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“Imagination is more important than knowledge.” 
 

- Albert Einstein 

 

 

“Doing nothing is infinitely faster than doing 
something.” 
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General Introduction 
 

Biomolecular simulation methods are a powerful tool to study the physico-chemical 

properties of biomolecules and their mechanisms and to describe extremely short-

lived molecular phenomena otherwise difficult to describe.1, 2 We have come a long 

way since the first protein simulations in the early 70’s, both in terms of theoretical 

methods and the computer hardware used. Simulation of the molecular dynamics 

(MD) of solvated proteins with atomic detail requires the use of systems with the 

order of tens to hundreds of thousands of atoms. Particle simulations with detailed 

molecular potentials can be extremely heavy in systems of this size, and until recently 

only relatively short simulation times (10-100 ns) were accessible with most computer 

systems available. Improvements in computer algorithms and hardware have made 

possible, in a few cases, to reach timescales of the order of the microsecond. 

However, many fundamental biomolecular processes, like protein folding, may take 

place over periods of a millisecond or more, meaning that speedups in computer time 

of over three orders of magnitude are still required.  

The advent of parallel computing and massively parallel hardware has had significant 

impact in the attainable simulation times3. Single thread, single core and single 

processor code is the fundamental unit of execution in whatever environment it is 

executed whether it be single processor, OpenMP, MPI or GPUs. The key objective of 

this project is to improve performance of MD simulations at this level to effectively 

raise the performance bar on all simulations in multiple system architectures and 

topologies. The software suite GROMACS4 is widely regarded has one of the fastest 

single-processor MD simulation engines available. This is mostly due to several 

clever optimization techniques including hard-coded assembly code for different 

machine architectures and specialized inner loops for different types of non-bonded 

interactions.5,6 Even with these optimizations, simulation times of the order of the 

micro- to millisecond are still prohibitive for all but the smallest of molecular systems 

running on the most powerful computer architectures available7. The present proposal 

aims to enhance the GROMACS software by a combination of different procedures, 

including the use of binary operations and incremental computation techniques 

adapted from compiler optimization theory. Using these methods, we expect to speed 

up the GROMACS code that is used to calculate forces by a factor of 2-3 times. This 
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will mean being able to simulate biomolecular processes for both longer periods of 

time and for larger simulations. It will also benefit investigators with less expensive, 

less powerful computers to perform simulations that were previously beyond the 

capabilities of their computational environments. Projects may also be done with less 

expensive computer systems that use substantially less electricity.  

Theory and Methods 

 

An initial analysis of GROMACS using the available development tools was 

performed on Intel based platform and as expected the primary performance 

bottleneck is in the calculation of nonbonded interactions typically accounting for 

over 90% of total computation time. This code has already been rewritten by hand in 

assembly language using the latest Intel computer instructions. An examination of 

both the single precision and double precision assembly language implementations 

revealed that there was only one computer instruction in the double precision 

implementation that was not required in the routines that process Lennard-Jones8 and 

reaction field nonbonded interactions. This created a fundamental challenge for this 

project. The code to compute these forces had already been highly optimized for 

many years by top researchers in the world. Where would the major improvements 

come from? The only possibility was to avoid computation at the core of GROMACS. 

Application of Compiler Optimization Generation Techniques 

One of the fundamental assumptions of this project was that it was possible to apply 

advanced complier optimization and code generation techniques at the application and 

simulation level to the GROMACS application to substantially increase performance.  

The principle object of compiler optimization techniques and indeed high 

performance computing is to avoid as much computation as possible. This requires 

knowledge of the application and the simulation involved and this analysis can only 

be fully done at runtime. Optimization techniques frequently move calculations 

outside of internal processing loops to perform calculations only one/few times. This 

provides two benefits: the calculations are simply not performed inside inner loops 

and the results that are calculated before entering the innermost loops highly 

cacheable. 
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In addition to avoiding computation or computing results only once in many cases 

binary or integer instructions may be used within inner processing loops to replace 

sequences of floating point computation. These instructions in many cases run in less 

than one CPU cycle. This project takes full advantage of this technique. 

This project targeted the Intel instruction set but the conversion to integer math and 

the simulation of intermediate code optimization will be generally applicable to other 

platforms and high performance computing (HPC) applications.  

Trading Memory for Calculations 

The core methodology used in this project is the substitution of small multi-layer 

caches with partial results to be assembled with non-floating point or few floating 

point instructions at runtime. This effectively allows the replacement of ‘hot spots’ of 

computation with small lookup tables with direct lookups and assembly or 

incremental calculation. This allows calculations to be computed upon entry into the 

application based on the simulation definition and reused when needed in the future. 

Implementation Approaches 

 

General Purpose vs. Specific Purpose 
 

Software programs, libraries and even CPUs, GPUs are designed to solve a general 

class of problem. They are designed to support a range of user requirements. ANSI 

and ISO standards exist for general purpose computing for data formats, computer 

languages, database, communications and other functionality. Additionally industry 

and academic organizations have formed groups to establish de facto standards. These 

standards are required to solve a broad range of problems across many disciplines. For 

example the IEEE 754 floating point standard9 supports applications with a very large 

number of significant digits and 3-4 digit exponents.   

The programming languages such as C and C++ are built upon the underlying 

hardware standards and have their own general purpose standards.  Both these 

hardware and computer language standards are not designed for a specific problem or 

even a class of problems.  They are designed to be used to solve all possible problems 
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that might be needed in any problem domain, industry or organization. They are 

general purpose tools for constructing software and problem domain solutions.  

 

It is almost never a requirement to support exponents in the range of -308 to +308 

with 15 significant digits or even greater ranges. Nothing in reality corresponds to 

these values. Molecular dynamics and other applications use a limited portion of the 

IEEE 754 standard and the capabilities of processing these data types with ANSI C or 

C++. If 1.0 is 1 nanometer then a distance of 10-308 or 10308 nanometers is never useful 

to users of molecular dynamics software. Users of molecular dynamics software and 

other applications use only a small fraction of the standard format. Molecular 

dynamics simulations typically use the smallest boxes and fewest atoms possible. This 

constrains the space and time in which the simulation runs to some number of 

nanometers and some number of time steps. Time steps are generally in the range of 1 

femtosecond to 1 millisecond. Similarly the experimental and theoretical constants 

that are available (or meaningful) have a limited range and precision. Thus the range 

of values within the floating point standard that are actually used is relatively small.  

 

This observation is true for virtually every class of computer application that exists. 

The largest floating point format of the IEEE 754 standard supports values that if 1.0 

= 1 meter then the maximum value is greater than the size of the universe and the 

smallest value does not correspond to anything known. Application developers do not 

use the entire range of values in the same application. This means that for a specific 

problem within a specific problem class, such as molecular dynamics optimizations to 

avoid many floating point calculations are possible by trading memory for 

calculations and incrementally assembling the results or performing very few 

calculations at runtime. This is the approach taken in this project. 

 

Alternative 1: Manual Modification of MD Software to Exploit Incremental Non-

Computational Optimization 

 

In order for an application program to be optimized using these techniques it must 

have already been analyzed for computational ‘hot spots’ using the standard tools 

such a gprof or Visual Studio. All coding, algorithmic and design must have been 

optimized using both developer and user expertise. If this has not been done, it 

should. This is just good software development practice.  
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When no further optimizations are possible use incremental calculation techniques to 

pre-calculate and cache partial results for a high percentage of the key functions and 

equations.  

 

A key objective of the implementation process is to enable the incremental 

noncomputational method to self-adapt to the problem being solved. For molecular 

dynamics software this is done for the SPECIFIC simulation and the hardware 

environment where it is being run. This requires the identification of the data ranges 

for key variables used in calculations at the application/simulation/run level. The 

incremental noncomputational method does not support the full range of floating 

point numbers. In order to minimize memory use for the method the developer must 

identify runtime variables that are actually invariant at runtime for the SPECIFIC 

simulation or function based on what is being run. This enables both the elimination 

of computation and reduces the amount of runtime assembly or incremental 

calculation required. This also reduces greatly the number of computer instructions 

and moves much of the complexity of the algorithm, equation or function to a table or 

application cache initialization. Using the data profile/signature of the simulation at 

runtime and information about ranges and other application specific information can 

enable the use of integer, logical and memory instructions instead of floating point 

computations. At program start or on first use, the incremental caches/tables are 

initialized for future use. Values are calculated once and retrieved on subsequent 

accesses. 

 

Generally the application developer must do profiling of the data that is actually used 

to understand the subset of the IEEE 754 standard that the software actually needs. 

This combination of user expertise and runtime data profiling enables the precision of 

the data to be reduced and the range of data to be limited significantly reducing the 

size of the data tables used in incremental computation.  

 

The incremental non-computation method also requires the software to know how 

much CPU cache is available in order to perform well. If too high a percentage is used 

then cache misses will occur and performance will be degraded rather than improved. 
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Performance decreases of three or more times the computed performance have been 

observed when the limits of the available CPU cache is not respected.  

 

After the ‘hot spots’ are converted to use the developed algorithm, the application 

must be tested to show that the results are ‘equivalent’ and still meet user 

requirements.  This process was done statistically for the inner non-bonded kernel 

routines for the GROMACS software running on one thread/core/processor. 

 

Alternative 2: Profile Guided or Automatic Optimization 

 

Recent advances in software optimization techniques, such as profile guided 

optimizers (PGO) include the ability to produce a profile or runtime application 

signature for the execution of a program automatically on a given platform with a 

specific set of input files for use with the application. These application 

profiles/signatures can then be used to compile/build a higher performance version of 

the application based on actual runtime knowledge (Figure 1).  

 

 

This approach requires knowledge of the data range and precision required for each 

variable that is used to build precalculated results and that the precalculated results for 

the used to support the various subexpressions/expressions be small enough to be highly 

cacheable. The method is highly dependent on the data map of the application and the 

degree to which the application contains subexpressions or expressions within the inner 

loops that are suitable for the developed algorithm. In theory it is possible to develop 

an application development tool based on an existing program profiler that could track 

Application 
Signature Files 
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Figure 1 Profile Guided Optimization (PGO) 
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the data ranges and precisions of the data values used in optimized subexpressions and 

expressions during an actual execution run of the program (perhaps a short execution). 

The tool could then suggest to the developer areas that could benefit from the developed 

algorithm providing suggested data ranges and precisions. The developer could then 

select the suggestions that were of interest and modify the data ranges and precisions if 

needed. These suggested and modified changes could then be used by the application 

development tool to automatically generate modified application source code to define 

and initialize the tables for the precomputed results and to update the source code for 

the inner loop to minimize computation within the inner computational loops by 

retrieving the pre-calculated results from one of the tables. Currently, Microsoft10, 

Intel11 and GNU12 have program guided optimization (PGO) functionality that creates 

instrumented versions of an application and allows the application to be ‘trained’ to 

produce higher performance code. The developed methodology and algorithm has not 

yet been incorporated into any software development tool or PGO option. 

 

It is also possible that optimizations could be made dynamically during execution in 

an instrumented application. This could be performed without a detailed 

understanding of the application or library function using an incremental 

noncomputational method with a failsafe fall through to calculate the result of the 

subexpression or expression if the precalculated lookup was not within range. This 

approach would need to be hardware platform and operating environment aware since 

there is substantial difference in performance between CPU manufacturers, CPU 

families, cache memory available, memory architecture and other aspects of the 

operating environment. Operating system support would also likely be required. 
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Abstract 
 

The performance of molecular dynamics (MD) software such as GROMACS is 

limited by the software’s ability to perform force calculations. The largest part of this 

is for nonbonded interactions such as between water molecules and water molecules 

and solute. The determination of nonbonded interactions may account for over 90% of 

the total computation and real time of a simulation. The objective of this project is to 

greatly improve the performance of force calculations for nonbonded on a single 

core/processor. By doing this it is possible to raise the bar on all simulations that can 

be performed by GROMACS (single, multi-core or MPI).  The resulting 

modifications need to then be verified to determine that the software still works. That 

it is still ‘good enough’ for performing molecular dynamics simulations. Figure 2 

shows the magnitude of the problem.13 

 

 

Figure 2 How can molecular simulation reach the exascale? Challenge in 

performance and parallelism 

Adapted from Roland Schulz and Erik Lindhal 

 

The magnitude of this task is large due to the large number of solvent molecules in the 

typical simulation and the number of time steps needed simulation duration.  The 

number of time steps between femtoseconds and milliseconds also is very large. 
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Most of the computational overhead is in the processing of the solvent, usually water.  

The simulation of water is generally calculated between pairs of molecules with nine 

(9) interactions calculated for each pair (OO, OH, HH).  

The 1/sqrt function, Lennard-Jones equation and Reaction Field terms are typically 

calculated. (This project does not address PME but the technical approach can be used 

to optimize it). There are also other solvent models where the solvent overhead is 

more.  Water to other atoms are the second most common type of interaction. If the 

processing of the solvent cannot be made significantly faster, then the simulation will 

not run faster. 

Limitations on Scalability 
 

Studies have shown that even using multiple processors/cores/clusters that there are 

fundamental limitations on the scalability of MD simulations. This limitation is due to 

limitations on how atoms may be distributed across cores/processors and network 

node. As the number of atoms/core decreases the amount of time in communications 

increases. It is not possible to run one atom per core. Studies have shown that ≈500-

1000 atoms/core is approximately the lower limit in most system environments. With 

recent developments in supercomputer environments based on Intel Sandy Bridge and 

Ivy Bridge processors, multiple NVIDIA GPU coprocessors, hybrid OpenMP and 

MPI, Infiniband networks and Verlet cutoff schemes as few as ≈100-140 atoms/core 

have been achieved.  Figure 3 shows the results of the study of the peak performance 

of MD simulations by Gruber and Pleiss based on number of atoms and cores.  
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Figure 3 Peak performance by system size. Adapted from Gruber and Pleiss 
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Cys  C Cysteine  Gln  Q  Glutamine 
Glu  E Glutamate   Gly G  Glycine 
His  H  Histidine  Ile  I  Isoleucine 
Leu  L  Leucine  Lys  K  Lysine 
Met  M  Methionine  Phe  F  Phenylalanine  
Pro  P  Proline   Ser  S  Serine 
Thr  T  Threonine  Trp  W  Tryptophan 
Tyr  Y  Tyrosine  Val  V  Valine 
 

Abbreviations 
 

   
AES  Intel Advanced Encryption Instructions  
AVX  SIMD Advanced Vector Instructions  
AVX2  SIMD Extensions to AVX 
AVX512 SIMD Extensions to AVX for the Intel Phi Processor 
CUDA  Compute Unified Device Architecture 
FF   Force field 
FMA  Fused Multiple Add Instructions (multiple versions exist) 
H   Hamiltonian operator 
HPC  High Performance Computing 
L1  Level 1 Cache. Small caches for Instructions and data 
L2  Level 2 Secondary Cache. Larger cache than Level 1 
L3  Level 3 Third level cache.  Larger cache than Level 2 
L4  Level 4 Fourth level cache. Larger cache than Level 3 
LJ  Lennard-Jones  
LxA Level x Application cache paralleling L2, L3, L4 or a 

shared memory level in GPUs 
MC   Monte Carlo 
MD   Molecular dynamics 
MPI  Message Passing Interface 
NPT  Isothermal-isobaric ensemble (constant pressure and  
   temperature) 
NMR   Nuclear Magnetic Resonance 
NVT  Canonical ensemble (constant volume and temperature) 
OpenCL Open Computing Language 
OpenMP Open Multi-Processing 
PGO  Program Guided Optimization 
PME  Particle Mesh Ewald 
QM   Quantum mechanics 
RF  Reaction Field 
RMS   Root mean squared 
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 RMSD  Root mean squared deviation. 
SIMD  Single Instruction Multiple Data 
SoC  System on a Chip 
SPC  Single Point Charge Water Model 
SPCE  Single Point Charge Water Model with Average Polarity 
    Adjustment 
SSE  Instructions set for SIMD on Intel and AMD 
SSE2  SIMD Instruction set extensions to SSE 
SSE4.1 Intel Instruction extensions to SSE2 not on all AMD CPUs 
TIP3P  Transferable Intermolecular 3-point Water Model 
vdW  Van der Waals terms 
 
 
μops Micro-operations (CPU) 
 

 T   Temperature. 
 V   Potential energy. 
 W ij   Electrostatic interaction between site i and j. 
 e  Protonic charge. 
 k B   Boltzmann constant. 
 k b   Bond force constant. 
 q   Point charge. 
 r ij   Interatomic distance between atoms i and j. 

r p   Coordinates at point P. 
 
Greek Letters 
 
ΔG  Hydration Free Energy Change 
ΔH  Hydration Enthalpy Change 
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Outline 
 

This dissertation is organized into an introduction, abstract, three main chapters and a 

closing general discussion and conclusion. It also contains supplementary materials 

for chapter 3. Chapter 1 discusses the developed incremental noncomputational 

algorithm and the associated variable precision version of the IEEE 754 floating 

standard that was developed to support the algorithm. It also discusses the general 

application of the methodology to object interaction based high performance 

computing (HPC) applications for different problem domains. Chapter 2 presents the 

detailed approach and results of applying the algorithm to the molecular dynamics 

application GROMACS. It shows the effect of various spatial granularities 

represented by variable precision floating point mathematics on the calculation of 

nonbonded Lennard-Jones and reaction field interactions. It also assesses the impact 

of the methodology on Lennard-Jones only interactions. It presents both performance 

results and the impact on the energy and forces involved in the simulation for water 

boxes, argon and proteins. Chapter 3 presents an extensive study of the hydration free 

energies of five amino acid analogues used to validate the developed algorithm with 

experimental results and the work of other research. The study uses approximately 

170 microseconds of simulation time to obtain a statistically significant amount of 

data. Statistical equivalence methods were used to validate the developed algorithm 

against the three widely used builds of GROMACS 4.5.3 (single precision C code, 

single precision SSE, and double precision SSE2). A final general discussion and 

conclusion is provided after Chapter 3. Appendix 1 contains the detailed statistical 

data and results for chapter three. 
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Optimizing Applications in HPC Environments Using 
Incremental and Noncomputational Methods 
 
Portions of chapter 1 of this thesis are based on a provisional US Patent application 

#62213053 that is the intellectual property of Virtual Strategy, Inc. and are used by 

permission.14  

 

1.1 Abstract 

The performance of most HPC applications has already been fully optimized using 

optimizing compilers, off-loaded to GPUs, run in distributed environments and using 

the latest and most efficient algorithms. When the code to be optimized cannot be 

made faster a way must be found to avoid computations completely or the application 

will not run any faster. This approach should be used only after all other optimization 

techniques have been done. 

Supercomputers are generally used to address two major classes of problems: 1) 

problems with large amounts of data that has relatively few/no interdependencies and 

can be processed as many streams and 2) problems that are computationally intensive 

because they have large numbers of interactions between many objects. These 

problems may be in many diverse areas such as: weather forecasting, oceanography, 

climate change, the evolution of galaxies, development of stars and clusters, black 

holes, particle physics, molecular dynamics, protein folding, fluid dynamics, 

economics among other applications. The first class of applications can be easily 

distributed over an unlimited number of processors or cores by dividing the data 

stream. The second class of applications generally have a computationally intensive 

code section at their core (frequently to calculate forces) and a large number of object 

interactions. Software simulating large numbers of interactions uses algorithms (e.g. 

lattice summation or spherical cutoffs) to reduce the number of interactions from 

O(N2) to O(NlogN) or O(N). 15,16 They also exploit the latest processor architectures, 

OpenMP, MPI, vector instruction sets such as AVX, AVX512 and FMA and offload 

work to GPU coprocessors using NVIDIA CUDA or OpenCL. Even with these 
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techniques there are limits to both the number of object interactions that can be 

processed and the amount of time that these interactions may be simulated 

independent of the problem being solved. 

 

Problems involving a few 10s of thousands of objects will not run significantly faster 

on a supercomputer than on a 64 core server. The developed algorithm provides a 

‘noncomputational’ approach based on the definition of the problem followed by 

incremental computation. It exploits a ‘variable precision’ numeric format based on 

the IEEE 754 standard. Performance on a single thread/physical core is the 

fundamental building block of performance whether code runs on a CPU or GPU and 

it is independent of whether or not the application is running in a distributed 

environment or not. This study reports single thread/physical core improvements in 

the performance for solving multiple force equations between atomic level objects on 

the Intel Core i7 ‘Sandy Bridge’ of 14-15 times that of the existing hand coded 

assembly language builds for the GROMACS application(SSE, SSE2). The method 

was also used to develop simple math functions and compared to the standard C 

library functions with performance speedups in the range of 11 to 125 times faster 

using gcc 4.7. The developed method may be applied to simple functions, equations 

or the simultaneous solution of multiple equations in a broad set of applications. 

1.2 Introduction 

 
1.2.1 HPC Applications Supporting Object Interactions 

 

HPC applications supporting object interactions are critically important for many 

problem domains. At their core is an inner processing routine based on the object 

parameters that is calculated every time there is an object interaction. Typically the 

object interactions are calculated at time step intervals whether they are fine grain 

atomic level simulations or very coarse grain weather forecasting applications. If this 

core processing routine cannot be made faster on a single thread/physical core then the 

software will not run faster. Incremental and noncomputational methods address the 

need to improve the performance of already fully optimized software by avoiding 

computation at runtime and performing incremental computation based on 
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precomputed results that are application and execution specific. The fundamental 

performance unit is how fast the algorithm or functions performs on a single 

thread/physical core whether it is on a CPU or GPU. By improving performance at this 

level both larger and longer simulations may be run. 

Software tools and development methodologies and even CPU hardware have been 

highly optimized for performance for over 20 years. Global optimizers available in the 

compilers in general use generate code so well that it is rarely necessary to code critical 

portions of software in assembly code. Access to instruction sets such as SSE2, AVX, 

AVX2, AVX512, and FMA are available through the use of intrinsics or assembly code 

directives and may be used in a high level language for development. If the developer 

uses these instructions in a high level language through intrinsics the assembly 

instructions are exposed to the global optimizer of the compiler. CPUs from the major 

manufacturers make use of branch prediction, pipelines, instruction reordering, and 

multiple levels of cache. It is usually a waste of time to second guess a compiler global 

optimizer and to try to guess what the processor will do at runtime. The 

cycles/instruction vary greatly based on where the data resides (register, L1, L2, L3, L4 

cache or main memory).  Cycles/instruction also vary based on what other instructions 

are near the instruction. Architectural differences between Intel, AMD and other CPU 

vendors vary greatly between each other as do differences between GPU processor 

vendors. There are also significantly different performance characteristics between the 

‘generations’ or ‘families’ within a manufacturer’s product line. Other important factors 

that impact application performance in HPC environments include physical memory 

speed, network bandwidth, and CPU-GPU bandwidth. 

GPU support has been added to HPC environments in the last few years using NVDIA’s 

CUDA17 to offload some portions of a simulation to a high performance GPU.18 There 

are however underlying limitations for GPU based computing including the limited 

bandwidth between the CPU and GPU and limitations in GPU hardware as a 

generalized coprocessor.19  Recent advances in GPU memory architectures that include 

a larger number of cores and GBs of memory as well as the addition of GPU cache 

memory  has greatly enhanced the ability to GPUs as general purpose computational 

engines. NVIDIA CUDA and OpenCL20 now make it possible to have TFLOPs 

available on the desktop or in servers. 
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Many object interaction based applications share some common performance problems. 

The 1/sqrt function is the largest computational contributor for force-based object 

interactions that perform force calculations. These applications already benefit from 

domain decomposition schemes, MPI, OpenMP and vector based instructions and 

highly optimized code and algorithms.   Interaction-based problems have probably 

benefited the most from specialized SIMD (single instruction multiple data) 

instructions and fused multiple and add instructions (FMA). For many years most 

applications that address interaction based problems have exploited the single 

instruction multiple data (SIMD) instruction sets SSE (single precision), SSE2 (double 

precision) and recently added support for AVX21 and AMD’s FMA22 instructions for 

fused multiply and add. Interaction based applications such as molecular dynamics 

software have achieved very high performance on a single processor/core by using hand 

coded assembly language to process 4 single precision values simultaneously. With the 

support of the AVX and AVX223 instructions 8 single precision values may be 

processed simultaneously.  The Intel Xeon Phi processor supports the AVX512 

instruction set and can process 16 single precision values simultaneously. 

1.2.2 Performance Limiting Factors for Interaction Based Problems 

 

Processing speed has been limited primarily by CPU clock speed (cycle/second GHz) 

and the amount of data than can be processed in one cycle. In 1965 Gordon Moore, 

Intel co-founder, predicted that processing power would double approximately every 2 

years24 but in 2005 Moore declared that his law was ‘dead’.25 This was largely due to 

the limitations on CPU clock speed, heat dissipation on the chip and fabrication costs 

due to the on chip density. With current technology this limits the performance on a 

single core/processor primarily based on CPU clock speed (GHZ). There is a direct 

relationship between clock speed, power consumption and temperature. 

From Figure 4 one can see that CPU clock speed has flattened since about 2003. There 

are more cores/chip and more transistors/chip to support them. Techniques such as 

multiple cores on chip can reduce the communication costs between threads but CPU 

clock speed is not substantially increasing and is a fundamental barrier to the 

performance of object interaction solutions. Over-clocking of CPUs can be done but is 

limited by the amount of power consumed and heat generated. Over-clocking can also 

result in computational errors.26 
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Figure 4 Intel CPU Trends – Limitations on Performance 

© Herb Sutter, Used with permission 

Studies have also shown that there are limits to the scalability of a simulation based on 

the number of objects in the simulation.27 There exists a minimum number of objects 

that can be processed per processor/core whatever those objects are before the 

communications costs and real time delays are greater than the real time performance 

gains.  For simulations in the range of a few 10s of thousands of objects this is usually 

less than 64 cores. This implies that a simulation in this size range will not run 

significantly faster on a system with 1000 cores. In fact if a simulation were forced to 

be split into too few objects per core the communication cost could consume most of 

the real time and slow the real time to process the simulation.  
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Atomic level interaction in molecular dynamics software is typical of object interaction 

solutions. Figure 5 shows the results of the study by Gruber and Pleiss28 in 2010 that 

investigated the peak performance that can be achieved with molecular dynamics 

simulations at the atomic level for different system sizes. They tested object simulations 

distributing force calculations workload between objects (atoms) across up to 1000 

cores. Simulation of atomic level forces between objects differs from other object 

interaction applications primarily in the following areas: 1) the definition of the object, 

2) the equations used to calculate the interactions (usually forces), and 3) the granularity 

of the objects. Larger objects are built from smaller objects from the atomic level up 

but with a loss/change in the nature of the object details. In the process of defining 

higher level objects, additional parameters may change or the equations may vary but 

the fundamental problem of having many objects interacting with many others remains 

the same. Fortunately applications do not need atomic level granularity to model 

weather or the economy. 

There are therefore fundamental limitations in simulation performance that cannot be 

overcome by improvements to programming: CPU clock speed, size and speed of L1, 

L2, L3, L4 cache memory and speed of main memory, transistor chip density, heat, and 

ultimately the speed of light. Distances off chip to CPU blocks, blades or server nodes 
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Figure 5 Peak performance by system size. Adapted from Gruber and Pleiss 
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have significant delays. Distance is a fundamental problem. Light travels about 30cm 

per nanosecond in a vacuum. Sending data and receiving an acknowledgement in a 

vacuum is limited to only 15cm. 

Other fundamental limitations exist to performance improvements such as those 

imposed by Amdahl’s law.29, 30 The performance of a program that can be improved is 

limited by the percentage of the code that can be improved. The speedup of a program 

using multiple processors in parallel computing or improved algorithms is limited by 

this sequential fraction of the program. For example, if 95% of the performance of 

program can be parallelized or improved by code changes, the theoretical maximum 

speed up would be 20 × as shown in Figure 631, no matter how many processors or how 

good the programming changes are assuming that the portions of the program that can 

be improved may be parallelized completely or that the performance of the code being 

changed may be reduced to zero percent of the total time for the program.  Problems 

where the data streams can be split suffer the same limitations but due to the nature of 

the data being processed Amdahl’s Law is generally of little consequence. Interactions 

between objects, however limits the ability to split computation between 

cores/processors and nodes. 

 

Figure 6 Performance Limitations - Amdahl's Law  

The processing of object interactions has a fundamental limit based on the number of 

objects that can be processed per core. The minimum number of objects per core is 
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application specific depending on the nature of the application and problem being 

solved. For force based atomic level object interactions this limit is currently in the 

range of ≈100-1000 objects per thread/physical core depending on hardware and 

application requirements.  

Fortunately the percentage of CPU time and clock time for interaction processing is 

usually concentrated in core processing routines where these calculations are 

performed.  The performance improvement that may be obtained for processing the 

object interactions has some limitations based on the percentage of the application that 

is spent calculating object interactions. For a large number of applications in this class 

the percentage of time processing these interactions is extremely high (over 90%) 

because forces, velocities, and distances are being calculated. Whether the objects are 

particles, atoms, stars, galaxies, or coarse grain objects in weather, climate or economic 

models there is a define set of processing functions.  The ability of the incremental 

noncomputational methodology to improved object interaction performance is based 

on the number of types of objects and not just the number of objects.  In the example 

used in this study of atomic level molecular dynamics simulations, the dominant object 

interactions are water molecules interacting with other water molecules, followed by 

water to solute interactions and then solute to solute interactions. There is a relatively 

small number of different types of objects.  

1.3 Methodology 

 

1.3.1 Noncomputation vs. Faster Computation 

 

The fundamental question is if performance cannot be substantially increased by faster 

CPU clock times, offloading to GPUs or other processors in a network, where will the 

breakthroughs in performance occur? This study has developed an algorithm that 

eliminates most of the computation inside the inner processing loops for object based 

interactions. It can effectively raise the scalability bar for all single core/processor and 

multiprocessor environments where large numbers of objects and object interactions 

occur.  
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1.3.2 Optimization and Incremental Computation  

 

For more than 30 years compliers and code generators have performed various levels 

of performance and memory minimization optimizations for software developed in high 

level languages such as C, C++, FORTRAN, and others. In 1986, Compilers: 

Principles, Techniques, and Tools the ‘Dragon Book’32 was published and became the 

definitive reference guide for compiler development and has remained so to this day. It 

was updated in 2006 to include additional details on new machine architectures, parallel 

processing, JIT compiling, data flow analysis and directed translation.33 High level 

language optimization operates at several levels. The developed method uses an 

approach similar to that of a compiler optimizer’s analysis of the code flow34 and data 

flow as represented by the compiler’s intermediate code and symbol table prior to code 

generation. After the compiler generates intermediate code and a data map for the 

program from the source files usually an optimization phase occurs within the compiler 

prior to code generation to identify opportunities for performance improvement or to 

reduce the amount of memory required. The optimization of the intermediate 

representation of the program looks for common expressions within the ‘scope’ that the 

optimizer can see to minimize the number of times that the code is executed. In many 

cases this means that the expressions and intermediate code is restructured so that 

portions of the code may be executed once while other parts of the code must be 

executed every time. The optimizer also creates temporary variables for use in storing 

intermediate results shared between expressions and subexpressions. Another key 

optimization technique is to move code execution outside of inner loops so that fewer 

instructions are executed in the computationally intensive loops. Compiler optimization 

is limited because it is performed within a scope. These scopes are associated with the 

program’s source files. An optimizer may use the local source file being compiled 

including the merged files or in some cases it may use all of the source code for the 

entire application. The later takes more time to build and relate the data maps and code 

flows for the sources files of the application but can result in valuable interprocedural 

optimizations. In highly optimized HPC applications this is part of the standard 

software build process by specifying compile time optimization levels and has been 



36 

 

done for many years. Developers have also moved as much computation out of the inner 

computational loops as possible based on user knowledge of the application.  

The developed algorithm optimizes the performance of the computationally intensive 

inner loop code by using runtime knowledge at the application level and knowledge of 

the equations and functions used in the inner loop. This permits the algorithm to be used 

to replace most computation with the retrieval of precalculated subexpression and 

expression results (not computed within the inner loops) followed by a few 

computational instructions (incremental computation) to provide either subexpression 

or final results. The precalculated subexpression or expression results are calculated 

once when the program or function is first entered or when the results are first required.  

This approach requires knowledge of the data range and precision required for each 

variable that is used to build precalculated results and that the precalculated results for 

the used to support the various subexpressions/expressions be small enough to be highly 

cacheable. The method is highly dependent on the data map of the application and the 

degree to which the application contains subexpressions or expressions within the inner 

loops that are suitable for the developed algorithm. In theory it is possible to develop 

an application development tool based on an existing program profiler that could track 

the data ranges and precisions of the data values used in optimized subexpressions and 

expressions during an actual execution run of the program (perhaps a short execution). 

The tool could then suggest to the developer areas that could benefit from the developed 

algorithm providing suggested data ranges and precisions. The developer could then 

select the suggestions that were of interest and modify the data ranges and precisions if 

needed. These suggested and modified changes could then be used by the application 

development tool to automatically generate modified application source code to define 

and initialize the tables for the precomputed results and to update the source code for 

the inner loop to minimize computation within the inner computational loops by 

retrieving the pre-calculated results from one of the tables. Currently, Microsoft35, 

Intel36 and GNU37 have program guided optimization (PGO) functionality that creates 

instrumented versions of an application and allows the application to be ‘trained’ to 

produce higher performance code. The developed methodology and algorithm has not 

yet been incorporated into any software development tool or PGO option. 

In addition to avoiding computation or computing results only once in many cases 

binary or integer instructions may be used within inner processing loops to replace 
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sequences of floating point computation. These instructions in many cases run in less 

than one CPU cycle. This project takes full advantage of this technique. 

The algorithm also exploits the fact that many variables within the inner object 

processing routines are used as constants at runtime and are not known to be constants 

when the software is compiled. A compiler optimizer’s constant folding and 

propagation algorithm reduces constant expressions and subexpressions at compile 

time to a compile time precalculated value so that constant expressions and 

subexpressions are never calculated at runtime. The developed algorithm performs a 

similar function when the precalculated tables are initialized and all expressions are 

reduced to constant expressions with one or two variable over a range of values.  

The developed methodology and algorithms in both the C language and hand coded 

assembler routines provide a ‘noncomputational’ approach based on the definition of 

the simulation and the incremental computation of pre-calculated results to obtain the 

final result. The method can return multiple intermediate results that are then assembled 

with non-floating point instructions or incrementally calculated to produce a final result 

for each ‘hot spot’ in a computationally intensive application.  

In incremental computation and compilation models data elements and their associated 

code are identified and only the data elements and code that needs to be recalculated is 

recalculated when a change is made. The best known examples of this are spreadsheets 

such as Microsoft Excel™ where only the cells impacted by a change in data values or 

formulas are recalculated and the rest of the spreadsheet remains unchanged. The same 

process also occurs in incremental programming language development environments 

where there is a demand for very fast compilation speeds. In 1998 IBM introduced 

VisualAge C++ Professional for AIX Version 4.0, a fully incremental compiler38. 

Microsoft ‘Roslyn’ is using this approach in Visual Studio 2015.39, 40 In interactive 

development environments only the data and code that is impacted by a change as the 

change is being made is recompiled. Using the developed methodology precalculated 

intermediate or final results provides an opportunity to reduce the data and code 

interdependency so that runtime performance is faster. 

These incremental results are each stored in a table and accessed with memory, integer 

and bit manipulation instructions only.  These instructions can be efficiently executed 

in the CPU pipeline and many of these instructions execute in less than one clock cycle. 
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No floating point instructions are required except where pre-calculated results cannot 

be used for intermediate results or final results that are used external to the function 

being optimized.  For force base object interaction problems such as molecular 

dynamics this approach effectively produces a ‘coarse grain’ space for the simulation 

to run in using the distance squared (r2). The algorithm however cannot be used to 

reduce the cost of processing distance calculations associated with object interactions 

at the computational core of an application. Fused multiple and add (FMA) instructions 

can help reduce the overhead of the distance component of force based object 

interactions.  

The objective of this research is to address the approximately ≈70-90% of the CPU cost 

of most object interaction applications and to greatly increase the performance of core 

math functions (e.g. C library functions) and equation solutions used by HPC 

applications in general. In order to improve the performance of these equation solutions 

it is necessary to eliminate or reduce substantially the computer instructions and CPU 

cycles required to solve them.  Fortunately at runtime, simulation model and application 

specific values are loaded into the program, based the requirements of the application, 

and used as constants. An HPC application also almost always uses only a portion of 

the IEEE 754 data format both in terms of exponents and mantissa bits. 

In order for the developed methodology to be memory efficient and fit within CPU 

caches it is critically important that the developer and the user understand the data being 

used in core processing routines. The algorithm assumes that a reduced precision is 

acceptable and that only a portion of the range of IEEE 754 exponents are used. The 

range of exponents and the number of significant digits required are directly related to 

the size of the tables used to hold each of the incremental or function results.  The 

methodology however does not require that all of the exponent ranges or ranges be 

contiguous or that each range support the same number of significant digits (bits of the 

mantissa). 

In order to minimize the amount of CPU cache memory used, a new mathematical and 

floating point format model has also been developed, providing a variable precision 

floating point calculation model based on the IEEE 754 standard to reduce the size of 

the pre-calculated tables. This variable precision format parallels the IEEE standard 

without the need for additional tables or runtime operations. This algorithm may be 

used in any application that is computationally intensive. There are no approximations 
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other than those reflected in the reduced precision using a subset of the IEEE floating 

point definitions for both the number of significant digits required and the exponents 

required.  

All calculations that were used for the incremental calculations are performed in double 

precision and stored as single precision when the tables are initialized unless the 

application requires a double precision result. Other numeric formats could be similarly 

processed performing calculations in a form most appropriate to the application and 

storing the incremental results in a form that would not require a conversion at runtime.  

Applications may use a mixture of single or double precision tables for storing 

incremental results depending on the requirements of what is being optimized.  When 

the tables containing the incremental pre-calculated results are generated the variable 

precision algorithm adjusts the floating point representation to parallel the IEEE 754 

standard but at reduced precision. The algorithm uses a simulated ‘guard bit’ to avoid 

creating a very small cumulative divergent error.41,42 Processor manufactures 

incorporate ‘guard bits’ to avoid rounding errors that would create a cumulative error. 

These ‘guard bits’ are used to create a forward backward offsetting error correction 

across the range of floating point values. When the tables are created the exponent 

portion of the floating point representation of the variable used to determine the 

noncomputational result (e.g. distance squared in the case of most force based object 

interactions) may be masked with a binary value to alter or create one or more ranges 

of exponents and/or eliminate the sign bit of the floating point representation. The 

precision of the resulting value is reduced shifting the floating point value in binary 

form to the right reducing the mantissa. A right shift effectively divides the 

representation by a power of two and reduces the size of the tables required. After this 

is performed, a simulated ‘guard’ bit is added enabling the calculation of the values 

stored in the table to be treated as a scaled base 2 value. This provides a mixed stability 

model with a very small offsetting forward and backward error correction paralleling 

the IEEE 754 standard. This is necessary because dividing an integer by 2 causes a 

truncation on odd values creating a cumulative error. Using a right shift to divide an 

integer by two gives the correct value for all even numbers. For odd integer values it is 

necessary to create an alternating forward and backward error correction. This is 

performed at table initialization time. A floating point to integer conversion method is 

not used because this creates a divergent error relative to the IEEE standard by 
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eliminating the ‘floating’ property of IEEE 754 compliant CPUs.  If the GROMACS43 

nonbonded routines used a floating point to integer conversion technique to create a 

table index such as was added as an option to CHARMM, this would create an 

increasingly large offsetting corrective error as the distance squared decreases. This has 

an undesirable effect on the results for the force values as the distance squared becomes 

smaller.  At some point in a simple floating point to integer conversion method cutoffs 

are reached because of the scaling factor. 

The developed algorithm is designed to scale using single instruction multiple data 

(SIMD) extensions to instruction sets such as SSE, SSE2, SSE4.1, AVX, AVX2 and 

AVX512 Intel Xeon Phi44. In these instructions sets it is possible to process 128, 256 

or 512 bits of data in parallel. This may be in the form of 4, 8, or 16 single precision 

values or 2, 4, or 8 double precision values. The Intel Xeon Phi coprocessor processes 

512 bits but requires special programming when used as a coprocessor. The molecular 

dynamics simulation program GROMACS 4.5.3 supports single and double precision 

C language code, and hand coded single precision (SSE) and double precision (SSE2) 

assembly code. It has been highly optimized for calculating atomic level force 

interactions for over 20 years. The variations of the developed algorithm were evaluated 

against the standard build options for GROMACS 4.5.3 for performance and 

equivalence of functionality. 

The developed methodology could also benefit from new computer instructions that 

could reduce the number of instructions from three to two in an Intel or AMD 

architecture and support the allocation and management of a portion of L2 and L3 CPU 

caches.  They could also be implemented by other CPU or GPU vendors.  

In order to test the developed algorithm a C language test program was developed that 

reads a file with 108 atomic level object interactions output from the GROMACS 

software for use in force interactions. The performance of the test application using this 

dataset compared the C version of GROMACS, and the hand coded highly optimized 

SSE and SSE2 assembly language code with the SSE2, SSE4.1 and AVX2 versions of 

the developed algorithm.  

The same test program and dataset also evaluated the performance of the developed 

algorithm in C versus the performance of the gcc C library functions for sin, cos, tan, 

sqrt, log, and pow over the limited range of values in the dataset. Included in this testing 



41 

 

was the C version of the Newton-Raphson 1/sqrt that is included in the C version of 

GROMACS 4.5.3 and Lennart Nilsson’s floating point integer conversion table lookup 

method45.   

The developed algorithm has 22 variations reflecting the number of significant digits 

that may be expressed by reducing the number of bits in the mantissa of the IEEE 754 

single precision representation. The full IEEE 754 single precision format supports 

≈7.22 significant digits with 23 explicit bits and 1 implicit bit for the mantissa. In the 

testing with GROMACS the fundamental value used to calculate object (nonbonded 

forces) interactions is distance squared and the object type. The type of object includes 

attributes such as charge and other constants. The developed algorithm effectively 

reduced the spatial and computational granularities using a variable precision floating 

point representation. This was possible because the application uses limited range of 

the IEEE 754 format. In the application a single precision value of 1.0 is used to 

represent 1.0 nm2.  Given this application assumption it is unnecessary to use all ≈7.22 

significant digits of the IEEE format because that would support a spatial granularity 

representing the size of a subatomic particle. This is not meaningful to the application 

and using the full IEEE 754 format would defeat the algorithm’s ability to improve 

performance because of the amount of CPU cache memory required.  

The algorithm’s forward and backward error correction provides stable computational 

results with no divergence for each reduction of the mantissa bits but the requirements 

of application determine what number of significant digits is required. The algorithm 

supports the reduction or elimination of program code if this is known.  The IEEE 754 

standard avoids this problem by making the range of exponents and number of 

significant digits so large that the application developer does not need to be too 

concerned.  In many cases the results returned by the developed algorithm are used with 

experimentally determined data. For example, ocean or atmospheric temperatures are 

measured in terms of a very limited range of significant digits and only a limited 

exponent range. It is unnecessary to believe that ocean temperatures are measured to an 

accuracy of 10-7 degrees. A few significant digits and a few exponents are all that is 

required for terrestrial ocean and air temperatures. It is also necessary to validate an 

application using the incremental noncomputational methodology with a reduced 

precision to determine if the results are ‘good enough’. Using the developed 

methodology in our study of atomic level simulations using GROMACS we found that 
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three significant digits and 7 base 2 exponents from the IEEE 754 format were sufficient 

to have simulation results that were within the deviations between the C, single 

precision SSE and double precision SSE2 builds of unmodified version of GROMACS 

that are all considered ‘good enough’ for general use. 

1.3.3 Evaluation of the Impact of Reducing the Floating Point Precision  

 

The analysis in Figure 7 represents the results of reproducing the precision on a water 

box simulation. This should be typical of force based object simulations. The results 

were generated from a series of simulations using the unmodified application in using 

the SSE, C builds and comparing them to the application optimized with of the 

developed algorithm from ≈7.22 significant digits to ≈2.11 significant digits.  Each of 

the values between ≈7.22 and ≈2.11 represent the number of base 10 significant digits 

that may supported by reducing the mantissa portion of the IEEE 754 format by one bit 

starting from the full IEEE single precision format that supports ≈7.22 significant digits. 
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Figure 7 Increase in Total Energy as Computational Precision Decreases 
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As can be seen total system energy increases after the spatial granularity is reduced to 

less than ≈3.01 significant digits. Tests were attempted using variable precision of less 

than ≈2.11 significant digits but the system blew up!  

Figure 7 shows the variation in mean, max and minimum values for the total energy for 

the same water box simulation. It can be seen that the values change significantly as the 

number of significant digits is reduced beyond ≈3.31 and ≈3.01 significant digits. 

Figure 8 shows increasingly large changes in the standard deviation for total energy 

values for the water box simulation with a reduction of precision of greater than ≈3.01 

significant digits indicating greater instability in system energy.  Starting at ≈2.71 

significant digits the standard deviation for total energy starts to increase rapidly until 

at ≈2.11 significant digits the standard deviation is 114 kJ mol-1.   

The following figure 9 shows the degree to which the standard deviation of the variable 

precision algorithm lies between the standard deviations of the unmodified application 

C and SSE builds. Once again after ≈3.31 or ≈3.01 significant digits there are increases 

in the standard deviations as the ‘spatial’ granularity is reduced. Variable precision 
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Figure 8 Standard Deviation Increasing with Reduced Precision 
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formats within or close to the deviation between the unmodified builds of the 

application are considered to likely be ‘good enough’ for the intended use. 

 

 

1.3.4 Test Environments 

 

Performance testing was performed on the following systems: AMD Opteron 6272 2.1 

GHZ 2MB CPU cache (Bulldozer) 64 core server, Intel Xeon 5650 2.67 GHZ 12MB  

Cache 6 cores (Westmere-EP 32nm), Intel Core i7 (2630QM) 2.0 GHZ 6 MB Cache 

(Sandy Bridge), Intel Core i7 (930) 2.8 GHZ, 8 MB cache (Nehalem), Intel Core 2 Duo 

2.24 GHZ 3 MB cache, Intel Core 2 Quad Core 2.2 GHZ 3 MB cache, AMD Athlon 

3800+ 2.4 GHZ 512KB cache, AMD Athlon X2 4400+ 2.3 GHZ 512KB cache and 

Intel Core i5 1.7 GHZ 3MB cache (4201U (Haswell) ULT). 

All testing was performed on Ubuntu 14.04. The Intel Software Development 

Emulator (SDE) was used for the initial development and testing of the AVX2 

instruction set version (Intel Haswell architecture). The gcc 4.8 C compiler was used 

for development. 
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Figure 9 Standard Deviation Between GROMACS C and Single 

Precision SSE as compared to Variable Precision 
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1.3.5 A ‘Noncomputational’ Incremental Algorithm 

 

The algorithm exploits the internal structure of the IEEE 754 floating point standard’s 

representation of single and double precision numerical values. Once these values are 

processed they are used to index tables of pre-calculated results and then to 

incrementally compute additional intermediate or final results. The objective of the 

methodology is to avoid computation at the core of the nonbonded routines and to move 

this computation so that the pre-computed tables are generated only on first use. 

Compiler global optimizers have been generating results once and performing 

incremental computation as needed since the 1980s.  

 

Figure 10 illustrates the differences between the methodologies. A computer program 

may be considered to be sequences of instructions and functions that have a start and 

an end with branches representing calls to the functions of the program. The branches 

for computing the object interactions use the greatest amount of CPU time and real 

clock time. In the computational model every function calculates everything every 

time the function is executed. If the algorithms in these portions of the program have 

already been coded optimally the only alternative is to not perform the calculations.  

The sections in red indicate the computationally intensive parts of the code that have 

already been fully optimized computationally.  

 

In the noncomputational incremental method when a program is run to process object 

interactions the input files and parameters are analyzed for a number of key 

application specific parameters that comprise the definition of what is being modeled 

based on the problem domain. In the case of our molecular dynamics application these 

are: type of forces, water model definitions, cutoff schemes, type of box (cubic, 

dodecahedron), etc.  This information is used to construct a series of small memory 

caches of pre-computed results the first time the results are used that can be 
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assembled or incrementally calculated at runtime for all subsequent processing 

eliminating the need to recomputed the entire equation or function.  

If too high a percentage of the CPU cache is used because the tables are too large 

performance gains decrease and can result in a loss of performance. In the testing 

performed it was found that if over approximately fifty percent (50%) of the CPU 

cache was used the performance could vary substantially between multiple executions 

of the test program.  

 

1.4 Background – Floating Point Representations 

 

 

1.4.1 IEEE 754 Floating Point Standard 

 

The IEEE 754 floating point standard defines digital representations for ranges of real 

numbers. The single precision real number format is represented using 32 bits and 
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Figure 10 Computation-based vs. Noncomputational Incremental Method 
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 IEEE 754 Representations 

 Width Range  Precision[a] 

Single 
Precision 32 bits 

±1.18×10−38 to 
±3.4×1038   7.2 digits 

Double 
Precision 64 bits 

±2.23×10−308 to 
±1.80×10308   15.9 digits 

[a] Decimal digits precision is mantissa bits * log10(2) 

Table 1 IEEE 754 Format Ranges 

the double precision format is represented in 64 bits. The standard also supports other 

formats such as half precision (16 bits) and quad-precision (128 bits). All binary 

representations have three components: a fraction (mantissa), an exponent and a sign. 

The differences between the formats are in the number of bits used to represent the 

exponents and mantissas. A single precision value is represented in a 32 bit binary 

format. Figure 1146 shows the single precision values there is a sign bit, 23 bits plus 

an implicit 24th bit for the mantissa, and an 8 bit exponent that is biased by 127.  

 

Figure 11 IEEE 754 Single Precision Format  

 

Equation 1 is used to convert the binary 32 bit representation of a single precision 

value to its base 10 format where i is the first bit of the mantissa to the maximum 

supported by the floating point format. Thus the value represented in figure 11 is 

0.15625. 

23
( 127)

23

1

( 1) (1 2 ) 2sign i e

i

i

x b  





       

Equation 1 IEEE 754 Single Precision Value 
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Figure 12 shows the 64 bit double precision representation that has additional bits for 

both the exponent and mantissa.47 

 

Figure 12 IEEE 754 Double Precision Format 

The binary representation of a double precision value is converted to the base 10 

format using the following formula. This formula varies from the single precision 

formula only in the number of bits that are used for the exponent and mantissa. 

 

Formula 2 IEEE 754 Double Precision Value 

 

1.4.2 Understanding the Purpose of the Application 

The objective of HPC application software should be to make the function being 

performed run as fast as possible not to just be a general purpose tool.  Most software 

uses data formats and processing instructions whose functionality is defined by 

standards organizations such as IEEE, ISO or ANSI. These formats and instructions 

support a broad set of general purpose capabilities but because of their digital 

implementation they have a large but defined set of limitations. Users of applications 

accept that the supported ranges are ‘good enough’ for their general use. The CPU 

vendors accept that their products address enough of the total market requirements 

that they will be competitive. Applications use constants or calculated values that may 

be experimentally determined. Data is subject to the limitations of measurement, 

assumptions of the application, and by equations or algorithms. Almost all 

applications use objects that are coarse grained at some level. 

1.4.3 Developed Variable Precision Floating Point Based on IEEE 754 

 

By manipulating the binary format of the floating point representation of data it is 

possible to vary the precision of a floating point value. These reduced precision 

representations and knowledge of the equation or function can be used to create 

indices. These indices can then be used for accessing pre-computed results that are 
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( 1023)

52

1

( 1) (1 2 ) 2sign i e

i

i

x b  





     



49 

 

part of function, equation or application solution eliminating runtime computation by 

one or more table lookups. The multiple results returned can be ‘assembled’ or 

incrementally calculated to product the final results.  Due to CPU cache limitations 

variable precision can operate only over one or more small ranges of the IEEE format. 

If variable precision floating point representations are used computationally intensive 

portions of functions, equations, or solutions can be completely avoided without 

violating the ‘floating’ characteristics of the IEEE 754 standard.  The computationally 

intensive portions of the solution become ‘noncomputational’ at runtime.  Use of 

variable precision requires application and solution specific knowledge that must be 

provided either by the developer or obtainable at runtime. This information needed by 

the application to create the tables for use with the methodology is frequently 

available to the application at runtime based on input files, parameters, or through 

processes that occur when the applications starts. The methodology also requires 

knowledge of the properties of the CPU and especially the cache size available to 

process. 

 

With almost no exceptions the full IEEE 754 single/double precision is therefore 

unnecessary for such things as distance, force and economic calculations in a single 

application.  Problem domains operate using granular objects. Applications 

performing force related object interactions with few exceptions do not model quarks 

and galaxies at the same time.  

Physical object interactions operate in real space and time and are simulated by 

applications to run in virtual real space and time that maps to a range of 

computational values. This real space and computational space can be represented by 

fewer bits for both the exponent and mantissa portions of the IEEE 754 representation 

used for general computation because of the nature of the problem being solved.   

Object interaction software should be able to operate on a reduced precision form of 

the IEEE format. 

Reduced granularity uses fewer of the mantissa bits and exponent bits from the entire 

IEEE range. The following example is for a contiguous range. 
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Equation 3 Variable Precision Formats for Contiguous Base 2 Ranges 

One or more base 2 ranges of the IEEE format may be used per result to optimize the 

use of cache memory, remembering that the IEEE 754 exponents are biased by -127. 

Noncontiguous base 2 exponent ranges may be used. For example R1 ∈ {90, 91, 92}, 

R2 ∈ {100,101,102,103}, Rl ∈ {121,122,123...254}. This is useful when a function or 

equation returns values that are predominately in specific ranges and do not frequently 

exist in other ranges. 
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Equation 4 Variable Precision Formats for Multiple Base 2 Ranges 

Partial ranges may also be used by changing the lower bound used for cache table 

creation to a value that is not a power of two. This may be used to reduce the amount 

of memory used for each result. This technique may also be employed at table 

allocation time to reduce the number of entries in the high end of the table. The same 

techniques for adjusting lower and higher bounds that are used for a single contiguous 

table may also be applied to a model using multiple ranges. Cyclical functions over 

many powers of two may benefit from a small amount of code to select table portions 

or to perform short calculations to use less memory. Some functions or equations may 

have special requirements for use with the developed algorithm based on boundary 

conditions, discontinuity or values that would result in an imaginary number, NAN or 

±∞. Special coding for table initialization is required for these situations. 

The simplest form of a variable precision data format is a constant such as π that is 

not initialized to the full number of significant digits supported by the IEEE 754 

standard. It is usually used as a constant that may be thought of as a table with one 

entry where the value is coded by the application programmer. No one would think of 

writing the following code to calculate the value 3.1415. 
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Equation 5 Formula for π 

In a water box test simulation that was used to provide the base for reproducibility for 

this study the following data profile was observed during a 1 nanosecond simulation 

where r represents the distance between interacting molecules. The maximum 

distance used to calculate force interactions was 1.4 nm. This value was set in an 

input file to the software at runtime. The minimum distance has real world physical 

limits based on the forces and velocities involved in the interactions. At room 

temperature water molecules can only approach each other at a distance greater than 

the hydrogen to hydrogen bond length (74pm). 

This implies that a variable form of the IEEE 754 format could be used to generate the 

results for nonbonded interactions using relatively small amounts of CPU cache 

memory for pre-computed tables. Values representing the ± 1 pm granular space may 

be represented as a reduced precision IEEE 754 format of three significant digits.  

This is accomplished by reducing the number of bits i in the mantissa. The following 

defines the variable precision format for ≈3.01 significant digits over a limited range 

of exponents. The value of i represents the number of bits for the mantissa and the e 

must be in the set of biased values representing the range of powers of 2 that the 

application requires.  

 

If the application represents distance using 1.0 as 1.0 nm2 and the minimum distance 

is 74 pm and the maximum distance is 1.4 nm then the application uses only 7 base 2 

exponent ranges from the biased IEEE 754 single precision exponent. It was theorized 

Equation 6 Variable Precision ≈3.01 Significant Digits, 7 Base 2 Exponents Ranges 
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that the number of significant digits used to represent space in the application 

(molecular dynamics) is approximately 3 digits.  

There are therefore four reduced precision formats representing approximately 3 

significant digits requiring 9-12 mantissa bits. These formats are memory efficient 

enough to be useful in currently available CPUs. This may be represented as follows: 

  

Equation 7 Variable Precision formats for 3 significant digits for test dataset 

The most memory efficient alternative supports ≈3.01 significant digits and uses 

28,672 bytes of storage for each single precision pre-calculated value (7 base 2 

exponent ranges * 1024 entries/power of two * 4 bytes/single precision entry). The 

distance squared (r2) and the type of interaction is used to determine what 

intermediate or final results are created and are available for use during the execution 

of the simulation. The other alternatives of interest are ≈3.31, ≈3.61, and ≈3.91 

significant digits requiring 57,344, 114,688 and 229,376 bytes of storage respectively. 

Any of these fits easily within the CPU L2/L3 caches. The following shows the 

memory requirements for variable precision lookup tables where 1.0 equals 1 nm2 for 

all the object interactions and intermediate results for a pair of water molecules 

calculating the non-bonded forces.  

Mantissa 

Bits

Approx Base 

10 

Significant 

Digits

Table Entries 

Per Base 2 

Power

Distance 

Squared (r
2
) 

Entries 7 

Base 2 

Powers

Memory 

Required Per 

Result

W3A-W3A 

Interactions LJ 

+ RF (bytes)

9 2.71 512 > 1 pm 3,584 14,336 100,352

10 3.01 1,024 1 pm 7,168 28,672 200,704

11 3.31 2,048 1 pm 14,336 57,344 401,408

12 3.61 4,096 1 pm 28,672 114,688 802,816

13 3.91 8,192 1 pm 57,344 229,376 1,605,632

14 4.21 16,384 0.1 pm 114,688 458,752 3,211,264

15 4.52 32,768 0.1 pm 229,376 917,504 6,422,528

16 4.82 65,536 0.1 pm 458,752 1,835,008 12,845,056

17 5.12 131,072 0.01 pm 917,504 3,670,016 25,690,112  

Table 2 Memory Requirements for Variable Precision Format 
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In our test object interaction application (GROMACS) this permits the use of the 

algorithm on solvent-solvent, solvent-solute interactions and some solute-solute 

interactions depending on what is being simulated and the amount of CPU cache 

available. Simulating the object interactions between water molecules in our test used 

only a fraction of the CPU cache available and water interactions account for most of 

the performance cost of a typical molecular dynamics simulation, as much as 90%.   

The requirements of the object interaction application and even a specific execution of 

that application determine the number bits of the IEEE exponent (base 2 powers) and 

number of mantissa bits of the IEEE representation that is required. Application 

developers frequently use the value of 1.0 within the problem domain whether it is 

one nm, m, km, light year, time step or other value.  

Application and execution specific runtime ‘constants’ not known at compile time 

also may be useful in reducing the number and size of tables used for the developed 

method. These runtime constants can be used to reduce or eliminate calculations that 

are performed at runtime. In our example there are a number of variables that are 

known at runtime and used as constants by the inner most computational routines.  
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The noncomputational incremental algorithm for use in the water box test can exploit 

the following48: 

• Distance squared is always within a limited range and is always a positive 

value. 

• 1/sqrt is not required 

precalculated results are based on distance squared this is the largest part 

of force based object interactions 

• Calculations of numerous intermediate results are not needed. 

 powers of the inverse square root of the distance  

 Intermediate variables associated with equation calculating Lennard-

Jones values 

 Constants that are used in the equations known at runtime only 

 Charge, force field and other constants that are specific to the object 

types 

 Container type specific constant (cube, dodecahedron) 

 Other constants are input from files 

In summary, all of the above observations allow the interactions for two water 

molecules to be reduced to a single function where distance squared is the only 

variable and it can be used to retrieve pre-calculated intermediate or final results.  

The following pseudo code illustrates how this may be applied to GROMACS water 

three atom to water three atom, Lennard-Jones and reaction field nonbonded 

interactions in GROMAS. Portions of the pseudo code is from the C source code of 

the GROMACS nb_kernel212 routine. It is not intended that the reader understand the 

pseudo code but only for the reader to see the magnitude of the difference. 
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      bitpattern11.fval = rsq11;

      iexp11            = EXP_ADDR(bitpattern11.bval);

      addr11            = FRACT_ADDR(bitpattern11.bval);

      result11.bval     = cinvsqrtexptab[iexp11] | 

cinvsqrtfracttab[addr11];

      lu11              = result11.fval;

      rinv11            = (half*lu33*(three-((rsq1*lu11)*lu11)));

      rinvsq11          = rinv11*rinv11;

      rinvsix           = rinvsq11*rinvsq11*rinvsq11;

      vnb6              = c6*rinvsix;

      vnb12             = c12*rinvsix*rinvsix;

      vnbtot            = vnbtot + vnb12-vnb6;

      krsq              = krf*rsq11;

      vcoul             = qqOO*(rinv11+krsq-crf);

      fs11              = (twelve*vnb12-six*vnb6+qqOO*(rinv11-

two*krsq))*rinvsq11;

      vctot             = vctot + vcoul;

 

The developed methodology avoids a Newton-Raphson 1/sqrt and retrieves three 

incremental data values based on distance squared (rsq11), each with a cache lookup 

using an integer index created with one/two instructions depending if the value is 

signed. Either single or double precision values may be retrieved. The tables are 

initialized the first time the nonbonded interaction is needed within the limits of the 

cache size. If the cache size is exceeded then the value can be calculated. The pseudo 

code is reduced to the following based on distance squared. This incrementally 

calculates the results based on three retrieved values and eliminates almost all floating 

point calculations in the inner force calculations and most of the remaining 

instructions are memory loads and register operations that execute in less than one 

CPU cycle. 

 vnbtot     = vnbtot+ OO_VNBA(rsq11); 

 vctot      = vctot+ OO_VCOUL(rsq11); 

 fs11      = OO_FS11(rsq11); 
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1.5 The Algorithm 

 

1.5.1 Implementation 

 

The algorithm uses a processed form of the raw IEEE format representation as a table 

lookup index for each intermediate or final result. This is accomplished without 

compromising the ‘floating’ characteristic of the IEEE format. A table is created on 

the first pass through the nonbonded routine to initialize the table. The tables are 

based on the inter-particle distance squared and this eliminates the need to perform 

the 1/sqrt operation.  

The index is created using the following pseudo code. The lower boundary of the 

distance squared values that are supported by the table is subtracted from the distance 

squared value (r2) for the interaction, treating both native floating point values as 32 

or 64 bit integers. The resulting value is shifted a number of bits to the right to reduce 

the precision and therefore reduces the spatial ‘granularity’ for the interaction. The 

resulting integer value is then used as an index to lookup the result or intermediate 

results in one or more tables or sections of tables and the value returned is either a 

single precision or double precision value depending on the requirements of the 

application. The same index may be used to retrieve multiple results. Multiple 

intermediate results may be used to incrementally calculate a final result. Applying 

the variable precision methodology to nonbonded interactions, r represents distance, 

r2 represents the floating point distance squared value used to create the index, Ftab is 

the lookup table for the reduced precision results, LOWER_BOUND is the lowest 

value for r2 that is possible in floating point format (but used as an integer) and 

NUM_BITS is the number of bits to shift to the right to reduce the precision. There is 

no sign bit since distance squared (r2) is always positive otherwise it would be 

necessary to mask it out or to use two tables for positive and negative results 

depending on the intended use. The range of r2 is continuous and over a single range 

so no additional processing is required for boundary conditions or multiple table 

lookups for a single function. 

F(r) ≈ Ftab [(r2.binary – LOWER_BOUND) >> NUM_BITS].float 
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Multiple intermediate results can be stored as offsets in the same table eliminating the 

instructions that reload of the base address of the table. Using SSE2, SSE 4.1 and 

AVX2 this can be reduced from 11 to 7 to 3 instructions respectively that can be 

highly pipelined.  

A number of these instructions operate in less than one clock cycle. SSE2 and SSE 

4.1 can process four single precision values at one and AVX2 can process 8 values at 

once. The algorithm uses SIMD instructions for integer and logical operations that do 

not exist in either the SSE or AVX instruction set extensions. The algorithm can be 

coded to avoid the need for these instructions but with a performance penalty because 

of the increased number of instructions and memory accesses. This project did not 

evaluate the performance impact of using either SSE or AVX instruction sets. It was 

noted that the performance of the SSE2 and SSE 4.1 instruction set implementations 

on Intel Sandy Bridge and Haswell architecture CPUs was much higher than would 

have been predicted from instruction timings. This was possibly due to improvements 

in cache architecture and micro-operation (μops) processing. 

The tables of intermediate results are generated by sequencing through all of the 

possible values of the variable precision representation so that the results ‘float’ in the 

same way as the IEEE 32 and 64 bit formats. As the table generation is performed,  a 

simulated additional ‘guard bit’ to the right of the reduced precision mantissa is used 

before the calculation to initialize the table alternating on odd and even values of the 

mantissa.  

This prevents a small divergent error from the binary truncation that occurs at runtime 

otherwise it would be necessary to treat the mantissa as a scaled base 2 value at 

runtime and this would defeat much of the performance gain of the algorithm.  

All calculations for table entries are performed in double precision and the results 

stored in the tables as either single or double precision. No interpolation is required. 

The following diagram illustrates the ‘floating’ nature of the implementation.  The 

mantissa portion of the IEEE 764 standard single precision format supports 

approximately 8M values for each power of two. By reducing the mantissa bits it is 

possible to reduce the precision without destroying the ‘floating’ property of the 

format. This makes the variable format suitable for use with functions/equations 

independent of their slope or continuity. When multiple results are used as part of 
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incremental computation at runtime a small number of computer instructions are used 

to assemble or provide minimal calculation to solve equations or functions.  
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Figure 14 Variable Precision Mantissa 'Floats' Like IEEE 

 

An alternative implementation would be to perform an integer conversion of the 

floating point value applying a scaling factor. In the following example the int 

function converts the results of the scaling factor times distance squared and looks the 

result up in a force table. 

F(r) ≈ Ftab [int (scale * r2)] 

Converting a floating point value to an integer causes a divergence from the IEEE 

standard and destroys the ‘float’ properties of the values and generates a diversion 

from the results obtained from those that would be generated by a floating point 

calculation. This diversion is highly function specific.  Using a floating point to 

integer conversion results in fewer and fewer values to represent much larger forces 

as the distances become closer.  When the algorithm is applied to other 

functions/equations the variations of the slope in portions of the functions/equations 

will show large differences in the offsetting error correction based on the slope on the 

axis.  

In his work, Nilsson40 applied an interpolation algorithm that uses an additional table 

and additional code at runtime to attempt to overcome this problem. His interpolation 

model was coded as follows. 
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 Direct lookup 

F(r) ≈  Ftab [index] 

 

Linear interpolation 

 

F(r) ≈  Ftab [index] + α * (Ftab [index+1] - Ftab [index)]) ≡ Ftab [index] + α * 

ΔFtab [index] 

Where 

index = int(scale * r2) 

α = scale * r2 - index 

 

If the integer conversion approach, even with linear interpolation, is applied to general 

computation the index will not appropriately sample the distribution of the function or 

equation’s results based on the IEEE floating point properties. 

It is highly undesirable to use an integer conversion to produce an index using a 

specific value when there are substantial differences in the results contained in the 

table that are being looked up. In this example there are larger and larger differences 

in the forces as the distance becomes smaller and fewer base 10 digits to represent the 

increasingly large forces. 
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Figure 15 Effect of Integer Conversion on a Real Number 
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There is no ‘floating’ property in an integer conversion that would preserve the same 

precision independent of the distance. Figure 16 shows the increasing forward 

backward error correction needed with the 1/sqrt function that is at the core of many 

object interaction problems.  

 

Figure 17 shows the variable precision implementation paralleling the floating point 

standard and an integer conversion based method diverging until it reaches a lower 

limit cutoff that is dependent on the scaling.  This cutoff does not correspond to any 
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specified simulation parameters but is a result of the scaling before the integer 

conversion occurs.  

Another of the side effects of an integer conversion method is the elimination of cases 

where a base 10 value may have more than one base 2 representation or it may have 

no base 2 representation at all. This property of the floating point representation is 

essential to preserving the same number of significant digits as values increase or 

decrease. The following table shows the nature of this property. These cohorts are the 

reason that programmers can not readily compare floating point variables with the 

same base 10 representation because they may have different internal representations. 

Base 10

Base 10 

Decimal

Base 2 

Hexadecimal

2.500003e-01 0.2500000 3e80000b

2.500004e-01 0.2500000 3e80000c

2.500004e-01 0.2500000 3e80000d

2.500004e-01 0.2500000 3e80000e

2.500004e-01 0.2500000 3e80000f

2.500005e-01 0.2500000 3e800010

2.500005e-01 0.2500010 3e800011

2.500005e-01 0.2500010 3e800012

2.500006e-01 0.2500010 3e800013  

Table 3 Example IEEE Floating Point Cohort 

 

 

1.5.2 Performance Evaluation 

 

1.5.2.1 Performance Impact of Exceeding the CPU Cache 

 

This algorithm exploits the available high speed CPU L2 or L3 cache memory to store 

each series of results used at the time the simulation is run.  

Care must be taken not to use an excessive amount of cache memory or performance 

may become worse than computing the results every time.   

An initial test was performed on an ordered sequence of real number values 

representing every possible binary representation of the single precision floating point 

numbers between the lower and upper bounds for the distance squared in our test 

water simulation. This was compared to an equal number of unordered distance 

Figure 17 Relative % Error vs. IEEE 754 Single Precision 
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squared values from an actual simulation. Table 4 shows the performance impact of 

having the distance squared values unordered.  

The following figure shows that performing an index table lookup on an unordered set 

of values is 3.44 times slower and an ordered set of values is 7.67 times faster even 

when the full IEEE 754 ≈7.22 significant range is used. The data required for the 

≈7.22 range is approximately 56MB. The time to sort them even with a fast single 

pass binary sort algorithm would make the access prohibitively long to use an indexed 

lookup at full IEEE 754 precision. The excellent performance even with a very large 

variable precision cache comes from the ordered nature of the data which benefits 

Performance of 1/sqrt() Data Time (ms)

Time Minus 

Empty Loop 

(ms)

Times 

Faster or 

Slower (ms)

Newton-Raphson 1/sqrt() unordered 0.36 0.32 NA

ordered 0.27 0.23 NA

Var. Prec Full IEEE ≈7.22 Digits unordered 1.14 1.10 3.44

ordered 0.07 0.03 7.67

Loop Overhead 0.04

Table 4 Impact of Ordered vs. Unordered Values 
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from the memory pre-fetch and design of CPU caches and memory systems that are 

optimized for sequential access.  

The only solution to the problem of unordered data using full IEEE single precision 

caches was to reduce the ‘granularity’ of the distance squared. Table 5 shows the 

impact of exceeding the 2MB CPU cache of an Intel Core 2 Duo 2.2GHZ processor 

even using a variable precision algorithm. The test was conducted on 21M unordered 

distance squared values for oxygen to oxygen interactions.   

Table 5 Impact of Exceeding the L2/L3 CPU Cache on Performance 

Time (ms)

Time (ms) minus 

loop overhead

Test Program with 

GROMACS NR 1/sqrt() 0.30 0.23 NA
Test Program 1/sqrt() 

Using  Var. Prec. Table of 

Various  Sizes (MB) Time (ms)

Time (ms) less 

loop overhead

Times 

Faster/ 

Slower

32.000 0.88 0.81 3.52

8.000 0.75 0.68 2.96

4.000 0.54 0.47 2.04

2.000 0.22 0.15 1.53

1.000 0.15 0.08 2.88

0.500 0.14 0.07 3.29

0.250 0.14 0.07 3.29

0.125 0.14 0.07 3.29

Test Program Empty loop 0.07

Platform: Core 2 Duo 2.2 GHZ, 2MB Cache Ubuntu 14.04

Test: 21,436,601 Unordered r
2
 Water O-O Interactions
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 This methodology works well when the pre-computed results can be contained within 

the CPU’s L2/L3 cache. Figure 18 illustrates what happens to performance if the 

limits of the L2/L3 cache are exceeded.  The difference between the Sandy Bridge 

and Haswell architecture is possibly due to improvements in the cache memory design 

and performance. Some architectures such as the IBM z196 have a very large L4 

cache. This study evaluated Intel and AMD CPUs only but it could be easily be 

implemented on other architectures. This methodology is limited by the amount of 

L2/L3/L4 cache memory available. In the following example the CPU L2/L3 cache 

becomes fully utilized at a variable precision of about ≈5.12 significant digits. Other 

processors have greater L2/L3 cache memories that allow more extensive use of pre-

calculated and incrementally calculated results. Even on older architecture CPUs with 

only 512KB of cache memory the algorithm can be used for water to water 

interactions (W3A-W3A Lennard-Jones reaction field) and also some intrinsic math 

functions over limited ranges. The slightly lower performance in Figure 18 in the 

range of ≈3.01 to ≈4.82 significant digits was repeatable on the Intel Core i7 “Sandy 

Bridge” and attributable to the CPU architecture. Other Intel and AMD processors 

also showed similar behavior but at different ranges of significant digits. This is 

probably due to differences in the CPU cache memory system design.  
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1.5.2.2 Improving Reciprocal Throughput  
 

Using the algorithm can greatly reduce the number of instructions required to generate 

the object interaction results. The reciprocal throughput analysis is based on the work 

of Agner Fog.49 Reciprocal throughput is one measure of performance.  

Reciprocal throughput has been defined as the average number of clock cycles per 

instruction for a series of independent instructions of the same kind in the same thread 

on a single core assuming that the operands of each instruction are independent of 

preceding instructions. The values used in this study are from Agner Fog’s 

independent evaluation of the performance of a wide range of Intel and AMD 

processors. The values used are the reciprocals of the throughputs when the 

instructions are not part of a limiting chain of dependent instructions. For example, 

assuming that the operands are independent a reciprocal throughput of 2 cycles for an 

FMUL instruction means that another FMUL instruction can start 2 clock cycles after 

the previous FMUL and a value of 0.33 for ADD means that 3 integer additions can 

be performed per clock cycle. 

Thus, the sum of the instruction cycles that a given algorithm uses may be used for a 

relative comparison but with limitations.  One major limitation is memory architecture 

and whether or not the data is available in one of the levels of cache memory. 

Memory access takes 2-3 cycles if cached but several hundred if not. 50 

In principle if the number of computer instructions and the number of ‘cycles’ are 

reduced then the software should run faster. This however may be a deceiving 

measure because the number of cycles per instruction even for the same instruction 

varies greatly on what instructions are around it and where it is retrieving data. For 

example, modern CPUs will attempt to optimize on chip performance by reordering 

instructions, performing operations in parallel or attempting to predict branching.  

CPU instructions execute using micro operations that may be scheduled in parallel 

with neighboring instructions to avoid ‘blocking’ of program execution. Part of an 

instruction may execute in parallel with part of another instruction based on micro 

operations.51 

Generally non-arithmetic instructions take fewer cycles than numeric instructions and 

are more easily optimized in the CPU pipeline frequently executing in less than one 
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cycle. The number of cycles an instruction takes is also highly dependent on where 

the data resides. If the data is in the L2/L3 cache execution is very fast, but if it 

resides in main system memory the memory access could be 100 times slower.  

Using the algorithm can greatly reduce the number of instructions required to generate 

the nonbonded interaction results. It may be noted in Table 6 that the SSE and AVX 

instruction sets are not included from testing. This is because they lack instructions 

for performing certain SIMD bit manipulation instructions that Intel later added in 

SSE2 and AVX2 that are essential to the developed algorithm.  The following figure 

shows the reduction in the number of instructions required to obtain the equation 

results as compared with the GROMACS 4.5.3 assembly language code for atomic 

level interactions. Most of the instructions have a cycle time of 1 but the developed 

algorithm uses numerous memory and register instructions that have cycle times of 

.33 on Intel Sandy Bridge and .22 on the Intel Haswell architecture further improving 

the performance. 

Lennard-Jones 

Reaction Field

Lennard-Jones 

Only

# 

Results

Est x 

Faster 

LJ-RF

Est x 

Faster LJ 

Only

Single Precision

Unmodified GROMACS SSE 35 25 4 NA NA

Developed Method

SSE2 16 16 4 2.2 1.6

SSE4.1 11 11 4 3.2 2.3

AVX2 3 3 8 11.7 8.3

Double Precision

Unmodified GROMACS SSE2 43 43 2 NA NA

Developed Method

SSE2 9 16 2 3.9 1.6

SSE4.1 7 11 2 5.0 2.3

AVX2 3 3 4 11.7 8.3

Number of Instructions

 

Table 6 Estimated Instruction Times 

Table 6 shows a comparison of the number of instructions per result required to 

calculate the nonbonded interactions for two water molecules including the 1/sqrt and 

the Lennard-Jones and reaction field equations. Argon to argon interactions are also 

shown that only need to solve the Lennard-Jones equation. Figure 19 shows the 

estimated differences in performance based on instruction times. These are only 

estimates based on instruction times and do not reflect actual algorithmic 

performance. It is also important to note the number of results that are returned. For 

example, the AVX2 implementation can return 8 single precision values of 32 bits 

each and can return 4 double precision values of 64 bits each. 



67 

 

Figure 19 Performance Estimates Per Result Based on Instruction Count 

 

1.5.3 Runtime Evaluation 

 

In order to test application level performance a program was written that reads 108 

oxygen to oxygen interactions and then processes them inside a timing loop. This was 

done in assembly code using the GROMACS version 4.5.3 SSE2 assembly code 

copied from the nonbonded kernel routines for Lennard-Jones reaction field, and 

Lennard-Jones only routine as well as for the noncomputational incremental method 

using SSE2 and SSE 4.1 with a special granularity of ≈3.01 significant digits to 

provide equivalent results.  

The same test application was used to evaluate the performance of the developed 

algorithm when it was applied to basic C library math functions. The results are 

shown in Figure 20 comparing the developed algorithm versus conventional 

calculation. The Newton-Raphson 1/sqrt and Nilsson’s floating point to integer 

conversion index lookup method are indicated in the chart below with labels ‘NR 

1/sqrt’ and ‘LN JCC’ respectively. The chart also shows one of the limits of the 

developed method. The formula for the volume of a sphere 4/3 π r3 is substantially 

slower than the developed method because there are so few instructions involved in 
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the calculation and because the memory access time is slower than the calculation 

time. 

1.5.3.1 Comparison of Force Only Tests 

 

The force only tests for the nonbonded routines (excluding the distance calculations 

and the application of the forces after calculation) are presented in Table 7. The 

unmodified application SSE code was copied and pasted into the test application and 

changed only to reference local variables. The Lennard-Jones and reaction field force 

equations included the 1/sqrt calculation typical of force based object interaction 

applications. The noncomputational incremental method was also written in hand 

coded assembly code and inserted into the timing loop of the program.  

The very large improvement in force calculation performance is due to the fact that 

the method does not require the calculation of the 1/sqrt, the reduced number of 
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instructions and the benefit that the binary and integer operations receive in the CPU 

pipeline. This should be typical of other force based object interaction applications 

The force only calculations represent only portion of the calculations within the inner 

processing routines. Distance calculations cannot benefit from the use of the 

developed method but can benefit in some architectures from fused multiply and add 

(FMA) instructions. 

 

Time to Process 100M O-O Interactions I7 server 2.67 GHZ

 Forces Only Time (sec)

Time less 

empty 

loop x Faster

Unmodified Applicaton SSE LJ Only(cut and 

pasted into test app) 7.9 7.76
Incremental Method Equivalent (SSE 4.1) LJ 

Only Forces 0.38 0.24 32.33
Incremental Method  (SSE2) Equivalent LJ Only 

Forces 0.39 0.25 31.04

Unmodified Applications SSE LJ + Reaction 

Field + 1/sqrt cut pasted into test app 16.78 16.64
Incremental Method  (SSE 4.1) Equivalent  LJ + 

reaction Field + 1/sqrt 0.38 0.24 69.33
Incremental Method (SSE2) Equivalent LJ + 

reaction Field + 1/sqrt 0.39 0.25 66.56

Empty Loop 0.14  

Table 7 Performance of O-O Interactions  

Intel Xeon 5650 2.67 GHZ 12MB Cache 6 cores (Westmere). 

 

1.5.3.2 Comparison with the Full Inner Object Interaction Routines in 
GROMACS 

 

The same performance test method was used for the assembly code to process all of 

the code within the inner most object interaction routine from GROMACS for the 

nonbonded routines. This code was also copied and pasted from the unmodified 

GROMACS inner processing routines into the timing loop of the test program. In 

order to test the noncomputational incremental method the same GROMACS 

assembly code was copied but the portions that calculate the 1/sqrt function and 

perform force calculations were replaced with the developed algorithm.  The 

performance improvements of 2.15 and 3.18 times faster is in line with the reciprocal 
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throughput estimate on the Intel Xeon 5650 2.67 GHZ 12MB Cache 6 cores 

(Westmere). 

Time to Process 100M Interactions Intel Xeon 5650 server 2.67 GHZ
Full Equivalent of the Inner Object Interaction 

Processes (Nonbonded forces in Assembly 

Code) Time (sec)

Time less 

empty 

loop x Faster
Unmodified Application SSE LJ Forces Only Cut 

and Pasted into Test App 21.00 20.86
Incremental Method (SSE4.1) Equivalent  LJ 

Forces Only 2.70 2.56 8.15
Incremental Method (SSE2)  Equivalent  LJ 

Forces Only 2.66 2.52 8.28

Unmodified Application SSE LJ +  Reaction 

Field + 1/sqrt cut pasted into test app 23.02 22.88
Incremental Method (SSE4.1) Equivalent  LJ 

Reaction Field + 1/sqrt 6.70 6.56 3.18
Incremental Method (SSE2) Equivalent  LJ 

Reaction Field + 1/sqrt 9.84 9.70 2.15

Empty Loop 0.14  

Table 8 Assembly Code Algorithm vs GROMACS SSE  

Intel Xeon 5650 2.67 GHZ 12MB Cache 6 cores (Westmere) 

 

 

1.5.3.3 Intel Core i7 ‘Sandy Bridge’ and AMD Performance 
 

The same tests were performed on the Intel Core i7 ‘Sandy Bridge’ architecture that 

supports the AVX instruction set and on two AMD 64 core systems. The results 

showed an extreme improvement in performance between the generations of the Intel 

Core i7 architecture. The ‘Sandy Bridge’ architecture processed the code for the full 

interaction calculating the 1/sqrt, Lennard-Jones and reaction field forces 14.3 times 

faster and for Lennard-Jones force interactions 15.5 times faster than the unmodified 

GROMACS 4.5.3 SSE assembly code. It was also observed that the two AMD CPUs 

tested only performed about 1.7 times faster. The 64 core AMD server show the same 

performance improvement ratio as older AMD CPUs.  There are fundamental 

differences between the AMD and Intel cache architectures that account for this. 

There were no values reported for the AMD CPUs for SSE 4.1 instructions because 

SSE 4.1 only exists on Intel CPUs. It is interesting to note that the SSE 4.1 

implementation on Sandy Bridge was slightly slower than the SSE2 implementation 

even though fewer instructions were used. 
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The Intel ‘Sandy Bridge’ architecture has a number of improvements that may 

account for this difference. The most important is probably the improvements in the 

cache design, larger CPU cache and wider data paths. It functions almost as if it is 

processing 8 single precision values simultaneously rather than 4 even though no 

AVX instructions were coded into the test program and AVX2 instructions are not 

supported on Intel Core i7 Sandy Bridge. Figure 21 does not include testing with 

AVX or AVX2 instructions. 

 

Figure 21 Developed Algorithm in Assembly vs GROMACS SSE Assembly 

 

 

1.6 Limitations of the Methodology 

 

Limitations Based On Application and CPU Architecture 

 

The developed algorithm has a number of limitations. The most significant is the 

amount of CPU L2, L3, or L4 cache available for use with the lookup tables for the 

intermediate results.  This study showed that there was a substantial reduction in 

performance as compared to actually computing the results when the tables used for the 

incremental results exceeded the CPU L2/L3 cache. It should also be considered that 
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other applications may be using the core or processor that may cause cache misses for 

an application using the incremental lookup tables. Attention should be given to 

associating threads/processes using the algorithm with a physical core, CPU block and 

blade/node. If processes are allowed to move from core to core cache misses will result 

and this will have an adverse impact on performance. Therefore, associating a 

thread/process with a core and cache is essential. Differences between CPU cache 

designs and vendor ‘families’ of CPUs will also have significant impact on algorithmic 

performance as noted in the comparison of AMD and Intel CPUs. 

Use of the algorithm in virtual machine environments with multiple virtual cores 

mapped to a single physical core was not evaluated. In a virtual environment it may be 

difficult or impossible to associate a thread/process with a physical core. If this cannot 

be done there will likely be a performance penalty. 

The methodology requires application specific knowledge to allow the creation of 

reduced precision lookup tables for intermediate results. If this is not available it must 

be obtained by instrumenting the application to use data for the specific execution being 

performed. This is similar to the optimization that is done in some FFT libraries52 and 

to the query execution plans that are supported in SQL databases53.  

The algorithm can currently be used only if the number of significant digits is less than 

or equal to ≈5.12 significant digits, or only one or few results/intermediate results are 

needed due to currently available L2/L3 CPU cache sizes. The exponent range must 

also be known so that each level representing a power of two can be initialized properly. 

The exponents do not need to be contiguous. 

Only one floating point/integer parameter may generally be used as input to the 

developed algorithm for each result/intermediate result at runtime unless the granularity 

of the parameter is extremely coarse or the range of values is extremely limited. Use of 

more than one parameter with the developed algorithm results in a two or more 

dimensional array for use as a lookup table and the amount of memory required rapidly 

becomes large. All other values required for each function used to initialize the lookup 

tables must also be known and static at runtime.  

The implementation of the table initialization and retrieval routines can be implemented 

to use fewer exponent levels of the IEEE 754 standard. If 80% of a function/equation’s 

execution occurs within a range of values then only the exponent levels required to 



73 

 

support the 80% need to be implemented as lookup tables and in all other cases the 

results would be returned by computation. 

Functions that are cyclic can be implemented using smaller lookup tables and a small 

amount of additional code to manipulate the index value. Typically this code would 

consist of integer, and logical operations (and, or, shift) that execute in less than one 

cycle. 

The AVX2 instruction set using the vsgather instruction and AVX2 integer and bit 

manipulations gives the optimal level of performance by significantly reducing the 

number of computer instructions. 

1.7 Addressing the Limitations of the Methodology in 
Hardware 

 

There are numerous processor based hardware architectures and platforms that could 

benefit from implementing the developed functionality in hardware. They include 

CPU (e.g. Intel, AMD, and IBM), GPU (e.g. NVIDIA, ATI, and Intel), smartphones, 

specialized ASICs and other processing hardware. There are two principal 

implementation requirements: 1) dedicated L2/L3/L4 cache or a high speed 

GPU/other device shared memory system (on-chip or off-chip) for application use so 

that cache misses would be eliminated and 2) additional processor instructions to 

manage the application caches and also to reduce the number of instructions required 

to obtain the incremental results.  

 

Generalized software interfaces can be provided that are hardware independent 

vendor specific implementations. These software interfaces would represent an 

abstraction layer hiding an efficient hardware specific implementation and in the case 

that there was no hardware implementation they would use a software only 

implementation. 

 

These improvements could be a major advance in general purpose computing giving 

developers the ability to implement their own problem domain specific 

noncomputational incremental solutions to equations and functions. This approach is 

similar to the microcoding capabilities that were available on early CPUs that allowed 

users to build their own instructions.  
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1.7.1 LxA Application Cache 

 

There are several ways in which a Level x Application (LxA) cache could be 

supported. (x indicates that the cache is part of or parallels an existing processor cache 

such as L2, L3, L4, or vendor defined shared memory region). The general 

requirements for LxA caches are that they be large enough to be useful to store 

incremental results based on variable precision data formats. When implemented in 

hardware it should ideally also be possible to exploit the read only properties of the 

LxA caches after the cache is allocated and initialized so that many cores could share 

higher speed read only access after the cache is allocated and initialized.  

This study showed that multiple tables with incremental results in the range of a few 

megabytes are sufficient to optimize HPC object interaction based applications. This 

technique could also be applied to other HPC applications where there is a high 

degree of interdependency between data processed between cores, processors or 

nodes. An LxA application cache should be at least 1-2MB. 

1.7.2 Hardware Implementation Alternatives 

 

The simplest and most straight forward approach to implementation would be to 

allocate a portion of the currently implemented processor or shared memory caches 

for application use and to add the additional instructions specified in sections 1.7.4 to 

1.7.6.  

Alternative implementations would be to layer or tile another cache alongside the 

existing processor caches. Layering and tiling has been successfully used in processor 

architectures for other purposes and could be useful in implementing LxA caches. 

 

1) Allocation of a portion of the current L2, L3, L4 or other processor/GPU 

caches or high speed shared memory can only be done in architectures 

where there are large CPU caches or large amounts of high speed shared 

memory. L1 instruction and data caches are too small to be useful for 

dedicated general purpose application use. This LxA cache is referenced as 

cache_id in the pseudo instruction definitions 
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2) An additional application level cache paralleling the existing processor, 

GPU or vendor specified caches or shared memory.  

1.7.3 Design Approaches 

 

There are several approaches for design and fabrication: on-chip as an 

allocated portion of the existing caches, layered above an existing 

cache/memory section on-chip, or off-chip. The caches could also be ‘tiled’, a 

technique used in system on a chip (SoC). Figures 2254, 2355, 2456, 2557, 26,58 

and 2759 illustrate some possible design layouts and/or fabrication alternatives. 

 

Figure 22 Example AMD Bulldozer with  LxA (L3A) Application Caches 
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Figure 23 Example AMD Bulldozer with L3A Cache Die Detail 

Figure 24 Example Intel Sandy Bridge Xeon Block Diagram with L3A Cache 
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Figure 26 Texas Instruments Multicore, Multi-layer Chip LxA Could Be Added as a 

Second Shared Memory Layer 

Figure 25 Example Intel Core i7-390X Processor with L3A Die Detail 
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1.7.4 LxA Cache Management Instructions 

 

Pseudo Instructions 

 

Lock/Unlock 

 

LxA lock and unlock instructions are used for the management of the physical cache 

resource. These instructions manage the allocation of LxA memory resources. A 

software layer should be used as a centralized tool for dynamically allocating, 

managing and reorganizing the LxA cache resource. 

 

LCKLXA32 cache_id, address, size 

LCKLXA64 cache_id, address, size   

 

Sets the LxA cache address and memory allocation size for write and sets the 

LxA flag to locked for the specific LxA or vendor specified shared memory 

level. The size may be specified as a 32 or 64 bit integer. Results in a (NOP) if 

the LxA cache is already locked. 

 

 

ULKLXA cache_id, address, size 

 

Unlock the LxA cache_id - clears the address and the LxA lock flag. If it is not 

locked to the specified, address, results the instruction results in a non-

operation (NOP). 

  

LXA Cache Status 

 

LDLXAF register/flag  

Figure 27 NVIDIA Kepler GPU Architecture L2A Cache Could be Overlaid or Parallel L2 
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Returns the LxA Lock status. locked = 1, unlocked 0 or flag set or cleared. 

 

 

LDLXAA register/address 

 

Returns the current LxA address. If not locked the register or memory is 

unchanged. 

 

LDLXAS32 register/memory 

LDLXAS64 register/memory 

 

Returns the 32bit/64bit integer size of the LxA cache. 

 

 

Branch Instructions 

 

JLXAL address 

 

Jump if LxA cache is locked 

 

JLXANL address 

 

Jump if LxA cache is not locked 

 

LxA Cache could be implemented using a write from only one core using existing 

processor memory instructions. By default core 0 could used to manage locks. LxA 

caches should be designed to have multi-way read only access for all cores on the 

chip/module. Applications using LxA cache need to be associated with a core and 

block that has the LxA cache. The association of an LxA cache in a physical 

processor cache or shared memory such as on a GPU would vendor specified. 

 

 

1.7.5 Gather and Scatter Instructions for Use with LxA Caches 

 

In order for the noncomputational incremental algorithm to execute with the fewest 

possible instructions the processor needs to support enhanced SIMD gather and 

scatter instructions. Gather and scatter instructions are already included in the Intel 

AVX2 instruction set extensions and exist in other processor architectures. These 

proposed instructions would access the LxA cache as if the LxA cache is any other 

memory in the application’s address space.  

Processor vendors such as Intel usually implement one instruction for each of various 

data types (e.g. single or double precision floating point values, integers). Variations 
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of these instructions should be implemented for the various IEEE 754 data format 

specifications and for various integer formats supported by the processor.  

 

1.7.6 Instructions to Support Noncomputational Incremental Methods with LxA 

Caches 

 

Pseudo Instructions 

 

SIMD ‘Noncomputational’ Instructions. The number of instructions required to 

manipulate data retrieved from noncomputational incremental tables can be reduced 

by 50% by adding the following instructions. The following instructions are based on 

SIMD gather instructions with additional capabilities to support the developed 

methodology. 

These instructions provide support for index creation for the tables used by the 

developed method by providing the following functionality prior to performing the 

gather operation to retrieve the incremental or final results of a function or equation. 

These functions are performed in a single instruction.  

The base format of instruction may operate on SIMD registers of various sizes and 

data types and these may be implemented on the processor as multiple instructions 

based on the number of single/double precision values that may be stored in an SIMD 

register. For example there may be single and double precision variations of this 

instruction on Intel platforms targeting xmm, ymm or larger SIMD registers on other 

Intel processors like Intel Phi. 

 

1. integer subtraction of a base address from the value to be used as an 

index 

2. mask of the value used to build the index 

3. shift right to support the method’s variable precision format lookup 

 

vadjust_gather SIMD_R0, SIMD_R1, SIMD_R2 register, SIMD_R3, mask, 

immediate 

 

 SIMD_R0  Data from gather operation 

SIMD_R1  Base address of lookup table 

SIMD_R2 Floating Point/Integer Value to be used to construct the 

index 

 SIMD_R3/Memory Mask 
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 Intermediate  Value 1-64 for the right shift operation 

 (length)  Optional parameter (length of R0 data element) 

 

The vadjust_gather instruction provides a fused integer subtract, right shift, and mask 

of an SIMD register/memory followed by a gather to retrieve indexed results at a 

variable precision. The optional length parameter is not required if multiple 

instructions based on data types are implemented. 

 

The following examples are for variations of this instruction but there could be other 

variations based on data type: 

 

vadjust_gatherh half precision results 

vadjust_gathers single precision results 

vadjust_gatherd double precision results 

vadjust_gatherq quadruple precision results 

vadjust_gatheri32 32 bit integer results 

vadjust_gatheri64 64 bit integer results 

vadjust_gatherd32 decimal 32 bit results 

vadjust_gatherd64 decimal 64 bit results 

vadjust_gatherd128 decimal 128 bit results 

 

 

 

 

vadjust_scatter SIMD_R0, SIMD_R1, SIMD_R2 register, SIMD_R3, mask, 

immediate 

 

 SIMD_R0  Data for scatter operation 

SIMD_R1  Base address of lookup table 

SIMD_R2 Floating Point/Integer Value to be used to construct the 

index 

 SIMD_R3/Memory Mask 

 Intermediate  Value 1-64 for the right shift operation 

 (length)  Optional parameter (length of R0 data element) 

 

This instruction provides a fused integer subtract, right shift, and mask of an SIMD 

register/memory followed by a scatter of the register values based on a table index 

using variable precision. The optional length parameter is not required if multiple 

instructions based on data types are implemented. 

 

The following examples are for variations of this instruction but there could be other 

variations based on data type: 

 

vadjust_scatterh half precision values 

vadjust_scatters single precision values 

vadjust_scatterd double precision values 

vadjust_scatterq quadruple precision values 

vadjust_scatteri32 32 bit integer values 

vadjust_scatteri64 64 bit integer values 

vadjust_scatterd32 decimal 32 bit values  
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vadjust_scatterd64 decimal 64 bit values 

vadjust_scatterd128 decimal 128 bit values 

 

  

 

1.8 Conclusions 

 

The major bottleneck in HPC applications performing object interactions is frequently 

the calculation of forces at a time step. HPC applications generally have been highly 

optimized to perform these functions using the latest instruction sets from the CPU 

vendors such as SSE4.1, AVX, AVX2, FMA4, etc. The calculation of the forces and 

intermediate results may be improved substantially by use of a noncomputational and 

incremental computation model that exploits a variable precision format based on the 

IEEE 754 standard for single precision values. This variable precision format 

effectively permits the simulation to run in a reduced granularity of ‘space’. Object 

interaction applications typically do not use the entire range of the IEEE 754 general 

purpose floating point definition. Applications do not perform calculations at the level 

of quarks and galaxies at the same time. Object interaction applications use a ‘coarse 

grain’ spatial granularity appropriate to the problem being solved. Using a coarse grain 

approach allows the creation of indices for accessing pre-computed results without the 

artifacts associated with a simple conversion to integer lookup method.  

It has been shown than a series of tables paralleling the IEEE 754 standard supporting 

variable precision coarse grain space using 3 significant digits precision can be 

generated to support atomic level object interactions in molecular dynamics software 

such as GROMACS. These assembly routines perform 15 times faster on a 2.0 GHZ 

Intel Core i7 ‘Sandy Bridge’ and 2.6 times faster on an Intel Core2 Quad Core 2GHZ 

and 3.2 times faster on a first generation Intel Xeon Core i7 12 core server.  The 

algorithm was also tested against an integer based lookup table method and was found 

to be 7 times faster on the Intel ‘Sandy Bridge’ Core i7 for the force only component 

of a molecular dynamics simulation. Improvements on various AMD CPUs showed an 

improvement of 1.6 times faster reflecting substantial differences in the CPU cache 

architectures of Intel and AMD. 

Testing was also performed on a number of C programming library functions such as 

sqrt, log, tan, cos, etc. over a limited range of values with reduced precision with results 
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in performance improvements that were in the range of 11 to 125 times faster over a 

specified range of values at a reduced precision.  

Simulation specific performance improvements are dependent on the percent of CPU 

and clock  time used for performing nonbonded calculations, the amount of cache 

memory used for the incremental result caches, the overall memory requirements of the 

simulation and CPU and system architecture especially CPU cache size and design, 

chip technology and HPC system architecture.  

This study also explored modifications to processor architectures and the addition of 

support for application level caches using an allocated portion of existing L2, L3 or L4 

caches or a proposed LxA application cache paralleling existing processor caches as a 

means to avoid cache misses. These enhancements in hardware would give developers 

powerful hardware to support the developed methodology through the proposed general 

purpose instructions for managing these caches and making optimal use of them.  

Additional instructions for retrieving and processing data using the developed 

algorithm could reduce the total number of instructions used by the algorithm and cycle 

times by 50%. 
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Accelerating Molecular Dynamics Simulations Using 
Incremental and Noncomputational Algorithms 
 
 

2.1 Abstract 

Molecular dynamics software maximizes performance by using methods to reduce the 

number of interactions, the latest computer instructions, multi-core and distributed 

computing architectures. Calculation of nonbonded interactions is the major 

performance problem. The speed of a simulation is limited by the processor 

architecture and how finely the simulation can be distributed across multiple 

processors/cores. Simulations in the range of 10s of thousands of atoms will not run 

significantly faster on a supercomputer than on a 64 core server. The developed 

algorithm provides a ‘noncomputational’ approach based on the definition of the 

simulation followed by incremental computation. It exploits a developed ‘variable 

precision’ numeric format. Improvements in the ‘calculation’ of nonbonded forces for 

water interactions for Lennard-Jones with Reaction Field on the Intel Core i7 ‘Sandy 

Bridge’ of 14-15 times that of the GROMACS assembly language versions were 

achieved on a single thread/single physical core. Performance on a single 

thread/physical core is the fundamental unit of performance in single processor, GPU 

and distributed computer systems. The method can also be applied to core PME and 

other computationally intensive functions with MD software.  

2.2 Introduction 

 
Molecular dynamics simulations are important to the understanding of bio-molecular 

systems and are used for research in the areas of: membrane dynamics, protein folding 

and unfolding, protein binding, conformational transitions, protein dynamics, transport 

and macromolecular assembly, and small molecule behavior. These simulations can run 

for days or even weeks. Typically simulations are in the range of tens to hundreds of 

thousands of atoms. The primary performance problem is the calculation of the 

nonbonded force interactions (Coulomb1 and van der Waals using the Lennard-Jones 

potential2) between the solvent molecules, typically water. Interactions between water 

and solute and solute to solute represent a much smaller part of the computational cost 
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of simulations. Thus if solvent to solvent interactions cannot be made substantially 

faster, the simulation itself cannot be made significantly faster. The fundamental unit 

of performance in molecular dynamics software is the speed with which functions 

perform on one thread/core in a single physical processor, GPU or distributed 

environment. If this unit can be made substantially faster, so can program execution. 

Since the late 1970s the ability to perform MD simulations has increased greatly from 

a 10 ps simulation of a 450 atom protein in a vacuum3 to simulations in multiprocessor 

environments containing over one million atoms that run for hundreds of 

nanoseconds.4,5 Using special hardware David Shaw has run simulations in the 

millisecond range on the Anton supercomputer.6 There is also the need to perform free 

energy7 simulation studies that involve a series of simulations with changes to   

simulation parameters to support multiple lambda values or replicated simulations to 

increase sampling8. Developers of MD software such as GROMACS9,10 started in the 

1990s by addressing the performance of the inverse square root function11  as this is the 

largest computational contributor to the calculation of nonbonded interactions. Over the 

years as processor architectures, compilers and parallel processing technology 

developed,  new features were added to MD software exploiting processor architectures 

and new instruction sets as they were developed in the industry. GROMACS currently 

supports x86, AMD64/x86-64, PPC, ARMx7 and SPARC VIII. It can also be compiled 

and run on many other operating systems and architectures. GROMACS supports 

NVIDIA GPUs, MPI, OpenMP for parallel processing for multiple machines across a 

network and for hybrid parallel environments.12 For the last 25 years improvements in 

compiler optimization techniques have also greatly improved performance by avoiding 

computation within the scope of the compiler. Implicit solvent13,14 models and coarse 

grain techniques have been developed to reduce the number of particles interactions,15 

but these methods are not widely used for most simulations due to limitations in the 

algorithms. 

GPU support has been added to GROMACS in the last five years initially with 

OpenMM and in version 4.6 built-in support to offload computation to GPUs using 

NVDIA’s CUDA16 to Tesla, Fermi and Kepler cards.17 There are however underlying 

limitations for GPU based computing including the limited bandwidth between the 

CPU and GPU and limitations in GPU hardware as a generalized coprocessor.18 Recent 

advances in GPU memory architectures that include a larger number of cores and GBs 
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of memory as well as the addition of GPU cache memory  has greatly enhanced the 

ability to GPUs as general purpose computational engines. NVIDIA CUDA and 

OpenCL now make it possible to have TFLOPs available on the desktop or in servers. 

Software developed for GPUs must also be designed in a different way that CPU based 

software to make transfers between the CPU-GPU efficient and code designed for 

GPUs must make minimum use of shared memory so as not to block threads running 

on the GPU. GROMACS supports OpenCL as an interface to NVIDIA cards and it has 

been reported that there is OpenCL support for GROMACS using ATI graphics cards.19 

Support for simple integer based lookup tables to eliminate calculations using the 

distance squared as the base for the lookup of forces was developed for CHARMM26.  

This approach has its own problems due to the conversion of floating point to integer 

indices to provide a simple index to obtain force results. As the distance becomes 

smaller the conversion to integer results in an increasingly large difference in the results 

obtained versus the results of the calculated value using floating point instructions.  This 

results in large offsetting positive and negative error correction for forces as these 

increase and distance becomes smaller until eventually a cutoff occurs with a maximum 

force solely based on the conversion of floating point to integer and the size of the table.  

The performance of MD simulations has probably benefited the most from specialized 

SIMD (single instruction multiple data) instructions and fused multiple and add 

instructions. For many years GROMACS has exploited the single instruction multiple 

data (SIMD) instruction sets SSE, SSE2 and recently added support for AVX20 and 

Intel and AMD’s FMA21 instructions for fused multiply and add. Prior to GROMACS 

version 4.6 GROMACS achieved very high performance on a single processor/core by 

using hand coded assembly language to process four single precision values or two 

double precision values simultaneously. The GROMACS 4.5 assembly code for the 

nonbonded interactions was closely examined and no opportunities for further 

optimizations in the SSE version and only one instruction could be removed from the 

SSE2 (double precision) version.  In version 4.6 the assembly code was replaced with 

high level language code using intrinsic functions to support newer instructions sets 

without the need to develop code in assembly language. This also has the benefit of 

exposing the code to the compiler global optimizer. It is rarely possible to improve upon 

the code generated by compilers with advanced global optimizers. With the support of 

the AVX, AVX222 and FMA instructions 8 single precision values may be processed 
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simultaneously.  The Intel Xeon Phi processor supports the AVX512 instruction set and 

can process 16 single precision values simultaneously. 

2.2.1 Performance Limiting Factors for MD Simulations 

 

Processing speed has been limited primarily by CPU clock speed (cycle/second GHZ) 

and the amount of data than can be processed in one cycle. In 1965 Gordon Moore, 

Intel co-founder, predicted that processing power would double approximately every 2 

years23 but in 2005 Moore declared that his law was ‘dead’.24 This was largely due to 

the limitations on CPU clock speed, heat dissipation on the chip and fabrication costs 

due to the on chip density. With current technology this limits the performance on a 

single core/processor primarily based on CPU clock speed (GHZ). There is a direct 

relationship between clock speed and power consumption and temperature though 

advances have been made in this area with the low power Intel ‘Haswell’ architecture. 

Figure 28 shows that CPU clock speed has flattened since about 2003. See the blue line 

in the following figure. There are more cores/chip and more transistors/chip to support 

 Figure 28 Intel CPU Trends – Limitations on Performance 

© Herb Sutter, Used with permission 
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them. Techniques such as multiple cores on chip can reduce the communications costs 

between threads but CPU clock speed is not substantially increasing and is a 

fundamental barrier to the performance of MD simulations. Over-clocking of CPUs can 

be done but is limited by the amount of power consumed and heat generated. Over-

clocking can also result in computational errors or damage to the chips.25 

Studies have also shown that there are limits to the scalability of a simulation based on 

the number of atoms in the simulation26. There exists a minimum number of atoms that 

can be processed per processor/core before the communications costs and real time 

delays are greater than the real time performance gains.  For simulations in the range of 

a few 10s of thousands of atoms this is less than 64 cores. This implies that a simulation 

in this size range will not run significantly faster on a system with 1000 cores. In fact 

if a simulation were to be split into too few atoms per core the communication cost 

could consume most of the real time and slow the real time to process the simulation. 

Molecular dynamics simulation software uses methods (e.g. lattice summation or 

spherical cutoffs) to reduce the number of interactions from O(N2) to O(NlogN) or 

O(N).27,28 GROMACS exploits the latest in computer instructions, multi-core, and 

multiprocessor capabilities and tools such as MPI to decompose and distribute these 

atoms and interactions across cores and nodes.  
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Figure 29 shows the results of the study of Gruber and Pleiss29 in 2010 that 

demonstrated the peak performance that can be achieved with different MD system 

sizes.  

There are therefore fundamental limitations in simulation performance that cannot be 

overcome by improvements to programming: CPU clock speed, size and speed of L1, 

L2, L3, L4 cache memory and speed of main memory, transistor chip density, heat, and 

materials properties. Distances off chip to CPU blocks, main memory, blades or server 

nodes have significant delays in terms of clock cycles. Distance is a fundamental 

problem because of materials properties and the speed of light.  When processing is 

performed in CPU registers frequently multiple instructions may be done in a single 

clock cycle. The further the data is from the registers the more cycles are required to 

obtain the data or a fraction of a cycle. Data from main memory may require over 100 

cycles with data from other CPU blocks, blades or nodes taking significantly longer. 

Substantial improvements have been made in InfiniBand technology that is widely used 

in supercomputers but as of 2014 the theoretical effective transfer rate is 24 Gbs.30 Due 

to advances in the Intel ‘Sandy Bridge’ and “Ivy Bridge’ architectures the minimum 

number of atoms/core/processor has been reduce from a range of ≈500-1000 to ≈150 

allowing simulations to be distributed across more cores and processors. The 

fundamental performance problem with all of these improvements remains how fast the 

atoms on a single core/processor can be performed. Regardless of the number of 

Figure 29 Peak Performance by system size. Adapted from Gruber and Pleiss 
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atoms/core/processor, substantial improvements in performance must come from 

improving single thread/core/processor performance. This is the object of this project. 

Other fundamental limitations exist to performance improvements such as those 

imposed by Amdahl’s law31. The performance of a program that can be improved is 

limited by the percentage of the code that can be improved. The speedup of a program 

using multiple processors in parallel computing or using an improved algorithms is 

limited by this sequential fraction of the program. For example, if 95% of the 

performance of program can be parallelized or improved by code changes, the 

theoretical maximum speed up would be 20 × as shown in Figure 30.32 It will not matter 

how many processors or how good the programming changes are assuming that the 

portions of the program that can be improved may be parallelized completely or that 

the performance of the code being changed may be reduced to zero percent of the total 

time for the program.  

 

Figure 30 Performance Limitations - Amdahl's Law 

In the case of molecular dynamics simulations this is not the case because it is not 

possible to distribute the numbers of molecules/atoms for typical simulations across 

large numbers of processors without causing large communication delays. The core 
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processing of nonbonded interactions has a fundamental limit based on the number of 

atoms that can be processed per core. 

Fortunately the percentage the CPU time and clock time for a simulation is concentrated 

in the nonbonded routines as shown from the summary statistics from a GROMACS 

simulation of a water box.  (See Figure 31.) The performance improvement that may 

be obtained for processing the nonbonded interaction has some additional limitations 

based on the percentage of water that is part of the simulation.  GROMACS has 

specialized routines to optimize the performance of water to water interactions. Proteins 

in water typically benefit more from the developed algorithm more than membrane 

simulations that may only contain 60-70 percent water.   

2.3 Methodology 

 

The fundamental question is if single thread/core/processor performance cannot be 

substantially increased by faster CPU clock times, offloading to GPUs or other 

processors in a network where will the breakthroughs in performance occur. This study 

has developed an algorithm that avoids as much of the computation for the nonbonded 

interactions as possible and the algorithm can be applied to other computationally 

intensive functions in MD and other applications. It can effectively raise the scalability 

bar for all single core/processor and multiprocessor environments. This algorithm can 

increase the number of nanoseconds/day that can be run for a given simulation on a 

single core/processor.  

The developed algorithm optimizes the performance of the nonbonded code by using 

runtime knowledge of the simulation being performed just as computer language 

compiler uses global optimizers to determine what part of a software program does not 

change at compilation time. In the case of the nonbonded routines for a given simulation 

typically values for charge constants, Lennard-Jones parameters, reaction field 

parameter and even box type are used as constants at runtime and are not known to be 

constants when the GROMACS software is built and thus cannot be optimized by 

computer language optimizers.  

The developed methodology and algorithms in both the C language and hand coded 

assembler routines provide a ‘noncomputational’ approach based on the definition of 

the simulation and the incremental ‘assembly’ of pre-calculated results to obtain the 
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final result. This approach may be applied to any GROMACS version but the test 

environment was based on version 4.5.3. The developed method uses Lennard-Jones 

and reaction field as the test model. With the advent of Verlet cutoff schemes reaction 

field has once again become a viable high performance alternative to PME in 

GROMACS version 5. 

These incremental results are each stored in a table and accessed with memory, integer 

and bit manipulation instructions only.  These instructions can be efficiently executed 

in the CPU pipeline and many of these instructions execute in less than one clock cycle 

and operate only with CPU registers. No floating point instructions are required except 

where pre-calculated results cannot be used for intermediate or final results that are 

used external to the function being optimized.  For MD simulations processed using 

GROMACS this approach effectively produces a ‘coarse grain’ space for the simulation 

to run in using the distance squared (r2). The algorithm does not however reduce the 

cost of processing the neighborhood list or communication overhead.  

The objective of this research is to address the approximately 70-90% of the CPU cost 

of most molecular dynamics simulations. 

The Coulomb and Lennard-Jones equations required to determine the results of the 

nonbonded interactions are easily solved but usually represent 70-90%+ of the 

Computing:                         M-Number         M-Flops  % Flops 

----------------------------------------------------------------------- 

 Coulomb + LJ [W3-W3]            2432.395833      595936.979    91.5 

 Outer nonbonded loop            1470.783920       14707.839     2.3 

 NS-Pairs                         824.058515       17305.229     2.7 

 Reset In Box                       3.290329           9.871     0.0 

 Shift-X                          197.401974        1184.412     0.2 

 CG-CoM                             9.870987          29.613     0.0 

 Virial                           103.201032        1857.619     0.3 

 Update                            98.700987        3059.731     0.5 

 Stop-CM                           98.700987         987.010     0.2 

 Calc-Ekin                         98.701974        2664.953     0.4 

 Constraint-V                      98.701974         789.616     0.1 

 Constraint-Vir                    98.700987        2368.824     0.4 

 Settle                            32.900987       10627.019     1.6 

----------------------------------------------------------------------- 

 Total                                            651528.714   100.0 

----------------------------------------------------------------------- 

 

 

     R E A L   C Y C L E   A N D   T I M E   A C C O U N T I N G 

 

 Computing:         Nodes     Number     G-Cycles    Seconds     % 

----------------------------------------------------------------------- 

 Neighbor search        1      10001       48.952       28.3     6.1 

 Force                  1     100001      723.982      418.5    89.6 

 Write traj.            1        401        0.723        0.4     0.1 

 Update                 1     100001        8.949        5.2     1.1 

 Constraints            1     100001       15.620        9.0     1.9 

 Rest                   1                   9.621        5.6     1.2 

----------------------------------------------------------------------- 

 Total                  1                 807.846      467.0   100.0 

----------------------------------------------------------------------- 

 

               NODE (s)   Real (s)      (%) 

       Time:    466.390    467.000     99.9 

                       7:46 

               (Mnbf/s)   (GFlops)   (ns/day)  (hour/ns) 

Performance:      5.215      1.397     37.051      0.648 

 

Figure 31 Performance Summary - GROMACS Water Box Simulation 
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computation time for a simulation. These simple equations require few parameters and 

at runtime are dependent on atomic level charges, C6 and C12 Lennard-Jones 

parameters as can be seen from the following equation.   

 

Equation 8 Lennard-Jones Potential 

The inner loops of the GROMACS nonbonded routines use the Lennard-Jones potential 

to calculate the Pauli repulsion and attractive dispersive forces for atoms or molecules. 

In Eq. 8 ε is the depth of the potential well, σ is the distance where the inter-particle 

potential is zero, and r is inter-particular distance. 33,34 

Electrostatic interactions may be calculated as follows where the value of the 

electrostatic force  acting on two point charges  and  is defined as follows.   

is Coulomb’s constant and r is the distance. 

 

Equation 9 Coulomb's Equation 

In order to improve the performance of these equation solutions it is necessary to 

eliminate or reduce substantially the computer instructions and CPU cycles required to 

solve them.  Fortunately at runtime many of the values required to do this are loaded 

into the program based on force field and water model definitions and used as constants. 

This allows the exchange of computational code for data assembled with a few non-

floating point instructions at runtime that may be easily pipelined by the CPU and most 

of the instructions execute in less than one cycle. 

In order to achieve the objective of this project a new mathematical and floating point 

format model has also been developed providing a variable precision floating point 

calculation model based on the IEEE 754 standard to reduce the size of the pre-

calculated tables. This variable precision format parallels the IEEE standard without 

the need for additional tables or runtime operations. This algorithm may be used in any 

application that is computationally intensive. There are no approximations other than 

those reflected in the reduced precision using a subset of the IEEE floating point 

definitions. All calculations that were used in the evaluation with GROMACS for the 

incremental calculations are performed in double precision and stored as single 
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precision when the tables are initialized. The tables representing computational 

increments could also be stored as double precision if needed. GROMACS builds are 

by default single precision so the pre-calculated results were stored as single precision.  

When the tables containing the incremental pre-calculated results are generated the 

variable precision algorithm adjusts the floating point representation to parallel the 

IEEE 754 standard but at reduced precision. It uses a simulated ‘guard’ bit to avoid 

creating a very small cumulative divergent error. When the tables are created the 

exponent portion of the floating point representation of the value of interest (e.g. 

distance squared in the case of the nonbonded GROMACS routines) may be masked 

with a binary value to alter or create one or more ranges of exponents and/or eliminate 

the sign bit of the floating point representation. The precision of the resulting value is 

reduced shifting the floating point value in binary form to the right reducing the 

mantissa. The right shift effectively divides the representation by a power of two and 

reduces the size of the tables required. After this is performed, and a simulated ‘guard’ 

bit is added enabling the calculation of the values stored in the table to be treated as a 

scaled base 2 value. This provides a mixed stability model with a very small offsetting 

forward and backward error correction paralleling the IEEE standard. This is necessary 

because dividing an integer by 2 causes a truncation on odd values creating a 

cumulative error. A floating point to integer conversion is not used because this creates 

a divergent error relative to the IEEE standard by eliminating the ‘floating’ property of 

IEEE 754 compliant CPUs and data formats.  In the case of the nonbonded GROMACS 

routines35 the floating point to integer conversion has an increasingly large offsetting 

corrective error as the distance squared decreases. This has an undesirable effect on the 

results for the force values using such an approach as the distance squared becomes 

smaller.   

The algorithm is designed to scale using single instruction multiple data (SIMD) 

extensions to instruction sets such as SSE, SSE2, SSE4.1, AVX, AVX2 and AVX512 

Intel Xeon Phi)36. In these instructions sets it is possible to process 128, 256 or 512 bits 

of data in parallel. This may be in the form of 4, 8, or 16 single precision values or 2, 

4, or 8 double precision values. The Intel Xeon Phi coprocessor processes 512 bits but 

requires special programming when used as a coprocessor. It has been reported that a 

native version of GROMACS has been compiled for Intel Xeon Phi. The default 

GROMACS builds are for single precision (SSE).  Single and double precision C 
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language code, and double precision (SSE2) are also supported. With the release of 

version 4.6 additional support for FMA and AVX instructions has been added as 

configuration options at build time. The variations of the developed algorithm were 

evaluated against the standard GROMACS 4.5.3 builds for single precision SSE, SSE2 

double precision and single precision C. Additionally an AVX2 version was developed 

for performance comparison on the Intel ‘Haswell’ architecture. AVX support was not 

provided because like SSE it lacks support for certain integer and binary instructions 

that make the developed algorithm efficient. At the time the algorithm was developed 

an AVX enabled version of GROMACS was not available. 

The methodology also could benefit from new computer instructions that s could reduce 

the number of instructions from three on AVX2 or Intel Xeon Phi to two and support 

the allocation and management of a portion of L2, L3 and L4 caches for use by 

applications.  A test program also evaluated performance of the algorithms versus the 

performance of gcc 4.7 C library functions such as sin, cos, tan, sqrt, log, pow and other 

functions over a limited range of values. This suggests that PME and other 

computationally intensive portions of GROMACS may substantially benefit from 

replacing these functions with the developed method. Included in the test was the C 

version of the GROMACS Newton-Raphson 1/sqrt and Lennart Nilsson’s floating point 

integer conversion based table lookup method are indicated in the chart below with 

labels ‘NR 1/sqrt’ and ‘LN JCC’ respectively. Figure 32 also shows some of the limits 

of the developed method. The calculation of the 4/3 π r3 sphere volume formula is 

substantially slower when compared with the other cases because there are so few 

instructions involved in the calculation and the access to memory is slower than the 
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computation. The developed method should not be used for functions that are 

implemented in only a few instructions. 

The IEEE 754 representation of a single precision floating point value has a 23 bit 

explicit mantissa that defines the precision of the single precision format. GROMACS 

builds representing the 23 variations in precision possible using the developed 

algorithm for single precision were developed for use in the comparison with the 

standard build versions for GROMACS single and double precision.  

Each variation of the algorithm was produced by reducing the precision of the distance 

squared value used in calculating the nonbonded interactions. These versions represent 

the spatial and computation granularities possible with the algorithm using a variable 

precision floating point representation.37 Each variation is created by reducing the 

single precision mantissa by one bit. 
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It was observed that the standard GROMACS build versions (C, SSE and SSE2) have 

a natural deviation between each other and this deviation was used to validate the 

algorithms to determine if they were ‘good enough’. If the results of the new 

methodology and algorithms were within the deviation between the GROMACS 

algorithms this study considers the results ‘good enough’ and ‘equivalent’ for use with 

molecular dynamics simulations. 

Validation was performed at two levels: 1) computational - examining 

forward/backward error, stability and possible divergence from the IEEE 754 standard 

38 2) the developed algorithm as compared with the GROMACS 4.5.3 build alternatives. 

This study presents computational and performance results based on water boxes, 

amino acid and protein simulations. 

Water Box Validation 

The following analysis represents the results of a 1ns SPC water box simulation of 329 

water molecules using the GROMACS 4.5.3 Lennard-Jones reaction field nonbonded 

routines with the Berendsen temperature coupling.  The results were generated from a 

series of simulations using the GROMACS SSE build, C build and variations of the 

developed algorithm from ≈7.22 significant digits to ≈2.11 significant digits. The 
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GROMACS g_energy utility was used for analysis. Tests were attempted using variable 

precision of less than ≈2.11 significant digits but the system blew up. Figure 34 shows 

the variation in mean, max and minimum values for the total energy. 

Figure 36 show the standard deviation increasing after ≈2.71 significant digits to 114 

kJ mol-1.   
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Figure 35 shows the degree to which the standard deviation of the variable precision 

algorithm lies between the standard deviations of the C and SSE GROMACS builds. 

The blue line shows the difference between the standard deviation of variable precision 

and the standard deviation of the C language version and the purple line shows the 

difference between the standard deviation of the variable precision and the standard 

deviation of the GROMACS SSE version. Note the difference between the standard 

deviations of the GROMACS C build and the GROMACS SSE build. Once again after 

≈3.31 or ≈3.01 significant digits there are increases in the standard deviations as the 

‘spatial’ granularity is reduced. Variable precision formats within or close to the 
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deviation between the GROMACS builds are considered to likely be ‘good enough’ for 

MD simulations. 

The system temperature is well regulated. The Berendsen temperature coupling was 

used. 

2.3.1 Validation Using Protein Simulations 

 

Protein simulations were run using the standard GROMACS builds and the developed 

algorithm. The following protein studies were conducted: 1VII (Chicken Villin 

Headpiece), 1LYD (T4-Lysozyme), 2INT (Human Interleukin0-4), and BPTI 

(Proteinase Inhibitor (Tyrpsin)). The studies were analyzed using examining root mean 

square deviation (RMSD), energy and hydrogen bonds using the GROMACS utilities 

g_rms, g_energy and g_hbond.  

The variations between multiple replicate runs of the same simulation and using 

different standard build options for GROMACS (single precision SSE, double 

precision SSE2, and single precision C language versions) show results that vary 
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based on how GROMACS is built and is not repeatable from one run of the same 

simulation to another.  

 

The results show a similar variation between the standard GROMACS builds and a 

corresponding similar variation between the developed algorithms.  It is however 

impossible to compare these algorithms to demonstrate that the developed algorithm is 

‘good enough’ because of the complexity and size of these simulations. A number of 

experienced GROMACS users including one of the GROMACS developers were of the 

opinion that the results ‘looked ok’. The options of users or even GROMACS 

developers do not constitute evidence that the methodology is ‘good enough’. Figure 

37 illustrates the natural variation between the GROMACS builds as compared with 

the developed algorithms supporting the approximately 3.01 significant digits. 

 

Figure 37 RMSD 1VII Chicken Villin Headpiece 

 

Multiple runs of protein simulations always show a level of variation and therefore 

these complex systems cannot be used to ‘prove’ equivalence. 

In the study of Nilsson using a less computationally robust integer based conversion 

approach tested on very short simulations, it was reported that the RMS relative force 

error for a DHFR system “was sufficient for simulation of biomolecules.” Further the 
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study analyzed the drift in total energy using CHARMM showing that a direct lookup 

table approach had a 35 K/ns drift as compared with the 0.008 K/ns drift for the standard 

version of CHARMM. Using a linear interpolation method this could be reduced to 

0.16- 0.19 K/ns depending on points/table. The drift in total energy was expressed as 

ΔEtot = ΔEpot + ΔEkin assuming that the entire drift in energy was converted to heat.39  

2.3.2 Amino Acid Studies (1µs)  
 

The algorithm was also evaluated using long 1µs simulations of amino acids in water to 

look for computational artifacts that might not be visible in shorter simulations. 

Arginine and cysteine were used for these studies and variable precision ‘spatial’ 

granularities of the developed algorithm were tested to ≈2.11 significant digits. 

Implementations of the developed algorithm with precisions less than ≈2.11 crashed. 

These mean total energy of the reduced precision variations behaved similar to the 

variable precision water box simulations. 

 

The results of the developed algorithm were evaluated against the standard single 

precision SSE and single precision C versions of GROMACS. No computational 

divergence was encountered other than an increase in the standard deviation in total 

energy similar to the increase in the standard deviation for the water box simulations. 

 

All tests were performed using Lennard-Jones with reaction field with the SPC water 

model and the GROMOS 43a1 force field using GROMACS 4.5.3 using a single core. 

 

2.3.3 GROMACS Regression Test Suites 

 

The developed algorithms were tested in all versions of GROMACS from 3.3 to 4.5.3 

using the GROMACS regression test suites available on the GROMACS site for 

versions 3.3.3 to 4.5.3. This was useful to validate where the ‘spatial granularity’ 

thresholds were. The GROMACS test suites regressiontest.git, gmxtest-3.3.2, 

gmxtesst-3.3.3, and gmxtest-4.0.2 were used. Tests using the test suite for 

GROMACS 3.3.3 showed that all non-bonded tests passed for the first 17 versions of 

the developed algorithm with reduce computational and spatial granularity to a 

distance squared of ≈2.11 significant digits. Some of these should not have passed due 

to the large spatial ‘jumps’ that this reduction in precision implies.  
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The regression test suite for GROMACS 4.5.3 showed that all non-bonded tests pass 

for the first 14 versions with a reduced granularity to ≈3.01 significant digits. This is 

in line with the expectations based on an assumption that a spatial granularity in the 

range of 1pm should be viable and is consistent with the water box testing that 

showed total energy values reported by g_energy started to increase dramatically after 

spatial granularity fell below ≈3.01 significant digits. 

2.3.4 Test Environments 

 

Performance testing was performed on the following systems: AMD Opteron 6272 2.1 

GHZ 2MB CPU cache (Bulldozer) 64 core server, Intel Xeon 5650 2.67 GHZ 12MB  

Cache 6 cores (Westmere-EP 32nm), Intel Core i7 (2630QM) 2.0 GHZ 6 MB Cache 

(Sandy Bridge), Intel Core i7 (930) 2.8 GHZ, 8 MB cache (Nehalem), Intel Core 2 Duo 

2.24 GHZ 3 MB cache, Intel Core 2 Quad Core 2.2 GHZ 3 MB cache, AMD Athlon 

3800+ 2.4 GHZ 512KB cache, AMD Athlon X2 4400+ 2.3 GHZ 512KB cache and 

Intel Core i5 1.7 GHZ 3MB cache (4201U (Haswell) ULT). 

All testing was performed on Ubuntu 14.04. The Intel Software Development 

Emulator (SDE) was used for the initial development and testing of the Intel AVX2 

instruction set version (Intel ‘Haswell’ architecture). The gcc 4.7 was used for all non 

AVX2 development and the gcc 4.8 C compiler was used for building the AVX2 

executables. 

 

2.3.5 Testing with Water Models 

 

Simulations of a water box containing 987 atoms, using the SPC water model, 

GROMOS 43a1 force field and using the NVT ensemble were run. The water box 

simulation used the GROMACS 4.5.3 nonbonded kernels routines for Lennard-Jones 

and Reaction Field for electrostatics.   These simulations were executed using 22 

different variations of the algorithm and the three standard GROMACS single and 

double precision builds. The 22 different versions of the algorithm reduce the size of 

the mantissa for the IEEE 754 representation of the real number value. By reducing 

the size of the mantissa the approximate number of decimal digits supported can be 

reduced from ≈7.22 to ≈2.11. This reduced computational and spatial ‘granularity’ 

was used to minimize the memory required for pre-computed tables.   
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Large fluctuations in the simulation results occurred with water box simulations as the 

‘granularity’ approached 1 significant digit. Similar results were seen in small 

molecule and protein simulations. This is a result of the ‘spatial granularity’ being 

reduced too much and the atoms ‘jumping’ too far.  

2.3.6 A ‘Noncomputational’ Incremental Algorithm 

 

The algorithm exploits the internal structure of the IEEE 754 floating point standard’s 

representation of single and double precision numerical values. Once these values are 

processed they are used to index tables of pre-calculated results and then to 

incrementally compute additional intermediate or final results. The objective of the 

methodology is to avoid computation at the core of the nonbonded routines and to move 

this computation to the generation of pre-computed tables are generated only on first 

use. Compiler global optimizers have been using techniques similar to this since the 

1980s (generating partial results once and saving them in a temporary variable for use 

local use later).  

Figure 38 illustrates the differences between the methodologies. A computer program 

may be considered to be sequences of instructions and functions that have a start and 

an end with branches representing calls to the functions of the program. 
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In the case of molecular dynamics simulation software the routines for computing the 

nonbonded interactions use the greatest amount of CPU time and real clock time. In 

the computational model every function calculates everything every time the function 

is executed. If the algorithms in these portions of the program have already been 

coded optimally the only alternative is to not perform the calculations. In the 

noncomputational incremental method when the program is run the simulation is 

analyzed for a number of key parameters: type of force field and water model, cutoffs 

and type of simulation box (cubic, dodecahedron), definition of what is being 

simulated, and other simulation specific parameters. This information is used to 

construct a series of small memory caches of pre-computed results the first time the 

results are used that can be assembled or incrementally calculated at runtime for all 

subsequent processing eliminating the need to recomputed the entire equation or 

function. The number of precomputed cache tables created is dependent on CPU 

cache memory available. 

 

 

Subsequent ‘Calculations’ 

Retrieve Partial/Final 

Results and Assemble or 

Incrementally Calculates to 

Produce Final Results

First Use Creates Variable 

Precision Lookup Tables 

with Pre-calculated Values
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All Interactions 

Calculated Every time

Pre-calculated Caches – Partial Results

Data Read/Write

Computational ‘Hot Spots’

Figure 38 Differences between Computational and Noncomputation Models 
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2.4 Background 

 

2.4.1 IEEE 754 Floating Point Standard 

 

The IEEE 754 floating point standard defines digital representations for ranges of real 

numbers. The single precision real number format is represented using 32 bits and 

  

 IEEE 754 Representations 

 Width Range  Precision[a] 

Single 
Precision 32 bits 

±1.18×10−38 to 
±3.4×1038   7.2 digits 

Double 
Precision 64 bits 

±2.23×10−308 to 
±1.80×10308   15.9 digits 

[a] Decimal digits precision is mantissa bits * Log10(2) 

Table 9 IEEE 754 Ranges Supported 

the double precision format is represented in 64 bits. Other formats such as half 

precision (16 bits) and quad-precision (128 bits) but are not implemented in most MD 

software such as GROMACS. All binary representations have three components: a 

fraction (mantissa), an exponent and a sign. The differences between the formats are 

in the number of bits used to represent the exponents and mantissas.  

A single precision value is represented in a 32 bit binary format as shown in figure 

39.40 For single precision values there are is a sign bit, 23 bits plus an implicit 24th bit 

for the mantissa, and an 8 bit exponent that is biased by 127.  

 

Figure 39 IEEE 754 Single Precision Format 

A single precision value is represented using the following formula  

The following equation is used to convert the binary 32 bit representation of a single 

precision value to a base 10 format where I is the first bit of the mantissa to the 
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maximum supported by the format. Thus the value represented in Figure 39 is 

0.15625. 

 

Formula 1 IEEE 754 Single Precision Value 

The 64 bit double precision representation has additional bits for both the exponent 

and mantissa as illustrated in figure 40. 41 

 

Figure 40 IEEE 754 Double Precision Format 

The binary representation of a double precision value is converted to the base 10 

format using the following formula. This formula varies from the single precision 

formula only in the number of bits that are used for the exponent and mantissa. 

 

 

Formula 2 IEEE 754 Double Precision Value 

By manipulating the binary format of the floating point representation of data it is 

possible to vary the precision of a floating point value. These reduced precision 

representations and knowledge of the equation or function can be used to create 

indices. These indices can then be used for accessing pre-computed results that are 

part of function, equation or application solution eliminating runtime computation by 

one or more table lookups. The multiple results returned can be ‘assembled’ or 

incrementally calculated to product the final results.  Due to current CPU cache 

limitations variable precision can operate only over one or more small ranges of the 

IEEE format. 

If variable precision floating point representations are used computationally intensive 

portions of functions, equations, or solutions can be completely avoided without 

violating the ‘floating’ characteristics of the IEEE 754 standard.  The computationally 
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intensive portions of the solution become ‘noncomputational’ at runtime.  Use of 

variable precision requires application and solution specific knowledge that must be 

provided either by the developer or obtainable at runtime. This information is 

available to GROMACS at runtime based on the simulation parameter file (mdp), the 

force field and water model definitions and the simulation (.gro, .pdb) file itself. It 

also requires knowledge of the properties of the CPU and especially the cache size 

available to process the simulation. 

2.4.2 Understanding What Is Being Modeled 

 

The objective of MD software should be to make the simulation being performed run 

as fast as possible not to just be a general purpose MD tool.  MD simulations are 

models that use limited precision constants and constraints that are approximations for 

the atoms and/or groups of atoms being modeled.  Each force field and water model 

has its own constants and parameters with limited precision. 

MD simulations are performed at the atomic level in ‘boxes’ or other containers with 

sizes in a range of nanometers not meters and the atomic level bonds and forces 

operate over picometers. The full IEEE 754 is therefore unnecessary.  GROMACS is 

not modeling quarks or galaxies.  

Simulations are run in a virtual real space that maps to a range of computational 

values. This real space and computational space can be represented by fewer bits for 

both the exponent and mantissa portions of the IEEE 754 representation used for 

general computation because of the nature of MD simulations.  In simple water 

models such as SPC, SPCE and TIP3P water has fixed physical dimensions and 

constant properties such as charges at runtime in GROMACS.  

 

Water Box Simulation and Bond Lengths (nm) 

Interactio
n Min r 2   Min r [a] 

Bond 
Length [b]  

H-H 0.017770 0.133304 
0.074  

O-H 0.019504 0.139657 0.096  

O-O 0.057268 0.239307 0.121 
 

[a] r is distance in nm   [b] : http://cccbdb.nist.gov 

Table 10 Water Box Simulation Profile 
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The bond lengths for simulation purposes are usually considered fixed based on 

experimental data if we are using a bond constraining algorithm like LINCS or 

SHAKE. 

Solute components of a simulation also have experimentally measured bonds in the 

range of picometers. It is important to note that bond lengths vary between actual 

force fields models, as they are also adjustable parameters. Also there are slightly 

different values coming from different experimental (and theoretical) methods. These 

differences give credibility to the hypothesis that MD simulations may run using a 

spatial and computational granularity of 1 pm. 

Water Box Simulation and Bond Lengths (nm) 

Bond Length Bond Length 

H—H 74 H--C 109 

C—C 154 H--N 101 

N—N 145 H--O 96 

O—O 148 H--F 92 

F—F 142 H--Cl 127 

Cl-Cl 199 H--Br 141 

Br-Br 228 H--I 161 

I—I 267 C--C 154 

C—C 154 C=C 134 

C—N 147 CC 120 

C—O 143 O—O 148 

C—S 182 O=O 121 

C—F 135 N—N 145 

C—Cl 177 NN 110 

C—Br 194 C—I 214 

Source: http://cccbdb.nist.gov  

Table 11 Experimental Bond Lengths 

With few exceptions single precision is used for simulations. There are a few 

exceptions the most common is energy minimization (e.g. Steepest Descents, 

Conjugate Gradient or L-BFGS).  It is unnecessary for GROMACS to perform MD 

simulations in a spatial granularity the size of a subatomic particle. GROMACS 

should be able to operate on a reduced precision form of the IEEE format. During the 

water box simulation that was used to provide the base for reproducibility for this 

study the following was observed during a 1 ns simulation where r represents the 

distance between interactions. The maximum distance in the water box simulation 

was the cutoff of 1.4 nm. Experimental bond angles have also been determined ± n 

degrees for H2O. 



115 

 

 

 

Experimental Bond Angles (Degrees) 

 Min Max Average  

H2O 104.48 111.3 107.89 ±4.82 

H2N 103.25 121.6 109.85 ±6.27 

HCN 101.91 131 114.53 ±7.25 

CCH 109.9 129.2 120.1 ±10.49 

Source: http://cccbdb.nist.gov 

Table 12 Experimental Bond Angles 

Using this data and the bond lengths for water, a mathematical model was created to 

determine the angular error for a water molecule rotating in 1 pm granular space. This 

calculation assumes that the water molecules are not flexible (the GROMACS 

default) and only shows the computational impact of rotating an inflexible water 

molecule through a coarser grain space. This difference is close to the range of 

experimentally determined values 

An analysis using Mathematica42 of a water molecule rotated through a discrete 

computation space of 1 pm shows an angular error of ± 0.47 degrees with no 

divergence.The angular error for rotating a water molecule through 1 pm discrete 

space is calculated as follows and shown in Figure 41.   

Figure 41 Angular Error for a 1 pm Discrete Space 
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It was theorized that MD simulations could calculate nonbonded interactions in 

granular space of 1 pm based on the distance squared value in the nonbonded routines 

and give ‘equivalent’ results to the standard GROMACS builds. This implies that a 

variable form of the IEEE 754 format could be used to generate the results for 

nonbonded interactions using relatively small amounts of CPU cache memory for pre-

computed tables. Values representing the 1 pm granular space may be represented as a 

reduced precision IEEE 754 format of three significant digits.  

This is accomplished by reducing the number of bits i in the mantissa. The following 

defines the variable precision format for ≈3.01 to ≈3.91 significant digits over a 

limited range of exponents. The value of i represents the number of bits for the 

mantissa and the e must be in the set of biased values representing the range of 

powers of 2 that the application requires.  

 
9,10,11,12

( 120,121,...128 ) 127

23

1

( 1) (1 2 ) 2
esign i

i

i

x b
 





       

Formula 3 Variable Precision 3 Significant Digits, 7 IEEE 754 Biased Format Exponents 

The test GROMACS water box simulation with a cutoff of 1.4 nm uses seven base 2 

exponent ranges and only three of the ranges account for over 80% of the values in 

the simulation.  

The most memory efficient alternative supports ≈3.01 significant digits and uses 

28,672 bytes of storage for each single precision pre-calculated value (7 base 2 

exponent ranges * 1024 entries/power of two * 4 bytes/single precision entry). The 

distance squared (r2) and the type of nonbonded interaction is used to determine what 

intermediate or final results are created and are available for use during the execution 

of the simulation. The other alternatives of interest are ≈3.31, ≈3.61, and ≈3.91 

significant digits requiring 57344, 114,688 and 229,376 bytes of storage respectively. 

Any of these fits easily within the CPU L2/L3 caches. The following shows the 

memory requirements for variable precision where 1.0 equals 1 nm2 for all the 

GROMACS results and intermediates for water three atom to water three atom (W3A-

W3A) for Lennard-Jones and Reaction Field. The use of a precision of ≈2.71 

significant digits was also evaluated. 
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Mantiss

a Bits

Base 10 

Significant 

Digits

Number of 

Mantissa 

Values

Distance 

Squared 

(r
2
) 

Number of 

Floating 

Point 

Values

Memory 

Required 

Per Result

W3A-W3A 

Interactions 

LJ + RF 

(bytes)

9 2.71 512 > 1 pm 3,584 14,336 100,352

10 3.01 1,024 1 pm 7,168 28,672 200,704

11 3.31 2,048 1 pm 14,336 57,344 401,408

12 3.61 4,096 1 pm 28,672 114,688 802,816

13 3.91 8,192 1 pm 57,344 229,376 1,605,632

14 4.21 16,384 0.1 pm 114,688 458,752 3,211,264

15 4.52 32,768 0.1 pm 229,376 917,504 6,422,528

16 4.82 65,536 0.1 pm 458,752 1,835,008 12,845,056

17 5.12 131,072 0.01 pm 917,504 3,670,016 25,690,112  

Table 13 Memory Requirements for Variable Precision Format 

 This permits the use of the algorithm on solvent-solvent, solvent-solute and some 

solute-solute interactions depending on what is being simulated and the amount of 

CPU cache available. This study evaluated the variations of the algorithm for use in 

MD simulations using water boxes, small molecule, proteins and free energy studies. 

The number bits of the IEEE format biased exponent (base 2 powers) representation 

that is required is application and simulation specific. For the GROMACS nonbonded 

routines the uses the value 1.0 to represent 1 nm2. Figure 42 shows the distribution of 

distance squared (r2) values across the base 2 exponents for a water box and liquid 

argon simulation. The base 2 exponents are represented as decimal ranges to 

correspond to how the bits of the IEEE 754 format are used to form decimal values. 

 

Figure 42 Distribution of Distance Squared for Ar-Ar and Water - Water 
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Simulation specific runtime ‘constants’ not known at compile time also may be useful 

in reducing the number and size of tables used for the developed method. These 

runtime constants can be used to reduce or eliminate calculations that are performed 

at runtime. In our water box example supporting Lennard-Jones reaction field for 

water three atom to water three atom the following may be observed from executions 

of  the GROMACS 4.5.3 nonbonded routine nb_kernel212a.c. The GROMACS inner 

nonbonded calculations may therefore be eliminated/reduced based on simulation 

specific knowledge that is available when the simulation is run. Much of this data is 

available from the .mdp, water model, and force field chosen. 

The noncomputational incremental algorithm can exploit the following: 

• Distance squared is always within a limited range and is always a positive 

value. 

• The Newton-Raphson 1/sqrt() is not needed because pre-calculated results are 

used 

• Calculations of powers of the inverse square of the distance squared is not 

needed  

• Vnb6, vnb12 and other intermediate results are not needed 

• Variables twelve and six are constants 

• qOO, qOH, qHH are simulation specific charge constants known based on the 

type of water model used  

• facel which is container specific constant 

• c6 and c12 Lennard-Jones constants  

• The krf and  crf variables are used as constants at runtime 

The variables fs11 and vnba need to be returned from a lookup table for intermediate 

results based on distance squared due to their requirement for final results.  

In summary, all of the above observations allow nonbonded interactions for water 

three atom to water three atom, Lennard-Jones and reaction field, values to be reduced 

to a single function where distance squared is the only variable that is needed to 

retrieve pre-calculated intermediate or final results.  

The following pseudo code illustrates how this may be applied to GROMACS water 

three atom to water three atom, Lennard-Jones and reaction field nonbonded 

interactions in GROMACS. Portions of the pseudo code are from the C source code 
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of the GROMACS nb_kernel212 routine. It is not intended that the reader understand 

the pseudo code but only understand the magnitude of the difference. 

      bitpattern11.fval = rsq11;

      iexp11            = EXP_ADDR(bitpattern11.bval);

      addr11            = FRACT_ADDR(bitpattern11.bval);

      result11.bval     = cinvsqrtexptab[iexp11] | 

cinvsqrtfracttab[addr11];

      lu11              = result11.fval;

      rinv11            = (half*lu33*(three-((rsq1*lu11)*lu11)));

      rinvsq11          = rinv11*rinv11;

      rinvsix           = rinvsq11*rinvsq11*rinvsq11;

      vnb6              = c6*rinvsix;

      vnb12             = c12*rinvsix*rinvsix;

      vnbtot            = vnbtot + vnb12-vnb6;

      krsq              = krf*rsq11;

      vcoul             = qqOO*(rinv11+krsq-crf);

      fs11              = (twelve*vnb12-six*vnb6+qqOO*(rinv11-

two*krsq))*rinvsq11;

      vctot             = vctot + vcoul;

 

Pseudo-Code 1 GROMACS Code Required to Process Nonbonded LJ and Reaction Field 

 

The developed methodology avoids the GROMACS NR 1/sqrt and retrieves three 

incremental data values based on distance squared (rsq11 in the sample code), each 

with a cache lookup using an integer index created with one/two instructions 

depending if the value is signed. Either single or double precision values may be 

retrieved. The tables are initialized the first time the nonbonded interaction is needed 

within the limits of the cache size. If the cache size is exceeded then the value can be 

calculated. The pseudo code is reduced to the following based on distance squared. 

This incrementally calculates the results based on three retrieved values and 

eliminates almost all floating point calculations in the inner nonbonded force 

calculations. 

 

Pseudo-Code 2 Equivalent Code for the Developed Method 

2.5 Design of the ‘Noncomputational’ Incremental Model 

 

This algorithm exploits the available high speed CPU L2 or L3 cache memory to store 

each series of results used at the time the simulation is run.  

 vnbtot     = vnbtot+ OO_VNBA(rsq11); 

 vctot      = vctot+ OO_VCOUL(rsq11); 

 fs11      = OO_FS11(rsq11); 
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Care must be taken not to use an excessive amount of cache memory or performance 

may become worse than computing the results every time.   

Initially a test was performed on an ordered sequence of real number values 

representing every possible binary representation of the real numbers between the 

lower and upper bounds for the distance squared for a liquid argon simulation based 

on the definition of the simulation. This was compared to an equal number of 

unordered distance squared values from an actual liquid argon simulation. Table 12 

shows the performance impact of having the distance squared values unordered.  

The following table shows that an unordered set of values is 3.44 times slower and an 

ordered set of values is 7.67 times faster even when the full IEEE 754 ≈7.22 

significant range is used. The data required for the ≈7.22 range is approximately 

56MB. The time to sort them even with a fast binary sort algorithm making only a 

single pass through the data would be take prohibitively long. The excellent 

performance even with a very large variable precision cache comes from the ordered 

nature of the data which benefits from the memory pre-fetch and design of CPU 

caches and memory systems.  

The only solution to the problem of unordered data with full IEEE single precision 

caches was to reduce the ‘granularity’ of the distance squared and to develop a 

variable precision algorithm. It was observed that there was a variation in the 

GROMACS 4.5.3 C single precision build in the lower 2 bits of the result from the 

Newton-Raphson 1/sqrt function and the result obtained from the C library function 

based calculation. This meant that in theory the floating point precision could be 

reduced and still provide a single precision version of GROMACS that would be 

‘good enough’ for use in MD simulations. The following table shows the impact of 

exceeding the 2MB CPU cache of an Intel Core 2 Duo 2.2 GHZ processor even using 

Performance of 1/sqrt() Inside 

GROMACS Data Time (ms)

Time Minus 

Empty Loop 

(ms)

Times Faster 

or Slower 

(ms)

Newton-Raphso 1/sqrt() unordered 0.36 0.32 NA

ordered 0.27 0.23 NA

Var. Prec. ≈ 7.22 Significant Digits unordered 1.14 1.10 3.44

ordered 0.07 0.03 7.67

Loop Overhead 0.04

Table 14 Impact of Ordered vs Unordered Data 
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a variable precision algorithm. The test was conducted on 21M unordered distance 

squared O-O interactions.   

 

Time (ms)

Time (ms) minus 

loop overhead

Test Program with 

GROMACS NR 1/sqrt() 0.30 0.23 NA
Test Program 1/sqrt() 

Using  Var. Prec. Table of 

Various  Sizes (MB) Time (ms)

Time (ms) less 

loop overhead

Times 

Faster/ 

Slower

32.000 0.88 0.81 3.52

8.000 0.75 0.68 2.96

4.000 0.54 0.47 2.04

2.000 0.22 0.15 1.53

1.000 0.15 0.08 2.88

0.500 0.14 0.07 3.29

0.250 0.14 0.07 3.29

0.125 0.14 0.07 3.29

Test Program Empty loop 0.07

Platform: Core 2 Duo 2.2 GHZ, 2MB Cache Ubuntu 14.04

Test: 21,436,601 Unordered r
2
 Water O-O Interactions

 

Figure 43 Performance Impact of Using Too Much CPU Cache 

Figure 39 illustrates the differences between the current calculated every time method 

in GROMACS for determining the nonbonded interactions versus the 

‘noncomputational’ incremental method.  If too high a percentage of the CPU cache is 

used because the tables are too large performance gains decrease and can result in a 

loss of performance. In the testing performed it was found that if over approximately 

fifty percent (50%) of the CPU cache was used the performance could vary 

substantially between multiple executions of the test program. 

This methodology works well when the pre-computed results can be contained within 

the CPU’s L2/L3 cache. Figure 44 illustrates what happens to performance if the 

limits of the L2/L3 cache are exceeded.  Some architectures such as the IBM z196 

have a very large L4 cache. This study evaluated Intel and AMD CPUs only but it 

could be easily be implemented on other architectures. This methodology is limited 

by the amount of L2/L3/L4 cache memory available. In the following example the 

CPU L2/L3 cache becomes fully utilized at a variable precision of about ≈5.12 

significant digits. Other processors have greater L2/L3 cache memories that allow 

more extensive use of pre-calculated and incrementally calculated results. Even on 

older architecture CPUs with only 512KB of cache memory the algorithm can be used 

for water to water interactions (W3A-W3A Lennard-Jones reaction field) and also 

some intrinsic math functions over limited ranges. The slightly lower performance in 
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Figure 44 in the range of ≈3.01 to ≈4.82 significant digits was repeatable on the Intel 

Core i7 “Sandy Bridge” and attributable to the CPU cache architecture. Other Intel 

and AMD processors also showed similar behavior but at different ranges of 

significant digits. The Intel Core i5 ‘Haswell’ platform gave unexpectedly little 

degradation in performance as the size of the application cache exceeded the physical 

CPU cache size. 

2.6 The Algorithm 

 

The algorithm uses a processed form of the raw IEEE format representation as a table 

lookup index for each intermediate or final result. This is accomplished without 

compromising the ‘floating’ characteristic of the IEEE format. A table is created and 

initialized on the first pass through the nonbonded routine and the values later used as 

‘constants’. The tables are based on the inter-particle distance squared and this 

eliminates the need to perform the 1/sqrt operation. The values of the various 

intermediate results may be looked up at runtime and can assembled or incrementally 

calculated to produce a final results such as forces. 

Figure 44 Variable Precision Performance vs. Significant Digits 
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The index is created using the following pseudo code. The lower boundary of the 

distance squared values that are supported by the table is subtracted from the distance 

squared value (r2) for the interaction, treating both native floating point values as 32 

or 64 bit integers. The resulting value is shifted a number of bits to the right to reduce 

the precision and therefore reduces the spatial ‘granularity’ for the interaction. The 

resulting integer value is then used as an index to lookup the result or intermediate 

results in one or more tables or sections of tables and the value returned is either a 

single precision or double precision value depending on the requirements of the 

application. The same index may be used to retrieve multiple results. Multiple 

intermediate results may be used to incrementally calculate a final result. Applying 

the variable precision methodology to nonbonded interactions, r represents distance, 

r2 represents the floating point distance squared value used to create the index, Ftab  is 

the lookup table for the reduced precision results, LOWER_BOUND is the lowest 

value for r2 that is possible in floating point format (but used as an integer) and 

NUM_BITS is the number of bits to shift to the right to reduce the precision. There is 

no sign bit since distance squared (r2) is always positive otherwise it would be 

necessary to mask it out or to use two tables for positive and negative results 

depending on the intended use. The range of r2 is continuous and over a single range 

so no additional processing is required for boundary conditions or multiple table 

lookups for a single function. 

F(r) ≈  Ftab [(r2.binary – LOWER_BOUND) >> NUM_BITS].float 

Multiple intermediate results can be stored as offsets in the same table eliminating the 

instructions that reload of the base address of the table. Using SSE2, SSE 4.1 and 

AVX2 this can be reduced from 11 to 7 to 3 instructions respectively that can be 

highly pipelined.  The reduction in the number of instructions used from the SSE2 and 

the SSE 4.1 version did not yield a significant increase in performance and on the 

Intel Core i7 ‘Sandy Bridge’ architecture it showed a slight reduction in performance. 

SSE 4.1 was not supported on the AMD systems available. 

A number of these instructions use less than one clock cycle. SSE2 and SSE 4.1 can 

process four single precision values at one and AVX2 can process 8 values at once. 

The algorithm requires SIMD instructions for integer and logical operations that do 

not exist in either SSE or AVX and does not support these instruction set extensions.  
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The tables of intermediate results are generated by sequencing through all of the 

possible values of the variable precision representation so that the results ‘float’ in the 

same way as the IEEE 32 and 64 bit formats. As the table generation is performed a 

simulated additional ‘guard bit’ is added to the right of the reduced precision mantissa 

before the latter is used to initialize the table alternating on odd and even values of the 

mantissa.  

This prevents a small divergent error from the binary truncation that occurs at runtime 

otherwise it would be necessary to treat the mantissa as a scaled base 2 value at 

runtime and this would defeat much of the performance gain of the algorithm.  

All calculations for table entries are performed in double precision and the results 

stored in the tables as either single or double precision. No interpolation is required. 

The following figure illustrates the ‘floating’ nature of the implementation.  The 

mantissa portion of the IEEE 764 standard single precision format supports 

approximately 8M values for each power of two. By reducing the mantissa bits it is 

possible to reduce the precision without destroying the ‘floating’ property of the 

format. This makes the variable format suitable for use with functions/equations 

independent of their slope or continuity. 

bit1 

bit 2 

bit 3 

… 

bit 23  

… 
IEEE Single  
Precision 

Significant 
Digits 

3.01 

7.22 

bit1 

bit 2 

bit 3 

… 

bit 23  

… 
IEEE Single  
Precision 

bit1 

bit 2 

bit 3 

… 

bit 23  

… 
IEEE Single  
Precision 

Significant 
Digits 

3.01 

7.22 

 

Figure 45 Variable Precision Mantissa 'Floats' Like IEEE 754 

 

An alternative implementation would be to perform an integer conversion of the 

floating point value applying a scaling factor. In the following example the int 

function converts the results of the scaling factor times distance squared and looks the 

result up in a force table.  
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F(r) ≈  Ftab [int(scale*r2)] 

Converting a floating point value to an integer causes a divergence from the IEEE 

standard and destroys the ‘float’ properties of the values and generates a diversion of 

the results obtained from those that would be generated by a floating point 

calculation. This diversion is highly function specific.  Using a floating point to 

integer conversion results in fewer and fewer values to represent much larger forces 

as the distances become closer. When the algorithm is applied to other 

functions/equations the variations of the slope in portions of the functions/equations 

will show large differences in the offsetting adjustment based on the slope on the axis.  

If the integer conversion approach is applied to general computation the index will not 

appropriately sample the distribution of function results. Figure 46 shows that the 

floating point to integer method does not sample the function/equation uniformly 

based on the IEEE floating point property. 

It is highly undesirable to use an integer conversion to produce an index using a 

specific value when there are substantial differences in the results contained in the 

table that are being looked up. In this case there are larger and larger differences in 

the forces as the distance becomes smaller and fewer base 10 digits to represent the 

increasingly large forces. 26 

Figure 46 Effect of Integer Conversion on a Real Number 

There is no ‘floating’ property in an integer conversion that would preserve the same 

precision independent of the distance. Figure 48 shows the increasingly large error 

forward backward error correction required with the integer conversion method for 

the 1/sqrt function.  The same problem was shown in the study of Nilson in 2009 

when the above methodology was applied to force equations. 7 
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Figure 47 shows the variable precision implementation paralleling the floating point 

standard and an integer conversion based method diverging until it reaches a lower 

limit cutoff that is dependent on the scaling.  This cutoff does not correspond to any 

specified simulation parameters but is a result of the scaling before the integer 

conversion occurs.  

Figure 48 Increasing Deviations in 1/sqrt function with Integer Conversion 
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Another of the side effects of an integer conversion method is the elimination of cases 

where a base 10 value may have more than one base 2 representation or it may have 

no base 2 representation at all. This property of the floating point representation is 

essential to preserving the same number of significant digits as values increase or 

decrease. The following table shows the nature of this property. These cohorts are the 

reason that programmers can not readily compare floating point values with the same 

base 10 representation because they may have different internal representations. 

Base 10

Base 10 

Decimal

Base 2 

Hexadecimal

2.500003e-01 0.2500000 3e80000b

2.500004e-01 0.2500000 3e80000c

2.500004e-01 0.2500000 3e80000d

2.500004e-01 0.2500000 3e80000e

2.500004e-01 0.2500000 3e80000f

2.500005e-01 0.2500000 3e800010

2.500005e-01 0.2500010 3e800011

2.500005e-01 0.2500010 3e800012

2.500006e-01 0.2500010 3e800013  

Table 15 Example IEEE Floating Point Cohort 

 

2.7 Performance Testing of the Algorithm 

 

 

2.7.1 Improving Reciprocal Throughput  

 

Using the algorithm can greatly reduce the number of instructions required to generate 

the object interaction results. The reciprocal throughput analysis is based on the work 

of Agner Fog.43 Reciprocal throughput is one measure of performance.  

Reciprocal throughput has been defined as the average number of clock cycles per 

instruction for a series of independent instructions of the same kind in the same thread 

on a single core assuming that the operands of each instruction are independent of 

preceding instructions. The values used in this study are from Agner Fog’s 

independent evaluation of the performance of a wide range of Intel and AMD 

processors. The values used are the reciprocals of the throughputs when the 

instructions are not part of a limiting chain of dependent instructions. For example, 

assuming that the operands are independent a reciprocal throughput of 2 cycles for an 

FMUL instruction means that another FMUL instruction can start 2 clock cycles after 
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the previous FMUL and a value of 0.33 for ADD means that 3 integer additions can 

be performed per clock cycle.  

Thus, the sum of the instruction cycles that a given algorithm uses may be used for a 

relative comparison but with limitations.  One major limitation is memory architecture 

and whether or not the data is available in one of the levels of cache memory. 

Memory access takes 2-3 cycles if cached but several hundred if not.44 

In principal if the number of computer instructions and the number of ‘cycles’ are 

reduced then the software should run faster. This however may be a deceiving 

measure because the number of cycles per instruction even for the same instruction 

varies greatly on what instructions are around it and where it is retrieving data. For 

example, modern CPUs will attempt to optimize on chip performance by reordering 

instructions, performing operations in parallel or attempting to predict branching.  

CPU instructions execute using micro operations that may be scheduled in parallel 

with neighboring instructions to avoid ‘blocking’ of program execution. Part of an 

instruction may execute in parallel with part of another instruction based on micro 

operations.45 

Generally non-arithmetic instructions take fewer cycles than numeric instructions and 

are more easily optimized in the CPU pipeline frequently executing in less than one 

cycle. The number of cycles an instruction takes is also highly dependent on where 

the data resides. If the data is in the L2/L3 cache execution is very fast, but if it 

resides in main system memory the memory access could be 100 times slower.  

Using the present algorithm can greatly reduce the number of instructions required to 

generate the nonbonded interaction results. It may be noted in Figure 45 that the SSE 

and AVX instruction sets are not included from testing. This is because they lack 

instructions for performing certain SIMD bit manipulation instructions that Intel later 

added in SSE2 and AVX2 that are essential to the developed algorithm.  The 

following figure shows the reduction in the number of instructions required to obtain 

the equation results as compared with the GROMACS 4.5.3 assembly language code. 

Most of the instructions have a cycle time of 1 but the developed algorithm uses 

numerous memory and register instructions that have cycle times of .33 

cycles/instruction on Intel Sandy Bridge and .22 cycles/instruction on Intel Haswell 

architecture further improving the performance. 
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Lennard-Jones 

Reaction Field

Lennard-Jones 

Only

# 

Results

Est x 

Faster 

LJ-RF

Est x 

Faster LJ 

Only

Single Precision

GROMACS 4.5.3 SSE 35 25 4 NA NA

Developed Method

SSE2 16 16 4 2.2 1.6

SSE4.1 11 11 4 3.2 2.3

AVX2 3 3 8 11.7 8.3

Double Precision

GROMACS 4.5.3 SSE2 43 43 2 NA NA

Developed Method

SSE2 9 16 2 3.9 1.6

SSE4.1 7 11 2 5.0 2.3

AVX2 3 3 4 11.7 8.3

Number of Instructions

 

Table 16 Instruction Counts 

Figure 50 shows a comparison of the number of instructions per result required to 

calculate the nonbonded interactions for SPC water to water (1/sqrt, Lennard-Jones, 

reaction field and argon (Lennard-Jones only). Argon to Argon interactions are also 

shown that only need to solve the Lennard-Jones equation. These are only estimates 

based on instruction times and do not reflect actual algorithmic performance 

 

Figure 49 Performance Estimates Per Result Based on Instruction Count 
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2.7.2 Runtime Testing 

 

In order to test the application level performance a C program was written that reads 

100M oxygen to oxygen interactions and then processes them inside a timing loop. 

The gcc 4.7 compiler was used to output the assembly language version of the 

program and test code from GROMACS and the developed algorithm was inserted 

into the assembly language test loop. The GROMACS version 4.5.3 SSE and SSE2 

assembly code from the nonbonded kernel routines for Lennard-Jones reaction field 

(nb_kernel212), and Lennard-Jones only (nb_kernel010) as well as for the 

noncomputational incremental method using SSE2, SSE 4.1 and AVX2 with a special 

granularity of ≈3.01 significant digits was used for comparison. 

 

 

2.7.3 Comparison of Force Only Tests 

 

The forces only tests for the nonbonded routines (excluding the distance calculations 

and the application of the forces after calculation) showed the following results. The 

GROMACS 4.5.3 SSE code was copied and pasted and changed only to reference 

local variables. The Lennard-Jones Reaction Field testing included the 1/sqrt 

calculation for the GROMACS versions. The noncomputational incremental method 

was written in hand coded assembly code and inserted into the timing loop of the 

program.  

The very large improvement in force calculation performance is due to the fact that 

the method does not require the calculation of the 1/sqrt, the reduced number of 

instructions and the benefit that the binary and integer operations receive in the CPU 

pipeline.  

The force only calculations represent only portion of the calculations within the 

nonbonded routines. Distance calculations cannot benefit from the use of the 

developed method. 
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Time to Process 100M O-O  Interactions I7 server 2.67 GHZ

Nonbonded Forces Only Time (sec)

Time 

minus 

empty 

loop x Faster

GROMACS SSE LJ Only (nbkernel_010.sse) 

cut pasted into test program Ar-Ar 7.9 7.76
Incremental Method Equivalent  LJ Only 

Implemented with SSE4.1 Ar-Ar 0.38 0.24 32.33
Incremental Method  Equivalent LJ Only 

Implemented with SSE2 Ar-Ar 0.39 0.25 31.04

GROMACS SSE LJ  Reaction Field + 1/sqrt 

(nbkernel_212.sse) cut pasted into test program 

O-O 16.78 16.64
Incremental Method  Equivalent  LJ Reaction 

Field + 1/sqrt Implemented with SSE4.1 O-O 0.38 0.24 69.33
Incremental Method  Equivalent LJ Reaction 

Field + 1/sqrt Implemented with SSE2 O-O 0.39 0.25 66.56

Empty Loop 0.14  

Table 17 Performance of O-O Interactions  

Intel Xeon 5650 2.67 GHZ 12MB Cache 6 cores (Westmere) 

 

2.7.4 Comparison with the Full Nonbonded Kernel Routines 

 

The same performance test method was used as the force only testing except the full 

nonbonded assembly code from the GROMACS nonbonded routines was copied and 

pasted into the timing loop of the test program. In order to test the noncomputational 

incremental method the same GROMACS assembly code was copied but the portions 

that calculate the 1/sqrt function and perform force calculations was replaced with the 

new algorithm.  The performance improvements of 2.15 and 3.18 times faster is in 

line with the reciprocal throughput estimate on the Intel Xeon 5650 2.67 GHZ 12MB  

Cache 6 cores (Westmere). 
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Time to Process 100M O-O  Interactions Xeon I7 server 2.67 GHZ

Full Equivalent of the Inner Nonbonded Loops 

(assembly code) Time (sec)

Time less 

empty 

loop x Faster
GROMACS SSE LJ Only (nbkernel_010.sse) 

cut pasted into test program  Ar-Ar 21.00 20.86
Incremental Method  Equivalent  LJ Only 

Implemented with SSE4.1 Ar-Ar 2.70 2.56 8.15
Incremental Method  Equivalent  LJ Only 

Implemented with SSE2 Ar-Ar 2.66 2.52 8.28

GROMACS SSE LJ  Reaction Field + 1/sqrt 

(nbkernel_212.sse) cut pasted into test program 

O-O 23.02 22.88
Incremental Method Equivalent  LJ Reaction 

Field + 1/sqrt Implemented with SSE4.1 O-O 6.70 6.56 3.18
Incremental Method Equivalent  LJ Reaction 

Field + 1/sqrt Implemented with SSE2 O-O 9.84 9.70 2.15

Empty Loop 0.14  

Table 18 Assembly Code Algorithm vs GROMACS SSE  

Intel Xeon 5650 2.67 GHZ 12MB Cache 6 cores (Westmere) 

2.7.5 Intel Core i7 ‘Sandy Bridge’ and AMD Performance 

 

The same tests were performed on the Intel Core i7 ‘Sandy Bridge’ architecture that 

supports the AVX instruction set and on two AMD systems. The results showed an 

extreme improvement in performance between the generations of the Intel Core i7 

architecture. The ‘Sandy Bridge’ architecture processed the full nonbonded 

interactions for 100M O-O interactions 14.3 times faster and for Ar-Ar interactions 

15.5 times faster than the GROMACS 4.5.3 SSE assembly code. It was also observed 

that the two AMD CPUs tested only performed about 1.7 times faster. These were 

older AMD CPUs but the same performance improvement was observed on a 64 core 

AMD server.  There are fundamental differences between the AMD and Intel cache 

architectures that may account for this. There were no values reported for the AMD 

CPUs for SSE 4.1 instructions because SSE 4.1 only exists on the Intel CPUs. It is 

interesting to note that the SSE 4.1 implementation on ‘Sandy Bridge’ was slightly 

slower than the SSE2 implementation even though fewer instructions were used. 

The Intel ‘Sandy Bridge’ architecture has a number of improvements that may 

account for this difference. Most important are probably the new cache design, larger 

CPU cache and wider data paths. It functions almost as if it is processing 8 single 

precision values simultaneously rather than 4 even though no AVX instructions were 

coded into the test program and AVX2 instructions are not supported on Intel Core i7 

Sandy Bridge. 
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Figure 50 Variable Precision Assembly Code Algorithm vs GROMACS SSE 

2.8 Conclusions 

 

The major bottleneck in molecular dynamics simulations is the calculation of 

nonbonded interactions at each time step. GROMACS 4.5.3 has highly optimized hand 

coded SSE and SSE2 assembly code to perform these functions. The calculation of the 

forces and intermediate results may be improved substantially by use of a 

noncomputational and incremental computation model that exploits a variable precision 

format based on the IEEE 754 standard for single precision values. This variable 

precision format effectively permits the simulation to run in 1pm ‘space’. Using a 

coarse grain approach allows the creation of indices for accessing pre-computed results 

without the artifacts associated with a simple conversion to integer lookup method.  

It has been shown than a series of tables paralleling the IEEE 754 standard supporting 

variable precision coarse grain space using 3 significant digits precision can be 

generated to support water to water and water to solute interactions using the 

GROMACS Lennard-Jones reaction field (nbkernel212) and the Lennard-Jones only 

(nbkernel010) assembly language routines. These assembly routines perform 15 times 

faster on an 2GHZ Intel Core i7 ‘Sandy Bridge’ and 2.6 times faster on an Intel Core2 
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Quad core 2.0  GHZ and 3.2 times faster on an Intel Xeon 5650 2.67 GHZ 12MB  Cache 

6 cores 12 threads (Westmere). Improvements on various AMD CPUs showed an 

improvement of 1.6 times faster. 

Testing was also performed on a number of C programming library functions such as 

sqrt, log, tan, cos, etc. with results in performance improvements that were in the range 

of 11 to 125 times faster over a specified range of values at a reduced precision. The 

algorithm was also tested against an integer based lookup table method and was found 

to be 7 times faster on the Intel ‘Sandy Bridge’ Core i7.  

This algorithm may be applied to the real space part of PME and other computationally 

intensive portions of GROMACS or other MD Software. 

The performance of the algorithm is highly dependent on the percent of CPU and clock  

time used for performing nonbonded calculations, the amount of cache memory used 

for the incremental result caches, the overall memory requirements of the simulation, 

processor technology used, cache architecture, motherboard/blade design, node 

configuration and network bandwidth.  In all cases tested Intel processors performed 

better than AMD with Intel ‘Sandy Bridge’ and ‘Ivy Bridge’ greatly exceeding the 

performance of earlier Intel architectures. Preliminary testing on the Intel ‘Haswell’ 

architecture shows a further increase in performance based on improvements in the 

cache architecture and the addition of new instructions such as vsgather that permit the 

developed algorithm to reduce the number of instructions by half. It is expected at in 

AVX512 environments and other environments with the ability to process more data 

per cycle the algorithm will continue to greatly exceed the performance of calculating 

the results where the developed algorithm can be used. 

The developed algorithm has a number of limitations. The most significant is the 

amount of CPU L2, L3, L4 cache available for use with the lookup tables for the 

intermediate results.  This study showed that there was a substantial reduction in 

performance as compared to actually computing the results when the tables used for the 

incremental results exceeded the CPU L2/L3 cache. The maximum variable precision 

format using CPUs with 2-8MB L2/L3 cache is ≈5.12 significant digits. It should also 

be considered that other applications may be using the core or processor that may cause 

cache misses for an application using the incremental lookup tables. Attention should 

be given to associating threads/processes using the algorithm with a physical core, CPU 
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block and blade/node. If processes are allowed to move from core to core cache misses 

will result and this will have an adverse impact on performance. Therefore, associating 

a thread/process with a core and cache is essential. 
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A Free Energy Study Validation of Incremental and 
Noncomputational Performance Algorithms Using 
GROMACS       
 

 

3.1 Abstract 

 

Noncomputational incremental algorithms applied to GROMACS 4.5.3 have been 

shown to be 14-15 times faster in determining nonbonded interactions than the 

GROMACS assembly code on an Intel Core i7 “Sandy Bridge”. These algorithms 

exploit a variable precision numeric format that eliminates the need for the inverse 

square root and greatly reduces the number of computer instructions inside the 

nonbonded routines by reducing the ‘spatial granularity’ of the spatial distance 

supporting incremental computation. This algorithm was previously validated for 

mathematical and computational stability and performance. It was also tested using 

water boxes and proteins. The results from water box and protein simulations 

appeared to show that the developed algorithm was suitable for MD simulations but 

this was somewhat subjective based on energy drift, RMSD and other factors. The 

present study used a methodology to determine statistical equivalence to evaluate if 

the results produced by the developed algorithms were ‘good enough’ for MD 

simulations. This study used a statistically significant number of free energy studies 

on 5 amino acid side chain analogues and compared the results with those produced 

with existing GROMACS 4.5.3 build versions and experimental data. It demonstrated 

that the developed algorithm produced statistically equivalent results as compared to 

the existing GROMACS 4.5.3 builds. This study was modeled after studies used to 

validate force fields and water models that can be tied to experimental data. Using 

these small systems it is possible to obtain a statistically significant number of 

samples allowing the use of statistical equivalence methodologies.  



142 

 

3.2 Introduction 

 

There has been significant research in validating commonly used force fields and 

water models in the last ten years. These studies have frequently used amino acid side 

chain analogues in water as the basis of their investigation and sought to compare the 

results with experimental data. Perhaps the two most significant studies were performed 

by Hess, et. al.105 and Shirts, et. al.106 These studies used extremely large amount of 

computational resources to achieve these objectives. In 2003 Shirts et al. used 

Folding@Home107 (http://folding.stanford.edu) at Stanford University to perform their 

study. This network of home based volunteered computers at the time had 

approximately 90,000 computers around the world running the Folding@Home client 

software. The study investigated 3 force field parameter sets, 15 amino acid side chain 

analogues, 5 trials each of 1.2 ns using 61 lambda values. This study used an estimated 

140 CPU years, estimated on the processing capability of Celeron processors. The work 

was performed in less than 2 months and the complete study used approximately 200 

CPU years. In 2006 Hess and Vegt performed a systematic comparison of force fields 

and water models also using a vast amount of computational resources. In their study it 

was reported that they used 1 µs for each residue with one force field and water model. 

The results of these studies could then be tied to experimental data. 

The objective of the current study was to use a similar methodology to validate the 

viability of high performance incremental noncomputational algorithms for use in 

performing molecular dynamics simulations using GROMACS 4.5.3.108,109,110 The 

computational resources to obtain statistical equivalence required a large number of 

iterations for each GROMACS build option (C single precision, SSE single precision 

and SSE2 double precision) and variations of the developed algorithm, for each amino 

acid analogue, force field and water model.  The statistical methodology of this project 

was modeled after the methodology used in clinical trials for new drugs. 

There are 23 possible variations in the incremental noncomputational algorithm 

representing variable precision ‘spatial granularity’ for the distance squared where 1.0 

represents 1nm2. In addition to these variations the GROMACS C single precision, SSE 

single precision and SSE2 double precision builds also need to be performed to 

determine statistical equivalence with the developed algorithms.  The goal was not to 

validate the correctness of the simulations but to validate the results of the developed 
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algorithm versus the widely used GROMACS builds. There are a total of 26 

builds/variations possible and some number of iterations required for each combination 

of amino acid analogue and water model in order to obtain a statistically significant 

sample size. This study performed from 40-60 iterations of each free energy workflow 

for each algorithm/build, water model and amino acid analogue selected to produce a 

sample size sufficient for the equivalence testing. If the study were to include all 

combinations of amino acid analogues and water models the amount of CPU time 

required would have been 1040 times that of the previously referenced studies. The 

scope of this study was also not to revalidate or evaluate all combinations of force field 

and water models using the developed algorithms but to determine if the algorithms 

were statistically equivalent for use in performing MD simulations. This would not have 

been computationally possible with available resources and it was also unnecessary 

given it had been already established by existing studies.  Using free energy workflows 

also enabled the results to be tied to experimental results. For this reason only five 

amino acid side chain analogues, one water model and one force field model were 

selected. The number of builds/variations was also reduced. All three GROMACS 

builds needed to be run in order to establish a zone of equivalence and a zone of 

superiority. It was previously established that exceeding the CPU cache memory to 

store incremental result tables would result in a significant performance loss.111  

Existing CPUs have limited L2/L3 cache memory in the range of 2MB - 8MB and each 

variable precision form of the developed algorithm requires CPU cache memory. If 

only water models using Lennard-Jones and reaction field112 were supported variable 

precision alternatives in the range of ≈4.21 to ≈7.22 significant digits would require too 

much memory on 2MB CPU cache processors. It was also observed that variable 

precision versions with less than ≈3.01 significant digits would likely cause reductions 

in the granularity of the distance squared that would be too large to be useful for 

molecular dynamics.  It was theorized that 1pm was adequate for MD simulations based 

on the atomic and molecular distances involved and that larger granularity  would  result 

in spatial ‘jumps’ that would be too large. This reduced the number of variations of the 

developed algorithm to four. (≈3.01, ≈3.31, ≈3.61, and ≈3.91) Using this approach 

allowed a quantifiable means of comparison against the existing builds for the 

GROMACS software that was feasible with the computational resources available.  
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3.1.1 Why Use Free Energy Studies for Validation 

 

The calculation of free energies113,114, 115 in molecular dynamics simulations has been 

an important area of research for many years. Free energy is an important quantity to 

determine because it quantifies the way a molecular process will operate and the 

probability that the system will achieve a specific state. Calculating free energies from 

MD simulations help in the understanding of atomic level processes. Absolute free 

energy of a system using the following can only be calculated in a limited number of 

cases. This effectively can only be done for small simple systems governed by a simple 

Hamiltonian. For larger simulations such as protein simulations this is normally not 

possible. In order to obtain a free energy estimate for a given system several things 

must be determined.  Free energy F for a system using the canonical ensemble (or NVT 

ensemble, which has a constant number of particles, volume and temperature) is 

determined by the following equation.  

 

F = −(1/β)(lnQ) 

 

The value β is the inverse of the temperature divided by Boltzmann’s constant kB and 

Q is the partition function.  A classical description of the system in Cartesian 

coordinates is used, assuming the system is at equilibrium. 116 

The free energy workflows for this study are modeled after those developed by David 

Mobley117 and updated by Justin Lemkul118 in their protocol to calculate the change in 

free energy for the decoupling of van der Walls interactions between an amino acid 

analogues and a water box. The study did not investigate electrostatics in order to 

parallel the method used by Lemkul and due to issues with version 4.5.3 of 

GROMACS. This model was chosen because it uses very simple systems with a small 

water box and one amino acid analogue molecule where experimentally determined 

free energy values exist. This model is one of those included in the studies of Shirts et 

al. and Hess et al. in the analysis of force fields and the free energies of hydration of 

amino acid side chain analogues. The data analysis was performed using the Bennett 

Acceptance Ratio method119 for calculating free energy differences.120,121,122 This 

study chose to analyze the free energy by turning off only the van der Waals (vdW) 

interactions between the amino acid analogue and water and to attempt to reproduce 
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the results obtained by the standard GROMACS builds and tie to both experimental 

and theoretical work of others.  

 

3.1.2 Why is this Validation Study Important 

 

Performance enhancements to molecular dynamics software are extremely important 

because they expand the range of simulations that can be run and the chemical and 

biological problems that can be investigated. At the core of molecular dynamics 

software are inner computational loops that calculate forces, energies and distances for 

nonbonded interactions. These nonbonded interactions account for most of the 

computational costs of a simulation. The largest part of these interactions are the solvent 

to solvent interactions followed by solvent to solute and solute to solute interactions. 

Generally the largest single problem is the processing of interactions between water 

molecules. The SPC, SPC/E and TIP3P water models are most commonly used and 

they have nine interactions between the combinations of atoms pairs (OO, OH and HH). 

A noncomputational incremental algorithm was developed that increases the 

performance of the GROMACS 4.5.3 nonbonded kernel routines for nonbonded 

Figure 51 Comparison of Developed Algorithm with GROMACS Assembly Code 
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interactions for Lennard-Jones plus reaction field and Lennard-Jones only nonbonded 

kernels in GROMACS 4.5.3 by a factor of 14-15 times.123    

This was achieved through a variable precision numeric format that effectively reduces 

the granularity of the computational and real space used in MD simulations to 

approximately 1 pm. This is accomplished by creating a variable version of the IEEE 

754 floating point standard to support with precision ranges from ≈3.01 to ≈3.91 

significant digits. Ordinary single precision calculations are performed with ≈7.22 

significant digits. In the case of the GROMACS software, the inner nonbonded loops 

use distance squared units of 1.0 as 1 nm2 and the seventh significant digit would 

represent the size of a subatomic particle.  Computational and mathematical analysis 

demonstrated that the results paralleled those that would have been computed by using 

the IEEE 754 floating point instructions.  

Simulations run in a real space that maps to a range of computational values. This real 

space and computational space can be represented by fewer bits for both the exponent 

and mantissa portions of the IEEE 754 representation used for general computation 

because of the nature of MD simulations.  

 

Water Box Simulation and Bond Lengths (nm) 

Interaction Min r 2   Min r [a] 
Bond Length 

[b]  
H-H 0.017770 0.133304 0.074  

O-H 0.019504 0.139657 0.096  

O-O 0.057268 0.239307 0.121  

[a] r is distance in nm   [b] : http://cccbdb.nist.gov 

Table 19 Water Box Simulation Profile 

The bond lengths for simulation purposes are usually considered fixed based on 

experimental data. Using this data and the bond lengths for water a mathematical model 

was created to determine the angular error for a water molecule rotating in 1 pm 

granular space. An analysis of a water molecule rotated through a discrete computation 

space of 1 pm shows an angular error of ± 0.47 degrees with no divergence. 

The prior study of the noncomputational incremental algorithm theorized that MD 

simulations could calculate nonbonded interactions in granular space of ± 1 pm based 
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on the distance squared in the nonbonded routines and give ‘equivalent’ results to the 

standard GROMACS builds. 

In prior research the noncomputational incremental algorithm (See Chapter 2) was also 

shown to parallel the IEEE 754 floating point standard. There was no mathematical 

divergence because of the forward backward error correction that was generated in the 

tables containing the pre-calculated results. These tables are used to incrementally 

calculate energies and forces.  

Why Test the Algorithm with Free Energy Studies 

After the testing of the algorithm computationally and mathematically the question still 

remained was it ‘good enough’ for molecular dynamics simulations. The algorithm was 

shown to work mathematically and computationally but could it be successfully used 

in MD simulations. Is a spatial granularity of 1pm sufficient without causing adverse 

side effects? The algorithm has a forward backward error correction but does it function 

within the limits required for MD simulations. A number of investigators including one 

of the GROMACS developers said that the results of protein and water box simulations 

‘looked good enough’ but this is only a small sample of subjective opinions. 

Figure 52 Relative Error vs. IEEE 754 Standard in Percentage 
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A large number of water box, amino acid, and protein simulations had already been run 

using the 4 different versions of the developed algorithm and the three build options for 

GROMACS 4.5.3 C language single precision, SSE single precision, and SSE2 double 

precision. The simulations were run multiple times but due to the inherent nature of 

molecular dynamics simulations three is significant variation from one simulation run 

to another even with the GROMACS builds. In complex systems such as proteins in 

water multiple runs of a simulation may show different unfolding paths and the 

deviation in the results of the simulation may be extremely different. For these reasons 

this study of free energies was performed. 

3.3 Methodology 

 

3.3.1 Test Environments 
 

Software 

 

The 64 bit version for Windows of R version 3.1.2 (R Foundation for Statistical 

Computing)124 was used for normality testing and statistical analysis. Descriptive 

statistics were generated using StatView for Windows Version 5.0125 and Microsoft 

Excel 2007 was used for general analysis. 

All test systems used the Ubuntu 14.04 operating system, the gcc 4.7 compiler and 

GROMACS 4.5.3.  

Hardware 

 

All free energy simulations for this study were performed using GROMACS 4.5.3 on 

Ubuntu 12.04 on an AMD Opteron 6272 2.1 GHZ 2MB CPU cache (Bulldozer) 64 core 

server, and on an Intel Xeon 5650 2.67 GHZ 12MB Cache 6 cores (Westmere-EP 

32nm). The gcc 4.7 compiler was used for development. 

Earlier algorithmic, performance, small molecule and protein simulations were 

performed on the above platforms and other platforms including the following systems: 

Intel Core i7 (2630QM) 2.0 GHZ 6 MB Cache (Sandy Bridge), Intel Core i7 (930) 2.8 

GHZ, 8 MB cache (Nehalem), Intel Core 2 Duo 2.24 GHZ 3 MB cache, Intel Core 2 

Quad Core 2.2 GHZ 3 MB cache, AMD Opteron 6272 2.1 GHZ 2MB CPU cache 

(Bulldozer) 64 core server, AMD Athlon 3800+ 2.4 GHZ 512KB cache, AMD Athlon 
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X2 4400+ 2.3 GHZ 512KB cache and Intel Core i5 1.7 GHZ 3MB cache (4201U 

(Haswell) ULT).  

Summary of Prior Testing with Water Boxes 

Simulations of a water box containing 987 atoms, using the SPC water model, 

GROMOS 43a1 force field and using the NVT ensemble were run. The water box 

simulation used the GROMACS 4.5.3 nonbonded kernels routines for Lennard-Jones 

and reaction field for electrostatics. These simulations were executed using 22 different 

variations of the algorithm and the three standard GROMACS single precision C, single 

precision SSE and double precision SSE2 builds. The 22 different versions of the 

algorithm reduce the size of the mantissa for the IEEE representation of the real number 

value. By reducing the size of the mantissa the approximate number of decimal digits 

supported can be reduced from ≈7.22 to ≈2.11.  

This reduced computational and spatial ‘granularity’ was used to minimize the 

memory required for pre-computed tables. Figure 50 shows large standard deviations 

in total energy and other simulation results occurred as the ‘granularity’ approached 

≈2.11 significant digits and simulations crashed at coarser granularity. Similar results 

were seen in small molecule and protein simulations. This is a result of the ‘spatial 

granularity’ being reduced too much and the atoms ‘jumping’ too far.  The results 
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shown in Figure 50 show the difference between the standard deviation in total energy 

of the build/algorithm and the GROMACS C or SSE versions used as a reference point. 

It can be seen that there is a discrepancy between the standard deviations of the energy 

calculated with the two GROMACS builds. Until ≈3.01 significant digits this 

discrepancy is similar to that between the standard deviation of the energy calculated 

with the build/algorithm and the standard deviation of either the C or SSE builds.  This 

was extremely important because it shows that a granularity of less than ≈3.01 

significant digits is going to start to cause large fluctuations in total energy. The 

GROMACS g_energy utility was used to obtain information such as total energy, 

kinetic energy, potential energy, etc. This permitted a reduction in the number of 

variable precision variations of the developed algorithm that needed to be tested and 

reduced dramatically the computational resources that were required. 

 

3.3.2 Free Energy Study Methodology Using Amino Acid Side Chain Analogues 

 

Free energy studies of amino acid side chain analogues have been used to demonstrate 

the viability of force field and water models and to show that these results conform to 

experimental data. These small short simulations consist of a small water box and one 

amino acid side chain analogue. The small size of these simulations and their validation 

with experimental data make them ideal for use in testing new performance algorithms 

and looking for undesirable side effects. The methodology for this study uses two major 

components: 1) use of free energy for amino acid analogue studies and 2) determining 

what is ‘good enough’ through statistical equivalence. The free energy data that is 

collected is used to support statistical equivalence test using the results from the 

iterations for each combination of force field, water model, amino acid analogue and 

developed algorithm variant and standard GROMACS build.  The goal is not to 

Amino acid Abbreviation Analogue

Natural 

occurrence

alanine Ala methane 7.80%

asparagine Asn acetamide 4.30%

leucine Leu isobutane 9.10%

serine Ser methanol 6.80%

threonine Thr ethanol 5.90%

Amino acids and side chain analogs used in this study

Table 20 Amino acid side chain analogues used in the study 
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revalidate the GROMACS versions against all combinations of force fields, water 

models and amino acid side chain. Extensive studies have already been performed to 

validate water models and force fields using vast amounts of computer time.126, 127  It 

is also not the goal of this study to attempt equivalence testing on all amino acid side 

chain analogues or more than one force field or water model. Five amino acid side 

analogues each with one force field and water model were chosen for evaluation. Table 

20 shows the natural occurrences in proteins. Methane was used because it was used in 

the protocol of Justin Lemkul. Additionally the analogues isobutane, methane and 

methanol represent the analogues of the three highest natural occurrences. Ethanol and 

acetamide were chosen because they are analogues for polar amino acids (asparagine 

and threonine respectively) and also have a high natural occurrence.  

This statistical methodology coupled with the methodology of previous studies used to 

validate water models and force fields was the only way to prove mathematically that 

the developed algorithms were ‘good enough’ for the intended purpose. This study 

examined five amino acid side chain analogues using the OPLSAA128 force field and 

the TIP3P water model.  

The workflow for the free energy studies was based on the free energy protocol of 

methane in water by Justin Lemkul.119 The study included a water box of 241 TIP3P 

water molecules and a single molecule of methane. The OPLSAA force field was used. 

The .mdp, .gro and .top files are from the protocol except with the changes noted for 

methane in water. The .gro and .pdb files for the other amino acid analogues were 

readily available from other studies. Charge interactions between solute and water were 

turned off prior to the van der Waals (vdW) terms to avoid charges approaching too 

closely after the vdW repulsive terms are turned off, which would result in an unstable 

system. The methodology adapted from the Lemkul protocol assumes that charges have 

previously been turned off and that only the van der Waal terms remain, and will 

gradually be turned off between the solvent and solute.  

The only other changes made were to replace PME by reaction field since no 

implementation of the developed method exists for PME, and to change the temperature 

from 300 K to 298 K to better reflect experimental data and the work of Shirts et al.107 

The time for the production simulation run associated with each lambda was increased 
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to 5 ns to look for potentially hidden computational side effects that might not be visible 

in shorter simulations.   

The free energy change of changing a system from state A to state B, ΔGAB, is a function 

of the coupling parameter (lambda λ).  Figure 55 shows that this parameter designates 

the level of change that occurs between states A and B. This is the degree to which the 

Hamiltonian has been altered and the system transformed. Simulations using different 

values of lambda permit the plotting of a ∂H/∂λ curve, from which ΔGAB can be 

determined. A key issue in free energy calculations is determining how many lambda 

values (points) will be used to describe the change from state A (λ = 0) to state B (λ = 

1).  The goal is to collect an adequate sample of data to produce a viable ∂H/∂λ curve. 

This study used a linear series of λ values with an equidistant λ spacing of 0.05 and 

ranging from 0 to 1 for decoupling the vdW interactions. Linear λ spacing values of 

0.05-0.1 are commonly used but in many cases molecules will need many more lambda 

points, such as systems that have strong interactions through hydrogen bonding. 

 

                 λ = 0                    λ = 0.5            λ = 1 

Figure 54 Free Energy - change from state A (λ = 0) to state B (λ = 1) 

Adapted from Justin Lemkul 107 

Lambda spacing may need to be decreased so that more points are and distributed 

asymmetrically due to variations in the slope. Shirts et. al. used 61 λ values in their 

work but shorter simulation times of 1.2ns whereas this study used 5ns simulations 

because part of the object was to look for the longer term impact of the developed 

algorithm to the free energy results. 

Due to the non-linear dependence of the energy on the λ values decoupling of the van 

der Waals interactions can sometimes be problematic. For reasons described by Shirts 

et al. and elsewhere, many more λ values may be necessary to adequately describe the 
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transformation, particularly in regions where the slope of the ∂H/∂λ curve is steep.  In 

the present study, the linear λ spacing of 0.05 was found to be sufficient. 

For each value of λ, it is essential that a free energy workflow be performed (energy 

minimization, equilibration, and production data collection). These jobs were run as 

batches performing large numbers of iterations of the same workflow for a given 

combination of algorithm, granularity, and amino acid analogue. The following 

workflow was performed for each iteration. Each step in the workflow was run using 

the GROMACS 4.5.3 SSE version except the production step where the algorithm the 

various GROMACS builds and the variable precision algorithms were used. This 

minimized the differences in the test environment by keeping all steps constant except 

the production data step. With statistical equivalence or superiority testing the test 

environment must keep as many variables constant as possible to minimize side effects 

that would skew the results. The workflow used is as follows: 

1. Steepest descents minimization 

2. L-BFGS minimization 

3. NVT equilibration 

4. NPT equilibration 

5. Production data based on the NPT ensemble 

Both the steepest descents and L-BFGS minimization steps were used to provide a 

better minimization of the starting structure. Lemkul reported that the L-BFGS 

minimization converges prematurely and may result in unstable systems, however 

when it is used in conjunction with steepest descents it yields a better minimization. 107 

The double precision SSE2 build of GROMACS 4.5.3 was used for the minimization 

steps of the workflow and the single precision SSE build of GROMACS 4.5.3 was used 

for NVT and NPT equilibration steps. The production NPT step was used for comparing 

the algorithms. It used the variations of the developed algorithm and the GROMACS 

C single precision, SSE single precision and SSE2 double precision builds. 
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3.3.3 Free Energy Study - Preliminary Results 

 

Figure 56 shows the results from a methane in water free energy study using the 3 

standard GROMACS 4.5.3 build options and 4 variable precision algorithms. It shows 

a comparison of the results for ≈3.01 and ≈3.91 digit versions of the developed 

algorithm compared to the GROMACS 4.5.3 double precision, C single precision and 

SSE single precision builds. It can also be seen in this simple system that the reaction 

field and GROMACS PME models give virtually identical results. It can be seen that 
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both the free energy integral and free energy differences for methane in water are 

virtually identical to the GROMACS builds. In figure 57 the free energy differences 
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show a variation between the GROMACS double precision SSE2, single precision SSE, 

and single precision C builds that illustrates that the variation between the GROMACS 

builds can be used to establish a zone of equivalence. In Figure 58 the free energy 

differences are shown for all standard GROMACS builds, PME and the developed 

algorithm showing that they are virtually indistinguishable. 

Statistical Methodology 

It is useful to see graphically that the results of the free energy study for methane in 

water look ‘good enough’ when the noncomputational incremental algorithms are 

used with spatial and computational granularity of three significant digits. In order to 

determine if the results are “good enough” an analysis of statistical equivalence was 

needed129. This methodology is well defined and frequently used in clinical trials of 

new drugs.130,131  

Standards for the design of statistical equivalence and non-inferiority studies have 

been developed such as The Consolidated Standards of Reporting Trials Statement 

(CONSORT)132 and the 2010 extension and 2012 update to CONSORT for non-

inferiority and equivalence trials.  In this study if a molecular dynamics simulation of 

an amino acid analogue is a ‘disease’ then each build variation of GROMACS 4.5.3 

and the developed algorithm may be considered and alternative ‘treatment’.  In 2006, 

a survey of the methodology used in 162 clinical trial studies from 2003 and 2004 was 

made by Le Henanff et. al.98 of the use of non-inferiority and equivalence methods in 

clinical trials. They cited two common issues with these studies that relate to this 

current work: 1) definition and justification of the margin of equivalence or non-

inferiority and 2) failure to define how the sample size was determined.133 

3.4 Statistical Equivalence 

 
The purpose of this study is to evaluate the statistical equivalence134, superiority or 

inferiority of the noncomputational incremental versions of the developed algorithm 

using a variable precision floating point format versus the standard single C and SSE, 

and double precision builds of GROMACS 4.5.3 and thus determine if a variable 

precision format was ‘good enough’ to be used in molecular dynamics simulations 

using GROMACS. 
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Since no two algorithms or methods yield results that are exactly equal, we must 

define what effects are important and what difference in these effects would be 

important. The effect differs depending on what is being studied. In this study the 

delta in free energy (ΔG) is considered the principal effect of the algorithm.  

Standard statistical tests can be used to show that there is no ‘statistically significant 

difference’ but this is not the same as showing that two sets of data representing two 

methods are equivalent or ‘good enough’ for the intended purpose. Statistically 

significant means that there is strong evidence that the difference is not zero, but it 

does not show if the difference is large enough to eliminate the conclusion that the 

two sets of data representing different methods are ‘functionally’ equivalent to data 

representing different methods that are ‘generally accepted’ as ‘good enough’. 

Statistical methods have been developed for testing equivalence using either 

confidence intervals or p-values.136 These methods are frequently used in clinical 

trials and other applications. This study uses confidence intervals as a means of 

determining if the developed algorithms are statistically equivalent to the standard 

GROMACS builds.  

3.4.1 Defining a Zone of Equivalence and a Zone of Superiority 

 

In order to perform a study of statistical equivalence it is necessary to define an 

acceptable range beyond which the results would not be considered acceptable. Zones 

of equivalence, superiority or inferiority need to be defined and this definition is 

based on the problem being analyzed. What is ‘good enough’ is problem and 

methodology specific. For example in a clinical trial with a control group with 

systolic blood pressure of 163, if the alternative treatment group had a systolic blood 

pressure of 160, clinicians would not change their practice for just 3 points135. There 

is however the question of how many points would be considered to be sufficient to 

change general clinical treatment. This becomes subjective judgement call based on 

the test or trial being performed, if not 3 points perhaps 5 or 10 points in this example. 

This decision must be made by experts in the field using data from an acceptable 

sample size. A question of personal interest in the results arises. Obviously the 

developers of the drug, algorithm or other method being developed have a vested 

interest in the success of the results, other groups may have different professional 

opinions and perhaps government regulators have an extremely conservative 
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perspective. The same applies to the suitability of an algorithm for use in performing 

molecular dynamics simulations. It can be said that a new drug/algorithm can be 

considered equivalent to the standard if it falls within the range of X, where X is the 

mean of the standard therapy/algorithm and I2 is the upper equivalence interval and I1 

is the lower equivalence interval.  I1 and I2 may not be equidistant from the center of 

the zone of equivalence and may include an additional subjective non-statistically 

based value to increase the size of the zone of equivalence, superiority or inferiority. 

This may be expressed as: 

[XStandard – I1]  to  [XStandard +I2] 

From one perspective the smaller the interval the more equivalent the drug/algorithm 

will have to be compared to existing drugs/algorithms in order to be accepted. The 

greater the interval is the more easily it will be for the drug/algorithm to acceptable for 

approval or for the algorithm to be accepted for general use. There is however a side 

effect that when the interval I is small a larger sample size is required and it is more 

difficult to determine equivalence.136 In this study each of the standard GROMACS 

4.5.3 builds were considered as if they were a ‘treatment’ or algorithmic alternative and 

therefore collectively the zone of equivalence was defined based on the formula below. 

The mean of the aggregated datasets from the three builds of GROMACS samples was 

not used as the basis as the definition of a zone of equivalence because there are subtle 

differences in how the 1/sqrt function is implemented and what computer instructions 

are used for performing the 1/sqrt and force calculations. This means that the 

implementations for how forces are calculated yields slightly different spatial positions, 

force results and accumulated statistics. Equivalence testing using the zone of 

equivalence testing model in this study could also be useful to validate new GPU, 

multicore/multiprocessor implementations, new implicit water models or even major 

version changes to GROMACS itself as part of the test suite. It could also be useful as 

a generalized testing methodology for complex software.  

Data for this study was shown to have a normal distribution so that I1 = I2. This study 

defined the zone of equivalence using the following formula without the 

addition/subtraction of subjective modifications to the zone of equivalence based on the 

opinions of ‘experts’ using the confidence interval of the replicate data. It could easily 
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be argued that due to limitations in force field models, water models and how the 

calculations are performed that the size of these zones could be increased, but that could 

lead to debates about how much should be allowed and still be ‘good enough’. 

min([ [X Gromacs c – I Gromacs c], [X Gromacs sse – I Gromacs sse], [X Gromacs sse2 – I Gromacs sse2]) 

to 

max([ [X Gromacs c + I Gromacs c], [X Gromacs sse + I Gromacs sse], [X Gromacs sse2 + I Gromacs sse2] ) 

 

and a new algorithm t is equivalent if the following criteria are met: 

[X t – I t]  ≥  min([ [X Gromacs c – I Gromacs c], [X Gromacs sse – I Gromacs sse], 

[X Gromacs sse2 – I Gromacs sse2]) 

and 

[X t + I t]  ≤ max([ [X Gromacs c + I Gromacs c], [X Gromacs sse + I Gromacs sse], 

[X Gromacs sse2 + I Gromacs sse2] ) 

A zone of superiority was also defined using the GROMACS SSE2 double precision 

build as the definition of the zone of superiority because it is computationally more 

robust supporting over 15 significant digits. The following defines the zone of 

superiority: 

min([ [XGromacs sse2 – I lowerbound sse2]) 

to  

max [XGromacs sse2 + I lowerbound sse2] ) 

An algorithm t would be considered within the zone of superiority if it meets the 

following criteria. 

[X t – I t]  ≥  [X Gromacs sse2 – I Gromacs sse2] 

and 

[X t + I t]  ≤  [X Gromacs sse2 + I Gromacs sse2] 
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The zone of equivalence for this study is specified conservatively in that the developed 

algorithm/variant must fit completely between the minimum value and the maximum 

values supported by the three ‘accepted’ GROMACS build algorithms without any 

discussion as to whether or not it is possible to extend the lower or upper end of the 

zone of equivalence. In the above X is the mean of the Δ G values for the replicate series 

of each GROMACS build.  I is the confidence interval for the Δ G values of each 

replicate series determined by the GROMACS 4.5.3 g_bar utility using the Bennett 

Acceptance Ratio method for calculating free energy differences.   Figure 59 illustrates 

the methodology of the study. The zone of equivalences is defined by the three 

GROMACS builds as indicated by the two black lines for the C and SSE single 

precision builds and the purple line for the GROMACS SSE2 double precision build. 

The purple line indicates the zone of superiority within the zone of equivalence. The 

algorithm represented in green is within the zone of equivalence but it is also within the 

zone of superiority. The algorithm indicated in blue is within the zone of equivalence. 

In this study all of the variants based on the data collected were within the zone of 

equivalence. The algorithms in red indicate possible algorithms that would fall outside 

of the zone of equivalence. Variants of the developed algorithm with reduced precision 

less than ≈3.01 significant digits would begin to fall outside of the zone of equivalence. 

Evaluation of variable precision versions of the developed algorithm with less than 

≈3.01 significant digits were not included because it was already evident from the 

GROMACS SSE2 Double 
(Zone of Superiority (purple)) 
 
GROMACS SSE Single Prec. 
 
GROMACS C Single Prec. 

Algorithms that Define 
The Zone of  
Equivalence 

Blue Algorithm 
is Equivalent 
Green is Superior 

 

Figure 58 Illustration of Zone of Equivalence and Zone of Superiority 
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results of water box simulations from a prior study that at precisions less than ≈3.01 

significant digits caused increases in total energy. 

3.4.2 Sample Data Generation 

 

For each amino acid analogue studied the following procedure was performed to 

generate the data required for statistical analysis. For example, this study uses multiple 

runs of a free energy simulation with 21 lambdas of methane in water, following a 

protocol developed by Justin Lemkul (with the exception that PME was changed to 

Reaction Field). Each simulation representing a single lambda of a free energy series is 

5 ns and is processed through a full complement of minimization, equilibration, NVT, 

and NVP runs before the production MD run is performed. The mdp, gro and .top files 

are from the protocol by Justin Lemkul. Each data point represents the change in free 

energy (Δ G) associated with the 21 simulations that are part of a single free energy 

study. The workflow implemented use the GROMACS 4.5.3 double precision SSE2 

build for the two minimization steps and the GROMACS 4.5.3 SSE single precision for 

the two equilibration steps. The production workflow was performed for each of the 

tested builds and algorithms. This is repeated for each algorithm GROMACS 4.5.3 SSE 

single precision, C single precision, and SSE2 double precision, and the developed 

algorithm using ≈3.91, ≈3.61, ≈3.31 and ≈3.01 significant digits.   

 

 

3.4.3 Sample Size Estimation and Confidence Intervals 

 

In order to demonstrate statistical significance only the three standard GROMACS 

builds and only four variable precision forms of the developed algorithm were used. 

The study began by running 20 iterations of each combination of build/algorithm and 

amino acid analogue (20 iterations x 21 lambdas x 5 ns). The standard deviation was 

used to provide an initial estimate of what the sample size needed to be for each 

analogue. Additional iterations for each amino acid analogue was executed until the 

desired level of statistical significance a 95% confidence interval was achieved. There 

was substantial variability between the builds and variants with the GROMACS C 

single precision build frequently indicating the largest sample requirement. The average 

sample size for each run was used except where the average sample size was less than 
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forty and then forty was used (methane and methanol). Table 21 shows the results of 

the sample size estimates based on the data series for each build or algorithmic variant, 

and the sample size actually run for each amino acid analogue used in the study. 

 

Amino Acid 

Analogue

GROMACS 

C Single 

Precision

GROMACS 

Single 

Precision 

SSE

GROMACS 

Double 

Precision 

SSE2

Variable 

Precision 

3.91 Sign 

Digits

Variable 

Precision 

3.61 Sign 

Digits

Variable 

Precision 

3.31 Sign 

Digits

Variable 

Precision 

3.01 Sign 

Digits

Avg 

Sample 

Size

# Used 

in Study

Acetamide 56 59 44 55 28 38 42 46 46

Ethanol 75 55 53 61 60 50 61 59 60

Isobutane 61 37 34 39 43 63 43 46 46

Methane 29 37 28 23 26 20 34 28 40

Methanol 20 23 33 28 21 24 31 26 40

 

Table 21 Sample Size Estimates - Amino Acid Analogues Based on Data Series 

Each replicate was a complete run of the production workflow for all lambda values for 

each algorithm and amino acid analogue yielding a set of ΔG values. The sample size 

was determined using R-2.15.1 for Windows (The R Foundation for Statistical 

Computing) using the following formula: 

n = ((SD * z(0.95))  / E (± 2%)) 2 

In the above formula n is the sample size, SD is the standard deviation and z(0.95)  is 

the zscore for 95% confidence interval. A margin of error E of 2% was chosen because 

it is less than or equal to the estimated error of the Δ G values for the tests and it is the 

maximum supported by the sample size. The SD is taken from the Bennet’s Method 

output in GROMACS for a full free energy calculation of all lambdas for the entire 

replicate series. The sample size for each analogue studied was increased for each 

replicate until the average sample size for the analogue achieved a 95% confidence 

interval.  

Confidence intervals were computed assuming a normal distribution using Microsoft 

Excel 2003. The population size was consider to be the number of data points in the 

data sets (40-60). A minimum of 40 data points were used for each combination of 

amino acid analogue and algorithm/build. 

3.4.4 Resource and Data Requirements for the Study 

 

The computational costs of this study were high due to the large numbers of simulations 

required for each algorithm multiplied by the number of lambda values times the 
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number of amino acid analogues. Table 22 shows the number of iterations required for 

each amino acid analogue and the number of microseconds of simulation required for 

each amino acid analogue for this study. In order to obtain a single Δ G value for the 

statistical study for each analogue it was necessary to run a complete workflow totaling 

105 ns for each study (5ns times 21 lambda points).  

 

Amino Acid Analogue

Estimated 

Sample Size

# Builds or 

Algorithms

Samples in 

the Study

Simulation 

Time µs

Acetamide 46 7 46 33.8

Ethanol 59 7 60 44.1

Isobutane 46 7 46 33.8

Methane 28 7 40 29.4

Methanol 26 7 40 29.4

Total 232 170.5

Note: 5ns x 21 λ values = 105ns / analogue/ΔG  

Table 22 Total Microseconds of Simulation Time Needed for Study 

 

3.5 Normality Testing 

 

R-2.15.1 for Windows was used for all normality testing and for producing QQ plots 

and histograms of data samples. The data values associated with each build/algorithm 

were tested for normality using the following statistical tests from the nortest package 

for R-2.15.1. Each normality test has its own strength and weaknesses especially on 

relatively small sample sizes. The Anderson-Darling test generally has better results 

using small sample sizes. It was observed that even using the R-2.15.1 functions to 

create a ‘small’ random sample of ‘normal’ data there was significant variation between 

the results generated by these tests. It is extremely important to compare the results of 

these normality tests with QQ plots and histograms. Even when the R-2.15.1 function 

to create a random set of normal distribution data the histograms and QQ plots may not 

appear ‘normal’.  

 

The following normality tests used were: 

1. Anderson-Darling 

2. Shapiro-Francia 

3. Shapiro-Wilk 
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4. Pearson chi-square 

5. Lilliefors (Kolmogorov-Smirnov) 

6. Cramer-von Mises.  

 

3.5.1 Interpreting the Normality Tests 

  

The Anderson-Darling test is a modified form of the Kolmogorov-Smirnov (K-S) test 

and but gives more weight to the tails than the K-S test. A p-value ≥ 0.05 indicates 

normality. The Anderson-Darling test may be used with small sample sizes (≤ 25).137  

The Shapiro-Wilk138 test has the best power for a given significance followed by the 

Anderson-Darling test. Data is considered to be normal if p-value is ≥ 0.05.139 

The Pearson chi-square test was also performed. It however is unreliable if the 

expected frequencies are too low. It is normally acceptable if no more than 20% of the 

cases have expected frequencies below 5. It is of limited value based on the nature of 

the data set used in this study but also frequently indicated normality.140 

The Lilliefors (Kolmogorov-Smirnov) was also used to test normality. It is used when 

the mean and standard deviation of the theorized normal distribution are not known. In 

this case they are estimated from the sample data. This test also indicated a normal data 

distribution.141,142 

The Cramer-von Mises test for normality was also used. This test was developed in 

1928 and uses one or two samples. It is an alternative test to Kolmogorov-Smirnov. A 

p-value ≥ 0.05 is considered to show normality.143,144 The Shapiro-Francia test supports 

a number of data points between 5 and 5000 and was also used. Table 23 shows the 

results for normality testing for methane in water using 40 data points. 

 

Normality Test p-value

Anderson-Darling A = 0.2141 0.8395

Shapiro-Wilk W = 0.9871 0.9219

Pearson chi-square P = 4.55 0.6027

Lilliefors (Kolmogorov-Smirnov) D = 0.0946 0.4891

Cramer-von Mises W = 0.0367 0.7329

Free Energy- Methane in Water GROMACS SSE with Normality Algorithm Statistics

 

Table 23 Normality Test Results Methane in Water GROMACS SSE 
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Whenever normality tests are performed it is important to examine the quantile to 

quantile plots (Q-Q plots) and histograms. Figures 61 shows the Q-Q plot and histogram 

respectively for the data samples for methane in water for 40 data points using 

GROMACS 4.5.3 SSE single precision for the production simulations. This histogram 

and quantile to quantile plot give a clearer and more visual assessment of normality. 

 
Figure 59 Q-Q Plot and Histogram - Methane in Water GROMACS SSE 

 

3.5.2 Normality Test Results 

 

The following results are for methane in water.  Tables 24 and 25 show the p-value 

results for each normality test used for each of the GROMACS 4.5.3 builds and the 

each variant of the developed algorithm supporting a variable number of significant 

digits. The test results for all algorithms and variants showed normality except for the 

GROMACS 4.5.3 C single precision build. A data set fails the above normality test if 

the p-value did not meet the ≥ 0.05 criteria. With small sample sizes normality tests 

may fail even for tests such as Anderson-Darling that were designed for small sample 

sizes. This was the only build/algorithm that failed to pass at least one normality test 

for any of the amino acid analogues studied.  
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A p-value W W p-value P p-value

Methane

GROMACS SSE 0.3226 0.5160 0.9776 0.5138 0.9757 0.5347 4.55 0.6027

GROMACS C Sing Prec 1.4219 0.0010 0.9107 0.0055 0.9029 0.0023 13.10 0.0415

GROMACS SSE2 Double 0.7646 0.0429 0.9530 0.0887 0.9495 0.0727 19.85 0.0029

Variable Prec. 3.01 0.6847 0.0682 0.9561 0.1114 0.9565 0.1273 15.80 0.0149

Variable Prec. 3.31 0.6178 0.1006 0.9646 0.2070 0.9634 0.2186 10.40 0.1088

Variable Prec. 3.61 0.5067 0.1896 0.9650 0.2124 0.9686 0.3239 15.35 0.0177

Variable Prec. 3.91 0.5543 0.1432 0.9528 0.0877 0.9584 0.1471 5.45 0.4875

Num Passed Normality Test 5 6 6 3

Amino Acid Analogue

Anderson-Darling Shapiro-Francia Shapiro-Wilk Pearson Chi-Square

Normality Tests

 

Table 24 Methane in Water - Normality Test Results by Algorithm 

 

 

D p-value W p-value V p-value

Methane

GROMACS SSE 0.1017 0.3731 0.0510 0.4873 0 3.58E-08 6

GROMACS C Sing Prec 0.2000 0.0003 0.2179 0.0030 0 3.52E-08 0

GROMACS SSE2 Double 0.1285 0.0942 0.1289 0.0433 0 3.59E-08 3

Variable Prec. 3.01 0.1467 0.0299 0.1143 0.0687 0 3.54E-08 4

Variable Prec. 3.31 0.1432 0.0379 0.1055 0.0906 0 3.54E-08 5

Variable Prec. 3.61 0.1601 0.0113 0.0922 0.1387 0 3.50E-08 4

Variable Prec. 3.91 0.1249 0.1200 0.0936 0.1329 0 3.52E-08 6

Num Passed Normality Test 3 5

Amino Acid Analogue

Num Norm 

Tests 

Passed / 

Algorithm 

Wilcoxon Signed 

Rank Test 

Nonparametric

Lilliefors (Kolmogorov-

Smirnov) Cramer-von Mises 

Normality Test

 

Table 25 Methane in Water - Normality Test Results by Algorithm 

3.6 Equivalence Testing 

 

3.6.1 Results for the Zone of Equivalence Testing 

 

Zone of equivalence testing was performed in Microsoft Excel 2003 using the mean ± 

the confidence interval. The results in Table 26 were obtained for methane in water 

with a confidence level of 95% with 2% margin of error. Details on the other amino 

acid analogues that are part of this study may be found in the supplemental materials. 

The zone of equivalence was defined treating each GROMACS build as if it were a 

separate ‘treatment’ method for performing molecular dynamics simulations. This was 

done because the code that is generated especially for spatial calculations differs in each 

version. For example, the C version uses a Newton-Raphson method with a limited size 
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table for the seed values for the 1/sqrt, the GROMACS SSE version uses the single 

precision assembly language instruction approximating 1/sqrt as a seed value and the 

SSE2 double precision uses double precision instructions. This means that there are 

three distinct methods of determining the 1/sqrt value that is key to force and distance 

calculations. Additionally the force calculations are coded to use single precision C, 

single precision SSE instructions and double precision SSE2 instructions that causes 

some variation in computational results 

NA indicates not applicable since the standard GROMACS builds are by definition part 

of the zone of equivalence and the GROMACS SSE2 double precision is by definition 

the zone of superiority because of the number of significant digits supported. The 

statistical equivalence method that is being used is confidence interval (CI) based where 

the upper and lower equivalence interval are the confidence interval without any 

subjective knowledge based alteration of the intervals. 

 

Methane in Water
Mean  

kJ/mol
CI Min Max

Min in Zone of 

Equivalence

Max in Zone of 

Equivalence

In Zone of 

Superiority

Zone of Equivalence (GROMACS Single 

Precision, C Single Precision, Double 

Precision) mean+/-CI NA NA -9.04 -8.99 NA NA NA

Variable Precision 3.91 Significant 

Digits -9.02 0.010 -9.04 -9.01 Yes Yes No
Variable Precision 3.61 Significant 

Digits -9.02 0.010 -9.04 -9.00 Yes Yes No

Variable Precision 3.31 Significant 

Digits -9.02 0.010 -9.03 -9.00 Yes Yes Yes
Variable Precision 3.01 Significant 

Digits -9.01 0.010 -9.02 -8.99 Yes Yes Yes

GROMACS Single Precision C -9.01 0.010 -9.02 -8.99 NA NA Yes

GROMACS Single Precision SSE -9.02 0.010 -9.04 -9.00 NA NA No

GROMACS Double Precision SSE2 (also 

zone of superiority) -9.01 0.010 -9.03 -9.00 NA NA NA

 

Table 26 Equivalence Test Results Methane in Water 

 

3.6.2 Results for the Zone of Superiority Testing 

 

The zone of superiority was assumed in the study to be the GROMACS SSE2 double 

precision build because of its greater precision. The differences between the confidence 

intervals for the GROMACS C single precision, SSE and SSE2 double decision builds 

were considered to be insufficient to establish a viable range of superiority because of 

the small difference between the ΔG ± values of the three GROMACS builds. In Figure 

61 the GROMACS C single precision results are also within the zone of superiority. 
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The GROMACS SSE single precision results are only 0.01 kJ/mol different. The figure 

also shows the two variants of the developed algorithm with the least significant digits 

as being within the zone of superiority. These results along with those from testing with 

the other amino acid analogues are evidence that there is no meaningful difference 

between the zone of equivalence and the zone of superiority. In many cases the 

GROMACS single precision SSE and C builds were determined to be within the double 

precision SSE2 defined zone of equivalence. 

3.7 Summary of Statistical Study 

 

The above testing was performed for all five amino acid analogues and it was found 

that the developed algorithm with variable precisions ≈3.01, ≈3.31, ≈3.61, and ≈3.91 

significant digits were all shown to be normal for most of the normality tests used. They 

were also within the zone of equivalence defined by the three GROMACS 4.5.3 builds 

single precision SSE, single precision C and double precision SSE2. There was only 

one exception acetamide in water with a variable precision of ≈3.01 it was found to be 

.01 kJ/mol outside the lower bound of the zone of equivalence. It was however 

interesting to note that for some amino acid analogues such as methane the GROMACS 

single precision C build did not pass the normality tests. The statistical results for the 

other amino acid analogues, histograms, quantile to quantile plots (Q-Q plots), 

normality test results, sample size estimates, R language scripts and raw data are 

contained in the supplemental materials. 

3.7.1 Summary by Algorithm and Amino Acid Analogue 

 

The following tables give credibility that the data for each combination of an amino 

acid analogue and algorithm is normal. It should be remembered that the data sets are 

relatively small (40-60).  It should also be noted that even with data generated by the R 

language’s function to generate a sample of ‘normal’ data of arbitrary size the normality 

tests may fail and the histograms and Q-Q plots may not visually appear normally 

distributed. The table below shows the results of the six normality tests that were used 

for all amino acid analogues for all 7 algorithms/builds. It shows that the Shapiro-Wilk 

and Cramer-von Misses normality tests obtained the best results on the sample data and 

the Pearson Chi-Square showed the poorest results on the data sets.   
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Anderson-

Darling

Shapiro-

Francia

Shapiro-

Wilk

Pearson 

Chi-

Square

Lilliefors 

(Kolmogorov-

Smirnov)

Cramer-

von 

Mises 

Acetamide 7 6 7 6 6 7 6.5
Ethanol 5 5 5 5 5 6 5.2

Isobutane 6 6 6 6 6 6 6.0

Methane 5 6 6 3 3 5 4.7

Methanol 7 7 7 5 7 7 6.7

Average 6.0 6.0 6.2 5.0 5.4 6.2

Amino Acid Analogue

Average 

Passed

Normality Test

Number of Algorithms/Builds Passed Per Amino Acid Analogue Per Normality Test

 

Table 27 Normality Tests Passed by Each Amino Acid Analogue 

 

Table 28 shows the results for each of the algorithms/builds with a count of the number 

of normality tests for all amino acid analogues. This reveals that for each 

algorithm/build approximately the same number of normality tests passed further 

lending credence that the data distribution for the study is normal. Only the GROMACS 

C single precision methane data failed all normality tests. There are a few possible 

explanations. 1) Normality tests do not always indicate normality even when the 

histogram visually appears to have a normal distribution, especially with a small 

sample. Normality tests that claim to be viable on data sets as small as seven are 

frequently not reliable even when using the R language function to generate a sample 

of ‘normal’ data. 2) There is a small cumulative difference in the results obtained using 

the Newton-Raphson 1/sqrt in the GROMACS C version as compared to the C library 

1/sqrt function in the lower order 2 bits of the floating point representation of the result. 

This difference probably is too small to be seen except in very long simulations, if at 

all, since there are other limitations in MD simulations such as limited precision in 

constants.  3) The methane histogram for the GROMACS C build ‘appears’ similar to 

the GROMACS SSE2 double precision that tests normal.  

GROMACS SSE Single Prec. 27

GROMACS C Sing Prec. 24

GROMACS SSE2 Double Prec. 24

Variable Prec. 3.01 24

Variable Prec. 3.31 23

Variable Prec. 3.61 26

Variable Prec. 3.91 26

Total Number of Normality Tests Passed by 

Build/Algorithm for All Amino Acid Analogues

Table 28 Count of Normality Tests Passed by Algorithm/Build 
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The data sets representing the zone of equivalence for each of the analogues (aggregate 

replicates for GROMACS C, SSE, SSE2) show that fewer normality tests pass than the 

individual builds. This is also observed when all replicates for all builds for an analogue 

were combined (three GROMACS builds and the four variable precisions builds).  An 

examination of the histograms show that there usually is a tighter clustering around the 

mean but in some cases there is a slight skewing that is similar to the skewing in the 

individual results from the GROMACS builds. 

 

Results for Other Amino Acid Analogues 

The following results were reported for the other amino acid analogues studied. 

Statistical equivalence was shown using the developed algorithm with acetamide, 

ethanol, isobutene, and methanol in addition to methane in water. 
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Mean 

ΔG 

kJ/mol CI Min Max

Min in Zone 

Equivalence

Max in Zone 

Equivalence

In Zone 

ofSuperiority

Zone of Equivalence 

mean ± CI NA NA -3.95 -3.89 NA NA NA

3.91 Significant Digits -3.93 0.02 -3.95 -3.91 Yes Yes Yes

3.61 Significant Digits -3.93 0.02 -3.95 -3.91 Yes Yes Yes

3.31 Significant Digits -3.91 0.02 -3.93 -3.89 Yes Yes Yes

3.01 Significant Digits -3.94 0.02 -3.96 -3.92 No Yes No

GROMACS Single 

Precision C -3.92 0.02 -3.95 -3.89 NA NA Yes

GROMACS Single 

Precision SSE -3.92 0.02 -3.95 -3.89 NA NA Yes

GROMACS Double 

Precision SSE2 (also 

zone of superiority) -3.92 0.03 -3.95 -3.89 NA NA NA

Zone of Equivalence 

mean ± CI NA NA -9.48 -9.4 NA NA NA

3.91 Significant Digits -9.44 0.02 -9.47 -9.41 Yes Yes No

3.61 Significant Digits -9.44 0.02 -9.47 -9.41 Yes Yes No

3.31 Significant Digits -9.44 0.02 -9.46 -9.41 Yes Yes Yes

3.01 Significant Digits -9.43 0.02 -9.46 -9.4 Yes Yes Yes

GROMACS Single 

Precision C -9.44 0.02 -9.47 -9.41 NA NA Yes

GROMACS Single 

Precision SSE -9.43 0.02 -9.46 -9.4 NA NA Yes
GROMACS Double 

Precision SSE2 (also 

zone of superiority) -9.46 0.02 -9.48 -9.44 NA NA NA

Zone of Equivalence 

mean ± CI NA NA -9.91 -9.85 NA NA NA

3.91 Significant Digits -9.88 0.02 -9.9 -9.86 Yes Yes No

3.61 Significant Digits -9.88 0.02 -9.9 -9.86 Yes Yes No

3.31 Significant Digits -9.87 0.02 -9.89 -9.85 Yes Yes No

3.01 Significant Digits -9.88 0.02 -9.9 -9.86 Yes Yes No

GROMACS Single 

Precision C -9.87 0.02 -9.89 -9.85 Yes Yes No

GROMACS Single 

Precision SSE -9.89 0.02 -9.91 -9.87 Yes Yes Yes
GROMACS Double 

Precision SSE2 (also 

zone of superiority) -9.89 0.02 -9.91 -9.87 NA NA NA

Zone of Equivalence 

mean ± CI NA NA -4.81 -4.76 NA NA NA

3.91 Significant Digits -4.78 0.02 -4.8 -4.76 Yes Yes Yes

3.61 Significant Digits -4.78 0.01 -4.8 -4.76 Yes Yes Yes

3.31 Significant Digits -4.78 0.02 -4.8 -4.76 Yes Yes Yes

3.01 Significant Digits -4.79 0.02 -4.81 -4.77 Yes Yes Yes

GROMACS Single 

Precision C -4.79 0.01 -4.81 -4.77 NA NA Yes

GROMACS Single 

Precision SSE -4.79 0.02 -4.81 -4.77 NA NA Yes

GROMACS Double 

Precision SSE2 (also 

zone of superiority) -4.78 0.02 -4.8 -4.76 NA NA NA

Amino Acid Analogue in Water

Acetamide

Ethanol

Isobutane

Methanol

 

Table 29 Zone of Equivalence Results - All Amino Acid Analogues in Study 
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3.8 Conclusions 

 

This study performed over 170 μs of simulations on five amino acid analogues to 

provide the basis for the analysis of statistical equivalence and superiority of the 

developed algorithm for improving the performance of MD simulations versus the 

standard GROMACS builds. A very strict definition of the zone of equivalence was 

used based on the widely used single precision C, SSE and double precision 

GROMACS 4.5.3 builds. If the developed variable precision algorithm did not fall 

completely within this zone then it was not considered equivalent. This is more stringent 

that the methods used in clinical trials where there is usually a ‘range’ outside of the 

upper and lower limit of statistical that is included in the zone of equivalence considered 

‘good enough’ by experts in the field. This study showed that when the 

noncomputational incremental algorithm is used in free energy studies of five amino 

acid analogues with a reduced precision between ≈3.01 and ≈3.91 significant digits, the 

results of the simulations were statistically equivalent and indistinguishable to the 

GROMACS builds. Prior studies of these amino acid analogues by others showed that 

the results of free energy studies of these simple systems could be used to validate 

GROMACS simulation results with experimentally determined values. This study 

provides strong evidence that the developed algorithm may be used in general purpose 

molecular dynamics simulations without causing side effects. It also suggests that 

testing of new performance algorithms including GPU and alternative distributed 

computational models can use equivalence testing as a means of validation with prior 

software versions and experimental data. Equivalence testing can also be applied to the 

evaluation of new/modified force field and water models. 

The supplemental materials contain detailed of normality tests results, sample size 

estimation, quantile-quantile plots, histograms, and descriptive statistics. Also included 

are the R language scripts and data tables. 
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General Discussion  

Biomolecular simulation software such as GROMACS have proven to be important 

tools to study the physico-chemical properties of biomolecules and their mechanisms 

and to describe extremely short-lived molecular phenomena otherwise difficult to 

describe.1, 2  The state of the art has come a long way since the first protein 

simulations in the early 70’s, both in terms of theoretical methods and the computer 

hardware used. Extensive work has been performed to develop and validate force 

fields, water models and algorithms with experimental data especially using free 

energy studies. Simulation of the molecular dynamics (MD) of solvated proteins with 

atomic detail requires the use of systems with the order of tens to hundreds of 

thousands of atoms. Particle simulations with detailed molecular potentials can be 

extremely heavy in systems of this size, and until recently only relatively short 

simulation times (10-100 ns) were accessible with most computer systems available.  

Molecular dynamics software maximizes performance by using methods to reduce the 

number of interactions, the latest computer instructions, multi-core and distributed 

computing architectures. Calculation of nonbonded interactions is the major 

performance problem. The speed of a simulation is limited by the processor 

architecture and how finely the simulation can be distributed across multiple 

processors/cores. Simulations in the range of 10s of thousands of atoms will not run 

significantly faster on a supercomputer than on a 64 core server. Improvements in the 

calculation of nonbonded forces for water interactions for Lennard-Jones with 

Reaction Field on the Intel Core i7 ‘Sandy Bridge’ of 14-15 times that of the 

GROMACS 4.5.3 hand coded assembly language versions were achieved on a single 

thread on a single core. Part of this is due to the elimination of the 1/sqrt calculation. 

This is the fundamental unit of performance in any computational environment 

whether it is on a single processor, GPU and distributed computer systems. The 

                                                 
1 Karplus, M. and J.A. McCammon, Molecular dynamics simulations of biomolecules. 

Nature Structural Biology, 2002. 9(9): p. 646-652. 
2 Karplus, M. and J. Kuriyan, Molecular dynamics and protein function. Proceedings 

of the National Academy of Sciences of the United States of America, 2005. 102(19): 

p. 6679-6685. 
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method could also be applied to core PME and other computationally intensive 

functions with MD software.  

This algorithm was validated for mathematical and computational stability and 

performance. It was also tested using water boxes and proteins. The results from 

water box and protein simulations appeared to show that the developed algorithm was 

suitable for MD simulations but this was based on a relatively small number of 

simulations examining energy drift, RMSD and other factors. Protein and small 

molecule studies can validate a new performance algorithm only at a high level.  

The developed algorithm is also generally applicable to most HPC applications and 

hardware that perform object to object interactions and that have already been fully 

optimized using optimizing compilers, off-loaded to GPUs, run in distributed 

environments and uses the latest and most efficient algorithms. After developers have 

fully optimized their code and it cannot be made faster by design or computation a 

way must be found to completely avoid computations or the application will not run 

any faster.  

The algorithm may be used in a broad class of HPC applications that run on 

supercomputers. These applications are generally used to address two major classes of 

problems: 1) problems with large amounts of data that has relatively few/no 

interdependencies and can be processed as many streams and 2) problems that are 

computationally intensive because they have large numbers of interactions between 

many objects. These problems may be in many diverse areas such as: weather 

forecasting, oceanography, climate change, the evolution of galaxies, development of 

stars and clusters, black holes, particle physics, molecular dynamics, protein folding, 

fluid dynamics, economics or other applications. The first class of applications can be 

easily distributed over an unlimited number of processors or cores. The second class 

of applications generally have a core internal computationally intensive code section 

(frequently to calculate forces) and a large number of object interactions. Software 

simulating large numbers of interactions uses algorithms (e.g. lattice summation or 

spherical cutoffs) to reduce the number of interactions from O(N2) to O(NlogN) or 

O(N). They exploit the latest processor architectures, OpenMP, MPI, vector 

instruction sets such as AVX, AVX512 and FMA and offload work to GPU 
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coprocessors using NVIDIA CUDA or OpenCL. Even with these techniques there are 

limits to both the number of object interactions that can be processed and the amount 

of time that these interactions may be simulated independent of the problem being 

solved. 

The method was also used to develop C library math functions that operate within a 

limited precision and range of exponents. The performance of the developed functions 

was compared to the standard C library functions with performance speedups in the 

range of 11 to 125 times faster than using gcc 4.7. The developed method may be 

applied to simple functions, equations or the simultaneous solution of multiple 

equations. 

The developed algorithm has a number of limitations. The most significant is the 

amount of CPU L2, L3, L4 cache available for use with the lookup tables for the 

intermediate results.  This study showed that there was a substantial reduction in 

performance as compared to actually computing the results when the tables used for the 

incremental results exceeded the CPU L2/L3 cache. It should also be considered that 

other applications may be using the core or processor that may cause cache misses for 

an application using the incremental lookup tables. Attention should be given to 

associating threads/processes using the algorithm with a physical core, CPU block and 

blade/node. If processes are allowed to move from core to core cache misses will result 

and this will have an adverse impact on performance. Use of the algorithm in virtual 

machine environments with multiple virtual cores mapped to a single physical core was 

not evaluated. In a virtual environment it may be difficult or impossible to associate a 

thread/process with a physical core. If this cannot be done there will likely be a 

performance penalty. 

The methodology requires application specific knowledge to allow the creation of 

reduced precision lookup tables for intermediate results. If this is not available it must 

be obtained by instrumenting the application to collect the data for the specific 

execution being performed. This is similar to the auto optimization that is done in some 

FFT libraries.  

The algorithm can be used if the number of significant digits is less than or equal to 

≈4.21 significant digits. This limitation is due to the current size of processor cache 

memory. Use of greater than ≈4.21 significant digits can/will result in table sizes that 
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result in cache misses and a degradation in performance. The exponent range must also 

be known so that each level representing a power of two can be initialized properly. 

The exponents do not need to be contiguous. 

Only one floating point/integer value may be used as a function at runtime. All other 

values required to initialize the lookup tables must be known and static at runtime.  

The implementation of the table initialization and retrieval routines can be implemented 

to use fewer exponent levels of the IEEE 754 standard. If 80% of a function/equation’s 

execution occurs within a range of values then only the exponent levels required to 

support the 80% need to be implemented as lookup tables and in all other cases the 

results would be returned by computation. 

Functions that are cyclic can implemented using smaller lookup tables and a small 

amount of additional code to manipulate the index value. Typically this code would 

consist of integer, and, or instructions or shift operations that execute in less than one 

cycle. 

The AVX2 instruction set using the vsgather instruction and AVX2 integer and bit 

manipulations gives the optimal level of performance by significantly reducing the 

number of computer instructions. 

In order to provide validation at the force field and water model levels free energy 

studies of amino acid analogues were necessary.  

This study used a methodology to determine statistical equivalence similar to what is 

performed in clinical trials to evaluate if the results produced by the developed 

algorithms were ‘good enough’ for MD simulations.  

This study used a statistically significant number of free energy studies on 5 amino 

acid side chain analogues and compared the results with existing GROMACS 4.5.3 

build versions and experimental data. It demonstrated that the developed algorithm 

produced statistically equivalent results as compared to the existing GROMACS 4.5.3 

builds. This study was modeled after studies used to validate force fields and water 

models that can be tied to experimental data. Using these small systems it was 

possible to obtain a statistically significant number of samples and use statistical 

equivalence methodologies and to demonstrate that the developed algorithm produced 
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statistically equivalent results to the three GROMACS 4.5.3 builds (C single 

precision, SSE single precision and SSE2 double precision) 
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Conclusions 
 

The ‘calculation’ of the forces and intermediate results may be improved substantially 

by use of a noncomputational and incremental computation model that exploits a 

variable precision numeric format based on the IEEE 754 standard for single precision 

values on a single thread and single physical core using the hand coded assembly 

versions of GROMACS 4.5.3. It was shown that variable precision formats in the range 

of ≈3.01 to ≈3.91 significant digits for the spatial calculations at the core of the non-

bonded routines effectively permits the simulation to run in 1pm ‘space’. Using a coarse 

grain approach to obtaining the force results allows the creation of indices for accessing 

pre-computed results without the artifacts associated with a simple conversion to 

integer lookup method.  

It has been shown than a series of tables paralleling the IEEE 754 standard supporting 

variable precision coarse grain space using 3 significant digits precision can be 

generated to support water to water and water to solute interactions using the 

GROMACS Lennard-Jones reaction field and the Lennard-Jones only assembly 

language routines. These assembly routines perform 15 times faster on an 2GHZ Intel 

Core i7 ‘Sandy Bridge’ and 2.6 times faster on an Intel Core2 Quad core 2  GHZ and 

3.2 times faster on an Intel Xeon 5650 2.67 GHZ 12MB  Cache 6 cores (Westmere-EP 

32nm). Improvements on various AMD CPUs showed an improvement of 1.6 times 

faster. 

Testing was also performed on a number of C programming library functions such as 

sqrt, log, tan, cos, etc. with results in performance improvements that were in the range 

of 11 to 125 times faster over a specified range of values at a reduced precision. The 

algorithm was also tested against an integer based lookup table method and was found 

to be 7 times faster on the Intel ‘Sandy Bridge’ Core i7.  

The performance of the algorithm is highly dependent on the percent of CPU and clock  

time used for performing nonbonded calculations, the amount of cache memory used 

for the incremental result caches, the overall memory requirements of the simulation, 

processor technology used, cache architecture, motherboard/blade design, node 

configuration and network bandwidth.  In all cases tested Intel processors performed 

better than AMD with Intel ‘Sandy Bridge’ and ‘Ivy Bridge’ greatly exceeding the 

performance of earlier Intel architectures. Preliminary testing on the Intel ‘Haswell’ 
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architecture shows a further increase in performance based on improvements in the 

cache architecture and the addition of new instructions such as vsgather that permit the 

developed algorithm to reduce the number of instructions by half. In AVX512 and other 

environments with higher data per cycle processing power, it is expected that the 

algorithm will continue to greatly exceed the performance of calculation-based 

conventional approaches.  

 

The developed algorithm must be validated on a case by case basis to ensure that an 

application continues to meet user requirements after implementing the developed 

method. In order to accomplish this for the molecular dynamics software GROMACS 

a free energy study performed over 170 μs of simulations on five amino acid analogues 

was carried out providing a basis for the analysis of statistical equivalence and 

superiority of the developed algorithm when compared to the standard GROMACS 

builds. A very strict definition of the zone of equivalence was used based on the widely 

used single precision C, SSE and double precision GROMACS 4.5.3 builds. If the 

developed variable precision algorithm did not fall completely within this zone then it 

was not considered equivalent. This is more stringent that the methods used in clinical 

trials where there is usually a ‘range’ outside of the upper and lower limit of statistical 

that is included in the zone of equivalence considered ‘good enough’ by experts in the 

field. This study showed that when the noncomputational incremental algorithm is used 

in free energy studies of five amino acid analogues with a reduced precision between 

≈3.01 and ≈3.91 significant digits the results of the simulations were statistically 

equivalent and indistinguishable to the GROMACS builds. Prior studies of these amino 

acid analogues by others showed that the results of free energy studies of these simple 

systems could be used to validate GROMACS simulation results with experimentally 

determined values. This study provides strong evidence that the developed algorithm 

may be used in general purpose molecular dynamics simulations without causing side 

effects.  
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Appendix 1 – Supplemental Materials Chapter 3 
 

1.1 Equivalence Test Results and Sample Sizes 

 

1.1.1 Acetamide in Water 

 

Acetamide in Water

Mean  
kJ/mol CI Min Max

Min in Zone of 

Equivalence

Max in Zone of 

Equivalence

In Zone of 

Superiority
Zone of Equivalence (GROMACS 

Single Precision SSE, Single 

Precision C, Double Precision 

SSE2) mean +/- CI NA NA -3.95 -3.89 NA NA NA

3.91 Significant Digits -3.93 0.02 -3.95 -3.91 Yes Yes Yes

3.61 Significant Digits -3.93 0.02 -3.95 -3.91 Yes Yes Yes

3.31 Significant Digits -3.91 0.02 -3.93 -3.89 Yes Yes Yes

3.01 Significant Digits -3.94 0.02 -3.96 -3.92 No Yes No

GROMACS Single Precision C -3.92 0.02 -3.95 -3.89 NA NA Yes

GROMACS Single Precision SSE -3.92 0.02 -3.95 -3.89 NA NA Yes
GROMACS Double Precision 

SSE2 (also zone of superiority) -3.92 0.03 -3.95 -3.89 NA NA NA

 
Figure 60 Equivalence Test Results Acetamide in Water 
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Size

56 59 44 55 28 38 42 46

Acetamide in Water - Sample Size Estimates Based on 46 Data Points for 95% Confidence Interval with 2% margin of error

 

Figure 61 Acetamide in Water - Sample Size Estimates Base on 46 data points 

 

The sample sizes for the two GROMACS 4.5.3 single precision builds are greater than 

that for any of the variants of the developed algorithm. The average sample size 

estimate of 46 was used for analysis. 

The results of the variable precision algorithm for ≈3.01 significant digits for acetamide 

is slightly lower than the lower bound of the zone of equivalence (.01 kJ/mol). This is 

probably of no consequence to molecular dynamics simulations. It is also the only 

amino acid analogue studied that fell outside of the zone of equivalence. When zones 

of equivalence are defined there is usually a range a little below or above the range that 

would be determined by the means and confidence intervals of the various methods or 

treatments that are already considered ‘good enough.’ In clinical trials for example there 

are small variations above and below the treatment results of available drugs that are 

considered to be part of the zone of equivalence or zone of superiority.  This study used 
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a more conservative methodology where the zone of equivalence was defined as 

completely within the equivalence zone defined by the three GROMACS 4.5.3 builds. 

1.1.2 Ethanol in Water 

 

Ethanol in Water
Mean  
kJ/mol CI Min Max

Min in Zone of 

Equivalence

Max in Zone of 

Equivalence

In Zone of 

Superiority
Zone of Equivalence (GROMACS 

Single Precision SSE, Single 

Precision C , Double Precision 

SSE2) mean +/- CI NA NA -9.48 -9.40 NA NA NA

3.91 Significant Digits -9.44 0.02 -9.47 -9.41 Yes Yes No

3.61 Significant Digits -9.44 0.02 -9.47 -9.41 Yes Yes No

3.31 Significant Digits -9.44 0.02 -9.46 -9.41 Yes Yes Yes

3.01 Significant Digits -9.43 0.02 -9.46 -9.40 Yes Yes Yes

GROMACS C Single Precision -9.44 0.02 -9.47 -9.41 NA NA Yes

GROMACS Single Precision SSE -9.43 0.02 -9.46 -9.40 NA NA Yes
GROMACS Double Precision SSE2 

(also zone of superiority) -9.46 0.02 -9.48 -9.44 NA NA NA

 

Figure 62 Equivalence Test Results Ethanol in Water 
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Ethanol in Water - Sample Sizes Estimates Base on 60 Data Points for 95% Confidence Interval with 2% Margin of 

Error 

 

Figure 63 Ethanol in Water - Sample Size Estimates Base on 60 data points 

 

Ethanol in water shows higher sample requirement for the GROMACS C single 

precision than the GROMACS SSE or SSE2 double precision. A sample size of 60 was 

used for analysis.  
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1.1.3 Isobutane in Water 

 

Isobutane in Water

Mean        

kJ/ml CI Min Max

Min in Zone of 

Equivalence

Max in Zone of 

Equivalence

In Zone of 

Superiority
Zone of Equivalence (Gromacs 

Single Precision SSE, C Single 

Precision, Double Precision) 

mean+/-CI NA NA -9.91 -9.85 NA NA NA

3.91 Significant Digits -9.88 0.02 -9.90 -9.86 Yes Yes No

3.61 Significant Digits -9.88 0.02 -9.90 -9.86 Yes Yes No

3.31 Significant Digits -9.87 0.02 -9.89 -9.85 Yes Yes No

3.01 Significant Digits -9.88 0.02 -9.90 -9.86 Yes Yes No

GROMACS C Single Precision -9.87 0.02 -9.89 -9.85 Yes Yes No

GROMACS Single Precision SSE -9.89 0.02 -9.91 -9.87 Yes Yes Yes

GROMACS Double Precision 

SSE2 (also zone of superiority) -9.89 0.02 -9.91 -9.87 NA NA NA

 

Figure 64 Equivalence Test Results Isobutane in Water 
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Isobutane in Water - Sample Size Estimates - Based on 46 Samples 95% Confidence Interval with 2% Margin Error

 

Figure 65 Isobutane in Water - Sample Size Estimates Base on 46 data points 

 

Isobutane in water also shows that GROMACS 4.5.3 C single precision build has a 

larger sample size than that for the other builds/variants of the developed algorithm 

except for the developed algorithm using ≈3.31 significant digits. The average sample 

size estimate of 46 was used for analysis. 
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1.1.4 Methane in Water 

 

Methane in Water

Mean 

kJ/mol CI Min Max

Min in Zone of 

Equivalence

Max in Zone of 

Equivalence

In Zone of 

Superiority
Zone of Equivalence                 

(Gromacs Single Precision SSE, C 

Single Precision, Double Precision) 

mean+/-CI NA NA -9.04 -8.99 NA NA NA

3.91 Significant Digits -9.02 0.01 -9.04 -9.01 No Yes No

3.61 Significant Digits -9.02 0.01 -9.04 -9.00 Yes Yes No

3.31 Significant Digits -9.02 0.01 -9.03 -9.00 Yes Yes Yes

3.01 Significant Digits -9.01 0.02 -9.02 -8.99 Yes Yes Yes

GROMACS C Single Precision -9.01 0.01 -9.03 -8.99 NA NA Yes

GROMACS Single Precision SSE -9.02 0.01 -9.04 -9.00 NA NA No
GROMACS Double Precision SSE2 

(also zone of superiority) -9.01 0.01 -9.03 -9.00 NA NA NA

 
Figure 66 Equivalence Test Results Methane in Water 
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Methane in Water - Sample Sizes Based on 40 Data Points for 95% Confidence Interval and 2% Margin of Error

 

Figure 67 Methane in Water - Sample Size Estimates Base on 40 data points 

 

The ≈3.31 and ≈3.01 significant digit variants of the developed algorithm have values 

that indicate that they are in the zone of superiority. However, this is not meaningful 

because the variants with greater precision and the GROMACS 4.5.3 single precision 

SSE are not in the zone of superiority. This lends credibility to the theory that the 

differences between the zone of equivalence and zone of superiority are so small that 

they are not meaningful.  A sample size of 40 was used for the analysis.  
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1.1.5 Methanol in Water 

 

Methanol in Water

Mean 
kJ/mol CI Min Max

Min in Zone of 

Equivalence

Max in Zone of 

Equivalence

In Zone of 

Superiority

Zone of Equivalence (GROMACS 

Single Precision SSE, Single 

Precision C, Double Precision 

SSE2) mean +/- CI NA NA -4.81 -4.76 NA NA NA

3.91 Significant Digits -4.78 0.02 -4.80 -4.76 Yes Yes Yes

3.61 Significant Digits -4.78 0.01 -4.80 -4.76 Yes Yes Yes

3.31 Significant Digits -4.78 0.02 -4.80 -4.76 Yes Yes Yes

3.01 Significant Digits -4.79 0.02 -4.81 -4.77 Yes Yes Yes

GROMACSSingle Precision  C -4.79 0.01 -4.81 -4.77 NA NA Yes

GROMACS Single Precision SSE -4.79 0.02 -4.81 -4.77 NA NA Yes
GROMACS Double Precision SSE2 

(also zone of superiority) -4.78 0.02 -4.80 -4.76 NA NA NA

 

Figure 68 Equivalence Testing Results Methanol in Water 
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Methanol in Water - Sample Size Estimates

 

Figure 69 Methanol in Water Sample Size Estimates Base on 40 data points 

 

A sample size of 40 was used even though the maximum estimated sample size 

estimate was 33 and the average sample estimate was 26. 

2.1 Normality Test Details 

 

2.1.1 Summary by Algorithm and Amino Acid Analogue 

 

The following tables give credibility that the data for each combination of an amino 

acid analogue and algorithm is normal. It should be remembered that the data sets are 

relatively small (40-60).  It should also be noted that even with data generated by the R 

language’s function to generate a sample of ‘normal’ data of arbitrary size the normality 

tests may fail and the histograms and Q-Q plots may not visually appear normally 

distributed. The table below shows the results of the six normality tests that were used 

for all amino acid analogues for all 7 algorithms/builds. It shows that the Shapiro-Wilk 

and Cramer-von Misses normality tests most frequently indicated that the study data 

sets are normal. The Pearson Chi-Square indicated normality on the fewest number of 

data sets.   
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Anderson-

Darling

Shapiro-

Francia

Shapiro-

Wilk

Pearson 

Chi-

Square

Lilliefors 

(Kolmogorov-

Smirnov)

Cramer-

von 

Mises 

Acetamide 7 6 7 6 6 7 6.5
Ethanol 5 5 5 5 5 6 5.2

Isobutane 6 6 6 6 6 6 6.0

Methane 5 6 6 3 3 5 4.7

Methanol 7 7 7 5 7 7 6.7

Average 6.0 6.0 6.2 5.0 5.4 6.2

Amino Acid Analogue

Average 

Passed

Normality Test

Number of Algorithms/Builds Passed Per Amino Acid Analogue Per Normality Test

 

 

The chart to the right shows the results 

for each of the algorithms/builds with a 

count of the number of normality tests 

for all amino acid analogues. This 

reveals that for each algorithm/build 

approximately the same number of 

normality tests passed further lending 

credence that the data distribution for 

the study is normal. Only the GROMACS C single precision methane data failed all 

normality tests. 

 

The data sets representing the zone of equivalence builds and that for all data points 

including all builds and variable precision algorithms show fewer normality tests pass. 

An examination of the histograms show that there usually is a tighter clustering 

around the mean but in some cases there is a slight skewing that is similar to the 

skewing in the individual results from the GROMACS builds. 

 

 

 

 

 

 

GROMACS SSE Single Prec. 27

GROMACS C Sing Prec. 24

GROMACS SSE2 Double Prec. 24

Variable Prec. 3.01 24

Variable Prec. 3.31 23

Variable Prec. 3.61 26

Variable Prec. 3.91 26

Total Number of Normality Tests Passed by 

Build/Algorithm for All Amino Acid Analogues
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2.1.2 Acetamide 

 

 

A p-value W W p-value P p-value

Acetamide
GROMACS SSE 0.4352 0.2872 0.9503 0.0479 0.9573 0.0901 7.04 0.4244

GROMACS C Sing Prec 0.4749 0.2294 0.9707 0.2499 0.9763 0.4637 7.48 0.3808

GROMACS SSE2 Double 0.6202 0.1001 0.9690 0.2172 0.9660 0.1958 20.52 0.0045

Variable Prec. 3.01 0.2580 0.7033 0.9886 0.8664 0.9831 0.7325 10.52 0.1609

Variable Prec. 3.31 0.3741 0.4022 0.9819 0.5935 0.9835 0.7520 8.78 0.2686

Variable Prec. 3.61 0.3588 0.4369 0.9805 0.5364 0.9823 0.7010 10.96 0.1405

Variable Prec. 3.91 0.4648 0.2430 0.9733 0.3088 0.9662 0.1986 6.61 0.4707

Num Passed Normality Test 7 6 7 6

Zone of Equivalence 0.8125 0.0348 0.9807 0.0467 0.9842 0.1132 23.30 0.0253

All Data 0.5541 0.1519 0.9929 0.1202 0.9943 0.2660 39.04 0.0028

Anderson-Darling Shapiro-Francia Shapiro-Wilk Pearson Chi-Square

Normality Tests

Amino Acid Analogue

 

D p-value W p-value V p-value

Acetamide
GROMACS SSE 0.1377 0.0287 0.0653 0.3158 0 3.59E-09 4

GROMACS C Sing Prec 0.1218 0.0849 0.0841 0.1787 0 3.58E-09 6

GROMACS SSE2 Double 0.1165 0.1217 0.1121 0.0738 0 3.55E-09 5

Variable Prec. 3.01 0.0822 0.6091 0.0436 0.6071 0 3.55E-09 6

Variable Prec. 3.31 0.0986 0.3174 0.0672 0.2980 0 3.56E-09 6

Variable Prec. 3.61 0.0868 0.5207 0.0534 0.4537 0 5.73E-10 6

Variable Prec. 3.91 0.1067 0.2109 0.0716 0.2607 0 3.58E-09 6

Num Passed Normality Test 6 7

Zone of Equivalence 0.0934 0.0049 0.1642 0.0152 0 2.20E-16 1

All Data 0.0519 0.0365 0.0950 0.1312 0 2.20E-16 4

Num Norm 

Tests 

Passed / 

Algorithm 

Wilcoxon Signed 

Rank Test 

Nonparametric

Lilliefors (Kolmogorov-

Smirnov) Cramer-von Mises 

Normality Test

Amino Acid Analogue
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2.1.3 Ethanol 

 

 

A p-value W W p-value P p-value

Ethanol
GROMACS SSE 0.2579 0.7072 0.9897 0.8208 0.9872 0.7822 5.63 0.6882

GROMACS C Sing Prec 0.3036 0.5619 0.9898 0.8267 0.9858 0.7096 13.70 0.0899

GROMACS SSE2 Double 0.6713 0.0757 0.9764 0.2522 0.9723 0.1891 11.50 0.1749

Variable Prec. 3.01 0.7648 0.0442 0.9544 0.0269 0.9540 0.0240 20.67 0.0081

Variable Prec. 3.31 0.2134 0.8455 0.9917 0.9093 0.9888 0.8562 4.90 0.7682

Variable Prec. 3.61 0.5563 0.1448 0.9563 0.0321 0.9577 0.0365 5.63 0.6882

Variable Prec. 3.91 0.7627 0.0447 0.9612 0.0524 0.9644 0.0770 29.10 0.0003

Num Passed Normality Test 5 5 5 5

Zone of Equivalence 0.5876 0.1239 0.9922 0.3774 0.9899 0.2341 46.67 0.0000

All Data 0.5586 0.1483 0.9957 0.2683 0.9961 0.3824 51.72 0.0001

Anderson-Darling Shapiro-Francia Shapiro-Wilk Pearson Chi-Square

Normality Tests

Amino Acid Analogue

 

 

D p-value W p-value V p-value

Ethanol
GROMACS SSE 0.0710 0.6372 0.0394 0.6862 0 1.65E-11 6

GROMACS C Sing Prec 0.0813 0.4164 0.0529 0.4625 0 1.65E-11 6

GROMACS SSE2 Double 0.1295 0.0139 0.1177 0.0625 0 1.64E-11 5

Variable Prec. 3.01 0.0951 0.1946 0.1139 0.0705 0 1.65E-11 2

Variable Prec. 3.31 0.0748 0.5528 0.0339 0.7848 0 1.63E-11 6

Variable Prec. 3.61 0.0981 0.1615 0.0870 0.1648 0 1.64E-11 4

Variable Prec. 3.91 0.1351 0.0083 0.1485 0.0240 0 1.60E-11 2

Num Passed Normality Test 5 6

Zone of Equivalence 0.0773 0.0106 0.1021 0.1043 0 2.20E-16 4

All Data 0.0444 0.0462 0.0986 0.1172 0 2.20E-16 4

Num Norm 

Tests 

Passed / 

Algorithm 

Wilcoxon Signed 

Rank Test 

Nonparametric

Lilliefors (Kolmogorov-

Smirnov) Cramer-von Mises 

Normality Test

Amino Acid Analogue
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2.1.4 Isobutane 

 

 

A p-value W W p-value P p-value

Isobutane
GROMACS SSE 0.4145 0.3224 0.9681 0.2027 0.9685 0.2436 14.43 0.0440

GROMACS C Sing Prec 0.4356 0.2866 0.9740 0.3268 0.9654 0.1849 7.04 0.4244

GROMACS SSE2 Double 0.3147 0.5325 0.9814 0.5732 0.9741 0.3890 6.61 0.4707

Variable Prec. 3.01 0.2961 0.5789 0.9840 0.6777 0.9796 0.5908 6.17 0.5196

Variable Prec. 3.31 0.8848 0.0217 0.9490 0.0432 0.9475 0.0376 10.96 0.1405

Variable Prec. 3.61 0.6975 0.0641 0.9580 0.0887 0.9511 0.0518 10.09 0.1837

Variable Prec. 3.91 0.6182 0.1013 0.9538 0.0632 0.9528 0.0602 8.78 0.2686

Num Passed Normality Test 6 6 6 6

Zone of Equivalence 0.8250 0.0324 0.9788 0.0309 0.9755 0.0137 30.26 0.0026

All Data 0.9708 0.0144 0.9835 0.0014 0.9824 0.0005 53.39 2.28E-05

Anderson-Darling Shapiro-Francia Shapiro-Wilk Pearson Chi-Square

Normality Tests

Amino Acid Analogue

 

 

D p-value W p-value V p-value

Isobutane
GROMACS SSE 0.0997 0.3015 0.0608 0.3621 0 3.56E-09 5

GROMACS C Sing Prec 0.0773 0.7027 0.0569 0.4085 0 3.60E-09 6

GROMACS SSE2 Double 0.0870 0.5165 0.0487 0.5208 0 3.51E-09 6

Variable Prec. 3.01 0.1049 0.2314 0.0482 0.5286 0 3.58E-09 6

Variable Prec. 3.31 0.1727 0.0015 0.1740 0.0109 0 3.59E-09 1

Variable Prec. 3.61 0.0904 0.4545 0.0867 0.1651 0 3.55E-09 6

Variable Prec. 3.91 0.1194 0.0980 0.0944 0.1300 0 3.52E-09 6

Num Passed Normality Test 6 6

Zone of Equivalence 0.0780 0.0388 0.1170 0.0650 0 2.20E-16 1

All Data 0.0662 0.0017 0.1299 0.0438 0 2.20E-16 0

Num Norm 

Tests 

Passed / 

Algorithm 

Wilcoxon Signed 

Rank Test 

Nonparametric

Lilliefors (Kolmogorov-

Smirnov) Cramer-von Mises 

Normality Test

Amino Acid Analogue
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2.1.5 Methane 

 

 

A p-value W W p-value P p-value

Methane

GROMACS SSE 0.3226 0.5160 0.9776 0.5138 0.9757 0.5347 4.55 0.6027

GROMACS C Sing Prec 1.4219 0.0010 0.9107 0.0055 0.9029 0.0023 13.10 0.0415

GROMACS SSE2 Double 0.7646 0.0429 0.9530 0.0887 0.9495 0.0727 19.85 0.0029

Variable Prec. 3.01 0.6847 0.0682 0.9561 0.1114 0.9565 0.1273 15.80 0.0149

Variable Prec. 3.31 0.6178 0.1006 0.9646 0.2070 0.9634 0.2186 10.40 0.1088

Variable Prec. 3.61 0.5067 0.1896 0.9650 0.2124 0.9686 0.3239 15.35 0.0177

Variable Prec. 3.91 0.5543 0.1432 0.9528 0.0877 0.9584 0.1471 5.45 0.4875

Num Passed Normality Test 5 6 6 3

Zone of Equivalence 0.8250 0.0324 0.9788 0.0309 0.9755 0.0137 30.26 0.0026

All Data 0.9708 0.0144 0.9835 0.0014 0.9824 0.0005 53.39 2.28E-05

Anderson-Darling Shapiro-Francia Shapiro-Wilk Pearson Chi-Square

Normality Tests

Amino Acid Analogue

 

 

D p-value W p-value V p-value

Methane

GROMACS SSE 0.1017 0.3731 0.0510 0.4873 0 3.58E-08 6

GROMACS C Sing Prec 0.2000 0.0003 0.2179 0.0030 0 3.52E-08 0

GROMACS SSE2 Double 0.1285 0.0942 0.1289 0.0433 0 3.59E-08 3

Variable Prec. 3.01 0.1467 0.0299 0.1143 0.0687 0 3.54E-08 4

Variable Prec. 3.31 0.1432 0.0379 0.1055 0.0906 0 3.54E-08 5

Variable Prec. 3.61 0.1601 0.0113 0.0922 0.1387 0 3.50E-08 4

Variable Prec. 3.91 0.1249 0.1200 0.0936 0.1329 0 3.52E-08 6

Num Passed Normality Test 3 5

Zone of Equivalence 0.0780 0.0388 0.1170 0.0650 0 2.20E-16 1

All Data 0.0662 0.0017 0.1299 0.0438 0 2.20E-16 0

Num Norm 

Tests 

Passed / 

Algorithm 

Wilcoxon Signed 

Rank Test 

Nonparametric

Lilliefors (Kolmogorov-

Smirnov) Cramer-von Mises 

Normality Test

Amino Acid Analogue

 

 

 

  



195 

 

 

2.1.6 Methanol 

 

 

A p-value W W p-value P p-value

Methanol

GROMACS SSE 0.4535 0.2573 0.9619 0.1694 0.2027 0.9624 5.45 0.4875

GROMACS C Sing Prec 0.2758 0.6401 0.9847 0.7720 0.9803 0.7014 5.45 0.4875

GROMACS SSE2 Double 0.4584 0.2503 0.9721 0.3546 0.9711 0.3894 16.70 0.0105

Variable Prec. 3.01 0.2990 0.5685 0.9836 0.7292 0.9785 0.6334 5.00 0.5438

Variable Prec. 3.31 0.3753 0.3974 0.9801 0.6021 0.9782 0.6245 14.45 0.0250

Variable Prec. 3.61 0.3553 0.4427 0.9802 0.6052 0.9749 0.5065 12.20 0.0577

Variable Prec. 3.91 0.4224 0.3066 0.9673 0.2519 0.9645 0.2384 8.60 0.1974

Num Passed Normality Test 7 7 7 5

Zone of Equivalence 1.1079 0.0064 0.9744 0.0231 0.9723 0.0140 29.33 0.0020

All Data 1.3203 0.0020 0.9867 0.0123 0.9855 0.0063 178.29 2.20E-16

Anderson-Darling Shapiro-Francia Shapiro-Wilk Pearson Chi-Square

Normality Tests

Amino Acid Analogue

 

 

D p-value W p-value V p-value

Methanol

GROMACS SSE 0.0947 0.4888 0.0613 0.3549 0 3.61E-08 6

GROMACS C Sing Prec 0.0809 0.7335 0.0400 0.6730 0 3.65E-08 6

GROMACS SSE2 Double 0.1163 0.1886 0.0798 0.2024 0 3.63E-08 5

Variable Prec. 3.01 0.1127 0.2266 0.0512 0.4855 0 3.62E-08 6

Variable Prec. 3.31 0.1144 0.2082 0.0662 0.3063 0 3.57E-08 5

Variable Prec. 3.61 0.1025 0.3602 0.0604 0.3651 0 3.61E-08 6

Variable Prec. 3.91 0.1098 0.2608 0.0642 0.3255 0 3.62E-08 6

Num Passed Normality Test 7 7

Zone of Equivalence 0.1023 0.0036 0.1730 0.0117 0 2.20E-16 0

All Data 0.0898 1.09E-05 0.2259 0.0025 0 2.20E-16 0

Num Norm 

Tests 

Passed / 

Algorithm 

Wilcoxon Signed 

Rank Test 

Nonparametric

Lilliefors (Kolmogorov-

Smirnov) Cramer-von Mises 

Normality Test

Amino Acid Analogue
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3.1 Descriptive Statistics 
 

3.1.1 Acetamide in Water 

 

 
 

3.1.2 Ethanol in Water 

 

 

  

-3.924

.068

.010

46

-4.050

-3.760

.005

-.017

.290

-180.500

708.475

.097

-.089

-3.920

.080

-3.920

-3.925

.030

-3.921

.079

.012

46

-4.190

-3.770

.006

-.020

.420

-180.380

707.604

-.750

1.499

-3.920

.090

-3.960

-3.917

.040

-3.917

.076

.011

46

-4.100

-3.710

.006

-.019

.390

-180.200

706.172

-.033

.593

-3.915

.080

-3.920

-3.917

.040

-3.936

.066

.010

46

-4.070

-3.800

.004

-.017

.270

-181.050

712.786

.065

-.670

-3.940

.090

-3.890

-3.937

.050

-3.912

.063

.009

46

-4.050

-3.750

.004

-.016

.300

-179.960

704.212

.049

-.131

-3.900

.090

-3.870

-3.912

.040

-3.934

.054

.008

46

-4.060

-3.800

.003

-.014

.260

-180.950

711.934

.180

-.222

-3.940

.090

-3.980

-3.934

.040

-3.925

.075

.011

46

-4.060

-3.770

.006

-.019

.290

-180.570

709.070

.302

-.386

-3.935

.090

•

-3.927

.045

Mean

Std. Dev.

Std. Error

Count

Minimum

Maximum

Variance

Coef. Var.

Range

Sum

Sum Squares

Skew ness

Kurtosis

Median

IQR

Mode

10% Tr. Mean

MAD

Double Prec SSE2 Single Prec SSE Single Prec C Var Prec 3.01 Var Prec 3.31 Var Prec 3.61 Var Prec 3.91

Descriptive Statistics
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3.1.3 Isobutane in Water 

 

 
3.1.4 Methane in Water 
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3.1.5 Methanol in Water 
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4.1 Histograms  

 

4.1.1 Acetamide in Water 
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4.1.2 Ethanol in Water 
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4.1.3 Isobutane in Water 
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4.1.4 Methane in Water 
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4.1.5 Methanol in Water 
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4.1.6 Histograms of All Data 
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5.1 Quantile to Quantile Plots  

 

5.1.1 Acetamide in Water 
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5.1.2 Ethanol in Water 
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5.1.3 Isobutane in Water 
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5.1.4 Methane in Water 
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5.1.5 Methanol in Water 
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5.1.6 Q-Q Plots of All Data 
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6.1 R Language Commands 

 

The following R language commands were used to perform normality testing and to 

determine sample size. These commands were also used to generate quantile to quantile 

plots and histograms for each of the GROMACS 4.5.3 builds, the four variable 

precision algorithms, the defined zone of equivalence and to analyze all of the data for 

all versions when combined. The only changes from one build/algorithm/zone of 

equivalence to the other was the plot/chart headings and the data input to the script. The 

following is the example for methane in water. 

 
#   Methane in Water GROMACS SSE Single Precision Data Points 
  
x<-c(   Insert data series here ) 
 
sink("Methane_NORM.txt", append=FALSE, split=FALSE) # Output sample size and test results 
#  run normality tests 
s <- sd(x)     # Standard Deviation 
 
#          Sample Size Determination  
# 
#  based on zscore, standard deviation, margin of error 
#   .95/2 lookup in zscore table = 1.96 for 95% 
#   margin of error 0.02  
 
n <- (( (s*1.96)/0.02))       # Determine estimated sample size based on the data set 
n <- n*n 
print(paste("Methane in Water - GROMACS SSE - Sample size 95% with margin of error 0.02: ",n)) 
 
# Normality Tests 
 
ad.test(x)   # Anderson-Darling Normality Test 
shapiro.test(x)      # Shapiro-Wilk Normality Test 
pearson.test(x)      # Pearson chi-square Normality Test 
lillie.test(x)   # Lilliefors (Kolmogorov-Smirnov) Normality Test 
cvm.test(x)   # Cramer-von Mises Normality 
# CI of Non normal data 
wilcox.test(x,conf.int=TRUE) # Wilcox Non Parametric Test 
 
sink() # close the output file 
 
#  Output Q-Q plot using file naming convention 
 
jpeg('Methane_QQ_GROMACS_SSE.jpg') 
qqnorm(x, main="Free Energy - Methane in Water \nGROMACS Single Precision SSE – 40 Data Points", 
ylab='Sample Quantiles (ΔG kJ/mol)'); qqline(x) 
dev.off() 
 
#  Output Histograms using file naming convention 
 
jpeg('Methane_HIST_GROMACS_SSE.jpg') 
hist(x, main='Histogram of Free Energy\nMethane in Water \n GROMACS Single Precision SSE - 40 Data 
Points', xlab='ΔG kJ/mol') 
dev.off()  
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7.1 Raw Data 
 

7.1.1 Acetamide in Water 
 

Significant 

Digits

Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/-

-4.05 0.09 -3.84 0.04 -3.92 0.05 -4.05 0.09 -3.88 0.06 -3.90 0.04 -3.98 0.11

-3.95 0.06 -3.90 0.08 -3.82 0.09 -3.95 0.06 -3.85 0.06 -3.88 0.05 -3.79 0.08

-3.87 0.04 -3.95 0.03 -3.93 0.09 -3.87 0.04 -3.90 0.08 -3.97 0.11 -3.95 0.05

-3.93 0.03 -3.87 0.05 -3.99 0.06 -3.93 0.03 -3.90 0.03 -3.88 0.06 -3.98 0.10

-3.89 0.06 -3.92 0.07 -3.89 0.03 -3.89 0.06 -4.01 0.08 -3.94 0.08 -3.87 0.09

-4.02 0.09 -3.88 0.03 -3.96 0.05 -4.02 0.09 -3.98 0.10 -3.98 0.05 -3.79 0.06

-3.98 0.04 -3.92 0.05 -3.94 0.07 -3.98 0.04 -3.86 0.06 -3.96 0.05 -3.94 0.06

-3.85 0.12 -3.96 0.08 -3.98 0.09 -3.85 0.12 -3.92 0.05 -4.01 0.08 -3.98 0.05

-3.89 0.08 -3.83 0.08 -3.91 0.06 -3.89 0.08 -3.75 0.03 -3.93 0.08 -3.84 0.07

-3.90 0.08 -3.82 0.03 -3.88 0.05 -3.90 0.08 -3.87 0.04 -3.87 0.11 -3.93 0.02

-3.76 0.09 -3.89 0.07 -3.71 0.05 -3.85 0.05 -3.99 0.03 -3.94 0.07 -4.04 0.11

-3.92 0.08 -3.96 0.04 -3.87 0.08 -3.91 0.05 -3.92 0.06 -3.98 0.05 -3.94 0.02

-3.84 0.04 -4.05 0.05 -3.90 0.06 -3.98 0.05 -3.84 0.09 -3.95 0.09 -4.06 0.09

-3.92 0.07 -3.94 0.06 -4.02 0.05 -4.01 0.09 -3.89 0.09 -4.00 0.02 -4.06 0.05

-3.91 0.12 -3.86 0.04 -4.00 0.05 -3.89 0.04 -3.90 0.06 -3.89 0.05 -3.91 0.03

-4.04 0.08 -3.89 0.09 -3.86 0.12 -3.96 0.05 -3.87 0.07 -3.91 0.05 -3.91 0.05

-3.92 0.06 -3.91 0.08 -3.99 0.07 -3.99 0.09 -4.05 0.09 -3.99 0.08 -4.02 0.05

-3.94 0.10 -3.81 0.08 -3.83 0.09 -3.94 0.10 -3.86 0.04 -3.96 0.08 -3.95 0.05

-3.91 0.07 -3.87 0.09 -3.92 0.09 -3.91 0.03 -3.79 0.06 -3.92 0.09 -3.97 0.07

-3.92 0.08 -4.04 0.03 -3.92 0.06 -4.04 0.03 -3.90 0.03 -3.82 0.07 -3.94 0.12

-3.92 0.07 -3.94 0.04 -3.86 0.09 -3.98 0.08 -3.93 0.06 -3.94 0.06 -3.92 0.07

-3.89 0.09 -3.95 0.04 -4.02 0.04 -4.01 0.09 -3.96 0.09 -3.99 0.08 -3.89 0.09

-4.05 0.10 -3.91 0.04 -3.87 0.07 -3.90 0.08 -4.03 0.11 -3.86 0.02 -4.05 0.10

-3.85 0.03 -4.01 0.07 -3.82 0.03 -3.94 0.05 -3.94 0.10 -3.93 0.04 -3.85 0.03

-3.80 0.05 -4.05 0.06 -3.86 0.03 -4.02 0.06 -3.98 0.07 -4.02 0.02 -3.80 0.05

-3.97 0.09 -3.91 0.08 -3.88 0.04 -3.95 0.06 -3.88 0.11 -3.89 0.01 -3.97 0.09

-3.96 0.03 -3.96 0.08 -3.94 0.04 -4.01 0.05 -3.97 0.06 -3.97 0.07 -3.96 0.03

-3.94 0.05 -3.95 0.08 -3.90 0.03 -3.98 0.08 -3.87 0.03 -3.99 0.09 -3.94 0.05

-3.93 0.05 -3.77 0.07 -3.91 0.05 -3.89 0.07 -3.87 0.05 -3.90 0.08 -3.93 0.05

-3.90 0.14 -3.90 0.05 -3.93 0.04 -3.89 0.08 -3.96 0.04 -3.93 0.05 -3.90 0.14

-3.90 0.03 -3.84 0.07 -3.88 0.06 -3.95 0.04 -3.82 0.08 -3.98 0.04 -3.97 0.07

-3.98 0.04 -3.93 0.04 -3.79 0.10 -3.89 0.07 -3.87 0.03 -4.06 0.09 -4.03 0.04

-3.91 0.11 -3.98 0.08 -3.92 0.05 -3.97 0.04 -3.86 0.07 -3.80 0.09 -3.95 0.10

-3.97 0.07 -3.93 0.07 -4.10 0.02 -3.94 0.07 -3.89 0.07 -3.95 0.04 -3.90 0.03

-3.92 0.06 -3.80 0.05 -3.79 0.07 -4.03 0.07 -3.99 0.04 -3.95 0.04 -3.83 0.04

-3.91 0.09 -3.87 0.03 -4.09 0.06 -3.80 0.05 -3.96 0.05 -3.87 0.07 -3.98 0.05

-4.03 0.05 -3.84 0.02 -4.01 0.09 -3.94 0.07 -3.96 0.04 -3.89 0.03 -3.87 0.04

-3.93 0.02 -3.96 0.09 -3.89 0.04 -3.84 0.08 -4.00 0.05 -3.94 0.05 -3.77 0.05

-3.84 0.05 -3.90 0.05 -3.89 0.06 -3.96 0.04 -3.87 0.04 -3.92 0.08 -3.90 0.05

-4.02 0.04 -4.19 0.05 -3.89 0.08 -3.93 0.05 -3.96 0.06 -3.88 0.06 -3.91 0.08

-3.78 0.05 -3.81 0.08 -3.94 0.07 -3.89 0.08 -3.89 0.05 -3.91 0.05 -3.98 0.12

-3.92 0.06 -3.96 0.05 -3.94 0.1 -3.81 0.06 -3.95 0.08 -3.87 0.03 -3.99 0.05

-3.85 0.09 -4.02 0.06 -4.01 0.07 -3.86 0.04 -3.84 0.07 -3.98 0.09 -3.91 0.07

-4.02 0.02 -3.94 0.07 -4.00 0.10 -3.82 0.05 -3.92 0.07 -3.98 0.09 -3.84 0.06

-3.89 0.04 -3.93 0.04 -3.91 0.06 -3.97 0.04 -3.91 0.07 -3.99 0.05 -3.77 0.08

-4.01 0.04 -4.02 0.06 -3.92 0.05 -4.07 0.11 -3.95 0.07 -3.88 0.05 -3.91 0.05

Mean -3.92 0.07 -3.92 0.06 -3.92 0.06 -3.94 0.06 -3.91 0.06 -3.93 0.06 -3.93 0.07

≈ 7.22 ≈ 3.01 ≈ 3.31 ≈ 3.61

Raw Data Acetamide in Water - 46 Samples
GROMACS Double 

Precision SSE2 

GROMACS Single 

Precision SSE

GROMACS Single 

Precision C
Variable Precision Algorithms

≈ 3.91≈ 15.95 ≈ 7.22
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7.1.2 Ethanol in Water 
 

Approx Sign 

Digits

Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/-
-9.50 0.06 -9.29 0.09 -9.60 0.13 -9.41 0.05 -9.46 0.06 -9.38 0.09 -9.34 0.07

-9.53 0.06 -9.44 0.06 -9.49 0.05 -9.46 0.07 -9.42 0.08 -9.40 0.03 -9.58 0.17

-9.36 0.04 -9.48 0.09 -9.56 0.08 -9.31 0.08 -9.52 0.06 -9.70 0.05 -9.54 0.06

-9.43 0.11 -9.43 0.05 -9.38 0.08 -9.50 0.10 -9.58 0.08 -9.39 0.05 -9.36 0.08

-9.52 0.10 -9.47 0.09 -9.33 0.08 -9.56 0.07 -9.44 0.09 -9.44 0.04 -9.44 0.03

-9.43 0.07 -9.48 0.09 -9.62 0.06 -9.37 0.06 -9.40 0.08 -9.52 0.04 -9.44 0.08

-9.45 0.13 -9.52 0.03 -9.52 0.07 -9.43 0.09 -9.40 0.06 -9.38 0.08 -9.37 0.10

-9.46 0.06 -9.33 0.14 -9.44 0.05 -9.57 0.07 -9.40 0.06 -9.42 0.11 -9.39 0.02

-9.55 0.10 -9.40 0.07 -9.44 0.04 -9.50 0.04 -9.48 0.09 -9.57 0.03 -9.43 0.07

-9.46 0.03 -9.52 0.08 -9.41 0.11 -9.45 0.11 -9.48 0.08 -9.43 0.09 -9.37 0.08

-9.37 0.08 -9.45 0.04 -9.52 0.04 -9.43 0.05 -9.61 0.03 -9.32 0.06 -9.40 0.06

-9.50 0.09 -9.51 0.10 -9.39 0.05 -9.42 0.05 -9.47 0.08 -9.40 0.10 -9.40 0.06

-9.40 0.07 -9.38 0.10 -9.56 0.04 -9.36 0.09 -9.51 0.10 -9.42 0.04 -9.39 0.11

-9.60 0.09 -9.25 0.05 -9.56 0.11 -9.49 0.07 -9.43 0.16 -9.36 0.04 -9.47 0.09

-9.39 0.05 -9.55 0.07 -9.52 0.07 -9.21 0.12 -9.48 0.05 -9.42 0.08 -9.44 0.07

-9.51 0.03 -9.51 0.03 -9.48 0.08 -9.38 0.01 -9.46 0.07 -9.45 0.07 -9.52 0.08

-9.44 0.09 -9.26 0.09 -9.36 0.07 -9.26 0.06 -9.40 0.07 -9.45 0.07 -9.48 0.11

-9.48 0.16 -9.43 0.08 -9.36 0.06 -9.47 0.05 -9.49 0.07 -9.41 0.09 -9.33 0.09

-9.39 0.06 -9.45 0.05 -9.36 0.06 -9.48 0.05 -9.50 0.05 -9.52 0.05 -9.48 0.09

-9.38 0.08 -9.51 0.11 -9.54 0.07 -9.38 0.05 -9.59 0.05 -9.48 0.12 -9.23 0.07

-9.30 0.03 -9.43 0.03 -9.33 0.07 -9.50 0.11 -9.52 0.10 -9.44 0.05 -9.44 0.03

-9.40 0.16 -9.37 0.06 -9.35 0.08 -9.51 0.10 -9.34 0.08 -9.54 0.09 -9.59 0.03

-9.35 0.07 -9.39 0.07 -9.42 0.05 -9.51 0.14 -9.40 0.08 -9.45 0.03 -9.60 0.09

-9.50 0.07 -9.35 0.07 -9.52 0.06 -9.49 0.10 -9.47 0.10 -9.38 0.12 -9.46 0.10

-9.47 0.08 -9.43 0.07 -9.41 0.09 -9.37 0.05 -9.33 0.10 -9.44 0.12 -9.44 0.11

-9.35 0.07 -9.41 0.02 -9.45 0.05 -9.46 0.08 -9.42 0.10 -9.46 0.04 -9.44 0.04

-9.53 0.04 -9.33 0.07 -9.53 0.04 -9.52 0.11 -9.45 0.13 -9.48 0.05 -9.57 0.11

-9.51 0.06 -9.45 0.03 -9.63 0.09 -9.48 0.09 -9.39 0.07 -9.51 0.12 -9.47 0.08

-9.59 0.06 -9.31 0.06 -9.52 0.08 -9.45 0.12 -9.57 0.10 -9.34 0.09 -9.53 0.10

-9.46 0.02 -9.39 0.07 -9.39 0.08 -9.48 0.07 -9.34 0.12 -9.63 0.08 -9.44 0.05

-9.35 0.06 -9.34 0.01 -9.51 0.11 -9.45 0.04 -9.30 0.08 -9.55 0.08 -9.30 0.13

-9.53 0.05 -9.42 0.09 -9.46 0.06 -9.44 0.15 -9.51 0.10 -9.33 0.09 -9.53 0.04

-9.39 0.05 -9.30 0.07 -9.52 0.04 -9.38 0.08 -9.43 0.07 -9.33 0.09 -9.37 0.12

-9.39 0.06 -9.44 0.07 -9.43 0.09 -9.44 0.04 -9.50 0.08 -9.58 0.07 -9.52 0.04

-9.56 0.11 -9.37 0.04 -9.27 0.05 -9.35 0.08 -9.53 0.05 -9.40 0.09 -9.51 0.06

-9.39 0.09 -9.31 0.05 -9.40 0.08 -9.37 0.11 -9.39 0.02 -9.49 0.12 -9.44 0.06

-9.52 0.06 -9.56 0.06 -9.46 0.06 -9.34 0.13 -9.53 0.05 -9.34 0.05 -9.19 0.03

-9.52 0.06 -9.42 0.06 -9.50 0.04 -9.48 0.10 -9.37 0.05 -9.42 0.07 -9.45 0.07

-9.62 0.04 -9.37 0.05 -9.40 0.08 -9.42 0.11 -9.44 0.05 -9.39 0.11 -9.44 0.05

-9.40 0.12 -9.53 0.04 -9.47 0.03 -9.55 0.08 -9.43 0.05 -9.57 0.06 -9.54 0.02

-9.39 0.06 -9.48 0.07 -9.36 0.10 -9.39 0.05 -9.44 0.10 -9.32 0.11 -9.47 0.06

-9.36 0.10 -9.44 0.10 -9.44 0.04 -9.50 0.08 -9.46 0.08 -9.36 0.11 -9.41 0.07

-9.51 0.09 -9.52 0.02 -9.42 0.07 -9.40 0.02 -9.56 0.02 -9.45 0.11 -9.43 0.05

-9.52 0.09 -9.39 0.03 -9.42 0.04 -9.46 0.05 -9.48 0.04 -9.42 0.09 -9.39 0.09

-9.53 0.04 -9.59 0.08 -9.48 0.10 -9.42 0.04 -9.40 0.03 -9.49 0.07 -9.29 0.07

-9.41 0.05 -9.42 0.04 -9.55 0.10 -9.39 0.08 -9.46 0.03 -9.47 0.06 -9.50 0.08

-9.44 0.07 -9.40 0.05 -9.47 0.06 -9.49 0.12 -9.40 0.03 -9.43 0.03 -9.33 0.14

-9.37 0.05 -9.47 0.10 -9.51 0.06 -9.53 0.07 -9.33 0.05 -9.37 0.13 -9.44 0.06

-9.51 0.08 -9.48 0.08 -9.42 0.04 -9.32 0.08 -9.36 0.07 -9.44 0.06 -9.51 0.04

-9.47 0.14 -9.33 0.07 -9.35 0.07 -9.41 0.07 -9.42 0.15 -9.42 0.06 -9.39 0.08

-9.46 0.07 -9.37 0.08 -9.25 0.04 -9.49 0.11 -9.44 0.04 -9.42 0.12 -9.46 0.12

-9.42 0.08 -9.41 0.04 -9.40 0.05 -9.20 0.10 -9.53 0.08 -9.49 0.09 -9.43 0.08

-9.60 0.09 -9.46 0.08 -9.32 0.10 -9.42 0.08 -9.35 0.06 -9.44 0.05 -9.43 0.06

-9.51 0.10 -9.50 0.06 -9.29 0.10 -9.31 0.05 -9.35 0.12 -9.48 0.03 -9.38 0.08

-9.57 0.08 -9.44 0.09 -9.32 0.02 -9.49 0.07 -9.46 0.06 -9.31 0.06 -9.43 0.05

-9.50 0.03 -9.42 0.06 -9.39 0.09 -9.49 0.07 -9.29 0.08 -9.32 0.06 -9.44 0.09

-9.50 0.05 -9.40 0.07 -9.31 0.05 -9.28 0.05 -9.43 0.02 -9.46 0.07 -9.45 0.06

-9.51 0.06 -9.47 0.10 -9.41 0.04 -9.42 0.04 -9.40 0.08 -9.51 0.15 -9.46 0.12

-9.41 0.14 -9.52 0.15 -9.46 0.05 -9.39 0.09 -9.46 0.04 -9.46 0.09 -9.41 0.07

Mean -9.46 0.07 -9.43 0.07 -9.44 0.07 -9.43 0.08 -9.44 0.07 -9.44 0.08 -9.44 0.07

≈ 3.31 ≈ 3.61 ≈ 3.91

Raw Data Ethanol in Water

≈  7.22 ≈ 7.22

Variable Precision Algorithms

≈ 3.01≈ 15.95

GROMACS Single Precision 

SSE

GROMACS Double 

Precision SSE2 

GROMACS Single 

Precision C

 

 

  



225 

 

 

7.1.3 Isobutane in Water 
 

Approx Sign Digits

Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/-
-9.90 0.10 -9.71 0.09 -9.90 0.03 -9.81 0.09 -9.91 0.08 -9.82 0.05 -9.83 0.08

-9.84 0.07 -9.93 0.12 -9.98 0.07 -9.85 0.03 -9.94 0.05 -9.81 0.07 -9.80 0.04

-9.94 0.12 -9.96 0.08 -9.74 0.08 -9.79 0.06 -9.89 0.08 -10.00 0.09 -9.80 0.04

-9.90 0.06 -9.87 0.10 -9.77 0.06 -9.91 0.09 -9.89 0.08 -9.77 0.05 -9.84 0.08

-9.98 0.10 -9.94 0.10 -9.75 0.08 -9.86 0.10 -9.91 0.08 -9.89 0.03 -9.92 0.04

-9.77 0.04 -9.85 0.07 -9.97 0.10 -9.90 0.05 -9.88 0.11 -9.81 0.11 -9.84 0.10

-9.83 0.05 -9.89 0.08 -9.93 0.04 -9.83 0.10 -9.90 0.04 -9.91 0.10 -9.86 0.08

-9.78 0.04 -9.84 0.08 -9.87 0.11 -9.95 0.07 -9.93 0.06 -9.86 0.14 -9.80 0.04

-9.98 0.06 -9.89 0.07 -9.87 0.05 -9.89 0.09 -9.91 0.12 -9.85 0.08 -9.74 0.11

-9.95 0.11 -9.85 0.10 -9.77 0.07 -9.82 0.05 -9.94 0.08 -9.81 0.04 -9.72 0.09

-9.91 0.04 -9.88 0.09 -9.83 0.05 -10.00 0.03 -9.77 0.09 -9.88 0.13 -9.88 0.04

-9.97 0.05 -9.94 0.05 -9.89 0.04 -9.87 0.09 -9.97 0.05 -9.90 0.06 -9.93 0.07

-9.84 0.04 -10.00 0.14 -9.89 0.06 -9.84 0.08 -9.84 0.08 -9.89 0.10 -9.90 0.13

-9.90 0.03 -9.93 0.06 -9.88 0.08 -9.86 0.05 -9.74 0.12 -9.99 0.09 -9.88 0.14

-9.90 0.11 -9.87 0.06 -9.85 0.07 -9.92 0.05 -9.95 0.03 -9.92 0.08 -9.97 0.07

-9.95 0.10 -9.84 0.06 -9.99 0.05 -9.96 0.06 -9.78 0.05 -10.00 0.11 -9.95 0.10

-9.92 0.05 -9.84 0.03 -9.81 0.05 -9.91 0.05 -9.75 0.05 -10.00 0.07 -9.86 0.07

-9.88 0.06 -9.95 0.14 -9.90 0.06 -9.88 0.05 -9.96 0.05 -9.89 0.05 -9.95 0.04

-9.93 0.09 -9.92 0.08 -9.79 0.12 -9.76 0.07 -9.86 0.10 -9.87 0.11 -9.71 0.06

-9.93 0.06 -9.84 0.10 -9.94 0.06 -9.92 0.04 -9.83 0.03 -9.83 0.09 -9.97 0.09

-9.88 0.07 -9.93 0.09 -9.95 0.09 -9.82 0.05 -9.80 0.07 -9.91 0.05 -9.98 0.07

-9.88 0.07 -9.91 0.08 -9.87 0.11 -9.81 0.10 -9.82 0.05 -9.80 0.04 -9.93 0.04

-9.86 0.04 -9.97 0.05 -9.79 0.06 -9.80 0.06 -9.95 0.07 -9.89 0.03 -9.90 0.04

-9.77 0.08 -9.84 0.10 -9.72 0.06 -9.91 0.10 -10.00 0.06 -9.95 0.07 -9.83 0.13

-9.86 0.03 -9.86 0.05 -9.86 0.05 -9.88 0.08 -9.92 0.08 -10.00 0.04 -9.88 0.04

-9.88 0.08 -9.88 0.07 -9.74 0.08 -9.99 0.07 -9.89 0.07 -9.86 0.08 -9.90 0.12

-10.00 0.06 -9.84 0.07 -9.87 0.03 -10.00 0.05 -9.83 0.05 -9.74 0.07 -9.91 0.01

-9.88 0.03 -9.79 0.05 -9.84 0.12 -9.91 0.05 -9.97 0.06 -9.83 0.07 -9.99 0.09

-9.95 0.08 -9.92 0.05 -9.99 0.03 -9.95 0.05 -9.93 0.09 -9.83 0.08 -9.88 0.09

-9.85 0.10 -9.98 0.08 -9.91 0.02 -9.77 0.07 -9.79 0.06 -10.00 0.11 -9.93 0.08

-9.84 0.05 -9.79 0.09 -9.85 0.10 -10.00 0.04 -9.91 0.02 -9.85 0.12 -9.88 0.04

-9.86 0.05 -9.98 0.06 -9.70 0.04 -9.72 0.11 -9.90 0.09 -9.91 0.07 -9.86 0.05

-9.89 0.08 -9.88 0.04 -9.77 0.04 -9.87 0.09 -9.91 0.04 -9.81 0.04 -9.89 0.08

-9.86 0.04 -9.88 0.09 -9.84 0.08 -9.94 0.06 -9.99 0.04 -9.85 0.05 -9.86 0.04

-9.96 0.04 -9.88 0.13 -9.83 0.09 -9.87 0.12 -9.74 0.07 -9.89 0.04 -9.96 0.04

-9.93 0.05 -9.89 0.11 -10.00 0.10 -9.81 0.07 -9.92 0.09 -9.84 0.05 -9.93 0.05

-9.82 0.09 -9.95 0.07 -9.84 0.04 -9.92 0.05 -9.80 0.06 -9.82 0.09 -9.82 0.09

-9.90 0.07 -9.85 0.09 -9.86 0.07 -9.89 0.06 -9.77 0.06 -9.88 0.05 -9.90 0.07

-9.88 0.10 -9.83 0.05 -9.86 0.05 -9.91 0.05 -9.90 0.05 -9.96 0.09 -9.88 0.10

-9.87 0.05 -9.79 0.04 -9.86 0.10 -9.92 0.11 -9.64 0.07 -9.79 0.10 -9.87 0.05

-9.88 0.05 -9.91 0.09 -9.80 0.10 -9.95 0.08 -9.88 0.02 -9.93 0.10 -9.87 0.12

-9.88 0.07 -10.00 0.05 -9.98 0.06 -9.82 0.09 -9.72 0.06 -9.80 0.11 -9.88 0.12

-10.00 0.09 -9.87 0.03 -9.88 0.08 -9.93 0.04 -9.89 0.07 -9.84 0.05 -9.88 0.03

-9.82 0.04 -9.96 0.09 -9.95 0.08 -9.93 0.05 -9.83 0.05 -9.81 0.03 -9.95 0.12

-9.77 0.06 -9.86 0.10 -9.98 0.08 -9.84 0.06 -9.99 0.07 -9.91 0.11 -9.89 0.04

-9.81 0.07 -9.98 0.06 -9.98 0.09 -9.82 0.06 -9.89 0.07 -9.89 0.02 -9.85 0.03

Mean -9.89 0.07 -9.89 0.08 -9.87 0.07 -9.88 0.07 -9.87 0.07 -9.88 0.07 -9.88 0.07

≈ 7.22 ≈ 3.01 ≈ 3.31 ≈ 3.61

Raw Data Isobutane in Water 46 Samples

GROMACS Double 

Precision SSE2 

GROMACS Single 

Precision SSE

GROMACS Single 

Precision C
Variable Precision Algorithms

≈ 3.91≈ 15.95 ≈  7.22
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7.1.4 Methane in Water 
 

Approx Sign 

Digits

Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/-

-8.94 0.05 -9.08 -9.08 -9.04 0.06 -9.02 -9.02 -8.97 0.04 -9.05 0.02 -9.02 0.05

-8.96 0.03 -9.08 -9.08 -9.00 0.02 -8.99 -8.99 -9.04 0.09 -9.01 0.04 -9.09 0.05

-8.95 0.05 -9.00 -9.00 -8.99 0.03 -9.00 -9.00 -9.00 0.02 -8.98 0.03 -9.01 0.06

-9.03 0.06 -9.03 -9.03 -9.00 0.06 -8.96 -8.96 -9.01 0.02 -9.04 0.03 -8.99 0.08

-9.01 0.04 -9.01 -9.01 -9.02 0.04 -8.96 -8.96 -9.06 0.01 -8.97 0.02 -9.06 0.02

-9.06 0.05 -9.03 -9.03 -9.02 0.05 -9.12 -9.12 -8.98 0.05 -9.00 0.04 -9.04 0.03

-9.06 0.04 -8.99 -8.99 -9.06 0.05 -8.96 -8.96 -9.04 0.05 -9.00 0.05 -8.97 0.02

-9.04 0.02 -9.01 -9.01 -8.92 0.03 -8.97 -8.97 -9.00 0.05 -9.04 0.05 -9.06 0.06

-9.03 0.05 -9.03 -9.03 -9.04 0.03 -9.03 -9.03 -9.00 0.04 -9.01 0.03 -8.96 0.06

-8.91 0.04 -8.95 -8.95 -9.00 0.02 -8.97 -8.97 -8.94 0.05 -9.00 0.06 -8.91 0.02

-9.04 0.04 -9.03 -9.03 -9.00 0.05 -8.99 -8.99 -8.98 0.03 -9.00 0.05 -9.00 0.03

-9.04 0.01 -9.07 -9.07 -9.07 0.06 -9.00 -9.00 -9.09 0.04 -8.96 0.08 -9.01 0.04

-8.97 0.05 -9.02 -9.02 -8.93 0.05 -9.02 -9.02 -9.02 0.04 -9.05 0.04 -9.00 0.05

-9.02 0.03 -9.11 -9.11 -9.03 0.02 -9.06 -9.06 -9.00 0.02 -9.03 0.04 -9.02 0.06

-9.06 0.03 -8.96 -8.96 -8.94 0.06 -8.92 -8.92 -9.08 0.04 -9.03 0.04 -9.00 0.06

-9.08 0.03 -8.98 -8.98 -9.00 0.05 -9.03 -9.03 -9.02 0.05 -9.10 0.05 -9.04 0.05

-9.02 0.04 -9.03 -9.03 -9.02 0.04 -9.01 -9.01 -9.03 0.04 -8.91 0.03 -9.00 0.03

-9.05 0.04 -9.05 -9.05 -9.02 0.04 -9.09 -9.09 -9.04 0.03 -9.06 0.04 -9.01 0.04

-9.05 0.04 -9.06 -9.06 -9.00 0.05 -9.00 -9.00 -8.99 0.04 -9.06 0.07 -9.06 0.03

-9.00 0.03 -9.08 -9.08 -9.05 0.02 -9.05 -9.05 -8.99 0.03 -9.03 0.04 -9.00 0.04

-8.97 0.08 -9.05 -9.05 -9.02 0.03 -9.01 -9.01 -8.99 0.01 -8.99 0.03 -9.06 0.02

-8.98 0.06 -8.99 -8.99 -8.98 0.07 -9.00 -9.00 -9.01 0.03 -9.05 0.07 -9.03 0.03

-9.05 0.03 -9.04 -9.04 -8.93 0.02 -8.99 -8.99 -9.01 0.04 -9.02 0.01 -9.02 0.03

-9.03 0.04 -9.02 -9.02 -9.05 0.06 -8.97 -8.97 -8.96 0.02 -9.07 0.03 -9.09 0.05

-9.02 0.04 -8.99 -8.99 -9.05 0.05 -9.02 -9.02 -8.99 0.08 -9.07 0.04 -9.01 0.04

-9.05 0.04 -8.99 -8.99 -9.02 0.04 -9.00 -9.00 -9.04 0.03 -9.05 0.04 -9.08 0.05

-8.99 0.02 -9.00 -9.00 -9.01 0.02 -8.98 -8.98 -9.06 0.04 -9.03 0.05 -9.01 0.04

-8.96 0.04 -9.06 -9.06 -8.94 0.03 -9.03 -9.03 -9.08 0.01 -9.03 0.06 -9.01 0.06

-9.00 0.04 -8.97 -8.97 -9.01 0.03 -8.97 -8.97 -9.01 0.02 -9.01 0.02 -8.99 0.04

-8.98 0.04 -8.91 -8.91 -9.04 0.06 -9.09 -9.09 -9.03 0.05 -9.03 0.02 -9.04 0.03

-9.02 0.05 -9.03 -9.03 -9.01 0.07 -8.92 -8.92 -9.00 0.05 -9.00 0.03 -9.03 0.04

-9.05 0.05 -9.01 -9.01 -9.05 0.04 -8.95 -8.95 -9.02 0.05 -8.99 0.04 -9.07 0.05

-9.00 0.04 -8.94 -8.94 -9.06 0.05 -9.06 -9.06 -9.01 0.02 -8.94 0.04 -9.02 0.04

-9.04 0.05 -8.99 -8.99 -9.03 0.05 -9.03 -9.03 -9.02 0.03 -9.03 0.04 -9.05 0.05

-8.98 0.05 -9.00 -9.03 -9.02 0.06 -8.98 -9.00 -9.09 0.05 -8.97 0.04 -9.03 0.02

-9.06 0.04 -9.02 -9.02 -9.06 0.05 -9.00 -9.00 -9.02 0.04 -9.03 0.04 -9.01 0.04

-8.97 0.05 -9.11 -9.11 -8.94 0.06 -9.00 -9.00 -8.99 0.01 -9.06 0.07 -9.06 0.03

-8.98 0.06 -9.05 -9.05 -8.93 0.02 -8.97 -8.97 -9.06 0.04 -9.07 0.04 -9.01 0.06

-8.98 0.04 -8.91 -8.91 -9.01 0.07 -9.09 -9.09 -9.02 0.05 -9.03 0.02 -9.03 0.04

-8.98 0.05 -9.00 -9.00 -9.02 0.05 -8.98 -8.98 -9.09 0.04 -8.97 0.04 -9.03 0.05

Mean -9.01 0.04 -9.02 -9.02 -9.01 0.04 -9.00 -9.01 -9.02 0.04 -9.02 0.04 -9.02 0.04

Raw Data Methane in Water - 40 Samples

≈ 7.22≈ 15.95

GROMACS Double 

Precision SSE2 

GROMACS Single 

Precision SSE
Variable Precision Algorithms

GROMACS Single 

Precision C

≈ 3.91≈ 3.61≈ 3.31≈ 3.01≈ 7.22

 

 

 

  



227 

 

 

7.1.5 Methanol in Water 
 

Approx 

Sign Digits

Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/- Δ G kJ/mol +/-

-4.84 0.06 -4.80 0.05 -4.84 0.05 -4.70 0.04 -4.77 0.04 -4.72 0.05 -4.72 0.03

-4.67 0.05 -4.76 0.03 -4.86 0.03 -4.79 0.02 -4.78 0.03 -4.83 0.04 -4.75 0.05

-4.76 0.06 -4.79 0.04 -4.74 0.04 -4.81 0.05 -4.71 0.04 -4.75 0.03 -4.79 0.06

-4.75 0.05 -4.73 0.05 -4.72 0.02 -4.68 0.02 -4.75 0.07 -4.84 0.03 -4.85 0.07

-4.71 0.02 -4.75 0.08 -4.77 0.03 -4.80 0.04 -4.70 0.04 -4.87 0.06 -4.72 0.03

-4.74 0.07 -4.75 0.07 -4.75 0.05 -4.77 0.02 -4.67 0.09 -4.77 0.05 -4.83 0.04

-4.84 0.02 -4.85 0.05 -4.79 0.08 -4.77 0.02 -4.73 0.07 -4.80 0.06 -4.85 0.04

-4.85 0.04 -4.79 0.05 -4.76 0.05 -4.87 0.05 -4.81 0.05 -4.76 0.05 -4.78 0.04

-4.79 0.04 -4.75 0.04 -4.80 0.04 -4.85 0.02 -4.76 0.04 -4.86 0.05 -4.77 0.04

-4.81 0.04 -4.79 0.06 -4.74 0.04 -4.86 0.06 -4.70 0.06 -4.68 0.03 -4.75 0.03

-4.73 0.05 -4.81 0.05 -4.85 0.07 -4.78 0.06 -4.80 0.03 -4.85 0.07 -4.71 0.04

-4.88 0.07 -4.89 0.04 -4.72 0.04 -4.80 0.05 -4.74 0.04 -4.71 0.03 -4.72 0.04

-4.73 0.06 -4.90 0.07 -4.84 0.05 -4.83 0.03 -4.78 0.06 -4.80 0.03 -4.78 0.03

-4.74 0.08 -4.79 0.05 -4.69 0.01 -4.78 0.03 -4.77 0.01 -4.80 0.04 -4.74 0.04

-4.84 0.05 -4.79 0.05 -4.83 0.04 -4.76 0.05 -4.72 0.04 -4.77 0.03 -4.75 0.06

-4.82 0.00 -4.72 0.05 -4.88 0.04 -4.68 0.01 -4.82 0.03 -4.87 0.03 -4.80 0.06

-4.72 0.06 -4.77 0.06 -4.77 0.05 -4.75 0.04 -4.89 0.03 -4.80 0.06 -4.82 0.05

-4.80 0.02 -4.77 0.06 -4.73 0.04 -4.69 0.04 -4.86 0.04 -4.69 0.04 -4.82 0.06

-4.71 0.05 -4.74 0.07 -4.73 0.03 -4.79 0.02 -4.85 0.05 -4.83 0.04 -4.79 0.05

-4.69 0.02 -4.70 0.03 -4.76 0.03 -4.87 0.05 -4.78 0.02 -4.78 0.04 -4.78 0.03

-4.80 0.04 -4.81 0.06 -4.81 0.04 -4.77 0.05 -4.79 0.06 -4.76 0.07 -4.64 0.05

-4.79 0.05 -4.82 0.05 -4.80 0.07 -4.79 0.03 -4.83 0.06 -4.76 0.04 -4.77 0.03

-4.80 0.05 -4.83 0.05 -4.82 0.06 -4.75 0.08 -4.81 0.04 -4.80 0.04 -4.85 0.04

-4.88 0.05 -4.81 0.05 -4.73 0.05 -4.91 0.05 -4.86 0.04 -4.78 0.05 -4.80 0.06

-4.71 0.02 -4.80 0.08 -4.85 0.03 -4.82 0.05 -4.78 0.06 -4.77 0.03 -4.82 0.03

-4.79 0.02 -4.83 0.08 -4.77 0.05 -4.74 0.04 -4.76 0.06 -4.70 0.07 -4.78 0.03

-4.86 0.06 -4.84 0.04 -4.78 0.03 -4.88 0.04 -4.79 0.06 -4.77 0.06 -4.77 0.03

-4.72 0.04 -4.75 0.09 -4.81 0.04 -4.74 0.04 -4.78 0.01 -4.78 0.05 -4.85 0.07

-4.73 0.05 -4.82 0.04 -4.79 0.07 -4.74 0.05 -4.75 0.05 -4.73 0.04 -4.70 0.04

-4.81 0.02 -4.76 0.03 -4.78 0.04 -4.77 0.06 -4.78 0.04 -4.75 0.03 -4.87 0.03

-4.74 0.04 -4.81 0.07 -4.76 0.06 -4.78 0.05 -4.72 0.05 -4.79 0.06 -4.71 0.07

-4.75 0.01 -4.76 0.06 -4.81 0.02 -4.83 0.02 -4.71 0.06 -4.78 0.06 -4.80 0.06

-4.80 0.05 -4.83 0.02 -4.85 0.02 -4.74 0.05 -4.81 0.06 -4.77 0.05 -4.73 0.05

-4.75 0.04 -4.76 0.03 -4.83 0.04 -4.82 0.01 -4.78 0.04 -4.82 0.02 -4.84 0.05

-4.81 0.03 -4.77 0.08 -4.84 0.04 -4.89 0.04 -4.73 0.07 -4.76 0.05 -4.72 0.06

-4.80 0.07 -4.72 0.04 -4.79 0.05 -4.72 0.07 -4.87 0.03 -4.75 0.07 -4.80 0.06

-4.93 0.05 -4.81 0.05 -4.82 0.03 -4.84 0.03 -4.80 0.04 -4.79 0.08 -4.82 0.04

-4.78 0.06 -4.80 0.04 -4.80 0.06 -4.79 0.04 -4.77 0.06 -4.84 0.06 -4.65 0.03

-4.79 0.02 -4.73 0.05 -4.82 0.04 -4.79 0.02 -4.78 0.04 -4.83 0.03 -4.79 0.06

-4.71 0.04 -4.92 0.02 -4.80 0.05 -4.79 0.04 -4.73 0.02 -4.75 0.04 -4.79 0.05

Mean -4.78 0.04 -4.79 0.05 -4.79 0.04 -4.79 0.04 -4.78 0.05 -4.78 0.05 -4.78 0.05

Raw Data Methanol in Water - 40 Samples

≈ 15.95 

GROMACS Double 

Precision SSE2 

≈ 7.22

GROMACS Single 

Precision SSE

≈ 7.22 ≈ 3.01 ≈ 3.31 ≈ 3.61 ≈ 3.91

Variable Precision Algorithms
GROMACS Single 

Precision C
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8.1 Free Energy Configuration in the GROMACS .mdp File 

 

 

.mdp File Simulation 

Parameters 

.mdp File Setting 

Comments 

integrator = sd 

 

Simulation integrator 

rlist = 1.0 Short range neighbor list cut-off distance (nm) 

coulombtype = Reaction-Field Use Reaction Field for Electrostatics 

rcoulomb = 1.0 Coulomb cut-off Distance (nm) 

epsilon_r = 1 Relative dielectric constant.  

epsilon_rf = 54.0 Relative dielectric constant of the reaction field.  

pcoupl =  Parrinello-Rahman Pressure coupling 
tcoupl = No No temperature coupling because it is provided through 

the Langevin piston method using the ‘sd’’ integrator. ref_t = 298 Use a temperature of 298 K  
tau_t=1.0 Avoid over-damping the water dynamics 
free_energy =yes Do a free energy calculation interpolating between the 

A and B state of the chosen molecule  iInit_lambda = 0.00 Starting  λ value 

delta_lambda = 0 No time-dependent changes to our λ values. 

foreign_lambda = 0.05 
Additional values of λ for which ΔH will be written to 

dhdl.xvg (with frequency nstdhdl). The configurations 

generated in the trajectory at λ = init_lambda will have 

ΔH calculated for these same configurations at all 

values of λ = foreign_lambda 

sc-alpha = 0.5 The α scaling factor used in the "soft-core" Lennard-

Jones calculations 
sc_power = 1.0 Power for λ used in the soft-core equation. 

sc_sigma = 0.3 The value of σ assigned to any atom types that have C6 

or C12 parameters equal to zero or σ < sc-sigma 

(typically H atoms). This value is used in the soft-core 

Lennard-Jones equation. 

couple-moltype = 

ANALOGUE_NAME 

The name of the [moleculetype] in that will have its 

topology interpolated from state A to state B. Note that 

the name given here must match a [moleculetype] name, 

and not the residue name. ANALOGUE is the name of 

the amino acid analogue.  The following parameters 

were used for the analogues in the study, Methane, 

Methanol, Ethanol, Isobutane, Acetamide. 

couple-lambda0 = vdw 
The types of nonbonded interactions that are present in 

state A between the interpolated [moleculetype] and the 

remainder of the system. The value "vdw" indicates that 

only van der Waals terms are active between methane 

and water; there are no solute-solvent Coulomb 

interactions. 

Couple-lambda1 = none 
The types of nonbonded interactions that are present in 

state B between the interpolated [moleculetype] and the 

remainder of the system. The value "none" indicates that 

both van der Waals and Coulombic interactions are off 

in state B. Relative to couple-lambda0, this indicates 

that only van der Waals terms have been turned off. 

couple-intramol = no Do not decouple intramolecular interactions. That is, the 

λ factor is applied to only solute-solvent nonbonded 

interactions and not solute-solute nonbonded 

interactions.  

nstdhdl = 10 Frequency that ∂H/∂λ and ΔH are written to dhdl.xvg 

output file.  
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