { 

  xmin <- -31.5 ; xmax <- 36.5 ; ymin <- 27.5 ; ymax <- 46 

  resolution <- 0.1 

  lons <- seq(from=xmin, to=xmax, by=resolution) 

  lats <- seq(from=ymin, to=ymax, by=resolution) 

  shape <- raster(ncol=length(lons)-1,nrow=length(lats)-1) 

  extent(shape) <- extent(xmin,xmax,ymin,ymax) 

  raster.stack <- crop(raster.stack,shape) 

} 

 

# ------ 

# transform rasters kasc to asc format 

 

for (i in 1:length(names(raster.stack))){ assign( names(subset(raster.stack,i)) ,  

                                                  asc.from.raster(subset(raster.stack,i)) )  } 

 

predictors <- as.kasc(list( #nit_max=nit_max, 

  #nit_min=nit_min, 

  #phos_max=phos_max, 

  #phos_min=phos_min, 

  #sil_max=sil_max, 

  #sil_min=sil_min, 

  curr=curr, 

  sal=sal, 

  slope=slope, 

  t_max=t_max, 

  t_min=t_min )) 

 

# ------ 
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# Mahalanobis distance 

 

df <- kasc2df(predictors) 

pc <- dudi.pca(df$tab, scannf=FALSE) 

tab <- pc$tab 

ka <- df2kasc(tab, df$index, predictors) 

hsm <- mahasuhab(ka, occurrences.r.points, type = "probability") 

 

predicted <- raster.from.asc(hsm) 

plot(predicted) 

 

points(occurrences.r.points) 

projection(predicted) <- CRS("+proj=longlat +datum=WGS84") 

writeRaster(predicted,filename=paste("Results/Mahalanob_final_Reduced_", 

                                     "out2015",sep=""), format="GTiff",overwrite=T) 

 

# ------ 

#Obtaining pseudo.absences 

 

predicted <- as.data.frame(predicted, xy=TRUE, centroids=TRUE) 

pseudo_absences <- predicted[which(predicted[,3] <= 0.2),] 

colnames(pseudo_absences) <-c("Lon","Lat","PA") 

pseudo_absences[,3] <- 0 

 

occurrences.r.points.f <- cbind(occurrences.r.points,rep(1,nrow(occurrences.r.points))) 

colnames(occurrences.r.points.f) <-c("Lon","Lat","PA") 

final.data <- rbind(occurrences.r.points.f,pseudo_absences) 

 

if (domain == "crop.north") {  final.data <- final.data[final.data[,2] <= ymax,] 

} 

 

plot(final.data[which(final.data[,3] == 0),1:2], col="black") 

points(final.data[which(final.data[,3] == 1),1:2], col="red") 

 

write.table(final.data, file = paste("Data/Occurrences/presence_absences_out2015.txt",sep=""),  

            sep = ",", row.names = FALSE, col.names = TRUE, na = "NA", dec = ".") 

 

 

## ------------------------------------------------------------------------------------------------------------------  

## Produce Full Model with Best TC and LR  

 

n.predictors <- length(names(raster.stack)) 

 

final.data.occurrences <- read.table("Data/Occurrences/presence_absences_out2015.txt",  

                                     header = TRUE, sep = ",", dec = ".") 

 

zeros <- which(final.data.occurrences[,3] == 0) 

ones <- which(final.data.occurrences[,3] == 1) 

 

zeros <- sample(zeros, length(ones) * 10, replace=FALSE) 

final.data.occurrences <- final.data.occurrences[c(ones,zeros),] 

 

plot(final.data.occurrences[which(final.data.occurrences[,3] == 0),1:2]) 

points(final.data.occurrences[which(final.data.occurrences[,3] == 1),1:2],col="red") 

 

# ------ 
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# Produce dataset for modeling 

 

dataset.brt <- data.frame( PA = final.data.occurrences[,3] ,  

                           extract( raster.stack, final.data.occurrences[,1:2], method="simple")) 

 

# ---------------------------------- 

# Best fit model 

 

predictions.brt <- function(set.number){  

   

  assign( paste("learning.rate",set.number,sep=""), parameters.comb[set.number,1] ) 

  assign( paste("tree.complex",set.number,sep=""), parameters.comb[set.number,2] ) 

  assign(paste("model",set.number,sep=""), 

          

         gbm.step( data=dataset.brt,  

                   gbm.x = variables, 

                   gbm.y = 1,  

                   family = "bernoulli",  

                   tree.complexity = get(paste("tree.complex",set.number,sep="")),  

                   learning.rate = get(paste("learning.rate",set.number,sep="")),  

                   bag.fraction = 0.5,  

                   var.monotone = monotonic.response, 

                   verbose=FALSE)  

  ) 

   

  vector.results <- data.frame( as.numeric(get(paste("model",set.number,sep=""))$gbm.call$learning.rate), 

                                as.numeric(get(paste("model",set.number,sep=""))$gbm.call$tree.complexity), 

                                as.numeric(get(paste("model",set.number,sep=""))$cv.statistics$deviance.mean) ) 

   

  return(as.data.frame(vector.results)) 

 } 

 

# ---------------------------- 

# 1a - Full Model 

variables <- 2:(n.predictors+1) 

monotonic.response <- c(0,0,0,0,0,+1,0,0,0,-1,+1) # UNUSED c(0,-1,1,-1,1,1,-1,1,0,-1,1) 

 

# ---------------------------- 

 

lr <- c(0.01 , 0.005 , 0.001 , 0.0005) 

tc <- 1:length(variables) 

parameters.comb <- expand.grid(lr=lr,tc=tc) 

sets <- 1:nrow(parameters.comb) 

 

cl <- makeCluster(2) ; registerDoParallel(cl) 

parameters <- foreach(k=sets, .verbose=F, .packages=c("dismo","rgdal","raster","SDMTools")) %dopar% 

{ predictions.brt(k) } 

stopCluster(cl) 

 

parameters <- do.call(rbind.data.frame, parameters) 

best.paramet <- parameters[which.min(parameters[,3]),1:2] 

 

best.model <-  gbm.step( data=dataset.brt, 

                         gbm.x = variables, 

                         gbm.y = 1, 

                         family = "bernoulli", 
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                         tree.complexity =  best.paramet[,2], 

                         learning.rate = best.paramet[,1], 

                         bag.fraction = 0.5, 

                         var.monotone = monotonic.response, 

                         verbose=FALSE) 

 

system("say Best model") 

 

model.simp <- gbm.simplify(best.model, n.drops = 10) 

 

# ------ 

##Second round -> Reduced model 

 

# ------ 

# Best fit model 

 

predictions.brt <- function(set.number){  

   

  assign( paste("learning.rate",set.number,sep=""), parameters.comb[set.number,1] ) 

  assign( paste("tree.complex",set.number,sep=""), parameters.comb[set.number,2] ) 

  assign(paste("model",set.number,sep=""), 

          

         gbm.step( data=dataset.brt,  

                   gbm.x = variables, 

                   gbm.y = 1,  

                   family = "bernoulli",  

                   tree.complexity = get(paste("tree.complex",set.number,sep="")),  

                   learning.rate = get(paste("learning.rate",set.number,sep="")),  

                   bag.fraction = 0.5,  

                   var.monotone = monotonic.response, 

                   verbose=FALSE)  

  ) 

   

  vector.results <- data.frame( as.numeric(get(paste("model",set.number,sep=""))$gbm.call$learning.rate), 

                                as.numeric(get(paste("model",set.number,sep=""))$gbm.call$tree.complexity), 

                                as.numeric(get(paste("model",set.number,sep=""))$cv.statistics$deviance.mean) ) 

   

  return(as.data.frame(vector.results)) 

   

} 

 

# ---------------------------- 

# 2a - Reduced Model 

how.many.to.drop <- 4 

variables <- model.simp$pred.list[[how.many.to.drop]] 

monotonic.response <- monotonic.response[variables-1] 

 

# Final variables reduced model 

colnames(dataset.brt)[variables] 

 

# ---------------------------- 

 

lr <- c(0.01 , 0.005 , 0.001 , 0.0005) 

tc <- 1:length(variables) 

parameters.comb <- expand.grid(lr=lr,tc=tc) 

sets <- 1:nrow(parameters.comb) 
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cl <- makeCluster(2) ; registerDoParallel(cl) 

parameters <- foreach(k=sets, .verbose=F, .packages=c("dismo","rgdal","raster","SDMTools")) %dopar% 

{ predictions.brt(k) } 

stopCluster(cl) 

 

parameters <- do.call(rbind.data.frame, parameters) 

best.paramet <- parameters[which.min(parameters[,3]),1:2] 

 

best.model <-  gbm.step( data=dataset.brt, 

                         gbm.x = variables, 

                         gbm.y = 1, 

                         family = "bernoulli", 

                         tree.complexity =  best.paramet[,2], 

                         learning.rate = best.paramet[,1], 

                         bag.fraction = 0.5, 

                         var.monotone = monotonic.response, 

                         verbose=FALSE) 

 

system("say Best model") 

 

# ---------------------------- 

# Sumario de estatisticas (Deviance explained, etc.) 

 

summary(best.model) 

best.model$cv.statistics 

1 - best.model$cv.statistics$deviance.mean 

 

#dev.off() 

gbm.plot(best.model,smooth=FALSE,show.contrib=TRUE, y.label="Marginal effect on gs") 

gbm.perspec(best.model,x=7,y=6) 

 

# ------ 

## Plot Predictive Map 

 

predictive.map <- predict(rasters,best.model,n.trees=best.model$gbm.call$best.trees, 

                          type="response") 

plot(predictive.map) 

writeRaster(predictive.map,filename="Results/final_nov2015.map",format="GTiff",overwrite=T) 

 

# ------ 

# TSS 

 

prediction.brt.point <- extract(predictive.map, final.data.occurrences[,1:2], method="bilinear") 

Accur <- accuracy(final.data.occurrences[,3],prediction.brt.point,threshold=100) 

Accur[which.max(Accur$specificity + Accur$sensitivity),] 

Accur[which.max(Accur$specificity + Accur$sensitivity),4] + Accur[which.max(Accur$specificity + 

Accur$sensitivity),5] - 1 

 

# ------ 

# Determine the Areas 

 

area.cells = area(predictive.map) 

prediction.area <- calc(stack(area.cells,predictive.map),function (x) x[[1]] * x[[2]]) 

sum(values(prediction.area),na.rm=T) 
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  # --------------------------- 

# Partial Dependence Plots 

 

prediction.brt.point <- extract(predictive.map, final.data.occurrences[,1:2],  

                                method="bilinear") 

Accur <- accuracy(final.data.occurrences[,3],prediction.brt.point,threshold=100) 

Threshold <- Accur[which.max(Accur$specificity + Accur$sensitivity),1] 

 

names(raster.stack) 

raster.number <- 8 

probability <- extract(predictive.map , final.data.occurrences[,1:2]) 

values.env.var <- extract(subset(raster.stack,raster.number), final.data.occurrences[,1:2]) 

#dev.off() 

 

plot(values.env.var,probability, xlab=names(raster.stack)[raster.number],  

     ylab="Probability of occurrence",pch=20, col="#a19e9f", axes = FALSE,  

     # xlim for raster 5: phophate_min is xlim=c(0,0.4) 

     # xlim for raster 1: curr is xlim=c(0,0.5) 

     xlim=c(0,0.5) 

     # if can plot the automatic x-axis, run following xlim 

     #xlim=c(round(min(values.env.var,na.rm=T),digits=3), 

     #      round(max(values.env.var,na.rm=T),digits=3))) 

) 

axis(1, lwd = 1, at=seq(0, 

                        0.5, 

                        length.out = 5),  

     lab=(seq(0, 

              0.5, 

              length.out = 5))) 

# automatic x-axis. Do not run if x labels are incorrectly plotted (ie, use code above)          

axis(1, lwd = 1, at=seq(round(min(values.env.var,na.rm=T)), 

                        round(max(values.env.var,na.rm=T)), 

                        length.out = 5),  

     lab=round(seq(round(min(values.env.var,na.rm=T)), 

                   round(max(values.env.var,na.rm=T)), 

                   length.out = 5))) 

axis(2, lwd = 1, at=seq(0,1,length.out = 5), lab=seq(0,1,length.out = 5)) 

 

# plot this code just for variables named "min" 

abline(v=min(values.env.var[which(probability > Threshold)]),lwd = 2,lty=3) 

min(values.env.var[which(probability > Threshold)], na.rm=T) 

 

# plot this code just for variables named "max" 

abline(v=max(values.env.var[which(probability > Threshold)]),lwd = 2,lty=3) 

max(values.env.var[which(probability > Threshold)], na.rm=T) 

 

# --------------------------- 
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APPENDIX 4. 

 

 

 

 

 

 

 

 

 

Figure A.4.1 Data of the minimum temperature gradient (6.54 to 17.29ºC) along the study area, 

obtained from Guinehut et al., 2012 

 

 

 

 

 

 

 

 

 

 

 

Figure A.4.2 Data of the maximum temperature gradient (10.65 to 27.76 ºC) along the study area, 

obtained from Guinehut et al., 2012 
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APPENDIX 5. 

 

 

 

 

 

 

 

 

 

Figure A.5.1 Data of the minimum phosphate gradient (0.00 to 0.48 µmol/L) along the study area, 

obtained from Levitus et al., 2013 

 

 

 

 

 

 

 

 

 

 

 

Figure A.5.2 Data of the maximum silicate gradient (2.32 to 15.76 µmol/L) along the study area, 

obtained from Levitus et al., 2013 
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APPENDIX 6.  

 

 

 

 

 

 

 

 

 

Figure A.6 Data of the salinity gradient (33.55 to 39.05 PSS) along the study area, obtained from 

Guinehut et al., 2012 

 


