
 

 

 

UNIVERSIDADE DO ALGARVE 

 

 

CATCHMENT INFLUENCES ON THE 

HYDROLOGICAL FLOWS TO LAKE TERRA 

ALTA (LINHARES, ES, BRAZIL) AND 

ECOHYDROLOGY PERSPECTIVES 

 

 

Mónica Gago González 

 

 

 

Dissertação 

Master of Science in Ecohydrology – ERASMUS MUNDUS 

 

 

Trabalho efetuado sob a orientação de: 

Universidade do Algarve: Manuela Moreira da Silva 

Universidade Federal do Espírito Santo: Gilberto Fonseca Barroso 

 

 

2015 



 

Catchment influences on the hydrological flows to Lake Terra Alta 

(Linhares, ES, Brazil) and Ecohydrology perspectives 

 

 

 

 

Declaração de autoria de trablaho: 

 

“Declaro ser a autora deste trabalho, que é original e inédito. Autores e trabalhos 

consultados estão devidamente citados no texto e constam da listagem de referências 

incluída.” 

 

 

 

 

 

 

 

 

 

 

 

© Mónica Gago Gonzalez. 

“A Universidade do Algarve tem o direito, perpétuo e sem limites geográficos, de 

arquivar e publicitar este trabalho através de exemplares impressos reproduzidos 

em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser 

inventado, de o divulgar através de repositórios científicos e de admitir a sua cópia e 

distribuição com objetivos educacionais ou de investigação, não comerciais, desde que 

seja dado crédito ao autor e editor.” 

 

 



 

Agradecimentos 

Agradeço ao programa de Mestrado Erasmus Mundus em Ecohidrologia  pela oportunidade 

de viver esta maravilhosa experiência acadêmica e pessoal. 

 

Agradeço as Universidades do Algarve (UAlg) e Federal do Espírito Santo (UFES) pela 

oportunidade de desarrolhar a minha dissertação nelas, é em especial à  UFES onde trabalhe 

na obtenção e analises de resultados. 

 

Agradeço ao meu orientador Gilberto Fonseca Barroso por ser um grande professional e 

uma grande pessoa, fonte de inspiração e apoio que com sua gentileza, paciência, confiança  

e enormes conhecimentos me motivou primeiro a quer trabalhar neste bonito projeto e 

segundo a superar as dificuldades e duvidas ao longo deste período. 

 

Agradeço a minha orientadora Manuela Moreira da Silva por ser uma grande professora e 

pela receptividade com o estudo e a sua gentileza, compressão e paciência especialmente na 

ultima fase de desenvolvimento do estudo. 

 

Agradeço a todo o pessoal do Lablimno em especial a Fellipe, Fabio, Thayana e Felicidade  

Pelo auxilio e cooperação na pesquisa e a sua boa companhia. 

 

Agradeço aos Ecohyd (4 life), por ter sido uns grandes companheiros de caminho, poder ter 

apreendido tanto com eles e de eles nestes dois anos sobre tudo  ao nível pessoal, fazendo-

me parte da suas vidas e culturas compartilhando muitos momentos especiais juntos. 

 

Agradeço aos grandes amigos que fiz neste caminho e foram a minha família em diferentes 

lugares do mundo. A Marie e a Nicolai por estar do meu lado em tudo momento, em 

qualquer lugar do mundo, sendo meus melhores amigos, confidentes e companheiros de 

viagem literal e emocionalmente. Em Portugal ao meu irmão Arsalan, Katheryna, Amrit, 

Stavros, Clement, Fabian, pelos tantos momentos de lazer e as risadas compartilhadas. Em 

Brasil ao Henrique, por fazer-me parte da sua vida e compartilhar sua família e amigos e ter 

vivido muitos dos momentos e experiências mais inesquecíveis da minha vida junto a ele. A 

Carol, Leandro e Pedro pela companhia e os bons momentos sempre acompanhados de 

muita boa musica. 

 



 

Agradeço a meus e amigos de sempre, por fazer-me querer voltar sempre e brincar como 

não consegui com ninguém, e a Elvira e Adri que além disso compartilhamos tantas passões 

e interesses.  

 

Agradeço a meus irmãos e toda minha família pelo apoio e carinho a pesar da distancia, 

fazendo-me as melhores boas-vindas do mundo. 

 

E agradeço em especial a meus pais, por serem as pessoas mais importantes da minha vida, 

meu maior apoio, incentivo e inspiração, os que sempre me acompanham, compreendem e 

ajudam tanto nos momentos de felicidade como de aflição. 

 

 

 

 

  



 

Abstract 

Lake Terra Alta (LTA) (A= 3.9 km
2
; Zmax= 22.1.m) is a tropical natural lake located in 

the State of Espírito Santo (Southeast Brazil) being one of the 90 lakes which form the 

Lake District of Lower Doce Rover Valley (LDRV). LTA catchment area is 144.7 km
2
 

and is composed by 8 subbasins and 7 tributaries streams. Its predominant land use is 

pasturage and smaller dimension cropping and Eucalyptus forestry, with no urban areas 

or industrial activities.  

 

Catchments morphometry and land uses and land cover have implications on the 

catchments hydromorphological processes, thus influencing hydrological flows to 

downstream lake. Therefore, hydrological knowledge is necessary to subsidize basin 

management plans. LTA is under pressure of direct water withdraw for irrigation, as 

well as water withdraws from the tributary rivers and fluvial damming. Nutrient inputs 

from catchment natural loads and anthropogenic activities (i.e., agriculture, livestock, 

forestry). Those pressures may compromise lake ecosystem services that are provided 

by water quantity and quality. In this regard, an echohydrological approach provide a 

more concise support for Integrated Lake Basin Management (ILBM), considering the 

relationships of lake catchment, stakeholders and governance systems. 

 

The main goal of this study is to evaluate the hydrological flows to LTA under an 

ecohydrological approach, integrating catchment morphometry, hydrography, 

hydrology, and land use and land cover. Based on a georeferenced database, river 

discharge measurements and modeling, and hydrochemistry analysis of the tributary 

streams, loads of nutrients are obtained. Subbasins data are analyzed through 

multivariate statistical analysis (i.e., PCA) in relation to mentioned catchments features.    

The obtained results provide sound information of the influence and relationships of 

land use and morphometry on the different subbasins. Thus, providing valuable 

information for the sustainable management of the basin and propose ecohydrologycal 

responses for inflow nutrient abatement and improve freshwater inputs to lake 

ecosystem to ensure ecosystem services provided by LTA. 

 

Key words: Morphometry, Land use, Hydrological flows, Integrated Lake Basin 

Management, Ecohydrology, Ecosystem Services. 



 

Resumo 

A Lagoa Terra Alta (LTA) (A= 3.9 km
2
; Zmax= 22.1.m) e uma lagoa tropical natural 

localizada no Estado de Espírito Santo (Brasil)  sendo uma das 90 lagoas que formam o 

distrito de Lagoas do Vale do Baixo Rio Doce (LVRD). A área da bacia da LTA e 144.7 

km
2
 sendo composta por 8 sub-bacias e 7 cursos de água tributários. O uso do solo 

predominante é o pasto e numa dimensão menor a agricultura e a silvicultura de 

Eucalyptus. Não tem área urbana nem atividade industrial.  

 

A morfometria e usos do solo nas sub-bacias têm implicações nos processos 

hidrológicos na bacia, influindo os fluxos hidrológicos das lagoas rio abaixo. Por isso o 

conhecimento hidrológico e necessário para a gestão. LTA tem pressão direita da 

extração da agua para rega, também na extração nos cursos da água tributários, na 

construção de barragens e na introdução de nutrientes por fluxos naturais e 

antropogênicos (agricultura, gado, silvicultura). Essas pressões podem pôr em risco os 

serviços do ecossistema fornecidos pela qualidade e pela quantidade da água. Em 

relação, à Eco-hidrología, fornece um apoio mais conciso para a Gestão Integrada da 

Bacia da Lagoa (ILBM), considerando as relações na bacia da lagoa, as partes 

interessadas e os sistemas de governança. 

 

O principal objetivo deste trabalho é estudar os fluxos hidrográficos da LTA numa 

abordagem eco-hidrológica, integrando a morfometria, a hidrografia, a hidrologia e usos 

do solo. Baseado numa base de dados georreferençados, a vazão medida e modelada dos 

cursos da água, a analise hidroquímica dos mesmos, os fluxos hidrológicos são 

estimados. Cada sub-bacia é estudada com estatística multivariada (PCA) em relação às 

características hidrográficas mencionadas. 

 

Os resultados obtidos fornecem boa informação das influências e relacionamento do uso 

do solo e a morfologia com as sub-bacias. Assim, fornece informações valiosas para a 

gestão sustentável da bacia e propor atuações para garantir os serviços do ecossistema 

fornecidos pela LTA. 

 

Palavras-chave: Morfometria, Uso da terra, Fluxos hidrológicos, Gestão Integrada das 

Lagoas, Eco-hidrologia, Serviços do ecossistema. 
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1. Introduction 
In a broad sense, lakes consists essentially of an inland basin or several connected 

basins containing water (Bragg et al., 2005), which are considered as standing water 

systems. However, lake basins fed by tributary river flows may show a complex 

combination of lentic and lotic waters that, in some degree, control the lacustrine 

hydrodynamics (Ambrosetti et al. 2003), existing then multiple lake hydrological types 

in function of their physico - chemical characteristics and their relationships with the 

catchment (Cardille et al., 2004).  

 

Lakes are critical elements of the water cycle and represents the 90 % of liquid 

freshwater of earth´s surface providing several environmental and socio-economic 

benefits (ILEC, 2005). This contributions to human well-being that the ecosystems 

ecosystem structure and function,  in combination with other inputs, provide directly or 

indirectly to people are known as Ecosystem Services (MEA, 2005 ; Burkhard et al., 

2012) and lakes as important freshwater bodies furnish a host of services to humanity 

without ever leaving its natural channel or the aquatic system of which it is a part (Poste 

and Carpenter, 1997). The analysis of the ecosystem services is important to understand 

human-environmental systems by the linkages between the natural and the humans 

systems (Burkhard et al., 2010). 

 

The freshwater services can be divided in broad categories as supply of water for direct 

use, supply of goods other than water and nonextractive benefits (Poste and Carpenter 

1997). Nevertheless a more appropriated classification such as the provided by the 

Millennium Ecosystem Assessment (MEA, 2005a) refers to provisioning, regulating, 

provisioning and cultural services. As a broad example, in lakes we can recognize the 

provisioning services for consumptive use as drinking, domestic and industrial water 

uses, agriculture, source of aquatic organisms for food as fish, and nonconsumptive uses 

as transportation or navigation. As cultural services can be find the uses related with 

recreation and tourism as well as religious meaning and/or personal values as heritage, 

and the sense of place. The regulatory services are those related with the buffer capacity 

to maintain the water quality by self-purification capacity or buffer the water flows and 

its interaction with the land as flood drought mitigation or erosion control. Supporting 
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services play a key role in nutrient cycling, primary production and food webs (MEA, 

2005a). 

As the high range of ecosystem services provided encourage the population to enjoy this 

resources sometimes the excessive use or the bad practices interfere with the ecological 

integrity of the resource, on this case the water,  which means that this ecosystem is not 

able to provide ecosystem services because is very impacted. Then, the quantification of 

water and nutrient flows along all the pathways of the hydrological cycle  is necessary 

for the design and selection of effective management strategies required for the aquatic 

ecosystems integrity and their associated ecosystem services (Jolánkai and Biro 2008).  

 

Lake basin hydromorphology is constituted by morphological features such as area, 

depth and volume, as well as structure of bottom substrate, and littoral zone (Bragg et 

al., 2005). In addition, hydrological regime based on the concept of fundamental 

hydrologic landscape units provides a concise view of a complete hydrologic system 

consisting of surface runoff, groundwater flow, and the air-water connectivity (Winter, 

2001). Thus, the understanding of lake basin morphometry and catchment flows is 

crucial to the knowledge for lake management in terms water level and volume. 

 

According to Zavoianu (1985) the surface of a drainage basin is the result of a long term 

process of interaction between flows of matter and energy and the variables which 

defines the basin behavior towards these flows. And the main elements which 

characterize a basin are rock type, relief, soil, plant cover and climate.  The rock is very 

important being a support for the other elements and forming the morphometrical 

features, relief controls the inputs of matter and energy, soil governs the circulation of 

water by its hydrophysical properties which are decisive for processes of runoff and 

infiltration and last but not least, vegetation which have a close interdependence with 

soil have big influence on climatic conditions and hydrological processes. Then the 

study of those variables is crucial for the understanding of the processes that drives the 

hydrological flows. 

 

Authors such as Håkanson (2014) and Nõges (2009) highlight that morphometry, which 

depends on the origin of the lake, drainage basin characteristics and the nature of the 

surrounding areas, has a key role on lake water quality and ecosystem functional 

features.     
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Morphometry of a catchment influence the processes which controls river flows and it 

main characteristics even determining their flood potential (Withanage et al.,2014). The 

morphometry can be defined as the measurement and analysis of the configuration of 

the earth´s surface, shape and landform dimension (Pareta 2011, Withanage et al.,2014). 

In order to describe the surface drainage networks evolution and behavior many authors 

as Horton (1945), Strahler (1964), Miller (1953) or Zavoianu (1985) have focused their 

studies on  basin morphology. 

 

For an appropriate morphometry analysis of a basin and estimate the potential of flow 

intensity and surface runoff of the drainage system is necessary consider areal and linear 

aspects of the drainage basin and slope. To describe the linear aspects of the drainage 

network the parameters that should be consider are stream order, stream length, stream 

number, and bifurcation ratios . On the other hand, the parameters that describe areal  

aspects of the drainage basin are the basin area, basin perimeter, stream frequency, 

length of overland flow, drainage density, infiltration number and shape related 

parameters as the circularity ratio, elongation ratio and form factor  (Horton, 1945; 

Melton, 1957; Miller, 1953; Schumm, 1956; Carlston, 1963; Strahler, 1964; Zavoianu 

1985; Romshoo et al., 2012; Magesh et al., 2013 ). 

 

Nevertheless the water flows may be strongly altered by the interferences on the water 

cycle due to natural or anthropogenic processes. The vegetation cover is a key factor 

altering the water flows because of its interrelation with the soil. The presence of forest 

is decisive factor to reduce peaks of water discharge because of the capacity of the 

vegetation cover, between other processes, to intercept the rainfall, increase the water 

infiltration and transpiration, which results on a decrease of the speed and strength at 

which the water gets to the river, decreasing erosion  and reducing the river discharge 

(Zhou et al., 2010; Birkinshaw et al 2011; Iroumé and Palacios, 2013).  

 

At the same time exposed soils become more vulnerable to erosion increasing runoff , 

favoring the soil degradation becoming more compacted, impervious and in 

consequence decreasing the infiltration capacity, generating high runoff and discharge 

peaks but being unable to maintain a base flow (Konrad & Booth, 2005). Then, the 

deforestation processes related with changes on land use affects strongly hydrological 
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flows, because more rainfall reach the streams, which increase the discharge, being the 

agriculture and pasture principal causes of deforestation due to their need of space for 

their development (Carvalho et al., 2000). When the deforested areas are associated to 

pasture lands and the presence of cattle, the soil suffers and increased compaction due to 

the animals weight and lose its infiltration capacity, presenting high runoff and decrease 

of river discharge on dry periods (Sheatch, and Carlson, 1998). Regarding agriculture 

practices, water withdraw for irrigation considerably decrease water discharges. 

However, irrigation itself, the presence of heavy equipment, organic matter losses due 

to intensification, are some factors related with this land use that promote the  

degradation and increase runoff and reduce base flows (Vlek et al., 2008). The slope is a 

parameter that favors erosion processes due to rapid runoff if its values are high 

(Magesh et al., 2013), then, if  those land uses that affect the water cycles by itself are 

on areas of pronounced slope, the negative impacts are increased. 

 

Other factor that influences the hydrological flows is the construction of dams. In order 

to provide a water supply for agriculture and pasture, activities that require high 

quantities of this resource, is necessary the construction of dams for irrigation. Those 

constructions cause fluvial fragmentation affecting the hydrological regime (Zalewski et 

al., 1997;  Coelho 2008). Commonly the water and sediment flows are altered  and  the 

hydrological alteration cause the disruption in the magnitude or timing of natural river 

flows (Rossemberg et al., 2000). Considering that  flow variability is an important 

characteristic of river systems, with implications for river geomorphology, those 

changes in turn affects the morphological processes taking place on the stream channel 

(Puckridge et al., 1998; Brandt 2000). Some examples of the negative impacts of 

hydrological alteration include: habitat fragmentation, habitat losses, loss of floodplains, 

riparian zones, and adjacent wetlands,  deterioration of irrigated terrestrial environments 

and associated surface waters and dewatering of rivers, leading to reduced water quality 

because of dilution problems for point and non–point sources of pollution (Rossemberg 

et al., 2000).Those effects varies depending on the characteristics of the dam, and on 

case of irrigation dams use to be associated to a minimum discharge higher than in dams 

destined to other uses in order to maintain a medium water flow for the irrigation 

(Coelho 2008).  
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Small reservoirs for agriculture irrigation may seem to don’t represent a very strong 

effects on the hydrological flows because maintain a higher environmental flow. 

However, authors such as Troms e Walker (1993) and Brandt (2000) highlight that 

when those dams are constructed in series along the river, the effects are enormously 

amplified and very complex being even possible to be bigger that the impacts of a big 

dam. This phenomena is called cascade effect and generate enormous hydrological 

alterations. This kind of model is very common on Brazilian rivers (Barbosa et al., 

1999; Coelho 2008). 

 

As it has been shown, catchment land uses have implications for hydromorphologycal 

processes and therefore lakes respond in a different ways to altered regimes of 

hydrological flows. These interactions must be considered in sound lake management 

plans (Nõges, 2009). 

 

But land uses not only affect the water quantity but also the quality. Different authors 

agree that the alterations on water quality are related with soil and land use interactions 

(Soranno et al., 2015) because is the water the element which controls the chemical 

concentration and sediment inputs, as consequence  nutrients loads increase in high flow 

conditions most likely due to runoff from the riverbank soils (Arreghini et al., 2005). 

Then are the water bodies very vulnerable ecosystems to pollution related with soil 

disturbances, enhancing the incorporation of suspended or dissolved solids to the water 

(Malmqvist & Rundle, 2002;  Sperling and Chernicharo2005). The principal factor of 

the decrease on water quality is land use, especially agriculture and pasture, activities 

which highly contribute to the soil degradation favoring its and accelerating soil 

erosion, incorporating in that way the nutrients and toxic compounds result of the same 

activities to the water courses as diffuse pollution (Prato et al.,1989; do Vale et al. 2013)  

 

Agriculture and husbandry for example are necessary for the food production and the 

economy, nevertheless wastes deposition from agriculture and animal have resulted in 

environmental changes (Carvalho et al., 2000). When agriculture takes place and the 

soil is exposed, those waste depositions are lixiviated into the soil causing the wash out 

of the nutrients of the deeper layers of soil.  This loss of nutrients cause soil infertility 

and generate the need of application of chemical fertilizers. The fertilizers in many 

situations are not properly applied increasing the nutrient concentrations needed for this 
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activity and as on case of the initial nutrient loss, this excess is conduced to lower areas 

and generally reach rivers and lakes. (Carvalho et al., 2000). The pasture land that host 

cattle are as well a source of nutrients for the environment (Gourley et al., 2012). The 

manure generated by the cows deposited on exposed soils generate a high lixiviation of 

nutrients intro the soil that as the previous mentioned cause the wash out of the nutrients 

of the deeper layers of soil which are transported to the closer water bodies. On this case 

the input of nutrients is continuous and due to the mobility of the animals is widely 

spread. In addition, if those animals are fed artificially the situation is further aggravated 

because those animal feed contains nutrients as well (Gourley et al., 2012). 

 

A water use that influences the nutrient loads is the fish farming on floating cages. 

Håkanson(2005b) summarize that this activities which take place on lakes are a source 

of phosphorus, nitrogen and organic particles. Those nutrients comes for the faeces of 

the cultivated fish and the food wastes. Is important to consider that those activities are 

very intensive which means that the emission of nutrients to aquatic ecosystems may be 

very high. 

 

The high nutrient loads reaching aquatic ecosystems decrease water quality and may 

induce eutrophication processes. Eutrophication increases the proliferation of micro and 

macro algae. When those microalgae blooms takes place the turbidity of the water 

increase and even generate a thick layer in the surface of the water that do not allow 

light penetrate and cause the death of aquatic plants settle in the bottom. In addition, 

those algae had a short life so all this death algae and plant increase the organic matter 

content in the water. The decomposition of the organic matter is an oxygen 

consumption process and for this reason when there is eutrophication the oxygen in the 

water decrease extremely generating even anoxic layers, especially in the bottom, which 

affects the fauna and the flora of the ecosystem generating the death of organisms and 

decrease their populations, this result in a loss of biological diversity. Then 

eutrophication affects the functioning of the system leading loss of biodiversity as well 

as cause economic and social problems. (Cruzado et al., 2002; Smith, 2003; Withers and  

Jarvie, 2008, Thornton et al., 2013).  
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Theoretically a small water inflow from severe eroded areas or with a very intensive 

land use, should be adequate to reduce allochthonous organic matter and nutrient inputs, 

and also reduced phytoplankton bloom activity (Wetzand Yoskowitz, 2013). 

 

The correlation between lake morphometry,  hydrochemistry and biota have been study 

since last century and several studies have shown correlation between the morphometric 

parameters and productivity of the lakes because of the regulation of general physical, 

biological and chemical lake processes (Carpenter 1983; Håkanson, 2005b). Due to the 

role of morphological parameters such as lake form and size, morphology influence in 

processes as diffusion, resuspension or bioturbation, which affect the rate of nutrient 

recycling from sediment to water regulating the primary production, which, in turn, 

regulate secondary production (Carpenter 1983; Håkanson, 2005a, 2005b). From lake 

catchment, transport processes regulate, in some extent, abiotic state variables and lake 

processes (Håkanson, 2005) such  water, inorganic and organic material fluxes through 

river runoff, influence water chemistry, hydrodynamic, light penetration, climate, 

biogeochemical cycles and food-web structure (Nõges, 2009). Then, it is essential the 

study of the morphometry of the tributary basins that drain the water into the lake. 

 

The environmental quality of a watershed is a major issue of concern especially when 

they host anthropogenic activities (Danelon et al., 2012). As we have seen lakes are 

under continuous environmental pressures that disturb the natural balance of the 

watershed, altering its structure and functioning, consequently they are strongly 

impacted, a sound management is crucial in order to foster lake ecosystem services to 

human well-being. The required quality of water is directly influenced by the water use, 

nevertheless it is necessary to consider that water bodies are usually associated to 

multiple uses, which are required to satisfy diverse quality criteria (Sperling and 

Chernicharo2005). On a catchment where the water is used for irrigation, animal 

supply, aquaculture, recreation, transport and of course is essential for the preservation 

of the aquatic life present in the ecosystem, therefore the water should be free from 

chemical substances and organisms harmful for the health of the soil and plantations, 

animals, humans and the species (Sperling and Chernicharo2005). 

 

The problems that affect the functioning of a watershed should be analyzed in a 

systemic way instead of punctually because a bad management of the entire basin 
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triggers the punctual negative situations (Odum 1971). In this regard, the Integrated 

Lake Basin Management - ILBM seems to be a concise approach considering the 

relationships of lake catchment, stakeholders and governance systems. According to 

ILEC (2007), six pillars for a good lake basin management are required: the presence of 

institutions to manage the lake and its basin for the benefit of all lake basin resource 

uses; policies to govern people’s use of lake resources and their impacts on lakes; 

involvement of the stakeholders; use of the best  technological possibilities available; 

the knowledge both of a traditional and scientific nature is valuable; and sustainable 

finances to fund all of the above activities are essential. These constitute the essential 

components of basin governance about which ILBM can provide the overall framework 

for application. Nevertheless ILEC (2007) recognizes that for the success of the 

integrated management is necessary the basin approach, technology should be applied, 

if stakeholders are not involved fully understanding their role on the problems the 

strategy of management will nut success, the long term commitment is essential because 

the processes on lakes require their time, the long term monitoring is necessary and 

understand that Lake Basin Management is a continuing process. 

 

In another hand, more focused on the environmental aspects, ILBM is an interesting 

approach because it gives importance to the ecosystem features to face an 

environmental problem. Considering that the occurrence and management of lake 

problems are influenced by three characteristics: integrating nature, which indicate that 

inputs as well as their related problems are shared throughout the lake;  long water 

retention time which indicate that a lake is able to absorb large inputs, but also once is 

degraded it can take a very long time to be recover; and complex response ecosystem 

dynamics which indicated that lakes do not always respond to changes in a linear way, 

so the problems need to be anticipated as far in advance as possible through scientific 

studies and environmental monitoring to unravel the complex processes and their 

implications (ILEC, 2007).  

 

For the present study, the application of the ILBM  is an important reference because on 

the Lake Terra Alta – LTA watershed (Southeast Brazil) there are no evidences of a 

concise management plan that ensure the ecosystem services that LTA provides to the 

community. As on this basin there are no previous studies of the catchment, develop a 

study which involve the integrative principles of the ILBM where the importance of the 
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basin approach is a  major pillar, could be useful for water managers and create a 

precedent to develop this management approach.  

 

On a catchment such as LTA, the unbalance between ecosystem services and 

functioning and the inefficient and inequitable use of water by stakeholders may leads 

into a water scarcity in both quantity and quality. On LTA catchment where the water is 

used for irrigation, animal supply, aquaculture, recreation and transport the maintenance 

of a good water quality and quantity is crucial. As we have seen in the bibliography 

those land uses are determinant for the quality of the hydrological flows, being at the 

same time strongly influenced by the morphometry of the basin. On case of LTA 

watershed the first step to achieve an integrated management is the study of the 

hydrological flows in terms of quantity and quality considering the different aspects 

that, based on the bibliography, influence them. Those parameters are morphometry, 

hydrology and land use, being focused on different subbasins that provide the water to 

the Lake Terra Alta. Then, the objective is to provide good information to the managers 

to detect the possible environmental problems that are taking place on the basin and the 

potential impacts that may take place. For this reason, the study is developed under an 

ecohydrological approach, where important to promote the integration of areas of the 

science to have a more holistic vision which increases the quality of the information. 

This approach is enhanced by the ILBM which promotes the information exchange with 

the basin managers , local communities and decision makers to achieve a better 

management and thus ensure ecosystem services.  

 

To solve problems in a more sustainable way or mitigate future problems, the 

application of an interdisciplinary science like Ecohydrology which quantifies and 

explains the relationship between hydrological processes and biotic dynamic at a 

catchment scale (Zalewski et. al. 2004). Ecohydrology fulfils the two fundamental 

conditions of successful strategic action according to decision-making theory: 

elimination of threats and amplification of chances (Zalewski et. al. 1997). For this 

reason in necessary understand the biotic and abiotic properties and processes of the 

ecosystem, to use them as a management tool and increase the carrying capacity, 

resistance and resilience of the own ecosystem to be able to be adapted to human 

impacts.  
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2. Study goals 
The main goal of this study is to evaluate the influence of morphometry, hydrography 

and land use of the Lake Terra Alta catchment on the hydrological flows in terms of 

quantity and quality. The better understanding of those factors will contribute to a more 

integrated and efficient basin management strategies capable of restore, minimize and 

avoid the negative impacts related with the natural or human induced environmental 

changes that take place on the basin favoring the sustainability of the ecosystem 

services provided by this watershed. 

 

In order to reach this goal it is crucial to reach specific goals to obtain a better 

understanding of the watershed through the study of those variables individually and 

develop an integrated analysis. In consequence, the specific goals of this study are: 

- The generation of a georeferenced database through geographic information 

systems. 

- Analyze the morphometrical characteristics of the basin. 

- Analyze the water discharges (measured and modelled). 

- Analyze the nutrient loads (N and P). 

- Analysis of the previous factors by a multivariate statistical method to know the 

relationships between them and the role that represents on each subbasin. In 

order to know the more determinant factor for each subbasins, is possible to acts 

specifically to minimize the risk of changes in the hydrological flows as well as 

solve the already existing problems. 

- Propose a decision tree for the factors influencing hydrological flows in order to 

provide a tool that facilitates the first stages of the management of the basin. 

Is important to consider that an important component of the hydrological cycle as is the 

groundwater, was not analyzed on the present study due to the total absence of 

groundwater studies on the area and the impossibility to develop them. At the same 

time, was not possible to consider the geological framework for the morphological 

characterization of the subbasins of the study area for the same reason, due the absence 

of  detailed geological information of the study area. 
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3. Study area 
The study area of this study is situated in the southeast coast of Brazil, in the state of 

Espirito Santo. Being one of the 90 lakes which form the Lower Doce River Valley 

(LDRV) Lake District, which has an area of 165 km
2
 (Barroso et al, 2012), Lake Terra 

Alta (LTA) is a tropical natural lake located in the municipality of Linhares, at the north 

of the State of Espírito Santo (Figure 3.1).   

 

LTA catchment, has an area of 144.7 km
2
 and is composed by 8 subbasins and 7 

tributaries streams (Figure 3.2). The Lake area is 3.9 km
2
, with a volume of 

3,534,8831.06 m
3
 (0.03 km

3
). The maximum depth is 22.1 m and its  mean depth 9.04 

m (Barroso et al, 2012). The lake presents a warm monomictic pattern with thermal 

stratification on the warm and rainy season, from October to April, and mixing during 

the dry and cold season, June to September (Venturini, 2015). The retention time based 

on mean annual discharge of tributary streams is 1.6 years (Barroso et al., 2014), a 

considerable low value that indicate higher capability of the lake to recover after a 

disturbance (Ambrosetti, 2002; ILEC 2007) 

 

 

Figure 3.1. Location of Lake Terra Alta watershed on the Lower Doce River Valley. 
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Figure 3.2. Subbasins of LakLTA watershed. 

 

 

Figure 3.3. Perspective of LTA 

 

Figure 3.4. Perspective of LTA 
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Based on Köppen climate classes by, the climate on the municipality of Linhares is Aw, 

a tropical humid climate characterized by a dry winter and maximum rainfall during the 

summer (Nóbrega et al., 2008)). Considering historical data of 66 years of 13 

meteorological stations (Figure 3.5), the regional mean monthly rainfall is higher than 

100 mm meanwhile the dry months showed a regional mean monthly rainfall smaller 

than 50 mm (Barroso et al. 2014).  Then, the wet and warm period, comprising the 

months between October and March, has a mean monthly rainfall of 167,6 mm and a 

mean temperature of 24,8 ºC . Meanwhile, the dry and mild cold period, comprise the 

months between April and September and the mean monthly rainfall is 46,1 mm and the 

mean air temperature 21,9 ºC. According the historical trend, August is consider the 

driest month and December the wettest month. 

 

 

Figure 3.5. Regional mean monthly rainfall (1947 to 2013) and monthly rainfall for 

2011 and 2013 (Barroso et al., 2014). 

 

The LDRV Lake District is divided between lakes located in natural dammed 

alluvial valleys and lakes located on the coastal plain (Martin et al., 1996). According 

with LTA is inserted in the Barreiras Formation  Tertiary Period (Figure 3.6.). The 

Tertiary plateau is represented by continental deposits divided by subpararel 

hydrographic network that are drained by small water courses flowing on big valleys of 
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flat bottom silted up with Quaternary sediments. The upper part of its catchment is in 

the area dominated by Precambrian crystalline rocks drained by a dense dendritic 

hydrographic net, which presents an uneven relief (Martin et al., 1996). 

 

 

Figure 3.6. Geomorphological Figure of LDRV. (Modified Limnolab) 

 

According to the land use of the basin can be consider than the main economic activity 

is husbandry followed by the agriculture and Eucalyptus forestry. Without considering 

the natural forest which represents around 36 % of the basin, LTA catchment land use 

(Table 3.1) is predominantly pastureland, representing approximately a 31 % of the 

basin. In smaller dimension agriculture with 18% of the basin and a 10% of Eucalyptus 

forestry. LTA watershed has no urban area or industrial activities.   

 

It is important to mention that the lake host an intensive fish farming facility (Figures 

3.7 and 3.8) on floating cages with Tilapia with a production around 15,000 kg of fishes 

per month. 
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Table 3.1. Land use on LTA watershed.(Barroso et al 2013) 

 

 

 

 

 

 

 

 

 

 

Figure.3.7. Fish farming facility with floating cages. 

 

 

Figure 3.8. Fish farming facility 

 

 

Land use Area 

(km²) 

% of the basin 

Forest 52,2 36 

Pasture land 45,2 31 

Agriculture 26,5 18 

Foestry 14,0 10 

Rock 10,8 3 

Urban 0,001 0 
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In order to provide water for those activities, 33 small irrigation reservoirs were 

identified in the watershed. Direct lake water withdraw for irrigation, as well as 

water withdraws from the tributary rivers and fluvial damming represents a pressure 

for the LTA hydrology, as well as the nutrient inputs from watershed natural loads 

and anthropogenic activities as agriculture, livestock, forestry and from fish farming 

which also stress lake trophic state. Those pressures may compromise lake 

ecosystem services that are provided by water quantity and quality. 
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4. Materials and Methods 

4.1 Georeferenced database 

A georeferenced database was elaborated with the software ArcGIS 10.1 ESRI® in 

order to provide the basic information of the hydromorphology of study area as well as 

the land uses. The coordinate system and datum are UTM and WGS 1984. 

A Digital Elevation Model (DEM) of 30 m resolution was used to delimitate LTA 

subbasins ArcGISwith ArcGIS Hydrology modelling. Once the subbasins were 

delimitated, the polygons were edited in order to obtain an effective drainage area of the 

tributary streams, excluding those areas where the water was draining directly to the 

lake and not through streams.  

 

The river delimitation for the LTA basin and the respective subbasins was done clipping 

over a hydrography Figure of LDR watershed.  

 

Land use was as well delimited for the entire basin and subbasins in the same way that 

the previous one based on a Land use Figure of 2010. 

 

4.2 Basin morphometry 

Different parameters as watershed area, basin perimeter, basin length, slope, stream 

number, stream order, stream length, drainage density, stream frecquency, bifurcation 

ratio, length of overland flow, form factor, circularity ratio, elongation ratio and 

infiltration number, has been analyzed with the objective to evaluate the watershed 

morphometry.  

 

All parameters were calculated for the entire LTA basin, as well as for each of the 7 

subbasins according to different authors. 

 

- Watershed Area A (km
2
); Watershed Perimeter P (km ;  Watershed length Lb (m) 

The total area of the basins, their perimeter and the length between the mouth and the 

outflow were obtained by ArcGIS (ArcGIS 10.1 ESRI
®

 ) basic geometry tools. 
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-Slope S (%) 

Slope is an important parameter to be analyzed in morphometry, because determines the 

inclination of the terrain (Magesh et al., 2013). Slope is strongly related with runoff, the 

higher slopes rapid runoff and may result in soil losses.  On this study this parameter 

was calculated in two different ways. 

 

As it was mentioned before, a slope Figure was created with ArcGIS in order to obtain 

the slope classes in percentage of our study area according to the Brazilian Soil Agency 

(Table 4.1).  

 

Table 4.1: Slope classification (%) (Embrapa, 1979). 

Slope (%) Classes 

0-3 Flat 

3-8 Smothly undulated 

8-20 Undulated 

20-45 Strongly undulated 

45-75 Mountainous 

>75 Strongly mountainous 

 

 

The second way, in order to obtain the mean slope of the basins was calculated 

following the Romshoo et al., 2012 equation (1) : 

 

S = Dc/L (1) 

where, 

De  is the difference in elevation 

L  is the length of the flow path 

 

- Stream order (U) 

The primary step in drainage-basin analysis is to designate stream orders, which is a 

dimensionless property to hierarchically codify fluvial systems  (Horton, 1945). 

Following the Strahler method (1964) that slightly modifies the Horton´s (1945) which 

organizes hierarchically the tributaries, stream order was obtained by ArcGIS 10.1 

ESRI®. Due to the small size of the basin and number of streams it was possible to do it 
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by hand, selecting the streams and classifying them. The procedure starts from the 

finger-tip tributaries designated as order 1. If two of those channels connect, they form 

an order 2 channel segment, which if joins other Order 2 will form an Order 3 tributary 

and so on, resulting that the highest order stream is the main channel where all 

discharges of the other streams are leaded. Thus, stream order increase as total number 

of streams decreases (Magesh et al., 2013). Greater discharge and velocity of the flow 

are coupled with higher stream order (Romshoo et al., 2012) 

 

- Stream number (Nu) 

Horton (1945) defined it as the number of channels that can be found in a stream order, 

and is proportional to the channel dimension and size of the watershed. In general, on 

higher stream order there is a decrease on the stream number and lower stream number 

indicates higher infiltration and permeability (Romshoo et al., 2012; Magesh et al., 

2013)  

The stream number was obtained after the Stream order classification from ArcGIS 10.1 

ESRI®; it was counted on the attribute table as the number of streams belonging to each 

order. 

 

- Stream length (Lu) 

Stream length shows the scale of the components on the drainage network (Strahler 

1964).  In general, stream length decrease when the stream order increase and the first 

order presents the maximum total length of stream segments (Magesh et al., 2013). 

With the tool, calculate geometry of ArcGIS 10.1 ESRI®, the length of the 

selected river was calculated. 

 

- Drainage density (Dd) 

Dd was calculated according to Hortons (1945) (2) and represents the total stream 

length Lu per unit of area of the basin A.     

 

Dd = Σ Lu/A  (2) 

where, 

Lu is  the stream length 

A  is the area of the watershed 
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Drainage density (Dd) is an important property of a river network being an indicator of 

the land form (Strahler 1964; Moglen 1998). This geomorphic property is strongly 

linked with hydrological processes as infiltration or overland flows, and thus, influence 

their interactions and resulting processes as runoff (Moglen 1998).  Different authors as 

Horton (1945) and Carlston (1963) highlight the importance of permeability and thus 

infiltration to determine drainage density. The higher drainage density is related with 

mountainous watersheds with impermeable materials and sparse vegetation that results 

in lower infiltration capacity and in consequence, a relatively rapid hydrological 

response to rainfall events. Meanwhile, low drainage density number shows poorly 

drained basins with slower hydrologic response due to a higher infiltration capacity 

associated with a good vegetation cover and permeable subsurface materials in low 

relief areas (Romshoo et al., 2012; Melton 1957).  

In general terms the size of drainage units decrease proportionately when drainage 

density number increase (Strahler 1964).  

  

- Stream frequency (Fs) 

The equation (3) from Horton (1945) defines the Stream frequency (Fs), where Nu is 

the number of stream segments and A is the basin area. This parameter is related to 

permeability, infiltration capacity and relief of watersheds (Montgomery and Dietrich 

1989; Romshoo et al., 2012). 

 

Fs = Σ Nu/A    (3) 

where, 

Nu is  the number of stream segments 

A is the area of the watershed 

 

-Bifurcation ratio (Rb) 

According to  Schumm (1956) equation (4) ,  the Bifurcation ratio  depends on the 

stream number, defining a ratio between the stream number of an order (Nu) and the 

stream number of the next higher stream order (Nu+1). This parameter contribute to the 

understanding of the branching pattern of a drainage network (Magesh et al., 2013), 

being an useful number to define the form of the drainage basin,  specially due to its 

stability because in general is representative in different environments or regions with 

the exception of areas or high geologic controls (Strahler 1964). 
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Rb = (Nu) / (Nu + 1)      (4) 

where, 

Nu is  the number of stream segments 

 

This parameter indicates the vulnerability of the basin for flooding if it presents a high 

value (Romshoo et al., 2012). The mean bifurcation ratio ranges between 3 and 5 if 

there is not strong influence of the geological characteristics of the drainage network, 

and  low values indicates poor structural disturbances and higher permeability of the 

terrain (Magesh et al., 2013) meanwhile higher values are related with well-dissected, 

hilly  drainage basins (Horton 1945).  

 

-Length of overland flow (Lg)  

The length of overland flow determine the distance that the rainwater need to reach a 

definite stream channel and can be calculated with the equation of Horton (1945) (5) 

and in most cases it is approximately the half to reciprocal of the Drainage density.  

Horton describes this parameter as one of the most important variables that influence 

the drainage basin development in hydrologic and physiographic terms being an 

important variable on which runoff and flood processes depend (Zavoianu 1985; 

Romshoo et al., 2012).  

 

Lg = 1/(Dd*2)     (5) 

where, 

Dd is the drainage density 

 

Higher values indicate higher distances and lower values shorter distances before to 

reach the stream channels (Magesh et al., 2013). 

 

-Form factor (Rf ) 

The Form Factor is one of the most relevant shape related parameters in the 

morphology. The equation proposed by Horton (1945) (6) define the Form factor, where 

its related the area of the basin (A) and its length, represented by Lb, the farthest 

distance from watershed ridge to outlet. 
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Rf = (A) / (Lb + 1)²     (6) 

where, 

Lb is the farthest distance from watershed ridge to outlet or watershed length (m)  

A is the area of the watershed 

 

Form factor values closer to 1.0 represent circular basins and as longer and narrower the 

basin is, its form factor value is decreasing due to their higher lengths (Magesh et al., 

2013).  

 

-Elongation ratio (Re) 

This parameter measure the shape of the basin of the river linking the diameter of circle 

with the area and the maximum length of the basin (Magesh et al., 2013) and is 

calculated by the Schumm (1956) equation (7).  

 

Re = (2/π) √ ( A / Lb) ²      (7) 

where, 

Lb is the farthest distance from watershed ridge to outlet or watershed length (m)  

A is the area of the watershed 

 

More circular basins seems to be more efficient in the runoff discharge due to a lower 

concentration time, they are representatives of lower reliefs and their Re values are 

closer to 1.0. Meanwhile elongated basins with higher relief are closer 0.6 values 

(Magesh et al., 2013). The results of the elongation ratio should be similar to the form 

factor (Strahler 1964). 

 

-Circularity ratio (Rc) 

Circularity ratio influences the hydrological response of the watersheds as basin-shaped 

(Romshoo et al., 2012). This shape related parameter was defined by Miller (1953) as a 

ratio of the area of the basin and the area of a circle. Is an indicator of the dendritic stage 

of a watershed and the stage of the life cycle of the tributary basins (Magesh et al., 

2013). This parameter was calculated with the equation (8)  

 

Rc = 4πA/ (P)²    (8) 
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where, 

A is the area of the watershed 

P is the perimeter of the watershed 

 

 

-Infiltration number (If ) 

To describe the infiltration capacity of the basin the equation proposed by Romshoo 

(2012) was used (9). This number is inversely proportional to the infiltration capacity 

(Romshoo et al., 2012) 

 

If = Dd× Fs     (9) 

where, 

Dd is the drainage density 

Fs is the stream frequency 

 

 

4.3 In situ discharge measurements  

Stream discharge measurements were taken between 2012 and 2013 in 7 sampling 

events: 4 during dry season and 3 during wet season for the seven LTA. Stream 

discharge measurements (m
3
/s) were taken on the outfall of all 7 LTA tributary streams 

with a SonTek FlowTracker Acoustic Doppler Velocimeter – ADV . 

  

 

4.4 Hydrological modeling 

This section presents a hydrological modeling based on conversion of rainfall on river 

discharge, discounting potential evapotranspiration according to Molisani et al. (2006) 

and Molisani et al., (2007). Rainfall data are based on regional historical records of 

rainfall (i.e., 30 years) of 21 meteorological stations. Mean annual rainfall and mean 

values for the dry and wet months, August and December, respectively, were 

interpolated (Spline with 0.2 weight on 6 neighbors) in a GIS environment for the 

LDRV. The continuous surface model (i.e., raster file) of regional rainfall was than 

clipped to the boundaries of LTA watershed. Evapotranspiration rates based on air 

temperature at every 100 m elevation were adiabatically corrected.  
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Acording to Kjerfve (1990), the equation 10 show that discharge is directly dependent 

on precipitation, area, and the runoff ratio (∆f /r) 

 

Q = ∫∫ r * (∆f / r ) *dA  (10) 

where:  

Q is the discharge (m
3
/s) 

r is the precipitation (mm/y) 

A is the area of the watershed (km
2
) 

∆f /r is the runoff ratio  

 

The runoff ratio is in turn dependent of the potential evotranporation (E0 ) and 

precipitation (r), it can be calculated with the equation of Schreiber (1904) (11)  and 

represents the fraction of precipitation, which drains into the rivers as a runoff (Molisani 

2006). 

 

∆f / r  = e 
–E0/r    

   (11)   

where: 

∆f /r is the runoff ratio  

E0  is the potential evotranporation (cm/year) 

 

To calculate the runnoff ratio is necessary the previous calculation of  the potential 

evotranporation (E0 cm/year) (12) , which depends on the solar radiation intensity, 

which is turns means that depends on the absolute air temperature. Is described by 

Holland (2001) (Molisani 2006). 

 

E0 = 1.0×10
9 
× e

−4620 /T
   (12)  

where: 

E0  is the potential evotranporation (cm/year) 

T is the absolute air temperature expressed in Kelvin (K) 

 

To sum it all up now that the process is described, to calculate the discharge we need the 

precipitation which has been calculated previously with the interpolation method and air 

temperature. On this case temperature measurements were not available, so a reference 

temperature value from the adjacent area is necessary and its correction adiabatically by 
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-0,97ºC per 100m of elevation increase (List, 1966). The rainfall data was converted to 

obtain the precipitation rate.  

 

 The obtained discharges were transformed in Effective Discharge (13) multiplying by a 

time unit and divided by the area of the basin. In case of annual mean was multiplied by 

365 days obtaining and Effective discharge in m³/km²/year meanwhile for the dry and 

wet month was multiplied by 31 days obtaining m³/km²/month because the wet and dry 

months have 31 days each. Through this transformation the results can be compared 

between the basins because the influence of the total area is excluded. 

 

Qe = Q*time / A          (13) 

where: 

Qe is the effective discharge 

Q is the direct discharge 

A is the area of the watershed 

 

On case of the In situ discharge measurements, the transformation to Effective 

discharge follows the same procedure, but for wet/dry month was necessary to select 

them from the sampling dates. According to Figure 3.5 and the sampling dates for the 

wet month was consider November 2012 and August 2013 for the dry. Then, was 

necessary consider that August has 31 days but November only 30 when the 

calculations of effective discharge are done. 

 

4.6 Hydrochemistry analysis 

N and P flows were based on concentrations of stream water samples, taken between 

2012 and 2013 on 7 sampling events, three during the dry season (< 50mm/yr) and four 

on wet season (> 100mm/yr), at the outfall of the 7 LTA tributary streams. For total N 

and P, samples were frozen without filtration, whereas for dissolved inorganic nitrogen 

(DIN) and phosphorus (PID) samples were filtered (Whatmann fiber glass 934AH) in 

the field right after sampling and stored on 100 mL polypropylene flasks. All samples 

were frozen immediately. The analysis was carried out at UFES’ LimnoLab located in 

Goiabeiras campus through spectrophotometry (UV/VIS).    
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Total fractions of N and P were digested (Figure 4.1.) on persulfate solution according 

to Valderrama (1981), a method which shows good reliability and allow the storage of 

the sample till the analysis. The simultaneous oxidation depends on the difference of pH 

during the digestion due to a boric acid-sodium hydroxide system, starting the reaction 

in an alkaline medium, which allows the oxidation of the nitrogen, and progressively 

decreasing the pH till obtain an acidic environment for the phosphorous oxidation.  

 

Figure 4.1 Autoclave of Limnolab (UFES) 

 

PT was analyzed after the digestion through a colorimetric method according to 

Carmouze (1994). The absorbances were measured in a spectrophotometer on four 1 cm 

glass cells at a wave length of 885 nm. The absorbances obtained were corrected with 

the value of the blanks and applied to the regression curve to obtain the final 

concentration. 

For nitrogen were just analyzed nitrite (NO2
-
) and nitrate (NO3

-
) because it was not 

possible the quantification of ammonia and organic nitrogen, therefore is important to 

consider that when in the present study we refer to TN we are only considering nitrites 

and nitrates. Nitrite was determined according to Grasshoff et al. (1999) method, where 

nitrite is quantified by spectrophotometry (Figure 4.2) of the azo dye resulting from the 

reaction of nitrite with an aromatic amine which leads to the formation of a diazonium 

compound which couple with a second amine. The absorbances obtained were corrected 

with the value of the blanks and applied to a regression curve to obtain the final 
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concentration of nitrite. This methodology was followed although there are no saltwater 

samples, due to the analytical limitations.  

For nitrate determination was used the Cd column method (Figure 4.3) according to 

Carmouze (1994) which consists in the reduction of nitrate to nitrite. The yield of the 

reduction is very sensitive and highly dependent on the metal used (i.e., Cd) in the 

reduction and the activity of the metals surface as well as pH. If the previous variables 

are not the appropriated, it will result in a partial reduction, which results in too low 

nitrate values (Grasshoff et al.1999). The resulting nitrite was quantified by the method 

described above.   

 

Figure 4.2. Spectophotometry. Limnolab. (UFES) 

 

Figure 4.3. Cd column reduction method. Limnolab. (UFES) 
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N and P flows were computed, based on the concept of Wagner (2009) of point source 

load computation according to the equation (14),  

 

Cday = C*Q*86400   (14) 

Where, 

Cday is load or flow (g/day) 

C is the concentration (g/m
3
) 

Q is the instantaneous discharge (m
3
/s) 

86,400 seconds per day.   

 

This equation was modified (15) to obtain the load or flow of nutrients on yearly base 

for the annual mean (nutrient/year) or monthly base for wet and dry month 

(nutrient/month). The concentration of nutrients (C) was multiplied by the specific 

discharge for each measurement of each subbasin (Q) to obtain the average of the 

subbasin, which finally was multiplied by 86400 seconds/day and by 365 days on case 

the annual mean and 31 days for the wet and dry month, being all the process 

consequently adapted with the convenient unit conversion to obtain kg/year or 

kg/month. 

 

Tnutrient/year = C*Q*86400*365  (15) 

Tnutrient/month = C*Q*86400*31 

Where, 

Tnutrient is the total load of TN or TP 

C is the concentration (g/m
3
) 

Q is the instantaneous discharge (m
3
/s) 

 

As well as for the water discharge, the nutrient load was converted into TN and TP 

effective discharge (TNED and TPED) (16) dividing the load by the area of each 

subbasin (A). This is useful in order to standardize the flows regarding the area of 

subbasins. 

 

  TNED and TPED =Tnutrientyear/A  (16) 
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Where, 

Tnutrient is the total load of TN or TP 

TNED /TPED are the TN and TP effective discharges 

C is the concentration (g/m
3
) 

Q is the instantaneous discharge (m
3
/s) 

 

 

4.7 Statistical analysis:  

In order to whether know the interaction between water quality, hydromorphological 

variables and land use  can be recovered as statistically significant covariance patterns 

was used the Principal component analysis (PCA).  

 

-Multivariate analysis, Principal Component Analysis (PCA). 

The multivariate analysis consists in the representation of scattered variables and cases 

in a multidimensional diagram with as many axes as descriptors in the study. 

Nevertheless, as is not possible to represent more than two or three dimensions on 

paper, those diagrams are represented onto bivariate graphs whose axes are of special 

interest, specifically chosen to represent the variability of the data set in a space of 

reduced dimensionality (Legendre and Legendre, 1998).  

Principal component analysis PCA is one of those methods of ordination in reduced 

space which allows the identification of the most important components that explain 

nearly all of the variances of the system, providing a shortened description with few 

significant indices that reflect the most relevant processes (Petersen et al., 2001; 

Ouyang, 2005). The PCA, project those representative features into two-dimensional 

axes independent between them, and even reducing the data complexity, the 

relationships between the variables are mainly maintained (Janžekovič and Novak, 

2012). The number of the components is the same than the variables, nevertheless a 

component is formed by all the variables (Ouyang, 2005). Legendre and Legendre 

(1998) argue that the number of observations cannot be smaller than the number of 

descriptors to obtain a statistical valid estimation of the dispersion matrix, nevertheless 

other studies have shown that regardless the number of observations and descriptors 

PCA could be applied (Ouyang, 2005). 
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On this study the PCA analysis was runned with the Multi Variate Statistical Package 

software MVSP 3.2, where the data were log10 transformed and centered and only axis 

1 and 2 reported. 

 

-Cluster analysis 

This analysis consists on the partition of our set of objects or descriptors in two or more 

subsets, the clusters, through pre-established rules of agglomeration or division 

(Legendre and Legendre, 1998).  

The subbasins of LTA catchment are the descriptors that we want organize, for this 

proposal the method of cluster selected is the hierarchically where according to 

Legendre and Legendre (1998) the two more similar descriptors are cluster and then the 

rest of the descriptors clump into groups which at the same time are aggregate to other 

groups as the similarities diminish. The easiest way of interpretation of this analysis is 

graphical representation, a Dendogram. The cluster analysis was run with the 

MultiVariate Statistical Package software MVSP 3.2, where the data were log10 

transformed. 
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5. Results 

5.1 Georeferenced database 

The resulting Figures of the georeferenced data base are presented by subbasin grouped 

in sets of three, where the first represents the altimetry classes each 100 m elevation, the 

second one represents the land use and the third one, the slope according the Embrapa 

1979 soil classification. B1 is represented on Figure 5.1. , B2 on Figure 5.2. , B3 on 

Figure 5.3. , B4 on Figure 5.4. , B5 on Figure 5.5. , B6 on Figure 5.6. and B7 on Figure 

5.7. 
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a) 

 

b) 

 

c) 

Figure 5.1. Subbasin B1 elevation (a), slope (b) and land use/land cover (c). 
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a) 
b) c) 

Figure 5.2. Subbasin B2 elevation (a), slope (b) and land use/land cover (c). 
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a) 
b) c) 

Figure 5.3. Subbasin B3 elevation (a), slope (b) and land use/land cover (c). 
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a) 
b) c) 

Figure 5.4. Subbasin B4 elevation (a), slope (b) and land use/land cover (c). 
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a) 

 b)

 c) 

Figure 5.5. Subbasin B5 elevation (a), slope (b) and land use/land cover (c). 
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a) 

 

b) 

 

c) 

Figure 5.6. Subbasin B6 elevation (a), slope (b) and land use/land cover (c). 
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a) b) c) 

Figure 5.7. Subbasin B7 elevation (a), slope (b) and land use/land cover (c). 
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5.2 Basin morphometry 

On this section the all the obtained numerical results of the morphological parameters 

are presented on Table 5.1. 

 

-Watershed Area A (km
2
) 

The entire watershed of LTA has an area of 144 km². B5 is the biggest subbasin with an 

area of 122.5 km². The other subbasins have much smaller values. being presented in 

decreasing order B7 (3.32 km²). B4 (2.88 km²). B3 (2.83km²). B1 (1.89 km²). B6 (1.39 

km²) and the smaller one. B2 (0.98 km²)  

 

-Watershed Perimeter P(km) 

The perimeter follow the same trend as the area, ranging in decreasing order  from B5 

followed by B7, B4, B3, B1, B6, till B2  being their respective values 87.41km , 8.94 

km, 8.48 km, 8.22km , 6.66km, 5.54km, 4.31km.  

 

-Watershed length Lb (km) 

On the watershed length we can observe some variations in the order compared with 

area a perimeter due to the shape of the basins. From the entire basin of LTA (27.71 

km) the subbasin B5 (22.45km) still being the one with higher value, nevertheless B7 is 

not anymore the next higher value, ranging now from B4 (3.09km), B3 (2.92km), B1 

(2.24 km), B7 (2.04km), B6 (1.59km) , till B2 (1.53km) which still maintain the 

smallest values. 

 

-Slope S (%) 

According the Silva et al., 2010 equation (1), the values of the slope are as follow: LTA 

34.06%, B1 22.92%, B2 34.92%, B3 32.66%, B4 38.07%, B5 35.93%, B6 23.77%,  B7 

4.91%. Where B4 presents the highest slope followed by B5, B2, B3, B6, B1 and finally 

B7. The subbasin is consider strongly undulated according the Embrapa (1979) (Table) 

classification, and its subbasins as well, with the exception of the B7 which presents a 

much smaller value and is considered smoothly undulated. 

 

For a more detailed vision of the slope distribution the representation of the slope for 

each subbasin in classes according to Embrapa(1979) soil classification was exposed on 
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the previous section 3.1 results of georeferenced database, concretely on Figures 5.1., 

5.2., 5.3., 5.4, 5.5., 5.6., and 5.7. 

 

- Stream order (U) 

LTA have 4 stream orders as we can see on the Figure 5.8. , but we can only find those 

4 orders in the subbasin B5. Meanwhile  B2, B3, B4,  B6 and B7 presents 2 orders and 

only B1 have 1 order. 

 

 

Figure 5.8. Stream order on LTA watershed. 
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- Stream number (Nu) 

LTA has a total of 236 streams, and is the B5 the subbasins which contribute more to 

this number because presents 217 streams. The other subbasins are much less complex, 

B4 have 5 streams,  B2, B3, B6 and B7 have 3 streams and B1 only have 1 stream.   

 

- Stream length (Lu) 

LTA catchment has a total stream length of 218.13 km of which 132.48 km correspond 

to order 1. 42.61km to order 2, 19.02km to order 3 and 24.02 km to order 4. B1 has 2.23 

km of stream length, all pertaining to  1
st
 order stream. B2 has a total of 2.05 km being 

1.49 km correspondent to order 1 and 0.56 km to order 2. B3 has a total of 3.33 km, 

2.37 km corresponding to order 1 and 0.96 km to order 2. For B4 the stream length for 

order 1 is 2.73 km and for order 2 is 1.98 km from the 4.71 km of the total subbasin. 

The subbasin B5 has a total stream length of 198.5 km of which 117.76 km correspond 

to order 1, 37.7 km to order 2, 19.02 km to order 3 and 24.02 km to order 4. B6 has a 

total of 2.63 km being 2 km correspondent to order 1 and 0.63 km to order 2. And for 

B7 the total is 3.55 km from which 2.79 km are order 1 and 0.76 km are order 2. 

 

- Drainage density (Dd) 

For the LTA watershed the drainage density is 1.51. The results for its subbasins varies 

between 1 and 2, being  B2 the subbasin with higher drainage density (2.09) , followed 

by B6 (1.89),  B4 (1.64), B5 (1.62), B1 (1.18), B3 (1.18), B7 (1.07).  

 

- Stream frequency (Fs) 

On the case of stream frequency,  1.64 is the value for the all LTA basin. For  B1, B2, 

B3, B4, B5, B6 and B7 are stream frequency is  respectively 0.53,  3.07,  1.06, 1.74, 

1.77, 2.15, and 0.90.  

 

-Bifurcation ratio (Rb) 

The mean bifurcation ratio for LTA is 1,96. For B5 is 1.85, nevertheless for the rest of 

subbasins the result is based in an unique value because they have only 2 streams order. 

Thus, for B2, B3, B6 and B7 the bifurcation ratio is 2, and for B4 is 1.5. In case of B1, 

as only has 1 stream order was not possible to obtain the bifurcation ratio. Those low 

values indicate for all subbasins poor structural disturbances and higher permeability of 

the terrain according Magesh et al., 2013.   
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-Length of overland flow (Lg)  

For LTA basin the length of overland flow is 0.33. For  B1, B2, B3, B4, B5, B6 and B7 

the values 0.42 , 0.24, 0.42, 0.31, 0.31, 0.27 and 0.47 respectively.  

 

-Form factor (Rf ) 

The form factor of LTA is 0.17 . The values for the subbasins are 0.18 for B1 

and B3, 0.15 for B2, 0.17 for B4, 0.22 for B5, 0.21 for B6, and 0.36 for B7  

 

-Elongation ratio (Re) 

 Values for elongation ratio in LTA and B1, B2 B3 B4, B5, B6 and B7 are 0.28, 

0.39, 0.41, 0.37, 0.35, 0.31, 0.47, and 0.57 respectively. 

  

-Circularity ratio (Rc) 

LTA has a very small value of circularity ratio, 0.1. For this parameter the values 

are less uniform along the subbasins, being the biggest one B2 with 0.66, followed by 

B6 with 0.57, B1 and B3 0.53, B7 with 0.52, B4 with 0.5 and B5 with 0,2. 

 

-Infiltration number (If ) 

The infiltration number for LTA is 2.47. This value varies considerably for one 

basin to another being B2 the basin with 6,42, the higher infiltration number followed 

by B6 with 4.06, B5 with 2.87, B4 with 2.85, B3 with 1.25, B7 with 0.97 and B1 with 

0.63. 
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Table 5.1. Results of the morphometric parameters for the seven subbasins of LTA catchment where: watershed area (A) in km
2
; watershed 

perimeter (P) in km; watershed length Lb;  slope (S) in %; stream length  (Lu); stream number (Nu); Drainage density (Dd); Stream 

frequency (Fs); Bifurcation ratio (Rb ); Length of overland flow (Lg); Form fator (Rf); Elongation ratio (Re); Circularity ratio (Rc); 

Infiltration number (If) 
 

  

A 

(km
2
) 

P 

(km) 

S 

(%) 

 

Lb 

(km) U Nu Σ Nu 

Lu 

(km) 

Σ lu  

(km) RL Dd Fs Rb Rbm Lg Re Rf Rc If 

B1 1.89 6.66 22.92 2.24 1 1 1 2.23 2.23 - 1.18 0.53 - 

 

0.42 0.39 0.18 6.66 0.63 

                    B2 0.98 4.31 34.92 1.53 1 2 3 1.49 2.05 - 2.09 3.07 2.00 2.00 0.24 0.41 0.15 12.84 6.42 

     

2 1 

 

0.56 

 

0.38 

  

- 

      

                    B3 2.83 8.22 32.66 2.92 1 2 3 2.37 3.33 - 1.18 1.06 2.00 2.00 0.42 0.37 0.18 4.44 1.25 

     

2 1 

 

0.96 

 

0.41 

  

- 

      

                    B4 2.88 8.48 38.07 3.09 1 3 5 2.73 4.71 - 1.64 1.74 1.50 1.50 0.31 0.35 0.17 4.37 2.85 

     

2 2 

 

1.98 

 

0.73 

  

- 

      

                    B5 122.51 87.41 35.93 22.45 1 109 217 117.76 198.50 - 1.62 1.77 1.88 1.85 0.31 0.31 0.22 0.10 2.87 

     

2 58 

 

37.70 

 

0.32 

  

3.05 

      

     

3 19 

 

19.02 

 

0.50 

  

0.61 

      

     

4 31 

 

24.02 

 

1.26 

  

- 

      

                    B6 1.39 5.54 23.77 1.59 1 2 3 2.00 2.63 - 1.89 2.15 2.00 2.00 0.27 0.47 0.21 9.01 4.06 

     

2 1 

 

0.63 

 

0.32 

  

- 

      

                    B7 3.32 8.94 4.91 2.04 1 2 3 2.79 3.55 - 1.07 0.90 2.00 2.00 0.47 0.57 0.36 3.78 0.97 

     

2 1 

 

0.76 

 

0.27 

  

- 
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5.3 In situ discharge measurements  

Results of the measured discharge are represented on Table 5.2 the is presented for the 

annual mean as well as for the dry and wet seasons. The mean annual measured 

discharge on the subbasins of LTA is on average 0.6781 m³/s, being the biggest 

subbasin B5, which contribute with the with higher discharge of 0.588 m³/s. B7 the next 

subbasin in area follows with 0.155 m³/s and progressively decreasing we find B3 with 

0.011 m³/s, B4 and B6 with 0.006 m³/s and B1 and B2,the smallest subbasins with the 

smallest discharge, 0.004 m³/s. 

On the dry season B5 still contribute with the highest discharge of 0.2508 m³/s, 

followed by B7 with 0.0217 m³/s, B3 with 0.0088 m³/s, B6 with 0.0036 m³/s, B2 with 

0.003 m³/s and B1 with 0.0003 m³/s. During the wet season B5 continues having the 

highest discharge with 0.633 m³/s. But now is followed by B3 with 0.024 m³/s, B4 with 

0.011 m³/s, B6 and B1 with 0.006 m³/s, B2 with 0.005 m³/s, and B7 with 0.004 m³/s is 

the subbasin with the smallest discharge. 

 

Table 5.2.  In situ discharges of LTA subbasins. Where: MAMe Q (Mean Annual 

Measured Discharge)(m³/s); MDMe Q(m³/s)( Mean  Dry Season Measured Discharge), 

MWMe Q(m³/s)( Mean  Wet Season Measured Discharge) 

 

 

       Subbasin Area (km²) MAMe Q(m³/s) MDMe Q(m³/s) MWMe Q(m³/s) 

B1 1.89 0.004 0.0003 0.006 

B2 0.98 0.004 0.0030 0.005 

B3 2.83 0.011 0.0088 0.024 

B4 2.88 0.006 0.0062 0.011 

B5 122 0.588 0.2508 0.633 

B6 1.39 0.006 0.0036 0.006 

B7 3.32 0.155 0.0217 0.004 
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Table 5.3.  In situ effective discharges of LTA catchment subbasins. Where: MAMe Ef 

Q(m³/km²/y) (Mean Annual Measured Effective Discharge); MDMe Ef 

Q(m³/km²/Aug)( Mean  Dry Month Measured Effective Discharge),  MWMe Ef 

Q(m³/Km²/Nov) (Mean  Wet Month Measured Effective Discharge) 

 

When the effective discharge is calculated and thus, the total area is ignored obtaining 

the discharge per km
2
, the results change considerably as we can observe in Table 5.3. 

where the exact results are presented.  

For the annual mean Mean Annual Measured Effective Discharge (MAMe Ef Q) B7 has 

more than 1475000 m³/km²/y being the subbasin with higher discharge,  followed by 

B5,the biggest subbasin contributing more than 151000 m³/km²/y. B2,the smallest 

subbasin, has more than 138000 m³/km²/y, B6 more than 133000 m³/km²/y, B3 more 

than 120000 m³/km²/y,  B1 more than 74000 m³/km²/y and B4 with around 71000 

m³/km²/y. 

 

On the driest month (August) B7 has now the biggest discharge with 17500 m³/km²/y, 

followed by B3 and B2 with more than 8000 m³/km²/y, B6 with almost 7000 m³/km²/y, 

B4 with almost 6000 m³/km²/y, B5 with almost 5500 m³/km²/y and B1 with the smallest 

discharge with only 425 m³/km²/y. 

 

Regarding the wettest month (November), B3 with almost 22000 m³/km²/y has the 

highest discharge. B2 which is the smallest subbasin is the one with higher discharge 

with more than 13700 m³/km²/y and is followed by B5 with 13400 m³/km²/y, B6 with 

Subbasin 
Area 

(km²) 

MAMe Ef 

Q(m³/km²/y) 

MDMe Ef 

Q(m³/km²/Aug) 

MWMe Ef 

Q(m³/Km²/Nov) 

B1 1,89 74370 425 7954 

B2 0,98 138372 8199 13753 

B3 2,83 120508 8328 21981 

B4 2,88 71018 5766 10080 

B5 122 151272 5483 13401 

B6 1,39 133857 6936 11747 

B7 3,32 1475162 17506 3279 
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more than 11700 m³/km²/y, B4 with 10000 m³/km²/y, B1 with almost 8000 m³/km²/y 

and B7 with more than 3200 m³/km²/y. 

 

 

3.4 Rainfall model. 

The results of the rainfall model represented on Map 3.9.  that use the same color scale 

for the three periods, shows that during wet and dry season the rainfall is more 

homogenous along the subbasin, meanwhile, for the annual mean the rainfall 

distribution is not uniform, registering the highest values of precipitation on the north of 

the LTA catchment and in smaller degree in the southern part surrounding the lake.  

 

The maximum precipitation modelled is over 1100 mm and the minimum is 21mm. The 

results obtained on average for the altimetry classes are presented on Table 5.4. , 

ranging from 726mm to 1115mm for the annual mean, from 26mm to 36mm on the 

driest month, and from 152mm to 214mm for the wettest month. On the three periods 

the lowest altimetry classes have the lowest precipitations, which are increasing 

progressively till their maximum values on the highest altitudes. 

 

Table 5.4. LTA catchment average modelled precipitation (mm) for the Annual mean 

(AMP), the driest month (DP) and the wettest month (WP). 

Classes AMP (mm)  DP(mm) WP(mm) 

0-100 736 26.52 152 

100-200 726 25.53 155 

200-300 778 26.69 166 

300-400 854 29.05 177 

400-500 882 29.90 181 

500-600 1016 34.01 200 

600-700 1083 35.89 209 

700-800 1115 36.62 214 
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Figure 5.9.  Rainfall model for LTA catchment, where a) annual mean, b) wettest month (December) and c) driest month (August).
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5.5 Flow estimation 

The discharges calculated from the rainfall model developed previously are represented 

on Table 5.5. where is evident a considerable decrease in magnitude compared with 

measured ones. Starting with the mean annual modelled discharge follows the same 

trend than the measured discharge. B5 has the highest discharge with 0,320 m³/s, wich if 

followed in decreasing order by B3 and B7 with 0.004 m³/s, B1 and B4 with 0.003 m³/s 

and B2 and B6 with 0.001 m³/s.  

For the dry season the  B5  with 0.006 m³/s still has the highest discharge, being 

followed by B7 and B1 with 0.00006 m³/s, B3 with 0.00005 m³/s, B2 and B4 with 

0.00003 m³/s and B6 with 0.00001 m³/s. Those results show that the trend of the 

discharged obtained in situ is not maintained.  

In case of the wet season the same situation is faced, changing not only the magnitude 

of the value but the trend as well, being B5 the highest with 2.9 m³/s, followed by B3, 

B4 and B7 with 0.05 m³/s, B1 with 0.03 m³/s, and B2 and B6 with 0.02 m³/s. 

 

Table 5.5.  Modelled discharges of LTA catchment subbasins. Where:  MAMo Q 

(Mean Annual Modelled Discharge)(m³/s); MDMo Q(m³/s)( Mean  Dry Season 

Modelled Discharge), MWMo Q(m³/s)( Mean  Wet Season Modelled Discharge. 

 

 

The modelled effective discharges (Table 5.6.) of the annual mean shows difference 

with the ones measured in situ, being B5 the highest with more than 77600 m³/km²/y, 

followed B1 with 52100 m³/km²/y, B2 with more than 46600 m³/km²/y, B3 with 42000 

m³/km²/y, B7 with more than 41100 m³/km²/y, B4 with more than 36500 m³/km²/y and 

B6 with almost 30200 m³/km²/y. 

Subbasin Area (km²) MAMo Q(m³/s) MDMo Q(m³/s) MWMo Q(m³/s) 

B1 1.89 0.003 0.00006 0.03 

B2 0.98 0.001 0.00003 0.02 

B3 2.83 0.004 0.00005 0.05 

B4 2.88 0.003 0.00003 0.05 

B5 122 0.302 0.00614 2.94 

B6 1.39 0.001 0.00001 0.02 

B7 3.32 0.004 0.00006 0.05 
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For the dry month B5 still having the highest discharge with 134 m³/km²/Aug, is 

followed by B1 with 79 m³/km²/Aug, B2 with 73 m³/km²/Aug, B7 with 46 m³/km²/Aug, 

B3 with 42 m³/km²/Aug, B4 with 29 m³/km²/Aug and B6 with 20 m³/km²/Aug. 

Regarding the wet month B5 with more than 64000 m³/Km²/Nov shows the highest 

discharge, and the rest of the subbasins presents much less variation: B1 almost 47000 

m³/Km²/Nov, B3 more than 45400 m³/Km²/Nov , B2 with more than 45100 

m³/Km²/Nov,B4 with 44400 m³/Km²/Nov, B7 around 41500 m³/Km²/Nov, and B6 with 

more than 40800 m³/Km²/Nov.   

 

Table 5.6.  Modelled effective discharges of LTA catchment subbasins. Where: MAMo 

EfQ (Mean Annual Modelled Effective  Discharge)(m³/s); MDMo Ef Q(m³/s)( Mean  

Dry Month Modelled Effective Discharge), MWMo Ef Q(m³/s)( Mean  Wet Month 

Modelled Effective Discharge) 

 

 

 

3.6 Hydrochemistry analysis 

The results of the TN and TP concentrations obtained for the LTA catchment subbasins 

are presented on Table 5.7. and for the  effective discharge of TN and TP on Table 5.8. 

In both cases the values are ranked in the order of most relevant to least relevant 

contribution to the stream. 

 

For Mean annual Total Nitrogen (MATN) presents concentrations of 1246.82 μg·L
-1

 in 

B5, 950.9 μg·L
-1

 in B4, 922.82 μg·L
-1

 in B1, 848.36 in B3 μg·L
-1

,  667.78 μg·L
-1 

in B7, 

578.7 μg·L
-1 

in B2 and 493.01 μg·L
-1 

in B6.  

Subbasin 
Area 

(km²) 

MAMo Ef 

Q(m³/km²/y) 

MDMo Ef 

Q(m³/km²/Aug) 

MWMo Ef 

Q(m³/Km²/Nov) 

B1 1.89 52119 79.26 46913 

B2 0.98 46606 73.35 45113 

B3 2.83 42002 42.92 45463 

B4 2.88 36554 29.54 44401 

B5 122 77640 134 64313 

B6 1.39 30180 20.73 40850 

B7 3.32 41123 46.34 41549 
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During the dry season the concentrations (MDTN) were 1096.64 μg·L
-1

 in B5, 851.19 

μg·L
-1

 in B4, 743.54 μg·L
-1

 in B1, 576.48 μg·L
-1

 in B2, 504.02 μg·L
-1

 in B3, 438.47 

μg·L
-1

 in B7 and 208.71 μg·L
-1

 in B6.   

The concentrations during wet season (MWTN) were equal to 1447.08 μg.L
-1 

 in B5, 

1307.48 μg.L
-1 

in B3, 1161.86 μg.L
-1 

in B1, 1083.85 μg.L
-1  

in B4,973.51 μg.L
-1 

in B7, 

872.07 μg.L
-1 

in B6 and 581.88 μg.L
-1

in B2. 

 

The concentrations of the Mean annual Total Phosphorous (MATP) are equal to 577.27 

μg·L
-1

 in B3, 310.53 μg·L
-1 

in B7, 256.17 μg·L
-1

 in B2, 209.56 μg·L
-1

 in B2 , 188.04 

μg·L
-1 

in B6, 147.37 μg·L
-1 

in B1 and 124,42 μg·L
-1 

in B5.  

During the dry season the MDTP were 620.21 μg·L
-1

 in B3, 435.54 μg·L
-1

 in B7, 

291.12 μg·L
-1

 in B4, 279.21 μg·L
-1

 in B2, 271.09 μg·L
-1

 in B6, 241.25μg·L
-1

 in B1 and 

166.42 μg·L
-1

 in B5.   

The concentrations during wet season (MWTP) were 520 μg.L
-1 

 in B3, 225.35 μg.L
-1 

in 

B2, 143.84 μg.L
-1 

in B7, 77.31 μg.L
-1  

in B6, 68.42 μg.L
-1 

in B5, 44.38 μg.L
-1 

in B4 and 

22.19 μg.L
-1

in B1. 

 

 

Table 5.7. LTA subbasins nutrient concentration in (μg.L
-1

 ) of LTA subbasins. Where, 

MATN is Mean annual Total Nitrogen,  MDTN is the Mean Total Nitrogen of the dry 

month,   MWTN is the Mean Total Nitrogen of the wet month, MATP is Mean annual 

Total Phosphorous,  MDTP is the Mean Total Phosphorous of the dry month and  

MWTP is the Mean Total Phosphorous of the wet month. 

Subbasin  
MATN 

(μg.L
-1

) 

MDTN 

(μg.L
-1

) 

MWTN 

(μg.L
-1

) 

MATP 

(μg.L
-1

) 

MDTP 

(μg.L
-1

) 

MWTP 

(μg.L
-1

) 

B1 922 743 1161 147 241 22.19 

B2 578 576 581 256 279 225 

B3 848 504 1307 577 620 520 

B4 950 851 1083 209 291 44.38 

B5 1246 1096 1447 124 166 68.42 

B6 493 208 872 188 271 77.31 

B7 667 438 973 310 435 143 
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Table 5.8.  Nutrient loads of LTA catchment subbasins. Where: MAETN (Mean 

Annual Effective  Discharge of TN)( Kg/km2/y); MDETN(Kg/km2/y)( Mean  Dry Month 

Effective Discharge of TN), MWETN (Kg/km2/y)( Mean  Wet Month Modelled Effective 

Discharge of TN); MAETP (Mean Annual Effective  Discharge of TP)( Kg/km2/y); 

MDETP(Kg/km2/month)(Mean Dry Month Effective Discharge of TP), MWETP 

(Kg/km2/month) (Mean  Wet Month Effective Discharge of TP) 

Subbasin 
MAETN 

(Kg/km2/y) 

MDETN 

(Kg/km2/Aug) 

MWETN 

(Kg/km2/Nov) 

MAETP 

(Kg/km2/y) 

MDETP 

(Kg/km2/Aug) 

MWETP 

(Kg/km2/Nov) 

B1 1146 0.45 13.11 183 0.15 0.25 

B2 2580 12.94 21.89 1142 6.27 8.48 

B3 1140 3.98 27.23 775 4.89 10.83 

B4 740 4.57 10.18 163 1.56 0.42 

B5 48.55 0.13 0.42 4.85 0.02 0.02 

B6 1492 2.78 19.68 569 3.61 1.74 

B7 9356 6.19 2.58 4350 6.15 0.38 

 

For the annual mean of TN effective discharge B7 is the subbasin with higher 

contribution with 9356 Kg/km
2
/y, and B2, the smallest subbasin, the next in nutrient 

input with 2580 Kg/km
2
/y. B6 contributes with 1492 Kg/km

2
/y, followed by B1 and B3 

with 1146 and 1140 Kg/km
2
/y respectively, B4 with 740 Kg/km

2
/y and the B5, with 

only 48 Kg/km
2
/y. 

On the dry month is B2 which higher TN contribute with 12.94 Kg/km
2
/Aug, followed 

by B7 with 6.19 Kg/km
2
/Aug, B4 with 4.57 Kg/km

2
/Aug, B3 with 3.98 Kg/km

2
/Aug, 

B6 with 2.78 Kg/km
2
/Aug, B1 with 0.45 and B5 with 0.13 Kg/km

2
/Aug. 

For the wet month the TN discharge is considerably higher than in the dry month. B3 

contributes with 27.23 Kg/km
2
/Nov,  followed by B2 with 21.89 Kg/km

2
/Nov, B6 with 

19.68 Kg/km
2
/Nov, B1 with 13.11 Kg/km

2
/Nov, B4 with 10.18 Kg/km

2
/Nov, B7 with 

2.58 Kg/km
2
/Nov, and finally B5 with 0.42 Kg/km

2
/Nov. 

 

TP mean annual effective discharge has shown that B7 with 43500 Kg/km
2
/y is the 

subbasin  that more TP with a considerable difference, followed by  B2 with 1142 

Kg/km
2
/y, B3 with 775 Kg/km

2
/y, B6 with 569 Kg/km

2
/y, B1 with 183 Kg/km

2
/y, B4 

with 163 and B5 with only 4,85 Kg/km
2
/y.  
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For the dry month the highest TP effective discharge in Kg/km
2
/Aug ,is 6.27 on B2, 

6.15 on B7, 4.89 on B3, 3.61 on B3, 1.56 on B4, 0.15 on B1 and 0.02 on B5.  

The wet month TP effective discharge in Kg/km
2
/Nov ,is 10.83 on B3, 8.48 on B2,1.74 

on B6, 0.42 on B4, 0.38 on B7, 0.25 on B1 and 0.02 on B5. 

 

 

5.7 Statistical analysis 

For the PCA and cluster analysis only some variables were selected (Table 5.9.) and 

introduced on the MVSP 3.2 considering that are the most representative. Those 

parameters  were the Slope , Drainage density ,  Stream frequency , Length of overland 

flow , Form factor ,  Elongation ratio ,  Circularity ratio , Infiltration number , Mean 

annual effective discharge,  Mean annual effective Total nitrogen and  Mean annual 

effective Total phosphorous, agriculture, pasture and forest. 

 

-PCA analysis. 

For the PCA and cluster analysis only some variables were selected (Table 5.9.) and 

introduced on the MVSP 3.2 considering that are the most representative. Those 

parameters  were the Slope , Drainage density ,  Stream frequency , Length of overland 

flow , Form factor ,  Elongation ratio ,  Circularity ratio , Infiltration number , Mean 

annual effective discharge,  Mean annual effective Total nitrogen and  Mean annual 

effective Total phosphorous, agriculture, pasture and forest. 

 

-PCA analysis. 

The results of  PCA analysis of variables and cases can be seen on Tables 5.10, 5.11. 

5.12. and are graphically represented on the biplot (Figure 5.1) 

 

Table 5.10. Representability of the two components of PCA analysis for the selected 

variables of LTA catchment. 

 Axis 1 Axis 2 

Eigenvalues 6.359 3.66 

Percentage 45.424 26.141 

Cum. Percentage 45.424 71.566 

 



 

53 

 

 

Table 5.10 show that components 1 and 2 explain the 71.56 % of the variance, and their 

relative contributions are 45.4 and 26.1 %, respectively.  

 

For the hidromorphological variables and land use, in component one (Table.5.11.), the 

relative contribution was 0.36 for S, 0.29 for Dd, 0.26 for Fs, -0.31 for Lg, -0.32 for Re, 

-0.3 for Rf, -0.13 for Rc, 0.27 for If, -0.07 for agriculture, -0.2 for Pasture, 0.16 for 

forest, -0.29 for MAED, -0.29 for MAETN and -0.27 for MAETP.  

 

For component 2 (Table 5.11.), was -0.009 for S, 0.31 for Dd and  Fs,  -0.28 for Lg, 

0.25 for Re, -0.08 for Rf, 0.37 for Rc, 0.27 for If, -0.3 for agriculture, 0.29 for Pasture, -

0.24 for forest, 0.003 for MAED, 0.28 for MAETN and 0.3 for MAETP.  

 

Table 5.11. PCA analysis results of the morphological parameters. 

PCA variables Axis 1 Axis 2 

S(%) 0.363 -0.009 

Dd 0.299 0.31 

Fs 0.261 0.312 

Lg -0.317 -0.286 

Re -0.322 0.249 

Rf -0.3 -0.081 

Rc -0.134 0.378 

If 0.274 0.319 

Agric -0.077 -0.313 

Past -0.2 0.291 

For 0.168 -0.241 

MAED -0.29 0.003 

MAETN -0.296 0.282 

MAETP -0.279 0.302 

 

For the cases (Table 5.12. ), the relative contribution of component one was -0.4 for B1, 

0.77 for B2, -0.27 for B3, 0.63 for B4, 1.14 for B5, 0.06 for B6 and -1.94 for B7. And 

for component 2 was -0.61 for B1, 0.73 for B2, -0.3 for B3,-0.09 for B4, -1.05 for B5, 

1.22 for B6 and 0.08 for B7. 
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Table 5.12. PCA analysis results of the seven subbasins of LTA. 

PCA cases Axis 1 Axis 2 

B1 -0,405 -0,619 

B2 0,776 0,739 

B3 -0,275 -0,303 

B4 0,637 0,099 

B5 1,149 -1,057 

B6 0,064 1,226 

B7 -1,946 -0,085 

 

 

 

Figure 5.1. Biplot of the PCA analysis of LTA subbasins and the morphometric 

parameters: Slope (S); Stream length (Lu); Stream number (Nu); Drainage density (Dd); 

Stream frequency (Fs); Length of overland flow (Lg); Form factor (Rf); Elongation 

ratio (Re); Circularity ratio (Rc); Infiltration number (If), Mean annual effective 

discharge(MAED), Mean annual effective Total nitrogen (MAETN) and  Mean annual 

effective Total phosphorous (MAETP) and % of Pasture, Agriculture and Forest. 
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-Cluster analysis 

The introduction of the same variables on MVSP 3.2 gave as a result of the Cluster 

analysis on a dendogram (Figure 5.2.), where B1 and B3 shows the highest similarities 

between them meanwhile the rest of the basins are attached individually to this first 

cluster. Is B4 the first attached, then B2 with a bit more similarity, and B6, B7 and B5 

are the next subbasins showing a decrease on similarity each time higher. 

 

Figure 5.2. Dendogram obtained of the cluster analysis for the seven subbasins 

of LTA catchment. 

UPGMA

Euclidean - Data log(10) transformed
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Table 5.9. Variables of LTA catchment selected for multivariate statistical analysis: Slope (S); Stream length (Lu); Stream number (Nu); 

Drainage density (Dd); Stream frequency (Fs); Length of overland flow (Lg); Form factor (Rf); Elongation ratio (Re); Circularity ratio 

(Rc); Infiltration number (If), Mean annual effective discharge(MAED), Mean annual effective Total nitrogen (MAETN) and  Mean annual 

effective Total phosphorous (MAETP), Pasture, Agriculture and Forest. 

 

 

S 

(%) 
Dd Fs Lg Re Rf Rc If 

Agric 

(%) 

Past 

(%) 

For 

(%) 
MAED MAETN MAETP 

B1 22.92 1.18 0.53 0.42 0.39 0.18 0.53 0.63 39.72 53.29 6.87 74370 1146 183 

B2 34.92 2.09 3.07 0.24 0.41 0.15 0.66 6.42 33.96 34.16 31.75 138372 2580 1142 

B3 32.66 1.18 1.06 0.42 0.37 0.18 0.53 1.25 24.55 62.43 8.10 120508 1140 775 

B4 38.07 1.64 1.74 0.31 0.35 0.17 0.50 2.85 6.99 61.25 31.45 71018 740 163 

B5 35.93 1.62 1.77 0.31 0.31 0.22 0.20 2.87 17.97 26.09 39.71 151272 48.55 4.85 

B6 23.77 1.89 2.15 0.27 0.47 0.21 0.57 4.06 1.00 100 1.00 133857 1492 569 

B7 4.91 1.07 0.90 0.47 0.57 0.36 0.52 0.97 25.70 62.31 12.00 1475162 9356 4350 
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6. Discussion 

6.1 Discussion of the results 

The maps obtained for the georeferenced data base are powerful tools, because they 

show key factors as land use and slope. The increase of the nutrient loads is associated 

with farming activities as well as runoff processes, which are influenced to a great 

extent by the basin slope (Arreghini et al., 2005; Vendramini et al., 2007). Then, is 

recommended the combined analysis for a better basin management because land use 

and slope and their relationship influence the water quality and quantity. 

 

The water bodies are very vulnerable ecosystems to pollution and soil disturbances that 

results from the land use that introduce compounds into the water and degrade the soil 

enhancing the incorporation of suspended or dissolved solids to the water (Malmqvist & 

Rundle, 2002;  Sperling and Chernicharo, 2005).The land uses registered by Barroso et 

al., (2013) for LTA watershed presents a 36% of natural forest, land cover that is 

associated with low discharges because of the rainfall interception by the trees and a  

priory don’t represent a big source of nutrients.  

 

The rest of the basin is occupied by semi natural systems, with 31% of pastureland, 18% 

of agriculture and 10% of Eucalyptus forestry. The agriculture and cattle are considered 

as an important source of nutrients because of the use of fertilizers and the animal 

manure respectively (Carvalho et al., 2000, Gourley et al., 2012). In addition they are 

associated with the soil degradation, which in turns favors runoff and the nutrient losses 

into the streams (El-Hassanin et al., 1993; Carvalho et al., 2000; Koulouri and Giourga 

2007; Qadir 2014).  

 

The slope is a very important factor affecting soil erosion intensity (Morgan, 1986 ; Fox 

and Rorke, 1999). The average slope of the basin is strongly undulated, considering that 

steep slopes are related with the increase of runoff and thus, soil losses, the negative 

impacts of the land uses may be enhanced (El-Hassanin et al., 1993; Kosmas, 1995; Fox 

and Rorke, 1999; Koulouri and Giourga 2007). This reveals the need of a bigger effort 

on management because those characteristics may alter the hydrological cycles of the 

basin. If land use and slope, variables which alters the hydrological cycles are analyzed 

combined with rainfall, discharge, and sediments and nutrient loads the understanding 
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of the ecosystem increase and is easier to prevent and mitigate negative impacts related 

with the environmental changes.  

 

The morphometric parameters selected for the statistical analysis of LTA subbasins are 

similar to the Lake Nova watershed according to (Amorim 2015), which is interesting 

due to the difficulty to compare the LTA subbasins with other studies because of the big 

difference on climate and size. The similarities of the Lake Nova watershed, being part 

as well to the LDRV Lake District, due to its proximity to LTA make of this study a 

good reference to compare the obtained data. 

 

Is important to analyze the basin shape because the way in which floods are formed and 

move depend on it (Zavoianu, 1985). According to Zavoianu 1985, the rounded basins 

are more prone to floods because they can travel with more velocity, this lead to an 

increase on the erosion and transport capacities and in consequence the suspended load 

is greater and the geomorphology of the basin change faster. Then, elongated basins 

favors a diminution of floods because tributaries flow into the main stream at greater 

intervals of time and space and have higher capacity to distribute runoff (Zavoianu, 

1985; Pareta 2011,2012; Romshoo et al., 2012; Meraj et al., 2015). 

 

Re, Rf and Rc are the shape related parameters which defines the form of the basin. The 

shape related parameter of LTA subbasins are (Table 5.9): for Rf maximum and 

minimum values are respectively 0,15 in B2 and 0,36 in B7, the maximum and 

minimum Values for Re are respectively  0,47 in B1 and 0,28 in B7 and for Rc the 

maximum and minimum values are respectively in 0,66 in B2 and 0,2 in B5.  

 

Drainage density (Dd), infiltration number (If), stream frequency (Fs) are properties 

linked with the hydrological response of a drainage basin based on the infiltration 

capacity of the watershed, which is influenced by the permeability and relief (Horton, 

1945; Strahler 1964; Melton 1957; Zavoianu 1985;  Moglen 1998; Pareta 2011,2012; 

Romshoo et al., 2012; Meraj et al., 2015).  

 

The Dd values obtained for the LTA subbasins (Table 5.9) varies between 1 and 2. 

Different authors agrees that drainage density varies from 0,5 km/km
2
 to 3,5 km/km

2
. 

The basins with higher values are more prone to erosion because they are better drained, 
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associated with impermeable materials, lower infiltration capacity and in consequence, a 

relatively rapid hydrological response to rainfall events.(Horton 1945;  Carlston 1963; 

Moglen 1998; Almeida et al., 2009; Romshoo et al., 2012). Then subbasins, which 

present medium low values, are prone to runoff processes.   

 

Fs is related to permeability and infiltration capacity of watersheds (Montgomery and 

Dietrich 1989). In general low values are associate to soil erosion and are also 

associated with low stream quantity and capacity of generation of new ones , wich is the 

situation od LTA subbasins (Table 5.9). 

 

The range of Values of If on LTA subbasins is very wide (Table 5.9), and in 

consequence this parameter is highly dependent of the subbasin. This value is inversely 

proportional to the infiltration capacity (Romshoo et al., 2012), the higher values shows 

lower infiltration capacity which is associated with early discharge peaks, thus, higher 

runoff which in last term is associated to soil degradation. 

 

 

To analyze the water flows were obtained in situ measurements of discharge and 

modelled discharge to calculate after effective discharges where the water flow is not 

dependent of the size of the subbasins. 

 

 The in situ discharge measurements results show that for the seven subbasins of LTA 

watershed the mean annual measured discharge is 0.67 m³/s, a high value compared 

with the result of Amorim (2015) where the mean annual discharge of the three 

subbasins of Lake Nova which conforms a much bigger watershed is 0.54 m³/s.  

 

Mean annual measured discharge shows that the biggest subbasin, B5, compared with 

the other subbasins (Table 5.2.), contributes with sharply higher discharge (0.588 m³/s) 

and the smaller subbasin, B2, with the smallest discharge (0.004 m³/s). On the dry 

season B5 still contribute with the highest discharge of 0.2508 m³/s, but B1 shows the 

smallest with 0.0003 m³/s. And during the wet season B5 continues having the highest 

discharge with 0.633 m³/s and B7 with 0.004 m³/s is the subbasin with the smallest 

discharge. The magnitude of the discharges during the wet season where the higher ones 

for the tree periods of time for all subbasins except for B7, this may be caused for the 
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presence of the outflow of a lake adjacent to B7 which presents a source of water even 

on the dry periods, however there were no visual connection and was not considered on 

this study. For the three periods the biggest subbasin presents the higher discharges, 

then, was interesting avoid the size factor and calculate the effective discharge.  

 

The results of the effective discharge have shown the importance of small subbasins on 

LTA catchment. The results of Table 5.3. showed that B5, almost 120 km² bigger than 

the rest of subbasins, presented the biggest discharge with a very important difference 

on magnitude with regard to the others, nevertheless once the effective discharge was 

obtained the changes were considerable and the biggest subbasin wasn’t any more the 

one with the biggest discharge. For the annual mean effective discharge, B7 with 

1475162 m³/km²/y is the highest, meanwhile B5, even having the second higher 

discharge, is much smaller with only 151272 m³/km²/y. Is important to mention that this 

discharge that is closely followed by B2, the smallest subbasin with 138372 m³/km²/y.   

On the driest month (August) B7 has now the biggest discharge with 17500 m³/km²/y 

and B1 with the smallest discharge with only 425 m³/km²/y. During the wettest month 

(November), B3 with almost 22000 m³/km²/y has the highest discharge and B7 the 

smaller with more than 3200 m³/km²/y. As well as for direct discharges the wet period 

presents bigger discharge than during the dry period, except for subbasin B7, 

nevertheless, the discharges during the mean annual are the ones with bigger magnitude 

while for the direct ones were on the wet period. 

 

The results of modeled discharges (Table 5.5) are based on a rainfall model (Table 5.4) 

where the altimetry class is an important factor for the precipitation, precipitation which 

increases simultaneously with the elevation of the area. The magnitude of the 

precipitation is much higher for the annual mean than for the wet period.  

 

The mean annual modelled discharge follows the same trend than the measured 

discharge where B5, the biggest subbasin B5 has the highest discharge (0.320 m³/s) and 

B2, the smallest subbasin together with B6 only have 0.001 m³/s. For the dry season the 

B5 with 0.006 m³/s still has the highest discharge and B6 with 0.00001 m³/s the 

smallest,  and in case of the wet season the same situation is faced, changing not only 
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the magnitude of the value but the trend as well, being B5 the highest with 2.9 m³/s, and 

B6  the lowest with 0.02 m³/s.  

 

In other hand, the modelled effective discharges (Table 5.6.) of the annual mean shows 

difference with the ones measured in situ, being B5 which more contribute, with  more 

than 77600 m³/km²/y, and B6 the subbasin with less contribution with almost 30200 

m³/km²/y. For the dry month B5 still having the highest discharge with 134 

m³/km²/Aug, and B6 the smallest with 20 m³/km²/Aug. Regarding the wet month B5 

with more than 64000 m³/Km²/Nov shows the highest discharge and B6 with more than 

40800 m³/Km²/Nov the lowest.  The magnitudes of the discharge were also bigger for 

the wet period than on dry period for all subbasins meanwhile for the measured that was 

valid for all subbasins with the exception of B7.In contrast with the measured effective 

discharges the magnitude of mean annual discharge are not bigger than on wet period 

for all the subbasins, being higher on wet period for B3, B4, B6 and B7. 

 

The comparison between the measured in situ discharge and the modelled obtained with 

the rainfall model shows a considerable difference.  The results obtained with the 

modeled discharges are clearly not in line with the trends of the measured discharges, 

and the magnitudes of the values of the modelled discharge are smaller. It was expected 

that the measured discharges were smaller than the modelled ones due to the natural or 

anthropogenic factors of water loss, especially due to water extraction for land uses like 

irrigation that requires high quantities of water.  Nevertheless, in situ discharges are 

significantly higher than the modelled, same situation than in the study of Amorim 

(2015) where a similar rainfall discharge model showed the same situation. There are 

many factors that may affect, as the rainfall intensity and timing, but this factor affects 

as well the measured ones. The influence of the groundwater may be a determinant 

factor for those differences, because the contribution of the groundwater is present on 

the in situ discharge but unfortunately we can´t quantify it, nevertheless the modelled 

discharges are only based on rainfall data which may be an important reason why the 

magnitudes are so different and much smaller.  Dams presence may influence those 

differences as well because the dams generate variations on hydrological regime, 

occasioning the disruption in the magnitude or timing of natural river flows and in 

consequence processes taking place on the stream channel as erosion processes and 
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sediment transport with repercussion on the structure and function of the water bodies 

(Zalewski et al., 1997; Puckridge et al., 1998; Brandt 2000; Rossemberg et al., 2000;  

Coelho 2008). Even the small dams for irrigation that could represent a very strong 

effects on the hydrological flows individually, when are constructed in series along the 

river produce de denominated cascade effect, amplifying enormously the complexity 

and magnitude on the impacts on the hydrological flows (Troms e Walker, 1993; 

Brandt, 2000;  Coelho, 2008). Considering that on LTA catchment are 33 small dams, 

the fluvial fragmentation due to the small impoundments along the streams could be the 

factor that explains this situation. 

  

The seasonality between modelled and measured was different as well, because if the 

trend of all subbasin is that the higher discharges are registered on wet periods, the 

modelled didn’t consider the exception that takes place on B7 which has bigger 

discharge on dry period than on wet period. 

 

In consequence, due to those considerable differences obtained between the modelled 

discharges and the in situ ones, we consider that this model is not representative enough 

and can’t be applied with accuracy to the study area, even if the methodology followed 

to develop the rainfall model and the discharge calculations showed that the results 

obtained were reliable in studies as Vicente-Serrano (2003).  

 

As was mentioned before, different authors agree that the alterations on water quality 

which generate impacts on the aquatic ecosystems, are related with the direct input of 

nutrients which derivate from the land uses as agriculture and cattle and at the same 

time, the interaction between those land uses and their influence in soil degradation 

which as well enhance the nutrient inputs because promote the incorporation of 

suspended or dissolved solids to the water (Prato et al.,1989; Downing et al., 1999; 

Carvalho et al., 2000; Malmqvist & Rundle, 2002;  Arreghini et al., 2005 Sperling and 

Chernicharo2005 Santos 2005; Gourley et al., 2012; do Vale et al. 2013). 

 

Regarding the nutrient concentration results (Table 5.7.), the Mean annual Total 

Nitrogen presents highest concentrations in B5 (1246.82 μg·L
-1

), and the lowest in B6 

(493.01 μg·L
-1

). During the dry season, with 851.19 μg·L
-1

 B5 has the highest and B6 

the lowest with 208.71 μg·L
-1

. During wet season with 1447.08 μg.L
-1 

 , B5 continues 
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showing the highest but now has B2 the lowest with  581.88 μg.L
-1

. The TN 

concentration during the wet season was higher than in the dry period for all subbasins, 

being even higher than in the annual mean. 

 

The concentrations of the Mean annual Total Phosphorous (Table 5.7.) presents some 

differences with TN, having as the higher concentration 577.27 μg·L
-1

 in B3, and the 

lowest in B5 (124.42 μg·L
-1

.).  620.21 μg·L
-1

 in B3, and 166.42 μg·L
-1

 in B5.  For dry 

season the higher and lower concentrations were respectively 520 μg.L
-1 

 as well in B3, 

and 22.19 μg.L
-1

in B1. The TP concentration during the dry season was higher than in 

the wet period for all subbasins, being even higher than in the annual mean. 

 

Comparing the results with a lake of the same lake district (LDRV) registered on the 

study of Amorim (2015), the higher concentrations of TN and TP in lake Nova were 

registered during the dry and cold periods meanwhile in lake Terra Alta the 

concentrations of TP are higher during the dry cold period but for the TN is during the 

we period where the higher concentrations have been registered. The concentrations of 

TN of Lake nova ranged between 279 μg·L
-1

  and 1646,4 μg·L
-1

 on dry season, between 

198 μg·L
-1

  and 1059 μg·L
-1

 on wet season, between 20μg·L
-1

 and 44μg·L
-1

 on dry 

period and between 13μg·L
-1

 and 164μg·L
-1

 on wet period.  Then, concentrations of the 

nutrients of the LTA subbasins are in general higher than on the subbasins of Lake 

Nova with the exception of TN on the dry season. 

 

According to the Brazilian law nº 357 de 17/03/2005 (CONAMA 2005) for water 

quality , in fresh water of class 2 the maximum concentrations of TP the maximum 

concentration is 100 μg·L
-1

.  The values of LTA subbasins exceed the TP maximum 

concentration during the dry period in all subbasins and during the wet period on 

subbasins B2, B3 and B7, then special attention should be put on those subbasins. 

However, there is not a maximum value stabilized for TN , being only proposed a 

maximum value for TN when the competent environmental authority determines that 

the nitrogen is the limiting factor for eutrophication, then the maximum value is 

2180μg·L
-1

(Siqueire  et al., 2012). 

 

For the annual mean of TN effective discharge (Table 5.8.) B7 is the subbasin with 

higher contribution with 9356 Kg/km
2
/y, and B2, the smallest subbasin, the next in 
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nutrient input with 2580 Kg/km
2
/y. B5 presents only 48 Kg/km

2
/y. On the dry month is 

B2 which higher TN contribute with 12.94 Kg/km
2
/Aug, and B5 contribute the less with 

0.13 Kg/km
2
/Aug. For the wet month B3 contributes with 27.23 Kg/km

2
/Nov and B5 

with 0.42 Kg/km
2
/Nov being the subbasins with respectively higher and lower loads. 

The TN effective discharge during the wet season was higher than in the dry period for 

all subbasins, however was much higher for the annual mean. 

 

TP mean annual effective discharge (Table 5.8.) has shown that B7 with 43500 

Kg/km
2
/y is the subbasin that more TP contributes and with only 4.85 Kg/km

2
/y, the 

less. For the dry month the highest TP effective discharge is 6.27 Kg/km
2
/Aug on B2, 

and the lower is 0.02 Kg/km
2
/Aug on B5. The wet month a highest contribution is 10.83 

on B3, and the lowest 0.02 Kg/km
2
/Nov on B5. 

The seasonality on the TP effective discharge is not so clear as for TN e because 

TPeffective discharge was higher during the dry period than during the wet on B4, B6, 

B7, higher on wet period for B1, B2, B3 and equal on B5.on the three cases the annual 

mean was higher than the season with higher discharge. 

 

Is important to highlight that the trend of TN and TP match on the two subbasins 

regarding the subbasins with more contribution of nutrients during the annual mean, 

being B2 and B7 in the and B4 and B5 the subbasins with the smallest contribution. The 

nutrients effective discharge from B2 is surprisingly high, being the second in 

importance for the annual mean, being the smallest subbasin with only 0,98 km2 . In 

contrast, the biggest subbasin B5 has shown the smallest Tnutrients effective discharge. 

This fact is necessary to be considered by the managers.  

 

The PCA analysis (Table 5.11) showed a very strong correlation between Dd, If, and Fs 

in both axis, being the most evident relationship on the biplot (Figure 5.1). B2 is located 

very close to them on the diagram, fact that corroborates the results of the calculations 

where B2 has the highest values of those parameters.  

 

The values of the Form factor(Rf) elongation ratio (Re)and circularity ratio (Rc) are the 

three more representative parameter of basin shape (Majed 2009). On LTA subbasins 

agree with their low values , which means that are more elongated subbasins. The more 

elongated basins are associated with low peak discharges being less prone to floods 
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(Christofoletti, 1981; Romshoo et al., 2012; Magesh et al., 2013). Those parameters 

show correlation on the PCA(Table 5.11), having Re more correlation on axis 1 with Rf 

and on axis 2 with Rc.   

 

Re and Rc agree on the two more elongated subbasins being B4 and B5  and B6 as the 

second more circular, but Rc considers B2 as the most circular instead of B7.  

Rc, is related with the stream frequency, geology, land use and slope of the basin 

according Kaur et al. 2014. This definition consider the shape of the basin but at the 

same time the soil structure being a transitional parameter between the two main groups 

of parameters that we differentiate on the PCA analysis, matching with its location on 

the biplot (Figure 5.1), closer to Re and at the same time correlated by axis 2 with Dd, If 

and Fs.   

On the other hand, according to Strahler 1964 the results of Re and Rf should be 

similar, nevertheless on the LTA subbasins there are some relevant differences on the 

results that may cause this lack of correlation on the PCA. B7 is the most circular for 

both parameters (Table 5.9), B1,B3 and B4 are on the same position, and B6 is almost 

at the same place being consider one of the more circular, nevertheless there are 

divergences with the most elongated, where for Re is B5 and for Rf is B2, subbasin that 

visually on the (Figure 5.2) does not match with the results.  

 

Continuing with Rf and Re is observed an interrelation with Length of overland flow 

(Lg) having similar values on axis 1. On axis 2, are Rf and Re are more related between 

them and both presents good correlation with mean annual effective discharge(MAED) 

on the axis 1 of the PCA (Table 5.11), specially Rf.  Lg, that showed less correlation 

with the previous parameters, depends on the slope and is influenced by the land use 

and type of cultivation (Zavoianu 1985). The correlation with slope on  the PCA is not 

evident but forestry and agriculture show some correlations respect the axis 2, specially 

with agriculture. 

 

Medium high slopes favors erosion processes due to rapid runoff (Magesh et al., 2013) 

We can observe this relationship on the biplot (Figure 5.1) because slope is 

considerably well related with Dd, Fs and If, parameters which influence the runoff. 
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and the LTA subbasins are considered in general strongly undulated according to 

Embrapa 1979 classification. That means that this factor may be decisive on specific 

subbasins for water and nutrient flows. 

 

The increase of the nutrient loads is associated with farming activities as well as runoff 

processes, which are influenced to a great extent by the basin shape (Arreghini et al., 

2005; Vendramini et al., 2007). The biplot (Figure 5.1) shows a considerably high 

correlation between Re, TN and TP discharge (MAETN/MAETP) and pasture lands 

(past), and in lesser extent with MAED, Rc and Rf.  The  MAED and Rf shows bigger 

correlation between them on both axis of the PCA as we mentioned above, but the 

values of axis 1 correlate those parameters considerably with Re and nutrient loads.  

 

 

To sum all the information generated, most of it present on the statistical analysis, the 

comparison of the results of the morphometric parameters, land use and hydrological 

flows between subbasins will help to distinguish the variables that more influence the 

water quantity and quality for each subbasin and in relation with the others.. 

 

PCA and cluster analysis (Figures 5.1. and 5.2.) agree on the correlation between B1 

and B3 even if B3 is twice as large as B1, for this reason is interesting analyze them 

together. The results of the basin shape are the same for both subbasins revealing that 

are considerably elongated according to their values of Rc, Re and Rf, which indicated 

that are less prone to floods.  The Dd, Fs and If  values are small compared with other 

subbasins thus, according to different authors (Horton 1945, Strahler 1964; 

Montgomery and Dietrich 1989; Romshoo et al., 2012). The lower values indicates that 

permeability of the substratum is higher, increasing and infiltration capacity, 

characteristics that show that there is lower availability of water to flow into the stream 

and are less prone to erosion, which may be related with the fact that are subbasins with 

low discharge. Nevertheless B1 effective discharge is much smaller. Considering that 

the morphometric parameters are very similar (Table 5.9), the low discharge may be 

more pronounced for the water withdraw for irrigation in two subbasins where 

agriculture is important in magnitude, especially for B1 where the agriculture is a 15 % 

higher and the discharge much lower. In addition B3 has a bigger stream order that 

generally involve higher discharge (Romshoo et al., 2012). The higher slope and length 
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of overland flow also favors the higher discharge and erosion processes transporting 

more sediments and nutrients to the streams. We can forget as well the contribution of 

the groundwater on the discharge that may vary significantly between subbasins, on this 

case being higher on B3, unfortunately there are not studies on this regard to  contrast 

this hypothesis. The nutrient input is medium low compared with other subbasins (Table 

5.9) for effective discharge, which on this case cannot be attributed to the dilution 

processes mentioned by Bowes et al., 2008 because of the low discharge, particularly on 

B1. However for TN they have almost the same contribution, and is on TP where the 

difference increase being on B3 notably higher. On this point is important remember 

that the concentration of B3 was very high, being over the limits that the Brazilian 

environmental criteria and regulations (CONAMA), which should be consider for 

management actions. The high values of TN for B1don´t seem to be result of the 

transport of the nutrients by the water because the discharge is low and is not very prone 

to erosion. Then, the high input seems to be more related with bad practices of the 

agricultural activities which are very water consuming which can be one main driver of 

the low discharge on B1, promote soil degradation and the wash out of nutrients from 

soils and their flow to the streams with the water of irrigation, and the use of fertilizer in 

higher concentrations that the required. Then, we could assume that land use, concretely 

agriculture is a principal factor determining hydrological flows on B1. Meanwhile, on 

B3 where the discharge is slightly higher than in B1 with very similar morphological 

parameters, land use seems to be determinant. In one hand more than the 60% of the 

basin is pasture land, activity that does not require water withdraw from the stream. In 

other hand its phosphorous discharge is much higher than on B1 meanwhile the nitrogen 

is almost the same, then, the phosphorous provided by the cattle manure  of a land use 

much more extended and less balanced with agriculture on B3 may be the responsible 

of the high concentration of TP which even exceed the environmental law limit. 

   

According to the results showed on table. B4, presents high values of slope, this agree 

with the very evident correlation on the PCA(Tables 5.11. and 5.12.) The results (Table 

5.9) show as well that is the second more elongated subbasin but its relation on the PCA 

with the shape related parameters is not very strong. In other hand, the medium high 

values of Dd, Fs and If , which shows more correlation on the biplot (Figure 5.1)., are  

characteristics that show low infiltration capacity and vulnerability to erosion processes 

that favors the sediment and nutrient inputs to the streams, which could be enhanced 
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due to the steep slope. Nevertheless the value for the annual discharge is very low 

compared with other subbasins. Being pasture the main land use, agriculture has a small 

presence on the basin, fact which dismiss the water withdraw for irrigation as a decisive 

factor for the low discharge values. The considerably high presence of forest located in 

the upper part of the basin, where is more prone to erosion due to the higher slopes 

(Figure 5.4.) ,  may be a decisive factor to reduce the water discharge because of the 

capacity of the vegetation cover, between other processes, to intercept the rainfall, 

increase the water infiltration, and transpiration, which results on a decrease of the 

speed and strength at which the water gets to the river, decreasing erosion  and reducing 

the river discharge (Zhou et al., 2010; Birkinshaw et al., 2011; Iroumé and Palacios, 

2013) . This low discharge related with the high presence of natural vegetation may be 

reason why B4 presents very low nutrient effective discharge compared with other 

subbasins because the reduced transport of sediments and nutrients into the stream. 

 

According to the cluster analysis ( Figure 5.2.) B5 is the subbasin less related with the 

others that conforms LTA catchment, nevertheless the results of the morphometric 

parameters (Table 5.9) are very similar to B4, insinuating a medium-big river discharge 

due to the low infiltration capacity and vulnerability to erosion because it has medium 

high values of Dd, Fs and If and high values of slope. Contrary to B4, B5 discharge 

match up with higher values of discharge, which is expected for a basin with those 

morphometric characteristics, having very high effective discharge. Is important to 

consider that B5 has the highest stream order, which is associated with greater 

discharges (Romshoo et al., 2012) and as we mentioned before the contribution of the 

groundwater on the discharge, on this case increasing it, unfortunately there are not 

studies on this regard to  contrast this hypothesis.. As on case of B4 the effective 

discharge of nutrients is low, on this case, could be related with dilution processes and 

the strong influence of vegetation cover. Being the natural forest a 40% of the basin use 

and silviculture a 11% and mostly associated with high slope areas (Figure 5.5.) the 

erosive processes that transport sediment and nutrients can be buffered. The influence of 

the groundwater could be as well very important on the nutrient loads. On B5 then, the 

water discharge is greatly associated with the morphometry parameters, nevertheless, 

the nutrient loads is not so clearly dependent on morphometry but is more with land use. 
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On the case of subbasin B2, the very high values of  Dd, If and Fs , insinuates a quite 

rapid hydrological response and a low infiltration capacity. The relief of B2 is relatively 

high being one of the biggest slopes compared with the other subbasins, characteristic 

that favors runoff and increase the effects of the high hydrological response indicated by 

the previous morphometric parameters. The PCA analysis shows a very good 

correlation of slope, those parameters and the basin for axis one (Tables 5.11 and 5.12). 

Those characteristics are evident on the high discharge, being the third subbasin with 

more effective discharge. Even if as on case of B4 maintains a considerable area of 

forest located on the areas of higher slopes (Figure 5.2.), seems that vegetation cover 

don’t have the same relevance reducing river discharge. Agriculture and pasture land 

represents more than the 30% of the basin each one (Table 5.9), those land uses itself 

favor soil degradation which leads to erosion processes increasing water and nutrient 

flows, as well as the nutrient input related with the presence of manure and fertilizers 

use (Carvalho et al., 2000) and as a result of those characteristics, compared with the 

other subbasins B2 is the second subbasin with more contribution of effective TN and 

TP, being interesting highlight the strong correlation presented on the Biplot (Figure 

5.1). In addition, the concentrations of TP exceed greatly the environmental law 

limit(Table 5.7) , and as on case of B3 may be related with the input of manure by 

cattle, because even if the agriculture and pasture, are balanced in percentage of 

occupation, on the biplot ( Figure 5.1.)  can be observed that the correlation of pasture 

and TP is much higher than for agriculture. As a result of all those characteristics we 

could conclude that the morphometric parameters as well as cattle farming seem to be 

key factors controlling B2 hydrological flows. 

 

Continuing with subbasin B6 wich is well correlated  with B2 on the biplot and the 

cluster (Figures 5.1. and 5.2.) can be observed their similarities with big 

hydromorphological parameters which favors higher discharges, being B6 as well a less 

elongated subbasin with low slope, and slightly smaller values of Dd, If and Fs on B6 

compared with B2. Those characteristics influence B6 to have considerably high 

discharge being the next subbasin with more effective discharge after  B2. This high 

discharge strongly related with morphometry parameters could be the decisive factor 

influencing the medium high discharge of nutrients present on B6 compared with other 

subbasins. The fact that the land use is exclusively pasture on this area should be 
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consider and may be the reason why the nutrients loads are although noticeably smaller 

(Table 5.9), especially for TN effective discharge than B2 where agriculture is present.   

 

B7 presents very high values of shape related morphometric parameters (Table 5.9) 

suggesting a more circular basin which as authors as Zavoianu, 1985, Pareta 2011,2012; 

Romshoo et al., 2012, Meraj et al., 2015 recognize that are more prone to flood. At the 

same time PCA analysis (Figure 5.1.) shows that is very correlated with basin shape 

parameters. The lowest slopes and very low values of Dd, Fs, and If, all characteristics 

of well drained basin, with permeable soil and good infiltration, circumstances 

associated to lower runoff and slower hydrological response. However B7 presents the 

higher effective discharge compared with other subbasins which could be associated 

with the close presence of the outflow of a adjacent lake and their groundwater 

connection. With the nutrient loads is as well the basin with notably highest values , 

situation that is evidenced on the PCA analysis (Figure 5.1., Table 5.9) where is much 

correlated with water and nutrient loads. At the same time, is well correlated with 

pasture that is the predominant land use and provably the variable responsible of the 

very high concentration of TP that as well as B2 and B3 excess the law limits (Table 

5.8). This land use may be also related with the increased discharges because increase 

soil erosion. 

 

On this case it would have been useful use the rainfall Figures developed for this 

subbasin in order to know if the higher discharge of water and nutrients was related with 

big and strong rainfall, but as results weren’t satisfactory, we will assume that should be 

directly related with land use, considering that the use of the pasture lands is quite 

intensive in number of cows and degrade enormously the soil increasing sharply the soil 

compaction and erosion. 

 

 

6.2 Ecohydrological perspectives 

To achieve a sustainable use of the water resources is necessary a more integrated 

approach (Omedas et al 2011) based in a better governance, the policy making and 

control has to be based in stakeholders participation and education, all supported by the 

new scientific knowledge to reach a good ecological estate of the water the resources as 
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well as a good socio-economic status. 

 

Ecohydrology creates a new background for the assessment and management of 

freshwater resources and accelerates the implementation of an idea relating to 

sustainable development, because it fulfils the two fundamental conditions of successful 

strategic action according to decision-making theory: elimination of threats and 

amplification of chances (Zalewski et. al. 1997). Ecohydrology quantifies and explains 

the relationship between hydrological processes and biotic dynamic at a catchment scale 

(Zalewski et. al. 2004). For this reason in necessary understand the biotic and abiotic 

properties and processes of the ecosystem, to use them as a management tool and 

increase the carrying capacity, resistance and resilience of the own ecosystem to be able 

to be adapted to human impacts (UNESCO-IHP, UNEP-IETC. 2004). In addition, the 

socio-economic dimension, is complicated when the main ecosystem service provided 

by the ecosystem is the provisioning of water for food production, so is necessary apply 

a management which find a sustainable equilibrium between the water resources and the 

economy. A well-managed policy with the ecohydrological approach also could 

confront this situation because try to find an easier solution based in the buffer capacity 

of the ecosystem. 

 

The use of a decision tree could represent a useful tool for the first stages of an 

integrated watershed plan because represents a good resource for an easy understanding 

of the principal factors which affect the ecosystem integrity, on case of LTA watershed 

the hydrological flows in quantity and quality. Some examples of decision trees 

reference for aquatic ecosystems are the Rawson (1939) diagram explaining the 

principal factors which determine the quantity and distribution of the biological 

community, nutrient cycling and general lake productivity, which was modified 

afterwards by Cole (1994); the Richardson (1996) about eutrophication effects or the 

Reynolds (1992) related with the phosphorous presence on lakes. 

 

 

This kind of resource is important for basin managers with inadequate and or 

insufficient scientific knowledge to face a concrete problem.  In regard, will help 

managers and decision makers to develop a general study, as the one that is developed 

on this thesis, and with its results identify the subbasins which need priority 
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intervention. Once the priorities are defined a deeper study of this subbasin may be 

developed in order to create and specific action plan, on this way time and economic 

resources can be minimized. But decision trees are also a powerful tool for the 

integration of all the stakeholders in the process, making them actively partakers and 

make them understand the processes taking place and balance the different needs to 

obtain a water resources management sustainable in all the dimensions. Then is an 

optimum source for environmental education of local communities.  

For the cases as of LTA watershed, where the objective is to know the factors affecting 

the hydrological flows in quantity and quality, the following decision tree is proposed 

(Figure 6.1.).  

 

For LTA watershed morphometry and land use are the key drivers of environmental 

degradation, both affecting the soil integrity and nutrient inputs. In consequence the 

mitigation and restoration measures should be focus on soil protection and nutrient 

reduction. 

 

A first step should be an environmental education program where show and apply 

different sustainable agricultural practices as ecological agriculture to avoid the use of 

pesticides and fertilizers to avoid the nutrient inputs, crop rotations and association of 

crops, scientific irrigation calculating evapotranspiration to avoid salinization and soil 

degradation, creation of farmers cooperatives and facilitation of the relationships 

between the agricultural activities as the use of the animal manure coming from close 

farms and lands, appropriated techniques of fertilization even if is coming for an animal 

source. A wide range of good practices  widely spread and well know relatively easy to 

teach and apply.  
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Figure 6.1. Decision tree for hydrological flows determination. 

 

In other hand exists many other measures more complex that requires a deeper scientific 

knowledge on the field of phytotechnology or green engineering.  

 

To reduce the impact of nutrients is very recommended the preservation of the ecotones, 

areas that consists on belts of permanent vegetation including herbs, grasses, shrubs, or 

trees adjacent to the aquatic ecosystems,  creating then a land/water buffer zones  that 

remove or trap nonpoint source pollutants (Schiemer and Zalewski, 1991; Mander et al., 

1997; Mandera et al., 2005; Passeport et al., 2013). Phosphorous and nitrogen are 

effectively reduced on those areas because plants assimilate those compounds, 

microbiological processes as denitrification which reduce nitrogen removal are 

stimulated, sorption of phosphorous through the soil decreasing its availability  and 

favors river bank stabilization allowing sedimentation processes and in consequence 

reducing runoff and nutrient (Lowrance et al., 1984; Vought et al., 1995; Syversen, 
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2005; Hoffmann et al., 2009; Raty et al., 2010; Parn et al., 2012) The construction or 

restoration of ecotones in LTA watershed is then the principal objective. Below are 

exposed two techniques related with the buffer zones with very satisfactory results in 

nutrient removal. 

 

Bioengineering favors the nitrogen removing with denitrification barriers like Walls 

constructed vertically underground for groundwaters and run off. Beds immersed in 

small streams, drainage systems or at the outflow from a point source, and Layers to 

support septic tank drainage fields or under irrigated top soils, all constructed with 

materials rich in carbon, can change the polluting forms of N into non pernicious N that 

pass to the atmosphere, being very effective decreasing in some cases even in a  70%. 

(Bednarek et al., 2014). Also similar barriers based on limestone have been constructed  

to reduce phosphorus levels through absorption by the barrier showing good 

effectiveness, reducing concentrations in the groundwater by 58% (Kiedrzyńska et al., 

2008) Those kinds of barriers are even more effective against the nutrient pollution if 

are integrated and coordinated with the construction of buffer zones, or artificial 

wetlands  

The next ecohydrological measure is as well related with the buffer zones or artificial 

wetlands because takes place on the water.  Technology developed by Teuro Higa 

during the 1970´s at the University of Ryukyus, Japan (Namsivayam et al.2011) 

denominated The Effective Microorganisms (EM) is based in a multi-culture of 

coexisting anaerobic and aerobic beneficial microorganisms (Moyo et al.) non-

genetically modified, containing Lactic acid bacteria, Photosynthetic bacteria and 

Yeasts in a solution (Rashid and West, 2007), in which each group of microbes plays a 

different role. Meanwhile, lactic acid bacteria promote the fast breakdown of organic 

substances, yeast produce many active agents as amino acids and polysaccharides that 

will become the feed for other microorganisms, and the Photosynthetic bacteria play a 

special role in nutrient cycles, especially Nitrogen and Carbon. 

 

Originally it was developed to enhance microbiological communities in soils but have 

been shown that EM can have many different applications in the field of agriculture 

with success, and in recent years have been apply in different systems of water 

treatment (Rashid and West, 2007). The effectiveness is the key of success of this 

technique is based in the synergic effect of these tree groups of microorganisms and 
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their adaptability to work in broad range of conditions, their capability to displace by 

competitive exclusion other microorganisms as pathogens. This technique has shown 

good results not only in the removal of BOD, COD, TSS, but also in nitrogen and 

phosphorous, being a very good alternative to deal with eutrophication processes in the 

water bodies. In Poland, a study was carried out with a probiotic technology based in 

the EM in ponds. After the previous treatment of sewage water in a constructed wetland 

system with willow vegetation filter with subsurface horizontal flow, the study of 

Jóźwiakowski et al., (2009) has shown a significant drop in total nitrogen by 56.9% and 

total phosphorous by 77.6%. 

EM are especially effective combined with Duckweed in nutrient removal, both 

treatment together show more efficiency reducing nutrients, with reduction rates of NH4 

by 86% and total P by 99% (Rashid  and  West 2007). 

 

In conclusion those techniques are very effective but there is a plenty of options 

(phytotechnology, biotechnology and biomanipulation, ecohydrologycal engineering) 

that offers the possibility to adapt the technique to the problem. Putting an especial 

effort in the restoration or creation of riparian corridors is recommended because they 

act as buffer zones for nutrient retention and bank stabilization increasers. 
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7. Conclusions 
The present study considers morphometry, hydrography and land use of the catchment 

with the objective to understand how they affect the hydrological flows of the LTA 

watershed in order to achieve a more integrated and efficient basin management 

favoring the sustainability of the ecosystem services provided by this watershed.  

 

The results obtained reveals that morphometry is responsible of the water discharge in 

most of the subbasins, but at the same time, land uses interfere as well on the 

hydromorphological characteristics increasing soil vulnerability as in case of agriculture 

and pasture or buffering it as in case of the natural forest. Land uses especially 

agriculture influence as well discharge reducing water availability due to water 

extraction. Is on nutrient load where the land use is the main driver, increasing nutrient 

inputs with agriculture and pasture wastes or buffering those inputs into the water with 

natural vegetation. Nevertheless, further studies are necessary to complement this 

information and obtain more accurate one. A runoff potential analysis including a 

sediment transport study will be very important to increase the knowledge of erosion 

processes. Will be important as well a better knowledge of the state of the riparian 

corridors of the rivers and an assessment of the wetland areas. 

 

The use of GIS, is indispensable to obtain accurate basic information of the subbasins in 

terms of morphology, hydrology and land use but in a simplified, faster and cheap way. 

Those make of GIS in an important tool to be applied on integrated management of a 

watershed. 

 

The comparison of discharge and  effective discharge, as well as nutrient concentration 

and effective nutrient discharge, have shown that neglect the size of the basin gives a 

different perspective of the water flows. The subbasins play a different role than for 

direct discharge measurements, where their potential to generate environmental changes 

goes unnoticed. This study have shown the relevance of small subbasins which 

apparently didn’t play an important role influencing discharge and nutrient 

concentration but once calculated, the effective discharges have shown that may present 

strong environmental pressures that compromise quality and or quantity of hydrological 

flows. Thus, those calculations may be crucial for managers to define priority activities. 
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The rainfall discharge model was not applicable to LTA due to the big differences in 

magnitude and trends of discharge that maintain with the measured ones. However, 

especially the rainfall distribution Figures being used in conjunction with slope and land 

use Figures, could have provide powerful information to understand the better the more 

vulnerable areas of each subbasin, thus facilitating the management decisions. 

 

The importance of the basin approach proposed by the ILBM is essential for the 

understanding of water and nutrient flows. This is especially obvious for basins where 

the results are more ambiguous as on case of B7 where a broader analysis which 

includes the adjacent basin could have explain better the water flows. 

 

Multivariate statistical analysis is very good to understand better the relationships 

between variables in an accurate but at the same time intuitive way thanks to its 

graphical representation. PCA analysis is especially useful on subbasins where only the 

results of the parameters don’t show clear evidences or can’t explain concrete 

differences. As an example the case of B1 and B3 differences, B2 and B6 and B7 all 

regarding the land use, being essential for the identification of the land use that more 

contribute to water discharge stimulated by soil erosion as well as the kind of land use 

that explains the high presence of a concrete nutrient. 

 

On subbasins B1 and B3 the land use, concretely agriculture seems to be determinant to 

decrease water discharge due to water extraction for irrigation and a source of nutrients 

into the streams. Their differences in land use determine the kind of land use that is 

more influent of the presence or the excess of a nutrient, on this case Agriculture and 

TN are more related in B1 and Cattle and TP in B3. 

 

On B4 the land use, concretely forest seem to be the decisive to buffer discharge, 

especially erosive process on vulnerable areas,  buffering as well the input of nutrient 

into the river.   

For B5 the presence of forest seems to be as well a key factor to buffer the nutrient 

inputs, nevertheless are the morphometric parameters which unquestionably controls the 

river discharge. For this subbasin the cascade effect derived of small irrigation dams 

constructed in series should be deeply study. 
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On B2 and B6 are the morphometric parameters the main drivers of river discharge and 

inconsequence the transport of nutrients, nevertheless the land use may favor as well the 

quantity of water decreasing the quality of the soil and increasing the loads of nutrients 

resulting from agriculture on case of B2 and pasture on B6. However for B2 the cattle 

farming seems to be the determinant factor for the high values of phosphorous 

concentration. 

 

On case of B7 the measured discharge is the opposite to the expected discharge 

associated with the morphometric parameters pointing out pasture  as the key driver of 

water quantity and quality due to soil degradation and input of nutrients. Nevertheless 

as we have mention previously and adjacent lake watershed could have strong 

influences on the river discharge. 

 

For those reasons B7, B2 and B6  and  B3 are subbasins which more negatively could 

affect to LTA due to their nutrient loads.  Those subbasins seems to be especially 

vulnerable to impacts, concretely on  B2 and B6 the morphometry parameters that 

influence the high hydrological response are decisive for water flows. In addition, for 

the tree subbasins, cattle farming looks as a key driver of environmental degradation. 

Nevertheless more studies should be developed in order to understand better the system 

loads, especially geology and groundwater variables which influence in high extent the 

hydrological cycles in quantity and quality. On the other hand, the information provided 

by this study may be a reference. Then, according to the obtained results, the first 

management actions should be focus on those subbasins promoting better practices on 

cattle ranching and soil restoration. Is suggested a deeper study of the estate of the river 

banks which are areas very sensitive to soil destruction especially when the cattle needs 

to access to the river to drink as well as other areas of the watershed vulnerable to 

erosion. Identify the most relevant areas source of diffuse pollution with a well-planned 

monitoring program is also one of the first actions developed by the environmental 

managers. 

 

In consequence apply measures to mitigate and prevent environmental problems 

consequents with the principles of Ecohydrology that increase the resistance and 

resilience of the ecosystem are the most appropriated. The use of a decision tree as the 

proposed is a useful tool for the basin managers to know the principal factors which 
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affect hydrological flows in quantity and quality helping them to develop a general 

study as the present and identify the subbasins which need priority intervention. Once 

the priorities are defined a deeper study of this subbasin may be developed in order to 

create and specific action plan, on this way time and economic resources can be 

minimized.  

 

The implementation of green engineering to increase soil quality and stabilize areas 

prone to soil losses, a transition to agricultural and cattle farming techniques more 

efficient which reduce nutrient inputs and soil degradation, biotechnology,… are some 

of the measures recommended on section 5 of the present study to follow the 

ecohydrological approach. Used individually or combined, seems to be the most 

appropriated to mitigate impacts and restore  impacted areas on LTA watershed and 

thus, ensure the ecosystem services of LTA and its catchment. 

 

We can conclude that the methodology followed allows a good first approach for the 

understanding of the processes taking place on the LTA watershed influencing the water 

quantity and quality. Allows to generate first hypothesis of the environmental integrity 

of each subbasin compared with the others and how it may affect to the entire basin, 

being an useful scientific resource for the environmental managers an authorities to take 

decisions and implement the most appropriated integrated lake basin management plan.  
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