

Optimization of Molecular Dynamics

Simulation Code and Applications to

Biomolecular Systems

David M. Bowman

Advisor: Dr. Paulo Martel, Faculty of Science and Technology,

University of the Algarve

Dissertation for the Degree of Doctor in Bioinformatics through the Centre for

Biomedical Research, University of the Algarve, FCT

Faro, December 2015

2

3

University of the Algarve

Faculty of Science and Technology

Optimization of Molecular Dynamics

Simulation Code and Applications to

Biomolecular Systems

David M. Bowman

Advisor: Dr. Paulo Martel, Faculty of Science and Technology,

University of the Algarve

Dissertation for the Degree of Doctor in Bioinformatics through the Centre for

Biomedical Research, University of the Algarve, FCT

Faro, December 2015

4

5

“Imagination is more important than knowledge.”

- Albert Einstein

“Doing nothing is infinitely faster than doing
something.”

- Unknown

6

Contents

ACKNOWLEDGEMENTS ... 1

DEDICATION .. 3

GENERAL INTRODUCTION ... 5

THEORY AND METHODS ... 6
APPLICATION OF COMPILER OPTIMIZATION GENERATION TECHNIQUES .. 6
TRADING MEMORY FOR CALCULATIONS .. 7
IMPLEMENTATION APPROACHES .. 7

ABSTRACT .. 13

LIST OF ABBREVIATIONS AND SYMBOLS .. 17

LIST OF TABLES .. 19

LIST OF FIGURES .. 21

OUTLINE.. 23

CHAPTER 1 – OPTIMIZING APPLICATIONS IN HPC ENVIRONMENTS USING

INCREMENTAL AND NONCOMPUTATIONAL METHODS ... 25

1.1 ABSTRACT .. 27
1.2 INTRODUCTION ... 28

1.2.1 HPC Applications Supporting Object Interactions .. 28
1.2.2 Performance Limiting Factors for Interaction Based Problems .. 30

1.3 METHODOLOGY .. 34
1.3.1 Noncomputation vs. Faster Computation... 34
1.3.2 Optimization and Incremental Computation .. 35
1.3.3 Evaluation of the Impact of Reducing the Floating Point Precision 42
1.3.4 Test Environments .. 44
1.3.5 A ‘Noncomputational’ Incremental Algorithm .. 45

1.4 BACKGROUND – FLOATING POINT REPRESENTATIONS ... 46
1.4.1 IEEE 754 Floating Point Standard .. 46
1.4.2 Understanding the Purpose of the Application .. 48
1.4.3 Developed Variable Precision Floating Point Based on IEEE 754 48

1.5 THE ALGORITHM .. 56
1.5.1 Implementation .. 56
1.5.2 Performance Evaluation .. 61

1.5.2.1 Performance Impact of Exceeding the CPU Cache .. 61
1.5.2.2 Improving Reciprocal Throughput ... 65

1.5.3 Runtime Evaluation .. 67
1.5.3.1 Comparison of Force Only Tests .. 68
1.5.3.2 Comparison with the Full Inner Object Interaction Routines in GROMACS 69
1.5.3.3 Intel Core i7 ‘Sandy Bridge’ and AMD Performance .. 70

1.6 LIMITATIONS OF THE METHODOLOGY .. 71
1.7 ADDRESSING THE LIMITATIONS OF THE METHODOLOGY IN HARDWARE 73

1.7.1 LxA Application Cache .. 74
1.7.2 Hardware Implementation Alternatives ... 74
1.7.3 Design Approaches .. 75
1.7.4 LxA Cache Management Instructions .. 78
1.7.5 Gather and Scatter Instructions for Use with LxA Caches .. 79
1.7.6 Instructions to Support Noncomputational Incremental Methods with LxA Caches 80

1.8 CONCLUSIONS... 82
1.9 ACKNOWLEDGMENTS ... 83
1.10 REFERENCES ... 84

CHAPTER 2 - ACCELERATING MOLECULAR DYNAMICS SIMULATIONS USING

INCREMENTAL AND NONCOMPUTATIONAL ALGORITHMS ... 87

2

2.1 ABSTRACT .. 89
2.2 INTRODUCTION ... 89

2.2.1 Performance Limiting Factors for MD Simulations .. 92
2.3 METHODOLOGY .. 96

2.3.1 Validation Using Protein Simulations.. 105
2.3.2 Amino Acid Studies (1µs) ... 107
2.3.3 GROMACS Regression Test Suites .. 107
2.3.4 Test Environments .. 108
2.3.5 Testing with Water Models .. 108
2.3.6 A ‘Noncomputational’ Incremental Algorithm .. 109

2.4 BACKGROUND .. 111
2.4.1 IEEE 754 Floating Point Standard .. 111
2.4.2 Understanding What Is Being Modeled ... 113

2.5 DESIGN OF THE ‘NONCOMPUTATIONAL’ INCREMENTAL MODEL .. 119
2.6 THE ALGORITHM .. 122
2.7 PERFORMANCE TESTING OF THE ALGORITHM ... 127

2.7.1 Improving Reciprocal Throughput ... 127
2.7.2 Runtime Testing ... 130
2.7.3 Comparison of Force Only Tests ... 130
2.7.4 Comparison with the Full Nonbonded Kernel Routines... 131
2.7.5 Intel Core i7 ‘Sandy Bridge’ and AMD Performance .. 132

2.8 CONCLUSIONS... 133
2.9 ACKNOWLEDGMENTS ... 135
2.10 REFERENCES ... 135

CHAPTER 3 - FREE ENERGY STUDY VALIDATION OF INCREMENTAL AND

NONCOMPUTATIONAL PERFORMANCE ALGORITHMS USING GROMACS 139

3.1 ABSTRACT .. 141
3.2 INTRODUCTION ... 142

3.1.1 Why Use Free Energy Studies for Validation .. 144
3.1.2 Why is this Validation Study Important ... 145

3.3 METHODOLOGY .. 148
3.3.1 Test Environments .. 148
3.3.2 Free Energy Study Methodology Using Amino Acid Side Chain Analogues 150
3.3.3 Free Energy Study - Preliminary Results ... 154

3.4 STATISTICAL EQUIVALENCE ... 156
3.4.1 Defining a Zone of Equivalence and a Zone of Superiority ... 157
3.4.2 Sample Data Generation .. 161
3.4.3 Sample Size Estimation and Confidence Intervals ... 161
3.4.4 Resource and Data Requirements for the Study ... 162

3.5 NORMALITY TESTING ... 163
3.5.1 Interpreting the Normality Tests .. 164
3.5.2 Normality Test Results ... 165

3.6 EQUIVALENCE TESTING .. 166
3.6.1 Results for the Zone of Equivalence Testing .. 166
3.6.2 Results for the Zone of Superiority Testing .. 167

3.7 SUMMARY OF STATISTICAL STUDY .. 168
3.7.1 Summary by Algorithm and Amino Acid Analogue .. 168

3.8 CONCLUSIONS... 172
3.9 ACKNOWLEDGMENTS ... 172
3.10 REFERENCES ... 173

GENERAL DISCUSSION ... 177

CONCLUSIONS ... 183

APPENDIX 1 – SUPPLEMENTAL MATERIALS CHAPTER 3 ... 185

1.1 EQUIVALENCE TEST RESULTS AND SAMPLE SIZES ... 185
1.1.1 Acetamide in Water .. 185
1.1.2 Ethanol in Water .. 186
1.1.3 Isobutane in Water ... 187

3

1.1.4 Methane in Water ... 188
1.1.5 Methanol in Water ... 189

2.1 NORMALITY TEST DETAILS .. 189
2.1.1 Summary by Algorithm and Amino Acid Analogue .. 189
2.1.2 Acetamide ... 191
2.1.3 Ethanol ... 192
2.1.4 Isobutane .. 193
2.1.5 Methane ... 194
2.1.6 Methanol .. 195

3.1 DESCRIPTIVE STATISTICS .. 196
3.1.1 Acetamide in Water .. 196
3.1.2 Ethanol in Water .. 196
3.1.3 Isobutane in Water ... 197
3.1.4 Methane in Water ... 197
3.1.5 Methanol in Water ... 198

4.1 HISTOGRAMS .. 199
4.1.1 Acetamide in Water .. 199
4.1.2 Ethanol in Water .. 201
4.1.3 Isobutane in Water ... 203
4.1.4 Methane in Water ... 205
4.1.5 Methanol in Water ... 207
4.1.6 Histograms of All Data .. 208

5.1 QUANTILE TO QUANTILE PLOTS ... 210
5.1.1 Acetamide in Water .. 210
5.1.2 Ethanol in Water .. 212
5.1.3 Isobutane in Water ... 214
5.1.4 Methane in Water ... 216
5.1.5 Methanol in Water ... 218
5.1.6 Q-Q Plots of All Data... 220

6.1 R LANGUAGE COMMANDS .. 222
7.1 RAW DATA ... 223

7.1.1 Acetamide in Water .. 223
7.1.2 Ethanol in Water .. 224
7.1.3 Isobutane in Water ... 225
7.1.4 Methane in Water ... 226
7.1.5 Methanol in Water ... 227

8.1 FREE ENERGY CONFIGURATION IN THE GROMACS .MDP FILE ... 228

4

5

Optimization of Molecular Dynamics Simulation Code and

Applications to Biomolecular Systems

Declaração de autoria do trabalho

Declaro ser o autor deste trabalho, que é original e inédito. Autores e

trabalhos consultados estão devidamente citados no texto e constam da

listagem de referências bibliográficas incluída.

© Copyright 2015 David M. Bowman

6

1

Acknowledgements

The author would like to express his thanks to Dr. Paulo Martel, Centre for Biomedical

Research, and the University of the Algarve, Faro, Portugal for his confidence that this

project was feasible and for his support during the project.

The author is also grateful to members of the Computational Systems Biology Group,

Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra led by

Dr. Armindo Salvador; the Biological Chemistry Group, Department of Chemistry,

University of Coimbra led by Dr. Maria Joao Moreno; and Dr. Claudio Soares, New

University of Lisbon, Lisbon, Portugal for stimulating discussions about the project and

suggestions on approaches to validation of the methodology.

The Biological Chemistry Group, Department of Chemistry, University of Coimbra

also provided substantial computational resources that made the free energy studies

possible. The author would like to thank Virtual Strategy, Inc., Boston, MA for funding

this research and supporting the patent application.

2

3

Dedication

I dedicate my dissertation work to my children, Jonathan, Hannah, and Luis.

You are the great joys of my life.

4

5

General Introduction

Biomolecular simulation methods are a powerful tool to study the physico-chemical

properties of biomolecules and their mechanisms and to describe extremely short-

lived molecular phenomena otherwise difficult to describe.1, 2 We have come a long

way since the first protein simulations in the early 70’s, both in terms of theoretical

methods and the computer hardware used. Simulation of the molecular dynamics

(MD) of solvated proteins with atomic detail requires the use of systems with the

order of tens to hundreds of thousands of atoms. Particle simulations with detailed

molecular potentials can be extremely heavy in systems of this size, and until recently

only relatively short simulation times (10-100 ns) were accessible with most computer

systems available. Improvements in computer algorithms and hardware have made

possible, in a few cases, to reach timescales of the order of the microsecond.

However, many fundamental biomolecular processes, like protein folding, may take

place over periods of a millisecond or more, meaning that speedups in computer time

of over three orders of magnitude are still required.

The advent of parallel computing and massively parallel hardware has had significant

impact in the attainable simulation times3. Single thread, single core and single

processor code is the fundamental unit of execution in whatever environment it is

executed whether it be single processor, OpenMP, MPI or GPUs. The key objective of

this project is to improve performance of MD simulations at this level to effectively

raise the performance bar on all simulations in multiple system architectures and

topologies. The software suite GROMACS4 is widely regarded has one of the fastest

single-processor MD simulation engines available. This is mostly due to several

clever optimization techniques including hard-coded assembly code for different

machine architectures and specialized inner loops for different types of non-bonded

interactions.5,6 Even with these optimizations, simulation times of the order of the

micro- to millisecond are still prohibitive for all but the smallest of molecular systems

running on the most powerful computer architectures available7. The present proposal

aims to enhance the GROMACS software by a combination of different procedures,

including the use of binary operations and incremental computation techniques

adapted from compiler optimization theory. Using these methods, we expect to speed

up the GROMACS code that is used to calculate forces by a factor of 2-3 times. This

6

will mean being able to simulate biomolecular processes for both longer periods of

time and for larger simulations. It will also benefit investigators with less expensive,

less powerful computers to perform simulations that were previously beyond the

capabilities of their computational environments. Projects may also be done with less

expensive computer systems that use substantially less electricity.

Theory and Methods

An initial analysis of GROMACS using the available development tools was

performed on Intel based platform and as expected the primary performance

bottleneck is in the calculation of nonbonded interactions typically accounting for

over 90% of total computation time. This code has already been rewritten by hand in

assembly language using the latest Intel computer instructions. An examination of

both the single precision and double precision assembly language implementations

revealed that there was only one computer instruction in the double precision

implementation that was not required in the routines that process Lennard-Jones8 and

reaction field nonbonded interactions. This created a fundamental challenge for this

project. The code to compute these forces had already been highly optimized for

many years by top researchers in the world. Where would the major improvements

come from? The only possibility was to avoid computation at the core of GROMACS.

Application of Compiler Optimization Generation Techniques

One of the fundamental assumptions of this project was that it was possible to apply

advanced complier optimization and code generation techniques at the application and

simulation level to the GROMACS application to substantially increase performance.

The principle object of compiler optimization techniques and indeed high

performance computing is to avoid as much computation as possible. This requires

knowledge of the application and the simulation involved and this analysis can only

be fully done at runtime. Optimization techniques frequently move calculations

outside of internal processing loops to perform calculations only one/few times. This

provides two benefits: the calculations are simply not performed inside inner loops

and the results that are calculated before entering the innermost loops highly

cacheable.

7

In addition to avoiding computation or computing results only once in many cases

binary or integer instructions may be used within inner processing loops to replace

sequences of floating point computation. These instructions in many cases run in less

than one CPU cycle. This project takes full advantage of this technique.

This project targeted the Intel instruction set but the conversion to integer math and

the simulation of intermediate code optimization will be generally applicable to other

platforms and high performance computing (HPC) applications.

Trading Memory for Calculations

The core methodology used in this project is the substitution of small multi-layer

caches with partial results to be assembled with non-floating point or few floating

point instructions at runtime. This effectively allows the replacement of ‘hot spots’ of

computation with small lookup tables with direct lookups and assembly or

incremental calculation. This allows calculations to be computed upon entry into the

application based on the simulation definition and reused when needed in the future.

Implementation Approaches

General Purpose vs. Specific Purpose

Software programs, libraries and even CPUs, GPUs are designed to solve a general

class of problem. They are designed to support a range of user requirements. ANSI

and ISO standards exist for general purpose computing for data formats, computer

languages, database, communications and other functionality. Additionally industry

and academic organizations have formed groups to establish de facto standards. These

standards are required to solve a broad range of problems across many disciplines. For

example the IEEE 754 floating point standard9 supports applications with a very large

number of significant digits and 3-4 digit exponents.

The programming languages such as C and C++ are built upon the underlying

hardware standards and have their own general purpose standards. Both these

hardware and computer language standards are not designed for a specific problem or

even a class of problems. They are designed to be used to solve all possible problems

8

that might be needed in any problem domain, industry or organization. They are

general purpose tools for constructing software and problem domain solutions.

It is almost never a requirement to support exponents in the range of -308 to +308

with 15 significant digits or even greater ranges. Nothing in reality corresponds to

these values. Molecular dynamics and other applications use a limited portion of the

IEEE 754 standard and the capabilities of processing these data types with ANSI C or

C++. If 1.0 is 1 nanometer then a distance of 10-308 or 10308 nanometers is never useful

to users of molecular dynamics software. Users of molecular dynamics software and

other applications use only a small fraction of the standard format. Molecular

dynamics simulations typically use the smallest boxes and fewest atoms possible. This

constrains the space and time in which the simulation runs to some number of

nanometers and some number of time steps. Time steps are generally in the range of 1

femtosecond to 1 millisecond. Similarly the experimental and theoretical constants

that are available (or meaningful) have a limited range and precision. Thus the range

of values within the floating point standard that are actually used is relatively small.

This observation is true for virtually every class of computer application that exists.

The largest floating point format of the IEEE 754 standard supports values that if 1.0

= 1 meter then the maximum value is greater than the size of the universe and the

smallest value does not correspond to anything known. Application developers do not

use the entire range of values in the same application. This means that for a specific

problem within a specific problem class, such as molecular dynamics optimizations to

avoid many floating point calculations are possible by trading memory for

calculations and incrementally assembling the results or performing very few

calculations at runtime. This is the approach taken in this project.

Alternative 1: Manual Modification of MD Software to Exploit Incremental Non-

Computational Optimization

In order for an application program to be optimized using these techniques it must

have already been analyzed for computational ‘hot spots’ using the standard tools

such a gprof or Visual Studio. All coding, algorithmic and design must have been

optimized using both developer and user expertise. If this has not been done, it

should. This is just good software development practice.

9

When no further optimizations are possible use incremental calculation techniques to

pre-calculate and cache partial results for a high percentage of the key functions and

equations.

A key objective of the implementation process is to enable the incremental

noncomputational method to self-adapt to the problem being solved. For molecular

dynamics software this is done for the SPECIFIC simulation and the hardware

environment where it is being run. This requires the identification of the data ranges

for key variables used in calculations at the application/simulation/run level. The

incremental noncomputational method does not support the full range of floating

point numbers. In order to minimize memory use for the method the developer must

identify runtime variables that are actually invariant at runtime for the SPECIFIC

simulation or function based on what is being run. This enables both the elimination

of computation and reduces the amount of runtime assembly or incremental

calculation required. This also reduces greatly the number of computer instructions

and moves much of the complexity of the algorithm, equation or function to a table or

application cache initialization. Using the data profile/signature of the simulation at

runtime and information about ranges and other application specific information can

enable the use of integer, logical and memory instructions instead of floating point

computations. At program start or on first use, the incremental caches/tables are

initialized for future use. Values are calculated once and retrieved on subsequent

accesses.

Generally the application developer must do profiling of the data that is actually used

to understand the subset of the IEEE 754 standard that the software actually needs.

This combination of user expertise and runtime data profiling enables the precision of

the data to be reduced and the range of data to be limited significantly reducing the

size of the data tables used in incremental computation.

The incremental non-computation method also requires the software to know how

much CPU cache is available in order to perform well. If too high a percentage is used

then cache misses will occur and performance will be degraded rather than improved.

10

Performance decreases of three or more times the computed performance have been

observed when the limits of the available CPU cache is not respected.

After the ‘hot spots’ are converted to use the developed algorithm, the application

must be tested to show that the results are ‘equivalent’ and still meet user

requirements. This process was done statistically for the inner non-bonded kernel

routines for the GROMACS software running on one thread/core/processor.

Alternative 2: Profile Guided or Automatic Optimization

Recent advances in software optimization techniques, such as profile guided

optimizers (PGO) include the ability to produce a profile or runtime application

signature for the execution of a program automatically on a given platform with a

specific set of input files for use with the application. These application

profiles/signatures can then be used to compile/build a higher performance version of

the application based on actual runtime knowledge (Figure 1).

This approach requires knowledge of the data range and precision required for each

variable that is used to build precalculated results and that the precalculated results for

the used to support the various subexpressions/expressions be small enough to be highly

cacheable. The method is highly dependent on the data map of the application and the

degree to which the application contains subexpressions or expressions within the inner

loops that are suitable for the developed algorithm. In theory it is possible to develop

an application development tool based on an existing program profiler that could track

Application
Signature Files

I
Data Flow

Execution Flow

Input

Optimized

Program or

Library

Profiles or
Application

Signature Files

General Purpose
Program

with
Instrumentation

Data Flow

Execution Flow

Input File

or Data

Figure 1 Profile Guided Optimization (PGO)

11

the data ranges and precisions of the data values used in optimized subexpressions and

expressions during an actual execution run of the program (perhaps a short execution).

The tool could then suggest to the developer areas that could benefit from the developed

algorithm providing suggested data ranges and precisions. The developer could then

select the suggestions that were of interest and modify the data ranges and precisions if

needed. These suggested and modified changes could then be used by the application

development tool to automatically generate modified application source code to define

and initialize the tables for the precomputed results and to update the source code for

the inner loop to minimize computation within the inner computational loops by

retrieving the pre-calculated results from one of the tables. Currently, Microsoft10,

Intel11 and GNU12 have program guided optimization (PGO) functionality that creates

instrumented versions of an application and allows the application to be ‘trained’ to

produce higher performance code. The developed methodology and algorithm has not

yet been incorporated into any software development tool or PGO option.

It is also possible that optimizations could be made dynamically during execution in

an instrumented application. This could be performed without a detailed

understanding of the application or library function using an incremental

noncomputational method with a failsafe fall through to calculate the result of the

subexpression or expression if the precalculated lookup was not within range. This

approach would need to be hardware platform and operating environment aware since

there is substantial difference in performance between CPU manufacturers, CPU

families, cache memory available, memory architecture and other aspects of the

operating environment. Operating system support would also likely be required.

12

13

Abstract

The performance of molecular dynamics (MD) software such as GROMACS is

limited by the software’s ability to perform force calculations. The largest part of this

is for nonbonded interactions such as between water molecules and water molecules

and solute. The determination of nonbonded interactions may account for over 90% of

the total computation and real time of a simulation. The objective of this project is to

greatly improve the performance of force calculations for nonbonded on a single

core/processor. By doing this it is possible to raise the bar on all simulations that can

be performed by GROMACS (single, multi-core or MPI). The resulting

modifications need to then be verified to determine that the software still works. That

it is still ‘good enough’ for performing molecular dynamics simulations. Figure 2

shows the magnitude of the problem.13

Figure 2 How can molecular simulation reach the exascale? Challenge in

performance and parallelism

Adapted from Roland Schulz and Erik Lindhal

The magnitude of this task is large due to the large number of solvent molecules in the

typical simulation and the number of time steps needed simulation duration. The

number of time steps between femtoseconds and milliseconds also is very large.

14

Most of the computational overhead is in the processing of the solvent, usually water.

The simulation of water is generally calculated between pairs of molecules with nine

(9) interactions calculated for each pair (OO, OH, HH).

The 1/sqrt function, Lennard-Jones equation and Reaction Field terms are typically

calculated. (This project does not address PME but the technical approach can be used

to optimize it). There are also other solvent models where the solvent overhead is

more. Water to other atoms are the second most common type of interaction. If the

processing of the solvent cannot be made significantly faster, then the simulation will

not run faster.

Limitations on Scalability

Studies have shown that even using multiple processors/cores/clusters that there are

fundamental limitations on the scalability of MD simulations. This limitation is due to

limitations on how atoms may be distributed across cores/processors and network

node. As the number of atoms/core decreases the amount of time in communications

increases. It is not possible to run one atom per core. Studies have shown that ≈500-

1000 atoms/core is approximately the lower limit in most system environments. With

recent developments in supercomputer environments based on Intel Sandy Bridge and

Ivy Bridge processors, multiple NVIDIA GPU coprocessors, hybrid OpenMP and

MPI, Infiniband networks and Verlet cutoff schemes as few as ≈100-140 atoms/core

have been achieved. Figure 3 shows the results of the study of the peak performance

of MD simulations by Gruber and Pleiss based on number of atoms and cores.

15

Figure 3 Peak performance by system size. Adapted from Gruber and Pleiss

References

1 Karplus, M & McCammon, JA 2002, ‘Molecular dynamics simulations of

biomolecules’. Nature Structural Biology, 9(9): p. 646-652.
2 Karplus, M & Kuriyan J 2005, ‘Molecular dynamics and protein function’.

Proceedings of the National Academy of Sciences of the United States of America,

102(19): p. 6679-6685.
3 Pande, V.S., et al. 2003, ‘Atomistic protein folding simulations on the

submillisecond time scale using worldwide distributed computing’. Biopolymers,

68(1): p. 91-109
4 Lindahl, E, Hess, B and van der Spoel, D 2001, ‘GROMACS 3.0: a package for

molecular simulation and trajectory analysis.’ Journal of Molecular Modeling, 7(8):

p. 306-317.
5 Hess, B, et al., 2008, ‘GROMACS 4: Algorithms for highly efficient, load-balanced,

and scalable molecular simulation.’ Journal of Chemical Theory and Computation,

4(3): p. 435-447.
6 D. van der Spoel, E. Lindahl, B. Hess, A. R. van Buuren, E. Apol, P. J. Meulenhoff,

D. P. Tieleman, A. L. T. M. Sijbers, K. A. Feenstra, R. van Drunen and H. J. C.

Berendsen, Gromacs User Manual version 4.5.6, www.gromacs.org (2010)
7 Duan, Y. & Kollman, P.A, 1998, ‘Pathways to a protein folding intermediate

observed in a 1-microsecond simulation in aqueous solution’ Science, 282(5389): p.

740-744.
8 Darden, T., York, D., Pedersen, L. 1993. “Particle mesh Ewald: An N•log(N)

method for Ewald sums in large systems.” Journal of Chemical Physics. 98:10089–

10092,

256 Cores

256 Cores

512 Cores

576 Cores
512 Cores

0

5

10

15

20

25

30

35

40

45

50

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000

P
er

fo
rm

an
ce

 (
n

s/
d

ay
)

Atoms

Peak Performance with Different System Sizes

16

9 IEEE Computer Society (August 29, 2008). "IEEE Standard for Floating-Point

Arithmetic". IEEE. doi:10.1109/IEEE STD.2008.4610935. ISBN 978-0-7381-5753-5.

IEEE Std 754-2008
10

 https://msdn.microsoft.com/en-us/library/e7k32f4k.aspx (retrieved July, 23, 2015)
11

 https://wiki.scinet.utoronto.ca/wiki/images/2/2d/Compiler_qrg12.pdf (retrieved July

23, 2015)
12

 https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html (Retrieved July 23,

2015)
13

 Roland Schulz & Erik Lindahl, “How can molecular simulation reach the exascale?

Challenges in performance and parallelism”, (retrieved July 29, 2015),

http://www.csm.ornl.gov/workshops/biomolecular/documents/MDFuture.pdf

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://dx.doi.org/10.1109%2FIEEESTD.2008.4610935

List of Abbreviations and Symbols

Aminoacids

Ala A Alanine Arg R Arginine
Asn N Asparagine Asp D Aspartate
Cys C Cysteine Gln Q Glutamine
Glu E Glutamate Gly G Glycine
His H Histidine Ile I Isoleucine
Leu L Leucine Lys K Lysine
Met M Methionine Phe F Phenylalanine
Pro P Proline Ser S Serine
Thr T Threonine Trp W Tryptophan
Tyr Y Tyrosine Val V Valine

Abbreviations

AES Intel Advanced Encryption Instructions
AVX SIMD Advanced Vector Instructions
AVX2 SIMD Extensions to AVX
AVX512 SIMD Extensions to AVX for the Intel Phi Processor
CUDA Compute Unified Device Architecture
FF Force field
FMA Fused Multiple Add Instructions (multiple versions exist)
H Hamiltonian operator
HPC High Performance Computing
L1 Level 1 Cache. Small caches for Instructions and data
L2 Level 2 Secondary Cache. Larger cache than Level 1
L3 Level 3 Third level cache. Larger cache than Level 2
L4 Level 4 Fourth level cache. Larger cache than Level 3
LJ Lennard-Jones
LxA Level x Application cache paralleling L2, L3, L4 or a

shared memory level in GPUs
MC Monte Carlo
MD Molecular dynamics
MPI Message Passing Interface
NPT Isothermal-isobaric ensemble (constant pressure and
 temperature)
NMR Nuclear Magnetic Resonance
NVT Canonical ensemble (constant volume and temperature)
OpenCL Open Computing Language
OpenMP Open Multi-Processing
PGO Program Guided Optimization
PME Particle Mesh Ewald
QM Quantum mechanics
RF Reaction Field
RMS Root mean squared

18

 RMSD Root mean squared deviation.
SIMD Single Instruction Multiple Data
SoC System on a Chip
SPC Single Point Charge Water Model
SPCE Single Point Charge Water Model with Average Polarity
 Adjustment
SSE Instructions set for SIMD on Intel and AMD
SSE2 SIMD Instruction set extensions to SSE
SSE4.1 Intel Instruction extensions to SSE2 not on all AMD CPUs
TIP3P Transferable Intermolecular 3-point Water Model
vdW Van der Waals terms

μops Micro-operations (CPU)

 T Temperature.
 V Potential energy.
 W ij Electrostatic interaction between site i and j.
 e Protonic charge.
 k B Boltzmann constant.
 k b Bond force constant.
 q Point charge.
 r ij Interatomic distance between atoms i and j.

r p Coordinates at point P.

Greek Letters

ΔG Hydration Free Energy Change
ΔH Hydration Enthalpy Change

19

List of Tables

Table 1 IEEE 754 Format Ranges ... 47
Table 2 Memory Requirements for Variable Precision Format................................... 52
Table 3 Example IEEE Floating Point Cohort ... 61

Table 4 Impact of Ordered vs. Unordered Values ... 62
Table 5 Impact of Exceeding the L2/L3 CPU Cache on Performance 63
Table 6 Estimated Instruction Times ... 66
Table 7 Performance of O-O Interactions .. 69
Table 8 Assembly Code Algorithm vs GROMACS SSE .. 70

Table 9 IEEE 754 Ranges Supported... 111

Table 10 Water Box Simulation Profile... 113

Table 11 Experimental Bond Lengths ... 114
Table 12 Experimental Bond Angles ... 115
Table 13 Memory Requirements for Variable Precision Format 117
Table 14 Impact of Ordered vs Unordered Data .. 120
Table 15 Example IEEE Floating Point Cohort ... 127

Table 16 Instruction Counts ... 129
Table 17 Performance of O-O Interactions .. 131
Table 18 Assembly Code Algorithm vs GROMACS SSE .. 132
Table 19 Water Box Simulation Profile... 146

Table 20 Amino acid side chain analogues used in the study.................................... 150

Table 21 Sample Size Estimates - Amino Acid Analogues Based on Data Series.... 162

Table 22 Total Microseconds of Simulation Time Needed for Study 163
Table 23 Normality Test Results Methane in Water GROMACS SSE 164

Table 24 Methane in Water - Normality Test Results by Algorithm 166
Table 25 Methane in Water - Normality Test Results by Algorithm 166
Table 26 Equivalence Test Results Methane in Water .. 167

Table 27 Normality Tests Passed by Each Amino Acid Analogue 169
Table 28 Count of Normality Tests Passed by Algorithm/Build 169

Table 29 Zone of Equivalence Results - All Amino Acid Analogues in Study 171

20

21

List of Figures

Figure 1 Profile Guided Optimization (PGO) .. 10
Figure 2 How can molecular simulation reach the exascale? Challenge in performance

and parallelism ... 13
Figure 3 Peak performance by system size. Adapted from Gruber and Pleiss 15
Figure 4 Intel CPU Trends – Limitations on Performance .. 31
Figure 5 Peak performance by system size. Adapted from Gruber and Pleiss 32
Figure 6 Performance Limitations - Amdahl's Law ... 33

Figure 7 Increase in Total Energy as Computational Precision Decreases 42

Figure 8 Standard Deviation Increasing with Reduced Precision 43

Figure 9 Standard Deviation Between GROMACS C and Single Precision SSE as

compared to Variable Precision ... 44
Figure 10 Computation-based vs. Noncomputational Incremental Method 46
Figure 11 IEEE 754 Single Precision Format .. 47
Figure 12 IEEE 754 Double Precision Format .. 48

Figure 13 Distribution of Distance Squared (r2) Values .. 53
Figure 14 Variable Precision Mantissa 'Floats' Like IEEE .. 58
Figure 15 Effect of Integer Conversion on a Real Number ... 59
Figure 16 Increasing Deviations in 1/sqrt function with Integer Conversion Method 60

Figure 17 Relative % Error vs. IEEE 754 Single Precision ... 61

Figure 18 Impact of Exceeding CPU Cache Size Using Variable Precision 64

Figure 19 Performance Estimates Per Result Based on Instruction Count 67
Figure 20 Noncomputational vs Computational Math Functions 68

Figure 21 Developed Algorithm in Assembly vs GROMACS SSE Assembly 71
Figure 22 Example AMD Bulldozer with LxA (L3A) Application Caches 75
Figure 23 Example AMD Bulldozer with L3A Cache Die Detail 76

Figure 24 Example Intel Sandy Bridge Xeon Block Diagram with L3A Cache 76
Figure 25 Example Intel Core i7-390X Processor with L3A Die Detail 77

Figure 26 Texas Instruments Multicore, Multi-layer Chip LxA Could Be Added as a

Second Shared Memory Layer... 77
Figure 27 NVIDIA Kepler GPU Architecture L2A Cache Could be Overlaid or

Parallel L2 .. 78
Figure 28 Intel CPU Trends – Limitations on Performance .. 92
Figure 29 Peak Performance by system size. Adapted from Gruber and Pleiss 94

Figure 30 Performance Limitations - Amdahl's Law ... 95
Figure 31 Performance Summary - GROMACS Water Box Simulation 97
Figure 32 Comparison of C Library Functions vs Developed Algorithm 101
Figure 33 Total Energy – Water Box Simulation .. 102
Figure 34 Increase in Standard Deviation with Reduced Precision 103

Figure 35 Standard Deviation in Total Energy .. 104
Figure 36 Temperature Stability with Reduced Precision ... 105
Figure 37 RMSD 1VII Chicken Villin Headpiece ... 106

Figure 38 Differences between Computational and Noncomputation Models 110
Figure 39 IEEE 754 Single Precision Format .. 111
Figure 40 IEEE 754 Double Precision Format .. 112
Figure 41 Angular Error for a 1 pm Discrete Space .. 115

Figure 42 Distribution of Distance Squared for Ar-Ar and Water - Water 117
Figure 43 Performance Impact of Using Too Much CPU Cache 121

file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810694
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810698
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810700
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810701
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810702
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810702
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810703
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810706
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810708
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810709
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810710
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810711
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810713
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810715
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810716
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810717
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810718
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810719
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810719
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810720
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810720
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810721
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810722
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810724
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810725
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810726
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810727
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810728
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810729
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810731
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810734
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810735

22

Figure 44 Variable Precision Performance vs. Significant Digits 122
Figure 45 Variable Precision Mantissa 'Floats' Like IEEE 754 124
Figure 46 Effect of Integer Conversion on a Real Number 125
Figure 47 Method Relative Error vs. IEEE 754 Standard in Percentage 126
Figure 48 Increasing Deviations in 1/sqrt function with Integer Conversion 126

Figure 50 Performance Estimates Per Result Based on Instruction Count 129
Figure 51 Variable Precision Assembly Code Algorithm vs GROMACS SSE 133
Figure 52 Comparison of Developed Algorithm with GROMACS Assembly Code 145
Figure 53 Relative Error vs. IEEE 754 Standard in Percentage 147
Figure 54 Changes in the Standard Deviation with Reduced Precision 149

Figure 55 Free Energy - change from state A (λ = 0) to state B (λ = 1) 152

Figure 56 Free Energy Integral - Methane in Water .. 154

Figure 57 Variation between GROMACS Builds ... 155
Figure 58 Variation between GROMACS Builds and Variable Precision 155
Figure 59 Illustration of Zone of Equivalence and Zone of Superiority 160
Figure 61 Q-Q Plot and Histogram - Methane in Water GROMACS SSE 165
Figure 63 Equivalence Test Results Acetamide in Water ... 185

Figure 64 Acetamide in Water - Sample Size Estimates Base on 46 data points 185
Figure 65 Equivalence Test Results Ethanol in Water .. 186

Figure 66 Ethanol in Water - Sample Size Estimates Base on 60 data points 186
Figure 67 Equivalence Test Results Isobutane in Water ... 187

Figure 68 Isobutane in Water - Sample Size Estimates Base on 46 data points 187

Figure 69 Equivalence Test Results Methane in Water ... 188

Figure 70 Methane in Water - Sample Size Estimates Base on 40 data points 188
Figure 71 Equivalence Testing Results Methanol in Water 189

Figure 72 Methanol in Water Sample Size Estimates Base on 40 data points 189

file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810737
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810740
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810741
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810744
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810745
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810746
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810748
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810749
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810750
file:///C:/Users/David/Desktop/David%20Thesis%2008312015.docx%23_Toc428810751

23

Outline

This dissertation is organized into an introduction, abstract, three main chapters and a

closing general discussion and conclusion. It also contains supplementary materials

for chapter 3. Chapter 1 discusses the developed incremental noncomputational

algorithm and the associated variable precision version of the IEEE 754 floating

standard that was developed to support the algorithm. It also discusses the general

application of the methodology to object interaction based high performance

computing (HPC) applications for different problem domains. Chapter 2 presents the

detailed approach and results of applying the algorithm to the molecular dynamics

application GROMACS. It shows the effect of various spatial granularities

represented by variable precision floating point mathematics on the calculation of

nonbonded Lennard-Jones and reaction field interactions. It also assesses the impact

of the methodology on Lennard-Jones only interactions. It presents both performance

results and the impact on the energy and forces involved in the simulation for water

boxes, argon and proteins. Chapter 3 presents an extensive study of the hydration free

energies of five amino acid analogues used to validate the developed algorithm with

experimental results and the work of other research. The study uses approximately

170 microseconds of simulation time to obtain a statistically significant amount of

data. Statistical equivalence methods were used to validate the developed algorithm

against the three widely used builds of GROMACS 4.5.3 (single precision C code,

single precision SSE, and double precision SSE2). A final general discussion and

conclusion is provided after Chapter 3. Appendix 1 contains the detailed statistical

data and results for chapter three.

24

Chapter 1 – Optimizing Applications in HPC
Environments Using Incremental and
Noncomputational Methods

26

27

Optimizing Applications in HPC Environments Using
Incremental and Noncomputational Methods

Portions of chapter 1 of this thesis are based on a provisional US Patent application

#62213053 that is the intellectual property of Virtual Strategy, Inc. and are used by

permission.14

1.1 Abstract

The performance of most HPC applications has already been fully optimized using

optimizing compilers, off-loaded to GPUs, run in distributed environments and using

the latest and most efficient algorithms. When the code to be optimized cannot be

made faster a way must be found to avoid computations completely or the application

will not run any faster. This approach should be used only after all other optimization

techniques have been done.

Supercomputers are generally used to address two major classes of problems: 1)

problems with large amounts of data that has relatively few/no interdependencies and

can be processed as many streams and 2) problems that are computationally intensive

because they have large numbers of interactions between many objects. These

problems may be in many diverse areas such as: weather forecasting, oceanography,

climate change, the evolution of galaxies, development of stars and clusters, black

holes, particle physics, molecular dynamics, protein folding, fluid dynamics,

economics among other applications. The first class of applications can be easily

distributed over an unlimited number of processors or cores by dividing the data

stream. The second class of applications generally have a computationally intensive

code section at their core (frequently to calculate forces) and a large number of object

interactions. Software simulating large numbers of interactions uses algorithms (e.g.

lattice summation or spherical cutoffs) to reduce the number of interactions from

O(N2) to O(NlogN) or O(N). 15,16 They also exploit the latest processor architectures,

OpenMP, MPI, vector instruction sets such as AVX, AVX512 and FMA and offload

work to GPU coprocessors using NVIDIA CUDA or OpenCL. Even with these

28

techniques there are limits to both the number of object interactions that can be

processed and the amount of time that these interactions may be simulated

independent of the problem being solved.

Problems involving a few 10s of thousands of objects will not run significantly faster

on a supercomputer than on a 64 core server. The developed algorithm provides a

‘noncomputational’ approach based on the definition of the problem followed by

incremental computation. It exploits a ‘variable precision’ numeric format based on

the IEEE 754 standard. Performance on a single thread/physical core is the

fundamental building block of performance whether code runs on a CPU or GPU and

it is independent of whether or not the application is running in a distributed

environment or not. This study reports single thread/physical core improvements in

the performance for solving multiple force equations between atomic level objects on

the Intel Core i7 ‘Sandy Bridge’ of 14-15 times that of the existing hand coded

assembly language builds for the GROMACS application(SSE, SSE2). The method

was also used to develop simple math functions and compared to the standard C

library functions with performance speedups in the range of 11 to 125 times faster

using gcc 4.7. The developed method may be applied to simple functions, equations

or the simultaneous solution of multiple equations in a broad set of applications.

1.2 Introduction

1.2.1 HPC Applications Supporting Object Interactions

HPC applications supporting object interactions are critically important for many

problem domains. At their core is an inner processing routine based on the object

parameters that is calculated every time there is an object interaction. Typically the

object interactions are calculated at time step intervals whether they are fine grain

atomic level simulations or very coarse grain weather forecasting applications. If this

core processing routine cannot be made faster on a single thread/physical core then the

software will not run faster. Incremental and noncomputational methods address the

need to improve the performance of already fully optimized software by avoiding

computation at runtime and performing incremental computation based on

29

precomputed results that are application and execution specific. The fundamental

performance unit is how fast the algorithm or functions performs on a single

thread/physical core whether it is on a CPU or GPU. By improving performance at this

level both larger and longer simulations may be run.

Software tools and development methodologies and even CPU hardware have been

highly optimized for performance for over 20 years. Global optimizers available in the

compilers in general use generate code so well that it is rarely necessary to code critical

portions of software in assembly code. Access to instruction sets such as SSE2, AVX,

AVX2, AVX512, and FMA are available through the use of intrinsics or assembly code

directives and may be used in a high level language for development. If the developer

uses these instructions in a high level language through intrinsics the assembly

instructions are exposed to the global optimizer of the compiler. CPUs from the major

manufacturers make use of branch prediction, pipelines, instruction reordering, and

multiple levels of cache. It is usually a waste of time to second guess a compiler global

optimizer and to try to guess what the processor will do at runtime. The

cycles/instruction vary greatly based on where the data resides (register, L1, L2, L3, L4

cache or main memory). Cycles/instruction also vary based on what other instructions

are near the instruction. Architectural differences between Intel, AMD and other CPU

vendors vary greatly between each other as do differences between GPU processor

vendors. There are also significantly different performance characteristics between the

‘generations’ or ‘families’ within a manufacturer’s product line. Other important factors

that impact application performance in HPC environments include physical memory

speed, network bandwidth, and CPU-GPU bandwidth.

GPU support has been added to HPC environments in the last few years using NVDIA’s

CUDA17 to offload some portions of a simulation to a high performance GPU.18 There

are however underlying limitations for GPU based computing including the limited

bandwidth between the CPU and GPU and limitations in GPU hardware as a

generalized coprocessor.19 Recent advances in GPU memory architectures that include

a larger number of cores and GBs of memory as well as the addition of GPU cache

memory has greatly enhanced the ability to GPUs as general purpose computational

engines. NVIDIA CUDA and OpenCL20 now make it possible to have TFLOPs

available on the desktop or in servers.

30

Many object interaction based applications share some common performance problems.

The 1/sqrt function is the largest computational contributor for force-based object

interactions that perform force calculations. These applications already benefit from

domain decomposition schemes, MPI, OpenMP and vector based instructions and

highly optimized code and algorithms. Interaction-based problems have probably

benefited the most from specialized SIMD (single instruction multiple data)

instructions and fused multiple and add instructions (FMA). For many years most

applications that address interaction based problems have exploited the single

instruction multiple data (SIMD) instruction sets SSE (single precision), SSE2 (double

precision) and recently added support for AVX21 and AMD’s FMA22 instructions for

fused multiply and add. Interaction based applications such as molecular dynamics

software have achieved very high performance on a single processor/core by using hand

coded assembly language to process 4 single precision values simultaneously. With the

support of the AVX and AVX223 instructions 8 single precision values may be

processed simultaneously. The Intel Xeon Phi processor supports the AVX512

instruction set and can process 16 single precision values simultaneously.

1.2.2 Performance Limiting Factors for Interaction Based Problems

Processing speed has been limited primarily by CPU clock speed (cycle/second GHz)

and the amount of data than can be processed in one cycle. In 1965 Gordon Moore,

Intel co-founder, predicted that processing power would double approximately every 2

years24 but in 2005 Moore declared that his law was ‘dead’.25 This was largely due to

the limitations on CPU clock speed, heat dissipation on the chip and fabrication costs

due to the on chip density. With current technology this limits the performance on a

single core/processor primarily based on CPU clock speed (GHZ). There is a direct

relationship between clock speed, power consumption and temperature.

From Figure 4 one can see that CPU clock speed has flattened since about 2003. There

are more cores/chip and more transistors/chip to support them. Techniques such as

multiple cores on chip can reduce the communication costs between threads but CPU

clock speed is not substantially increasing and is a fundamental barrier to the

performance of object interaction solutions. Over-clocking of CPUs can be done but is

limited by the amount of power consumed and heat generated. Over-clocking can also

result in computational errors.26

31

Figure 4 Intel CPU Trends – Limitations on Performance

© Herb Sutter, Used with permission

Studies have also shown that there are limits to the scalability of a simulation based on

the number of objects in the simulation.27 There exists a minimum number of objects

that can be processed per processor/core whatever those objects are before the

communications costs and real time delays are greater than the real time performance

gains. For simulations in the range of a few 10s of thousands of objects this is usually

less than 64 cores. This implies that a simulation in this size range will not run

significantly faster on a system with 1000 cores. In fact if a simulation were forced to

be split into too few objects per core the communication cost could consume most of

the real time and slow the real time to process the simulation.

32

Atomic level interaction in molecular dynamics software is typical of object interaction

solutions. Figure 5 shows the results of the study by Gruber and Pleiss28 in 2010 that

investigated the peak performance that can be achieved with molecular dynamics

simulations at the atomic level for different system sizes. They tested object simulations

distributing force calculations workload between objects (atoms) across up to 1000

cores. Simulation of atomic level forces between objects differs from other object

interaction applications primarily in the following areas: 1) the definition of the object,

2) the equations used to calculate the interactions (usually forces), and 3) the granularity

of the objects. Larger objects are built from smaller objects from the atomic level up

but with a loss/change in the nature of the object details. In the process of defining

higher level objects, additional parameters may change or the equations may vary but

the fundamental problem of having many objects interacting with many others remains

the same. Fortunately applications do not need atomic level granularity to model

weather or the economy.

There are therefore fundamental limitations in simulation performance that cannot be

overcome by improvements to programming: CPU clock speed, size and speed of L1,

L2, L3, L4 cache memory and speed of main memory, transistor chip density, heat, and

ultimately the speed of light. Distances off chip to CPU blocks, blades or server nodes

256 Cores

256 Cores

512 Cores

576 Cores
512 Cores

0

5

10

15

20

25

30

35

40

45

50

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000

P
er

fo
rm

an
ce

 (
n

s/
d

ay
)

Atoms

Peak Performance with Different System Sizes

Figure 5 Peak performance by system size. Adapted from Gruber and Pleiss

33

have significant delays. Distance is a fundamental problem. Light travels about 30cm

per nanosecond in a vacuum. Sending data and receiving an acknowledgement in a

vacuum is limited to only 15cm.

Other fundamental limitations exist to performance improvements such as those

imposed by Amdahl’s law.29, 30 The performance of a program that can be improved is

limited by the percentage of the code that can be improved. The speedup of a program

using multiple processors in parallel computing or improved algorithms is limited by

this sequential fraction of the program. For example, if 95% of the performance of

program can be parallelized or improved by code changes, the theoretical maximum

speed up would be 20 × as shown in Figure 631, no matter how many processors or how

good the programming changes are assuming that the portions of the program that can

be improved may be parallelized completely or that the performance of the code being

changed may be reduced to zero percent of the total time for the program. Problems

where the data streams can be split suffer the same limitations but due to the nature of

the data being processed Amdahl’s Law is generally of little consequence. Interactions

between objects, however limits the ability to split computation between

cores/processors and nodes.

Figure 6 Performance Limitations - Amdahl's Law

The processing of object interactions has a fundamental limit based on the number of

objects that can be processed per core. The minimum number of objects per core is

34

application specific depending on the nature of the application and problem being

solved. For force based atomic level object interactions this limit is currently in the

range of ≈100-1000 objects per thread/physical core depending on hardware and

application requirements.

Fortunately the percentage of CPU time and clock time for interaction processing is

usually concentrated in core processing routines where these calculations are

performed. The performance improvement that may be obtained for processing the

object interactions has some limitations based on the percentage of the application that

is spent calculating object interactions. For a large number of applications in this class

the percentage of time processing these interactions is extremely high (over 90%)

because forces, velocities, and distances are being calculated. Whether the objects are

particles, atoms, stars, galaxies, or coarse grain objects in weather, climate or economic

models there is a define set of processing functions. The ability of the incremental

noncomputational methodology to improved object interaction performance is based

on the number of types of objects and not just the number of objects. In the example

used in this study of atomic level molecular dynamics simulations, the dominant object

interactions are water molecules interacting with other water molecules, followed by

water to solute interactions and then solute to solute interactions. There is a relatively

small number of different types of objects.

1.3 Methodology

1.3.1 Noncomputation vs. Faster Computation

The fundamental question is if performance cannot be substantially increased by faster

CPU clock times, offloading to GPUs or other processors in a network, where will the

breakthroughs in performance occur? This study has developed an algorithm that

eliminates most of the computation inside the inner processing loops for object based

interactions. It can effectively raise the scalability bar for all single core/processor and

multiprocessor environments where large numbers of objects and object interactions

occur.

35

1.3.2 Optimization and Incremental Computation

For more than 30 years compliers and code generators have performed various levels

of performance and memory minimization optimizations for software developed in high

level languages such as C, C++, FORTRAN, and others. In 1986, Compilers:

Principles, Techniques, and Tools the ‘Dragon Book’32 was published and became the

definitive reference guide for compiler development and has remained so to this day. It

was updated in 2006 to include additional details on new machine architectures, parallel

processing, JIT compiling, data flow analysis and directed translation.33 High level

language optimization operates at several levels. The developed method uses an

approach similar to that of a compiler optimizer’s analysis of the code flow34 and data

flow as represented by the compiler’s intermediate code and symbol table prior to code

generation. After the compiler generates intermediate code and a data map for the

program from the source files usually an optimization phase occurs within the compiler

prior to code generation to identify opportunities for performance improvement or to

reduce the amount of memory required. The optimization of the intermediate

representation of the program looks for common expressions within the ‘scope’ that the

optimizer can see to minimize the number of times that the code is executed. In many

cases this means that the expressions and intermediate code is restructured so that

portions of the code may be executed once while other parts of the code must be

executed every time. The optimizer also creates temporary variables for use in storing

intermediate results shared between expressions and subexpressions. Another key

optimization technique is to move code execution outside of inner loops so that fewer

instructions are executed in the computationally intensive loops. Compiler optimization

is limited because it is performed within a scope. These scopes are associated with the

program’s source files. An optimizer may use the local source file being compiled

including the merged files or in some cases it may use all of the source code for the

entire application. The later takes more time to build and relate the data maps and code

flows for the sources files of the application but can result in valuable interprocedural

optimizations. In highly optimized HPC applications this is part of the standard

software build process by specifying compile time optimization levels and has been

36

done for many years. Developers have also moved as much computation out of the inner

computational loops as possible based on user knowledge of the application.

The developed algorithm optimizes the performance of the computationally intensive

inner loop code by using runtime knowledge at the application level and knowledge of

the equations and functions used in the inner loop. This permits the algorithm to be used

to replace most computation with the retrieval of precalculated subexpression and

expression results (not computed within the inner loops) followed by a few

computational instructions (incremental computation) to provide either subexpression

or final results. The precalculated subexpression or expression results are calculated

once when the program or function is first entered or when the results are first required.

This approach requires knowledge of the data range and precision required for each

variable that is used to build precalculated results and that the precalculated results for

the used to support the various subexpressions/expressions be small enough to be highly

cacheable. The method is highly dependent on the data map of the application and the

degree to which the application contains subexpressions or expressions within the inner

loops that are suitable for the developed algorithm. In theory it is possible to develop

an application development tool based on an existing program profiler that could track

the data ranges and precisions of the data values used in optimized subexpressions and

expressions during an actual execution run of the program (perhaps a short execution).

The tool could then suggest to the developer areas that could benefit from the developed

algorithm providing suggested data ranges and precisions. The developer could then

select the suggestions that were of interest and modify the data ranges and precisions if

needed. These suggested and modified changes could then be used by the application

development tool to automatically generate modified application source code to define

and initialize the tables for the precomputed results and to update the source code for

the inner loop to minimize computation within the inner computational loops by

retrieving the pre-calculated results from one of the tables. Currently, Microsoft35,

Intel36 and GNU37 have program guided optimization (PGO) functionality that creates

instrumented versions of an application and allows the application to be ‘trained’ to

produce higher performance code. The developed methodology and algorithm has not

yet been incorporated into any software development tool or PGO option.

In addition to avoiding computation or computing results only once in many cases

binary or integer instructions may be used within inner processing loops to replace

37

sequences of floating point computation. These instructions in many cases run in less

than one CPU cycle. This project takes full advantage of this technique.

The algorithm also exploits the fact that many variables within the inner object

processing routines are used as constants at runtime and are not known to be constants

when the software is compiled. A compiler optimizer’s constant folding and

propagation algorithm reduces constant expressions and subexpressions at compile

time to a compile time precalculated value so that constant expressions and

subexpressions are never calculated at runtime. The developed algorithm performs a

similar function when the precalculated tables are initialized and all expressions are

reduced to constant expressions with one or two variable over a range of values.

The developed methodology and algorithms in both the C language and hand coded

assembler routines provide a ‘noncomputational’ approach based on the definition of

the simulation and the incremental computation of pre-calculated results to obtain the

final result. The method can return multiple intermediate results that are then assembled

with non-floating point instructions or incrementally calculated to produce a final result

for each ‘hot spot’ in a computationally intensive application.

In incremental computation and compilation models data elements and their associated

code are identified and only the data elements and code that needs to be recalculated is

recalculated when a change is made. The best known examples of this are spreadsheets

such as Microsoft Excel™ where only the cells impacted by a change in data values or

formulas are recalculated and the rest of the spreadsheet remains unchanged. The same

process also occurs in incremental programming language development environments

where there is a demand for very fast compilation speeds. In 1998 IBM introduced

VisualAge C++ Professional for AIX Version 4.0, a fully incremental compiler38.

Microsoft ‘Roslyn’ is using this approach in Visual Studio 2015.39, 40 In interactive

development environments only the data and code that is impacted by a change as the

change is being made is recompiled. Using the developed methodology precalculated

intermediate or final results provides an opportunity to reduce the data and code

interdependency so that runtime performance is faster.

These incremental results are each stored in a table and accessed with memory, integer

and bit manipulation instructions only. These instructions can be efficiently executed

in the CPU pipeline and many of these instructions execute in less than one clock cycle.

38

No floating point instructions are required except where pre-calculated results cannot

be used for intermediate results or final results that are used external to the function

being optimized. For force base object interaction problems such as molecular

dynamics this approach effectively produces a ‘coarse grain’ space for the simulation

to run in using the distance squared (r2). The algorithm however cannot be used to

reduce the cost of processing distance calculations associated with object interactions

at the computational core of an application. Fused multiple and add (FMA) instructions

can help reduce the overhead of the distance component of force based object

interactions.

The objective of this research is to address the approximately ≈70-90% of the CPU cost

of most object interaction applications and to greatly increase the performance of core

math functions (e.g. C library functions) and equation solutions used by HPC

applications in general. In order to improve the performance of these equation solutions

it is necessary to eliminate or reduce substantially the computer instructions and CPU

cycles required to solve them. Fortunately at runtime, simulation model and application

specific values are loaded into the program, based the requirements of the application,

and used as constants. An HPC application also almost always uses only a portion of

the IEEE 754 data format both in terms of exponents and mantissa bits.

In order for the developed methodology to be memory efficient and fit within CPU

caches it is critically important that the developer and the user understand the data being

used in core processing routines. The algorithm assumes that a reduced precision is

acceptable and that only a portion of the range of IEEE 754 exponents are used. The

range of exponents and the number of significant digits required are directly related to

the size of the tables used to hold each of the incremental or function results. The

methodology however does not require that all of the exponent ranges or ranges be

contiguous or that each range support the same number of significant digits (bits of the

mantissa).

In order to minimize the amount of CPU cache memory used, a new mathematical and

floating point format model has also been developed, providing a variable precision

floating point calculation model based on the IEEE 754 standard to reduce the size of

the pre-calculated tables. This variable precision format parallels the IEEE standard

without the need for additional tables or runtime operations. This algorithm may be

used in any application that is computationally intensive. There are no approximations

39

other than those reflected in the reduced precision using a subset of the IEEE floating

point definitions for both the number of significant digits required and the exponents

required.

All calculations that were used for the incremental calculations are performed in double

precision and stored as single precision when the tables are initialized unless the

application requires a double precision result. Other numeric formats could be similarly

processed performing calculations in a form most appropriate to the application and

storing the incremental results in a form that would not require a conversion at runtime.

Applications may use a mixture of single or double precision tables for storing

incremental results depending on the requirements of what is being optimized. When

the tables containing the incremental pre-calculated results are generated the variable

precision algorithm adjusts the floating point representation to parallel the IEEE 754

standard but at reduced precision. The algorithm uses a simulated ‘guard bit’ to avoid

creating a very small cumulative divergent error.41,42 Processor manufactures

incorporate ‘guard bits’ to avoid rounding errors that would create a cumulative error.

These ‘guard bits’ are used to create a forward backward offsetting error correction

across the range of floating point values. When the tables are created the exponent

portion of the floating point representation of the variable used to determine the

noncomputational result (e.g. distance squared in the case of most force based object

interactions) may be masked with a binary value to alter or create one or more ranges

of exponents and/or eliminate the sign bit of the floating point representation. The

precision of the resulting value is reduced shifting the floating point value in binary

form to the right reducing the mantissa. A right shift effectively divides the

representation by a power of two and reduces the size of the tables required. After this

is performed, a simulated ‘guard’ bit is added enabling the calculation of the values

stored in the table to be treated as a scaled base 2 value. This provides a mixed stability

model with a very small offsetting forward and backward error correction paralleling

the IEEE 754 standard. This is necessary because dividing an integer by 2 causes a

truncation on odd values creating a cumulative error. Using a right shift to divide an

integer by two gives the correct value for all even numbers. For odd integer values it is

necessary to create an alternating forward and backward error correction. This is

performed at table initialization time. A floating point to integer conversion method is

not used because this creates a divergent error relative to the IEEE standard by

40

eliminating the ‘floating’ property of IEEE 754 compliant CPUs. If the GROMACS43

nonbonded routines used a floating point to integer conversion technique to create a

table index such as was added as an option to CHARMM, this would create an

increasingly large offsetting corrective error as the distance squared decreases. This has

an undesirable effect on the results for the force values as the distance squared becomes

smaller. At some point in a simple floating point to integer conversion method cutoffs

are reached because of the scaling factor.

The developed algorithm is designed to scale using single instruction multiple data

(SIMD) extensions to instruction sets such as SSE, SSE2, SSE4.1, AVX, AVX2 and

AVX512 Intel Xeon Phi44. In these instructions sets it is possible to process 128, 256

or 512 bits of data in parallel. This may be in the form of 4, 8, or 16 single precision

values or 2, 4, or 8 double precision values. The Intel Xeon Phi coprocessor processes

512 bits but requires special programming when used as a coprocessor. The molecular

dynamics simulation program GROMACS 4.5.3 supports single and double precision

C language code, and hand coded single precision (SSE) and double precision (SSE2)

assembly code. It has been highly optimized for calculating atomic level force

interactions for over 20 years. The variations of the developed algorithm were evaluated

against the standard build options for GROMACS 4.5.3 for performance and

equivalence of functionality.

The developed methodology could also benefit from new computer instructions that

could reduce the number of instructions from three to two in an Intel or AMD

architecture and support the allocation and management of a portion of L2 and L3 CPU

caches. They could also be implemented by other CPU or GPU vendors.

In order to test the developed algorithm a C language test program was developed that

reads a file with 108 atomic level object interactions output from the GROMACS

software for use in force interactions. The performance of the test application using this

dataset compared the C version of GROMACS, and the hand coded highly optimized

SSE and SSE2 assembly language code with the SSE2, SSE4.1 and AVX2 versions of

the developed algorithm.

The same test program and dataset also evaluated the performance of the developed

algorithm in C versus the performance of the gcc C library functions for sin, cos, tan,

sqrt, log, and pow over the limited range of values in the dataset. Included in this testing

41

was the C version of the Newton-Raphson 1/sqrt that is included in the C version of

GROMACS 4.5.3 and Lennart Nilsson’s floating point integer conversion table lookup

method45.

The developed algorithm has 22 variations reflecting the number of significant digits

that may be expressed by reducing the number of bits in the mantissa of the IEEE 754

single precision representation. The full IEEE 754 single precision format supports

≈7.22 significant digits with 23 explicit bits and 1 implicit bit for the mantissa. In the

testing with GROMACS the fundamental value used to calculate object (nonbonded

forces) interactions is distance squared and the object type. The type of object includes

attributes such as charge and other constants. The developed algorithm effectively

reduced the spatial and computational granularities using a variable precision floating

point representation. This was possible because the application uses limited range of

the IEEE 754 format. In the application a single precision value of 1.0 is used to

represent 1.0 nm2. Given this application assumption it is unnecessary to use all ≈7.22

significant digits of the IEEE format because that would support a spatial granularity

representing the size of a subatomic particle. This is not meaningful to the application

and using the full IEEE 754 format would defeat the algorithm’s ability to improve

performance because of the amount of CPU cache memory required.

The algorithm’s forward and backward error correction provides stable computational

results with no divergence for each reduction of the mantissa bits but the requirements

of application determine what number of significant digits is required. The algorithm

supports the reduction or elimination of program code if this is known. The IEEE 754

standard avoids this problem by making the range of exponents and number of

significant digits so large that the application developer does not need to be too

concerned. In many cases the results returned by the developed algorithm are used with

experimentally determined data. For example, ocean or atmospheric temperatures are

measured in terms of a very limited range of significant digits and only a limited

exponent range. It is unnecessary to believe that ocean temperatures are measured to an

accuracy of 10-7 degrees. A few significant digits and a few exponents are all that is

required for terrestrial ocean and air temperatures. It is also necessary to validate an

application using the incremental noncomputational methodology with a reduced

precision to determine if the results are ‘good enough’. Using the developed

methodology in our study of atomic level simulations using GROMACS we found that

42

three significant digits and 7 base 2 exponents from the IEEE 754 format were sufficient

to have simulation results that were within the deviations between the C, single

precision SSE and double precision SSE2 builds of unmodified version of GROMACS

that are all considered ‘good enough’ for general use.

1.3.3 Evaluation of the Impact of Reducing the Floating Point Precision

The analysis in Figure 7 represents the results of reproducing the precision on a water

box simulation. This should be typical of force based object simulations. The results

were generated from a series of simulations using the unmodified application in using

the SSE, C builds and comparing them to the application optimized with of the

developed algorithm from ≈7.22 significant digits to ≈2.11 significant digits. Each of

the values between ≈7.22 and ≈2.11 represent the number of base 10 significant digits

that may supported by reducing the mantissa portion of the IEEE 754 format by one bit

starting from the full IEEE single precision format that supports ≈7.22 significant digits.

-11800

-11600

-11400

-11200

-11000

-10800

-10600

-10400

-10200

-10000

-9800

S
S

E C

7
.2

2

6
.9

2

6
.6

2

6
.3

2

6
.0

2

5
.7

2

5
.4

2

5
.1

2

4
.8

2

4
.5

2

4
.2

1

3
.9

1

3
.6

1

3
.3

1

3
.0

1

2
.7

1

2
.4

1

2
.1

1

E
 (

k
J
 m

o
l-1

)

GROMACS SSE C vs Variable Precision Significant Digits

Total Energy Water Box
1ns

Gromacs 4.5.3

min

max

mean

Figure 7 Increase in Total Energy as Computational Precision Decreases

43

As can be seen total system energy increases after the spatial granularity is reduced to

less than ≈3.01 significant digits. Tests were attempted using variable precision of less

than ≈2.11 significant digits but the system blew up!

Figure 7 shows the variation in mean, max and minimum values for the total energy for

the same water box simulation. It can be seen that the values change significantly as the

number of significant digits is reduced beyond ≈3.31 and ≈3.01 significant digits.

Figure 8 shows increasingly large changes in the standard deviation for total energy

values for the water box simulation with a reduction of precision of greater than ≈3.01

significant digits indicating greater instability in system energy. Starting at ≈2.71

significant digits the standard deviation for total energy starts to increase rapidly until

at ≈2.11 significant digits the standard deviation is 114 kJ mol-1.

The following figure 9 shows the degree to which the standard deviation of the variable

precision algorithm lies between the standard deviations of the unmodified application

C and SSE builds. Once again after ≈3.31 or ≈3.01 significant digits there are increases

in the standard deviations as the ‘spatial’ granularity is reduced. Variable precision

SS
E

C
7.2
2

6.9
2

6.6
2

6.3
2

6.0
2

5.7
2

5.4
2

5.1
2

4.8
2

4.5
2

4.2
1

3.9
1

3.6
1

3.3
1

3.0
1

2.7
1

2.4
1

2.1
1

stddev 66 63 65 67 67 63 65 64 63 64 64 63 65 64 65 65 67 69 79 114

0

20

40

60

80

100

120

S
ta

n
d

a
rd

 D
e
v
ia

ti
o

n
 E

 (
k
J
 m

o
l-1

)

GROMACS C, SSE vs Variable Precision Approximate Significant Digits

Standard Deviation Total Energy
Water Box 1ns

Figure 8 Standard Deviation Increasing with Reduced Precision

44

formats within or close to the deviation between the unmodified builds of the

application are considered to likely be ‘good enough’ for the intended use.

1.3.4 Test Environments

Performance testing was performed on the following systems: AMD Opteron 6272 2.1

GHZ 2MB CPU cache (Bulldozer) 64 core server, Intel Xeon 5650 2.67 GHZ 12MB

Cache 6 cores (Westmere-EP 32nm), Intel Core i7 (2630QM) 2.0 GHZ 6 MB Cache

(Sandy Bridge), Intel Core i7 (930) 2.8 GHZ, 8 MB cache (Nehalem), Intel Core 2 Duo

2.24 GHZ 3 MB cache, Intel Core 2 Quad Core 2.2 GHZ 3 MB cache, AMD Athlon

3800+ 2.4 GHZ 512KB cache, AMD Athlon X2 4400+ 2.3 GHZ 512KB cache and

Intel Core i5 1.7 GHZ 3MB cache (4201U (Haswell) ULT).

All testing was performed on Ubuntu 14.04. The Intel Software Development

Emulator (SDE) was used for the initial development and testing of the AVX2

instruction set version (Intel Haswell architecture). The gcc 4.8 C compiler was used

for development.

0

10

20

30

40

50

60
S

S
E C

7
.2

2

6
.9

2

6
.6

2

6
.3

2

6
.0

2

5
.7

2

5
.4

2

5
.1

2

4
.8

2

4
.5

2

4
.2

1

3
.9

1

3
.6

1

3
.3

1

3
.0

1

2
.7

1

2
.4

1

2
.1

1

E
 (

k
J
 m

o
l-1

)

Unmodified GROMACS SSE, C and Variable Precision
Approximate Significant Digits

Total Energy Water Box
Difference in the Standard Deviations of the

Unmodified Builds vs Variable Precision

Diff Std Dev C and SSE or
Variable Precision

Diff Std Dev SSE and C or
Variable Precision

Figure 9 Standard Deviation Between GROMACS C and Single

Precision SSE as compared to Variable Precision

45

1.3.5 A ‘Noncomputational’ Incremental Algorithm

The algorithm exploits the internal structure of the IEEE 754 floating point standard’s

representation of single and double precision numerical values. Once these values are

processed they are used to index tables of pre-calculated results and then to

incrementally compute additional intermediate or final results. The objective of the

methodology is to avoid computation at the core of the nonbonded routines and to move

this computation so that the pre-computed tables are generated only on first use.

Compiler global optimizers have been generating results once and performing

incremental computation as needed since the 1980s.

Figure 10 illustrates the differences between the methodologies. A computer program

may be considered to be sequences of instructions and functions that have a start and

an end with branches representing calls to the functions of the program. The branches

for computing the object interactions use the greatest amount of CPU time and real

clock time. In the computational model every function calculates everything every

time the function is executed. If the algorithms in these portions of the program have

already been coded optimally the only alternative is to not perform the calculations.

The sections in red indicate the computationally intensive parts of the code that have

already been fully optimized computationally.

In the noncomputational incremental method when a program is run to process object

interactions the input files and parameters are analyzed for a number of key

application specific parameters that comprise the definition of what is being modeled

based on the problem domain. In the case of our molecular dynamics application these

are: type of forces, water model definitions, cutoff schemes, type of box (cubic,

dodecahedron), etc. This information is used to construct a series of small memory

caches of pre-computed results the first time the results are used that can be

46

assembled or incrementally calculated at runtime for all subsequent processing

eliminating the need to recomputed the entire equation or function.

If too high a percentage of the CPU cache is used because the tables are too large

performance gains decrease and can result in a loss of performance. In the testing

performed it was found that if over approximately fifty percent (50%) of the CPU

cache was used the performance could vary substantially between multiple executions

of the test program.

1.4 Background – Floating Point Representations

1.4.1 IEEE 754 Floating Point Standard

The IEEE 754 floating point standard defines digital representations for ranges of real

numbers. The single precision real number format is represented using 32 bits and

Subsequent ‘Calculations’

Retrieve Partial/Final

Results and Assemble or

Incrementally Calculates to

Produce Final Results

First Use Creates Variable

Precision Lookup Tables

with Pre-calculated Values

‘Non-computational’ Incremental Calculation MethodFully Optimized Application Calculation Method

All Interactions

Calculated Every time

Pre-calculated Caches – Partial Results

Data Read/Write

Computational ‘Hot Spots’

Figure 10 Computation-based vs. Noncomputational Incremental Method

47

 IEEE 754 Representations

 Width Range Precision[a]

Single
Precision 32 bits

±1.18×10−38 to
±3.4×1038  7.2 digits

Double
Precision 64 bits

±2.23×10−308 to
±1.80×10308  15.9 digits

[a] Decimal digits precision is mantissa bits * log10(2)

Table 1 IEEE 754 Format Ranges

the double precision format is represented in 64 bits. The standard also supports other

formats such as half precision (16 bits) and quad-precision (128 bits). All binary

representations have three components: a fraction (mantissa), an exponent and a sign.

The differences between the formats are in the number of bits used to represent the

exponents and mantissas. A single precision value is represented in a 32 bit binary

format. Figure 1146 shows the single precision values there is a sign bit, 23 bits plus

an implicit 24th bit for the mantissa, and an 8 bit exponent that is biased by 127.

Figure 11 IEEE 754 Single Precision Format

Equation 1 is used to convert the binary 32 bit representation of a single precision

value to its base 10 format where i is the first bit of the mantissa to the maximum

supported by the floating point format. Thus the value represented in figure 11 is

0.15625.

23
(127)

23

1

(1) (1 2) 2sign i e

i

i

x b  





     

Equation 1 IEEE 754 Single Precision Value

48

Figure 12 shows the 64 bit double precision representation that has additional bits for

both the exponent and mantissa.47

Figure 12 IEEE 754 Double Precision Format

The binary representation of a double precision value is converted to the base 10

format using the following formula. This formula varies from the single precision

formula only in the number of bits that are used for the exponent and mantissa.

Formula 2 IEEE 754 Double Precision Value

1.4.2 Understanding the Purpose of the Application

The objective of HPC application software should be to make the function being

performed run as fast as possible not to just be a general purpose tool. Most software

uses data formats and processing instructions whose functionality is defined by

standards organizations such as IEEE, ISO or ANSI. These formats and instructions

support a broad set of general purpose capabilities but because of their digital

implementation they have a large but defined set of limitations. Users of applications

accept that the supported ranges are ‘good enough’ for their general use. The CPU

vendors accept that their products address enough of the total market requirements

that they will be competitive. Applications use constants or calculated values that may

be experimentally determined. Data is subject to the limitations of measurement,

assumptions of the application, and by equations or algorithms. Almost all

applications use objects that are coarse grained at some level.

1.4.3 Developed Variable Precision Floating Point Based on IEEE 754

By manipulating the binary format of the floating point representation of data it is

possible to vary the precision of a floating point value. These reduced precision

representations and knowledge of the equation or function can be used to create

indices. These indices can then be used for accessing pre-computed results that are

52
(1023)

52

1

(1) (1 2) 2sign i e

i

i

x b  





     

49

part of function, equation or application solution eliminating runtime computation by

one or more table lookups. The multiple results returned can be ‘assembled’ or

incrementally calculated to product the final results. Due to CPU cache limitations

variable precision can operate only over one or more small ranges of the IEEE format.

If variable precision floating point representations are used computationally intensive

portions of functions, equations, or solutions can be completely avoided without

violating the ‘floating’ characteristics of the IEEE 754 standard. The computationally

intensive portions of the solution become ‘noncomputational’ at runtime. Use of

variable precision requires application and solution specific knowledge that must be

provided either by the developer or obtainable at runtime. This information needed by

the application to create the tables for use with the methodology is frequently

available to the application at runtime based on input files, parameters, or through

processes that occur when the applications starts. The methodology also requires

knowledge of the properties of the CPU and especially the cache size available to

process.

With almost no exceptions the full IEEE 754 single/double precision is therefore

unnecessary for such things as distance, force and economic calculations in a single

application. Problem domains operate using granular objects. Applications

performing force related object interactions with few exceptions do not model quarks

and galaxies at the same time.

Physical object interactions operate in real space and time and are simulated by

applications to run in virtual real space and time that maps to a range of

computational values. This real space and computational space can be represented by

fewer bits for both the exponent and mantissa portions of the IEEE 754 representation

used for general computation because of the nature of the problem being solved.

Object interaction software should be able to operate on a reduced precision form of

the IEEE format.

Reduced granularity uses fewer of the mantissa bits and exponent bits from the entire

IEEE range. The following example is for a contiguous range.

50

 
23

(1,2,...254) 127

23

1

(1) (1 2) 2
esign i

i

i

x b


 





     

Equation 3 Variable Precision Formats for Contiguous Base 2 Ranges

One or more base 2 ranges of the IEEE format may be used per result to optimize the

use of cache memory, remembering that the IEEE 754 exponents are biased by -127.

Noncontiguous base 2 exponent ranges may be used. For example R1 ∈ {90, 91, 92},

R2 ∈ {100,101,102,103}, Rl ∈ {121,122,123...254}. This is useful when a function or

equation returns values that are predominately in specific ranges and do not frequently

exist in other ranges.

 1 2

23
(...) 127

23

1

(1) (1 2) 2 le R R Rsign i

i

i

x b


   





     

Equation 4 Variable Precision Formats for Multiple Base 2 Ranges

Partial ranges may also be used by changing the lower bound used for cache table

creation to a value that is not a power of two. This may be used to reduce the amount

of memory used for each result. This technique may also be employed at table

allocation time to reduce the number of entries in the high end of the table. The same

techniques for adjusting lower and higher bounds that are used for a single contiguous

table may also be applied to a model using multiple ranges. Cyclical functions over

many powers of two may benefit from a small amount of code to select table portions

or to perform short calculations to use less memory. Some functions or equations may

have special requirements for use with the developed algorithm based on boundary

conditions, discontinuity or values that would result in an imaginary number, NAN or

±∞. Special coding for table initialization is required for these situations.

The simplest form of a variable precision data format is a constant such as π that is

not initialized to the full number of significant digits supported by the IEEE 754

standard. It is usually used as a constant that may be thought of as a table with one

entry where the value is coded by the application programmer. No one would think of

writing the following code to calculate the value 3.1415.

51

Equation 5 Formula for π

In a water box test simulation that was used to provide the base for reproducibility for

this study the following data profile was observed during a 1 nanosecond simulation

where r represents the distance between interacting molecules. The maximum

distance used to calculate force interactions was 1.4 nm. This value was set in an

input file to the software at runtime. The minimum distance has real world physical

limits based on the forces and velocities involved in the interactions. At room

temperature water molecules can only approach each other at a distance greater than

the hydrogen to hydrogen bond length (74pm).

This implies that a variable form of the IEEE 754 format could be used to generate the

results for nonbonded interactions using relatively small amounts of CPU cache

memory for pre-computed tables. Values representing the ± 1 pm granular space may

be represented as a reduced precision IEEE 754 format of three significant digits.

This is accomplished by reducing the number of bits i in the mantissa. The following

defines the variable precision format for ≈3.01 significant digits over a limited range

of exponents. The value of i represents the number of bits for the mantissa and the e

must be in the set of biased values representing the range of powers of 2 that the

application requires.

If the application represents distance using 1.0 as 1.0 nm2 and the minimum distance

is 74 pm and the maximum distance is 1.4 nm then the application uses only 7 base 2

exponent ranges from the biased IEEE 754 single precision exponent. It was theorized

Equation 6 Variable Precision ≈3.01 Significant Digits, 7 Base 2 Exponents Ranges

 
9

(121,122,...128) 127

23

1

(1) (1 2) 2
esign i

i

i

x b
 





     

52

that the number of significant digits used to represent space in the application

(molecular dynamics) is approximately 3 digits.

There are therefore four reduced precision formats representing approximately 3

significant digits requiring 9-12 mantissa bits. These formats are memory efficient

enough to be useful in currently available CPUs. This may be represented as follows:

Equation 7 Variable Precision formats for 3 significant digits for test dataset

The most memory efficient alternative supports ≈3.01 significant digits and uses

28,672 bytes of storage for each single precision pre-calculated value (7 base 2

exponent ranges * 1024 entries/power of two * 4 bytes/single precision entry). The

distance squared (r2) and the type of interaction is used to determine what

intermediate or final results are created and are available for use during the execution

of the simulation. The other alternatives of interest are ≈3.31, ≈3.61, and ≈3.91

significant digits requiring 57,344, 114,688 and 229,376 bytes of storage respectively.

Any of these fits easily within the CPU L2/L3 caches. The following shows the

memory requirements for variable precision lookup tables where 1.0 equals 1 nm2 for

all the object interactions and intermediate results for a pair of water molecules

calculating the non-bonded forces.

Mantissa

Bits

Approx Base

10

Significant

Digits

Table Entries

Per Base 2

Power

Distance

Squared (r
2
)

Entries 7

Base 2

Powers

Memory

Required Per

Result

W3A-W3A

Interactions LJ

+ RF (bytes)

9 2.71 512 > 1 pm 3,584 14,336 100,352

10 3.01 1,024 1 pm 7,168 28,672 200,704

11 3.31 2,048 1 pm 14,336 57,344 401,408

12 3.61 4,096 1 pm 28,672 114,688 802,816

13 3.91 8,192 1 pm 57,344 229,376 1,605,632

14 4.21 16,384 0.1 pm 114,688 458,752 3,211,264

15 4.52 32,768 0.1 pm 229,376 917,504 6,422,528

16 4.82 65,536 0.1 pm 458,752 1,835,008 12,845,056

17 5.12 131,072 0.01 pm 917,504 3,670,016 25,690,112

Table 2 Memory Requirements for Variable Precision Format

 
9,10,11,12

(120,121,...128) 127

23

1

(1) (1 2) 2
esign i

i

i

x b
 





     

53

In our test object interaction application (GROMACS) this permits the use of the

algorithm on solvent-solvent, solvent-solute interactions and some solute-solute

interactions depending on what is being simulated and the amount of CPU cache

available. Simulating the object interactions between water molecules in our test used

only a fraction of the CPU cache available and water interactions account for most of

the performance cost of a typical molecular dynamics simulation, as much as 90%.

The requirements of the object interaction application and even a specific execution of

that application determine the number bits of the IEEE exponent (base 2 powers) and

number of mantissa bits of the IEEE representation that is required. Application

developers frequently use the value of 1.0 within the problem domain whether it is

one nm, m, km, light year, time step or other value.

Application and execution specific runtime ‘constants’ not known at compile time

also may be useful in reducing the number and size of tables used for the developed

method. These runtime constants can be used to reduce or eliminate calculations that

are performed at runtime. In our example there are a number of variables that are

known at runtime and used as constants by the inner most computational routines.

0 0 0

4

8

23

61

4

0 0 1
3

8

23

58

7

0 0 1
3

9

23

56

9

0

10

20

30

40

50

60

70

P
e
rc

e
n

ta
g

e

Internal IEEE Exponent Range Power of 2

Distribution of Distance Squared (r2) Values

OO OH

HH

Figure 13 Distribution of Distance Squared (r2) Values

54

The noncomputational incremental algorithm for use in the water box test can exploit

the following48:

• Distance squared is always within a limited range and is always a positive

value.

• 1/sqrt is not required

precalculated results are based on distance squared this is the largest part

of force based object interactions

• Calculations of numerous intermediate results are not needed.

 powers of the inverse square root of the distance

 Intermediate variables associated with equation calculating Lennard-

Jones values

 Constants that are used in the equations known at runtime only

 Charge, force field and other constants that are specific to the object

types

 Container type specific constant (cube, dodecahedron)

 Other constants are input from files

In summary, all of the above observations allow the interactions for two water

molecules to be reduced to a single function where distance squared is the only

variable and it can be used to retrieve pre-calculated intermediate or final results.

The following pseudo code illustrates how this may be applied to GROMACS water

three atom to water three atom, Lennard-Jones and reaction field nonbonded

interactions in GROMAS. Portions of the pseudo code is from the C source code of

the GROMACS nb_kernel212 routine. It is not intended that the reader understand the

pseudo code but only for the reader to see the magnitude of the difference.

55

 bitpattern11.fval = rsq11;

 iexp11 = EXP_ADDR(bitpattern11.bval);

 addr11 = FRACT_ADDR(bitpattern11.bval);

 result11.bval = cinvsqrtexptab[iexp11] |

cinvsqrtfracttab[addr11];

 lu11 = result11.fval;

 rinv11 = (half*lu33*(three-((rsq1*lu11)*lu11)));

 rinvsq11 = rinv11*rinv11;

 rinvsix = rinvsq11*rinvsq11*rinvsq11;

 vnb6 = c6*rinvsix;

 vnb12 = c12*rinvsix*rinvsix;

 vnbtot = vnbtot + vnb12-vnb6;

 krsq = krf*rsq11;

 vcoul = qqOO*(rinv11+krsq-crf);

 fs11 = (twelve*vnb12-six*vnb6+qqOO*(rinv11-

two*krsq))*rinvsq11;

 vctot = vctot + vcoul;

The developed methodology avoids a Newton-Raphson 1/sqrt and retrieves three

incremental data values based on distance squared (rsq11), each with a cache lookup

using an integer index created with one/two instructions depending if the value is

signed. Either single or double precision values may be retrieved. The tables are

initialized the first time the nonbonded interaction is needed within the limits of the

cache size. If the cache size is exceeded then the value can be calculated. The pseudo

code is reduced to the following based on distance squared. This incrementally

calculates the results based on three retrieved values and eliminates almost all floating

point calculations in the inner force calculations and most of the remaining

instructions are memory loads and register operations that execute in less than one

CPU cycle.

 vnbtot = vnbtot+ OO_VNBA(rsq11);

 vctot = vctot+ OO_VCOUL(rsq11);

 fs11 = OO_FS11(rsq11);

56

1.5 The Algorithm

1.5.1 Implementation

The algorithm uses a processed form of the raw IEEE format representation as a table

lookup index for each intermediate or final result. This is accomplished without

compromising the ‘floating’ characteristic of the IEEE format. A table is created on

the first pass through the nonbonded routine to initialize the table. The tables are

based on the inter-particle distance squared and this eliminates the need to perform

the 1/sqrt operation.

The index is created using the following pseudo code. The lower boundary of the

distance squared values that are supported by the table is subtracted from the distance

squared value (r2) for the interaction, treating both native floating point values as 32

or 64 bit integers. The resulting value is shifted a number of bits to the right to reduce

the precision and therefore reduces the spatial ‘granularity’ for the interaction. The

resulting integer value is then used as an index to lookup the result or intermediate

results in one or more tables or sections of tables and the value returned is either a

single precision or double precision value depending on the requirements of the

application. The same index may be used to retrieve multiple results. Multiple

intermediate results may be used to incrementally calculate a final result. Applying

the variable precision methodology to nonbonded interactions, r represents distance,

r2 represents the floating point distance squared value used to create the index, Ftab is

the lookup table for the reduced precision results, LOWER_BOUND is the lowest

value for r2 that is possible in floating point format (but used as an integer) and

NUM_BITS is the number of bits to shift to the right to reduce the precision. There is

no sign bit since distance squared (r2) is always positive otherwise it would be

necessary to mask it out or to use two tables for positive and negative results

depending on the intended use. The range of r2 is continuous and over a single range

so no additional processing is required for boundary conditions or multiple table

lookups for a single function.

F(r) ≈ Ftab [(r2.binary – LOWER_BOUND) >> NUM_BITS].float

57

Multiple intermediate results can be stored as offsets in the same table eliminating the

instructions that reload of the base address of the table. Using SSE2, SSE 4.1 and

AVX2 this can be reduced from 11 to 7 to 3 instructions respectively that can be

highly pipelined.

A number of these instructions operate in less than one clock cycle. SSE2 and SSE

4.1 can process four single precision values at one and AVX2 can process 8 values at

once. The algorithm uses SIMD instructions for integer and logical operations that do

not exist in either the SSE or AVX instruction set extensions. The algorithm can be

coded to avoid the need for these instructions but with a performance penalty because

of the increased number of instructions and memory accesses. This project did not

evaluate the performance impact of using either SSE or AVX instruction sets. It was

noted that the performance of the SSE2 and SSE 4.1 instruction set implementations

on Intel Sandy Bridge and Haswell architecture CPUs was much higher than would

have been predicted from instruction timings. This was possibly due to improvements

in cache architecture and micro-operation (μops) processing.

The tables of intermediate results are generated by sequencing through all of the

possible values of the variable precision representation so that the results ‘float’ in the

same way as the IEEE 32 and 64 bit formats. As the table generation is performed, a

simulated additional ‘guard bit’ to the right of the reduced precision mantissa is used

before the calculation to initialize the table alternating on odd and even values of the

mantissa.

This prevents a small divergent error from the binary truncation that occurs at runtime

otherwise it would be necessary to treat the mantissa as a scaled base 2 value at

runtime and this would defeat much of the performance gain of the algorithm.

All calculations for table entries are performed in double precision and the results

stored in the tables as either single or double precision. No interpolation is required.

The following diagram illustrates the ‘floating’ nature of the implementation. The

mantissa portion of the IEEE 764 standard single precision format supports

approximately 8M values for each power of two. By reducing the mantissa bits it is

possible to reduce the precision without destroying the ‘floating’ property of the

format. This makes the variable format suitable for use with functions/equations

independent of their slope or continuity. When multiple results are used as part of

58

incremental computation at runtime a small number of computer instructions are used

to assemble or provide minimal calculation to solve equations or functions.

bit1

bit 2

bit 3

…

bit 23

…
IEEE Single
Precision

Significant
Digits

3.01

7.22

bit1

bit 2

bit 3

…

bit 23

…
IEEE Single
Precision

bit1

bit 2

bit 3

…

bit 23

…
IEEE Single
Precision

Significant
Digits

3.01

7.22

Figure 14 Variable Precision Mantissa 'Floats' Like IEEE

An alternative implementation would be to perform an integer conversion of the

floating point value applying a scaling factor. In the following example the int

function converts the results of the scaling factor times distance squared and looks the

result up in a force table.

F(r) ≈ Ftab [int (scale * r2)]

Converting a floating point value to an integer causes a divergence from the IEEE

standard and destroys the ‘float’ properties of the values and generates a diversion

from the results obtained from those that would be generated by a floating point

calculation. This diversion is highly function specific. Using a floating point to

integer conversion results in fewer and fewer values to represent much larger forces

as the distances become closer. When the algorithm is applied to other

functions/equations the variations of the slope in portions of the functions/equations

will show large differences in the offsetting error correction based on the slope on the

axis.

In his work, Nilsson40 applied an interpolation algorithm that uses an additional table

and additional code at runtime to attempt to overcome this problem. His interpolation

model was coded as follows.

59

 Direct lookup

F(r) ≈ Ftab [index]

Linear interpolation

F(r) ≈ Ftab [index] + α * (Ftab [index+1] - Ftab [index)]) ≡ Ftab [index] + α *

ΔFtab [index]

Where

index = int(scale * r2)

α = scale * r2 - index

If the integer conversion approach, even with linear interpolation, is applied to general

computation the index will not appropriately sample the distribution of the function or

equation’s results based on the IEEE floating point properties.

It is highly undesirable to use an integer conversion to produce an index using a

specific value when there are substantial differences in the results contained in the

table that are being looked up. In this example there are larger and larger differences

in the forces as the distance becomes smaller and fewer base 10 digits to represent the

increasingly large forces.

10,000

1000

100

10

1

Figure 15 Effect of Integer Conversion on a Real Number

60

There is no ‘floating’ property in an integer conversion that would preserve the same

precision independent of the distance. Figure 16 shows the increasing forward

backward error correction needed with the 1/sqrt function that is at the core of many

object interaction problems.

Figure 17 shows the variable precision implementation paralleling the floating point

standard and an integer conversion based method diverging until it reaches a lower

limit cutoff that is dependent on the scaling. This cutoff does not correspond to any

1E-09

1E-08

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10

B
a
s
e
 1

0
 V

a
lu

e
 R

a
n
g
e

% error

Relative % Error 1/sqrt(r2)

IEEE 7.22 digits, Variable Precision 3.31 Digits

Variable Precision 3.61 Digits Integer with Scale to 10 pts

Integer with Scale to 40 pts

Figure 16 Increasing Deviations in 1/sqrt function with Integer Conversion Method

61

specified simulation parameters but is a result of the scaling before the integer

conversion occurs.

Another of the side effects of an integer conversion method is the elimination of cases

where a base 10 value may have more than one base 2 representation or it may have

no base 2 representation at all. This property of the floating point representation is

essential to preserving the same number of significant digits as values increase or

decrease. The following table shows the nature of this property. These cohorts are the

reason that programmers can not readily compare floating point variables with the

same base 10 representation because they may have different internal representations.

Base 10

Base 10

Decimal

Base 2

Hexadecimal

2.500003e-01 0.2500000 3e80000b

2.500004e-01 0.2500000 3e80000c

2.500004e-01 0.2500000 3e80000d

2.500004e-01 0.2500000 3e80000e

2.500004e-01 0.2500000 3e80000f

2.500005e-01 0.2500000 3e800010

2.500005e-01 0.2500010 3e800011

2.500005e-01 0.2500010 3e800012

2.500006e-01 0.2500010 3e800013

Table 3 Example IEEE Floating Point Cohort

1.5.2 Performance Evaluation

1.5.2.1 Performance Impact of Exceeding the CPU Cache

This algorithm exploits the available high speed CPU L2 or L3 cache memory to store

each series of results used at the time the simulation is run.

Care must be taken not to use an excessive amount of cache memory or performance

may become worse than computing the results every time.

An initial test was performed on an ordered sequence of real number values

representing every possible binary representation of the single precision floating point

numbers between the lower and upper bounds for the distance squared in our test

water simulation. This was compared to an equal number of unordered distance

Figure 17 Relative % Error vs. IEEE 754 Single Precision

62

squared values from an actual simulation. Table 4 shows the performance impact of

having the distance squared values unordered.

The following figure shows that performing an index table lookup on an unordered set

of values is 3.44 times slower and an ordered set of values is 7.67 times faster even

when the full IEEE 754 ≈7.22 significant range is used. The data required for the

≈7.22 range is approximately 56MB. The time to sort them even with a fast single

pass binary sort algorithm would make the access prohibitively long to use an indexed

lookup at full IEEE 754 precision. The excellent performance even with a very large

variable precision cache comes from the ordered nature of the data which benefits

Performance of 1/sqrt() Data Time (ms)

Time Minus

Empty Loop

(ms)

Times

Faster or

Slower (ms)

Newton-Raphson 1/sqrt() unordered 0.36 0.32 NA

ordered 0.27 0.23 NA

Var. Prec Full IEEE ≈7.22 Digits unordered 1.14 1.10 3.44

ordered 0.07 0.03 7.67

Loop Overhead 0.04

Table 4 Impact of Ordered vs. Unordered Values

63

from the memory pre-fetch and design of CPU caches and memory systems that are

optimized for sequential access.

The only solution to the problem of unordered data using full IEEE single precision

caches was to reduce the ‘granularity’ of the distance squared. Table 5 shows the

impact of exceeding the 2MB CPU cache of an Intel Core 2 Duo 2.2GHZ processor

even using a variable precision algorithm. The test was conducted on 21M unordered

distance squared values for oxygen to oxygen interactions.

Table 5 Impact of Exceeding the L2/L3 CPU Cache on Performance

Time (ms)

Time (ms) minus

loop overhead

Test Program with

GROMACS NR 1/sqrt() 0.30 0.23 NA
Test Program 1/sqrt()

Using Var. Prec. Table of

Various Sizes (MB) Time (ms)

Time (ms) less

loop overhead

Times

Faster/

Slower

32.000 0.88 0.81 3.52

8.000 0.75 0.68 2.96

4.000 0.54 0.47 2.04

2.000 0.22 0.15 1.53

1.000 0.15 0.08 2.88

0.500 0.14 0.07 3.29

0.250 0.14 0.07 3.29

0.125 0.14 0.07 3.29

Test Program Empty loop 0.07

Platform: Core 2 Duo 2.2 GHZ, 2MB Cache Ubuntu 14.04

Test: 21,436,601 Unordered r
2
 Water O-O Interactions

64

 This methodology works well when the pre-computed results can be contained within

the CPU’s L2/L3 cache. Figure 18 illustrates what happens to performance if the

limits of the L2/L3 cache are exceeded. The difference between the Sandy Bridge

and Haswell architecture is possibly due to improvements in the cache memory design

and performance. Some architectures such as the IBM z196 have a very large L4

cache. This study evaluated Intel and AMD CPUs only but it could be easily be

implemented on other architectures. This methodology is limited by the amount of

L2/L3/L4 cache memory available. In the following example the CPU L2/L3 cache

becomes fully utilized at a variable precision of about ≈5.12 significant digits. Other

processors have greater L2/L3 cache memories that allow more extensive use of pre-

calculated and incrementally calculated results. Even on older architecture CPUs with

only 512KB of cache memory the algorithm can be used for water to water

interactions (W3A-W3A Lennard-Jones reaction field) and also some intrinsic math

functions over limited ranges. The slightly lower performance in Figure 18 in the

range of ≈3.01 to ≈4.82 significant digits was repeatable on the Intel Core i7 “Sandy

Bridge” and attributable to the CPU architecture. Other Intel and AMD processors

also showed similar behavior but at different ranges of significant digits. This is

probably due to differences in the CPU cache memory system design.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

7
.2

2

6
.3

2

6
.0

2

5
.7

2

5
.4

2

5
.1

2

4
.8

2

4
.5

2

4
.2

1

3
.9

1

3
.6

1

3
.3

1

3
.0

1

2
.7

1

2
.4

1

2
.1

1

1
.8

1

1
.5

1

1
.2

0

0
.9

0

0
.6

0

T
im

e
 (

s
e

c
o

n
d

s
)

1
0

0
M

 O
O

 I
n

te
ra

c
ti
o

n
s

Approximate Base 10 Significant Digits

Variable Precision Performance by Number of Significant
Digits

Core i7 2.0GHZ, 6MB Cache (Sandy Bridge) vs Core i5 1.7 GHZ, 3MB Cache (Haswell)

Core i7 (Sandy Bridge)

Core i5 (Haswell)

Figure 18 Impact of Exceeding CPU Cache Size Using Variable Precision

65

1.5.2.2 Improving Reciprocal Throughput

Using the algorithm can greatly reduce the number of instructions required to generate

the object interaction results. The reciprocal throughput analysis is based on the work

of Agner Fog.49 Reciprocal throughput is one measure of performance.

Reciprocal throughput has been defined as the average number of clock cycles per

instruction for a series of independent instructions of the same kind in the same thread

on a single core assuming that the operands of each instruction are independent of

preceding instructions. The values used in this study are from Agner Fog’s

independent evaluation of the performance of a wide range of Intel and AMD

processors. The values used are the reciprocals of the throughputs when the

instructions are not part of a limiting chain of dependent instructions. For example,

assuming that the operands are independent a reciprocal throughput of 2 cycles for an

FMUL instruction means that another FMUL instruction can start 2 clock cycles after

the previous FMUL and a value of 0.33 for ADD means that 3 integer additions can

be performed per clock cycle.

Thus, the sum of the instruction cycles that a given algorithm uses may be used for a

relative comparison but with limitations. One major limitation is memory architecture

and whether or not the data is available in one of the levels of cache memory.

Memory access takes 2-3 cycles if cached but several hundred if not. 50

In principle if the number of computer instructions and the number of ‘cycles’ are

reduced then the software should run faster. This however may be a deceiving

measure because the number of cycles per instruction even for the same instruction

varies greatly on what instructions are around it and where it is retrieving data. For

example, modern CPUs will attempt to optimize on chip performance by reordering

instructions, performing operations in parallel or attempting to predict branching.

CPU instructions execute using micro operations that may be scheduled in parallel

with neighboring instructions to avoid ‘blocking’ of program execution. Part of an

instruction may execute in parallel with part of another instruction based on micro

operations.51

Generally non-arithmetic instructions take fewer cycles than numeric instructions and

are more easily optimized in the CPU pipeline frequently executing in less than one

66

cycle. The number of cycles an instruction takes is also highly dependent on where

the data resides. If the data is in the L2/L3 cache execution is very fast, but if it

resides in main system memory the memory access could be 100 times slower.

Using the algorithm can greatly reduce the number of instructions required to generate

the nonbonded interaction results. It may be noted in Table 6 that the SSE and AVX

instruction sets are not included from testing. This is because they lack instructions

for performing certain SIMD bit manipulation instructions that Intel later added in

SSE2 and AVX2 that are essential to the developed algorithm. The following figure

shows the reduction in the number of instructions required to obtain the equation

results as compared with the GROMACS 4.5.3 assembly language code for atomic

level interactions. Most of the instructions have a cycle time of 1 but the developed

algorithm uses numerous memory and register instructions that have cycle times of

.33 on Intel Sandy Bridge and .22 on the Intel Haswell architecture further improving

the performance.

Lennard-Jones

Reaction Field

Lennard-Jones

Only

Results

Est x

Faster

LJ-RF

Est x

Faster LJ

Only

Single Precision

Unmodified GROMACS SSE 35 25 4 NA NA

Developed Method

SSE2 16 16 4 2.2 1.6

SSE4.1 11 11 4 3.2 2.3

AVX2 3 3 8 11.7 8.3

Double Precision

Unmodified GROMACS SSE2 43 43 2 NA NA

Developed Method

SSE2 9 16 2 3.9 1.6

SSE4.1 7 11 2 5.0 2.3

AVX2 3 3 4 11.7 8.3

Number of Instructions

Table 6 Estimated Instruction Times

Table 6 shows a comparison of the number of instructions per result required to

calculate the nonbonded interactions for two water molecules including the 1/sqrt and

the Lennard-Jones and reaction field equations. Argon to argon interactions are also

shown that only need to solve the Lennard-Jones equation. Figure 19 shows the

estimated differences in performance based on instruction times. These are only

estimates based on instruction times and do not reflect actual algorithmic

performance. It is also important to note the number of results that are returned. For

example, the AVX2 implementation can return 8 single precision values of 32 bits

each and can return 4 double precision values of 64 bits each.

67

Figure 19 Performance Estimates Per Result Based on Instruction Count

1.5.3 Runtime Evaluation

In order to test application level performance a program was written that reads 108

oxygen to oxygen interactions and then processes them inside a timing loop. This was

done in assembly code using the GROMACS version 4.5.3 SSE2 assembly code

copied from the nonbonded kernel routines for Lennard-Jones reaction field, and

Lennard-Jones only routine as well as for the noncomputational incremental method

using SSE2 and SSE 4.1 with a special granularity of ≈3.01 significant digits to

provide equivalent results.

The same test application was used to evaluate the performance of the developed

algorithm when it was applied to basic C library math functions. The results are

shown in Figure 20 comparing the developed algorithm versus conventional

calculation. The Newton-Raphson 1/sqrt and Nilsson’s floating point to integer

conversion index lookup method are indicated in the chart below with labels ‘NR

1/sqrt’ and ‘LN JCC’ respectively. The chart also shows one of the limits of the

developed method. The formula for the volume of a sphere 4/3 π r3 is substantially

slower than the developed method because there are so few instructions involved in

0

5

10

15

20

25

30

Gromacs SSE Assembly 1/sqrt + LJ
RF

Gromacs SSE Assembly LJ only

E
s
ti
m

a
te

d
 T

im
e
s
 F

a
s
te

r
B

a
s
e
d
 o

n
 I

n
s
tr

u
c
ti
o

n
 T

im
e
s

Noncomputational Incremental Method
vs GROMACS Assembly Code

SSE 2 (4 results)

SSE 4.1 (4 results)

AVX 2 (4 results)

AVX 2 (8 results)

68

the calculation and because the memory access time is slower than the calculation

time.

1.5.3.1 Comparison of Force Only Tests

The force only tests for the nonbonded routines (excluding the distance calculations

and the application of the forces after calculation) are presented in Table 7. The

unmodified application SSE code was copied and pasted into the test application and

changed only to reference local variables. The Lennard-Jones and reaction field force

equations included the 1/sqrt calculation typical of force based object interaction

applications. The noncomputational incremental method was also written in hand

coded assembly code and inserted into the timing loop of the program.

The very large improvement in force calculation performance is due to the fact that

the method does not require the calculation of the 1/sqrt, the reduced number of

19

11

7

30

31

53

66

125

0

5.7

4.8

3.4

13.5

13.8

24.0

27.6

51.2

0.6

0 20 40 60 80 100 120 140

1/sqrt

N-R 1/sqrt

LN JCC

sin

cos

tan

log

pow

4/3 pi r^3

x Faster

Noncomputational Method in C vs C Functions and C Code

Core 2 Duo
2.25GHZ

Core i7 2GHZ

Figure 20 Noncomputational vs Computational Math Functions

69

instructions and the benefit that the binary and integer operations receive in the CPU

pipeline. This should be typical of other force based object interaction applications

The force only calculations represent only portion of the calculations within the inner

processing routines. Distance calculations cannot benefit from the use of the

developed method but can benefit in some architectures from fused multiply and add

(FMA) instructions.

Time to Process 100M O-O Interactions I7 server 2.67 GHZ

 Forces Only Time (sec)

Time less

empty

loop x Faster

Unmodified Applicaton SSE LJ Only(cut and

pasted into test app) 7.9 7.76
Incremental Method Equivalent (SSE 4.1) LJ

Only Forces 0.38 0.24 32.33
Incremental Method (SSE2) Equivalent LJ Only

Forces 0.39 0.25 31.04

Unmodified Applications SSE LJ + Reaction

Field + 1/sqrt cut pasted into test app 16.78 16.64
Incremental Method (SSE 4.1) Equivalent LJ +

reaction Field + 1/sqrt 0.38 0.24 69.33
Incremental Method (SSE2) Equivalent LJ +

reaction Field + 1/sqrt 0.39 0.25 66.56

Empty Loop 0.14

Table 7 Performance of O-O Interactions

Intel Xeon 5650 2.67 GHZ 12MB Cache 6 cores (Westmere).

1.5.3.2 Comparison with the Full Inner Object Interaction Routines in
GROMACS

The same performance test method was used for the assembly code to process all of

the code within the inner most object interaction routine from GROMACS for the

nonbonded routines. This code was also copied and pasted from the unmodified

GROMACS inner processing routines into the timing loop of the test program. In

order to test the noncomputational incremental method the same GROMACS

assembly code was copied but the portions that calculate the 1/sqrt function and

perform force calculations were replaced with the developed algorithm. The

performance improvements of 2.15 and 3.18 times faster is in line with the reciprocal

70

throughput estimate on the Intel Xeon 5650 2.67 GHZ 12MB Cache 6 cores

(Westmere).

Time to Process 100M Interactions Intel Xeon 5650 server 2.67 GHZ
Full Equivalent of the Inner Object Interaction

Processes (Nonbonded forces in Assembly

Code) Time (sec)

Time less

empty

loop x Faster
Unmodified Application SSE LJ Forces Only Cut

and Pasted into Test App 21.00 20.86
Incremental Method (SSE4.1) Equivalent LJ

Forces Only 2.70 2.56 8.15
Incremental Method (SSE2) Equivalent LJ

Forces Only 2.66 2.52 8.28

Unmodified Application SSE LJ + Reaction

Field + 1/sqrt cut pasted into test app 23.02 22.88
Incremental Method (SSE4.1) Equivalent LJ

Reaction Field + 1/sqrt 6.70 6.56 3.18
Incremental Method (SSE2) Equivalent LJ

Reaction Field + 1/sqrt 9.84 9.70 2.15

Empty Loop 0.14

Table 8 Assembly Code Algorithm vs GROMACS SSE

Intel Xeon 5650 2.67 GHZ 12MB Cache 6 cores (Westmere)

1.5.3.3 Intel Core i7 ‘Sandy Bridge’ and AMD Performance

The same tests were performed on the Intel Core i7 ‘Sandy Bridge’ architecture that

supports the AVX instruction set and on two AMD 64 core systems. The results

showed an extreme improvement in performance between the generations of the Intel

Core i7 architecture. The ‘Sandy Bridge’ architecture processed the code for the full

interaction calculating the 1/sqrt, Lennard-Jones and reaction field forces 14.3 times

faster and for Lennard-Jones force interactions 15.5 times faster than the unmodified

GROMACS 4.5.3 SSE assembly code. It was also observed that the two AMD CPUs

tested only performed about 1.7 times faster. The 64 core AMD server show the same

performance improvement ratio as older AMD CPUs. There are fundamental

differences between the AMD and Intel cache architectures that account for this.

There were no values reported for the AMD CPUs for SSE 4.1 instructions because

SSE 4.1 only exists on Intel CPUs. It is interesting to note that the SSE 4.1

implementation on Sandy Bridge was slightly slower than the SSE2 implementation

even though fewer instructions were used.

71

The Intel ‘Sandy Bridge’ architecture has a number of improvements that may

account for this difference. The most important is probably the improvements in the

cache design, larger CPU cache and wider data paths. It functions almost as if it is

processing 8 single precision values simultaneously rather than 4 even though no

AVX instructions were coded into the test program and AVX2 instructions are not

supported on Intel Core i7 Sandy Bridge. Figure 21 does not include testing with

AVX or AVX2 instructions.

Figure 21 Developed Algorithm in Assembly vs GROMACS SSE Assembly

1.6 Limitations of the Methodology

Limitations Based On Application and CPU Architecture

The developed algorithm has a number of limitations. The most significant is the

amount of CPU L2, L3, or L4 cache available for use with the lookup tables for the

intermediate results. This study showed that there was a substantial reduction in

performance as compared to actually computing the results when the tables used for the

incremental results exceeded the CPU L2/L3 cache. It should also be considered that

Full GROMACS Equivalent Nonbonded 100M OO Interactions

1.8

1.7

1.6

1.6

15.5

2.3

2.1

7.3

2.3

2.0

2.5

2.1

8.3

2.6

2.6

14.3

NA

NA

NA

NA

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

Core2 Duo (2.24

GHZ, 3MB Cache)

MSI Notebook

Intel Core2

Quadcore (2 GHZ,

3MB cache)

AMD Athlon 3800+

(2.4GHZ, 512KB

cache)

AMD Athlon Dual

Core 64 x2 4400+

(2.21GHZ, 1MB)

Core i7 (2GHZ, 6MB

cache, Sandy

Bridge)

x Faster

Incremental Algorithm LJ

Only (nb010) SSE 2

Incremental Algorithm LJ

Only (nb010) SSE 4.1

Incremental Algorithm

LJRF(nb212) SSE 2

Incremental Algorithm

LJRF(nb212) SSE 4.1

72

other applications may be using the core or processor that may cause cache misses for

an application using the incremental lookup tables. Attention should be given to

associating threads/processes using the algorithm with a physical core, CPU block and

blade/node. If processes are allowed to move from core to core cache misses will result

and this will have an adverse impact on performance. Therefore, associating a

thread/process with a core and cache is essential. Differences between CPU cache

designs and vendor ‘families’ of CPUs will also have significant impact on algorithmic

performance as noted in the comparison of AMD and Intel CPUs.

Use of the algorithm in virtual machine environments with multiple virtual cores

mapped to a single physical core was not evaluated. In a virtual environment it may be

difficult or impossible to associate a thread/process with a physical core. If this cannot

be done there will likely be a performance penalty.

The methodology requires application specific knowledge to allow the creation of

reduced precision lookup tables for intermediate results. If this is not available it must

be obtained by instrumenting the application to use data for the specific execution being

performed. This is similar to the optimization that is done in some FFT libraries52 and

to the query execution plans that are supported in SQL databases53.

The algorithm can currently be used only if the number of significant digits is less than

or equal to ≈5.12 significant digits, or only one or few results/intermediate results are

needed due to currently available L2/L3 CPU cache sizes. The exponent range must

also be known so that each level representing a power of two can be initialized properly.

The exponents do not need to be contiguous.

Only one floating point/integer parameter may generally be used as input to the

developed algorithm for each result/intermediate result at runtime unless the granularity

of the parameter is extremely coarse or the range of values is extremely limited. Use of

more than one parameter with the developed algorithm results in a two or more

dimensional array for use as a lookup table and the amount of memory required rapidly

becomes large. All other values required for each function used to initialize the lookup

tables must also be known and static at runtime.

The implementation of the table initialization and retrieval routines can be implemented

to use fewer exponent levels of the IEEE 754 standard. If 80% of a function/equation’s

execution occurs within a range of values then only the exponent levels required to

73

support the 80% need to be implemented as lookup tables and in all other cases the

results would be returned by computation.

Functions that are cyclic can be implemented using smaller lookup tables and a small

amount of additional code to manipulate the index value. Typically this code would

consist of integer, and logical operations (and, or, shift) that execute in less than one

cycle.

The AVX2 instruction set using the vsgather instruction and AVX2 integer and bit

manipulations gives the optimal level of performance by significantly reducing the

number of computer instructions.

1.7 Addressing the Limitations of the Methodology in
Hardware

There are numerous processor based hardware architectures and platforms that could

benefit from implementing the developed functionality in hardware. They include

CPU (e.g. Intel, AMD, and IBM), GPU (e.g. NVIDIA, ATI, and Intel), smartphones,

specialized ASICs and other processing hardware. There are two principal

implementation requirements: 1) dedicated L2/L3/L4 cache or a high speed

GPU/other device shared memory system (on-chip or off-chip) for application use so

that cache misses would be eliminated and 2) additional processor instructions to

manage the application caches and also to reduce the number of instructions required

to obtain the incremental results.

Generalized software interfaces can be provided that are hardware independent

vendor specific implementations. These software interfaces would represent an

abstraction layer hiding an efficient hardware specific implementation and in the case

that there was no hardware implementation they would use a software only

implementation.

These improvements could be a major advance in general purpose computing giving

developers the ability to implement their own problem domain specific

noncomputational incremental solutions to equations and functions. This approach is

similar to the microcoding capabilities that were available on early CPUs that allowed

users to build their own instructions.

74

1.7.1 LxA Application Cache

There are several ways in which a Level x Application (LxA) cache could be

supported. (x indicates that the cache is part of or parallels an existing processor cache

such as L2, L3, L4, or vendor defined shared memory region). The general

requirements for LxA caches are that they be large enough to be useful to store

incremental results based on variable precision data formats. When implemented in

hardware it should ideally also be possible to exploit the read only properties of the

LxA caches after the cache is allocated and initialized so that many cores could share

higher speed read only access after the cache is allocated and initialized.

This study showed that multiple tables with incremental results in the range of a few

megabytes are sufficient to optimize HPC object interaction based applications. This

technique could also be applied to other HPC applications where there is a high

degree of interdependency between data processed between cores, processors or

nodes. An LxA application cache should be at least 1-2MB.

1.7.2 Hardware Implementation Alternatives

The simplest and most straight forward approach to implementation would be to

allocate a portion of the currently implemented processor or shared memory caches

for application use and to add the additional instructions specified in sections 1.7.4 to

1.7.6.

Alternative implementations would be to layer or tile another cache alongside the

existing processor caches. Layering and tiling has been successfully used in processor

architectures for other purposes and could be useful in implementing LxA caches.

1) Allocation of a portion of the current L2, L3, L4 or other processor/GPU

caches or high speed shared memory can only be done in architectures

where there are large CPU caches or large amounts of high speed shared

memory. L1 instruction and data caches are too small to be useful for

dedicated general purpose application use. This LxA cache is referenced as

cache_id in the pseudo instruction definitions

75

2) An additional application level cache paralleling the existing processor,

GPU or vendor specified caches or shared memory.

1.7.3 Design Approaches

There are several approaches for design and fabrication: on-chip as an

allocated portion of the existing caches, layered above an existing

cache/memory section on-chip, or off-chip. The caches could also be ‘tiled’, a

technique used in system on a chip (SoC). Figures 2254, 2355, 2456, 2557, 26,58

and 2759 illustrate some possible design layouts and/or fabrication alternatives.

Figure 22 Example AMD Bulldozer with LxA (L3A) Application Caches

76

Figure 23 Example AMD Bulldozer with L3A Cache Die Detail

Figure 24 Example Intel Sandy Bridge Xeon Block Diagram with L3A Cache

77

Figure 26 Texas Instruments Multicore, Multi-layer Chip LxA Could Be Added as a

Second Shared Memory Layer

Figure 25 Example Intel Core i7-390X Processor with L3A Die Detail

78

1.7.4 LxA Cache Management Instructions

Pseudo Instructions

Lock/Unlock

LxA lock and unlock instructions are used for the management of the physical cache

resource. These instructions manage the allocation of LxA memory resources. A

software layer should be used as a centralized tool for dynamically allocating,

managing and reorganizing the LxA cache resource.

LCKLXA32 cache_id, address, size

LCKLXA64 cache_id, address, size

Sets the LxA cache address and memory allocation size for write and sets the

LxA flag to locked for the specific LxA or vendor specified shared memory

level. The size may be specified as a 32 or 64 bit integer. Results in a (NOP) if

the LxA cache is already locked.

ULKLXA cache_id, address, size

Unlock the LxA cache_id - clears the address and the LxA lock flag. If it is not

locked to the specified, address, results the instruction results in a non-

operation (NOP).

LXA Cache Status

LDLXAF register/flag

Figure 27 NVIDIA Kepler GPU Architecture L2A Cache Could be Overlaid or Parallel L2

79

Returns the LxA Lock status. locked = 1, unlocked 0 or flag set or cleared.

LDLXAA register/address

Returns the current LxA address. If not locked the register or memory is

unchanged.

LDLXAS32 register/memory

LDLXAS64 register/memory

Returns the 32bit/64bit integer size of the LxA cache.

Branch Instructions

JLXAL address

Jump if LxA cache is locked

JLXANL address

Jump if LxA cache is not locked

LxA Cache could be implemented using a write from only one core using existing

processor memory instructions. By default core 0 could used to manage locks. LxA

caches should be designed to have multi-way read only access for all cores on the

chip/module. Applications using LxA cache need to be associated with a core and

block that has the LxA cache. The association of an LxA cache in a physical

processor cache or shared memory such as on a GPU would vendor specified.

1.7.5 Gather and Scatter Instructions for Use with LxA Caches

In order for the noncomputational incremental algorithm to execute with the fewest

possible instructions the processor needs to support enhanced SIMD gather and

scatter instructions. Gather and scatter instructions are already included in the Intel

AVX2 instruction set extensions and exist in other processor architectures. These

proposed instructions would access the LxA cache as if the LxA cache is any other

memory in the application’s address space.

Processor vendors such as Intel usually implement one instruction for each of various

data types (e.g. single or double precision floating point values, integers). Variations

80

of these instructions should be implemented for the various IEEE 754 data format

specifications and for various integer formats supported by the processor.

1.7.6 Instructions to Support Noncomputational Incremental Methods with LxA

Caches

Pseudo Instructions

SIMD ‘Noncomputational’ Instructions. The number of instructions required to

manipulate data retrieved from noncomputational incremental tables can be reduced

by 50% by adding the following instructions. The following instructions are based on

SIMD gather instructions with additional capabilities to support the developed

methodology.

These instructions provide support for index creation for the tables used by the

developed method by providing the following functionality prior to performing the

gather operation to retrieve the incremental or final results of a function or equation.

These functions are performed in a single instruction.

The base format of instruction may operate on SIMD registers of various sizes and

data types and these may be implemented on the processor as multiple instructions

based on the number of single/double precision values that may be stored in an SIMD

register. For example there may be single and double precision variations of this

instruction on Intel platforms targeting xmm, ymm or larger SIMD registers on other

Intel processors like Intel Phi.

1. integer subtraction of a base address from the value to be used as an

index

2. mask of the value used to build the index

3. shift right to support the method’s variable precision format lookup

vadjust_gather SIMD_R0, SIMD_R1, SIMD_R2 register, SIMD_R3, mask,

immediate

 SIMD_R0 Data from gather operation

SIMD_R1 Base address of lookup table

SIMD_R2 Floating Point/Integer Value to be used to construct the

index

 SIMD_R3/Memory Mask

81

 Intermediate Value 1-64 for the right shift operation

 (length) Optional parameter (length of R0 data element)

The vadjust_gather instruction provides a fused integer subtract, right shift, and mask

of an SIMD register/memory followed by a gather to retrieve indexed results at a

variable precision. The optional length parameter is not required if multiple

instructions based on data types are implemented.

The following examples are for variations of this instruction but there could be other

variations based on data type:

vadjust_gatherh half precision results

vadjust_gathers single precision results

vadjust_gatherd double precision results

vadjust_gatherq quadruple precision results

vadjust_gatheri32 32 bit integer results

vadjust_gatheri64 64 bit integer results

vadjust_gatherd32 decimal 32 bit results

vadjust_gatherd64 decimal 64 bit results

vadjust_gatherd128 decimal 128 bit results

vadjust_scatter SIMD_R0, SIMD_R1, SIMD_R2 register, SIMD_R3, mask,

immediate

 SIMD_R0 Data for scatter operation

SIMD_R1 Base address of lookup table

SIMD_R2 Floating Point/Integer Value to be used to construct the

index

 SIMD_R3/Memory Mask

 Intermediate Value 1-64 for the right shift operation

 (length) Optional parameter (length of R0 data element)

This instruction provides a fused integer subtract, right shift, and mask of an SIMD

register/memory followed by a scatter of the register values based on a table index

using variable precision. The optional length parameter is not required if multiple

instructions based on data types are implemented.

The following examples are for variations of this instruction but there could be other

variations based on data type:

vadjust_scatterh half precision values

vadjust_scatters single precision values

vadjust_scatterd double precision values

vadjust_scatterq quadruple precision values

vadjust_scatteri32 32 bit integer values

vadjust_scatteri64 64 bit integer values

vadjust_scatterd32 decimal 32 bit values

82

vadjust_scatterd64 decimal 64 bit values

vadjust_scatterd128 decimal 128 bit values

1.8 Conclusions

The major bottleneck in HPC applications performing object interactions is frequently

the calculation of forces at a time step. HPC applications generally have been highly

optimized to perform these functions using the latest instruction sets from the CPU

vendors such as SSE4.1, AVX, AVX2, FMA4, etc. The calculation of the forces and

intermediate results may be improved substantially by use of a noncomputational and

incremental computation model that exploits a variable precision format based on the

IEEE 754 standard for single precision values. This variable precision format

effectively permits the simulation to run in a reduced granularity of ‘space’. Object

interaction applications typically do not use the entire range of the IEEE 754 general

purpose floating point definition. Applications do not perform calculations at the level

of quarks and galaxies at the same time. Object interaction applications use a ‘coarse

grain’ spatial granularity appropriate to the problem being solved. Using a coarse grain

approach allows the creation of indices for accessing pre-computed results without the

artifacts associated with a simple conversion to integer lookup method.

It has been shown than a series of tables paralleling the IEEE 754 standard supporting

variable precision coarse grain space using 3 significant digits precision can be

generated to support atomic level object interactions in molecular dynamics software

such as GROMACS. These assembly routines perform 15 times faster on a 2.0 GHZ

Intel Core i7 ‘Sandy Bridge’ and 2.6 times faster on an Intel Core2 Quad Core 2GHZ

and 3.2 times faster on a first generation Intel Xeon Core i7 12 core server. The

algorithm was also tested against an integer based lookup table method and was found

to be 7 times faster on the Intel ‘Sandy Bridge’ Core i7 for the force only component

of a molecular dynamics simulation. Improvements on various AMD CPUs showed an

improvement of 1.6 times faster reflecting substantial differences in the CPU cache

architectures of Intel and AMD.

Testing was also performed on a number of C programming library functions such as

sqrt, log, tan, cos, etc. over a limited range of values with reduced precision with results

83

in performance improvements that were in the range of 11 to 125 times faster over a

specified range of values at a reduced precision.

Simulation specific performance improvements are dependent on the percent of CPU

and clock time used for performing nonbonded calculations, the amount of cache

memory used for the incremental result caches, the overall memory requirements of the

simulation and CPU and system architecture especially CPU cache size and design,

chip technology and HPC system architecture.

This study also explored modifications to processor architectures and the addition of

support for application level caches using an allocated portion of existing L2, L3 or L4

caches or a proposed LxA application cache paralleling existing processor caches as a

means to avoid cache misses. These enhancements in hardware would give developers

powerful hardware to support the developed methodology through the proposed general

purpose instructions for managing these caches and making optimal use of them.

Additional instructions for retrieving and processing data using the developed

algorithm could reduce the total number of instructions used by the algorithm and cycle

times by 50%.

1.9 Acknowledgments

The author would like to express his thanks to Dr. Paulo Martel, Centre for Biomedical

Research, the University of the Algarve, Faro, Portugal for his confidence that this

project was feasible and for his support during the project.

The author is also grateful to members of the Computational Systems Biology Group,

Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra led by

Dr. Armindo Salvador; the Biological Chemistry Group, Department of Chemistry,

University of Coimbra led by Dr. Maria Joao Moreno; and to Dr. Claudio Soares, New

University of Lisbon, Lisbon, Portugal for stimulating discussions about the project and

suggestions on approaches to validation of the methodology.

The Biological Chemistry Group, Department of Chemistry, University of Coimbra

also provided substantial computational resources that made the free energy studies

possible. The author would like to thank Virtual Strategy, Inc., Boston, MA for funding

this research and supporting the patent application.

84

Keywords: performance, incremental computation, non-computation, optimization,

HPC, AVX2, variable precision

1.10 References

14
 Bowman, D., Provisional U.S. Patent Application # 62213053, 2015, “Service to

Improve the Performance of Applications and Systems Using Noncomputational and

Incremental Techniques Implemented in Hardware and Software”
15 Verlet, L. Phys Rev 1969, 159, 98.
16 Darden, T.; York, D.; Pedersen, L. J Chem Phys 1993, 98, 10089.
17 NVIDIA Corporation, 2015, CUDA Runtime API,

http://docs.nvidia.com/cuda/pdf/CUDA_Runtime_API.pdf
18 Abraham, MJ ; van der Spoel, D ; Lindahl, E, Hess, B 2014, & the GROMACS

development team, GROMACS User Manual version 5.0.2, www.gromacs.org
19 Stone JE, Hardy DJ, Ufimtsev IS, Schulten K. 2010 “GPU-Accelerated Molecular

Modeling Coming Of Age.” Journal of molecular graphics & modelling.

2010;29(2):116-125. doi:10.1016/j.jmgm.2010.06.010.
20 Howes, L; Munshi, A, 2015. "The OpenCL Specification Version: 2.1 Document

Revision: 8", Khronos Group. Retrieved 16 April 2015.
21 Intel Advanced Vector Extensions Programming Reference, website, Intel 2000-04-

05.
22 AMD64 Technology, AMD64 Architecture Programmer’s Manual Volume 6: 128-

Bit and 256-bit XOP and FMA4 Instructions, Publication no. 43479 revision 3.01,

2009, Advanced Micro Devices
23 Intrinsics for Intel® Advanced Vector Extensions 2, https://software.intel.com/en-

us/node/513925, Intel Retrieved 06-09-2015
24 Moore, Gordon E. 1965. "Cramming more components onto integrated circuits",

Electronics Magazine. p. 4. Retrieved 2006-11-11
25 ‘Moore’s Law is Dead says Gordon Moore’,

http://www.techworld.com/news/operating-systems/moores-law-is-dead-says-gordon-

moore-3576581, Apr 13, 2010
26 2011. "Cycles, cells and platters: an empirical analysis of hardware failures on a

million consumer PCs. Proceedings of the sixth conference on Computer systems

(EuroSys '11). pp 343-356.
27 Páll, Szilárd, Abraham, Mark, James Kutzner, Carsten Hess, Berk Lindahl, Erik.

2015. “Tackling Exascale Software Challenges in Molecular Dynamics Simulations

with GROMACS”, Editors, Markidis, Stefano Laure, Erwin. Book: Solving Software

Challenges for Exascale, Publisher: Springer International Publishing, volume: 8759,

Series Title: Lecture Notes in Computer Science, ISBN 978-3-319-15975-1, DOI

10.1007/978-3-319-15976-8_1
28 Gruber CC, Pleiss J 2010 Sep 1, ‘Systematic benchmarking of large molecular

dynamics simulations employing GROMACS on massive multiprocessing facilities’,

Journal of Computational Chemistry 2011 Mar; 32(4):600-6. doi: 10.1002/jcc.21645.

Epub.
29 Amdahl, Gene M. (1967). "Validity of the Single Processor Approach to Achieving

Large-Scale Computing Capabilities". AFIPS Conference Proceedings (30): 483–485.

doi:10.1145/1465482.1465560.

https://www.khronos.org/registry/cl/specs/opencl-2.1.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.1.pdf
http://research.microsoft.com/pubs/144888/eurosys84-nightingale.pdf
http://research.microsoft.com/pubs/144888/eurosys84-nightingale.pdf
http://research.microsoft.com/pubs/144888/eurosys84-nightingale.pdf
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gruber%20CC%5BAuthor%5D&cauthor=true&cauthor_uid=20812321
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pleiss%20J%5BAuthor%5D&cauthor=true&cauthor_uid=20812321

85

30 Rodgers, David P. (June 1985). "Improvements in multiprocessor system design".

ACM SIGARCH Computer Architecture News archive (New York, NY, USA: ACM)

13 (3): 225–231. doi:10.1145/327070.327215. ISBN 0-8186-0634-7. ISSN 0163-

5964.
31

 Daniels220, 13 April 2008, SVG Graph Illustrating Amdahl's Law,

https://commons.wikimedia.org/wiki/File:AmdahlsLaw.svg
32

 Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, Compilers: Principles, Techniques,

and Tools, Addison-Wesley, 1986. ISBN 0-201-10088-6
33 Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, Compilers:

Principles, Techniques, and Tools (Second Edition), Addison-Wesley, 2006. ISBN 0-

321-48681-1
34

 Flemming Nielson, Hanne Riis Nielson & Chris Hankin (1999). Principles of

Program Analysis. Springer.
35

 https://msdn.microsoft.com/en-us/library/e7k32f4k.aspx (retrieved July, 23, 2015)
36

 https://wiki.scinet.utoronto.ca/wiki/images/2/2d/Compiler_qrg12.pdf (retrieved July

23, 2015)
37

 https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html (Retrieved July 23,

2015)
38

 IBM VisualAge C++ Professional for AIX Version 4.0, http://ps-

2.kev009.com/basil.holloway/ALL%20PDF/10070600.pdf
39 Visual Studio 2015 RTM, July 20, 2015, https://www.visualstudio.com/en-

us/news/vs2015-vs.aspx#ManLang
40

 Neil McAllister, Microsoft's Roslyn: Reinventing the compiler as we know it,

InfoWorld, 2011-10-20
41Higham, Nicholas J. Accuracy and Stability of Numerical Algorithms, Washington

D.C.: Society for Industrial & Applied Mathematics, 2002.
42Forman S. Acton. Numerical Methods that Work,The Mathematical Association of

America (August 1997).
43 D. van der Spoel, E. Lindahl, B. Hess, A. R. van Buuren, E. Apol, P. J. Meulenhoff,

D. P. Tieleman, A. L. T. M. Sijbers, K. A. Feenstra, R. van Drunen and H. J. C.

Berendsen, Gromacs User Manual version 4.5.6, www.gromacs.org (2010)
44 Intel® Xeon Phi™ Coprocessor System Software Developers Guide SKU#

328207-003EN March, 2014, Intel, xeon-phi-coprocessor-system-software-

developers-guide.pdf
45 Nilsson, L, 2009, “Efficient table lookup without inverse square roots for

calculation of pair wise atomic interactions in classical simulations”, Journal of

Computational Chemistry, Volume 30, Issue 9, pages 1490–1498, 15 July 2009,

DOI: 10.1002/jcc.21169
46 Fresheneesz, 14 April, 2007, Example of a floating point number,

http://en.wikipedia.org/wiki/Single-precision_floating-

point_format#/media/File:Float_example.svg
47

 Codekaizen, 21 February 2008, The memory format of an IEEE 754 double floating

point value.,

https://commons.wikimedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.

svg
48 GROMACS 4.5.3, source code nb_kernel212_x86_64_sse.s, nb_kernel21.c
49 Fog A, 2014, Instruction Tables, Technical University of Denmark. Copyright ©

1996 - 2014
50 Fog, A, 2014, Optimizing software in C++ An optimization guide for Windows,

Linux and Mac platforms, University of Denmark. ©1996 – 2014.

http://onlinelibrary.wiley.com/doi/10.1002/jcc.v30:9/issuetoc
http://en.wikipedia.org/wiki/Single-precision_floating-point_format#/media/File:Float_example.svg
http://en.wikipedia.org/wiki/Single-precision_floating-point_format#/media/File:Float_example.svg

86

51 Fog, A. 2014. The microarchitecture of Intel, AMD and VIA CPUs an optimization

guide for assembly programmers and compiler makers, University of Denmark.

©1996 - 2014
52 http://www.fftw.org/fftw-wisdom.1.html, Written by Steven G. Johnson and Matteo

Frigo. Copyright ©2003 Matteo Frigo. Copyright ©2003 Massachusetts Institute of

Technology.
53 Conference Paper, 275492, Surajit Chaudhuri, An overview of query optimization

in relational systems, Proceedings of the seventeenth ACM SIGACT-SIGMOD-

SIGART symposium on Principles of database systems, 0-89791-996-3, Seattle,

Washington, USA, 34-43, 1998, 10.1145/275487.275492, ACM
54

 AMD Bulldozer block diagram (8 core CPU), uploader, 26 October 2011,

https://commons.wikimedia.org/wiki/File:AMD_Bulldozer_block_diagram_(8_core_

CPU).PNG (retrieved July, 23, 2015)
55

http://images.ht4u.net/reviews/2011/amd_bulldozer_fx_prozessoren//amd_bulldozer_die_8_core.png

(retrieved July, 23, 2015)
56

 Intel Sandy Bridge Xeon Block Diagram,

http://regmedia.co.uk/2011/02/24/intel_sandy_bridge_xeon_block.jpg (retrieved July, 23, 2015)
57

 Intel Core i7 3960x Block Diagram, http://techreport.com/r.x/core-i7-3960x/dieshot.jpg

(retrieved July, 23, 2015)
58 Multicore SoC Architecture for Communications Infrastructure,

http://www.ti.com/ww/en/dsp/ci_platform/images/TIs-Multicore-SoC-Architecture_200.jpg
(retrieved July, 23, 2015)
59 NVIDIA Kepler, http://wccftech.com/review/asus-geforce-gtx-660-directcu-ii/ (retrieved July,

23, 2015)

87

Chapter 2 - Accelerating Molecular Dynamics
Simulations Using Incremental and
Noncomputational Algorithms

88

89

Accelerating Molecular Dynamics Simulations Using
Incremental and Noncomputational Algorithms

2.1 Abstract

Molecular dynamics software maximizes performance by using methods to reduce the

number of interactions, the latest computer instructions, multi-core and distributed

computing architectures. Calculation of nonbonded interactions is the major

performance problem. The speed of a simulation is limited by the processor

architecture and how finely the simulation can be distributed across multiple

processors/cores. Simulations in the range of 10s of thousands of atoms will not run

significantly faster on a supercomputer than on a 64 core server. The developed

algorithm provides a ‘noncomputational’ approach based on the definition of the

simulation followed by incremental computation. It exploits a developed ‘variable

precision’ numeric format. Improvements in the ‘calculation’ of nonbonded forces for

water interactions for Lennard-Jones with Reaction Field on the Intel Core i7 ‘Sandy

Bridge’ of 14-15 times that of the GROMACS assembly language versions were

achieved on a single thread/single physical core. Performance on a single

thread/physical core is the fundamental unit of performance in single processor, GPU

and distributed computer systems. The method can also be applied to core PME and

other computationally intensive functions with MD software.

2.2 Introduction

Molecular dynamics simulations are important to the understanding of bio-molecular

systems and are used for research in the areas of: membrane dynamics, protein folding

and unfolding, protein binding, conformational transitions, protein dynamics, transport

and macromolecular assembly, and small molecule behavior. These simulations can run

for days or even weeks. Typically simulations are in the range of tens to hundreds of

thousands of atoms. The primary performance problem is the calculation of the

nonbonded force interactions (Coulomb1 and van der Waals using the Lennard-Jones

potential2) between the solvent molecules, typically water. Interactions between water

and solute and solute to solute represent a much smaller part of the computational cost

90

of simulations. Thus if solvent to solvent interactions cannot be made substantially

faster, the simulation itself cannot be made significantly faster. The fundamental unit

of performance in molecular dynamics software is the speed with which functions

perform on one thread/core in a single physical processor, GPU or distributed

environment. If this unit can be made substantially faster, so can program execution.

Since the late 1970s the ability to perform MD simulations has increased greatly from

a 10 ps simulation of a 450 atom protein in a vacuum3 to simulations in multiprocessor

environments containing over one million atoms that run for hundreds of

nanoseconds.4,5 Using special hardware David Shaw has run simulations in the

millisecond range on the Anton supercomputer.6 There is also the need to perform free

energy7 simulation studies that involve a series of simulations with changes to

simulation parameters to support multiple lambda values or replicated simulations to

increase sampling8. Developers of MD software such as GROMACS9,10 started in the

1990s by addressing the performance of the inverse square root function11 as this is the

largest computational contributor to the calculation of nonbonded interactions. Over the

years as processor architectures, compilers and parallel processing technology

developed, new features were added to MD software exploiting processor architectures

and new instruction sets as they were developed in the industry. GROMACS currently

supports x86, AMD64/x86-64, PPC, ARMx7 and SPARC VIII. It can also be compiled

and run on many other operating systems and architectures. GROMACS supports

NVIDIA GPUs, MPI, OpenMP for parallel processing for multiple machines across a

network and for hybrid parallel environments.12 For the last 25 years improvements in

compiler optimization techniques have also greatly improved performance by avoiding

computation within the scope of the compiler. Implicit solvent13,14 models and coarse

grain techniques have been developed to reduce the number of particles interactions,15

but these methods are not widely used for most simulations due to limitations in the

algorithms.

GPU support has been added to GROMACS in the last five years initially with

OpenMM and in version 4.6 built-in support to offload computation to GPUs using

NVDIA’s CUDA16 to Tesla, Fermi and Kepler cards.17 There are however underlying

limitations for GPU based computing including the limited bandwidth between the

CPU and GPU and limitations in GPU hardware as a generalized coprocessor.18 Recent

advances in GPU memory architectures that include a larger number of cores and GBs

91

of memory as well as the addition of GPU cache memory has greatly enhanced the

ability to GPUs as general purpose computational engines. NVIDIA CUDA and

OpenCL now make it possible to have TFLOPs available on the desktop or in servers.

Software developed for GPUs must also be designed in a different way that CPU based

software to make transfers between the CPU-GPU efficient and code designed for

GPUs must make minimum use of shared memory so as not to block threads running

on the GPU. GROMACS supports OpenCL as an interface to NVIDIA cards and it has

been reported that there is OpenCL support for GROMACS using ATI graphics cards.19

Support for simple integer based lookup tables to eliminate calculations using the

distance squared as the base for the lookup of forces was developed for CHARMM26.

This approach has its own problems due to the conversion of floating point to integer

indices to provide a simple index to obtain force results. As the distance becomes

smaller the conversion to integer results in an increasingly large difference in the results

obtained versus the results of the calculated value using floating point instructions. This

results in large offsetting positive and negative error correction for forces as these

increase and distance becomes smaller until eventually a cutoff occurs with a maximum

force solely based on the conversion of floating point to integer and the size of the table.

The performance of MD simulations has probably benefited the most from specialized

SIMD (single instruction multiple data) instructions and fused multiple and add

instructions. For many years GROMACS has exploited the single instruction multiple

data (SIMD) instruction sets SSE, SSE2 and recently added support for AVX20 and

Intel and AMD’s FMA21 instructions for fused multiply and add. Prior to GROMACS

version 4.6 GROMACS achieved very high performance on a single processor/core by

using hand coded assembly language to process four single precision values or two

double precision values simultaneously. The GROMACS 4.5 assembly code for the

nonbonded interactions was closely examined and no opportunities for further

optimizations in the SSE version and only one instruction could be removed from the

SSE2 (double precision) version. In version 4.6 the assembly code was replaced with

high level language code using intrinsic functions to support newer instructions sets

without the need to develop code in assembly language. This also has the benefit of

exposing the code to the compiler global optimizer. It is rarely possible to improve upon

the code generated by compilers with advanced global optimizers. With the support of

the AVX, AVX222 and FMA instructions 8 single precision values may be processed

92

simultaneously. The Intel Xeon Phi processor supports the AVX512 instruction set and

can process 16 single precision values simultaneously.

2.2.1 Performance Limiting Factors for MD Simulations

Processing speed has been limited primarily by CPU clock speed (cycle/second GHZ)

and the amount of data than can be processed in one cycle. In 1965 Gordon Moore,

Intel co-founder, predicted that processing power would double approximately every 2

years23 but in 2005 Moore declared that his law was ‘dead’.24 This was largely due to

the limitations on CPU clock speed, heat dissipation on the chip and fabrication costs

due to the on chip density. With current technology this limits the performance on a

single core/processor primarily based on CPU clock speed (GHZ). There is a direct

relationship between clock speed and power consumption and temperature though

advances have been made in this area with the low power Intel ‘Haswell’ architecture.

Figure 28 shows that CPU clock speed has flattened since about 2003. See the blue line

in the following figure. There are more cores/chip and more transistors/chip to support

 Figure 28 Intel CPU Trends – Limitations on Performance

© Herb Sutter, Used with permission

93

them. Techniques such as multiple cores on chip can reduce the communications costs

between threads but CPU clock speed is not substantially increasing and is a

fundamental barrier to the performance of MD simulations. Over-clocking of CPUs can

be done but is limited by the amount of power consumed and heat generated. Over-

clocking can also result in computational errors or damage to the chips.25

Studies have also shown that there are limits to the scalability of a simulation based on

the number of atoms in the simulation26. There exists a minimum number of atoms that

can be processed per processor/core before the communications costs and real time

delays are greater than the real time performance gains. For simulations in the range of

a few 10s of thousands of atoms this is less than 64 cores. This implies that a simulation

in this size range will not run significantly faster on a system with 1000 cores. In fact

if a simulation were to be split into too few atoms per core the communication cost

could consume most of the real time and slow the real time to process the simulation.

Molecular dynamics simulation software uses methods (e.g. lattice summation or

spherical cutoffs) to reduce the number of interactions from O(N2) to O(NlogN) or

O(N).27,28 GROMACS exploits the latest in computer instructions, multi-core, and

multiprocessor capabilities and tools such as MPI to decompose and distribute these

atoms and interactions across cores and nodes.

94

Figure 29 shows the results of the study of Gruber and Pleiss29 in 2010 that

demonstrated the peak performance that can be achieved with different MD system

sizes.

There are therefore fundamental limitations in simulation performance that cannot be

overcome by improvements to programming: CPU clock speed, size and speed of L1,

L2, L3, L4 cache memory and speed of main memory, transistor chip density, heat, and

materials properties. Distances off chip to CPU blocks, main memory, blades or server

nodes have significant delays in terms of clock cycles. Distance is a fundamental

problem because of materials properties and the speed of light. When processing is

performed in CPU registers frequently multiple instructions may be done in a single

clock cycle. The further the data is from the registers the more cycles are required to

obtain the data or a fraction of a cycle. Data from main memory may require over 100

cycles with data from other CPU blocks, blades or nodes taking significantly longer.

Substantial improvements have been made in InfiniBand technology that is widely used

in supercomputers but as of 2014 the theoretical effective transfer rate is 24 Gbs.30 Due

to advances in the Intel ‘Sandy Bridge’ and “Ivy Bridge’ architectures the minimum

number of atoms/core/processor has been reduce from a range of ≈500-1000 to ≈150

allowing simulations to be distributed across more cores and processors. The

fundamental performance problem with all of these improvements remains how fast the

atoms on a single core/processor can be performed. Regardless of the number of

Figure 29 Peak Performance by system size. Adapted from Gruber and Pleiss

256 Cores

256 Cores

512 Cores

576 Cores
512 Cores

0

5

10

15

20

25

30

35

40

45

50

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000

P
er

fo
rm

an
ce

 (
n

s/
d

ay
)

Atoms

Peak Performance with Different System Sizes

95

atoms/core/processor, substantial improvements in performance must come from

improving single thread/core/processor performance. This is the object of this project.

Other fundamental limitations exist to performance improvements such as those

imposed by Amdahl’s law31. The performance of a program that can be improved is

limited by the percentage of the code that can be improved. The speedup of a program

using multiple processors in parallel computing or using an improved algorithms is

limited by this sequential fraction of the program. For example, if 95% of the

performance of program can be parallelized or improved by code changes, the

theoretical maximum speed up would be 20 × as shown in Figure 30.32 It will not matter

how many processors or how good the programming changes are assuming that the

portions of the program that can be improved may be parallelized completely or that

the performance of the code being changed may be reduced to zero percent of the total

time for the program.

Figure 30 Performance Limitations - Amdahl's Law

In the case of molecular dynamics simulations this is not the case because it is not

possible to distribute the numbers of molecules/atoms for typical simulations across

large numbers of processors without causing large communication delays. The core

96

processing of nonbonded interactions has a fundamental limit based on the number of

atoms that can be processed per core.

Fortunately the percentage the CPU time and clock time for a simulation is concentrated

in the nonbonded routines as shown from the summary statistics from a GROMACS

simulation of a water box. (See Figure 31.) The performance improvement that may

be obtained for processing the nonbonded interaction has some additional limitations

based on the percentage of water that is part of the simulation. GROMACS has

specialized routines to optimize the performance of water to water interactions. Proteins

in water typically benefit more from the developed algorithm more than membrane

simulations that may only contain 60-70 percent water.

2.3 Methodology

The fundamental question is if single thread/core/processor performance cannot be

substantially increased by faster CPU clock times, offloading to GPUs or other

processors in a network where will the breakthroughs in performance occur. This study

has developed an algorithm that avoids as much of the computation for the nonbonded

interactions as possible and the algorithm can be applied to other computationally

intensive functions in MD and other applications. It can effectively raise the scalability

bar for all single core/processor and multiprocessor environments. This algorithm can

increase the number of nanoseconds/day that can be run for a given simulation on a

single core/processor.

The developed algorithm optimizes the performance of the nonbonded code by using

runtime knowledge of the simulation being performed just as computer language

compiler uses global optimizers to determine what part of a software program does not

change at compilation time. In the case of the nonbonded routines for a given simulation

typically values for charge constants, Lennard-Jones parameters, reaction field

parameter and even box type are used as constants at runtime and are not known to be

constants when the GROMACS software is built and thus cannot be optimized by

computer language optimizers.

The developed methodology and algorithms in both the C language and hand coded

assembler routines provide a ‘noncomputational’ approach based on the definition of

the simulation and the incremental ‘assembly’ of pre-calculated results to obtain the

97

final result. This approach may be applied to any GROMACS version but the test

environment was based on version 4.5.3. The developed method uses Lennard-Jones

and reaction field as the test model. With the advent of Verlet cutoff schemes reaction

field has once again become a viable high performance alternative to PME in

GROMACS version 5.

These incremental results are each stored in a table and accessed with memory, integer

and bit manipulation instructions only. These instructions can be efficiently executed

in the CPU pipeline and many of these instructions execute in less than one clock cycle

and operate only with CPU registers. No floating point instructions are required except

where pre-calculated results cannot be used for intermediate or final results that are

used external to the function being optimized. For MD simulations processed using

GROMACS this approach effectively produces a ‘coarse grain’ space for the simulation

to run in using the distance squared (r2). The algorithm does not however reduce the

cost of processing the neighborhood list or communication overhead.

The objective of this research is to address the approximately 70-90% of the CPU cost

of most molecular dynamics simulations.

The Coulomb and Lennard-Jones equations required to determine the results of the

nonbonded interactions are easily solved but usually represent 70-90%+ of the

Computing: M-Number M-Flops % Flops

 Coulomb + LJ [W3-W3] 2432.395833 595936.979 91.5

 Outer nonbonded loop 1470.783920 14707.839 2.3

 NS-Pairs 824.058515 17305.229 2.7

 Reset In Box 3.290329 9.871 0.0

 Shift-X 197.401974 1184.412 0.2

 CG-CoM 9.870987 29.613 0.0

 Virial 103.201032 1857.619 0.3

 Update 98.700987 3059.731 0.5

 Stop-CM 98.700987 987.010 0.2

 Calc-Ekin 98.701974 2664.953 0.4

 Constraint-V 98.701974 789.616 0.1

 Constraint-Vir 98.700987 2368.824 0.4

 Settle 32.900987 10627.019 1.6

 Total 651528.714 100.0

 R E A L C Y C L E A N D T I M E A C C O U N T I N G

 Computing: Nodes Number G-Cycles Seconds %

 Neighbor search 1 10001 48.952 28.3 6.1

 Force 1 100001 723.982 418.5 89.6

 Write traj. 1 401 0.723 0.4 0.1

 Update 1 100001 8.949 5.2 1.1

 Constraints 1 100001 15.620 9.0 1.9

 Rest 1 9.621 5.6 1.2

 Total 1 807.846 467.0 100.0

 NODE (s) Real (s) (%)

 Time: 466.390 467.000 99.9

 7:46

 (Mnbf/s) (GFlops) (ns/day) (hour/ns)

Performance: 5.215 1.397 37.051 0.648

Figure 31 Performance Summary - GROMACS Water Box Simulation

98

computation time for a simulation. These simple equations require few parameters and

at runtime are dependent on atomic level charges, C6 and C12 Lennard-Jones

parameters as can be seen from the following equation.

Equation 8 Lennard-Jones Potential

The inner loops of the GROMACS nonbonded routines use the Lennard-Jones potential

to calculate the Pauli repulsion and attractive dispersive forces for atoms or molecules.

In Eq. 8 ε is the depth of the potential well, σ is the distance where the inter-particle

potential is zero, and r is inter-particular distance. 33,34

Electrostatic interactions may be calculated as follows where the value of the

electrostatic force acting on two point charges and is defined as follows.

is Coulomb’s constant and r is the distance.

Equation 9 Coulomb's Equation

In order to improve the performance of these equation solutions it is necessary to

eliminate or reduce substantially the computer instructions and CPU cycles required to

solve them. Fortunately at runtime many of the values required to do this are loaded

into the program based on force field and water model definitions and used as constants.

This allows the exchange of computational code for data assembled with a few non-

floating point instructions at runtime that may be easily pipelined by the CPU and most

of the instructions execute in less than one cycle.

In order to achieve the objective of this project a new mathematical and floating point

format model has also been developed providing a variable precision floating point

calculation model based on the IEEE 754 standard to reduce the size of the pre-

calculated tables. This variable precision format parallels the IEEE standard without

the need for additional tables or runtime operations. This algorithm may be used in any

application that is computationally intensive. There are no approximations other than

those reflected in the reduced precision using a subset of the IEEE floating point

definitions. All calculations that were used in the evaluation with GROMACS for the

incremental calculations are performed in double precision and stored as single

99

precision when the tables are initialized. The tables representing computational

increments could also be stored as double precision if needed. GROMACS builds are

by default single precision so the pre-calculated results were stored as single precision.

When the tables containing the incremental pre-calculated results are generated the

variable precision algorithm adjusts the floating point representation to parallel the

IEEE 754 standard but at reduced precision. It uses a simulated ‘guard’ bit to avoid

creating a very small cumulative divergent error. When the tables are created the

exponent portion of the floating point representation of the value of interest (e.g.

distance squared in the case of the nonbonded GROMACS routines) may be masked

with a binary value to alter or create one or more ranges of exponents and/or eliminate

the sign bit of the floating point representation. The precision of the resulting value is

reduced shifting the floating point value in binary form to the right reducing the

mantissa. The right shift effectively divides the representation by a power of two and

reduces the size of the tables required. After this is performed, and a simulated ‘guard’

bit is added enabling the calculation of the values stored in the table to be treated as a

scaled base 2 value. This provides a mixed stability model with a very small offsetting

forward and backward error correction paralleling the IEEE standard. This is necessary

because dividing an integer by 2 causes a truncation on odd values creating a

cumulative error. A floating point to integer conversion is not used because this creates

a divergent error relative to the IEEE standard by eliminating the ‘floating’ property of

IEEE 754 compliant CPUs and data formats. In the case of the nonbonded GROMACS

routines35 the floating point to integer conversion has an increasingly large offsetting

corrective error as the distance squared decreases. This has an undesirable effect on the

results for the force values using such an approach as the distance squared becomes

smaller.

The algorithm is designed to scale using single instruction multiple data (SIMD)

extensions to instruction sets such as SSE, SSE2, SSE4.1, AVX, AVX2 and AVX512

Intel Xeon Phi)36. In these instructions sets it is possible to process 128, 256 or 512 bits

of data in parallel. This may be in the form of 4, 8, or 16 single precision values or 2,

4, or 8 double precision values. The Intel Xeon Phi coprocessor processes 512 bits but

requires special programming when used as a coprocessor. It has been reported that a

native version of GROMACS has been compiled for Intel Xeon Phi. The default

GROMACS builds are for single precision (SSE). Single and double precision C

100

language code, and double precision (SSE2) are also supported. With the release of

version 4.6 additional support for FMA and AVX instructions has been added as

configuration options at build time. The variations of the developed algorithm were

evaluated against the standard GROMACS 4.5.3 builds for single precision SSE, SSE2

double precision and single precision C. Additionally an AVX2 version was developed

for performance comparison on the Intel ‘Haswell’ architecture. AVX support was not

provided because like SSE it lacks support for certain integer and binary instructions

that make the developed algorithm efficient. At the time the algorithm was developed

an AVX enabled version of GROMACS was not available.

The methodology also could benefit from new computer instructions that s could reduce

the number of instructions from three on AVX2 or Intel Xeon Phi to two and support

the allocation and management of a portion of L2, L3 and L4 caches for use by

applications. A test program also evaluated performance of the algorithms versus the

performance of gcc 4.7 C library functions such as sin, cos, tan, sqrt, log, pow and other

functions over a limited range of values. This suggests that PME and other

computationally intensive portions of GROMACS may substantially benefit from

replacing these functions with the developed method. Included in the test was the C

version of the GROMACS Newton-Raphson 1/sqrt and Lennart Nilsson’s floating point

integer conversion based table lookup method are indicated in the chart below with

labels ‘NR 1/sqrt’ and ‘LN JCC’ respectively. Figure 32 also shows some of the limits

of the developed method. The calculation of the 4/3 π r3 sphere volume formula is

substantially slower when compared with the other cases because there are so few

instructions involved in the calculation and the access to memory is slower than the

101

computation. The developed method should not be used for functions that are

implemented in only a few instructions.

The IEEE 754 representation of a single precision floating point value has a 23 bit

explicit mantissa that defines the precision of the single precision format. GROMACS

builds representing the 23 variations in precision possible using the developed

algorithm for single precision were developed for use in the comparison with the

standard build versions for GROMACS single and double precision.

Each variation of the algorithm was produced by reducing the precision of the distance

squared value used in calculating the nonbonded interactions. These versions represent

the spatial and computation granularities possible with the algorithm using a variable

precision floating point representation.37 Each variation is created by reducing the

single precision mantissa by one bit.

19

11

7

30

31

53

66

125

0

5.7

4.8

3.4

13.5

13.8

24.0

27.6

51.2

0.6

0 20 40 60 80 100 120 140

1/sqrt

N-R 1/sqrt

LN JCC

sin

cos

tan

log

pow

4/3 pi r^3

x Faster

Noncomputational Method in C vs C Functions and C Code

Core 2 Duo 2.25GHZ

Core i7 2GHZ

Figure 32 Comparison of C Library Functions vs Developed Algorithm

Core 2 Duo 2.25 GHZ vs Core i7 2 GHZ ‘Sandy Bridge’

102

It was observed that the standard GROMACS build versions (C, SSE and SSE2) have

a natural deviation between each other and this deviation was used to validate the

algorithms to determine if they were ‘good enough’. If the results of the new

methodology and algorithms were within the deviation between the GROMACS

algorithms this study considers the results ‘good enough’ and ‘equivalent’ for use with

molecular dynamics simulations.

Validation was performed at two levels: 1) computational - examining

forward/backward error, stability and possible divergence from the IEEE 754 standard

38 2) the developed algorithm as compared with the GROMACS 4.5.3 build alternatives.

This study presents computational and performance results based on water boxes,

amino acid and protein simulations.

Water Box Validation

The following analysis represents the results of a 1ns SPC water box simulation of 329

water molecules using the GROMACS 4.5.3 Lennard-Jones reaction field nonbonded

routines with the Berendsen temperature coupling. The results were generated from a

series of simulations using the GROMACS SSE build, C build and variations of the

developed algorithm from ≈7.22 significant digits to ≈2.11 significant digits. The

-11800

-11600

-11400

-11200

-11000

-10800

-10600

-10400

-10200

-10000

-9800

S
S

E C

7
.2

2

6
.9

2

6
.6

2

6
.3

2

6
.0

2

5
.7

2

5
.4

2

5
.1

2

4
.8

2

4
.5

2

4
.2

1

3
.9

1

3
.6

1

3
.3

1

3
.0

1

2
.7

1

2
.4

1

2
.1

1

E
 (

k
J
 m

o
l-1

)

GROMACS SSE C vs Variable Precision Significant Digits

Total Energy W3A-W3A LJ RF 1ns
Gromacs 4.5.3

min

max

mean

Figure 33 Total Energy – Water Box Simulation

103

GROMACS g_energy utility was used for analysis. Tests were attempted using variable

precision of less than ≈2.11 significant digits but the system blew up. Figure 34 shows

the variation in mean, max and minimum values for the total energy.

Figure 36 show the standard deviation increasing after ≈2.71 significant digits to 114

kJ mol-1.

SSE C 7.22 6.92 6.62 6.32 6.02 5.72 5.42 5.12 4.82 4.52 4.21 3.91 3.61 3.31 3.01 2.71 2.41 2.11

stddev 65.8 63.4 64.8 66.8 66.7 63.1 65.2 63.6 63.4 63.7 63.8 63.4 65.1 64.2 65.1 64.9 66.9 69 78.5 114

0

20

40

60

80

100

120

S
ta

n
d

a
rd

 D
e
v
ia

ti
o

n
 E

 (
k
J
 m

o
l-1

)

GROMACS C, SSE vs Variable Precision

Standard Deviation Total Energy
W3A-W3A LJ RF 1ns

Figure 34 Increase in Standard Deviation with Reduced Precision

104

Figure 35 shows the degree to which the standard deviation of the variable precision

algorithm lies between the standard deviations of the C and SSE GROMACS builds.

The blue line shows the difference between the standard deviation of variable precision

and the standard deviation of the C language version and the purple line shows the

difference between the standard deviation of the variable precision and the standard

deviation of the GROMACS SSE version. Note the difference between the standard

deviations of the GROMACS C build and the GROMACS SSE build. Once again after

≈3.31 or ≈3.01 significant digits there are increases in the standard deviations as the

‘spatial’ granularity is reduced. Variable precision formats within or close to the

0

10

20

30

40

50

60

S
S

E C

7
.2

2

6
.9

2

6
.6

2

6
.3

2

6
.0

2

5
.7

2

5
.4

2

5
.1

2

4
.8

2

4
.5

2

4
.2

1

3
.9

1

3
.6

1

3
.3

1

3
.0

1

2
.7

1

2
.4

1

2
.1

1

E
 (

k
J
 m

o
l-1

)

GROMACS SSE, C and Variable Precision Significant Digits

Total Energy W3A-W3A LJ RF
Difference in the Standard Deviations of the

GROMACS Builds vs Variable Precision

Diff Std Dev C and SSE or Variable
Precision

Diff Std Dev SSE and C or Variable
Precision

Figure 35 Standard Deviation in Total Energy

105

deviation between the GROMACS builds are considered to likely be ‘good enough’ for

MD simulations.

The system temperature is well regulated. The Berendsen temperature coupling was

used.

2.3.1 Validation Using Protein Simulations

Protein simulations were run using the standard GROMACS builds and the developed

algorithm. The following protein studies were conducted: 1VII (Chicken Villin

Headpiece), 1LYD (T4-Lysozyme), 2INT (Human Interleukin0-4), and BPTI

(Proteinase Inhibitor (Tyrpsin)). The studies were analyzed using examining root mean

square deviation (RMSD), energy and hydrogen bonds using the GROMACS utilities

g_rms, g_energy and g_hbond.

The variations between multiple replicate runs of the same simulation and using

different standard build options for GROMACS (single precision SSE, double

precision SSE2, and single precision C language versions) show results that vary

0

50

100

150

200

250

300

350

400

S
S

E C

7
.2

2

6
.9

2

6
.6

2

6
.3

2

6
.0

2

5
.7

2

5
.4

2

5
.1

2

4
.8

2

4
.5

2

4
.2

1

3
.9

1

3
.6

1

3
.3

1

3
.0

1

2
.7

1

2
.4

1

2
.1

1

º
K

GROMACS SSE, C vs Variable Precision

Temperature W3A - W3A LJ RF

min

max

avg

Figure 36 Temperature Stability with Reduced Precision

106

based on how GROMACS is built and is not repeatable from one run of the same

simulation to another.

The results show a similar variation between the standard GROMACS builds and a

corresponding similar variation between the developed algorithms. It is however

impossible to compare these algorithms to demonstrate that the developed algorithm is

‘good enough’ because of the complexity and size of these simulations. A number of

experienced GROMACS users including one of the GROMACS developers were of the

opinion that the results ‘looked ok’. The options of users or even GROMACS

developers do not constitute evidence that the methodology is ‘good enough’. Figure

37 illustrates the natural variation between the GROMACS builds as compared with

the developed algorithms supporting the approximately 3.01 significant digits.

Figure 37 RMSD 1VII Chicken Villin Headpiece

Multiple runs of protein simulations always show a level of variation and therefore

these complex systems cannot be used to ‘prove’ equivalence.

In the study of Nilsson using a less computationally robust integer based conversion

approach tested on very short simulations, it was reported that the RMS relative force

error for a DHFR system “was sufficient for simulation of biomolecules.” Further the

107

study analyzed the drift in total energy using CHARMM showing that a direct lookup

table approach had a 35 K/ns drift as compared with the 0.008 K/ns drift for the standard

version of CHARMM. Using a linear interpolation method this could be reduced to

0.16- 0.19 K/ns depending on points/table. The drift in total energy was expressed as

ΔEtot = ΔEpot + ΔEkin assuming that the entire drift in energy was converted to heat.39

2.3.2 Amino Acid Studies (1µs)

The algorithm was also evaluated using long 1µs simulations of amino acids in water to

look for computational artifacts that might not be visible in shorter simulations.

Arginine and cysteine were used for these studies and variable precision ‘spatial’

granularities of the developed algorithm were tested to ≈2.11 significant digits.

Implementations of the developed algorithm with precisions less than ≈2.11 crashed.

These mean total energy of the reduced precision variations behaved similar to the

variable precision water box simulations.

The results of the developed algorithm were evaluated against the standard single

precision SSE and single precision C versions of GROMACS. No computational

divergence was encountered other than an increase in the standard deviation in total

energy similar to the increase in the standard deviation for the water box simulations.

All tests were performed using Lennard-Jones with reaction field with the SPC water

model and the GROMOS 43a1 force field using GROMACS 4.5.3 using a single core.

2.3.3 GROMACS Regression Test Suites

The developed algorithms were tested in all versions of GROMACS from 3.3 to 4.5.3

using the GROMACS regression test suites available on the GROMACS site for

versions 3.3.3 to 4.5.3. This was useful to validate where the ‘spatial granularity’

thresholds were. The GROMACS test suites regressiontest.git, gmxtest-3.3.2,

gmxtesst-3.3.3, and gmxtest-4.0.2 were used. Tests using the test suite for

GROMACS 3.3.3 showed that all non-bonded tests passed for the first 17 versions of

the developed algorithm with reduce computational and spatial granularity to a

distance squared of ≈2.11 significant digits. Some of these should not have passed due

to the large spatial ‘jumps’ that this reduction in precision implies.

108

The regression test suite for GROMACS 4.5.3 showed that all non-bonded tests pass

for the first 14 versions with a reduced granularity to ≈3.01 significant digits. This is

in line with the expectations based on an assumption that a spatial granularity in the

range of 1pm should be viable and is consistent with the water box testing that

showed total energy values reported by g_energy started to increase dramatically after

spatial granularity fell below ≈3.01 significant digits.

2.3.4 Test Environments

Performance testing was performed on the following systems: AMD Opteron 6272 2.1

GHZ 2MB CPU cache (Bulldozer) 64 core server, Intel Xeon 5650 2.67 GHZ 12MB

Cache 6 cores (Westmere-EP 32nm), Intel Core i7 (2630QM) 2.0 GHZ 6 MB Cache

(Sandy Bridge), Intel Core i7 (930) 2.8 GHZ, 8 MB cache (Nehalem), Intel Core 2 Duo

2.24 GHZ 3 MB cache, Intel Core 2 Quad Core 2.2 GHZ 3 MB cache, AMD Athlon

3800+ 2.4 GHZ 512KB cache, AMD Athlon X2 4400+ 2.3 GHZ 512KB cache and

Intel Core i5 1.7 GHZ 3MB cache (4201U (Haswell) ULT).

All testing was performed on Ubuntu 14.04. The Intel Software Development

Emulator (SDE) was used for the initial development and testing of the Intel AVX2

instruction set version (Intel ‘Haswell’ architecture). The gcc 4.7 was used for all non

AVX2 development and the gcc 4.8 C compiler was used for building the AVX2

executables.

2.3.5 Testing with Water Models

Simulations of a water box containing 987 atoms, using the SPC water model,

GROMOS 43a1 force field and using the NVT ensemble were run. The water box

simulation used the GROMACS 4.5.3 nonbonded kernels routines for Lennard-Jones

and Reaction Field for electrostatics. These simulations were executed using 22

different variations of the algorithm and the three standard GROMACS single and

double precision builds. The 22 different versions of the algorithm reduce the size of

the mantissa for the IEEE 754 representation of the real number value. By reducing

the size of the mantissa the approximate number of decimal digits supported can be

reduced from ≈7.22 to ≈2.11. This reduced computational and spatial ‘granularity’

was used to minimize the memory required for pre-computed tables.

109

Large fluctuations in the simulation results occurred with water box simulations as the

‘granularity’ approached 1 significant digit. Similar results were seen in small

molecule and protein simulations. This is a result of the ‘spatial granularity’ being

reduced too much and the atoms ‘jumping’ too far.

2.3.6 A ‘Noncomputational’ Incremental Algorithm

The algorithm exploits the internal structure of the IEEE 754 floating point standard’s

representation of single and double precision numerical values. Once these values are

processed they are used to index tables of pre-calculated results and then to

incrementally compute additional intermediate or final results. The objective of the

methodology is to avoid computation at the core of the nonbonded routines and to move

this computation to the generation of pre-computed tables are generated only on first

use. Compiler global optimizers have been using techniques similar to this since the

1980s (generating partial results once and saving them in a temporary variable for use

local use later).

Figure 38 illustrates the differences between the methodologies. A computer program

may be considered to be sequences of instructions and functions that have a start and

an end with branches representing calls to the functions of the program.

110

In the case of molecular dynamics simulation software the routines for computing the

nonbonded interactions use the greatest amount of CPU time and real clock time. In

the computational model every function calculates everything every time the function

is executed. If the algorithms in these portions of the program have already been

coded optimally the only alternative is to not perform the calculations. In the

noncomputational incremental method when the program is run the simulation is

analyzed for a number of key parameters: type of force field and water model, cutoffs

and type of simulation box (cubic, dodecahedron), definition of what is being

simulated, and other simulation specific parameters. This information is used to

construct a series of small memory caches of pre-computed results the first time the

results are used that can be assembled or incrementally calculated at runtime for all

subsequent processing eliminating the need to recomputed the entire equation or

function. The number of precomputed cache tables created is dependent on CPU

cache memory available.

Subsequent ‘Calculations’

Retrieve Partial/Final

Results and Assemble or

Incrementally Calculates to

Produce Final Results

First Use Creates Variable

Precision Lookup Tables

with Pre-calculated Values

‘Non-computational’ Incremental Calculation MethodFully Optimized Application Calculation Method

All Interactions

Calculated Every time

Pre-calculated Caches – Partial Results

Data Read/Write

Computational ‘Hot Spots’

Figure 38 Differences between Computational and Noncomputation Models

111

2.4 Background

2.4.1 IEEE 754 Floating Point Standard

The IEEE 754 floating point standard defines digital representations for ranges of real

numbers. The single precision real number format is represented using 32 bits and

 IEEE 754 Representations

 Width Range Precision[a]

Single
Precision 32 bits

±1.18×10−38 to
±3.4×1038  7.2 digits

Double
Precision 64 bits

±2.23×10−308 to
±1.80×10308  15.9 digits

[a] Decimal digits precision is mantissa bits * Log10(2)

Table 9 IEEE 754 Ranges Supported

the double precision format is represented in 64 bits. Other formats such as half

precision (16 bits) and quad-precision (128 bits) but are not implemented in most MD

software such as GROMACS. All binary representations have three components: a

fraction (mantissa), an exponent and a sign. The differences between the formats are

in the number of bits used to represent the exponents and mantissas.

A single precision value is represented in a 32 bit binary format as shown in figure

39.40 For single precision values there are is a sign bit, 23 bits plus an implicit 24th bit

for the mantissa, and an 8 bit exponent that is biased by 127.

Figure 39 IEEE 754 Single Precision Format

A single precision value is represented using the following formula

The following equation is used to convert the binary 32 bit representation of a single

precision value to a base 10 format where I is the first bit of the mantissa to the

112

maximum supported by the format. Thus the value represented in Figure 39 is

0.15625.

Formula 1 IEEE 754 Single Precision Value

The 64 bit double precision representation has additional bits for both the exponent

and mantissa as illustrated in figure 40. 41

Figure 40 IEEE 754 Double Precision Format

The binary representation of a double precision value is converted to the base 10

format using the following formula. This formula varies from the single precision

formula only in the number of bits that are used for the exponent and mantissa.

Formula 2 IEEE 754 Double Precision Value

By manipulating the binary format of the floating point representation of data it is

possible to vary the precision of a floating point value. These reduced precision

representations and knowledge of the equation or function can be used to create

indices. These indices can then be used for accessing pre-computed results that are

part of function, equation or application solution eliminating runtime computation by

one or more table lookups. The multiple results returned can be ‘assembled’ or

incrementally calculated to product the final results. Due to current CPU cache

limitations variable precision can operate only over one or more small ranges of the

IEEE format.

If variable precision floating point representations are used computationally intensive

portions of functions, equations, or solutions can be completely avoided without

violating the ‘floating’ characteristics of the IEEE 754 standard. The computationally

23
(127)

23

1

(1) (1 2) 2sign i e

i

i

x b  





     

(127)

52

52

1

(1) (1 2) 2sign i e

i

i

x b  





     

113

intensive portions of the solution become ‘noncomputational’ at runtime. Use of

variable precision requires application and solution specific knowledge that must be

provided either by the developer or obtainable at runtime. This information is

available to GROMACS at runtime based on the simulation parameter file (mdp), the

force field and water model definitions and the simulation (.gro, .pdb) file itself. It

also requires knowledge of the properties of the CPU and especially the cache size

available to process the simulation.

2.4.2 Understanding What Is Being Modeled

The objective of MD software should be to make the simulation being performed run

as fast as possible not to just be a general purpose MD tool. MD simulations are

models that use limited precision constants and constraints that are approximations for

the atoms and/or groups of atoms being modeled. Each force field and water model

has its own constants and parameters with limited precision.

MD simulations are performed at the atomic level in ‘boxes’ or other containers with

sizes in a range of nanometers not meters and the atomic level bonds and forces

operate over picometers. The full IEEE 754 is therefore unnecessary. GROMACS is

not modeling quarks or galaxies.

Simulations are run in a virtual real space that maps to a range of computational

values. This real space and computational space can be represented by fewer bits for

both the exponent and mantissa portions of the IEEE 754 representation used for

general computation because of the nature of MD simulations. In simple water

models such as SPC, SPCE and TIP3P water has fixed physical dimensions and

constant properties such as charges at runtime in GROMACS.

Water Box Simulation and Bond Lengths (nm)

Interactio
n Min r 2 Min r [a]

Bond
Length [b]

H-H 0.017770 0.133304
0.074

O-H 0.019504 0.139657 0.096

O-O 0.057268 0.239307 0.121

[a] r is distance in nm [b] : http://cccbdb.nist.gov

Table 10 Water Box Simulation Profile

114

The bond lengths for simulation purposes are usually considered fixed based on

experimental data if we are using a bond constraining algorithm like LINCS or

SHAKE.

Solute components of a simulation also have experimentally measured bonds in the

range of picometers. It is important to note that bond lengths vary between actual

force fields models, as they are also adjustable parameters. Also there are slightly

different values coming from different experimental (and theoretical) methods. These

differences give credibility to the hypothesis that MD simulations may run using a

spatial and computational granularity of 1 pm.

Water Box Simulation and Bond Lengths (nm)

Bond Length Bond Length

H—H 74 H--C 109

C—C 154 H--N 101

N—N 145 H--O 96

O—O 148 H--F 92

F—F 142 H--Cl 127

Cl-Cl 199 H--Br 141

Br-Br 228 H--I 161

I—I 267 C--C 154

C—C 154 C=C 134

C—N 147 CC 120

C—O 143 O—O 148

C—S 182 O=O 121

C—F 135 N—N 145

C—Cl 177 NN 110

C—Br 194 C—I 214

Source: http://cccbdb.nist.gov

Table 11 Experimental Bond Lengths

With few exceptions single precision is used for simulations. There are a few

exceptions the most common is energy minimization (e.g. Steepest Descents,

Conjugate Gradient or L-BFGS). It is unnecessary for GROMACS to perform MD

simulations in a spatial granularity the size of a subatomic particle. GROMACS

should be able to operate on a reduced precision form of the IEEE format. During the

water box simulation that was used to provide the base for reproducibility for this

study the following was observed during a 1 ns simulation where r represents the

distance between interactions. The maximum distance in the water box simulation

was the cutoff of 1.4 nm. Experimental bond angles have also been determined ± n

degrees for H2O.

115

Experimental Bond Angles (Degrees)

 Min Max Average

H2O 104.48 111.3 107.89 ±4.82

H2N 103.25 121.6 109.85 ±6.27

HCN 101.91 131 114.53 ±7.25

CCH 109.9 129.2 120.1 ±10.49

Source: http://cccbdb.nist.gov

Table 12 Experimental Bond Angles

Using this data and the bond lengths for water, a mathematical model was created to

determine the angular error for a water molecule rotating in 1 pm granular space. This

calculation assumes that the water molecules are not flexible (the GROMACS

default) and only shows the computational impact of rotating an inflexible water

molecule through a coarser grain space. This difference is close to the range of

experimentally determined values

An analysis using Mathematica42 of a water molecule rotated through a discrete

computation space of 1 pm shows an angular error of ± 0.47 degrees with no

divergence.The angular error for rotating a water molecule through 1 pm discrete

space is calculated as follows and shown in Figure 41.

Figure 41 Angular Error for a 1 pm Discrete Space

116

It was theorized that MD simulations could calculate nonbonded interactions in

granular space of 1 pm based on the distance squared value in the nonbonded routines

and give ‘equivalent’ results to the standard GROMACS builds. This implies that a

variable form of the IEEE 754 format could be used to generate the results for

nonbonded interactions using relatively small amounts of CPU cache memory for pre-

computed tables. Values representing the 1 pm granular space may be represented as a

reduced precision IEEE 754 format of three significant digits.

This is accomplished by reducing the number of bits i in the mantissa. The following

defines the variable precision format for ≈3.01 to ≈3.91 significant digits over a

limited range of exponents. The value of i represents the number of bits for the

mantissa and the e must be in the set of biased values representing the range of

powers of 2 that the application requires.

 
9,10,11,12

(120,121,...128) 127

23

1

(1) (1 2) 2
esign i

i

i

x b
 





     

Formula 3 Variable Precision 3 Significant Digits, 7 IEEE 754 Biased Format Exponents

The test GROMACS water box simulation with a cutoff of 1.4 nm uses seven base 2

exponent ranges and only three of the ranges account for over 80% of the values in

the simulation.

The most memory efficient alternative supports ≈3.01 significant digits and uses

28,672 bytes of storage for each single precision pre-calculated value (7 base 2

exponent ranges * 1024 entries/power of two * 4 bytes/single precision entry). The

distance squared (r2) and the type of nonbonded interaction is used to determine what

intermediate or final results are created and are available for use during the execution

of the simulation. The other alternatives of interest are ≈3.31, ≈3.61, and ≈3.91

significant digits requiring 57344, 114,688 and 229,376 bytes of storage respectively.

Any of these fits easily within the CPU L2/L3 caches. The following shows the

memory requirements for variable precision where 1.0 equals 1 nm2 for all the

GROMACS results and intermediates for water three atom to water three atom (W3A-

W3A) for Lennard-Jones and Reaction Field. The use of a precision of ≈2.71

significant digits was also evaluated.

117

Mantiss

a Bits

Base 10

Significant

Digits

Number of

Mantissa

Values

Distance

Squared

(r
2
)

Number of

Floating

Point

Values

Memory

Required

Per Result

W3A-W3A

Interactions

LJ + RF

(bytes)

9 2.71 512 > 1 pm 3,584 14,336 100,352

10 3.01 1,024 1 pm 7,168 28,672 200,704

11 3.31 2,048 1 pm 14,336 57,344 401,408

12 3.61 4,096 1 pm 28,672 114,688 802,816

13 3.91 8,192 1 pm 57,344 229,376 1,605,632

14 4.21 16,384 0.1 pm 114,688 458,752 3,211,264

15 4.52 32,768 0.1 pm 229,376 917,504 6,422,528

16 4.82 65,536 0.1 pm 458,752 1,835,008 12,845,056

17 5.12 131,072 0.01 pm 917,504 3,670,016 25,690,112

Table 13 Memory Requirements for Variable Precision Format

 This permits the use of the algorithm on solvent-solvent, solvent-solute and some

solute-solute interactions depending on what is being simulated and the amount of

CPU cache available. This study evaluated the variations of the algorithm for use in

MD simulations using water boxes, small molecule, proteins and free energy studies.

The number bits of the IEEE format biased exponent (base 2 powers) representation

that is required is application and simulation specific. For the GROMACS nonbonded

routines the uses the value 1.0 to represent 1 nm2. Figure 42 shows the distribution of

distance squared (r2) values across the base 2 exponents for a water box and liquid

argon simulation. The base 2 exponents are represented as decimal ranges to

correspond to how the bits of the IEEE 754 format are used to form decimal values.

Figure 42 Distribution of Distance Squared for Ar-Ar and Water - Water

<
0.01562

5

0.01562
5 <

0.03125

0.03125
< 0.0625

0.0625 <
0.125

0.125 <
0.25

0.25 <
0.5

0.5 < 1.0
1.0 <

2.0

Argon 0 0 0 0 2 7 12 79

OO 0 0 0 4 8 23 61 4

OH 0 0 1 3 8 23 58 7

HH 0 0 1 3 9 23 56 9

0

10

20

30

40

50

60

70

80

90

P
e
rc

e
n

ta
g

e

Internal IEEE Power of 2

Distribution of r2 Values

Argon

OO

OH

HH

118

Simulation specific runtime ‘constants’ not known at compile time also may be useful

in reducing the number and size of tables used for the developed method. These

runtime constants can be used to reduce or eliminate calculations that are performed

at runtime. In our water box example supporting Lennard-Jones reaction field for

water three atom to water three atom the following may be observed from executions

of the GROMACS 4.5.3 nonbonded routine nb_kernel212a.c. The GROMACS inner

nonbonded calculations may therefore be eliminated/reduced based on simulation

specific knowledge that is available when the simulation is run. Much of this data is

available from the .mdp, water model, and force field chosen.

The noncomputational incremental algorithm can exploit the following:

• Distance squared is always within a limited range and is always a positive

value.

• The Newton-Raphson 1/sqrt() is not needed because pre-calculated results are

used

• Calculations of powers of the inverse square of the distance squared is not

needed

• Vnb6, vnb12 and other intermediate results are not needed

• Variables twelve and six are constants

• qOO, qOH, qHH are simulation specific charge constants known based on the

type of water model used

• facel which is container specific constant

• c6 and c12 Lennard-Jones constants

• The krf and crf variables are used as constants at runtime

The variables fs11 and vnba need to be returned from a lookup table for intermediate

results based on distance squared due to their requirement for final results.

In summary, all of the above observations allow nonbonded interactions for water

three atom to water three atom, Lennard-Jones and reaction field, values to be reduced

to a single function where distance squared is the only variable that is needed to

retrieve pre-calculated intermediate or final results.

The following pseudo code illustrates how this may be applied to GROMACS water

three atom to water three atom, Lennard-Jones and reaction field nonbonded

interactions in GROMACS. Portions of the pseudo code are from the C source code

119

of the GROMACS nb_kernel212 routine. It is not intended that the reader understand

the pseudo code but only understand the magnitude of the difference.

 bitpattern11.fval = rsq11;

 iexp11 = EXP_ADDR(bitpattern11.bval);

 addr11 = FRACT_ADDR(bitpattern11.bval);

 result11.bval = cinvsqrtexptab[iexp11] |

cinvsqrtfracttab[addr11];

 lu11 = result11.fval;

 rinv11 = (half*lu33*(three-((rsq1*lu11)*lu11)));

 rinvsq11 = rinv11*rinv11;

 rinvsix = rinvsq11*rinvsq11*rinvsq11;

 vnb6 = c6*rinvsix;

 vnb12 = c12*rinvsix*rinvsix;

 vnbtot = vnbtot + vnb12-vnb6;

 krsq = krf*rsq11;

 vcoul = qqOO*(rinv11+krsq-crf);

 fs11 = (twelve*vnb12-six*vnb6+qqOO*(rinv11-

two*krsq))*rinvsq11;

 vctot = vctot + vcoul;

Pseudo-Code 1 GROMACS Code Required to Process Nonbonded LJ and Reaction Field

The developed methodology avoids the GROMACS NR 1/sqrt and retrieves three

incremental data values based on distance squared (rsq11 in the sample code), each

with a cache lookup using an integer index created with one/two instructions

depending if the value is signed. Either single or double precision values may be

retrieved. The tables are initialized the first time the nonbonded interaction is needed

within the limits of the cache size. If the cache size is exceeded then the value can be

calculated. The pseudo code is reduced to the following based on distance squared.

This incrementally calculates the results based on three retrieved values and

eliminates almost all floating point calculations in the inner nonbonded force

calculations.

Pseudo-Code 2 Equivalent Code for the Developed Method

2.5 Design of the ‘Noncomputational’ Incremental Model

This algorithm exploits the available high speed CPU L2 or L3 cache memory to store

each series of results used at the time the simulation is run.

 vnbtot = vnbtot+ OO_VNBA(rsq11);

 vctot = vctot+ OO_VCOUL(rsq11);

 fs11 = OO_FS11(rsq11);

120

Care must be taken not to use an excessive amount of cache memory or performance

may become worse than computing the results every time.

Initially a test was performed on an ordered sequence of real number values

representing every possible binary representation of the real numbers between the

lower and upper bounds for the distance squared for a liquid argon simulation based

on the definition of the simulation. This was compared to an equal number of

unordered distance squared values from an actual liquid argon simulation. Table 12

shows the performance impact of having the distance squared values unordered.

The following table shows that an unordered set of values is 3.44 times slower and an

ordered set of values is 7.67 times faster even when the full IEEE 754 ≈7.22

significant range is used. The data required for the ≈7.22 range is approximately

56MB. The time to sort them even with a fast binary sort algorithm making only a

single pass through the data would be take prohibitively long. The excellent

performance even with a very large variable precision cache comes from the ordered

nature of the data which benefits from the memory pre-fetch and design of CPU

caches and memory systems.

The only solution to the problem of unordered data with full IEEE single precision

caches was to reduce the ‘granularity’ of the distance squared and to develop a

variable precision algorithm. It was observed that there was a variation in the

GROMACS 4.5.3 C single precision build in the lower 2 bits of the result from the

Newton-Raphson 1/sqrt function and the result obtained from the C library function

based calculation. This meant that in theory the floating point precision could be

reduced and still provide a single precision version of GROMACS that would be

‘good enough’ for use in MD simulations. The following table shows the impact of

exceeding the 2MB CPU cache of an Intel Core 2 Duo 2.2 GHZ processor even using

Performance of 1/sqrt() Inside

GROMACS Data Time (ms)

Time Minus

Empty Loop

(ms)

Times Faster

or Slower

(ms)

Newton-Raphso 1/sqrt() unordered 0.36 0.32 NA

ordered 0.27 0.23 NA

Var. Prec. ≈ 7.22 Significant Digits unordered 1.14 1.10 3.44

ordered 0.07 0.03 7.67

Loop Overhead 0.04

Table 14 Impact of Ordered vs Unordered Data

121

a variable precision algorithm. The test was conducted on 21M unordered distance

squared O-O interactions.

Time (ms)

Time (ms) minus

loop overhead

Test Program with

GROMACS NR 1/sqrt() 0.30 0.23 NA
Test Program 1/sqrt()

Using Var. Prec. Table of

Various Sizes (MB) Time (ms)

Time (ms) less

loop overhead

Times

Faster/

Slower

32.000 0.88 0.81 3.52

8.000 0.75 0.68 2.96

4.000 0.54 0.47 2.04

2.000 0.22 0.15 1.53

1.000 0.15 0.08 2.88

0.500 0.14 0.07 3.29

0.250 0.14 0.07 3.29

0.125 0.14 0.07 3.29

Test Program Empty loop 0.07

Platform: Core 2 Duo 2.2 GHZ, 2MB Cache Ubuntu 14.04

Test: 21,436,601 Unordered r
2
 Water O-O Interactions

Figure 43 Performance Impact of Using Too Much CPU Cache

Figure 39 illustrates the differences between the current calculated every time method

in GROMACS for determining the nonbonded interactions versus the

‘noncomputational’ incremental method. If too high a percentage of the CPU cache is

used because the tables are too large performance gains decrease and can result in a

loss of performance. In the testing performed it was found that if over approximately

fifty percent (50%) of the CPU cache was used the performance could vary

substantially between multiple executions of the test program.

This methodology works well when the pre-computed results can be contained within

the CPU’s L2/L3 cache. Figure 44 illustrates what happens to performance if the

limits of the L2/L3 cache are exceeded. Some architectures such as the IBM z196

have a very large L4 cache. This study evaluated Intel and AMD CPUs only but it

could be easily be implemented on other architectures. This methodology is limited

by the amount of L2/L3/L4 cache memory available. In the following example the

CPU L2/L3 cache becomes fully utilized at a variable precision of about ≈5.12

significant digits. Other processors have greater L2/L3 cache memories that allow

more extensive use of pre-calculated and incrementally calculated results. Even on

older architecture CPUs with only 512KB of cache memory the algorithm can be used

for water to water interactions (W3A-W3A Lennard-Jones reaction field) and also

some intrinsic math functions over limited ranges. The slightly lower performance in

122

Figure 44 in the range of ≈3.01 to ≈4.82 significant digits was repeatable on the Intel

Core i7 “Sandy Bridge” and attributable to the CPU cache architecture. Other Intel

and AMD processors also showed similar behavior but at different ranges of

significant digits. The Intel Core i5 ‘Haswell’ platform gave unexpectedly little

degradation in performance as the size of the application cache exceeded the physical

CPU cache size.

2.6 The Algorithm

The algorithm uses a processed form of the raw IEEE format representation as a table

lookup index for each intermediate or final result. This is accomplished without

compromising the ‘floating’ characteristic of the IEEE format. A table is created and

initialized on the first pass through the nonbonded routine and the values later used as

‘constants’. The tables are based on the inter-particle distance squared and this

eliminates the need to perform the 1/sqrt operation. The values of the various

intermediate results may be looked up at runtime and can assembled or incrementally

calculated to produce a final results such as forces.

Figure 44 Variable Precision Performance vs. Significant Digits

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

7
.2

2

6
.3

2

6
.0

2

5
.7

2

5
.4

2

5
.1

2

4
.8

2

4
.5

2

4
.2

1

3
.9

1

3
.6

1

3
.3

1

3
.0

1

2
.7

1

2
.4

1

2
.1

1

1
.8

1

1
.5

1

1
.2

0

0
.9

0

0
.6

0

T
im

e
 (

s
e

c
o

n
d

s
)

1
0

0
M

 O
O

 I
n

te
ra

c
ti
o

n
s

Approximate Base 10 Significant Digits

Variable Precision Performance by Number of Significant Digits
Core i7 2.0GHZ, 6MB Cache (Sandy Bridge) vs Core i5 1.7 GHZ, 3MB Cache (Haswell)

Core i7 (Sandy Bridge)

Core i5 (Haswell)

123

The index is created using the following pseudo code. The lower boundary of the

distance squared values that are supported by the table is subtracted from the distance

squared value (r2) for the interaction, treating both native floating point values as 32

or 64 bit integers. The resulting value is shifted a number of bits to the right to reduce

the precision and therefore reduces the spatial ‘granularity’ for the interaction. The

resulting integer value is then used as an index to lookup the result or intermediate

results in one or more tables or sections of tables and the value returned is either a

single precision or double precision value depending on the requirements of the

application. The same index may be used to retrieve multiple results. Multiple

intermediate results may be used to incrementally calculate a final result. Applying

the variable precision methodology to nonbonded interactions, r represents distance,

r2 represents the floating point distance squared value used to create the index, Ftab is

the lookup table for the reduced precision results, LOWER_BOUND is the lowest

value for r2 that is possible in floating point format (but used as an integer) and

NUM_BITS is the number of bits to shift to the right to reduce the precision. There is

no sign bit since distance squared (r2) is always positive otherwise it would be

necessary to mask it out or to use two tables for positive and negative results

depending on the intended use. The range of r2 is continuous and over a single range

so no additional processing is required for boundary conditions or multiple table

lookups for a single function.

F(r) ≈ Ftab [(r2.binary – LOWER_BOUND) >> NUM_BITS].float

Multiple intermediate results can be stored as offsets in the same table eliminating the

instructions that reload of the base address of the table. Using SSE2, SSE 4.1 and

AVX2 this can be reduced from 11 to 7 to 3 instructions respectively that can be

highly pipelined. The reduction in the number of instructions used from the SSE2 and

the SSE 4.1 version did not yield a significant increase in performance and on the

Intel Core i7 ‘Sandy Bridge’ architecture it showed a slight reduction in performance.

SSE 4.1 was not supported on the AMD systems available.

A number of these instructions use less than one clock cycle. SSE2 and SSE 4.1 can

process four single precision values at one and AVX2 can process 8 values at once.

The algorithm requires SIMD instructions for integer and logical operations that do

not exist in either SSE or AVX and does not support these instruction set extensions.

124

The tables of intermediate results are generated by sequencing through all of the

possible values of the variable precision representation so that the results ‘float’ in the

same way as the IEEE 32 and 64 bit formats. As the table generation is performed a

simulated additional ‘guard bit’ is added to the right of the reduced precision mantissa

before the latter is used to initialize the table alternating on odd and even values of the

mantissa.

This prevents a small divergent error from the binary truncation that occurs at runtime

otherwise it would be necessary to treat the mantissa as a scaled base 2 value at

runtime and this would defeat much of the performance gain of the algorithm.

All calculations for table entries are performed in double precision and the results

stored in the tables as either single or double precision. No interpolation is required.

The following figure illustrates the ‘floating’ nature of the implementation. The

mantissa portion of the IEEE 764 standard single precision format supports

approximately 8M values for each power of two. By reducing the mantissa bits it is

possible to reduce the precision without destroying the ‘floating’ property of the

format. This makes the variable format suitable for use with functions/equations

independent of their slope or continuity.

bit1

bit 2

bit 3

…

bit 23

…
IEEE Single
Precision

Significant
Digits

3.01

7.22

bit1

bit 2

bit 3

…

bit 23

…
IEEE Single
Precision

bit1

bit 2

bit 3

…

bit 23

…
IEEE Single
Precision

Significant
Digits

3.01

7.22

Figure 45 Variable Precision Mantissa 'Floats' Like IEEE 754

An alternative implementation would be to perform an integer conversion of the

floating point value applying a scaling factor. In the following example the int

function converts the results of the scaling factor times distance squared and looks the

result up in a force table.

125

F(r) ≈ Ftab [int(scale*r2)]

Converting a floating point value to an integer causes a divergence from the IEEE

standard and destroys the ‘float’ properties of the values and generates a diversion of

the results obtained from those that would be generated by a floating point

calculation. This diversion is highly function specific. Using a floating point to

integer conversion results in fewer and fewer values to represent much larger forces

as the distances become closer. When the algorithm is applied to other

functions/equations the variations of the slope in portions of the functions/equations

will show large differences in the offsetting adjustment based on the slope on the axis.

If the integer conversion approach is applied to general computation the index will not

appropriately sample the distribution of function results. Figure 46 shows that the

floating point to integer method does not sample the function/equation uniformly

based on the IEEE floating point property.

It is highly undesirable to use an integer conversion to produce an index using a

specific value when there are substantial differences in the results contained in the

table that are being looked up. In this case there are larger and larger differences in

the forces as the distance becomes smaller and fewer base 10 digits to represent the

increasingly large forces. 26

Figure 46 Effect of Integer Conversion on a Real Number

There is no ‘floating’ property in an integer conversion that would preserve the same

precision independent of the distance. Figure 48 shows the increasingly large error

forward backward error correction required with the integer conversion method for

the 1/sqrt function. The same problem was shown in the study of Nilson in 2009

when the above methodology was applied to force equations. 7

10,000

1000

100

10

1

126

Figure 47 shows the variable precision implementation paralleling the floating point

standard and an integer conversion based method diverging until it reaches a lower

limit cutoff that is dependent on the scaling. This cutoff does not correspond to any

specified simulation parameters but is a result of the scaling before the integer

conversion occurs.

Figure 48 Increasing Deviations in 1/sqrt function with Integer Conversion

1E-09

1E-08

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10

B
a
s
e
 1

0
 V

a
lu

e
 R

a
n
g
e

% error

Maximum % Error 1/sqrt(r2)

IEEE 7.22 digits, Variable Precision 3.31 Digits

Variable Precision 3.61 Digits Integer with Scale to 10 pts

Integer with Scale to 40 pts

Figure 47 Method Relative Error vs. IEEE 754 Standard in Percentage

127

Another of the side effects of an integer conversion method is the elimination of cases

where a base 10 value may have more than one base 2 representation or it may have

no base 2 representation at all. This property of the floating point representation is

essential to preserving the same number of significant digits as values increase or

decrease. The following table shows the nature of this property. These cohorts are the

reason that programmers can not readily compare floating point values with the same

base 10 representation because they may have different internal representations.

Base 10

Base 10

Decimal

Base 2

Hexadecimal

2.500003e-01 0.2500000 3e80000b

2.500004e-01 0.2500000 3e80000c

2.500004e-01 0.2500000 3e80000d

2.500004e-01 0.2500000 3e80000e

2.500004e-01 0.2500000 3e80000f

2.500005e-01 0.2500000 3e800010

2.500005e-01 0.2500010 3e800011

2.500005e-01 0.2500010 3e800012

2.500006e-01 0.2500010 3e800013

Table 15 Example IEEE Floating Point Cohort

2.7 Performance Testing of the Algorithm

2.7.1 Improving Reciprocal Throughput

Using the algorithm can greatly reduce the number of instructions required to generate

the object interaction results. The reciprocal throughput analysis is based on the work

of Agner Fog.43 Reciprocal throughput is one measure of performance.

Reciprocal throughput has been defined as the average number of clock cycles per

instruction for a series of independent instructions of the same kind in the same thread

on a single core assuming that the operands of each instruction are independent of

preceding instructions. The values used in this study are from Agner Fog’s

independent evaluation of the performance of a wide range of Intel and AMD

processors. The values used are the reciprocals of the throughputs when the

instructions are not part of a limiting chain of dependent instructions. For example,

assuming that the operands are independent a reciprocal throughput of 2 cycles for an

FMUL instruction means that another FMUL instruction can start 2 clock cycles after

128

the previous FMUL and a value of 0.33 for ADD means that 3 integer additions can

be performed per clock cycle.

Thus, the sum of the instruction cycles that a given algorithm uses may be used for a

relative comparison but with limitations. One major limitation is memory architecture

and whether or not the data is available in one of the levels of cache memory.

Memory access takes 2-3 cycles if cached but several hundred if not.44

In principal if the number of computer instructions and the number of ‘cycles’ are

reduced then the software should run faster. This however may be a deceiving

measure because the number of cycles per instruction even for the same instruction

varies greatly on what instructions are around it and where it is retrieving data. For

example, modern CPUs will attempt to optimize on chip performance by reordering

instructions, performing operations in parallel or attempting to predict branching.

CPU instructions execute using micro operations that may be scheduled in parallel

with neighboring instructions to avoid ‘blocking’ of program execution. Part of an

instruction may execute in parallel with part of another instruction based on micro

operations.45

Generally non-arithmetic instructions take fewer cycles than numeric instructions and

are more easily optimized in the CPU pipeline frequently executing in less than one

cycle. The number of cycles an instruction takes is also highly dependent on where

the data resides. If the data is in the L2/L3 cache execution is very fast, but if it

resides in main system memory the memory access could be 100 times slower.

Using the present algorithm can greatly reduce the number of instructions required to

generate the nonbonded interaction results. It may be noted in Figure 45 that the SSE

and AVX instruction sets are not included from testing. This is because they lack

instructions for performing certain SIMD bit manipulation instructions that Intel later

added in SSE2 and AVX2 that are essential to the developed algorithm. The

following figure shows the reduction in the number of instructions required to obtain

the equation results as compared with the GROMACS 4.5.3 assembly language code.

Most of the instructions have a cycle time of 1 but the developed algorithm uses

numerous memory and register instructions that have cycle times of .33

cycles/instruction on Intel Sandy Bridge and .22 cycles/instruction on Intel Haswell

architecture further improving the performance.

129

Lennard-Jones

Reaction Field

Lennard-Jones

Only

Results

Est x

Faster

LJ-RF

Est x

Faster LJ

Only

Single Precision

GROMACS 4.5.3 SSE 35 25 4 NA NA

Developed Method

SSE2 16 16 4 2.2 1.6

SSE4.1 11 11 4 3.2 2.3

AVX2 3 3 8 11.7 8.3

Double Precision

GROMACS 4.5.3 SSE2 43 43 2 NA NA

Developed Method

SSE2 9 16 2 3.9 1.6

SSE4.1 7 11 2 5.0 2.3

AVX2 3 3 4 11.7 8.3

Number of Instructions

Table 16 Instruction Counts

Figure 50 shows a comparison of the number of instructions per result required to

calculate the nonbonded interactions for SPC water to water (1/sqrt, Lennard-Jones,

reaction field and argon (Lennard-Jones only). Argon to Argon interactions are also

shown that only need to solve the Lennard-Jones equation. These are only estimates

based on instruction times and do not reflect actual algorithmic performance

Figure 49 Performance Estimates Per Result Based on Instruction Count

0

5

10

15

20

25

30

Gromacs SSE Assembly 1/sqrt + LJ RF Gromacs SSE Assembly LJ only

E
s
ti

m
a
te

d
 T

im
e
s
 F

a
s
te

r
B

a
s
e
d

 o
n

 I
n

s
tr

u
c
ti

o
n

 T
im

e
s

Non-computational Incremental Algorithm
vs GROMACS Assembly Code

SSE 2 (4 results)

SSE 4.1 (4 results)

AVX 2 (4 results)

AVX 2 (8 results)

130

2.7.2 Runtime Testing

In order to test the application level performance a C program was written that reads

100M oxygen to oxygen interactions and then processes them inside a timing loop.

The gcc 4.7 compiler was used to output the assembly language version of the

program and test code from GROMACS and the developed algorithm was inserted

into the assembly language test loop. The GROMACS version 4.5.3 SSE and SSE2

assembly code from the nonbonded kernel routines for Lennard-Jones reaction field

(nb_kernel212), and Lennard-Jones only (nb_kernel010) as well as for the

noncomputational incremental method using SSE2, SSE 4.1 and AVX2 with a special

granularity of ≈3.01 significant digits was used for comparison.

2.7.3 Comparison of Force Only Tests

The forces only tests for the nonbonded routines (excluding the distance calculations

and the application of the forces after calculation) showed the following results. The

GROMACS 4.5.3 SSE code was copied and pasted and changed only to reference

local variables. The Lennard-Jones Reaction Field testing included the 1/sqrt

calculation for the GROMACS versions. The noncomputational incremental method

was written in hand coded assembly code and inserted into the timing loop of the

program.

The very large improvement in force calculation performance is due to the fact that

the method does not require the calculation of the 1/sqrt, the reduced number of

instructions and the benefit that the binary and integer operations receive in the CPU

pipeline.

The force only calculations represent only portion of the calculations within the

nonbonded routines. Distance calculations cannot benefit from the use of the

developed method.

131

Time to Process 100M O-O Interactions I7 server 2.67 GHZ

Nonbonded Forces Only Time (sec)

Time

minus

empty

loop x Faster

GROMACS SSE LJ Only (nbkernel_010.sse)

cut pasted into test program Ar-Ar 7.9 7.76
Incremental Method Equivalent LJ Only

Implemented with SSE4.1 Ar-Ar 0.38 0.24 32.33
Incremental Method Equivalent LJ Only

Implemented with SSE2 Ar-Ar 0.39 0.25 31.04

GROMACS SSE LJ Reaction Field + 1/sqrt

(nbkernel_212.sse) cut pasted into test program

O-O 16.78 16.64
Incremental Method Equivalent LJ Reaction

Field + 1/sqrt Implemented with SSE4.1 O-O 0.38 0.24 69.33
Incremental Method Equivalent LJ Reaction

Field + 1/sqrt Implemented with SSE2 O-O 0.39 0.25 66.56

Empty Loop 0.14

Table 17 Performance of O-O Interactions

Intel Xeon 5650 2.67 GHZ 12MB Cache 6 cores (Westmere)

2.7.4 Comparison with the Full Nonbonded Kernel Routines

The same performance test method was used as the force only testing except the full

nonbonded assembly code from the GROMACS nonbonded routines was copied and

pasted into the timing loop of the test program. In order to test the noncomputational

incremental method the same GROMACS assembly code was copied but the portions

that calculate the 1/sqrt function and perform force calculations was replaced with the

new algorithm. The performance improvements of 2.15 and 3.18 times faster is in

line with the reciprocal throughput estimate on the Intel Xeon 5650 2.67 GHZ 12MB

Cache 6 cores (Westmere).

132

Time to Process 100M O-O Interactions Xeon I7 server 2.67 GHZ

Full Equivalent of the Inner Nonbonded Loops

(assembly code) Time (sec)

Time less

empty

loop x Faster
GROMACS SSE LJ Only (nbkernel_010.sse)

cut pasted into test program Ar-Ar 21.00 20.86
Incremental Method Equivalent LJ Only

Implemented with SSE4.1 Ar-Ar 2.70 2.56 8.15
Incremental Method Equivalent LJ Only

Implemented with SSE2 Ar-Ar 2.66 2.52 8.28

GROMACS SSE LJ Reaction Field + 1/sqrt

(nbkernel_212.sse) cut pasted into test program

O-O 23.02 22.88
Incremental Method Equivalent LJ Reaction

Field + 1/sqrt Implemented with SSE4.1 O-O 6.70 6.56 3.18
Incremental Method Equivalent LJ Reaction

Field + 1/sqrt Implemented with SSE2 O-O 9.84 9.70 2.15

Empty Loop 0.14

Table 18 Assembly Code Algorithm vs GROMACS SSE

Intel Xeon 5650 2.67 GHZ 12MB Cache 6 cores (Westmere)

2.7.5 Intel Core i7 ‘Sandy Bridge’ and AMD Performance

The same tests were performed on the Intel Core i7 ‘Sandy Bridge’ architecture that

supports the AVX instruction set and on two AMD systems. The results showed an

extreme improvement in performance between the generations of the Intel Core i7

architecture. The ‘Sandy Bridge’ architecture processed the full nonbonded

interactions for 100M O-O interactions 14.3 times faster and for Ar-Ar interactions

15.5 times faster than the GROMACS 4.5.3 SSE assembly code. It was also observed

that the two AMD CPUs tested only performed about 1.7 times faster. These were

older AMD CPUs but the same performance improvement was observed on a 64 core

AMD server. There are fundamental differences between the AMD and Intel cache

architectures that may account for this. There were no values reported for the AMD

CPUs for SSE 4.1 instructions because SSE 4.1 only exists on the Intel CPUs. It is

interesting to note that the SSE 4.1 implementation on ‘Sandy Bridge’ was slightly

slower than the SSE2 implementation even though fewer instructions were used.

The Intel ‘Sandy Bridge’ architecture has a number of improvements that may

account for this difference. Most important are probably the new cache design, larger

CPU cache and wider data paths. It functions almost as if it is processing 8 single

precision values simultaneously rather than 4 even though no AVX instructions were

coded into the test program and AVX2 instructions are not supported on Intel Core i7

Sandy Bridge.

133

Figure 50 Variable Precision Assembly Code Algorithm vs GROMACS SSE

2.8 Conclusions

The major bottleneck in molecular dynamics simulations is the calculation of

nonbonded interactions at each time step. GROMACS 4.5.3 has highly optimized hand

coded SSE and SSE2 assembly code to perform these functions. The calculation of the

forces and intermediate results may be improved substantially by use of a

noncomputational and incremental computation model that exploits a variable precision

format based on the IEEE 754 standard for single precision values. This variable

precision format effectively permits the simulation to run in 1pm ‘space’. Using a

coarse grain approach allows the creation of indices for accessing pre-computed results

without the artifacts associated with a simple conversion to integer lookup method.

It has been shown than a series of tables paralleling the IEEE 754 standard supporting

variable precision coarse grain space using 3 significant digits precision can be

generated to support water to water and water to solute interactions using the

GROMACS Lennard-Jones reaction field (nbkernel212) and the Lennard-Jones only

(nbkernel010) assembly language routines. These assembly routines perform 15 times

faster on an 2GHZ Intel Core i7 ‘Sandy Bridge’ and 2.6 times faster on an Intel Core2

Full GROMACS Equivalent Nonbonded 100M OO Interactions

1.8

1.7

1.6

1.6

15.5

2.3

2.1

7.3

2.3

2.0

2.5

2.1

8.3

2.6

2.6

14.3

NA

NA

NA

NA

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

Core2 Duo (2.24

GHZ, 3MB Cache)

MSI Notebook

Intel Core2

Quadcore (2 GHZ,

3MB cache)

AMD Athlon 3800+

(2.4GHZ, 512KB

cache)

AMD Athlon Dual

Core 64 x2 4400+

(2.21GHZ, 1MB)

Core i7 (2GHZ, 6MB

cache, Sandy

Bridge)

x Faster

Incremental Algorithm LJ

Only (nb010) SSE 2

Incremental Algorithm LJ

Only (nb010) SSE 4.1

Incremental Algorithm

LJRF(nb212) SSE 2

Incremental Algorithm

LJRF(nb212) SSE 4.1

134

Quad core 2.0 GHZ and 3.2 times faster on an Intel Xeon 5650 2.67 GHZ 12MB Cache

6 cores 12 threads (Westmere). Improvements on various AMD CPUs showed an

improvement of 1.6 times faster.

Testing was also performed on a number of C programming library functions such as

sqrt, log, tan, cos, etc. with results in performance improvements that were in the range

of 11 to 125 times faster over a specified range of values at a reduced precision. The

algorithm was also tested against an integer based lookup table method and was found

to be 7 times faster on the Intel ‘Sandy Bridge’ Core i7.

This algorithm may be applied to the real space part of PME and other computationally

intensive portions of GROMACS or other MD Software.

The performance of the algorithm is highly dependent on the percent of CPU and clock

time used for performing nonbonded calculations, the amount of cache memory used

for the incremental result caches, the overall memory requirements of the simulation,

processor technology used, cache architecture, motherboard/blade design, node

configuration and network bandwidth. In all cases tested Intel processors performed

better than AMD with Intel ‘Sandy Bridge’ and ‘Ivy Bridge’ greatly exceeding the

performance of earlier Intel architectures. Preliminary testing on the Intel ‘Haswell’

architecture shows a further increase in performance based on improvements in the

cache architecture and the addition of new instructions such as vsgather that permit the

developed algorithm to reduce the number of instructions by half. It is expected at in

AVX512 environments and other environments with the ability to process more data

per cycle the algorithm will continue to greatly exceed the performance of calculating

the results where the developed algorithm can be used.

The developed algorithm has a number of limitations. The most significant is the

amount of CPU L2, L3, L4 cache available for use with the lookup tables for the

intermediate results. This study showed that there was a substantial reduction in

performance as compared to actually computing the results when the tables used for the

incremental results exceeded the CPU L2/L3 cache. The maximum variable precision

format using CPUs with 2-8MB L2/L3 cache is ≈5.12 significant digits. It should also

be considered that other applications may be using the core or processor that may cause

cache misses for an application using the incremental lookup tables. Attention should

be given to associating threads/processes using the algorithm with a physical core, CPU

135

block and blade/node. If processes are allowed to move from core to core cache misses

will result and this will have an adverse impact on performance. Therefore, associating

a thread/process with a core and cache is essential.

2.9 Acknowledgments

The author would like to express his thanks to Dr. Paulo Martel, Centre for Biomedical

Research, the University of the Algarve, Faro, Portugal for his confidence that this

project was feasible and for his support during the project.

The author is also grateful to members of the Computational Systems Biology Group,

Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra led by

Dr. Armindo Salvador; the Biological Chemistry Group, Department of Chemistry,

University of Coimbra led by Dr. Maria Joao Moreno; and to Dr. Claudio Soares, New

University of Lisbon, Lisbon, Portugal for stimulating discussions about the project and

suggestions on approaches to validation of the methodology.

The Biological Chemistry Group, Department of Chemistry, University of Coimbra

also provided substantial computational resources that made the free energy studies

possible. The author would like to thank Virtual Strategy, Inc., Boston, MA for funding

this research and supporting the patent application.

Keywords: performance, incremental computation, non-computation, nonbonded,

AVX2

2.10 References

1 van Gunsteren, Wilfred F.; Berendsen, Herman J. C.; Rullmann, Johan A. C. (1

January 1978). "Inclusion of reaction fields in molecular dynamics. Application to

liquid water". Faraday Discussions of the Chemical Society 66: 58.

doi:10.1039/DC9786600058
2 Lennard-Jones, J. E. (1924), "On the Determination of Molecular Fields", Proc. R.

Soc. Lond. A 106 (738): 463–477, Bibcode:1924RSPSA.106..463J,

doi:10.1098/rspa.1924.0082
3 McCammon, J. A.; Gelin, B. R.; Karplus, M. Nature 1977, 267, 585.
4 Freddolino, P. L.; Arkhipov, A. S.; Larson, S. B.; McPherson, A.; Schulten, K.

Structure 2006, 14, 437
5 Sanbonmatsu, K. Y.; Tung, C. S. J Struct Biol 2007, 157, 470.

136

6 David E. Shaw, Martin M. Deneroff, Ron O. Dror, Jeffrey S. Kuskin, Richard H.

Larson, John K. Salmon, Cliff Young, Brannon Batson, Kevin J. Bowers, Jack C.

Chao, Michael P. Eastwood, Joseph Gagliardo, J.P. Grossman, C. Richard Ho,

Douglas J. Ierardi, István Kolossváry, John L. Klepeis, Timothy Layman, Christine

McLeavey, Mark A. Moraes, Rolf Mueller, Edward C. Priest, Yibing Shan, Jochen

Spengler, Michael Theobald, Brian Towles, and Stanley C. Wang (July 2008).

"Anton, A Special-Purpose Machine for Molecular Dynamics Simulation" (PDF).

Communications of the ACM (ACM) 51 (7): 91–97. doi:10.1145/1364782.1364802.

ISBN 978-1-59593-706-3.
7 Nilsson, L, 2009, “Efficient table lookup without inverse square roots for calculation

of pair wise atomic interactions in classical simulations”, Journal of Computational

Chemistry, Volume 30, Issue 9, pages 1490–1498, 15 July 2009,

DOI: 10.1002/jcc.21169
8 Elofsson, A.; Nilsson, L. J Mol Biol 1993, 233, 766.
9 Lindahl, E, Hess, B and van der Spoel, D 2001, ‘GROMACS 3.0: a package for

molecular simulation and trajectory analysis.’ Journal of Molecular Modeling, 7(8): p.

306-317.
10

 D. van der Spoel, E. Lindahl, B. Hess, A. R. van Buuren, E. Apol, P. J. Meulenhoff,

D. P. Tieleman, A. L. T. M. Sijbers, K. A. Feenstra, R. van Drunen and H. J. C.

Berendsen, Gromacs User Manual version 4.5.6, www.gromacs.org (2010)
11 Hess, B, et al., 2008, ‘GROMACS 4: Algorithms for highly efficient, load-

balanced, and scalable molecular simulation.’ Journal of Chemical Theory and

Computation, 4(3): p. 435-447.
12 Abraham, MJ ; van der Spoel, D ; Lindahl, E, Hess, B 2014, & the GROMACS

development team, GROMACS User Manual version 5.0.2, www.gromacs.org
13 Roux, B.; Simonson, T. Biophys Chem 1999, 78(1/2), 1.
14 Feig, M.; Brooks, I.; Charles L. Curr Opin Struct Biol 2004, 14, 217.
15 Malevanets, A.; Kapral, R. J Chem Phys 2000, 112, 7260.
16 NVIDIA Corporation, 2015, CUDA Runtime API,

http://docs.nvidia.com/cuda/pdf/CUDA_Runtime_API.pdf
17 Stone JE, Hardy DJ, Ufimtsev IS, Schulten K. 2010 “GPU-Accelerated Molecular

Modeling Coming Of Age.” Journal of molecular graphics & modelling.

2010;29(2):116-125. doi:10.1016/j.jmgm.2010.06.010.
18 Stone JE, Hardy DJ, Ufimtsev IS, Schulten K. 2010 “GPU-Accelerated Molecular

Modeling Coming Of Age.” Journal of molecular graphics & modelling.

2010;29(2):116-125. doi:10.1016/j.jmgm.2010.06.010.
19 Mirco Wahab, gromacs.org_gmx_developers-developers@maillist.sys.kth.se, June

7, 2015
20 Intel Advanced Vector Extensions Programming Reference, website, Intel 2000-04-

05.
21 AMD64 Technology, AMD64 Architecture Programmer’s Manual Volume 6: 128-

Bit and 256-bit XOP and FMA4 Instructions, Publication no. 43479 revision 3.01,

2009, Advanced Micro Devices
22 Intrinsics for Intel® Advanced Vector Extensions 2, https://software.intel.com/en-

us/node/513925, Intel Retrieved 06-09-2015
23 Moore, Gordon E. 1965. "Cramming more components onto integrated circuits",

Electronics Magazine. p. 4. Retrieved 2006-11-11
24 ‘Moore’s Law is Dead says Gordon Moore’,

http://www.techworld.com/news/operating-systems/moores-law-is-dead-says-gordon-

moore-3576581, Apr 13, 2010

http://onlinelibrary.wiley.com/doi/10.1002/jcc.v30:9/issuetoc

137

25 2011. "Cycles, cells and platters: an empirical analysis of hardware failures on a

million consumer PCs. Proceedings of the sixth conference on Computer systems

(EuroSys '11). pp 343-356.
26 Páll, Szilárd, Abraham, Mark, James Kutzner, Carsten Hess, Berk Lindahl, Erik.

2015. “Tackling Exascale Software Challenges in Molecular Dynamics Simulations

with GROMACS”, Editors, Markidis, Stefano Laure, Erwin. Book: Solving Software

Challenges for Exascale, Publisher: Springer International Publishing, volume: 8759,

Series Title: Lecture Notes in Computer Science, ISBN 978-3-319-15975-1, DOI

10.1007/978-3-319-15976-8_1
27 Verlet, L. Phys Rev 1969, 159, 98.
28 Darden, T.; York, D.; Pedersen, L. J Chem Phys 1993, 98, 10089.
29 Gruber CC, Pleiss J 2010 Sep 1, ‘Systematic benchmarking of large molecular

dynamics simulations employing GROMACS on massive multiprocessing facilities.’

Journal of Computational Chemistry 2011 Mar; 32(4):600-6. doi: 10.1002/jcc.21645.

Epub.
30 http://www.infinibandta.org/content/pages.php?pg=technology_overview
31 Amdahl, Gene M. (1967). "Validity of the Single Processor Approach to Achieving

Large-Scale Computing Capabilities". AFIPS Conference Proceedings (30): 483–485.

doi:10.1145/1465482.1465560.
32

 Daniels220, 13 April 2008, SVG Graph Illustrating Amdahl's Law,

https://commons.wikimedia.org/wiki/File:AmdahlsLaw.svg
33 Lennard-Jones, J. E. (1924), On the Determination of Molecular Fields, Proc. R.

Soc. Lond. A 106 (738): 463–477, Bibcode:1924RSPSA.106..463J,

doi:10.1098/rspa.1924.0082
34 Frenkel, D. & Smit, B. (2002), Understanding Molecular Simulation (Second ed.),

San Diego: Academic Press, ISBN 0-12-267351-4.
35 GROMACS 4.5.3, source code nb_kernel212_x86_64_sse.s, nb_kernel212a.
36 Intel® Xeon Phi™ Coprocessor System Software Developers Guide SKU#

328207-003EN March, 2014, Intel, xeon-phi-coprocessor-system-software-

developers-guide.pdf
37 Bowman, D, 2015. Unpublished. “Optimizing Applications in HPC Environments

Using Incremental and Noncomputational Methods”
38 IEEE Computer Society (August 29, 2008). "IEEE Standard for Floating-Point

Arithmetic". IEEE. doi:10.1109/IEEE STD.2008.4610935. ISBN 978-0-7381-5753-5.

IEEE Std 754-2008
39 MacKerell Juniorperiod, A.D.; Bashford, D; Belott, M.; Dunbrack, R.L.; Evanseck,

J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Josepth-McCarthy, D.;

Kuchnir, L.; Kuczera, K.; Lau, P.T.K.\; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen,

D.T.; Prodhom, B.; Reiher, W.E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.;

Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.;Karplus, M. J Phys Chem

B 1998, 102, 3586
40

 Fresheneesz, 14 April, 2007, Example of a floating point number,

http://en.wikipedia.org/wiki/Single-precision_floating-

point_format#/media/File:Float_example.svg
41 Codekaizen, 21 February 2008, The memory format of an IEEE 754 double floating

point value.,

https://commons.wikimedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.

svg
42

 Wolfram Research, Inc., Mathematica, Version 10.1, Champaign, IL (2015).

http://en.wikipedia.org/wiki/Bibcode
http://adsabs.harvard.edu/abs/1924RSPSA.106..463J
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1098%2Frspa.1924.0082
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-12-267351-4

138

43 Fog A, 2014, Instruction Tables, Technical University of Denmark. Copyright ©

1996 - 2014
44 Fog, A, 2014, Optimizing software in C++ An optimization guide for Windows,

Linux and Mac platforms, University of Denmark. ©1996 – 2014.
45 Fog, A. 2014. The microarchitecture of Intel, AMD and VIA CPUs. An

optimization guide for assembly programmers and compiler makers, University of

Denmark. ©1996 - 2014

139

Chapter 3 - Free Energy Study Validation of
Incremental and Noncomputational Performance
Algorithms Using GROMACS

140

141

A Free Energy Study Validation of Incremental and
Noncomputational Performance Algorithms Using
GROMACS

3.1 Abstract

Noncomputational incremental algorithms applied to GROMACS 4.5.3 have been

shown to be 14-15 times faster in determining nonbonded interactions than the

GROMACS assembly code on an Intel Core i7 “Sandy Bridge”. These algorithms

exploit a variable precision numeric format that eliminates the need for the inverse

square root and greatly reduces the number of computer instructions inside the

nonbonded routines by reducing the ‘spatial granularity’ of the spatial distance

supporting incremental computation. This algorithm was previously validated for

mathematical and computational stability and performance. It was also tested using

water boxes and proteins. The results from water box and protein simulations

appeared to show that the developed algorithm was suitable for MD simulations but

this was somewhat subjective based on energy drift, RMSD and other factors. The

present study used a methodology to determine statistical equivalence to evaluate if

the results produced by the developed algorithms were ‘good enough’ for MD

simulations. This study used a statistically significant number of free energy studies

on 5 amino acid side chain analogues and compared the results with those produced

with existing GROMACS 4.5.3 build versions and experimental data. It demonstrated

that the developed algorithm produced statistically equivalent results as compared to

the existing GROMACS 4.5.3 builds. This study was modeled after studies used to

validate force fields and water models that can be tied to experimental data. Using

these small systems it is possible to obtain a statistically significant number of

samples allowing the use of statistical equivalence methodologies.

142

3.2 Introduction

There has been significant research in validating commonly used force fields and

water models in the last ten years. These studies have frequently used amino acid side

chain analogues in water as the basis of their investigation and sought to compare the

results with experimental data. Perhaps the two most significant studies were performed

by Hess, et. al.105 and Shirts, et. al.106 These studies used extremely large amount of

computational resources to achieve these objectives. In 2003 Shirts et al. used

Folding@Home107 (http://folding.stanford.edu) at Stanford University to perform their

study. This network of home based volunteered computers at the time had

approximately 90,000 computers around the world running the Folding@Home client

software. The study investigated 3 force field parameter sets, 15 amino acid side chain

analogues, 5 trials each of 1.2 ns using 61 lambda values. This study used an estimated

140 CPU years, estimated on the processing capability of Celeron processors. The work

was performed in less than 2 months and the complete study used approximately 200

CPU years. In 2006 Hess and Vegt performed a systematic comparison of force fields

and water models also using a vast amount of computational resources. In their study it

was reported that they used 1 µs for each residue with one force field and water model.

The results of these studies could then be tied to experimental data.

The objective of the current study was to use a similar methodology to validate the

viability of high performance incremental noncomputational algorithms for use in

performing molecular dynamics simulations using GROMACS 4.5.3.108,109,110 The

computational resources to obtain statistical equivalence required a large number of

iterations for each GROMACS build option (C single precision, SSE single precision

and SSE2 double precision) and variations of the developed algorithm, for each amino

acid analogue, force field and water model. The statistical methodology of this project

was modeled after the methodology used in clinical trials for new drugs.

There are 23 possible variations in the incremental noncomputational algorithm

representing variable precision ‘spatial granularity’ for the distance squared where 1.0

represents 1nm2. In addition to these variations the GROMACS C single precision, SSE

single precision and SSE2 double precision builds also need to be performed to

determine statistical equivalence with the developed algorithms. The goal was not to

validate the correctness of the simulations but to validate the results of the developed

143

algorithm versus the widely used GROMACS builds. There are a total of 26

builds/variations possible and some number of iterations required for each combination

of amino acid analogue and water model in order to obtain a statistically significant

sample size. This study performed from 40-60 iterations of each free energy workflow

for each algorithm/build, water model and amino acid analogue selected to produce a

sample size sufficient for the equivalence testing. If the study were to include all

combinations of amino acid analogues and water models the amount of CPU time

required would have been 1040 times that of the previously referenced studies. The

scope of this study was also not to revalidate or evaluate all combinations of force field

and water models using the developed algorithms but to determine if the algorithms

were statistically equivalent for use in performing MD simulations. This would not have

been computationally possible with available resources and it was also unnecessary

given it had been already established by existing studies. Using free energy workflows

also enabled the results to be tied to experimental results. For this reason only five

amino acid side chain analogues, one water model and one force field model were

selected. The number of builds/variations was also reduced. All three GROMACS

builds needed to be run in order to establish a zone of equivalence and a zone of

superiority. It was previously established that exceeding the CPU cache memory to

store incremental result tables would result in a significant performance loss.111

Existing CPUs have limited L2/L3 cache memory in the range of 2MB - 8MB and each

variable precision form of the developed algorithm requires CPU cache memory. If

only water models using Lennard-Jones and reaction field112 were supported variable

precision alternatives in the range of ≈4.21 to ≈7.22 significant digits would require too

much memory on 2MB CPU cache processors. It was also observed that variable

precision versions with less than ≈3.01 significant digits would likely cause reductions

in the granularity of the distance squared that would be too large to be useful for

molecular dynamics. It was theorized that 1pm was adequate for MD simulations based

on the atomic and molecular distances involved and that larger granularity would result

in spatial ‘jumps’ that would be too large. This reduced the number of variations of the

developed algorithm to four. (≈3.01, ≈3.31, ≈3.61, and ≈3.91) Using this approach

allowed a quantifiable means of comparison against the existing builds for the

GROMACS software that was feasible with the computational resources available.

144

3.1.1 Why Use Free Energy Studies for Validation

The calculation of free energies113,114, 115 in molecular dynamics simulations has been

an important area of research for many years. Free energy is an important quantity to

determine because it quantifies the way a molecular process will operate and the

probability that the system will achieve a specific state. Calculating free energies from

MD simulations help in the understanding of atomic level processes. Absolute free

energy of a system using the following can only be calculated in a limited number of

cases. This effectively can only be done for small simple systems governed by a simple

Hamiltonian. For larger simulations such as protein simulations this is normally not

possible. In order to obtain a free energy estimate for a given system several things

must be determined. Free energy F for a system using the canonical ensemble (or NVT

ensemble, which has a constant number of particles, volume and temperature) is

determined by the following equation.

F = −(1/β)(lnQ)

The value β is the inverse of the temperature divided by Boltzmann’s constant kB and

Q is the partition function. A classical description of the system in Cartesian

coordinates is used, assuming the system is at equilibrium. 116

The free energy workflows for this study are modeled after those developed by David

Mobley117 and updated by Justin Lemkul118 in their protocol to calculate the change in

free energy for the decoupling of van der Walls interactions between an amino acid

analogues and a water box. The study did not investigate electrostatics in order to

parallel the method used by Lemkul and due to issues with version 4.5.3 of

GROMACS. This model was chosen because it uses very simple systems with a small

water box and one amino acid analogue molecule where experimentally determined

free energy values exist. This model is one of those included in the studies of Shirts et

al. and Hess et al. in the analysis of force fields and the free energies of hydration of

amino acid side chain analogues. The data analysis was performed using the Bennett

Acceptance Ratio method119 for calculating free energy differences.120,121,122 This

study chose to analyze the free energy by turning off only the van der Waals (vdW)

interactions between the amino acid analogue and water and to attempt to reproduce

145

the results obtained by the standard GROMACS builds and tie to both experimental

and theoretical work of others.

3.1.2 Why is this Validation Study Important

Performance enhancements to molecular dynamics software are extremely important

because they expand the range of simulations that can be run and the chemical and

biological problems that can be investigated. At the core of molecular dynamics

software are inner computational loops that calculate forces, energies and distances for

nonbonded interactions. These nonbonded interactions account for most of the

computational costs of a simulation. The largest part of these interactions are the solvent

to solvent interactions followed by solvent to solute and solute to solute interactions.

Generally the largest single problem is the processing of interactions between water

molecules. The SPC, SPC/E and TIP3P water models are most commonly used and

they have nine interactions between the combinations of atoms pairs (OO, OH and HH).

A noncomputational incremental algorithm was developed that increases the

performance of the GROMACS 4.5.3 nonbonded kernel routines for nonbonded

Figure 51 Comparison of Developed Algorithm with GROMACS Assembly Code

146

interactions for Lennard-Jones plus reaction field and Lennard-Jones only nonbonded

kernels in GROMACS 4.5.3 by a factor of 14-15 times.123

This was achieved through a variable precision numeric format that effectively reduces

the granularity of the computational and real space used in MD simulations to

approximately 1 pm. This is accomplished by creating a variable version of the IEEE

754 floating point standard to support with precision ranges from ≈3.01 to ≈3.91

significant digits. Ordinary single precision calculations are performed with ≈7.22

significant digits. In the case of the GROMACS software, the inner nonbonded loops

use distance squared units of 1.0 as 1 nm2 and the seventh significant digit would

represent the size of a subatomic particle. Computational and mathematical analysis

demonstrated that the results paralleled those that would have been computed by using

the IEEE 754 floating point instructions.

Simulations run in a real space that maps to a range of computational values. This real

space and computational space can be represented by fewer bits for both the exponent

and mantissa portions of the IEEE 754 representation used for general computation

because of the nature of MD simulations.

Water Box Simulation and Bond Lengths (nm)

Interaction Min r 2 Min r [a]
Bond Length

[b]
H-H 0.017770 0.133304 0.074

O-H 0.019504 0.139657 0.096

O-O 0.057268 0.239307 0.121

[a] r is distance in nm [b] : http://cccbdb.nist.gov

Table 19 Water Box Simulation Profile

The bond lengths for simulation purposes are usually considered fixed based on

experimental data. Using this data and the bond lengths for water a mathematical model

was created to determine the angular error for a water molecule rotating in 1 pm

granular space. An analysis of a water molecule rotated through a discrete computation

space of 1 pm shows an angular error of ± 0.47 degrees with no divergence.

The prior study of the noncomputational incremental algorithm theorized that MD

simulations could calculate nonbonded interactions in granular space of ± 1 pm based

147

on the distance squared in the nonbonded routines and give ‘equivalent’ results to the

standard GROMACS builds.

In prior research the noncomputational incremental algorithm (See Chapter 2) was also

shown to parallel the IEEE 754 floating point standard. There was no mathematical

divergence because of the forward backward error correction that was generated in the

tables containing the pre-calculated results. These tables are used to incrementally

calculate energies and forces.

Why Test the Algorithm with Free Energy Studies

After the testing of the algorithm computationally and mathematically the question still

remained was it ‘good enough’ for molecular dynamics simulations. The algorithm was

shown to work mathematically and computationally but could it be successfully used

in MD simulations. Is a spatial granularity of 1pm sufficient without causing adverse

side effects? The algorithm has a forward backward error correction but does it function

within the limits required for MD simulations. A number of investigators including one

of the GROMACS developers said that the results of protein and water box simulations

‘looked good enough’ but this is only a small sample of subjective opinions.

Figure 52 Relative Error vs. IEEE 754 Standard in Percentage

148

A large number of water box, amino acid, and protein simulations had already been run

using the 4 different versions of the developed algorithm and the three build options for

GROMACS 4.5.3 C language single precision, SSE single precision, and SSE2 double

precision. The simulations were run multiple times but due to the inherent nature of

molecular dynamics simulations three is significant variation from one simulation run

to another even with the GROMACS builds. In complex systems such as proteins in

water multiple runs of a simulation may show different unfolding paths and the

deviation in the results of the simulation may be extremely different. For these reasons

this study of free energies was performed.

3.3 Methodology

3.3.1 Test Environments

Software

The 64 bit version for Windows of R version 3.1.2 (R Foundation for Statistical

Computing)124 was used for normality testing and statistical analysis. Descriptive

statistics were generated using StatView for Windows Version 5.0125 and Microsoft

Excel 2007 was used for general analysis.

All test systems used the Ubuntu 14.04 operating system, the gcc 4.7 compiler and

GROMACS 4.5.3.

Hardware

All free energy simulations for this study were performed using GROMACS 4.5.3 on

Ubuntu 12.04 on an AMD Opteron 6272 2.1 GHZ 2MB CPU cache (Bulldozer) 64 core

server, and on an Intel Xeon 5650 2.67 GHZ 12MB Cache 6 cores (Westmere-EP

32nm). The gcc 4.7 compiler was used for development.

Earlier algorithmic, performance, small molecule and protein simulations were

performed on the above platforms and other platforms including the following systems:

Intel Core i7 (2630QM) 2.0 GHZ 6 MB Cache (Sandy Bridge), Intel Core i7 (930) 2.8

GHZ, 8 MB cache (Nehalem), Intel Core 2 Duo 2.24 GHZ 3 MB cache, Intel Core 2

Quad Core 2.2 GHZ 3 MB cache, AMD Opteron 6272 2.1 GHZ 2MB CPU cache

(Bulldozer) 64 core server, AMD Athlon 3800+ 2.4 GHZ 512KB cache, AMD Athlon

149

X2 4400+ 2.3 GHZ 512KB cache and Intel Core i5 1.7 GHZ 3MB cache (4201U

(Haswell) ULT).

Summary of Prior Testing with Water Boxes

Simulations of a water box containing 987 atoms, using the SPC water model,

GROMOS 43a1 force field and using the NVT ensemble were run. The water box

simulation used the GROMACS 4.5.3 nonbonded kernels routines for Lennard-Jones

and reaction field for electrostatics. These simulations were executed using 22 different

variations of the algorithm and the three standard GROMACS single precision C, single

precision SSE and double precision SSE2 builds. The 22 different versions of the

algorithm reduce the size of the mantissa for the IEEE representation of the real number

value. By reducing the size of the mantissa the approximate number of decimal digits

supported can be reduced from ≈7.22 to ≈2.11.

This reduced computational and spatial ‘granularity’ was used to minimize the

memory required for pre-computed tables. Figure 50 shows large standard deviations

in total energy and other simulation results occurred as the ‘granularity’ approached

≈2.11 significant digits and simulations crashed at coarser granularity. Similar results

were seen in small molecule and protein simulations. This is a result of the ‘spatial

granularity’ being reduced too much and the atoms ‘jumping’ too far. The results

0

10

20

30

40

50

60

S
S

E C

7
.2

2

6
.9

2

6
.6

2

6
.3

2

6
.0

2

5
.7

2

5
.4

2

5
.1

2

4
.8

2

4
.5

2

4
.2

1

3
.9

1

3
.6

1

3
.3

1

3
.0

1

2
.7

1

2
.4

1

2
.1

1

E
 (

k
J
 m

o
l-

1
)

Significant Digits

Total Energy W3A-W3A 1ns LJ RF GROMACS 4.5.3
Difference in Standard Deviations

Between GROMACS C and SSE Builds vs Variable Precision

Diff Between Std Dev C vs
SSE or Variable Precision

Diff Between Std Dev SSE
vs C or Variable Precision

Figure 53 Changes in the Standard Deviation with Reduced Precision

150

shown in Figure 50 show the difference between the standard deviation in total energy

of the build/algorithm and the GROMACS C or SSE versions used as a reference point.

It can be seen that there is a discrepancy between the standard deviations of the energy

calculated with the two GROMACS builds. Until ≈3.01 significant digits this

discrepancy is similar to that between the standard deviation of the energy calculated

with the build/algorithm and the standard deviation of either the C or SSE builds. This

was extremely important because it shows that a granularity of less than ≈3.01

significant digits is going to start to cause large fluctuations in total energy. The

GROMACS g_energy utility was used to obtain information such as total energy,

kinetic energy, potential energy, etc. This permitted a reduction in the number of

variable precision variations of the developed algorithm that needed to be tested and

reduced dramatically the computational resources that were required.

3.3.2 Free Energy Study Methodology Using Amino Acid Side Chain Analogues

Free energy studies of amino acid side chain analogues have been used to demonstrate

the viability of force field and water models and to show that these results conform to

experimental data. These small short simulations consist of a small water box and one

amino acid side chain analogue. The small size of these simulations and their validation

with experimental data make them ideal for use in testing new performance algorithms

and looking for undesirable side effects. The methodology for this study uses two major

components: 1) use of free energy for amino acid analogue studies and 2) determining

what is ‘good enough’ through statistical equivalence. The free energy data that is

collected is used to support statistical equivalence test using the results from the

iterations for each combination of force field, water model, amino acid analogue and

developed algorithm variant and standard GROMACS build. The goal is not to

Amino acid Abbreviation Analogue

Natural

occurrence

alanine Ala methane 7.80%

asparagine Asn acetamide 4.30%

leucine Leu isobutane 9.10%

serine Ser methanol 6.80%

threonine Thr ethanol 5.90%

Amino acids and side chain analogs used in this study

Table 20 Amino acid side chain analogues used in the study

151

revalidate the GROMACS versions against all combinations of force fields, water

models and amino acid side chain. Extensive studies have already been performed to

validate water models and force fields using vast amounts of computer time.126, 127 It

is also not the goal of this study to attempt equivalence testing on all amino acid side

chain analogues or more than one force field or water model. Five amino acid side

analogues each with one force field and water model were chosen for evaluation. Table

20 shows the natural occurrences in proteins. Methane was used because it was used in

the protocol of Justin Lemkul. Additionally the analogues isobutane, methane and

methanol represent the analogues of the three highest natural occurrences. Ethanol and

acetamide were chosen because they are analogues for polar amino acids (asparagine

and threonine respectively) and also have a high natural occurrence.

This statistical methodology coupled with the methodology of previous studies used to

validate water models and force fields was the only way to prove mathematically that

the developed algorithms were ‘good enough’ for the intended purpose. This study

examined five amino acid side chain analogues using the OPLSAA128 force field and

the TIP3P water model.

The workflow for the free energy studies was based on the free energy protocol of

methane in water by Justin Lemkul.119 The study included a water box of 241 TIP3P

water molecules and a single molecule of methane. The OPLSAA force field was used.

The .mdp, .gro and .top files are from the protocol except with the changes noted for

methane in water. The .gro and .pdb files for the other amino acid analogues were

readily available from other studies. Charge interactions between solute and water were

turned off prior to the van der Waals (vdW) terms to avoid charges approaching too

closely after the vdW repulsive terms are turned off, which would result in an unstable

system. The methodology adapted from the Lemkul protocol assumes that charges have

previously been turned off and that only the van der Waal terms remain, and will

gradually be turned off between the solvent and solute.

The only other changes made were to replace PME by reaction field since no

implementation of the developed method exists for PME, and to change the temperature

from 300 K to 298 K to better reflect experimental data and the work of Shirts et al.107

The time for the production simulation run associated with each lambda was increased

152

to 5 ns to look for potentially hidden computational side effects that might not be visible

in shorter simulations.

The free energy change of changing a system from state A to state B, ΔGAB, is a function

of the coupling parameter (lambda λ). Figure 55 shows that this parameter designates

the level of change that occurs between states A and B. This is the degree to which the

Hamiltonian has been altered and the system transformed. Simulations using different

values of lambda permit the plotting of a ∂H/∂λ curve, from which ΔGAB can be

determined. A key issue in free energy calculations is determining how many lambda

values (points) will be used to describe the change from state A (λ = 0) to state B (λ =

1). The goal is to collect an adequate sample of data to produce a viable ∂H/∂λ curve.

This study used a linear series of λ values with an equidistant λ spacing of 0.05 and

ranging from 0 to 1 for decoupling the vdW interactions. Linear λ spacing values of

0.05-0.1 are commonly used but in many cases molecules will need many more lambda

points, such as systems that have strong interactions through hydrogen bonding.

 λ = 0 λ = 0.5 λ = 1

Figure 54 Free Energy - change from state A (λ = 0) to state B (λ = 1)

Adapted from Justin Lemkul 107

Lambda spacing may need to be decreased so that more points are and distributed

asymmetrically due to variations in the slope. Shirts et. al. used 61 λ values in their

work but shorter simulation times of 1.2ns whereas this study used 5ns simulations

because part of the object was to look for the longer term impact of the developed

algorithm to the free energy results.

Due to the non-linear dependence of the energy on the λ values decoupling of the van

der Waals interactions can sometimes be problematic. For reasons described by Shirts

et al. and elsewhere, many more λ values may be necessary to adequately describe the

153

transformation, particularly in regions where the slope of the ∂H/∂λ curve is steep. In

the present study, the linear λ spacing of 0.05 was found to be sufficient.

For each value of λ, it is essential that a free energy workflow be performed (energy

minimization, equilibration, and production data collection). These jobs were run as

batches performing large numbers of iterations of the same workflow for a given

combination of algorithm, granularity, and amino acid analogue. The following

workflow was performed for each iteration. Each step in the workflow was run using

the GROMACS 4.5.3 SSE version except the production step where the algorithm the

various GROMACS builds and the variable precision algorithms were used. This

minimized the differences in the test environment by keeping all steps constant except

the production data step. With statistical equivalence or superiority testing the test

environment must keep as many variables constant as possible to minimize side effects

that would skew the results. The workflow used is as follows:

1. Steepest descents minimization

2. L-BFGS minimization

3. NVT equilibration

4. NPT equilibration

5. Production data based on the NPT ensemble

Both the steepest descents and L-BFGS minimization steps were used to provide a

better minimization of the starting structure. Lemkul reported that the L-BFGS

minimization converges prematurely and may result in unstable systems, however

when it is used in conjunction with steepest descents it yields a better minimization. 107

The double precision SSE2 build of GROMACS 4.5.3 was used for the minimization

steps of the workflow and the single precision SSE build of GROMACS 4.5.3 was used

for NVT and NPT equilibration steps. The production NPT step was used for comparing

the algorithms. It used the variations of the developed algorithm and the GROMACS

C single precision, SSE single precision and SSE2 double precision builds.

154

3.3.3 Free Energy Study - Preliminary Results

Figure 56 shows the results from a methane in water free energy study using the 3

standard GROMACS 4.5.3 build options and 4 variable precision algorithms. It shows

a comparison of the results for ≈3.01 and ≈3.91 digit versions of the developed

algorithm compared to the GROMACS 4.5.3 double precision, C single precision and

SSE single precision builds. It can also be seen in this simple system that the reaction

field and GROMACS PME models give virtually identical results. It can be seen that

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Δ
G

 (
k
J
/m

o
l)

λ Values

Free Energy Integral - Methane in Water

Double Prec SSE2

Single Prec SSE

Single Prec C

Single Prec PME

Var Prec 3.01 Digits

Var Prec 3.31 Digits

Var Prec 3.61 Digits

Var. Prec 3.91 Digits

Figure 55 Free Energy Integral - Methane in Water

155

both the free energy integral and free energy differences for methane in water are

virtually identical to the GROMACS builds. In figure 57 the free energy differences

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Δ
G

 (
kJ

/m
o

l)

λ

Free Energy Differences - Methane in Water

Double Prec SSE2 Single Prec SSE

Single Prec C Single Prec PME

Var Prec 3.01 Digits Var Prec 3.31 Digits

Var Prec 3.61 Digits Var Prec 3.91 Digits

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Δ
G

 (
kJ

/m
o

l)

λ

Free Energy Differences - Methane in Water

Double Prec SSE2

Single Prec SSE

Single Prec C

Figure 57 Variation between GROMACS Builds and Variable Precision

Figure 56 Variation between GROMACS Builds

156

show a variation between the GROMACS double precision SSE2, single precision SSE,

and single precision C builds that illustrates that the variation between the GROMACS

builds can be used to establish a zone of equivalence. In Figure 58 the free energy

differences are shown for all standard GROMACS builds, PME and the developed

algorithm showing that they are virtually indistinguishable.

Statistical Methodology

It is useful to see graphically that the results of the free energy study for methane in

water look ‘good enough’ when the noncomputational incremental algorithms are

used with spatial and computational granularity of three significant digits. In order to

determine if the results are “good enough” an analysis of statistical equivalence was

needed129. This methodology is well defined and frequently used in clinical trials of

new drugs.130,131

Standards for the design of statistical equivalence and non-inferiority studies have

been developed such as The Consolidated Standards of Reporting Trials Statement

(CONSORT)132 and the 2010 extension and 2012 update to CONSORT for non-

inferiority and equivalence trials. In this study if a molecular dynamics simulation of

an amino acid analogue is a ‘disease’ then each build variation of GROMACS 4.5.3

and the developed algorithm may be considered and alternative ‘treatment’. In 2006,

a survey of the methodology used in 162 clinical trial studies from 2003 and 2004 was

made by Le Henanff et. al.98 of the use of non-inferiority and equivalence methods in

clinical trials. They cited two common issues with these studies that relate to this

current work: 1) definition and justification of the margin of equivalence or non-

inferiority and 2) failure to define how the sample size was determined.133

3.4 Statistical Equivalence

The purpose of this study is to evaluate the statistical equivalence134, superiority or

inferiority of the noncomputational incremental versions of the developed algorithm

using a variable precision floating point format versus the standard single C and SSE,

and double precision builds of GROMACS 4.5.3 and thus determine if a variable

precision format was ‘good enough’ to be used in molecular dynamics simulations

using GROMACS.

157

Since no two algorithms or methods yield results that are exactly equal, we must

define what effects are important and what difference in these effects would be

important. The effect differs depending on what is being studied. In this study the

delta in free energy (ΔG) is considered the principal effect of the algorithm.

Standard statistical tests can be used to show that there is no ‘statistically significant

difference’ but this is not the same as showing that two sets of data representing two

methods are equivalent or ‘good enough’ for the intended purpose. Statistically

significant means that there is strong evidence that the difference is not zero, but it

does not show if the difference is large enough to eliminate the conclusion that the

two sets of data representing different methods are ‘functionally’ equivalent to data

representing different methods that are ‘generally accepted’ as ‘good enough’.

Statistical methods have been developed for testing equivalence using either

confidence intervals or p-values.136 These methods are frequently used in clinical

trials and other applications. This study uses confidence intervals as a means of

determining if the developed algorithms are statistically equivalent to the standard

GROMACS builds.

3.4.1 Defining a Zone of Equivalence and a Zone of Superiority

In order to perform a study of statistical equivalence it is necessary to define an

acceptable range beyond which the results would not be considered acceptable. Zones

of equivalence, superiority or inferiority need to be defined and this definition is

based on the problem being analyzed. What is ‘good enough’ is problem and

methodology specific. For example in a clinical trial with a control group with

systolic blood pressure of 163, if the alternative treatment group had a systolic blood

pressure of 160, clinicians would not change their practice for just 3 points135. There

is however the question of how many points would be considered to be sufficient to

change general clinical treatment. This becomes subjective judgement call based on

the test or trial being performed, if not 3 points perhaps 5 or 10 points in this example.

This decision must be made by experts in the field using data from an acceptable

sample size. A question of personal interest in the results arises. Obviously the

developers of the drug, algorithm or other method being developed have a vested

interest in the success of the results, other groups may have different professional

opinions and perhaps government regulators have an extremely conservative

158

perspective. The same applies to the suitability of an algorithm for use in performing

molecular dynamics simulations. It can be said that a new drug/algorithm can be

considered equivalent to the standard if it falls within the range of X, where X is the

mean of the standard therapy/algorithm and I2 is the upper equivalence interval and I1

is the lower equivalence interval. I1 and I2 may not be equidistant from the center of

the zone of equivalence and may include an additional subjective non-statistically

based value to increase the size of the zone of equivalence, superiority or inferiority.

This may be expressed as:

[XStandard – I1] to [XStandard +I2]

From one perspective the smaller the interval the more equivalent the drug/algorithm

will have to be compared to existing drugs/algorithms in order to be accepted. The

greater the interval is the more easily it will be for the drug/algorithm to acceptable for

approval or for the algorithm to be accepted for general use. There is however a side

effect that when the interval I is small a larger sample size is required and it is more

difficult to determine equivalence.136 In this study each of the standard GROMACS

4.5.3 builds were considered as if they were a ‘treatment’ or algorithmic alternative and

therefore collectively the zone of equivalence was defined based on the formula below.

The mean of the aggregated datasets from the three builds of GROMACS samples was

not used as the basis as the definition of a zone of equivalence because there are subtle

differences in how the 1/sqrt function is implemented and what computer instructions

are used for performing the 1/sqrt and force calculations. This means that the

implementations for how forces are calculated yields slightly different spatial positions,

force results and accumulated statistics. Equivalence testing using the zone of

equivalence testing model in this study could also be useful to validate new GPU,

multicore/multiprocessor implementations, new implicit water models or even major

version changes to GROMACS itself as part of the test suite. It could also be useful as

a generalized testing methodology for complex software.

Data for this study was shown to have a normal distribution so that I1 = I2. This study

defined the zone of equivalence using the following formula without the

addition/subtraction of subjective modifications to the zone of equivalence based on the

opinions of ‘experts’ using the confidence interval of the replicate data. It could easily

159

be argued that due to limitations in force field models, water models and how the

calculations are performed that the size of these zones could be increased, but that could

lead to debates about how much should be allowed and still be ‘good enough’.

min([[X Gromacs c – I Gromacs c], [X Gromacs sse – I Gromacs sse], [X Gromacs sse2 – I Gromacs sse2])

to

max([[X Gromacs c + I Gromacs c], [X Gromacs sse + I Gromacs sse], [X Gromacs sse2 + I Gromacs sse2])

and a new algorithm t is equivalent if the following criteria are met:

[X t – I t] ≥ min([[X Gromacs c – I Gromacs c], [X Gromacs sse – I Gromacs sse],

[X Gromacs sse2 – I Gromacs sse2])

and

[X t + I t] ≤ max([[X Gromacs c + I Gromacs c], [X Gromacs sse + I Gromacs sse],

[X Gromacs sse2 + I Gromacs sse2])

A zone of superiority was also defined using the GROMACS SSE2 double precision

build as the definition of the zone of superiority because it is computationally more

robust supporting over 15 significant digits. The following defines the zone of

superiority:

min([[XGromacs sse2 – I lowerbound sse2])

to

max [XGromacs sse2 + I lowerbound sse2])

An algorithm t would be considered within the zone of superiority if it meets the

following criteria.

[X t – I t] ≥ [X Gromacs sse2 – I Gromacs sse2]

and

[X t + I t] ≤ [X Gromacs sse2 + I Gromacs sse2]

160

The zone of equivalence for this study is specified conservatively in that the developed

algorithm/variant must fit completely between the minimum value and the maximum

values supported by the three ‘accepted’ GROMACS build algorithms without any

discussion as to whether or not it is possible to extend the lower or upper end of the

zone of equivalence. In the above X is the mean of the Δ G values for the replicate series

of each GROMACS build. I is the confidence interval for the Δ G values of each

replicate series determined by the GROMACS 4.5.3 g_bar utility using the Bennett

Acceptance Ratio method for calculating free energy differences. Figure 59 illustrates

the methodology of the study. The zone of equivalences is defined by the three

GROMACS builds as indicated by the two black lines for the C and SSE single

precision builds and the purple line for the GROMACS SSE2 double precision build.

The purple line indicates the zone of superiority within the zone of equivalence. The

algorithm represented in green is within the zone of equivalence but it is also within the

zone of superiority. The algorithm indicated in blue is within the zone of equivalence.

In this study all of the variants based on the data collected were within the zone of

equivalence. The algorithms in red indicate possible algorithms that would fall outside

of the zone of equivalence. Variants of the developed algorithm with reduced precision

less than ≈3.01 significant digits would begin to fall outside of the zone of equivalence.

Evaluation of variable precision versions of the developed algorithm with less than

≈3.01 significant digits were not included because it was already evident from the

GROMACS SSE2 Double
(Zone of Superiority (purple))

GROMACS SSE Single Prec.

GROMACS C Single Prec.

Algorithms that Define
The Zone of
Equivalence

Blue Algorithm
is Equivalent
Green is Superior

Figure 58 Illustration of Zone of Equivalence and Zone of Superiority

161

results of water box simulations from a prior study that at precisions less than ≈3.01

significant digits caused increases in total energy.

3.4.2 Sample Data Generation

For each amino acid analogue studied the following procedure was performed to

generate the data required for statistical analysis. For example, this study uses multiple

runs of a free energy simulation with 21 lambdas of methane in water, following a

protocol developed by Justin Lemkul (with the exception that PME was changed to

Reaction Field). Each simulation representing a single lambda of a free energy series is

5 ns and is processed through a full complement of minimization, equilibration, NVT,

and NVP runs before the production MD run is performed. The mdp, gro and .top files

are from the protocol by Justin Lemkul. Each data point represents the change in free

energy (Δ G) associated with the 21 simulations that are part of a single free energy

study. The workflow implemented use the GROMACS 4.5.3 double precision SSE2

build for the two minimization steps and the GROMACS 4.5.3 SSE single precision for

the two equilibration steps. The production workflow was performed for each of the

tested builds and algorithms. This is repeated for each algorithm GROMACS 4.5.3 SSE

single precision, C single precision, and SSE2 double precision, and the developed

algorithm using ≈3.91, ≈3.61, ≈3.31 and ≈3.01 significant digits.

3.4.3 Sample Size Estimation and Confidence Intervals

In order to demonstrate statistical significance only the three standard GROMACS

builds and only four variable precision forms of the developed algorithm were used.

The study began by running 20 iterations of each combination of build/algorithm and

amino acid analogue (20 iterations x 21 lambdas x 5 ns). The standard deviation was

used to provide an initial estimate of what the sample size needed to be for each

analogue. Additional iterations for each amino acid analogue was executed until the

desired level of statistical significance a 95% confidence interval was achieved. There

was substantial variability between the builds and variants with the GROMACS C

single precision build frequently indicating the largest sample requirement. The average

sample size for each run was used except where the average sample size was less than

162

forty and then forty was used (methane and methanol). Table 21 shows the results of

the sample size estimates based on the data series for each build or algorithmic variant,

and the sample size actually run for each amino acid analogue used in the study.

Amino Acid

Analogue

GROMACS

C Single

Precision

GROMACS

Single

Precision

SSE

GROMACS

Double

Precision

SSE2

Variable

Precision

3.91 Sign

Digits

Variable

Precision

3.61 Sign

Digits

Variable

Precision

3.31 Sign

Digits

Variable

Precision

3.01 Sign

Digits

Avg

Sample

Size

Used

in Study

Acetamide 56 59 44 55 28 38 42 46 46

Ethanol 75 55 53 61 60 50 61 59 60

Isobutane 61 37 34 39 43 63 43 46 46

Methane 29 37 28 23 26 20 34 28 40

Methanol 20 23 33 28 21 24 31 26 40

Table 21 Sample Size Estimates - Amino Acid Analogues Based on Data Series

Each replicate was a complete run of the production workflow for all lambda values for

each algorithm and amino acid analogue yielding a set of ΔG values. The sample size

was determined using R-2.15.1 for Windows (The R Foundation for Statistical

Computing) using the following formula:

n = ((SD * z(0.95)) / E (± 2%)) 2

In the above formula n is the sample size, SD is the standard deviation and z(0.95) is

the zscore for 95% confidence interval. A margin of error E of 2% was chosen because

it is less than or equal to the estimated error of the Δ G values for the tests and it is the

maximum supported by the sample size. The SD is taken from the Bennet’s Method

output in GROMACS for a full free energy calculation of all lambdas for the entire

replicate series. The sample size for each analogue studied was increased for each

replicate until the average sample size for the analogue achieved a 95% confidence

interval.

Confidence intervals were computed assuming a normal distribution using Microsoft

Excel 2003. The population size was consider to be the number of data points in the

data sets (40-60). A minimum of 40 data points were used for each combination of

amino acid analogue and algorithm/build.

3.4.4 Resource and Data Requirements for the Study

The computational costs of this study were high due to the large numbers of simulations

required for each algorithm multiplied by the number of lambda values times the

163

number of amino acid analogues. Table 22 shows the number of iterations required for

each amino acid analogue and the number of microseconds of simulation required for

each amino acid analogue for this study. In order to obtain a single Δ G value for the

statistical study for each analogue it was necessary to run a complete workflow totaling

105 ns for each study (5ns times 21 lambda points).

Amino Acid Analogue

Estimated

Sample Size

Builds or

Algorithms

Samples in

the Study

Simulation

Time µs

Acetamide 46 7 46 33.8

Ethanol 59 7 60 44.1

Isobutane 46 7 46 33.8

Methane 28 7 40 29.4

Methanol 26 7 40 29.4

Total 232 170.5

Note: 5ns x 21 λ values = 105ns / analogue/ΔG

Table 22 Total Microseconds of Simulation Time Needed for Study

3.5 Normality Testing

R-2.15.1 for Windows was used for all normality testing and for producing QQ plots

and histograms of data samples. The data values associated with each build/algorithm

were tested for normality using the following statistical tests from the nortest package

for R-2.15.1. Each normality test has its own strength and weaknesses especially on

relatively small sample sizes. The Anderson-Darling test generally has better results

using small sample sizes. It was observed that even using the R-2.15.1 functions to

create a ‘small’ random sample of ‘normal’ data there was significant variation between

the results generated by these tests. It is extremely important to compare the results of

these normality tests with QQ plots and histograms. Even when the R-2.15.1 function

to create a random set of normal distribution data the histograms and QQ plots may not

appear ‘normal’.

The following normality tests used were:

1. Anderson-Darling

2. Shapiro-Francia

3. Shapiro-Wilk

164

4. Pearson chi-square

5. Lilliefors (Kolmogorov-Smirnov)

6. Cramer-von Mises.

3.5.1 Interpreting the Normality Tests

The Anderson-Darling test is a modified form of the Kolmogorov-Smirnov (K-S) test

and but gives more weight to the tails than the K-S test. A p-value ≥ 0.05 indicates

normality. The Anderson-Darling test may be used with small sample sizes (≤ 25).137

The Shapiro-Wilk138 test has the best power for a given significance followed by the

Anderson-Darling test. Data is considered to be normal if p-value is ≥ 0.05.139

The Pearson chi-square test was also performed. It however is unreliable if the

expected frequencies are too low. It is normally acceptable if no more than 20% of the

cases have expected frequencies below 5. It is of limited value based on the nature of

the data set used in this study but also frequently indicated normality.140

The Lilliefors (Kolmogorov-Smirnov) was also used to test normality. It is used when

the mean and standard deviation of the theorized normal distribution are not known. In

this case they are estimated from the sample data. This test also indicated a normal data

distribution.141,142

The Cramer-von Mises test for normality was also used. This test was developed in

1928 and uses one or two samples. It is an alternative test to Kolmogorov-Smirnov. A

p-value ≥ 0.05 is considered to show normality.143,144 The Shapiro-Francia test supports

a number of data points between 5 and 5000 and was also used. Table 23 shows the

results for normality testing for methane in water using 40 data points.

Normality Test p-value

Anderson-Darling A = 0.2141 0.8395

Shapiro-Wilk W = 0.9871 0.9219

Pearson chi-square P = 4.55 0.6027

Lilliefors (Kolmogorov-Smirnov) D = 0.0946 0.4891

Cramer-von Mises W = 0.0367 0.7329

Free Energy- Methane in Water GROMACS SSE with Normality Algorithm Statistics

Table 23 Normality Test Results Methane in Water GROMACS SSE

165

Whenever normality tests are performed it is important to examine the quantile to

quantile plots (Q-Q plots) and histograms. Figures 61 shows the Q-Q plot and histogram

respectively for the data samples for methane in water for 40 data points using

GROMACS 4.5.3 SSE single precision for the production simulations. This histogram

and quantile to quantile plot give a clearer and more visual assessment of normality.

Figure 59 Q-Q Plot and Histogram - Methane in Water GROMACS SSE

3.5.2 Normality Test Results

The following results are for methane in water. Tables 24 and 25 show the p-value

results for each normality test used for each of the GROMACS 4.5.3 builds and the

each variant of the developed algorithm supporting a variable number of significant

digits. The test results for all algorithms and variants showed normality except for the

GROMACS 4.5.3 C single precision build. A data set fails the above normality test if

the p-value did not meet the ≥ 0.05 criteria. With small sample sizes normality tests

may fail even for tests such as Anderson-Darling that were designed for small sample

sizes. This was the only build/algorithm that failed to pass at least one normality test

for any of the amino acid analogues studied.

166

A p-value W W p-value P p-value

Methane

GROMACS SSE 0.3226 0.5160 0.9776 0.5138 0.9757 0.5347 4.55 0.6027

GROMACS C Sing Prec 1.4219 0.0010 0.9107 0.0055 0.9029 0.0023 13.10 0.0415

GROMACS SSE2 Double 0.7646 0.0429 0.9530 0.0887 0.9495 0.0727 19.85 0.0029

Variable Prec. 3.01 0.6847 0.0682 0.9561 0.1114 0.9565 0.1273 15.80 0.0149

Variable Prec. 3.31 0.6178 0.1006 0.9646 0.2070 0.9634 0.2186 10.40 0.1088

Variable Prec. 3.61 0.5067 0.1896 0.9650 0.2124 0.9686 0.3239 15.35 0.0177

Variable Prec. 3.91 0.5543 0.1432 0.9528 0.0877 0.9584 0.1471 5.45 0.4875

Num Passed Normality Test 5 6 6 3

Amino Acid Analogue

Anderson-Darling Shapiro-Francia Shapiro-Wilk Pearson Chi-Square

Normality Tests

Table 24 Methane in Water - Normality Test Results by Algorithm

D p-value W p-value V p-value

Methane

GROMACS SSE 0.1017 0.3731 0.0510 0.4873 0 3.58E-08 6

GROMACS C Sing Prec 0.2000 0.0003 0.2179 0.0030 0 3.52E-08 0

GROMACS SSE2 Double 0.1285 0.0942 0.1289 0.0433 0 3.59E-08 3

Variable Prec. 3.01 0.1467 0.0299 0.1143 0.0687 0 3.54E-08 4

Variable Prec. 3.31 0.1432 0.0379 0.1055 0.0906 0 3.54E-08 5

Variable Prec. 3.61 0.1601 0.0113 0.0922 0.1387 0 3.50E-08 4

Variable Prec. 3.91 0.1249 0.1200 0.0936 0.1329 0 3.52E-08 6

Num Passed Normality Test 3 5

Amino Acid Analogue

Num Norm

Tests

Passed /

Algorithm

Wilcoxon Signed

Rank Test

Nonparametric

Lilliefors (Kolmogorov-

Smirnov) Cramer-von Mises

Normality Test

Table 25 Methane in Water - Normality Test Results by Algorithm

3.6 Equivalence Testing

3.6.1 Results for the Zone of Equivalence Testing

Zone of equivalence testing was performed in Microsoft Excel 2003 using the mean ±

the confidence interval. The results in Table 26 were obtained for methane in water

with a confidence level of 95% with 2% margin of error. Details on the other amino

acid analogues that are part of this study may be found in the supplemental materials.

The zone of equivalence was defined treating each GROMACS build as if it were a

separate ‘treatment’ method for performing molecular dynamics simulations. This was

done because the code that is generated especially for spatial calculations differs in each

version. For example, the C version uses a Newton-Raphson method with a limited size

167

table for the seed values for the 1/sqrt, the GROMACS SSE version uses the single

precision assembly language instruction approximating 1/sqrt as a seed value and the

SSE2 double precision uses double precision instructions. This means that there are

three distinct methods of determining the 1/sqrt value that is key to force and distance

calculations. Additionally the force calculations are coded to use single precision C,

single precision SSE instructions and double precision SSE2 instructions that causes

some variation in computational results

NA indicates not applicable since the standard GROMACS builds are by definition part

of the zone of equivalence and the GROMACS SSE2 double precision is by definition

the zone of superiority because of the number of significant digits supported. The

statistical equivalence method that is being used is confidence interval (CI) based where

the upper and lower equivalence interval are the confidence interval without any

subjective knowledge based alteration of the intervals.

Methane in Water
Mean

kJ/mol
CI Min Max

Min in Zone of

Equivalence

Max in Zone of

Equivalence

In Zone of

Superiority

Zone of Equivalence (GROMACS Single

Precision, C Single Precision, Double

Precision) mean+/-CI NA NA -9.04 -8.99 NA NA NA

Variable Precision 3.91 Significant

Digits -9.02 0.010 -9.04 -9.01 Yes Yes No
Variable Precision 3.61 Significant

Digits -9.02 0.010 -9.04 -9.00 Yes Yes No

Variable Precision 3.31 Significant

Digits -9.02 0.010 -9.03 -9.00 Yes Yes Yes
Variable Precision 3.01 Significant

Digits -9.01 0.010 -9.02 -8.99 Yes Yes Yes

GROMACS Single Precision C -9.01 0.010 -9.02 -8.99 NA NA Yes

GROMACS Single Precision SSE -9.02 0.010 -9.04 -9.00 NA NA No

GROMACS Double Precision SSE2 (also

zone of superiority) -9.01 0.010 -9.03 -9.00 NA NA NA

Table 26 Equivalence Test Results Methane in Water

3.6.2 Results for the Zone of Superiority Testing

The zone of superiority was assumed in the study to be the GROMACS SSE2 double

precision build because of its greater precision. The differences between the confidence

intervals for the GROMACS C single precision, SSE and SSE2 double decision builds

were considered to be insufficient to establish a viable range of superiority because of

the small difference between the ΔG ± values of the three GROMACS builds. In Figure

61 the GROMACS C single precision results are also within the zone of superiority.

168

The GROMACS SSE single precision results are only 0.01 kJ/mol different. The figure

also shows the two variants of the developed algorithm with the least significant digits

as being within the zone of superiority. These results along with those from testing with

the other amino acid analogues are evidence that there is no meaningful difference

between the zone of equivalence and the zone of superiority. In many cases the

GROMACS single precision SSE and C builds were determined to be within the double

precision SSE2 defined zone of equivalence.

3.7 Summary of Statistical Study

The above testing was performed for all five amino acid analogues and it was found

that the developed algorithm with variable precisions ≈3.01, ≈3.31, ≈3.61, and ≈3.91

significant digits were all shown to be normal for most of the normality tests used. They

were also within the zone of equivalence defined by the three GROMACS 4.5.3 builds

single precision SSE, single precision C and double precision SSE2. There was only

one exception acetamide in water with a variable precision of ≈3.01 it was found to be

.01 kJ/mol outside the lower bound of the zone of equivalence. It was however

interesting to note that for some amino acid analogues such as methane the GROMACS

single precision C build did not pass the normality tests. The statistical results for the

other amino acid analogues, histograms, quantile to quantile plots (Q-Q plots),

normality test results, sample size estimates, R language scripts and raw data are

contained in the supplemental materials.

3.7.1 Summary by Algorithm and Amino Acid Analogue

The following tables give credibility that the data for each combination of an amino

acid analogue and algorithm is normal. It should be remembered that the data sets are

relatively small (40-60). It should also be noted that even with data generated by the R

language’s function to generate a sample of ‘normal’ data of arbitrary size the normality

tests may fail and the histograms and Q-Q plots may not visually appear normally

distributed. The table below shows the results of the six normality tests that were used

for all amino acid analogues for all 7 algorithms/builds. It shows that the Shapiro-Wilk

and Cramer-von Misses normality tests obtained the best results on the sample data and

the Pearson Chi-Square showed the poorest results on the data sets.

169

Anderson-

Darling

Shapiro-

Francia

Shapiro-

Wilk

Pearson

Chi-

Square

Lilliefors

(Kolmogorov-

Smirnov)

Cramer-

von

Mises

Acetamide 7 6 7 6 6 7 6.5
Ethanol 5 5 5 5 5 6 5.2

Isobutane 6 6 6 6 6 6 6.0

Methane 5 6 6 3 3 5 4.7

Methanol 7 7 7 5 7 7 6.7

Average 6.0 6.0 6.2 5.0 5.4 6.2

Amino Acid Analogue

Average

Passed

Normality Test

Number of Algorithms/Builds Passed Per Amino Acid Analogue Per Normality Test

Table 27 Normality Tests Passed by Each Amino Acid Analogue

Table 28 shows the results for each of the algorithms/builds with a count of the number

of normality tests for all amino acid analogues. This reveals that for each

algorithm/build approximately the same number of normality tests passed further

lending credence that the data distribution for the study is normal. Only the GROMACS

C single precision methane data failed all normality tests. There are a few possible

explanations. 1) Normality tests do not always indicate normality even when the

histogram visually appears to have a normal distribution, especially with a small

sample. Normality tests that claim to be viable on data sets as small as seven are

frequently not reliable even when using the R language function to generate a sample

of ‘normal’ data. 2) There is a small cumulative difference in the results obtained using

the Newton-Raphson 1/sqrt in the GROMACS C version as compared to the C library

1/sqrt function in the lower order 2 bits of the floating point representation of the result.

This difference probably is too small to be seen except in very long simulations, if at

all, since there are other limitations in MD simulations such as limited precision in

constants. 3) The methane histogram for the GROMACS C build ‘appears’ similar to

the GROMACS SSE2 double precision that tests normal.

GROMACS SSE Single Prec. 27

GROMACS C Sing Prec. 24

GROMACS SSE2 Double Prec. 24

Variable Prec. 3.01 24

Variable Prec. 3.31 23

Variable Prec. 3.61 26

Variable Prec. 3.91 26

Total Number of Normality Tests Passed by

Build/Algorithm for All Amino Acid Analogues

Table 28 Count of Normality Tests Passed by Algorithm/Build

170

The data sets representing the zone of equivalence for each of the analogues (aggregate

replicates for GROMACS C, SSE, SSE2) show that fewer normality tests pass than the

individual builds. This is also observed when all replicates for all builds for an analogue

were combined (three GROMACS builds and the four variable precisions builds). An

examination of the histograms show that there usually is a tighter clustering around the

mean but in some cases there is a slight skewing that is similar to the skewing in the

individual results from the GROMACS builds.

Results for Other Amino Acid Analogues

The following results were reported for the other amino acid analogues studied.

Statistical equivalence was shown using the developed algorithm with acetamide,

ethanol, isobutene, and methanol in addition to methane in water.

171

Mean

ΔG

kJ/mol CI Min Max

Min in Zone

Equivalence

Max in Zone

Equivalence

In Zone

ofSuperiority

Zone of Equivalence

mean ± CI NA NA -3.95 -3.89 NA NA NA

3.91 Significant Digits -3.93 0.02 -3.95 -3.91 Yes Yes Yes

3.61 Significant Digits -3.93 0.02 -3.95 -3.91 Yes Yes Yes

3.31 Significant Digits -3.91 0.02 -3.93 -3.89 Yes Yes Yes

3.01 Significant Digits -3.94 0.02 -3.96 -3.92 No Yes No

GROMACS Single

Precision C -3.92 0.02 -3.95 -3.89 NA NA Yes

GROMACS Single

Precision SSE -3.92 0.02 -3.95 -3.89 NA NA Yes

GROMACS Double

Precision SSE2 (also

zone of superiority) -3.92 0.03 -3.95 -3.89 NA NA NA

Zone of Equivalence

mean ± CI NA NA -9.48 -9.4 NA NA NA

3.91 Significant Digits -9.44 0.02 -9.47 -9.41 Yes Yes No

3.61 Significant Digits -9.44 0.02 -9.47 -9.41 Yes Yes No

3.31 Significant Digits -9.44 0.02 -9.46 -9.41 Yes Yes Yes

3.01 Significant Digits -9.43 0.02 -9.46 -9.4 Yes Yes Yes

GROMACS Single

Precision C -9.44 0.02 -9.47 -9.41 NA NA Yes

GROMACS Single

Precision SSE -9.43 0.02 -9.46 -9.4 NA NA Yes
GROMACS Double

Precision SSE2 (also

zone of superiority) -9.46 0.02 -9.48 -9.44 NA NA NA

Zone of Equivalence

mean ± CI NA NA -9.91 -9.85 NA NA NA

3.91 Significant Digits -9.88 0.02 -9.9 -9.86 Yes Yes No

3.61 Significant Digits -9.88 0.02 -9.9 -9.86 Yes Yes No

3.31 Significant Digits -9.87 0.02 -9.89 -9.85 Yes Yes No

3.01 Significant Digits -9.88 0.02 -9.9 -9.86 Yes Yes No

GROMACS Single

Precision C -9.87 0.02 -9.89 -9.85 Yes Yes No

GROMACS Single

Precision SSE -9.89 0.02 -9.91 -9.87 Yes Yes Yes
GROMACS Double

Precision SSE2 (also

zone of superiority) -9.89 0.02 -9.91 -9.87 NA NA NA

Zone of Equivalence

mean ± CI NA NA -4.81 -4.76 NA NA NA

3.91 Significant Digits -4.78 0.02 -4.8 -4.76 Yes Yes Yes

3.61 Significant Digits -4.78 0.01 -4.8 -4.76 Yes Yes Yes

3.31 Significant Digits -4.78 0.02 -4.8 -4.76 Yes Yes Yes

3.01 Significant Digits -4.79 0.02 -4.81 -4.77 Yes Yes Yes

GROMACS Single

Precision C -4.79 0.01 -4.81 -4.77 NA NA Yes

GROMACS Single

Precision SSE -4.79 0.02 -4.81 -4.77 NA NA Yes

GROMACS Double

Precision SSE2 (also

zone of superiority) -4.78 0.02 -4.8 -4.76 NA NA NA

Amino Acid Analogue in Water

Acetamide

Ethanol

Isobutane

Methanol

Table 29 Zone of Equivalence Results - All Amino Acid Analogues in Study

172

3.8 Conclusions

This study performed over 170 μs of simulations on five amino acid analogues to

provide the basis for the analysis of statistical equivalence and superiority of the

developed algorithm for improving the performance of MD simulations versus the

standard GROMACS builds. A very strict definition of the zone of equivalence was

used based on the widely used single precision C, SSE and double precision

GROMACS 4.5.3 builds. If the developed variable precision algorithm did not fall

completely within this zone then it was not considered equivalent. This is more stringent

that the methods used in clinical trials where there is usually a ‘range’ outside of the

upper and lower limit of statistical that is included in the zone of equivalence considered

‘good enough’ by experts in the field. This study showed that when the

noncomputational incremental algorithm is used in free energy studies of five amino

acid analogues with a reduced precision between ≈3.01 and ≈3.91 significant digits, the

results of the simulations were statistically equivalent and indistinguishable to the

GROMACS builds. Prior studies of these amino acid analogues by others showed that

the results of free energy studies of these simple systems could be used to validate

GROMACS simulation results with experimentally determined values. This study

provides strong evidence that the developed algorithm may be used in general purpose

molecular dynamics simulations without causing side effects. It also suggests that

testing of new performance algorithms including GPU and alternative distributed

computational models can use equivalence testing as a means of validation with prior

software versions and experimental data. Equivalence testing can also be applied to the

evaluation of new/modified force field and water models.

The supplemental materials contain detailed of normality tests results, sample size

estimation, quantile-quantile plots, histograms, and descriptive statistics. Also included

are the R language scripts and data tables.

3.9 Acknowledgments

The author would like to express his thanks to Dr. Paulo Martel, Centre for Biomedical

Research, the University of the Algarve, Faro, Portugal for his confidence that this

project was feasible and for his support during the project.

173

The author is also grateful to members of the Computational Systems Biology Group,

Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra led by

Dr. Armindo Salvador; the Biological Chemistry Group, Department of Chemistry,

University of Coimbra led by Dr. Maria Joao Moreno; and to Dr. Claudio Soares, New

University of Lisbon, Lisbon, Portugal for stimulating discussions about the project and

suggestions on approaches to validation of the methodology.

The Biological Chemistry Group, Department of Chemistry, University of Coimbra

also provided substantial computational resources that made the free energy studies

possible. The author would like to thank Virtual Strategy, Inc., Boston, MA for funding

this research and supporting the patent application.

Keywords: performance, statistical equivalence, non-computation, nonbonded, free

energy

3.10 References

105
 Hess, B. and N. F. A. van der Vegt (2006). "Hydration Thermodynamic Properties

of Amino Acid Analogues:  A Systematic Comparison of Biomolecular Force Fields

and Water Models." The Journal of Physical Chemistry B 110(35): 17616-17626.
106 Shirts, M. R., J. W. Pitera, et al. (2003). "Extremely precise free energy

calculations of amino acid side chain analogs: Comparison of common molecular

mechanics force fields for proteins." The Journal of Chemical Physics 119(11): 5740-

5761.
107 Pande, V. S., Baker, I., Chapman, J., Elmer, S. P., Khaliq, S., Larson, S. M., Rhee,

Y. M., Shirts, M. R., Snow, C. D., Sorin, E. J. and Zagrovic, B. (2003), Atomistic

protein folding simulations on the submillisecond time scale using worldwide

distributed computing. Biopolymers, 68: 91–109. doi: 10.1002/bip.10219
108 Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E. GROMACS 4: Algorithms

for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem.

Theory Comp. 4(3):435–447, 2008.
109 Bekker, H., Berendsen, H. J. C., Dijkstra, E. J., Achterop, S., van Drunen, R., van

der Spoel, D., Sijbers, A., Keegstra, H., Reitsma, B., Renardus, M. K. R. Gromacs: A

parallel computer for molecular dynamics simulations. In Physics Computing 92

(Singapore, 1993). de Groot, R. A., Nadrchal, J., eds. . World Scientific.
110 D. van der Spoel, E. Lindahl, B. Hess, A. R. van Buuren, E. Apol, P. J.

Meulenhoff, D. P. Tieleman, A. L. T. M. Sijbers, K. A. Feenstra, R. van Drunen and

H. J. C. Berendsen, Gromacs User Manual version 4.5.6, www.gromacs.org (2010)
111 Bowman, D, 2015, Unpublished, “Optimizing Applications in HPC Environments

Using Incremental and Noncomputational Methods”
112 Tironi, I. G., Sperb, R., Smith, P. E., van Gunsteren, W. F. A generalized reaction

field method for molecular dynamics simulations. J. Chem. Phys. 102:5451–5459,

1995.
113 C. D. Christ, A. E. Mark, and W. F. van Gunsteren (2010) J. Comput. Chem. 31:

1569-1582. DOI

174

114 A. Pohorille, C. Jarzynski, and C. Chipot (2010) J. Phys. Chem. B 114: 10235-

10253. DOI
115 A. Villa and A. E. Mark (2002) J. Comput. Chem. 23: 548-553. DOI
116 Clara D Christ, Alan E. Mark, Wilfred F. van Gunsteren, Basic Ingredients of Free

Energy calculations: A Review, 2009, Journal of Computational Chemistry DOI

10.1002
117 Mobley, D. L., É. Dumont, et al. (2010). "Comparison of Charge Models for

Fixed-Charge Force Fields: Small Molecule Hydration Free Energies in Explicit

Solvent." The Journal of Physical Chemistry B 115(5): 1329-1332.
118 Justin A. Lemkul, “GROMACS Tutorial Free Energy Calculations: Methane in

Water”, Bevan Laboratory, Virginia Tech, Blacksburg, VA 24061, USA,

http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-

tutorials/free_energy_old/index.html
119 Bennett, Charles H. (1976). “Efficient estimation of free energy differences from

Monte Carlo data”, Journal of Computational Physics Volume 22, Issue 2, October

1976, Pages 245-266
120 C.D. Christ, A.E. Mark, W.F. van Gunsteren (2010) J. Comput. Chem. 31: 1569-

1582. DOI
121 A. Pohorille, C. Jarzynski, and C. Chipot (2010) J. Phys. Chem. B 114: 10235-

10253. DOI
122 A. Villa and A.E. Mark (2002) J. Comput. Chem. 23: 5488-553. DOI
123

 Bowman, D, 2015, Unpublished, “Accelerating Molecular Dynamics Simulations

with Incremental and Non-omputational Algorithms”
124 R version 3.1.2 (2014-10-31) Copyright (C) 2014 The R Foundation for Statistical

Computing Platform: x86_64-w64-mingw32/x64 (64-bit)
125 StatView for Windows, Version 5.0, SAS Institute Inc. Copyright © 1992-1998.
126 Berk Hess and Nico F. A. van der Vegt, 2006,, “Hydration Thermodynamic

Properties of Amino Acid Analogues:  A Systematic Comparison of Biomolecular

Force Fields and Water Models”, Journal of Physical Chemistry B, 110 (35), pp

17616–17626

DOI: 10.1021/jp0641029
127 Michael R Shirts, Vijay S Pande, 2005, “Solvation free energies of amino acid

side chain analogs for common molecular mechanics water models”, Journal of

Chemical Physics. 122, 134508 (2005); http://dx.doi.org/10.1063/1.1877132
128 William L. Jorgensen, David S. Maxwell, and, and Julian Tirado-Rives, (1996)

“Development and Testing of the OPLS All-Atom Force Field on Conformational

Energetics and Properties of Organic Liquids”, Journal of the American Chemical

Society, 118 (45), 11225-11236, DOI
129 Jacques S. Lee, MD, “Understanding equivalence trials (and why we should

care)”, CJEM 2001;2(3):194-196
130 Blackwelder, W.C. `Equivalence trials.' Encyclopedia of Biostatistics, 1997.
131 Pamela J. Atherton Skaff, Jeff A. Sloan, Mayo Clinic, Rochester, MN 55905.

“Design and Analysis of Equivalence Clinical Trials Via the SAS® System”,

www.sas.com
132 Piaggio G, Elbourne DR, Pocock SJ, Evans SJW, Altman DG, for the CONSORT

Group. “Reporting of non-inferiority and equivalence randomized trials. Extension of

the CONSORT 2010 statement”. JAMA. 2012; 308(24): 2594-

2604. doi:10.1001/jama.2012.87802. PMID: 23268518

http://w.ncbi.nlm.nih.gov/pubmed/23268518

175

133 Le Henanff A, Giraudeau B, Baron G, Ravaud P. “Quality of Reporting of

Noninferiority and Equivalence Randomized Trials”. JAMA.2006;295 (10):1147-

1151. doi:10.1001/jama.295.10.1147.
134 Wellek, S. (2010) Testing Statistical Hypotheses of Equivalence, Chapman and

Hall/CRCm, ISBN: 978-1439808184.
135 Norman, G. and Streiner, D. (2008) Biostatistics the Bare Essentials, People’s

Medical Publishing House, ISBN: 978-1-55009-347-6
136 Kendall, Philip C.; Marrs-Garcia, Abbe; Nath, Sanjay R.; Sheldrick, Radley C.

“Normative comparisons for the evaluation of clinical significance”, Journal of

Consulting and Clinical Psychology, Vol 67(3), Jun 1999, 285-299.

http://dx.doi.org/10.1037/0022-006X.67.3.285
137 Anderson, T.W.; Darling, D.A. (1954). “A Test of Goodness of Fit”. Journal of the

American Statistical Association, Vol 49, Iss. 268
138 Shapiro, S. S.; Wilk, M.B. (1965). “An analysis of variance test for normality

(complete samples)”. Biometrika 52 (3-4): 591-611. doi:10.1093/biomet/52.3-4.591.

JSTOR 2333709. MR 205384. p. 593
139 Razali, Nornadiah; Wah, Yap Bee (2011)/ “Power comparisions of Shapiro-Wilk,

Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests”. Journal of Statistical

Modeling and Analytics 2 (1): 21-33.
140 Plackett, R. L. (1983). “Karl Pearson and the Chi-Squared Test”. International

Statistical Review (International Statistical Institute (ISI)) 51 (1): 59-72.

doi:10.2307/1402731. JSTOR 1402731
141 Lilliefors, H. (June 1967), “On the Kolmogorov-Smirnov test for normality with

mean and variance unknown”, Journal of the American Statistical Association, Vol.

62. pp. 399-402.
142 Lilliefors, H. (1969), “On the Kolmogorov-Smirnov test for the exponential

distribution with mean unknown”, Journal of the American Statistical Association.,

Vol. 64. pp. 387-389.
143 Cramer, H. On the composition of elementary errors”, Scandinavian Actuarial

Journal 1928
144 Anderson, T. W. (1962). “On the distribution of the Two-Sample Cramer-von

Mises Criterion”, The Annals of Mathematical Statistics (Institute of Mathematical

Statistics) 33 (3): 1148-1159. doi:10.1214/aoms/1177704477. ISSN 0003-481.

176

177

General Discussion

Biomolecular simulation software such as GROMACS have proven to be important

tools to study the physico-chemical properties of biomolecules and their mechanisms

and to describe extremely short-lived molecular phenomena otherwise difficult to

describe.1, 2 The state of the art has come a long way since the first protein

simulations in the early 70’s, both in terms of theoretical methods and the computer

hardware used. Extensive work has been performed to develop and validate force

fields, water models and algorithms with experimental data especially using free

energy studies. Simulation of the molecular dynamics (MD) of solvated proteins with

atomic detail requires the use of systems with the order of tens to hundreds of

thousands of atoms. Particle simulations with detailed molecular potentials can be

extremely heavy in systems of this size, and until recently only relatively short

simulation times (10-100 ns) were accessible with most computer systems available.

Molecular dynamics software maximizes performance by using methods to reduce the

number of interactions, the latest computer instructions, multi-core and distributed

computing architectures. Calculation of nonbonded interactions is the major

performance problem. The speed of a simulation is limited by the processor

architecture and how finely the simulation can be distributed across multiple

processors/cores. Simulations in the range of 10s of thousands of atoms will not run

significantly faster on a supercomputer than on a 64 core server. Improvements in the

calculation of nonbonded forces for water interactions for Lennard-Jones with

Reaction Field on the Intel Core i7 ‘Sandy Bridge’ of 14-15 times that of the

GROMACS 4.5.3 hand coded assembly language versions were achieved on a single

thread on a single core. Part of this is due to the elimination of the 1/sqrt calculation.

This is the fundamental unit of performance in any computational environment

whether it is on a single processor, GPU and distributed computer systems. The

1 Karplus, M. and J.A. McCammon, Molecular dynamics simulations of biomolecules.

Nature Structural Biology, 2002. 9(9): p. 646-652.
2 Karplus, M. and J. Kuriyan, Molecular dynamics and protein function. Proceedings

of the National Academy of Sciences of the United States of America, 2005. 102(19):

p. 6679-6685.

178

method could also be applied to core PME and other computationally intensive

functions with MD software.

This algorithm was validated for mathematical and computational stability and

performance. It was also tested using water boxes and proteins. The results from

water box and protein simulations appeared to show that the developed algorithm was

suitable for MD simulations but this was based on a relatively small number of

simulations examining energy drift, RMSD and other factors. Protein and small

molecule studies can validate a new performance algorithm only at a high level.

The developed algorithm is also generally applicable to most HPC applications and

hardware that perform object to object interactions and that have already been fully

optimized using optimizing compilers, off-loaded to GPUs, run in distributed

environments and uses the latest and most efficient algorithms. After developers have

fully optimized their code and it cannot be made faster by design or computation a

way must be found to completely avoid computations or the application will not run

any faster.

The algorithm may be used in a broad class of HPC applications that run on

supercomputers. These applications are generally used to address two major classes of

problems: 1) problems with large amounts of data that has relatively few/no

interdependencies and can be processed as many streams and 2) problems that are

computationally intensive because they have large numbers of interactions between

many objects. These problems may be in many diverse areas such as: weather

forecasting, oceanography, climate change, the evolution of galaxies, development of

stars and clusters, black holes, particle physics, molecular dynamics, protein folding,

fluid dynamics, economics or other applications. The first class of applications can be

easily distributed over an unlimited number of processors or cores. The second class

of applications generally have a core internal computationally intensive code section

(frequently to calculate forces) and a large number of object interactions. Software

simulating large numbers of interactions uses algorithms (e.g. lattice summation or

spherical cutoffs) to reduce the number of interactions from O(N2) to O(NlogN) or

O(N). They exploit the latest processor architectures, OpenMP, MPI, vector

instruction sets such as AVX, AVX512 and FMA and offload work to GPU

179

coprocessors using NVIDIA CUDA or OpenCL. Even with these techniques there are

limits to both the number of object interactions that can be processed and the amount

of time that these interactions may be simulated independent of the problem being

solved.

The method was also used to develop C library math functions that operate within a

limited precision and range of exponents. The performance of the developed functions

was compared to the standard C library functions with performance speedups in the

range of 11 to 125 times faster than using gcc 4.7. The developed method may be

applied to simple functions, equations or the simultaneous solution of multiple

equations.

The developed algorithm has a number of limitations. The most significant is the

amount of CPU L2, L3, L4 cache available for use with the lookup tables for the

intermediate results. This study showed that there was a substantial reduction in

performance as compared to actually computing the results when the tables used for the

incremental results exceeded the CPU L2/L3 cache. It should also be considered that

other applications may be using the core or processor that may cause cache misses for

an application using the incremental lookup tables. Attention should be given to

associating threads/processes using the algorithm with a physical core, CPU block and

blade/node. If processes are allowed to move from core to core cache misses will result

and this will have an adverse impact on performance. Use of the algorithm in virtual

machine environments with multiple virtual cores mapped to a single physical core was

not evaluated. In a virtual environment it may be difficult or impossible to associate a

thread/process with a physical core. If this cannot be done there will likely be a

performance penalty.

The methodology requires application specific knowledge to allow the creation of

reduced precision lookup tables for intermediate results. If this is not available it must

be obtained by instrumenting the application to collect the data for the specific

execution being performed. This is similar to the auto optimization that is done in some

FFT libraries.

The algorithm can be used if the number of significant digits is less than or equal to

≈4.21 significant digits. This limitation is due to the current size of processor cache

memory. Use of greater than ≈4.21 significant digits can/will result in table sizes that

180

result in cache misses and a degradation in performance. The exponent range must also

be known so that each level representing a power of two can be initialized properly.

The exponents do not need to be contiguous.

Only one floating point/integer value may be used as a function at runtime. All other

values required to initialize the lookup tables must be known and static at runtime.

The implementation of the table initialization and retrieval routines can be implemented

to use fewer exponent levels of the IEEE 754 standard. If 80% of a function/equation’s

execution occurs within a range of values then only the exponent levels required to

support the 80% need to be implemented as lookup tables and in all other cases the

results would be returned by computation.

Functions that are cyclic can implemented using smaller lookup tables and a small

amount of additional code to manipulate the index value. Typically this code would

consist of integer, and, or instructions or shift operations that execute in less than one

cycle.

The AVX2 instruction set using the vsgather instruction and AVX2 integer and bit

manipulations gives the optimal level of performance by significantly reducing the

number of computer instructions.

In order to provide validation at the force field and water model levels free energy

studies of amino acid analogues were necessary.

This study used a methodology to determine statistical equivalence similar to what is

performed in clinical trials to evaluate if the results produced by the developed

algorithms were ‘good enough’ for MD simulations.

This study used a statistically significant number of free energy studies on 5 amino

acid side chain analogues and compared the results with existing GROMACS 4.5.3

build versions and experimental data. It demonstrated that the developed algorithm

produced statistically equivalent results as compared to the existing GROMACS 4.5.3

builds. This study was modeled after studies used to validate force fields and water

models that can be tied to experimental data. Using these small systems it was

possible to obtain a statistically significant number of samples and use statistical

equivalence methodologies and to demonstrate that the developed algorithm produced

181

statistically equivalent results to the three GROMACS 4.5.3 builds (C single

precision, SSE single precision and SSE2 double precision)

182

183

Conclusions

The ‘calculation’ of the forces and intermediate results may be improved substantially

by use of a noncomputational and incremental computation model that exploits a

variable precision numeric format based on the IEEE 754 standard for single precision

values on a single thread and single physical core using the hand coded assembly

versions of GROMACS 4.5.3. It was shown that variable precision formats in the range

of ≈3.01 to ≈3.91 significant digits for the spatial calculations at the core of the non-

bonded routines effectively permits the simulation to run in 1pm ‘space’. Using a coarse

grain approach to obtaining the force results allows the creation of indices for accessing

pre-computed results without the artifacts associated with a simple conversion to

integer lookup method.

It has been shown than a series of tables paralleling the IEEE 754 standard supporting

variable precision coarse grain space using 3 significant digits precision can be

generated to support water to water and water to solute interactions using the

GROMACS Lennard-Jones reaction field and the Lennard-Jones only assembly

language routines. These assembly routines perform 15 times faster on an 2GHZ Intel

Core i7 ‘Sandy Bridge’ and 2.6 times faster on an Intel Core2 Quad core 2 GHZ and

3.2 times faster on an Intel Xeon 5650 2.67 GHZ 12MB Cache 6 cores (Westmere-EP

32nm). Improvements on various AMD CPUs showed an improvement of 1.6 times

faster.

Testing was also performed on a number of C programming library functions such as

sqrt, log, tan, cos, etc. with results in performance improvements that were in the range

of 11 to 125 times faster over a specified range of values at a reduced precision. The

algorithm was also tested against an integer based lookup table method and was found

to be 7 times faster on the Intel ‘Sandy Bridge’ Core i7.

The performance of the algorithm is highly dependent on the percent of CPU and clock

time used for performing nonbonded calculations, the amount of cache memory used

for the incremental result caches, the overall memory requirements of the simulation,

processor technology used, cache architecture, motherboard/blade design, node

configuration and network bandwidth. In all cases tested Intel processors performed

better than AMD with Intel ‘Sandy Bridge’ and ‘Ivy Bridge’ greatly exceeding the

performance of earlier Intel architectures. Preliminary testing on the Intel ‘Haswell’

184

architecture shows a further increase in performance based on improvements in the

cache architecture and the addition of new instructions such as vsgather that permit the

developed algorithm to reduce the number of instructions by half. In AVX512 and other

environments with higher data per cycle processing power, it is expected that the

algorithm will continue to greatly exceed the performance of calculation-based

conventional approaches.

The developed algorithm must be validated on a case by case basis to ensure that an

application continues to meet user requirements after implementing the developed

method. In order to accomplish this for the molecular dynamics software GROMACS

a free energy study performed over 170 μs of simulations on five amino acid analogues

was carried out providing a basis for the analysis of statistical equivalence and

superiority of the developed algorithm when compared to the standard GROMACS

builds. A very strict definition of the zone of equivalence was used based on the widely

used single precision C, SSE and double precision GROMACS 4.5.3 builds. If the

developed variable precision algorithm did not fall completely within this zone then it

was not considered equivalent. This is more stringent that the methods used in clinical

trials where there is usually a ‘range’ outside of the upper and lower limit of statistical

that is included in the zone of equivalence considered ‘good enough’ by experts in the

field. This study showed that when the noncomputational incremental algorithm is used

in free energy studies of five amino acid analogues with a reduced precision between

≈3.01 and ≈3.91 significant digits the results of the simulations were statistically

equivalent and indistinguishable to the GROMACS builds. Prior studies of these amino

acid analogues by others showed that the results of free energy studies of these simple

systems could be used to validate GROMACS simulation results with experimentally

determined values. This study provides strong evidence that the developed algorithm

may be used in general purpose molecular dynamics simulations without causing side

effects.

185

Appendix 1 – Supplemental Materials Chapter 3

1.1 Equivalence Test Results and Sample Sizes

1.1.1 Acetamide in Water

Acetamide in Water

Mean
kJ/mol CI Min Max

Min in Zone of

Equivalence

Max in Zone of

Equivalence

In Zone of

Superiority
Zone of Equivalence (GROMACS

Single Precision SSE, Single

Precision C, Double Precision

SSE2) mean +/- CI NA NA -3.95 -3.89 NA NA NA

3.91 Significant Digits -3.93 0.02 -3.95 -3.91 Yes Yes Yes

3.61 Significant Digits -3.93 0.02 -3.95 -3.91 Yes Yes Yes

3.31 Significant Digits -3.91 0.02 -3.93 -3.89 Yes Yes Yes

3.01 Significant Digits -3.94 0.02 -3.96 -3.92 No Yes No

GROMACS Single Precision C -3.92 0.02 -3.95 -3.89 NA NA Yes

GROMACS Single Precision SSE -3.92 0.02 -3.95 -3.89 NA NA Yes
GROMACS Double Precision

SSE2 (also zone of superiority) -3.92 0.03 -3.95 -3.89 NA NA NA

Figure 60 Equivalence Test Results Acetamide in Water

GROMACS

Single

Precision C

GROMACS

Single

Precision SSE

GROMACS

Double

Precision

SSE2

Variable

Precision

3.91 Sign

Digits

Variable

Precision

3.61 Sign

Digits

Variable

Precision

3.31 Sign

Digits

Variable

Precision

3.01 Sign

Digits

Average

Sample

Size

56 59 44 55 28 38 42 46

Acetamide in Water - Sample Size Estimates Based on 46 Data Points for 95% Confidence Interval with 2% margin of error

Figure 61 Acetamide in Water - Sample Size Estimates Base on 46 data points

The sample sizes for the two GROMACS 4.5.3 single precision builds are greater than

that for any of the variants of the developed algorithm. The average sample size

estimate of 46 was used for analysis.

The results of the variable precision algorithm for ≈3.01 significant digits for acetamide

is slightly lower than the lower bound of the zone of equivalence (.01 kJ/mol). This is

probably of no consequence to molecular dynamics simulations. It is also the only

amino acid analogue studied that fell outside of the zone of equivalence. When zones

of equivalence are defined there is usually a range a little below or above the range that

would be determined by the means and confidence intervals of the various methods or

treatments that are already considered ‘good enough.’ In clinical trials for example there

are small variations above and below the treatment results of available drugs that are

considered to be part of the zone of equivalence or zone of superiority. This study used

186

a more conservative methodology where the zone of equivalence was defined as

completely within the equivalence zone defined by the three GROMACS 4.5.3 builds.

1.1.2 Ethanol in Water

Ethanol in Water
Mean
kJ/mol CI Min Max

Min in Zone of

Equivalence

Max in Zone of

Equivalence

In Zone of

Superiority
Zone of Equivalence (GROMACS

Single Precision SSE, Single

Precision C , Double Precision

SSE2) mean +/- CI NA NA -9.48 -9.40 NA NA NA

3.91 Significant Digits -9.44 0.02 -9.47 -9.41 Yes Yes No

3.61 Significant Digits -9.44 0.02 -9.47 -9.41 Yes Yes No

3.31 Significant Digits -9.44 0.02 -9.46 -9.41 Yes Yes Yes

3.01 Significant Digits -9.43 0.02 -9.46 -9.40 Yes Yes Yes

GROMACS C Single Precision -9.44 0.02 -9.47 -9.41 NA NA Yes

GROMACS Single Precision SSE -9.43 0.02 -9.46 -9.40 NA NA Yes
GROMACS Double Precision SSE2

(also zone of superiority) -9.46 0.02 -9.48 -9.44 NA NA NA

Figure 62 Equivalence Test Results Ethanol in Water

GROMACS

Single

Precision C

GROMACS

Single

Precision SSE

GROMACS

Double

Precision SSE2

Variable

Precision

3.91 Sign

Digits

Variable

Precision

3.61 Sign

Digits

Variable

Precision

3.31 Sign

Digits

Variable

Precision

3.01 Sign

Digits

Average

Sample

Size

75 55 53 61 60 50 61 59

Ethanol in Water - Sample Sizes Estimates Base on 60 Data Points for 95% Confidence Interval with 2% Margin of

Error

Figure 63 Ethanol in Water - Sample Size Estimates Base on 60 data points

Ethanol in water shows higher sample requirement for the GROMACS C single

precision than the GROMACS SSE or SSE2 double precision. A sample size of 60 was

used for analysis.

187

1.1.3 Isobutane in Water

Isobutane in Water

Mean

kJ/ml CI Min Max

Min in Zone of

Equivalence

Max in Zone of

Equivalence

In Zone of

Superiority
Zone of Equivalence (Gromacs

Single Precision SSE, C Single

Precision, Double Precision)

mean+/-CI NA NA -9.91 -9.85 NA NA NA

3.91 Significant Digits -9.88 0.02 -9.90 -9.86 Yes Yes No

3.61 Significant Digits -9.88 0.02 -9.90 -9.86 Yes Yes No

3.31 Significant Digits -9.87 0.02 -9.89 -9.85 Yes Yes No

3.01 Significant Digits -9.88 0.02 -9.90 -9.86 Yes Yes No

GROMACS C Single Precision -9.87 0.02 -9.89 -9.85 Yes Yes No

GROMACS Single Precision SSE -9.89 0.02 -9.91 -9.87 Yes Yes Yes

GROMACS Double Precision

SSE2 (also zone of superiority) -9.89 0.02 -9.91 -9.87 NA NA NA

Figure 64 Equivalence Test Results Isobutane in Water

GROMACS C

Single

Precision

GROMACS

Single

Precision SSE

GROMACS

Double

Precision

SSE2

Variable

Precision 3.91

Sign Digits

Variable

Precision

3.61 Sign

Digits

Varible

Precision

3.31 Sign

Digits

Variable

Precision 3.01

Sign Digits

Average

Sample

Size

61 37 34 39 43 63 43 46

Isobutane in Water - Sample Size Estimates - Based on 46 Samples 95% Confidence Interval with 2% Margin Error

Figure 65 Isobutane in Water - Sample Size Estimates Base on 46 data points

Isobutane in water also shows that GROMACS 4.5.3 C single precision build has a

larger sample size than that for the other builds/variants of the developed algorithm

except for the developed algorithm using ≈3.31 significant digits. The average sample

size estimate of 46 was used for analysis.

188

1.1.4 Methane in Water

Methane in Water

Mean

kJ/mol CI Min Max

Min in Zone of

Equivalence

Max in Zone of

Equivalence

In Zone of

Superiority
Zone of Equivalence

(Gromacs Single Precision SSE, C

Single Precision, Double Precision)

mean+/-CI NA NA -9.04 -8.99 NA NA NA

3.91 Significant Digits -9.02 0.01 -9.04 -9.01 No Yes No

3.61 Significant Digits -9.02 0.01 -9.04 -9.00 Yes Yes No

3.31 Significant Digits -9.02 0.01 -9.03 -9.00 Yes Yes Yes

3.01 Significant Digits -9.01 0.02 -9.02 -8.99 Yes Yes Yes

GROMACS C Single Precision -9.01 0.01 -9.03 -8.99 NA NA Yes

GROMACS Single Precision SSE -9.02 0.01 -9.04 -9.00 NA NA No
GROMACS Double Precision SSE2

(also zone of superiority) -9.01 0.01 -9.03 -9.00 NA NA NA

Figure 66 Equivalence Test Results Methane in Water

GROMACS C

Single

Precision

GROMACS

Single Precision

SSE

GROMACS

Double Precision

SSE2

Variable

Precision 3.91

Sign. Digits

Variable

Precision 3.61

Sign. Digits

Variable

Precision 3.31

Sign. Digits

Variable

Precision 3.01

Sign. Digits

Average

Sample

Size

29 37 28 23 26 20 34 28

Methane in Water - Sample Sizes Based on 40 Data Points for 95% Confidence Interval and 2% Margin of Error

Figure 67 Methane in Water - Sample Size Estimates Base on 40 data points

The ≈3.31 and ≈3.01 significant digit variants of the developed algorithm have values

that indicate that they are in the zone of superiority. However, this is not meaningful

because the variants with greater precision and the GROMACS 4.5.3 single precision

SSE are not in the zone of superiority. This lends credibility to the theory that the

differences between the zone of equivalence and zone of superiority are so small that

they are not meaningful. A sample size of 40 was used for the analysis.

189

1.1.5 Methanol in Water

Methanol in Water

Mean
kJ/mol CI Min Max

Min in Zone of

Equivalence

Max in Zone of

Equivalence

In Zone of

Superiority

Zone of Equivalence (GROMACS

Single Precision SSE, Single

Precision C, Double Precision

SSE2) mean +/- CI NA NA -4.81 -4.76 NA NA NA

3.91 Significant Digits -4.78 0.02 -4.80 -4.76 Yes Yes Yes

3.61 Significant Digits -4.78 0.01 -4.80 -4.76 Yes Yes Yes

3.31 Significant Digits -4.78 0.02 -4.80 -4.76 Yes Yes Yes

3.01 Significant Digits -4.79 0.02 -4.81 -4.77 Yes Yes Yes

GROMACSSingle Precision C -4.79 0.01 -4.81 -4.77 NA NA Yes

GROMACS Single Precision SSE -4.79 0.02 -4.81 -4.77 NA NA Yes
GROMACS Double Precision SSE2

(also zone of superiority) -4.78 0.02 -4.80 -4.76 NA NA NA

Figure 68 Equivalence Testing Results Methanol in Water

GROMACS

Single

Precision C

GROMACS

Single Precision

SSE

GROMACS

Double

Precision SSE2

Variable

Precision

3.91 Sign

Digits

Variable

Precision

3.61 Sign

Digits

Variable

Precision

3.31 Sign

Digits

Variable

Precision

3.01 Sign

Digits

Average

Sample

Size

20 23 33 28 21 24 31 26

Methanol in Water - Sample Size Estimates

Figure 69 Methanol in Water Sample Size Estimates Base on 40 data points

A sample size of 40 was used even though the maximum estimated sample size

estimate was 33 and the average sample estimate was 26.

2.1 Normality Test Details

2.1.1 Summary by Algorithm and Amino Acid Analogue

The following tables give credibility that the data for each combination of an amino

acid analogue and algorithm is normal. It should be remembered that the data sets are

relatively small (40-60). It should also be noted that even with data generated by the R

language’s function to generate a sample of ‘normal’ data of arbitrary size the normality

tests may fail and the histograms and Q-Q plots may not visually appear normally

distributed. The table below shows the results of the six normality tests that were used

for all amino acid analogues for all 7 algorithms/builds. It shows that the Shapiro-Wilk

and Cramer-von Misses normality tests most frequently indicated that the study data

sets are normal. The Pearson Chi-Square indicated normality on the fewest number of

data sets.

190

Anderson-

Darling

Shapiro-

Francia

Shapiro-

Wilk

Pearson

Chi-

Square

Lilliefors

(Kolmogorov-

Smirnov)

Cramer-

von

Mises

Acetamide 7 6 7 6 6 7 6.5
Ethanol 5 5 5 5 5 6 5.2

Isobutane 6 6 6 6 6 6 6.0

Methane 5 6 6 3 3 5 4.7

Methanol 7 7 7 5 7 7 6.7

Average 6.0 6.0 6.2 5.0 5.4 6.2

Amino Acid Analogue

Average

Passed

Normality Test

Number of Algorithms/Builds Passed Per Amino Acid Analogue Per Normality Test

The chart to the right shows the results

for each of the algorithms/builds with a

count of the number of normality tests

for all amino acid analogues. This

reveals that for each algorithm/build

approximately the same number of

normality tests passed further lending

credence that the data distribution for

the study is normal. Only the GROMACS C single precision methane data failed all

normality tests.

The data sets representing the zone of equivalence builds and that for all data points

including all builds and variable precision algorithms show fewer normality tests pass.

An examination of the histograms show that there usually is a tighter clustering

around the mean but in some cases there is a slight skewing that is similar to the

skewing in the individual results from the GROMACS builds.

GROMACS SSE Single Prec. 27

GROMACS C Sing Prec. 24

GROMACS SSE2 Double Prec. 24

Variable Prec. 3.01 24

Variable Prec. 3.31 23

Variable Prec. 3.61 26

Variable Prec. 3.91 26

Total Number of Normality Tests Passed by

Build/Algorithm for All Amino Acid Analogues

191

2.1.2 Acetamide

A p-value W W p-value P p-value

Acetamide
GROMACS SSE 0.4352 0.2872 0.9503 0.0479 0.9573 0.0901 7.04 0.4244

GROMACS C Sing Prec 0.4749 0.2294 0.9707 0.2499 0.9763 0.4637 7.48 0.3808

GROMACS SSE2 Double 0.6202 0.1001 0.9690 0.2172 0.9660 0.1958 20.52 0.0045

Variable Prec. 3.01 0.2580 0.7033 0.9886 0.8664 0.9831 0.7325 10.52 0.1609

Variable Prec. 3.31 0.3741 0.4022 0.9819 0.5935 0.9835 0.7520 8.78 0.2686

Variable Prec. 3.61 0.3588 0.4369 0.9805 0.5364 0.9823 0.7010 10.96 0.1405

Variable Prec. 3.91 0.4648 0.2430 0.9733 0.3088 0.9662 0.1986 6.61 0.4707

Num Passed Normality Test 7 6 7 6

Zone of Equivalence 0.8125 0.0348 0.9807 0.0467 0.9842 0.1132 23.30 0.0253

All Data 0.5541 0.1519 0.9929 0.1202 0.9943 0.2660 39.04 0.0028

Anderson-Darling Shapiro-Francia Shapiro-Wilk Pearson Chi-Square

Normality Tests

Amino Acid Analogue

D p-value W p-value V p-value

Acetamide
GROMACS SSE 0.1377 0.0287 0.0653 0.3158 0 3.59E-09 4

GROMACS C Sing Prec 0.1218 0.0849 0.0841 0.1787 0 3.58E-09 6

GROMACS SSE2 Double 0.1165 0.1217 0.1121 0.0738 0 3.55E-09 5

Variable Prec. 3.01 0.0822 0.6091 0.0436 0.6071 0 3.55E-09 6

Variable Prec. 3.31 0.0986 0.3174 0.0672 0.2980 0 3.56E-09 6

Variable Prec. 3.61 0.0868 0.5207 0.0534 0.4537 0 5.73E-10 6

Variable Prec. 3.91 0.1067 0.2109 0.0716 0.2607 0 3.58E-09 6

Num Passed Normality Test 6 7

Zone of Equivalence 0.0934 0.0049 0.1642 0.0152 0 2.20E-16 1

All Data 0.0519 0.0365 0.0950 0.1312 0 2.20E-16 4

Num Norm

Tests

Passed /

Algorithm

Wilcoxon Signed

Rank Test

Nonparametric

Lilliefors (Kolmogorov-

Smirnov) Cramer-von Mises

Normality Test

Amino Acid Analogue

192

2.1.3 Ethanol

A p-value W W p-value P p-value

Ethanol
GROMACS SSE 0.2579 0.7072 0.9897 0.8208 0.9872 0.7822 5.63 0.6882

GROMACS C Sing Prec 0.3036 0.5619 0.9898 0.8267 0.9858 0.7096 13.70 0.0899

GROMACS SSE2 Double 0.6713 0.0757 0.9764 0.2522 0.9723 0.1891 11.50 0.1749

Variable Prec. 3.01 0.7648 0.0442 0.9544 0.0269 0.9540 0.0240 20.67 0.0081

Variable Prec. 3.31 0.2134 0.8455 0.9917 0.9093 0.9888 0.8562 4.90 0.7682

Variable Prec. 3.61 0.5563 0.1448 0.9563 0.0321 0.9577 0.0365 5.63 0.6882

Variable Prec. 3.91 0.7627 0.0447 0.9612 0.0524 0.9644 0.0770 29.10 0.0003

Num Passed Normality Test 5 5 5 5

Zone of Equivalence 0.5876 0.1239 0.9922 0.3774 0.9899 0.2341 46.67 0.0000

All Data 0.5586 0.1483 0.9957 0.2683 0.9961 0.3824 51.72 0.0001

Anderson-Darling Shapiro-Francia Shapiro-Wilk Pearson Chi-Square

Normality Tests

Amino Acid Analogue

D p-value W p-value V p-value

Ethanol
GROMACS SSE 0.0710 0.6372 0.0394 0.6862 0 1.65E-11 6

GROMACS C Sing Prec 0.0813 0.4164 0.0529 0.4625 0 1.65E-11 6

GROMACS SSE2 Double 0.1295 0.0139 0.1177 0.0625 0 1.64E-11 5

Variable Prec. 3.01 0.0951 0.1946 0.1139 0.0705 0 1.65E-11 2

Variable Prec. 3.31 0.0748 0.5528 0.0339 0.7848 0 1.63E-11 6

Variable Prec. 3.61 0.0981 0.1615 0.0870 0.1648 0 1.64E-11 4

Variable Prec. 3.91 0.1351 0.0083 0.1485 0.0240 0 1.60E-11 2

Num Passed Normality Test 5 6

Zone of Equivalence 0.0773 0.0106 0.1021 0.1043 0 2.20E-16 4

All Data 0.0444 0.0462 0.0986 0.1172 0 2.20E-16 4

Num Norm

Tests

Passed /

Algorithm

Wilcoxon Signed

Rank Test

Nonparametric

Lilliefors (Kolmogorov-

Smirnov) Cramer-von Mises

Normality Test

Amino Acid Analogue

193

2.1.4 Isobutane

A p-value W W p-value P p-value

Isobutane
GROMACS SSE 0.4145 0.3224 0.9681 0.2027 0.9685 0.2436 14.43 0.0440

GROMACS C Sing Prec 0.4356 0.2866 0.9740 0.3268 0.9654 0.1849 7.04 0.4244

GROMACS SSE2 Double 0.3147 0.5325 0.9814 0.5732 0.9741 0.3890 6.61 0.4707

Variable Prec. 3.01 0.2961 0.5789 0.9840 0.6777 0.9796 0.5908 6.17 0.5196

Variable Prec. 3.31 0.8848 0.0217 0.9490 0.0432 0.9475 0.0376 10.96 0.1405

Variable Prec. 3.61 0.6975 0.0641 0.9580 0.0887 0.9511 0.0518 10.09 0.1837

Variable Prec. 3.91 0.6182 0.1013 0.9538 0.0632 0.9528 0.0602 8.78 0.2686

Num Passed Normality Test 6 6 6 6

Zone of Equivalence 0.8250 0.0324 0.9788 0.0309 0.9755 0.0137 30.26 0.0026

All Data 0.9708 0.0144 0.9835 0.0014 0.9824 0.0005 53.39 2.28E-05

Anderson-Darling Shapiro-Francia Shapiro-Wilk Pearson Chi-Square

Normality Tests

Amino Acid Analogue

D p-value W p-value V p-value

Isobutane
GROMACS SSE 0.0997 0.3015 0.0608 0.3621 0 3.56E-09 5

GROMACS C Sing Prec 0.0773 0.7027 0.0569 0.4085 0 3.60E-09 6

GROMACS SSE2 Double 0.0870 0.5165 0.0487 0.5208 0 3.51E-09 6

Variable Prec. 3.01 0.1049 0.2314 0.0482 0.5286 0 3.58E-09 6

Variable Prec. 3.31 0.1727 0.0015 0.1740 0.0109 0 3.59E-09 1

Variable Prec. 3.61 0.0904 0.4545 0.0867 0.1651 0 3.55E-09 6

Variable Prec. 3.91 0.1194 0.0980 0.0944 0.1300 0 3.52E-09 6

Num Passed Normality Test 6 6

Zone of Equivalence 0.0780 0.0388 0.1170 0.0650 0 2.20E-16 1

All Data 0.0662 0.0017 0.1299 0.0438 0 2.20E-16 0

Num Norm

Tests

Passed /

Algorithm

Wilcoxon Signed

Rank Test

Nonparametric

Lilliefors (Kolmogorov-

Smirnov) Cramer-von Mises

Normality Test

Amino Acid Analogue

194

2.1.5 Methane

A p-value W W p-value P p-value

Methane

GROMACS SSE 0.3226 0.5160 0.9776 0.5138 0.9757 0.5347 4.55 0.6027

GROMACS C Sing Prec 1.4219 0.0010 0.9107 0.0055 0.9029 0.0023 13.10 0.0415

GROMACS SSE2 Double 0.7646 0.0429 0.9530 0.0887 0.9495 0.0727 19.85 0.0029

Variable Prec. 3.01 0.6847 0.0682 0.9561 0.1114 0.9565 0.1273 15.80 0.0149

Variable Prec. 3.31 0.6178 0.1006 0.9646 0.2070 0.9634 0.2186 10.40 0.1088

Variable Prec. 3.61 0.5067 0.1896 0.9650 0.2124 0.9686 0.3239 15.35 0.0177

Variable Prec. 3.91 0.5543 0.1432 0.9528 0.0877 0.9584 0.1471 5.45 0.4875

Num Passed Normality Test 5 6 6 3

Zone of Equivalence 0.8250 0.0324 0.9788 0.0309 0.9755 0.0137 30.26 0.0026

All Data 0.9708 0.0144 0.9835 0.0014 0.9824 0.0005 53.39 2.28E-05

Anderson-Darling Shapiro-Francia Shapiro-Wilk Pearson Chi-Square

Normality Tests

Amino Acid Analogue

D p-value W p-value V p-value

Methane

GROMACS SSE 0.1017 0.3731 0.0510 0.4873 0 3.58E-08 6

GROMACS C Sing Prec 0.2000 0.0003 0.2179 0.0030 0 3.52E-08 0

GROMACS SSE2 Double 0.1285 0.0942 0.1289 0.0433 0 3.59E-08 3

Variable Prec. 3.01 0.1467 0.0299 0.1143 0.0687 0 3.54E-08 4

Variable Prec. 3.31 0.1432 0.0379 0.1055 0.0906 0 3.54E-08 5

Variable Prec. 3.61 0.1601 0.0113 0.0922 0.1387 0 3.50E-08 4

Variable Prec. 3.91 0.1249 0.1200 0.0936 0.1329 0 3.52E-08 6

Num Passed Normality Test 3 5

Zone of Equivalence 0.0780 0.0388 0.1170 0.0650 0 2.20E-16 1

All Data 0.0662 0.0017 0.1299 0.0438 0 2.20E-16 0

Num Norm

Tests

Passed /

Algorithm

Wilcoxon Signed

Rank Test

Nonparametric

Lilliefors (Kolmogorov-

Smirnov) Cramer-von Mises

Normality Test

Amino Acid Analogue

195

2.1.6 Methanol

A p-value W W p-value P p-value

Methanol

GROMACS SSE 0.4535 0.2573 0.9619 0.1694 0.2027 0.9624 5.45 0.4875

GROMACS C Sing Prec 0.2758 0.6401 0.9847 0.7720 0.9803 0.7014 5.45 0.4875

GROMACS SSE2 Double 0.4584 0.2503 0.9721 0.3546 0.9711 0.3894 16.70 0.0105

Variable Prec. 3.01 0.2990 0.5685 0.9836 0.7292 0.9785 0.6334 5.00 0.5438

Variable Prec. 3.31 0.3753 0.3974 0.9801 0.6021 0.9782 0.6245 14.45 0.0250

Variable Prec. 3.61 0.3553 0.4427 0.9802 0.6052 0.9749 0.5065 12.20 0.0577

Variable Prec. 3.91 0.4224 0.3066 0.9673 0.2519 0.9645 0.2384 8.60 0.1974

Num Passed Normality Test 7 7 7 5

Zone of Equivalence 1.1079 0.0064 0.9744 0.0231 0.9723 0.0140 29.33 0.0020

All Data 1.3203 0.0020 0.9867 0.0123 0.9855 0.0063 178.29 2.20E-16

Anderson-Darling Shapiro-Francia Shapiro-Wilk Pearson Chi-Square

Normality Tests

Amino Acid Analogue

D p-value W p-value V p-value

Methanol

GROMACS SSE 0.0947 0.4888 0.0613 0.3549 0 3.61E-08 6

GROMACS C Sing Prec 0.0809 0.7335 0.0400 0.6730 0 3.65E-08 6

GROMACS SSE2 Double 0.1163 0.1886 0.0798 0.2024 0 3.63E-08 5

Variable Prec. 3.01 0.1127 0.2266 0.0512 0.4855 0 3.62E-08 6

Variable Prec. 3.31 0.1144 0.2082 0.0662 0.3063 0 3.57E-08 5

Variable Prec. 3.61 0.1025 0.3602 0.0604 0.3651 0 3.61E-08 6

Variable Prec. 3.91 0.1098 0.2608 0.0642 0.3255 0 3.62E-08 6

Num Passed Normality Test 7 7

Zone of Equivalence 0.1023 0.0036 0.1730 0.0117 0 2.20E-16 0

All Data 0.0898 1.09E-05 0.2259 0.0025 0 2.20E-16 0

Num Norm

Tests

Passed /

Algorithm

Wilcoxon Signed

Rank Test

Nonparametric

Lilliefors (Kolmogorov-

Smirnov) Cramer-von Mises

Normality Test

Amino Acid Analogue

196

3.1 Descriptive Statistics

3.1.1 Acetamide in Water

3.1.2 Ethanol in Water

-3.924

.068

.010

46

-4.050

-3.760

.005

-.017

.290

-180.500

708.475

.097

-.089

-3.920

.080

-3.920

-3.925

.030

-3.921

.079

.012

46

-4.190

-3.770

.006

-.020

.420

-180.380

707.604

-.750

1.499

-3.920

.090

-3.960

-3.917

.040

-3.917

.076

.011

46

-4.100

-3.710

.006

-.019

.390

-180.200

706.172

-.033

.593

-3.915

.080

-3.920

-3.917

.040

-3.936

.066

.010

46

-4.070

-3.800

.004

-.017

.270

-181.050

712.786

.065

-.670

-3.940

.090

-3.890

-3.937

.050

-3.912

.063

.009

46

-4.050

-3.750

.004

-.016

.300

-179.960

704.212

.049

-.131

-3.900

.090

-3.870

-3.912

.040

-3.934

.054

.008

46

-4.060

-3.800

.003

-.014

.260

-180.950

711.934

.180

-.222

-3.940

.090

-3.980

-3.934

.040

-3.925

.075

.011

46

-4.060

-3.770

.006

-.019

.290

-180.570

709.070

.302

-.386

-3.935

.090

•

-3.927

.045

Mean

Std. Dev.

Std. Error

Count

Minimum

Maximum

Variance

Coef. Var.

Range

Sum

Sum Squares

Skew ness

Kurtosis

Median

IQR

Mode

10% Tr. Mean

MAD

Double Prec SSE2 Single Prec SSE Single Prec C Var Prec 3.01 Var Prec 3.31 Var Prec 3.61 Var Prec 3.91

Descriptive Statistics

-9.462

.074

.010

60

-9.620

-9.300

.005

-.008

.320

-567.720

5372.090

-.045

-.779

-9.460

.120

•

-9.461

.060

-9.425

.075

.010

60

-9.590

-9.250

.006

-.008

.340

-565.530

5330.739

.221

-.350

-9.430

.105

-9.440

-9.428

.050

-9.442

.088

.011

60

-9.630

-9.250

.008

-.009

.380

-566.530

5349.730

.005

-.620

-9.440

.135

-9.520

-9.443

.075

-9.428

.080

.010

60

-9.570

-9.200

.006

-.008

.370

-565.660

5333.231

.782

.527

-9.435

.110

-9.490

-9.434

.055

-9.443

.072

.009

60

-9.610

-9.290

.005

-.008

.320

-566.580

5350.521

-.134

-.329

-9.440

.085

-9.400

-9.442

.040

-9.440

.079

.010

60

-9.700

-9.310

.006

-.008

.390

-566.380

5346.804

-.767

.966

-9.435

.090

-9.420

-9.434

.045

-9.436

.080

.010

60

-9.600

-9.190

.006

-.008

.410

-566.180

5343.040

.499

.950

-9.440

.085

-9.440

-9.439

.040

Mean

Std. Dev.

Std. Error

Count

Minimum

Maximum

Variance

Coef. Var.

Range

Sum

Sum Squares

Skew ness

Kurtosis

Median

IQR

Mode

10% Tr. Mean

MAD

Double SSE2 Single SSE Single Std C Var Prec 3.01 Var Prec 3.31 Var Prec 3.61 Var Prec 3.91

Descriptive Statistics

197

3.1.3 Isobutane in Water

3.1.4 Methane in Water

-9.887

.060

.009

46

-10.000

-9.770

.004

-.006

.230

-454.780

4496.352

.089

-.459

-9.880

.080

-9.880

-9.888

.040

-9.890

.062

.009

46

-10.000

-9.710

.004

-.006

.290

-454.960

4499.926

.310

.118

-9.880

.090

-9.840

-9.893

.040

-9.866

.080

.012

46

-10.000

-9.700

.006

-.008

.300

-453.840

4477.912

.095

-.770

-9.865

.120

•

-9.868

.060

-9.881

.067

.010

46

-10.000

-9.720

.004

-.007

.280

-454.510

4491.055

.156

-.492

-9.885

.100

-9.910

-9.881

.045

-9.872

.081

.012

46

-10.000

-9.640

.007

-.008

.360

-454.130

4483.646

.705

-.008

-9.890

.110

•

-9.877

.055

-9.876

.067

.010

46

-10.000

-9.740

.004

-.007

.260

-454.290

4486.711

-.379

-.547

-9.875

.090

-9.890

-9.873

.045

-9.879

.064

.009

46

-9.990

-9.710

.004

-.006

.280

-454.450

4489.851

.670

.532

-9.880

.080

-9.880

-9.883

.040

Mean

Std. Dev.

Std. Error

Count

Minimum

Maximum

Variance

Coef. Var.

Range

Sum

Sum Squares

Skew ness

Kurtosis

Median

IQR

Mode

10% Tr. Mean

MAD

Double SSE2 Single SSE Single Std C Var Prec 3.01 Var Prec 3.31 Var Prec 3.61 Var Prec 3.91

Descriptive Statistics

-9.010

.040

.006

40

-9.080

-8.910

.002

-.004

.170

-360.410

3247.447

.373

-.658

-9.020

.065

-8.980

-9.012

.030

-9.017

.047

.007

40

-9.110

-8.910

.002

-.005

.200

-360.680

3252.337

.219

.018

-9.020

.060

-9.030

-9.018

.030

-9.008

.041

.006

40

-9.070

-8.920

.002

-.005

.150

-360.330

3246.008

.768

-.295

-9.020

.040

-9.020

-9.012

.020

-9.005

.045

.007

40

-9.120

-8.920

.002

-.005

.200

-360.190

3243.500

-.568

.187

-9.000

.060

-9.000

-9.002

.030

-9.019

.036

.006

40

-9.090

-8.940

.001

-.004

.150

-360.780

3254.106

-.329

-.289

-9.015

.045

-9.020

-9.018

.025

-9.019

.039

.006

40

-9.100

-8.910

.002

-.004

.190

-360.770

3253.934

.548

.315

-9.030

.050

-9.030

-9.021

.030

-9.023

.035

.006

40

-9.090

-8.910

.001

-.004

.180

-360.930

3256.811

.497

1.310

-9.020

.040

-9.010

-9.024

.020

Mean

Std. Dev.

Std. Error

Count

Minimum

Maximum

Variance

Coef. Var.

Range

Sum

Sum Squares

Skew ness

Kurtosis

Median

IQR

Mode

10% Tr. Mean

MAD

Double SSE2 Single SSE Single Std C Var Prec 3.01 Var Prec 3.31 Var Prec 3.61 Var Prec 3.91

Descriptive Statistics

198

3.1.5 Methanol in Water

-4.779

.059

.009

40

-4.930

-4.670

.003

-.012

.260

-191.170

913.783

-.369

-.343

-4.790

.080

-4.800

-4.776

.050

-4.790

.049

.008

40

-4.920

-4.700

.002

-.010

.220

-191.620

918.048

-.595

.325

-4.790

.060

•

-4.787

.030

-4.791

.045

.007

40

-4.880

-4.690

.002

-.009

.190

-191.630

918.132

.168

-.743

-4.795

.065

-4.800

-4.792

.035

-4.788

.057

.009

40

-4.910

-4.680

.003

-.012

.230

-191.530

917.218

-.084

-.386

-4.790

.075

-4.790

-4.788

.040

-4.776

.050

.008

40

-4.890

-4.670

.003

-.011

.220

-191.020

912.315

-.217

-.286

-4.780

.070

-4.780

-4.774

.030

-4.781

.047

.007

40

-4.870

-4.680

.002

-.010

.190

-191.260

914.597

.058

-.374

-4.780

.055

•

-4.782

.025

-4.775

.054

.009

40

-4.870

-4.640

.003

-.011

.230

-191.020

912.332

.479

-.168

-4.780

.085

•

-4.778

.040

Mean

Std. Dev.

Std. Error

Count

Minimum

Maximum

Variance

Coef. Var.

Range

Sum

Sum Squares

Skew ness

Kurtosis

Median

IQR

Mode

10% Tr. Mean

MAD

Double SSE2 Single SSE Single Std C Var Prec 3.01 Var Prec 3.31 Var Prec 3.61 Var Prec 3.91

Descriptive Statistics

199

4.1 Histograms

4.1.1 Acetamide in Water

200

201

4.1.2 Ethanol in Water

202

203

4.1.3 Isobutane in Water

204

205

4.1.4 Methane in Water

206

207

4.1.5 Methanol in Water

208

4.1.6 Histograms of All Data

209

210

5.1 Quantile to Quantile Plots

5.1.1 Acetamide in Water

211

212

5.1.2 Ethanol in Water

213

214

5.1.3 Isobutane in Water

215

216

5.1.4 Methane in Water

217

218

5.1.5 Methanol in Water

219

220

5.1.6 Q-Q Plots of All Data

221

222

6.1 R Language Commands

The following R language commands were used to perform normality testing and to

determine sample size. These commands were also used to generate quantile to quantile

plots and histograms for each of the GROMACS 4.5.3 builds, the four variable

precision algorithms, the defined zone of equivalence and to analyze all of the data for

all versions when combined. The only changes from one build/algorithm/zone of

equivalence to the other was the plot/chart headings and the data input to the script. The

following is the example for methane in water.

Methane in Water GROMACS SSE Single Precision Data Points

x<-c(Insert data series here)

sink("Methane_NORM.txt", append=FALSE, split=FALSE) # Output sample size and test results
run normality tests
s <- sd(x) # Standard Deviation

Sample Size Determination

based on zscore, standard deviation, margin of error
.95/2 lookup in zscore table = 1.96 for 95%
margin of error 0.02

n <- (((s*1.96)/0.02)) # Determine estimated sample size based on the data set
n <- n*n
print(paste("Methane in Water - GROMACS SSE - Sample size 95% with margin of error 0.02: ",n))

Normality Tests

ad.test(x) # Anderson-Darling Normality Test
shapiro.test(x) # Shapiro-Wilk Normality Test
pearson.test(x) # Pearson chi-square Normality Test
lillie.test(x) # Lilliefors (Kolmogorov-Smirnov) Normality Test
cvm.test(x) # Cramer-von Mises Normality
CI of Non normal data
wilcox.test(x,conf.int=TRUE) # Wilcox Non Parametric Test

sink() # close the output file

Output Q-Q plot using file naming convention

jpeg('Methane_QQ_GROMACS_SSE.jpg')
qqnorm(x, main="Free Energy - Methane in Water \nGROMACS Single Precision SSE – 40 Data Points",
ylab='Sample Quantiles (ΔG kJ/mol)'); qqline(x)
dev.off()

Output Histograms using file naming convention

jpeg('Methane_HIST_GROMACS_SSE.jpg')
hist(x, main='Histogram of Free Energy\nMethane in Water \n GROMACS Single Precision SSE - 40 Data
Points', xlab='ΔG kJ/mol')
dev.off()

223

7.1 Raw Data

7.1.1 Acetamide in Water

Significant

Digits

Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/-

-4.05 0.09 -3.84 0.04 -3.92 0.05 -4.05 0.09 -3.88 0.06 -3.90 0.04 -3.98 0.11

-3.95 0.06 -3.90 0.08 -3.82 0.09 -3.95 0.06 -3.85 0.06 -3.88 0.05 -3.79 0.08

-3.87 0.04 -3.95 0.03 -3.93 0.09 -3.87 0.04 -3.90 0.08 -3.97 0.11 -3.95 0.05

-3.93 0.03 -3.87 0.05 -3.99 0.06 -3.93 0.03 -3.90 0.03 -3.88 0.06 -3.98 0.10

-3.89 0.06 -3.92 0.07 -3.89 0.03 -3.89 0.06 -4.01 0.08 -3.94 0.08 -3.87 0.09

-4.02 0.09 -3.88 0.03 -3.96 0.05 -4.02 0.09 -3.98 0.10 -3.98 0.05 -3.79 0.06

-3.98 0.04 -3.92 0.05 -3.94 0.07 -3.98 0.04 -3.86 0.06 -3.96 0.05 -3.94 0.06

-3.85 0.12 -3.96 0.08 -3.98 0.09 -3.85 0.12 -3.92 0.05 -4.01 0.08 -3.98 0.05

-3.89 0.08 -3.83 0.08 -3.91 0.06 -3.89 0.08 -3.75 0.03 -3.93 0.08 -3.84 0.07

-3.90 0.08 -3.82 0.03 -3.88 0.05 -3.90 0.08 -3.87 0.04 -3.87 0.11 -3.93 0.02

-3.76 0.09 -3.89 0.07 -3.71 0.05 -3.85 0.05 -3.99 0.03 -3.94 0.07 -4.04 0.11

-3.92 0.08 -3.96 0.04 -3.87 0.08 -3.91 0.05 -3.92 0.06 -3.98 0.05 -3.94 0.02

-3.84 0.04 -4.05 0.05 -3.90 0.06 -3.98 0.05 -3.84 0.09 -3.95 0.09 -4.06 0.09

-3.92 0.07 -3.94 0.06 -4.02 0.05 -4.01 0.09 -3.89 0.09 -4.00 0.02 -4.06 0.05

-3.91 0.12 -3.86 0.04 -4.00 0.05 -3.89 0.04 -3.90 0.06 -3.89 0.05 -3.91 0.03

-4.04 0.08 -3.89 0.09 -3.86 0.12 -3.96 0.05 -3.87 0.07 -3.91 0.05 -3.91 0.05

-3.92 0.06 -3.91 0.08 -3.99 0.07 -3.99 0.09 -4.05 0.09 -3.99 0.08 -4.02 0.05

-3.94 0.10 -3.81 0.08 -3.83 0.09 -3.94 0.10 -3.86 0.04 -3.96 0.08 -3.95 0.05

-3.91 0.07 -3.87 0.09 -3.92 0.09 -3.91 0.03 -3.79 0.06 -3.92 0.09 -3.97 0.07

-3.92 0.08 -4.04 0.03 -3.92 0.06 -4.04 0.03 -3.90 0.03 -3.82 0.07 -3.94 0.12

-3.92 0.07 -3.94 0.04 -3.86 0.09 -3.98 0.08 -3.93 0.06 -3.94 0.06 -3.92 0.07

-3.89 0.09 -3.95 0.04 -4.02 0.04 -4.01 0.09 -3.96 0.09 -3.99 0.08 -3.89 0.09

-4.05 0.10 -3.91 0.04 -3.87 0.07 -3.90 0.08 -4.03 0.11 -3.86 0.02 -4.05 0.10

-3.85 0.03 -4.01 0.07 -3.82 0.03 -3.94 0.05 -3.94 0.10 -3.93 0.04 -3.85 0.03

-3.80 0.05 -4.05 0.06 -3.86 0.03 -4.02 0.06 -3.98 0.07 -4.02 0.02 -3.80 0.05

-3.97 0.09 -3.91 0.08 -3.88 0.04 -3.95 0.06 -3.88 0.11 -3.89 0.01 -3.97 0.09

-3.96 0.03 -3.96 0.08 -3.94 0.04 -4.01 0.05 -3.97 0.06 -3.97 0.07 -3.96 0.03

-3.94 0.05 -3.95 0.08 -3.90 0.03 -3.98 0.08 -3.87 0.03 -3.99 0.09 -3.94 0.05

-3.93 0.05 -3.77 0.07 -3.91 0.05 -3.89 0.07 -3.87 0.05 -3.90 0.08 -3.93 0.05

-3.90 0.14 -3.90 0.05 -3.93 0.04 -3.89 0.08 -3.96 0.04 -3.93 0.05 -3.90 0.14

-3.90 0.03 -3.84 0.07 -3.88 0.06 -3.95 0.04 -3.82 0.08 -3.98 0.04 -3.97 0.07

-3.98 0.04 -3.93 0.04 -3.79 0.10 -3.89 0.07 -3.87 0.03 -4.06 0.09 -4.03 0.04

-3.91 0.11 -3.98 0.08 -3.92 0.05 -3.97 0.04 -3.86 0.07 -3.80 0.09 -3.95 0.10

-3.97 0.07 -3.93 0.07 -4.10 0.02 -3.94 0.07 -3.89 0.07 -3.95 0.04 -3.90 0.03

-3.92 0.06 -3.80 0.05 -3.79 0.07 -4.03 0.07 -3.99 0.04 -3.95 0.04 -3.83 0.04

-3.91 0.09 -3.87 0.03 -4.09 0.06 -3.80 0.05 -3.96 0.05 -3.87 0.07 -3.98 0.05

-4.03 0.05 -3.84 0.02 -4.01 0.09 -3.94 0.07 -3.96 0.04 -3.89 0.03 -3.87 0.04

-3.93 0.02 -3.96 0.09 -3.89 0.04 -3.84 0.08 -4.00 0.05 -3.94 0.05 -3.77 0.05

-3.84 0.05 -3.90 0.05 -3.89 0.06 -3.96 0.04 -3.87 0.04 -3.92 0.08 -3.90 0.05

-4.02 0.04 -4.19 0.05 -3.89 0.08 -3.93 0.05 -3.96 0.06 -3.88 0.06 -3.91 0.08

-3.78 0.05 -3.81 0.08 -3.94 0.07 -3.89 0.08 -3.89 0.05 -3.91 0.05 -3.98 0.12

-3.92 0.06 -3.96 0.05 -3.94 0.1 -3.81 0.06 -3.95 0.08 -3.87 0.03 -3.99 0.05

-3.85 0.09 -4.02 0.06 -4.01 0.07 -3.86 0.04 -3.84 0.07 -3.98 0.09 -3.91 0.07

-4.02 0.02 -3.94 0.07 -4.00 0.10 -3.82 0.05 -3.92 0.07 -3.98 0.09 -3.84 0.06

-3.89 0.04 -3.93 0.04 -3.91 0.06 -3.97 0.04 -3.91 0.07 -3.99 0.05 -3.77 0.08

-4.01 0.04 -4.02 0.06 -3.92 0.05 -4.07 0.11 -3.95 0.07 -3.88 0.05 -3.91 0.05

Mean -3.92 0.07 -3.92 0.06 -3.92 0.06 -3.94 0.06 -3.91 0.06 -3.93 0.06 -3.93 0.07

≈ 7.22 ≈ 3.01 ≈ 3.31 ≈ 3.61

Raw Data Acetamide in Water - 46 Samples
GROMACS Double

Precision SSE2

GROMACS Single

Precision SSE

GROMACS Single

Precision C
Variable Precision Algorithms

≈ 3.91≈ 15.95 ≈ 7.22

224

7.1.2 Ethanol in Water

Approx Sign

Digits

Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/-
-9.50 0.06 -9.29 0.09 -9.60 0.13 -9.41 0.05 -9.46 0.06 -9.38 0.09 -9.34 0.07

-9.53 0.06 -9.44 0.06 -9.49 0.05 -9.46 0.07 -9.42 0.08 -9.40 0.03 -9.58 0.17

-9.36 0.04 -9.48 0.09 -9.56 0.08 -9.31 0.08 -9.52 0.06 -9.70 0.05 -9.54 0.06

-9.43 0.11 -9.43 0.05 -9.38 0.08 -9.50 0.10 -9.58 0.08 -9.39 0.05 -9.36 0.08

-9.52 0.10 -9.47 0.09 -9.33 0.08 -9.56 0.07 -9.44 0.09 -9.44 0.04 -9.44 0.03

-9.43 0.07 -9.48 0.09 -9.62 0.06 -9.37 0.06 -9.40 0.08 -9.52 0.04 -9.44 0.08

-9.45 0.13 -9.52 0.03 -9.52 0.07 -9.43 0.09 -9.40 0.06 -9.38 0.08 -9.37 0.10

-9.46 0.06 -9.33 0.14 -9.44 0.05 -9.57 0.07 -9.40 0.06 -9.42 0.11 -9.39 0.02

-9.55 0.10 -9.40 0.07 -9.44 0.04 -9.50 0.04 -9.48 0.09 -9.57 0.03 -9.43 0.07

-9.46 0.03 -9.52 0.08 -9.41 0.11 -9.45 0.11 -9.48 0.08 -9.43 0.09 -9.37 0.08

-9.37 0.08 -9.45 0.04 -9.52 0.04 -9.43 0.05 -9.61 0.03 -9.32 0.06 -9.40 0.06

-9.50 0.09 -9.51 0.10 -9.39 0.05 -9.42 0.05 -9.47 0.08 -9.40 0.10 -9.40 0.06

-9.40 0.07 -9.38 0.10 -9.56 0.04 -9.36 0.09 -9.51 0.10 -9.42 0.04 -9.39 0.11

-9.60 0.09 -9.25 0.05 -9.56 0.11 -9.49 0.07 -9.43 0.16 -9.36 0.04 -9.47 0.09

-9.39 0.05 -9.55 0.07 -9.52 0.07 -9.21 0.12 -9.48 0.05 -9.42 0.08 -9.44 0.07

-9.51 0.03 -9.51 0.03 -9.48 0.08 -9.38 0.01 -9.46 0.07 -9.45 0.07 -9.52 0.08

-9.44 0.09 -9.26 0.09 -9.36 0.07 -9.26 0.06 -9.40 0.07 -9.45 0.07 -9.48 0.11

-9.48 0.16 -9.43 0.08 -9.36 0.06 -9.47 0.05 -9.49 0.07 -9.41 0.09 -9.33 0.09

-9.39 0.06 -9.45 0.05 -9.36 0.06 -9.48 0.05 -9.50 0.05 -9.52 0.05 -9.48 0.09

-9.38 0.08 -9.51 0.11 -9.54 0.07 -9.38 0.05 -9.59 0.05 -9.48 0.12 -9.23 0.07

-9.30 0.03 -9.43 0.03 -9.33 0.07 -9.50 0.11 -9.52 0.10 -9.44 0.05 -9.44 0.03

-9.40 0.16 -9.37 0.06 -9.35 0.08 -9.51 0.10 -9.34 0.08 -9.54 0.09 -9.59 0.03

-9.35 0.07 -9.39 0.07 -9.42 0.05 -9.51 0.14 -9.40 0.08 -9.45 0.03 -9.60 0.09

-9.50 0.07 -9.35 0.07 -9.52 0.06 -9.49 0.10 -9.47 0.10 -9.38 0.12 -9.46 0.10

-9.47 0.08 -9.43 0.07 -9.41 0.09 -9.37 0.05 -9.33 0.10 -9.44 0.12 -9.44 0.11

-9.35 0.07 -9.41 0.02 -9.45 0.05 -9.46 0.08 -9.42 0.10 -9.46 0.04 -9.44 0.04

-9.53 0.04 -9.33 0.07 -9.53 0.04 -9.52 0.11 -9.45 0.13 -9.48 0.05 -9.57 0.11

-9.51 0.06 -9.45 0.03 -9.63 0.09 -9.48 0.09 -9.39 0.07 -9.51 0.12 -9.47 0.08

-9.59 0.06 -9.31 0.06 -9.52 0.08 -9.45 0.12 -9.57 0.10 -9.34 0.09 -9.53 0.10

-9.46 0.02 -9.39 0.07 -9.39 0.08 -9.48 0.07 -9.34 0.12 -9.63 0.08 -9.44 0.05

-9.35 0.06 -9.34 0.01 -9.51 0.11 -9.45 0.04 -9.30 0.08 -9.55 0.08 -9.30 0.13

-9.53 0.05 -9.42 0.09 -9.46 0.06 -9.44 0.15 -9.51 0.10 -9.33 0.09 -9.53 0.04

-9.39 0.05 -9.30 0.07 -9.52 0.04 -9.38 0.08 -9.43 0.07 -9.33 0.09 -9.37 0.12

-9.39 0.06 -9.44 0.07 -9.43 0.09 -9.44 0.04 -9.50 0.08 -9.58 0.07 -9.52 0.04

-9.56 0.11 -9.37 0.04 -9.27 0.05 -9.35 0.08 -9.53 0.05 -9.40 0.09 -9.51 0.06

-9.39 0.09 -9.31 0.05 -9.40 0.08 -9.37 0.11 -9.39 0.02 -9.49 0.12 -9.44 0.06

-9.52 0.06 -9.56 0.06 -9.46 0.06 -9.34 0.13 -9.53 0.05 -9.34 0.05 -9.19 0.03

-9.52 0.06 -9.42 0.06 -9.50 0.04 -9.48 0.10 -9.37 0.05 -9.42 0.07 -9.45 0.07

-9.62 0.04 -9.37 0.05 -9.40 0.08 -9.42 0.11 -9.44 0.05 -9.39 0.11 -9.44 0.05

-9.40 0.12 -9.53 0.04 -9.47 0.03 -9.55 0.08 -9.43 0.05 -9.57 0.06 -9.54 0.02

-9.39 0.06 -9.48 0.07 -9.36 0.10 -9.39 0.05 -9.44 0.10 -9.32 0.11 -9.47 0.06

-9.36 0.10 -9.44 0.10 -9.44 0.04 -9.50 0.08 -9.46 0.08 -9.36 0.11 -9.41 0.07

-9.51 0.09 -9.52 0.02 -9.42 0.07 -9.40 0.02 -9.56 0.02 -9.45 0.11 -9.43 0.05

-9.52 0.09 -9.39 0.03 -9.42 0.04 -9.46 0.05 -9.48 0.04 -9.42 0.09 -9.39 0.09

-9.53 0.04 -9.59 0.08 -9.48 0.10 -9.42 0.04 -9.40 0.03 -9.49 0.07 -9.29 0.07

-9.41 0.05 -9.42 0.04 -9.55 0.10 -9.39 0.08 -9.46 0.03 -9.47 0.06 -9.50 0.08

-9.44 0.07 -9.40 0.05 -9.47 0.06 -9.49 0.12 -9.40 0.03 -9.43 0.03 -9.33 0.14

-9.37 0.05 -9.47 0.10 -9.51 0.06 -9.53 0.07 -9.33 0.05 -9.37 0.13 -9.44 0.06

-9.51 0.08 -9.48 0.08 -9.42 0.04 -9.32 0.08 -9.36 0.07 -9.44 0.06 -9.51 0.04

-9.47 0.14 -9.33 0.07 -9.35 0.07 -9.41 0.07 -9.42 0.15 -9.42 0.06 -9.39 0.08

-9.46 0.07 -9.37 0.08 -9.25 0.04 -9.49 0.11 -9.44 0.04 -9.42 0.12 -9.46 0.12

-9.42 0.08 -9.41 0.04 -9.40 0.05 -9.20 0.10 -9.53 0.08 -9.49 0.09 -9.43 0.08

-9.60 0.09 -9.46 0.08 -9.32 0.10 -9.42 0.08 -9.35 0.06 -9.44 0.05 -9.43 0.06

-9.51 0.10 -9.50 0.06 -9.29 0.10 -9.31 0.05 -9.35 0.12 -9.48 0.03 -9.38 0.08

-9.57 0.08 -9.44 0.09 -9.32 0.02 -9.49 0.07 -9.46 0.06 -9.31 0.06 -9.43 0.05

-9.50 0.03 -9.42 0.06 -9.39 0.09 -9.49 0.07 -9.29 0.08 -9.32 0.06 -9.44 0.09

-9.50 0.05 -9.40 0.07 -9.31 0.05 -9.28 0.05 -9.43 0.02 -9.46 0.07 -9.45 0.06

-9.51 0.06 -9.47 0.10 -9.41 0.04 -9.42 0.04 -9.40 0.08 -9.51 0.15 -9.46 0.12

-9.41 0.14 -9.52 0.15 -9.46 0.05 -9.39 0.09 -9.46 0.04 -9.46 0.09 -9.41 0.07

Mean -9.46 0.07 -9.43 0.07 -9.44 0.07 -9.43 0.08 -9.44 0.07 -9.44 0.08 -9.44 0.07

≈ 3.31 ≈ 3.61 ≈ 3.91

Raw Data Ethanol in Water

≈ 7.22 ≈ 7.22

Variable Precision Algorithms

≈ 3.01≈ 15.95

GROMACS Single Precision

SSE

GROMACS Double

Precision SSE2

GROMACS Single

Precision C

225

7.1.3 Isobutane in Water

Approx Sign Digits

Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/-
-9.90 0.10 -9.71 0.09 -9.90 0.03 -9.81 0.09 -9.91 0.08 -9.82 0.05 -9.83 0.08

-9.84 0.07 -9.93 0.12 -9.98 0.07 -9.85 0.03 -9.94 0.05 -9.81 0.07 -9.80 0.04

-9.94 0.12 -9.96 0.08 -9.74 0.08 -9.79 0.06 -9.89 0.08 -10.00 0.09 -9.80 0.04

-9.90 0.06 -9.87 0.10 -9.77 0.06 -9.91 0.09 -9.89 0.08 -9.77 0.05 -9.84 0.08

-9.98 0.10 -9.94 0.10 -9.75 0.08 -9.86 0.10 -9.91 0.08 -9.89 0.03 -9.92 0.04

-9.77 0.04 -9.85 0.07 -9.97 0.10 -9.90 0.05 -9.88 0.11 -9.81 0.11 -9.84 0.10

-9.83 0.05 -9.89 0.08 -9.93 0.04 -9.83 0.10 -9.90 0.04 -9.91 0.10 -9.86 0.08

-9.78 0.04 -9.84 0.08 -9.87 0.11 -9.95 0.07 -9.93 0.06 -9.86 0.14 -9.80 0.04

-9.98 0.06 -9.89 0.07 -9.87 0.05 -9.89 0.09 -9.91 0.12 -9.85 0.08 -9.74 0.11

-9.95 0.11 -9.85 0.10 -9.77 0.07 -9.82 0.05 -9.94 0.08 -9.81 0.04 -9.72 0.09

-9.91 0.04 -9.88 0.09 -9.83 0.05 -10.00 0.03 -9.77 0.09 -9.88 0.13 -9.88 0.04

-9.97 0.05 -9.94 0.05 -9.89 0.04 -9.87 0.09 -9.97 0.05 -9.90 0.06 -9.93 0.07

-9.84 0.04 -10.00 0.14 -9.89 0.06 -9.84 0.08 -9.84 0.08 -9.89 0.10 -9.90 0.13

-9.90 0.03 -9.93 0.06 -9.88 0.08 -9.86 0.05 -9.74 0.12 -9.99 0.09 -9.88 0.14

-9.90 0.11 -9.87 0.06 -9.85 0.07 -9.92 0.05 -9.95 0.03 -9.92 0.08 -9.97 0.07

-9.95 0.10 -9.84 0.06 -9.99 0.05 -9.96 0.06 -9.78 0.05 -10.00 0.11 -9.95 0.10

-9.92 0.05 -9.84 0.03 -9.81 0.05 -9.91 0.05 -9.75 0.05 -10.00 0.07 -9.86 0.07

-9.88 0.06 -9.95 0.14 -9.90 0.06 -9.88 0.05 -9.96 0.05 -9.89 0.05 -9.95 0.04

-9.93 0.09 -9.92 0.08 -9.79 0.12 -9.76 0.07 -9.86 0.10 -9.87 0.11 -9.71 0.06

-9.93 0.06 -9.84 0.10 -9.94 0.06 -9.92 0.04 -9.83 0.03 -9.83 0.09 -9.97 0.09

-9.88 0.07 -9.93 0.09 -9.95 0.09 -9.82 0.05 -9.80 0.07 -9.91 0.05 -9.98 0.07

-9.88 0.07 -9.91 0.08 -9.87 0.11 -9.81 0.10 -9.82 0.05 -9.80 0.04 -9.93 0.04

-9.86 0.04 -9.97 0.05 -9.79 0.06 -9.80 0.06 -9.95 0.07 -9.89 0.03 -9.90 0.04

-9.77 0.08 -9.84 0.10 -9.72 0.06 -9.91 0.10 -10.00 0.06 -9.95 0.07 -9.83 0.13

-9.86 0.03 -9.86 0.05 -9.86 0.05 -9.88 0.08 -9.92 0.08 -10.00 0.04 -9.88 0.04

-9.88 0.08 -9.88 0.07 -9.74 0.08 -9.99 0.07 -9.89 0.07 -9.86 0.08 -9.90 0.12

-10.00 0.06 -9.84 0.07 -9.87 0.03 -10.00 0.05 -9.83 0.05 -9.74 0.07 -9.91 0.01

-9.88 0.03 -9.79 0.05 -9.84 0.12 -9.91 0.05 -9.97 0.06 -9.83 0.07 -9.99 0.09

-9.95 0.08 -9.92 0.05 -9.99 0.03 -9.95 0.05 -9.93 0.09 -9.83 0.08 -9.88 0.09

-9.85 0.10 -9.98 0.08 -9.91 0.02 -9.77 0.07 -9.79 0.06 -10.00 0.11 -9.93 0.08

-9.84 0.05 -9.79 0.09 -9.85 0.10 -10.00 0.04 -9.91 0.02 -9.85 0.12 -9.88 0.04

-9.86 0.05 -9.98 0.06 -9.70 0.04 -9.72 0.11 -9.90 0.09 -9.91 0.07 -9.86 0.05

-9.89 0.08 -9.88 0.04 -9.77 0.04 -9.87 0.09 -9.91 0.04 -9.81 0.04 -9.89 0.08

-9.86 0.04 -9.88 0.09 -9.84 0.08 -9.94 0.06 -9.99 0.04 -9.85 0.05 -9.86 0.04

-9.96 0.04 -9.88 0.13 -9.83 0.09 -9.87 0.12 -9.74 0.07 -9.89 0.04 -9.96 0.04

-9.93 0.05 -9.89 0.11 -10.00 0.10 -9.81 0.07 -9.92 0.09 -9.84 0.05 -9.93 0.05

-9.82 0.09 -9.95 0.07 -9.84 0.04 -9.92 0.05 -9.80 0.06 -9.82 0.09 -9.82 0.09

-9.90 0.07 -9.85 0.09 -9.86 0.07 -9.89 0.06 -9.77 0.06 -9.88 0.05 -9.90 0.07

-9.88 0.10 -9.83 0.05 -9.86 0.05 -9.91 0.05 -9.90 0.05 -9.96 0.09 -9.88 0.10

-9.87 0.05 -9.79 0.04 -9.86 0.10 -9.92 0.11 -9.64 0.07 -9.79 0.10 -9.87 0.05

-9.88 0.05 -9.91 0.09 -9.80 0.10 -9.95 0.08 -9.88 0.02 -9.93 0.10 -9.87 0.12

-9.88 0.07 -10.00 0.05 -9.98 0.06 -9.82 0.09 -9.72 0.06 -9.80 0.11 -9.88 0.12

-10.00 0.09 -9.87 0.03 -9.88 0.08 -9.93 0.04 -9.89 0.07 -9.84 0.05 -9.88 0.03

-9.82 0.04 -9.96 0.09 -9.95 0.08 -9.93 0.05 -9.83 0.05 -9.81 0.03 -9.95 0.12

-9.77 0.06 -9.86 0.10 -9.98 0.08 -9.84 0.06 -9.99 0.07 -9.91 0.11 -9.89 0.04

-9.81 0.07 -9.98 0.06 -9.98 0.09 -9.82 0.06 -9.89 0.07 -9.89 0.02 -9.85 0.03

Mean -9.89 0.07 -9.89 0.08 -9.87 0.07 -9.88 0.07 -9.87 0.07 -9.88 0.07 -9.88 0.07

≈ 7.22 ≈ 3.01 ≈ 3.31 ≈ 3.61

Raw Data Isobutane in Water 46 Samples

GROMACS Double

Precision SSE2

GROMACS Single

Precision SSE

GROMACS Single

Precision C
Variable Precision Algorithms

≈ 3.91≈ 15.95 ≈ 7.22

226

7.1.4 Methane in Water

Approx Sign

Digits

Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/-

-8.94 0.05 -9.08 -9.08 -9.04 0.06 -9.02 -9.02 -8.97 0.04 -9.05 0.02 -9.02 0.05

-8.96 0.03 -9.08 -9.08 -9.00 0.02 -8.99 -8.99 -9.04 0.09 -9.01 0.04 -9.09 0.05

-8.95 0.05 -9.00 -9.00 -8.99 0.03 -9.00 -9.00 -9.00 0.02 -8.98 0.03 -9.01 0.06

-9.03 0.06 -9.03 -9.03 -9.00 0.06 -8.96 -8.96 -9.01 0.02 -9.04 0.03 -8.99 0.08

-9.01 0.04 -9.01 -9.01 -9.02 0.04 -8.96 -8.96 -9.06 0.01 -8.97 0.02 -9.06 0.02

-9.06 0.05 -9.03 -9.03 -9.02 0.05 -9.12 -9.12 -8.98 0.05 -9.00 0.04 -9.04 0.03

-9.06 0.04 -8.99 -8.99 -9.06 0.05 -8.96 -8.96 -9.04 0.05 -9.00 0.05 -8.97 0.02

-9.04 0.02 -9.01 -9.01 -8.92 0.03 -8.97 -8.97 -9.00 0.05 -9.04 0.05 -9.06 0.06

-9.03 0.05 -9.03 -9.03 -9.04 0.03 -9.03 -9.03 -9.00 0.04 -9.01 0.03 -8.96 0.06

-8.91 0.04 -8.95 -8.95 -9.00 0.02 -8.97 -8.97 -8.94 0.05 -9.00 0.06 -8.91 0.02

-9.04 0.04 -9.03 -9.03 -9.00 0.05 -8.99 -8.99 -8.98 0.03 -9.00 0.05 -9.00 0.03

-9.04 0.01 -9.07 -9.07 -9.07 0.06 -9.00 -9.00 -9.09 0.04 -8.96 0.08 -9.01 0.04

-8.97 0.05 -9.02 -9.02 -8.93 0.05 -9.02 -9.02 -9.02 0.04 -9.05 0.04 -9.00 0.05

-9.02 0.03 -9.11 -9.11 -9.03 0.02 -9.06 -9.06 -9.00 0.02 -9.03 0.04 -9.02 0.06

-9.06 0.03 -8.96 -8.96 -8.94 0.06 -8.92 -8.92 -9.08 0.04 -9.03 0.04 -9.00 0.06

-9.08 0.03 -8.98 -8.98 -9.00 0.05 -9.03 -9.03 -9.02 0.05 -9.10 0.05 -9.04 0.05

-9.02 0.04 -9.03 -9.03 -9.02 0.04 -9.01 -9.01 -9.03 0.04 -8.91 0.03 -9.00 0.03

-9.05 0.04 -9.05 -9.05 -9.02 0.04 -9.09 -9.09 -9.04 0.03 -9.06 0.04 -9.01 0.04

-9.05 0.04 -9.06 -9.06 -9.00 0.05 -9.00 -9.00 -8.99 0.04 -9.06 0.07 -9.06 0.03

-9.00 0.03 -9.08 -9.08 -9.05 0.02 -9.05 -9.05 -8.99 0.03 -9.03 0.04 -9.00 0.04

-8.97 0.08 -9.05 -9.05 -9.02 0.03 -9.01 -9.01 -8.99 0.01 -8.99 0.03 -9.06 0.02

-8.98 0.06 -8.99 -8.99 -8.98 0.07 -9.00 -9.00 -9.01 0.03 -9.05 0.07 -9.03 0.03

-9.05 0.03 -9.04 -9.04 -8.93 0.02 -8.99 -8.99 -9.01 0.04 -9.02 0.01 -9.02 0.03

-9.03 0.04 -9.02 -9.02 -9.05 0.06 -8.97 -8.97 -8.96 0.02 -9.07 0.03 -9.09 0.05

-9.02 0.04 -8.99 -8.99 -9.05 0.05 -9.02 -9.02 -8.99 0.08 -9.07 0.04 -9.01 0.04

-9.05 0.04 -8.99 -8.99 -9.02 0.04 -9.00 -9.00 -9.04 0.03 -9.05 0.04 -9.08 0.05

-8.99 0.02 -9.00 -9.00 -9.01 0.02 -8.98 -8.98 -9.06 0.04 -9.03 0.05 -9.01 0.04

-8.96 0.04 -9.06 -9.06 -8.94 0.03 -9.03 -9.03 -9.08 0.01 -9.03 0.06 -9.01 0.06

-9.00 0.04 -8.97 -8.97 -9.01 0.03 -8.97 -8.97 -9.01 0.02 -9.01 0.02 -8.99 0.04

-8.98 0.04 -8.91 -8.91 -9.04 0.06 -9.09 -9.09 -9.03 0.05 -9.03 0.02 -9.04 0.03

-9.02 0.05 -9.03 -9.03 -9.01 0.07 -8.92 -8.92 -9.00 0.05 -9.00 0.03 -9.03 0.04

-9.05 0.05 -9.01 -9.01 -9.05 0.04 -8.95 -8.95 -9.02 0.05 -8.99 0.04 -9.07 0.05

-9.00 0.04 -8.94 -8.94 -9.06 0.05 -9.06 -9.06 -9.01 0.02 -8.94 0.04 -9.02 0.04

-9.04 0.05 -8.99 -8.99 -9.03 0.05 -9.03 -9.03 -9.02 0.03 -9.03 0.04 -9.05 0.05

-8.98 0.05 -9.00 -9.03 -9.02 0.06 -8.98 -9.00 -9.09 0.05 -8.97 0.04 -9.03 0.02

-9.06 0.04 -9.02 -9.02 -9.06 0.05 -9.00 -9.00 -9.02 0.04 -9.03 0.04 -9.01 0.04

-8.97 0.05 -9.11 -9.11 -8.94 0.06 -9.00 -9.00 -8.99 0.01 -9.06 0.07 -9.06 0.03

-8.98 0.06 -9.05 -9.05 -8.93 0.02 -8.97 -8.97 -9.06 0.04 -9.07 0.04 -9.01 0.06

-8.98 0.04 -8.91 -8.91 -9.01 0.07 -9.09 -9.09 -9.02 0.05 -9.03 0.02 -9.03 0.04

-8.98 0.05 -9.00 -9.00 -9.02 0.05 -8.98 -8.98 -9.09 0.04 -8.97 0.04 -9.03 0.05

Mean -9.01 0.04 -9.02 -9.02 -9.01 0.04 -9.00 -9.01 -9.02 0.04 -9.02 0.04 -9.02 0.04

Raw Data Methane in Water - 40 Samples

≈ 7.22≈ 15.95

GROMACS Double

Precision SSE2

GROMACS Single

Precision SSE
Variable Precision Algorithms

GROMACS Single

Precision C

≈ 3.91≈ 3.61≈ 3.31≈ 3.01≈ 7.22

227

7.1.5 Methanol in Water

Approx

Sign Digits

Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/-

-4.84 0.06 -4.80 0.05 -4.84 0.05 -4.70 0.04 -4.77 0.04 -4.72 0.05 -4.72 0.03

-4.67 0.05 -4.76 0.03 -4.86 0.03 -4.79 0.02 -4.78 0.03 -4.83 0.04 -4.75 0.05

-4.76 0.06 -4.79 0.04 -4.74 0.04 -4.81 0.05 -4.71 0.04 -4.75 0.03 -4.79 0.06

-4.75 0.05 -4.73 0.05 -4.72 0.02 -4.68 0.02 -4.75 0.07 -4.84 0.03 -4.85 0.07

-4.71 0.02 -4.75 0.08 -4.77 0.03 -4.80 0.04 -4.70 0.04 -4.87 0.06 -4.72 0.03

-4.74 0.07 -4.75 0.07 -4.75 0.05 -4.77 0.02 -4.67 0.09 -4.77 0.05 -4.83 0.04

-4.84 0.02 -4.85 0.05 -4.79 0.08 -4.77 0.02 -4.73 0.07 -4.80 0.06 -4.85 0.04

-4.85 0.04 -4.79 0.05 -4.76 0.05 -4.87 0.05 -4.81 0.05 -4.76 0.05 -4.78 0.04

-4.79 0.04 -4.75 0.04 -4.80 0.04 -4.85 0.02 -4.76 0.04 -4.86 0.05 -4.77 0.04

-4.81 0.04 -4.79 0.06 -4.74 0.04 -4.86 0.06 -4.70 0.06 -4.68 0.03 -4.75 0.03

-4.73 0.05 -4.81 0.05 -4.85 0.07 -4.78 0.06 -4.80 0.03 -4.85 0.07 -4.71 0.04

-4.88 0.07 -4.89 0.04 -4.72 0.04 -4.80 0.05 -4.74 0.04 -4.71 0.03 -4.72 0.04

-4.73 0.06 -4.90 0.07 -4.84 0.05 -4.83 0.03 -4.78 0.06 -4.80 0.03 -4.78 0.03

-4.74 0.08 -4.79 0.05 -4.69 0.01 -4.78 0.03 -4.77 0.01 -4.80 0.04 -4.74 0.04

-4.84 0.05 -4.79 0.05 -4.83 0.04 -4.76 0.05 -4.72 0.04 -4.77 0.03 -4.75 0.06

-4.82 0.00 -4.72 0.05 -4.88 0.04 -4.68 0.01 -4.82 0.03 -4.87 0.03 -4.80 0.06

-4.72 0.06 -4.77 0.06 -4.77 0.05 -4.75 0.04 -4.89 0.03 -4.80 0.06 -4.82 0.05

-4.80 0.02 -4.77 0.06 -4.73 0.04 -4.69 0.04 -4.86 0.04 -4.69 0.04 -4.82 0.06

-4.71 0.05 -4.74 0.07 -4.73 0.03 -4.79 0.02 -4.85 0.05 -4.83 0.04 -4.79 0.05

-4.69 0.02 -4.70 0.03 -4.76 0.03 -4.87 0.05 -4.78 0.02 -4.78 0.04 -4.78 0.03

-4.80 0.04 -4.81 0.06 -4.81 0.04 -4.77 0.05 -4.79 0.06 -4.76 0.07 -4.64 0.05

-4.79 0.05 -4.82 0.05 -4.80 0.07 -4.79 0.03 -4.83 0.06 -4.76 0.04 -4.77 0.03

-4.80 0.05 -4.83 0.05 -4.82 0.06 -4.75 0.08 -4.81 0.04 -4.80 0.04 -4.85 0.04

-4.88 0.05 -4.81 0.05 -4.73 0.05 -4.91 0.05 -4.86 0.04 -4.78 0.05 -4.80 0.06

-4.71 0.02 -4.80 0.08 -4.85 0.03 -4.82 0.05 -4.78 0.06 -4.77 0.03 -4.82 0.03

-4.79 0.02 -4.83 0.08 -4.77 0.05 -4.74 0.04 -4.76 0.06 -4.70 0.07 -4.78 0.03

-4.86 0.06 -4.84 0.04 -4.78 0.03 -4.88 0.04 -4.79 0.06 -4.77 0.06 -4.77 0.03

-4.72 0.04 -4.75 0.09 -4.81 0.04 -4.74 0.04 -4.78 0.01 -4.78 0.05 -4.85 0.07

-4.73 0.05 -4.82 0.04 -4.79 0.07 -4.74 0.05 -4.75 0.05 -4.73 0.04 -4.70 0.04

-4.81 0.02 -4.76 0.03 -4.78 0.04 -4.77 0.06 -4.78 0.04 -4.75 0.03 -4.87 0.03

-4.74 0.04 -4.81 0.07 -4.76 0.06 -4.78 0.05 -4.72 0.05 -4.79 0.06 -4.71 0.07

-4.75 0.01 -4.76 0.06 -4.81 0.02 -4.83 0.02 -4.71 0.06 -4.78 0.06 -4.80 0.06

-4.80 0.05 -4.83 0.02 -4.85 0.02 -4.74 0.05 -4.81 0.06 -4.77 0.05 -4.73 0.05

-4.75 0.04 -4.76 0.03 -4.83 0.04 -4.82 0.01 -4.78 0.04 -4.82 0.02 -4.84 0.05

-4.81 0.03 -4.77 0.08 -4.84 0.04 -4.89 0.04 -4.73 0.07 -4.76 0.05 -4.72 0.06

-4.80 0.07 -4.72 0.04 -4.79 0.05 -4.72 0.07 -4.87 0.03 -4.75 0.07 -4.80 0.06

-4.93 0.05 -4.81 0.05 -4.82 0.03 -4.84 0.03 -4.80 0.04 -4.79 0.08 -4.82 0.04

-4.78 0.06 -4.80 0.04 -4.80 0.06 -4.79 0.04 -4.77 0.06 -4.84 0.06 -4.65 0.03

-4.79 0.02 -4.73 0.05 -4.82 0.04 -4.79 0.02 -4.78 0.04 -4.83 0.03 -4.79 0.06

-4.71 0.04 -4.92 0.02 -4.80 0.05 -4.79 0.04 -4.73 0.02 -4.75 0.04 -4.79 0.05

Mean -4.78 0.04 -4.79 0.05 -4.79 0.04 -4.79 0.04 -4.78 0.05 -4.78 0.05 -4.78 0.05

Raw Data Methanol in Water - 40 Samples

≈ 15.95

GROMACS Double

Precision SSE2

≈ 7.22

GROMACS Single

Precision SSE

≈ 7.22 ≈ 3.01 ≈ 3.31 ≈ 3.61 ≈ 3.91

Variable Precision Algorithms
GROMACS Single

Precision C

228

8.1 Free Energy Configuration in the GROMACS .mdp File

.mdp File Simulation

Parameters

.mdp File Setting

Comments

integrator = sd

Simulation integrator

rlist = 1.0 Short range neighbor list cut-off distance (nm)

coulombtype = Reaction-Field Use Reaction Field for Electrostatics

rcoulomb = 1.0 Coulomb cut-off Distance (nm)

epsilon_r = 1 Relative dielectric constant.

epsilon_rf = 54.0 Relative dielectric constant of the reaction field.

pcoupl = Parrinello-Rahman Pressure coupling
tcoupl = No No temperature coupling because it is provided through

the Langevin piston method using the ‘sd’’ integrator. ref_t = 298 Use a temperature of 298 K
tau_t=1.0 Avoid over-damping the water dynamics
free_energy =yes Do a free energy calculation interpolating between the

A and B state of the chosen molecule iInit_lambda = 0.00 Starting λ value

delta_lambda = 0 No time-dependent changes to our λ values.

foreign_lambda = 0.05
Additional values of λ for which ΔH will be written to

dhdl.xvg (with frequency nstdhdl). The configurations

generated in the trajectory at λ = init_lambda will have

ΔH calculated for these same configurations at all

values of λ = foreign_lambda

sc-alpha = 0.5 The α scaling factor used in the "soft-core" Lennard-

Jones calculations
sc_power = 1.0 Power for λ used in the soft-core equation.

sc_sigma = 0.3 The value of σ assigned to any atom types that have C6

or C12 parameters equal to zero or σ < sc-sigma

(typically H atoms). This value is used in the soft-core

Lennard-Jones equation.

couple-moltype =

ANALOGUE_NAME

The name of the [moleculetype] in that will have its

topology interpolated from state A to state B. Note that

the name given here must match a [moleculetype] name,

and not the residue name. ANALOGUE is the name of

the amino acid analogue. The following parameters

were used for the analogues in the study, Methane,

Methanol, Ethanol, Isobutane, Acetamide.

couple-lambda0 = vdw
The types of nonbonded interactions that are present in

state A between the interpolated [moleculetype] and the

remainder of the system. The value "vdw" indicates that

only van der Waals terms are active between methane

and water; there are no solute-solvent Coulomb

interactions.

Couple-lambda1 = none
The types of nonbonded interactions that are present in

state B between the interpolated [moleculetype] and the

remainder of the system. The value "none" indicates that

both van der Waals and Coulombic interactions are off

in state B. Relative to couple-lambda0, this indicates

that only van der Waals terms have been turned off.

couple-intramol = no Do not decouple intramolecular interactions. That is, the

λ factor is applied to only solute-solvent nonbonded

interactions and not solute-solute nonbonded

interactions.

nstdhdl = 10 Frequency that ∂H/∂λ and ΔH are written to dhdl.xvg

output file.

229

