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Abstract 
   

 In the present study we assessed the immune-modulatory response of the anterior and 

posterior gut epithelium and skin of European sea bass when fed two different commercial 

diets with soybean meal that differ exclusively in the oil type – fish oil and soybean oil - and 

the effects of their supplementation with MOS.  

 Fish were fed non-supplemented and supplemented diets with 4 g.kg-1 MOS for 8 

weeks. All diets resulted in similar weight gains. Microscopic analysis of the anterior gut 

revealed that the soybean-oil diet with MOS displayed increased (P<0.05) mucous cell area 

and density compared with its control and the fish-oil based diet with MOS. In the posterior 

gut no effects on cell density and area were detected in fish fed MOS relative to the controls, 

however there was an oil-type dependent effect, where fish fed fish-oil based diets had 

bigger cells (P<0.05) then fish fed soybean-oil based diets. In the skin, no differences on 

mucous cells parameters were observed between diets.  

 The mucous cells from the skin are larger (P<0.01) than gut’s, and within the gut, the 

fish fed soybean-oil diets presented bigger (P<0.05) cells in the anterior gut compared with 

the posterior region. Comparing cell densities, the anterior gut has a higher (P<0.01) density 

than the posterior gut and the skin, regardless the diet. 

MOS appears to modulate the innate immunity in the anterior gut. When the diet was 

soybean-oil based, MOS resulted on a greater storage capacity and density of the mucous 

cells. A potential effect is also suggested when added to the fish oil diets, with a possibly 

different mechanism of modulation.  

This study shows that modulation of mucosal tissues is key to improve resistance 

against pathogens and that diet composition and prebiotics supplementation are 

fundamental in the ability of the tissue to exhibit that response. 

 

 
Keywords: European seabass, mucous cells, mannan-oligosaccharides, gut health, soybean oil, microbiota. 
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Sumário 
 

O robalo europeu (Dicentrarchus labrax) é uma espécie de grande importância para a 

aquacultura mediterrânica e é de grande interesse para os produtores poder estimular a 

saúde dos peixes de modo a melhorar a produção e proporcionar peixes saudáveis a 

consumidores cada vez mais conscientes e preocupados com o bem-estar animal. 

O estado de saúde é definido pelo estado de equilíbrio entre o indivíduo, os patógenos 

e o ambiente. Um interveniente de grande peso na manutenção desse equilíbrio é o sistema 

imunitário. Fazendo parte deste, as barreiras epiteliais dos organismos são uma barreira de 

defesa de primeira linha que estão munidas de agentes imunológicos que compõem o 

sistema imunitário inato. As células produtoras de muco são um grupo de células 

especializadas que habitam os epitélios dos peixes e são intervenientes de grande 

relevância do sistema imunitário inato, prevenindo a entrada de microrganismos 

patogénicos no organismo através da síntese e secreção de muco na superfície do epitélio. 

A barreira de muco funciona como uma barreira física e é também constituída por 

compostos ativos com propriedades antibacterianas. O epitélio intestinal e a pele do peixe, 

que são os tecidos alvo deste estudo, estão em contato direto e constante com o meio 

externo, logo mais expostos a agentes patogénicos e é de maior importância que os seus 

componentes imunitários estejam totalmente funcionais. 

As rações são um modulador chave do sistema imunitário dos peixes em aquacultura, 

visto que a maioria dos seus requerimentos nutricionais são obtidos através da alimentação. 

A generalidade dos peixes, incluindo o robalo, necessitam de uma alta percentagem de 

proteína de elevado valor biológico e de ácidos gordos essenciais (Ómega-3), que são 

obtidos em quantidades ótimas a partir de farinhas e óleos de peixe. No entanto, esta 

dependência tem vindo a contribuir para a imensa pressão colocada nos pesqueiros pelo 

sector das pescas, colocando em risco a sua sustentabilidade e aumentando os preços das 

matérias-primas. Por esse motivo, fontes alternativas desses nutrientes essenciais tem 

vindo a ser investigadas e certos vegetais, como a soja, apresentam-se como fontes 

adequadas com vantagens a nível económico e ambiental. No entanto, a utilização de 

fontes alternativas que não constituem uma fonte natural de alimento à qual o organismo 

de certos peixes marinhos (como o robalo) esteja adaptado pode resultar em efeitos 

secundários indesejáveis devido à introdução de anti nutrientes, que foram já identificados 
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na soja, e que interferem com o normal funcionamento do sistema gastrointestinal e 

induzem alterações no sistema imunitário.  

Muito recentemente, outro foco bastante relevante tem sido colocado nos efeitos de 

imunoestimulantes, como os pré-bióticos, quando adicionados a rações com o propósito de 

estimular a capacidade e rapidez de reação do sistema imunitário contra bactérias 

patogénicas. Pensa-se que a inclusão destes em rações comerciais que incluem elementos 

de origem vegetal possa produzir efeitos positivos a nível do desenvolvimento e imunidade 

dos peixes. Alguns estudos reportam rácios de conversão de alimento mais baixos, 

melhorias nas taxas de crescimento, aumento da área do epitélio intestinal e das 

microvilosidades intestinais, diminuição de infeções bacterianas, modulação da flora 

intestinal e aumento do número de células de muco em várias espécies cultivadas em 

aquacultura.  

Bio-Mos® é uma formulação comercial constituído essencialmente por mannan-

oligossacáridos (MOS) e é um pré-biótico tradicionalmente utilizado em rações para gado 

com excelentes resultados na promoção da saúde intestinal. Portanto, experiências em 

peixes eram inevitáveis e resultados promissores foram já publicados para algumas 

espécies, incluindo para o robalo. Estudos prévios demonstraram que a inclusão de MOS 

na dieta do robalo resulta no aumento do número de células de muco e da densidade de 

leucócitos na lamina propria do intestino, bem como dobras intestinais mais largas, 

vilosidades intestinais mais compridas, maior crescimento, menor infeção por Vibrio spp., 

etc. 

Neste estudo queremos determinar a resposta imuno-modulatória no epitélio do 

intestino anterior e posterior e na pele do robalo europeu quando alimentado com duas 

rações comerciais que já incluem farelo de soja na sua formulação e que diferem 

unicamente no tipo de óleo adicionado – óleo de peixe vs. óleo de soja – e os efeitos da 

adição de MOS a essas mesmas formulações. 

Os peixes foram alimentados com rações não-complementadas e rações 

complementas com 4 g.kg2 MOS (Bio-Mos®, Alltech Inc, USA). Todas a dietas resultaram 

em ganhos de massa semelhantes. A análise microscópica do intestino anterior revelou 

que a ração com óleo de soja complementada com MOS aumentou (P<0.05) a área das 

células de muco e a sua densidade no epitélio comparando com a ração controlo 

correspondente e a ração com óleo de peixe com MOS adicionado. No intestino posterior 

não foram observados efeitos significativos na dimensão e densidade das células nos 

peixes alimentados com MOS em relação aos controlos. No entanto, foi verificado um efeito 



  
 

7 
 

relacionado com o tipo de óleo usado, onde os peixes alimentados com ração à base de 

óleo de peixe apresentaram células de muco maiores (P<0.05) do que os peixes 

alimentados com ração à base de óleo de soja. Na pele não foram observadas quaisquer 

diferenças nos parâmetros celulares quantificados entre as várias dietas. 

As células de muco da pele apresentam-se naturalmente maiores (P<0.01) do que às 

do intestino. Relativamente ao intestino, os peixes alimentados com rações com óleo de 

soja apresentaram células maiores (P<0.05) no intestino anterior comparativamente à 

região posterior. Em termos de densidades, o intestino anterior apresenta uma maior 

(P<0.01) densidade de células de muco em comparação com o intestino posterior e a pele, 

independentemente da dieta ingerida. 

Os MOS aparentam estimular o sistema imunitário inato no intestino anterior quando 

utilizado como complemento em dietas que contenham óleos de soja, resultando numa 

maior capacidade de armazenamento das células de muco, sugerida pelo aumento de 

tamanho das células, e um aumento da sua densidade. Um possível efeito modulatório é 

também sugerido quando MOS é adicionado a rações com óleo de peixe, embora não tão 

evidente e por um mecanismo de modulação diferente. 

Este estudo, portanto, demonstra que a modulação dos tecidos da mucosa é um 

ponto-chave no melhoramento da resistência contra microrganismo patogénicos e que o 

tipo de dieta e complementação com pré-bióticos são fundamentais na capacidade dos 

tecidos de exibirem essa resposta. 
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1. Introduction 
 

1.1.  Aquaculture Production 
 

Aquaculture is the fastest growing food producing sector in the world and is a major 

contributor to global food supply and economic growth in many countries. It is seen not 

anymore as an alternative to wild capture fisheries but more as mandatory activity in order 

to satisfy the increasing demand for seafood worldwide, since fisheries have reached the 

point of overexploitation. The Food and Agriculture Organization of the United Nations (FAO) 

estimated that in 2012, aquaculture production was around 66.5 million tonnes (not including 

aquatic algae), up by 6% from 62.7 million tonnes in 2011. This is based on preliminary data 

to be published on March 2014 (FAO, 2013a). World aquaculture production has increased 

steadily in the last two decades while capture fisheries has plateaued (Figure 1.1). 

 

 

Figure 1.1: World capture fisheries and aquaculture production from 1950 to 2010   
(FAO, 2012). 

 

 

 In 2010, the aquaculture production by the 27 European Union Member States reached 

1.26 million tonnes and 3.1 billion Euros. It represents 1.6 % of the world production in 

volume but twice that (3.3 %) in value, for 2010. The EU production is mainly concentrated 

in France, Greece, Italy, Spain and United Kingdom. In terms of produced volume, Spain is 

the largest producer (20%), followed by France (18%), UK (16%), Italy (12%) and Greece 
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(9%), together yielding 75% of the total EU production in volume. In terms of value, France 

becomes the largest producer (21%), followed by the UK (19%), Spain (13%), Greece (12%) 

and Italy (11%), representing 76% of all the EU aquaculture value (Scientific, Technical and 

Economic Committee for Fisheries, 2013). In comparison, Portuguese aquaculture 

production in 2010 was approximately 8228 tonnes (0.7%) with a value of 47 million Euros 

(1.9%). In 2011, the production reached 9166 tonnes and a value of 58 million Euros, which 

represents an increase in quantity (+11.4%) and in value (+23.3%), comparing with the 

previous year (Instituto Nacional de Estatística, 2013). Nevertheless, the production 

increase is mainly due to a highly intensive production of turbot (Psetta maxima) which has 

compensated for the decrease of seabass and seabream production caused by the 

economic crisis in Portugal (Instituto Nacional de Estatística, 2013). 

 
 

1.2.  European Seabass 
 

The European seabass (Dicentrarchus labrax, L. 1758; Moronidae; Perciformes) is a 

carnivorous marine fish species of great economic importance in Europe, particularly in the 

Mediterranean aquaculture. It is present all over the Mediterranean Sea, the Black Sea and 

the North Eastern Atlantic, from the south of Norway to Senegal. It is a eurythermic and 

euryhaline fish, therefore it can be found in coastal inshore waters to a depth of 100 m, as 

well as brackish waters, in estuarine areas and coastal lagoons. Occasionally, it can be 

found in freshwater rivers. It is a gonochoristic species with spawning occurring once a year, 

from December to March in the Mediterranean population, and up to June in the Atlantic 

populations. Seabass reaches sexual maturity, in the Mediterranean, at three years in males 

and at four years in females, whereas in the Atlantic, seabass males are mature at four 

years and females at seven years. There is high fecundity (an average of 200000 eggs kg-1 

of female) of small pelagic eggs (1.02 - 1.39 mm) in waters with salinities between 30 ‰ 

and 35 ‰, close to river mouths, estuaries and littoral areas. D. labrax is a voracious 

predator, feeding on mollusks, crustaceans and small fish (FAO, 2013b).  

In the wild, seabass can reach 1 m in length and weigh 12 kg, but farmed animals 

reach market size at around 300-500g, which takes from 1.5 to 2 years. 

In 2012, the total aquaculture production of European seabass in Europe was 

estimated at 119466 tonnes (Figure 1.2). This represents an increase of 0.5% from 2011 
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(118825 tonnes). The main producing countries of seabass are Turkey (50000 tonnes), 

Greece (41500 tonnes) and Spain (14270 tonnes) (FEAP, 2013). 

 

     

Figure 1.2: European seabass production (tonnes) from 2003-2012 by country (FEAP, 2013). 

 

 However, despite its important role in the Mediterranean aquaculture sector, the 

European seabass is a very sensitive species with regard to handling and vulnerable to 

infections under culture conditions. Additionally, the fact that it is a carnivorous species, the 

introduction of vegetables elements in the commercial feeds will produce adverse reactions 

on the gastrointestinal tract of the fish. Therefore, it is of special importance to address the 

effects of such elements in the guts of D. labrax.  

 

1.2.1.  Production constraints 
 

 Important economic losses in the seabass aquaculture were caused by disease 

outbreaks due to the specie’s high vulnerability to stress and infections, mostly in the early 

development stages. Thus, both private and public organizations are exerting a concerted 

effort to find ways to maintain and enhance fish health in order to increase the production. 

Intensive production conditions can easily unbalance the equilibrium state between the triad 

host/pathogens/environment and lead to lower growth rates and high mortality rates. A key 

factor to overcoming the problem is to improve the innate immune system with the aim of 

preventing pathological outbreaks and, consequently, reducing the use of pharmaceutical 

interventions.  
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1.3. The Immune System 
 

The immune system protects the body from harmful substances by recognizing and 

responding to antigens, which are molecular patterns typically found on pathological 

organisms. In fish the immune system is physiologically similar to that of higher vertebrates 

and is divided into two central components: the innate immune system and the adaptive 

immune system. The innate immune response plays a key role in fish, since they are free-

living organisms from before hatching. This innate response comprises epithelial barriers, 

as well as cellular and humoral immune responses. The immunological agents include lytic 

enzymes, agglutinins and precipitins, growth inhibitors, antibodies, cytokines, chemokines 

and antibacterial peptides (Uribe et al., 2011). Even though the innate immune system 

requires no previous experiences or “learning” in order to respond to a health challenge, 

several internal and external factors can influence its parameters, suppressing or enhancing 

the immune response (Magnadottir, 2006, 2010). 

 

1.3.1.  Epithelial Barriers 
 

 Physical and chemical barriers that are directly in contact with the external media are 

the first line of defense against pathological microorganisms. In fish they are mainly 

constituted by the dermis, epidermis, scales and mucous (Gómez and Balcázar, 2008). 

Mucous is produced by specific mucous cells, located in the epithelial tissue. It mainly 

comprises mucins, a type of glycoprotein secreted by the goblet cells (the characteristic 

mucous cells of the intestine), and water, but it also contains other active compounds, such 

as lectins, pentraxins, lysozymes, complement proteins, antibacterial peptides, 

immunoglobulin-M and immunoglobulin-A, that, all together, prevent pathological agents 

from penetrating the barrier (Forstner et al., 1995; Nagashima et al., 2001; Hellio et al., 2002; 

Gómez and Balcázar, 2008).  

The specific cases of the mucosal surface from the gastrointestinal tract and the skin 

are of special importance to introduce, as they are the focus of this study.  

 

1.3.1.1. Intestinal Epithelium 
 

The gastrointestinal tract is a complex structure comprising the epithelium, immune 

cells and resident microbiota which have co-evolved in such a way that each one relies on 
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the others in order to support the normal functions and homeostasis of the system 

(McCracken and Lorenz, 2001). Gut health depends, therefore, on the integrity of those 

components, which provide a first line of defense against harmful microorganisms and 

contribute to maintaining a stable state of the internal environment, a phenomenon named 

“homeostasis” (Canon, 1929). In fish, the intestine is usually divided into two different 

regions: the anterior gut, the foremost region connected to the stomach, and the posterior 

gut, the hindmost part connected to the rectum.  Functionally, the anterior gut is the primary 

site for nutrient uptake (Nordrum et al., 2000), whereas the posterior region has less nutrient 

absorptive capacity, absorbing mostly remaining aminoacids and peptides, and more 

phagocytic activity (Ezeasor and Stokoe 1981; Sire and Vernier 1992; Buddington et al., 

1997). 

The intestinal epithelium is composed of cells responsible for the absorption of 

nutrients, which takes place in the luminal side of the epithelial cells (ECs). To maximize this 

process and get the largest surface area, the small intestine consists of villi and crypts that 

greatly increase the quantity of ECs. Moreover, the luminal surface of the ECs presents 

microvilli that further increase the external surface area (Eri and Chieppa, 2013). The 

intestinal lumen is populated by several microorganisms, including bacteria, fungi, 

nematodes and viruses. The indigenous intestinal microbiota is composed of several 

bacterial groups, such as lactic acid bacteria (Ringo et al., 1998; Gatesoupe, 2008), and 

they provide antagonism to potential pathogens through the production of a mixture of 

extracellular products (eg. lactic acid, hydrogen peroxide, carbon dioxide, siderophores, 

antibiotic peptides, organic acids, ammonia and diacetyl). They function to break down 

nutrients, produce vitamins and hormones and prevent harmful species from multiplying, all 

beneficial factors that represent an advantage to the host (Tremaroli and Backhed, 2012).  

Moreover, the autochthonous bacteria and the host interact in such an integrated way in 

order to mediate the development, preservation and effective functionality of the intestinal 

mucosal tissue. This was demonstrated with germ free and conventionally reared zebra fish 

(Danio rerio) larvae by comparing gut differentiation and gene expression (Rawls et al., 

2004; Bates et al., 2006; Mulero et al., 2007).  

The mucus layer, produced by mucous cells present in the gut epithelium (Figure 

1.3), is the major factor preventing the adhesion of bacteria, both commensal and 

pathological, to the epithelial cells (Schenk and Mueller, 2008). The main structural 

components of the mucus are the mucins, which are heavily glycosylated proteins of high 

molecular weight. Mucins are a key component in several gel-like secretions, protecting 
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epithelial cells from infection, dehydration and physical/chemical injuries, as well as 

lubricating surfaces (Perez-Vilar and Hill, 1999). MUC2 is the major mucin component of the 

mucus layer in the small and large intestine in mammals, and mutations that involve MUC2 

are related to chronic intestinal inflammation (Burger-van Paassen, 2011; Eri et al., 2011). 

The mucus layer also concentrates the epithelial antimicrobial peptides (AMPs) (Figure 1.3) 

which are another fundamental mechanism to control and select commensal bacteria (Gallo 

and Hooper, 2012). Plasma cells, located in the lamina propria, secrete IgA molecules which 

are transcytosed through the epithelial cell layer to the mucous layer (Figure 1.3), limiting 

numbers of mucosa-associated bacteria and preventing bacterial penetration of host tissues 

(Hooper and Macpherson, 2010). 

 

 

 

 

 

 

 

  
 
 
 

 

 

Figure 1.3: Intestinal epithelial surface. Goblet cells secrete 

mucins to build a stratified mucus layer. Bacteria are more 

abundant in the outer mucus layer than the inner layer, 

which concentrates more antimicrobial factors. Epithelial 

cells secrete AMPs. Plasma cells produce IgA that are 

secreted from the apical surface of epithelial cells (Hooper 

and Macpherson, 2010). Image licensed by Nature 

Publishing Group, license number: 3284690066429 
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It is possible to increase the secretion rate of mucins by appropriate stimulation of the 

goblet cells. Recently, dietary factors have been studied to assess their effects on improving 

gut health by stimulating goblet cells to produce mucus. Most of those studies were 

performed in humans and other mammals (Ouwehand et al., 2005; Gaggìa et al., 2010; 

Quigley, 2010). With the development of the aquaculture industry and the need to reduce 

the use of antibiotics and vaccines, probiotics and prebiotics have recently received 

considerable attention, especially with regard to strengthening the fish’s innate immune 

system. 

 

 

1.3.1.2.  Skin 
 

 Skin in teleosts has unique characteristics and is histologically diverse (Fast et al., 

2002). Because of the direct contact of fish with the aquatic environment, which is rich in 

pathogenic microorganisms (Magnadottir, 2010), cutaneous diseases are very common and 

are one of the primary disease conditions that are presented to aquaculture producers 

(Groff, 2001). Fish integument is a large and multifunctional organ that acts as a mechanical 

barrier with a metabolically active tissue. Its components serve important roles in protection, 

locomotion, respiration, communication, sensory perception, ion regulation, excretion and 

thermal regulation (Elliott, 2011). In general, adult fish skin is divided into the mucous layer, 

epidermis and dermis (Figure 1.4). The epidermis is a squamous stratified epithelium 

composed of epithelial cells and mucous cells. It can itself be divided in three strata: the 

outermost stratum superficiale, the in-between stratum spinosum, and the innermost stratum 

basale. The dermis, which is separated from the epidermis by a basement membrane, is 

composed of two layers: the stratum spongiosum and the stractum compactum, mainly 

composed of connective tissue, fibroblasts and chromatophores. The scales are 

transdermal and made of connective tissue with superficial mineralization (Hawkes, 1974a).  

 The mucosal layer is mainly produced by the goblet cells present in the epidermis, 

therefore their density in the skin is an important first line of immune response in fish. Many 

stressors may affect the density of those cells and, thus, affect the immune response. Vatsos 

et al. (2010) suggested evidence that the enumeration of skin mucous cells of fish can be 

used to monitor stress, although other authors prefer a combination of size of cells and their 

density to characterize the physical status of this innate immune system. Pittman et al. 

(2013) demonstrated that using that approach allied with systematic random sampling it was 
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possible to obtain highly significant differences in mean mucous cell area and mucous cell 

density at different body sites even with a small number of fish samples: Dorsolateral skin 

of 4 salmon had denser (≈ 8% of epithelium area) and larger (mean= 160µm2) mucous cells, 

meanwhile the head had the lowest density (≈ 4% of epithelium area) and smallest mucous 

cell area (mean= 115µm2). Therefore, such a method allows unbiased comparison of 

mucous cell dynamics in fish exposed to different treatments.  

 

 

 

                              

     

 

 

 

 

 

As mentioned above for the gut epithelium, dietary immunostimulants may also play 

an important role on improving skin mucosal immunity, showing that not only the mucosal 

system of the intestine is influenced (Pittman et al., 2013; Sheikhzadeh et al., 2012a; Van 

der Marel et al., 2012; Xueqin et al., 2012). Those observations highlight the interconnection 

of mucosal tissues in the body, underlining the importance of generating knowledge on the 

Figure 1.4: 3-D cross section of a teleost fish 
integument representing the main microscopic 
structures of the epidermis and dermis. X- 
Xanthophore, M- Melanophore (Hawkes, 1974b). 
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application of functional feed additives to improve fish mucosal immunity. It also highlights 

the need to clarify if the mucosal immune system functions as one barrier or as several 

independently regulated systems. 

 

1.3.1.3. Epithelial Tissue Processing – Stains 

 

Staining is a technique utilized in microscopy to improve contrast on the microscopic 

images. Different dyes are used to highlight specific structures in biological tissues in order 

to facilitate its examination and study. In the specific case of the present study, we needed 

to produce histological images that highlight specifically the mucous cells. For the epithelial 

tissue embedded in Technovit®, Pittman et al. (2011, 2013) suggested that the “Periodic 

Acid Schiff (PAS) - Alcian Blue” was the one that gave better identification of the mucous 

cells than the Hemaetoxolin-Erythrosin Saffron (HES). PAS-Alcian Blue binds specifically to 

mucopolysaccharides, revealing clear and distinct mucous cells from the surrounding tissue, 

which is stained lighter, allowing epithelium quantification for cell density assessment, and 

that specificity allows the distinction of mucous cells from many types of artefacts, such as 

lipid droplets in the gut, that can be misidentified as mucous cells if using other types of 

stain. So, the combination of the Alcian Blue and the PAS techniques is used as a mean of 

staining both acid mucins and neutral mucins, in order that all mucins, regardless their 

charge, are stained (Yamabayashi, 1987).  

However, tissue permeability might be important in order to stain the surrounding tissue 

sufficiently, which is more difficult in non-decalcified samples with thick scales (e.g. 

European seabass). Toluidine Blue is a viable option when epithelium is badly stained with 

PAS-Alcian Blue in skin samples with the scales present, since it has a more powerful 

penetration capacity and is a more general stain that still produces clear and distinct stained 

mucous cells. This possibility was tested in this experiment for the non-decalcified skin 

samples from European seabass, and results will be exposed in the ‘Results’ section.  

 

1.4.  Nutrition 
 

 Nutrition plays a critical role in aquaculture because it influences fish growth, health, 

waste production and, especially, the cost of production. It is necessary to meet the 

nutritional requirements of fish through balanced formulations and cost-effective diets (Gatlin 
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III DM, 2002). The carnivorous species, like the European seabass metabolize mostly 

proteins and lipids to produce energy and meet other physiological needs. Their metabolic 

capacity to use carbohydrates is, however, very restricted due to their natural feeding habits.  

These facts and the high requirement of amino acids constrain the  capacity to utilize lower-

cost  carbohydrates  and  low  protein  diets  (Buddington  et  al.,  1997). 

Therefore, studies on diet composition for carnivorous species have been focusing 

mostly on protein, including plant proteins, and lipids requirements to optimize development, 

growth and health. 

 

1.4.1.  Proteins 
 

 Proteins are the most expensive part of a common diet and carnivorous fish require 40 

to 50 percent crude protein in their diets. Fish, as other animals, will synthesize the body 

proteins from amino acids, but some of them are exclusively provided by the diet, the so 

called ‘essential amino acids’. The ‘non-essential amino acids’ can be synthesized internally 

from other sources and do not depend solely on dietary protein sources. A balanced and 

optimal mixture of amino acids is crucial for adequate growth rates and healthy individuals, 

while avoiding unnecessary expense and negative environmental impacts from excessive 

excretion of nitrogenous wastes (Wilson, 2003; Gatlin III, 2010). 

 Fish meals derived from pelagic fisheries have been used as the main protein source 

for aquaculture feeds but concerns about sustainable marine fisheries and increasing prices 

of fish meals (Table I) led to a growing demand for alternative protein sources. Soybean 

meal is considered an interesting alternative and has been used as a partial substitute of 

fish meal (FM) due to its advantages of supply, price (Table I) and amino acid composition. 

 

 

May 2013 1835,82 476,74 - - 3,8508

Jun 2013 1743,89 503,56 -5,01% 5,63% 3,4631

Jul  2013 1598,54 528,34 -8,33% 4,92% 3,0256

Aug 2013 1621,63 470,99 1,44% -10,85% 3,4430

Sep 2013 1525,27 490,19 -5,94% 4,08% 3,1116

Oct 2013 1520,09 460,83 -0,34% -5,99% 3,2986

Month
Fishmeal Price (US 

Dollars per Metric Ton)

Soybean Meal Price (US 

Dollars per Metric Ton)

Fishmeal 

ROC

Soybean 

Meal ROC

Fishmeal / Soybean 

Meal Price Ratio

Table I: Comparison between prices of fish meal and soybean meal from May to October 2013. 
ROC – Rate of change (Index Mundi, 2013). 
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1.4.1.1.  Soybean meal 
 

Despite the economic advantages and protein content, soybean meals are rich on 

anti-nutritional factors which may have negative effects on fish, such as saponins and 

lectins, which disrupt the intestinal epithelium, triggering an inflammatory process (Chen et 

al., 2011; Knudsen et al., 2007; Krogdahl et al., 2010). Feeds with soybean meal (SBM) 

inclusion have been reported to cause enteritis in salmonids (Knudsen et al., 2007; Refstie 

et al., 2000) and even a replacement of 50% of FM by SBM produced acute inflammation 

on the intestinal epithelium of rainbow trout (Merrifield et al., 2009). Urán et al. (2008b) 

reported an up-regulation of the expression of pro-inflammatory genes (IL-1β and TNF-α1) 

in the intestinal intraepithelial lymphocytes of fish fed dietary SBM. By contrast, no 

morphological changes in gut histology were detected in gilthead seabream and European 

seabass fed dietary SBMs up to a level of 300g kg-1 (Bonaldo et al., 2008). This may suggest 

an adaptation of the intestinal tissue to SBM, as has been demonstrated for the common 

carp (Cyprinus carpio) after the 4th week of feeding with SBM (Urán et al., 2008a). In this 

carp species, similar immunological reactions were observed during the enteritis process: 

invasion and degranulation of granulocytes, higher activity of T cells but also gene up-

regulation of pro-inflammatory IL-1β and TNF-α1 and down-regulation of the anti-

inflammatory IL-10. TGF-β seems to be up-regulated in carp in the 3rd week after SBM 

feeding (Urán et al., 2008a). In Atlantic salmon, TGF-β, IL-1β, interferon-γ-inducible 

lysosomal thiol reductase (GILT) but also CD3 and CD8-β (T-cells expression genes) were 

all down regulated in the 1st week of SBM-induced enteritis (Lileeng et al., 2009). These 

observations suggest that the SBM-induced enteritis in salmon might be correlated with the 

down-regulation of TGF-β. Therefore, the TGF-β up-regulation on carp after 3 weeks of 

feeding experiment in contrast to its down-regulation in the same period in Atlantic salmon, 

gives an important clue to the central role of TGF-β in the immune homeostasis and mucosal 

inflammation (Rombout et al., 2011). 

Moreover, SBM also influences the composition of fish gut microbiota. Hekkinen et 

al. (2006) developed one of the first studies to assess the effect of a diet with 45% SBM on 

the gut microbiota of the rainbow trout. After 2 months, the total culturable bacterial levels in 

the hindgut were at least one log scale lower in the fish fed SBM diet than fish fed the control 

FM diet. Also some genera were particularly affected, with a decrease of Lactobacillus spp. 

and Sphingomonas spp. and an increase of Bacillus spp. and Chryseomonas spp. in the 

group fed SBM. However, Merrifield et al. (2009) performed a similar dietary trial in the same 
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species using 50% SBM and after 16 weeks no significant differences were observed in total 

viable counts of culturable bacteria in the gut. Nonetheless, differences in genera 

composition were found: SBM lead to increased levels of Psychobacter spp. and yeast and 

reduction of Aeromonas spp. Comparable dietary trials were also performed on Atlantic 

salmon, where diet-dependent differences in bacterial diversity were also detected (Bakke-

McKellep et al., 2007, Ringo et al., 2008). In gilthead seabream, allochthonous microbial 

communities were also affected by the inclusion of dietary soybean (at 31.3% inclusion) in 

feeds, however no phylotypes were sequenced for species identification (Dimitroglou et al., 

2010a). 

More studies are necessary concerning this subject and regarding more species, 

since the aquaculture industry is relying more and more on plant-based diets to satisfy the 

demand for aquafeeds. 

 

 

1.4.2.  Lipids 
 

 Lipids are an important energy source due to their high specific energy value (9kcal/g), 

almost complete digestibility and necessity for maintaining cellular membrane integrity and 

function. In aquaculture feeds, the main sources of the lipid fraction have traditionally been 

fish oils and fish meals, derived from small pelagic fishes such as herring and anchovies 

which provide the required fatty acid profiles and result in good growth rates (Sargent et al., 

2003; Tacon et al., 2006). Fish oils have high amounts of marine fatty acids with very long 

chain n-3 polyunsaturated fatty acids, of which the most important are eicosapentaenoic 

acid (20:5 n-3, EPA) and docosahexaenoic acid (22:6 n-3, DHA) (Ackman, 1982). Deficiency 

in these dietary essential fatty acids can cause problems such as poor feeding and 

swimming  activities,  lower growth rates, higher  mortality,  abnormal pigmentation, 

disaggregation of gill epithelia, immune-deficiency and higher stress levels (Izquierdo, 1996, 

2005). Also, consumers equate consuming fish products with high levels of Omega-3 fatty 

acids which are beneficial to human health (Simopoulos, 2000). 

 It is estimated that aquaculture uses approximately 40% and 60% of the total global 

production of FM and fish oil, respectively (Nasopoulou and Zabetakis, 2012).  In order to 

reduce the environmental impact and promote sustainable aquaculture, the industry has 

been replacing portions of the fish oils in feeds with vegetable oils. The most common 

vegetable oils used for fish feed production have been soybean, linseed, rapeseed, 
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sunflower, palm oil and olive oil (Turchini et al., 2009; Nasopoulou and Zabetakis, 2012), 

which have low commodity prices (Table II). By comparison, the fish oil average price in the 

last quarter of 2012 was 2183 US Dollars per metric ton (Globefish, 2013), more than twice 

the price of an equal amount of soybean oil. The concerns with plant-for-fish replacement 

are the low n-3/n-6 ratio, due to high levels of   linoleic acid (18:2 n-6, LA) and lower levels 

of n-3 PUFA (Izquierdo et al., 2003; Izquierdo, 2005; Montero et al., 2005). 

 

 

 

 

1.4.2.1.  Vegetable Oils  
 

 Partial substitution of fish oil by vegetable oils is only desirable if the essential fatty 

acids are still obtained in sufficient quantities. Those requirements naturally differ between 

both plant and fish species. Some species are able to satisfy their requirements for fatty 

acids from vegetable oils by desaturating and elongating the linoleic and α-linoleic acids  into 

arachidonic acid (20:4 n-6, ArA), EPA and DHA (Sargent et al., 2003). Marine fish species 

have a very limited gene expression of Δ6 and Δ5 activity and thus have low capacity to 

synthesize polyunsaturated fatty acids from linoleic acid (Mourente and Tocher, 1993). 

 A couple of studies have been performed to evaluate the effects of different vegetable 

oils on European seabass and Gilthead seabream. Soybean oil and olive pomace oil (olive 

oil extracted from olive pulp, with solvents, after the first press) appear to be good substitutes 

for S. aurata regarding growth, but n-3 fatty acid profiles in the muscle of fish fed with these 

oils are significantly lower than in fish fed fish oil (Nasopoulou et al., 2011; Wassef et al., 

2009). Olive, rapeseed and linseed oils could also be used as partial substitutes for fish oil 

Soybean oil Sunflower oil Rapeseed oil Palm oil

May 2013 1082,78 1466,97 1117,66 763,38

Jun 2013 1058,59 1472,07 1115,86 763,04

Jul  2013 1000,84 1375,48 1003,37 729,86

Aug 2013 944,27 1152,39 991,21 722,84

Sep 2013 934,97 1158,38 985,02 725,80

Oct 2013 897,66 1187,13 1009,27 762,62

Month
Price (US Dollars per Metric Ton)

Table II: Comparison between prices of four common vegetable oils from May to 
October 2013. (Index Mundi, 2013). The fish oil average price in the last quarter of 

2012 was 2183 US Dollars per metric ton (Globefish, 2013). 
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in D. labrax diet, maintaining an acceptable growth rate, despite decreases in EPA and DHA. 

These two fatty acids can be increased with a “finishing” diet of 100% fish oil (Mourente et 

al., 2005; Nasopoulou et al., 2011). However, high levels of substitution (up to 80%) may 

result in significant reductions of growth rates, feed conversion rates, as well as alterations 

in liver structure and immune system (Caballero et al., 2004; Izquierdo et al., 2005; Montero 

et al., 2003). Moreover, the inclusion of plant oils, including soybean oils, into feeds has 

been reported to promote a substantial accumulation of lipid droplets in enterocytes of 

species such as gilthead seabream (Caballero et al., 2003), rainbow trout (Caballero et al., 

2002; Olsen et al., 2003) and Arctic charr (Olsen et al., 1999; 2000). This disorder appears 

to be connected to the impairment of lipoprotein synthesis in the enterocytes (Merrifield et 

al., 2011). 

 The gut microbiota may also be affected by dietary soybean oil, however, to present 

date, only one study evaluated that hypothesis. Ringo et al., (2002) observed that soybean 

oil modulates the gut autochthonous bacterial community of the Arctic charr by increasing 

the total culturable population and selecting for specific genera. Lower infection by 

Aeromonas salmonicida ssp. salmonicida was also reported when fish oil was replaced by 

soybean oil, which might be related with an increased production of mucus and an 

antibacterial effect from the autochthonous bacteria selected by the soybean oil diet, 

suggesting an improvement of immune defenses. 

 More studies are needed to assess levels of lipid and essential fatty acids requirements 

for optimum growth and proper immune function and the modulating effect of vegetable oils 

on the gut microbial community. 

 

 

1.5.   In-feed immune stimulants 
 

Enteric bacteria and pathological bacteria co-exist in the intestines of animals in an 

uneasy truce. Control of the pathogens in crowded farm conditions is critical since they can 

cause illness and reduce animal performance, ultimately resulting in death. Colonization of 

the gut by any bacteria requires adhesion to the cells, a process mediated by interaction 

with carbohydrates present on cell surfaces (Bavington and Page, 2005). After anchoring to 

the surface of the GI tract, pathogens will multiply and produce toxins. They also damage 

the intestinal structures, resulting in less nutrient absorption, more gut inflammation and 

higher susceptibility to infections.  
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In-feed antibiotics of different classes, such as aminoglycosides, beta-lactans, 

nitrofurans, tetracyclines, sulphonamides, etc. (Defoirdt et al., 2011) have been used by 

aquaculture producers to control pathogen numbers. This practice continues in some 

markets today but is highly regulated in others, particularly in Europe and the USA (Rodgers 

and Furones, 2009).  However, antibiotics are not very selective and may also destroy 

beneficial bacteria. Bacteria also adapt to the environment upon continuous exposure to 

antibiotics, leading to the development of resistant strains (Schwarz and Chaslus-Dancla, 

2001). This poses serious health concerns for the fish, the consumers and the environment 

(Romero et al., 2012).  

Good health management strategies and sanitary prevention methods such as  

vaccines (Thorarinsson and Powell, 2006) and immune stimulants (Dugenci, 2003; 

Rodríguez et al., 2003; Dimitroglou et al., 2010a; Torrecillas et al., 2011, 2013) have been 

gradually replacing antibiotics and other therapeutic chemicals, becoming an area of intense 

research. An immunostimulant is a naturally occurring compound that modulates the 

immune system by increasing the host's resistance against diseases, especially those 

caused by pathogens (Bricknell and Dalmo, 2005). According to Sakai (1999) 

immunostimulants can be divided into different groups, depending on their sources: 

prebiotics such as bacterial derivatives and polysaccharides; animal and plant extracts; 

nutritional factors as vitamins C and E; and hormones and cytokines. Immunostimulants can 

be administered through intraperioneal injection, immersion or dietary inclusion (Sakai, 

1999). The latter is the most promising option since it is naturally taken in through feeding 

behavior of the fish, is less stressful to the animal and can be used with all fish sizes. Its 

disadvantage is the inability to track the feed intake of the individuals, given that each fish 

may ingest different quantities of feeds. 

 

1.5.1.  Prebiotics 
 

 Prebiotics are “non-digestible food ingredients, generally carbohydrates, which have 

beneficial effects to the host by selectively stimulating the growth and/or activity of one or a 

limited number of bacteria in the colon” (Gibson and Roberfroid, 1995). These carbohydrates 

can be classified according to their molecular size or degree of polymerization (number of 

saccharide units) into monosaccharides, oligosaccharides or polysaccharides. The common 

prebiotics already incorporated in fish feeds to date include: inulin, fructooligosaccharides, 

short-chain fructooligosaccharides, mannanoligosaccharides (MOS), 
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Figure 1.5: MOS decoy mechanism. A) Without MOS present in the lumen, 
the type-I fimbriae (mannose specific lectins) on the bacteria surface bind to 
specific glycoproteins (rich in mannose) on the enterocyte surface. B) MOS 
bind to type-I fimbriae of the bacteria, preventing it from binding on the 
enterocyte surface (Adapted from: Moran, 2009) 
 

galactooligosaccharides, xylooligo-saccharides, arabinoxylooligosaccharides, 

isomaltooligosaccharides, β-glucans and alginate. Studies carried out on fish and shellfish 

have looked at the effects on growth, feed conversion rate, cell damage and morphology, 

gut microbiota, resistance against pathogenic bacteria and innate immune parameters 

(Yousefian and Amiri, 2009; Ringo et al.,2010, Ringo et al., 2012) but the results are still 

limited and variable in different species. The particular case of mannan-oligosaccharides is 

discussed next. 

 

 

1.6.  Mannan-oligosaccharides (MOS) 
 

Bio-Mos® (commercial name) is  a  natural sugar  derived from  the  outer  cell  wall  

of  a  select  strain  of  the  yeast  Saccharomyces  cerevisiae,  mainly composed of mannan 

oligosaccharides (MOS) and produced by Alltech, Inc (Kentucky, USA). It is thought to act 

as a decoy in the intestine maintaining gut health by adsorption of pathogenic bacteria 

containing type-I fimbriae or by agglutinating different bacterial strains (Figure 1.5). The 

action is by attracting pathogens to attach to Bio-Mos® surface rather than in the gut villi 

surface (Newman, 1994; Spring et al., 2000; Shane, 2001). Once immobilized, bacteria are 

removed by being flushed out from the intestine.  
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Bio-Mos® may also improve immune function by bundling pathogens and presenting 

them to dendritic cells. Dendritic cells respond to microbial antigens by activating a series of 

maturational processes involved in the innate antimicrobial and inflammatory responses 

(Figure 1.6). These cells reach out into the lumen from below the intestinal epithelium to 

capture floating agents. They digest the package and present pieces to the T-cells, 

activating them and initiating the adaptive immune response (Hooper et al., 2012; Reis e 

Sousa, 2004; Shane, 2001). T-cells that become active by contact with those antigens will 

send out signals called cytokines, which are then absorbed by B-cells, activating them in 

turn. The activated B-cells move back to the surrounding tissue and secret immunoglobulins. 

Therefore, Bio-Mos® has been suggested to increase the efficiency of the immune response 

by warning the immune system of the presence of specific pathogens. Immunoglobulins 

produced that way become concentrated in the villi, the mucous layer and the intestinal fluid, 

improving the immune response. Most of the studies with MOS on modulating the immune 

system and improving animal performance were performed on mammals (Spring et al., 

2000; Fairchild et al., 2001; Iji et al., 2001; Davis et al., 2004; Grieshop et al., 2004; Franklin 

et al., 2005; Mourão et al., 2006; Halas and Nochta, 2012). However, in the last decade, 

several studies have been developed on aquatic animals, with promising results.  

Since the intensive nature of some cultures promotes the development of pathogens, 

studies on the incorporation of MOS in feeds have assessed the impact on microbial load, 

such as the Vibrio spp., an important pathogen for Mediterranean aquaculture and, in 

particular, the European seabass production. MOS supplementation decreased the infection 

by Vibrio alginolyticus (Torrecillas et al., 2007) and Vibrio anguillarum (Torrecillas et al., 

2011a, 2011b). The inclusion of dietary mannan-oligosaccharides (MOS) also affected the 

microbiota when added to the FM diet, increasing the diversity. However no significant 

modulation effect was observed when MOS was added to the SBM diet, suggesting that any 

potential effect was masked by the greater general effect of dietary SBM on the gut 

microbiota (Dimitroglou et al., 2010a). 

Other papers reported improved performance, feed efficiency, increased leucocytes 

levels, etc. Some of those results are summarized in Table III. 
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Figure 1.6: Immune system control of the gut microbiota. A) After 
capturing and digesting the pathogenic particles, the dendritic cells 
B) activate B and T cells that come in contact with the antigens of 
the pathogen. There is a recirculation of the induced B cells and T 
cells through the lymphatics and blood stream to mucosal sites, 
where B-cells differentiate into C) IgA-secreting plasma cells. 
(Adapted from: Hooper, 2009). Licensed by Nature Publishing 
Group, license number: 3286951496820. 
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Table III: Previous studies on the effects of mannan oligosaccharides (MOS) in aquatic animals. 

Dph- days post-hatching, SBM- soybean meal, FM- fish meal,  FCR- food conversion ratio, ADC- apparent digestibility coefficient, GI- gastro-intestinal, WBC- white blood corpuscles, 
RBC- red blood corpuscles, Hb- hemoglobin, SGR- specific growth rate, PER- protein efficiency ratio, HSI- hepatosomatic index 

Fish species Dosage/Time/Mean fish size Results References 
European seabass 
(Dicentrarchus labrax) 

2 and 4 g kg-1 / 67 days / 35g 
 
 
 
 
4 and 6 g kg-1 / 30, 45 and 60 / 60.64g 
 
 
 
 
4 g kg-1 / 8 weeks / 116g  
 
 
 
 
 
 
4 g kg-1 / 8 weeks / 45.95g 

Increased growth; 
Lower lipid vacuolization, regular-shaped hepatocytes; 
Lower infection by Vibrio alginolyticus. 
Enhanced FCR; 
 
Lower lipid vacuolization, regular-shaped hepatocytes; 
Enhanced phagocytic activity of head kidney leukocytes; 
Increased mucous cells in the gut. 
No effects on sensorial parameters and biochemical composition of flesh. 
 
Increased folds height, width and surface area of anterior gut; 
Increased surface area of posterior gut; 
Reduced fold length of rectum; 
Increased number of mucous cells; 
Higher density of eosinophilic granulocytes in the mucosa; 
Increased gut mucus lysozyme activity. 
 
Higher weight gain, total length, specific and relative growth rates; 
Higher prostaglandins production on posterior gut; 
Decreased neutral lipids fraction from posterior gut; 
Increased polar lipids fraction; 
Increased number of goblet cells; 
Better preserved enterocytes, and healthier microvilli; 
Higher presence of lymphocytes and granulocytes. 

Torrecillas et al. (2007) 
 
 
 
 
Torrecillas et al. (2011a) 
 
 
 
 
Torrecillas et al. (2011b) 
 
 
 
 
 
 
Torrecillas et al. (2013) 

Sharpsnout seabream 
(Diplodus puntazzo) 

8 g kg -1 / 150 days / 100g 
(added to SBM diet) 

No effects on final weight, SGR, FCR and PER; 
Higher moisture level; 
Lower lipid content; 
Lower polyunsaturated fatty acids. 

Piccolo et al. (2013) 

White seabream 
 (Diplodus sargus) 

Artemia enriched with 0.2% for 24h / 43 dph / 
 larvae 

No effects on growth and survivability; 
Increased villi surface area, microvilli length; 
Increased stamina and survival upon salinity challenge. 

Dimitroglou et al. (2010b) 

Gilthead eabream 
(Sparus aurata) 

0.2 and 0.4 % / 9 weeks / 24g 
(added to FM and SBM diets) 

No effects on final weight, SGR; FCR and PER; 
No effects on glycogen deposition in liver and villi morphology; 
Lower condition factor and HSI (FM diet) 
Improved absorptive area in posterior intestine; 
Increased microvilli density and length; 
Increased GI microbiota diversity (FM diet) 

Dimitroglou et al. (2010a) 

Atlantic salmon 
(Salmo salar) 

10g kg-1 / 4 months / 200g 
 
 
2000mg kg-1 in diet with 14% SFM + 14% SBM/ 
 /11 weeks / 680g 

Less O2 consumption and protein concentration in the body; 
More energy concentration in the body. 
 
Eliminated SBM-induce enteritis; 
Improved diarrheic condition; 
Faster growth; Higher protein retention. 

Grisdale-Helland et al. (2008) 
 
 
Refstie et al. (2010) 

Atlantic cod 
(Gadus morhua) 

1 g kg-1 / 5 weeks / 90g  Higher expression of cytokines in posterior gut and rectum upon challenging 
with Vibrio anguillarum. 

Lokesh et al. (2012) 

Channel catfish 
(Ictalarus punctatus) 

2g kg-1 / 4 weeks / 16g No effects on: growth, hematology, immune functions, resistance to  
Edwardsiella ictaluri 

Welker et al. (2007) 

Cobia  
(Rachycentron canadum) 

Artemia enriched with 0.2% for 24h / 13 dph / 
 larvae 

Increased larval survival; 
Enhanced height of microvilli; 
Reduced supranuclear vacuoles. 

Salze et al. (2008) 

Rainbow trout 
(Oncorhynchus mykiss) 
 

2000 ppm / 42 days / 30g 
 
 
 
0.2% of diet formulation / 8 weeks / -    

Improved weight gain; 
Reduced FCR and mortality; 
Improved indicators of immune status. 
Increased absorptive surface of posterior gut; 
Increased microvilli length and density of posterior gut; 
Increased microvilli length of anterior gut; 

Staykov et al. (2007) 
 
 
 
Dimitroglou et al. (2008) 

Red drum 
(Sciaenops ocellatus) 

10g kg-1 / 3 weeks / 500g  
(added to SBM diet) 

Increased protein, organic matter and energy ADC values; Decreased lipids 
ADC values. 

Burr et al. (2008) 

Nile tilapia 
(Oreochromis niloticus) 

0, 2, 4, 6, 8, 10 g kg-1 / 45 days / 13.62g 
(added to commercial diet) 
 

No effects on hematological parameters; 
Decreased daily feed consumption with increased MOS concentration; 

Sado et al. (2008) 

Gulf sturgeon  
(Acipenser oxyrinchus desotoi) 

3 g kg-1 / 5 weeks / 130g No effects on growth performance, GI morphology and spiral valve villi structure.  Pryor et al. (2003) 

Common carp 
(Cyprinus carpio) 

1, 2, 3 g kg-1 /45 days / 1.3g No effects on growth and feeding parameters (highest for 1g kg-1) ; 
No effects on survival rate and body composition  
Increased hematocrit, lymphocyte, WBC, RBC, Hb and eosinophil (for 1g kg-1) 

Akrami et al. (2012) 

Pacific white shrimp 
(Litopenaeus vannamei) 

2, 4, 6, 8 g kg-1 / 8 weeks / 2.52 g Higher weight gain and SGR; 
Increased intestinal microvilli length; 
Higher survival rate after NH3 stress; 

Zhang et al. (2012) 
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Refstie et al. (2010)   demonstrated that soybean-induced enteritis in the distal 

intestine of Atlantic salmon was eliminated when 2000 mg kg-1 of MOS was added to a diet 

composed of 14% SBM. Nevertheless, no alteration on the severity of enteritis was detected 

when MOS was added to a diet with 32% of SBM, indicating that, at higher levels, the 

soybean components mask any potential effect of dietary MOS. The group fed the 14% SBM 

diet supplemented with MOS also displayed improved feed conversion efficiency, growth 

and nitrogen retention despite the similar quantity of feed intake to the group fed the same 

diet without the prebiotic, strongly indicating a positive effect on gut health by MOS.  Studies 

in other species showed similar results, where MOS supplementation enhanced the length 

and density of microvilli and increased the surface area of the gut (Dimitroglou et al., 2008, 

2010a, 2010b;  Torrecillas et al., 2011b) along with an improvement of growth parameters 

(Salze et al., 2008; Torrecillas et al., 2013; Zhang et al., 2012).  

Torrecillas et al. (2011a, 2011b, and 2013) demonstrated an enhancement in the 

number of mucous cells per unit area in European seabass posterior gut fed dietary MOS 

at 4 g.kg-1. This observation might be related to the lower infection level of seabass by post-

inoculated Vibrio spp. due to increased mucus secretion. Such a level of MOS in the diet 

also resulted in a higher density of infiltrated eosinophil granulocytes in the lamina propria. 

This might be related to the higher presence of prostaglandins found in the posterior gut, 

which are produced during an inflammatory process to regulate homeostasis. These 

hormones are known to affect vascular permeability and stimulate mucin synthesis and 

release (Plaisancié et al., 1998). Prostaglandin receptors are highly expressed in mucous 

cells of the gut of rats (Northey et al., 2000). However, no significant modulation of innate 

immune functions was found in skin mucus of European seabass (Torrecillas et al., 2011b). 

On the other hand, feeding fermented Saccharomyces cerevisiae to rainbow trout improved 

skin mucus innate immune parameters, such as enhanced enzyme activities, namely 

lysozyme, protease, alkaline phosphatase and esterase and a strong antibacterial activity 

against Yersinia ruckeri   (Sheikhzadeh et al., 2012a), which indicates a correlation between 

both gut and skin immune modulation. Thus, more studies are necessary to understand the 

effectiveness and specificity of immunostimulants at multiple mucosal sites. 
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1.7.  Objective of the study 
 

The production of mucus and the anti-adhesive properties of mucins in mucosal 

surfaces from the gut and skin of fish are important barrier mechanisms that prevent 

bacterial adhesion, therefore the improvement in mucus secretion can be directly related to 

reduced bacterial infection. In this study we aim to examine both tissues to assess the 

immune-modulatory response of the mucosal epithelia of European seabass (D. labrax) fed 

a commercial soybean meal feed mixed with either fish-oil or soybean-oil, and the effects of 

adding MOS to these commercial feeds. 

Using the Mucosal Mapping™ technology described by Pittman et al. (2011, 2012), 

we applied an innovative objective method to measure mucous cell area and density. This 

method utilizes uniform and systematic random sampling and stereological procedures, 

producing unbiased and statistically reliable data. 
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2. Materials and methods 
 

2.1. Dietary experiment 
 

 The dietary trial of this experiment was conducted at the aquaculture facilities from the 

‘Parque Científico Tecnológico de la Universidad de Las Palmas de Gran Canaria in Las 

Palmas de Gran Canaria, Spain.  

 Fifty-five European seabass with a mean weight of 36.25 ± 6.17g and mean length of 

13.33 ± 1.67cm were equally distributed into 11 tanks (5 fish per tank) with a volume of 

1000L and a natural photoperiod of 12L:12D. Tanks were supplied with filtered sea water. 

The period of dietary supplementation was 8 weeks. During the experiment, the animals 

from each tank were fed one of 4 different diets (Tables IV and V). Therefore, 3 diets were 

assigned to 3 tanks each and one (‘Fish Oil + MOS’) diet was assigned to 2 tanks. The two 

control diets were both ‘Fish Oil’ and ‘Soybean Oil’, which differ from each other only in the 

oil component.  Two treatment diets were produced by adding to the control diets stated 

above 4g·kg-1 mannan oligosaccharides (Bio-Mos®, Alltech Inc, USA).  

 

 
  Table IV: Composition of experimental diets. 

  Diet 

Ingredients 
(g kg-1 dry weight) 

Fish Oil Vegetable Oil 
Fish Oil +  

MOS 
Vegetable Oil +  

MOS 

Fish meal 1 515 515 515 515 

Soybean meal 97,8 97,8 97,8 97,8 

Wheat 85,3 85,3 85,3 85,3 

Wheat gluten 85,3 85,3 85,3 85,3 

Corn meal 65,3 65,3 61,3 61,3 

Fish oil 2 147,2 0 147,2 0 

Soybean oil 0 147,2 0 147,2 

Mineral+Vit mix 1 4 4 4 4 

Antioxidant (BHT) 0,1 0,1 0,1 0,1 

Bio-Mos® 0 0 4 4 

Total weight 1000 1000 1000 1000 

  

                              1 Peruvian fish meal (65% protein). 2 Peruvian fish oil. 
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Table V: Treatment distribution and number of fish analyzed. 

Treatment (Diet) 
Tanks 

(Number of fish 
 per tank: n=5) 

Number of fish analyzed 

Anterior gut Posterior gut Skin 

Fish Oil T4+T13+T18 2+3+4 = 9 1+1+1 = 3 2+3+4 = 9 

Fish Oil + MOS T7+T16  4+2 = 6 1+1 = 2 4+2 = 6 

Soybean Oil T1+T6+T15  3+3+3 = 9 1+1+1 = 3 3+3+3 = 9 

Soybean Oil + MOS T5+T14+T19 4+3+2 = 9 1+1+1= 3 4+3+2 = 9 

 

 

2.2.  Sampling 
 

 Sampling occurred at 21st March of 2013. Fish were caught by net from the tanks, 

anaesthetized with MS-222 and killed by a blow to the head before being transferred to the 

sampling room. The weight and length of each individual were measured (36.25±6.17g and 

13.47±1.27cm), followed by sampling of intestine and skin. We used a subsample from the 

gut of the total number of fish, and the other subsample was taken for a series of biochemical 

and molecular analyses by Silvia Torrecillas, from Universidad de Las Palmas de Gran 

Canaria. 

 

 

2.2.1.  Intestine 
 

 The intestine was removed from the abdominal cavity of each specimen (n=55) and 

two parts were subsampled: anterior intestine and posterior intestine. Furthermore, a sub-

sample of each part was sectioned for histological analysis. To ensure the correct sampling 

of the desired tissue, for the anterior gut, the sub-section was obtained from the uppermost 

part of the intestine and for the posterior gut, a sub-section from a region adjacent to the 

rectum (Figure 2.1). The samples were lightly rinsed with water to remove any content, put 

in labelled histocassettes and fixed in 4% phosphate-buffered formalin. 
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Figure 2.1: Generalized fish digestive tract scheme. A) Anterior 
intestine sampling region and B) posterior intestine sampling 
region (Image from: Kardong, 2012). 

 

 

 

 

                          
  

  

 

 

 

2.2.2.  Skin 
 

Skin samples were excised from the dorsolateral region of the fish. They were then 

processed according to Pittman et al. (2011, 2013), as described above. The step of 

decalcification in formic acid for calcified structures was not performed to ensure the 

epithelium integrity and avoid possible tissue shrinkage.  

 

 

2.3.  Processing Protocol 
 

Following the Pittman et al. (2011, 2013) method for quantifying salmonid mucous 

cells, histological sections were prepared.  The sub-samples fixed in formalin were 

dehydrated progressively in OH for 24h. They were then, embedded integrally in Technovit 

7100 (Heraeus Kulzer GmbH & Co, KG) (Fig. 2.2), sectioned at 2µm with a rotary microtome 

(Leica®) (Fig. 2.3), stained with Periodic Acid Schiff (PAS)-Alcian Blue (only the intestine 

samples) and mounted with Mountex® (Histolab Products AB). Sectioning was performed 

at random orientation of the tissue. From both intestinal regions and the skin of each fish, 3 

non-sequential sections were taken for mounting and posterior histological analysis.  

The skin sample preparation differed from the above method in the stain that was 

applied, which was Toluidine Blue. 

 

 

A 

B 
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2.3.1.  Stain optimization for skin samples 
 

The PAS-Alcian Blue dye was substituted by Toluidine Blue upon confirmation that 

no statistically significant differences on mucous cells area and density were obtained by 

the different dyes. This new staining method for D. labrax skin is part of the results of this 

dissertation and is described and validated further on the ‘Results’ section. 

 

Figure 2.2: Embeded skin sub-samples in Technovit 7100. 
Blocks prepared for tissue sectioning with microtome. 

 

Figure 2.3: Rotary microtome (Leica®). 
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2.4.  Histological Analysis 
 

 The sections were analyzed according to Pittman et al. (2013) using a Leica® Axioskop 

microscope combined with newCast® software (Visiopharm Integrator System, Version 

3.6.5.0), which integrates image analysis and stereological tools, and a Prior Proscan digital 

stage, at a final magnification of 200x (Figs. 2.4 and 2.5). The mucous cells were counted 

in systematic random sections using counting frames and epithelial area and mucous cells 

area were measured using stereological probes (points and nucleator). Each section was 

delimited for regions of interest and the systematic uniform random sampling of those areas 

was executed to prevent observer bias. In accordance with stereological principles, the 

estimation of number and size using probes yield sufficient data to achieve significant 

precision in measurements (Howard and Reed, 2005). 

 

 

 

 

 

 
Figure 2.4: The computer used for image analysis with newCast® 
software (Visiopharm Integrator System, Version 3.6.5.0) 
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2.5. Statistical Analysis 
 

 R (version 3.0.1) was used for the statistical analysis. Factorial ANOVA was performed 

to assess the effect of the factors ‘diet’ and ‘prebiotic’ and the interaction effect on the 

outcome variables. Kruskal-Walis test was used for non-parametric data. Post-hoc Tukey’s 

HSD test for individual means comparison was performed when F-values indicated 

significance. Significant differences were considered for P < 0.05. All data were tested for 

normality and homogeneity of variance.  

 

 

 

 

 

Figure 2.5: Leica® Axioskop microscope 
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3. Results 
 

3.1.  Stain optimization for skin samples 
 

PAS-Alcian Blue, previously validated for this methodology with Salmo salar skin 

samples and used to stain the D. Labrax gut samples, was not staining properly the 

epithelium from the skin of this species. Therefore, to stain the skin samples we needed to 

select a stronger dye that would better penetrate the tissue. In order to do that, we compared 

the cell area obtained from skin samples stained with the original staining technique against 

equivalent samples stained with Toluidine Blue 100% and 10%, to check if they would yield 

different cell areas or not.  

PAS-Alcian Blue produces a clear identification of the mucous cells by specifically 

binding to mucins but the epithelium is barely identifiable (Figures A.3 – in Appendix), which 

might lead to a misquantification of the real epithelium area, which could impact the density 

results. Toluidine Blue 10% produced a clear identifiable epithelium and well distinguishable 

mucous cells (Fig. A.4). No significant differences were found between cell areas obtained 

by the different staining techniques (Figure 3.1). PAS - Alcian Blue produced cell areas with 

a mean value equal to 148.32 ± 78.07 µm2, and with Toluidine Blue 100% and 10% we 

obtained mean values of 183.81 ± 93.21 µm2 and 164.89 ± 72.65 µm2, respectively. 

However, even though not significant, PAS-Alcian Blue yields a higher frequency of smaller 

cells (Figure 3.2) than Toluidine Blue (peak on 50-100 µm2 for PAS-Alcian Blue and 150-

200 µm2 for Toluidine Blue 10%) which can have a potential impact on the results of mucus 

cells parameters from the skin by misidentification of smaller cells, which appear to be less 

visible and, therefore, are not counted. 
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Figure 3.1: Mucous cell area from D. labrax skin samples per staining 
technique. One way ANOVA for significance testing (P<0.05). No 
significant differences observed. Number of cells counted per 
treatment: n=44; source: one fish. 

 

 

 

  

 

 

 

 

0

50

100

150

200

250

300

Toluidine Blue Toluidine Blue 10% PAS-Alcian Blue

C
el

l A
re

a 
(µ

m
2

)

0

2

4

6

8

10

12

14

16

18

Fr
eq

u
en

cy
 (

n
)

Toluidine Toluidine 10% PAS-Alcian Blue

Figure 3.2: Frequency distribution of mucous cells area from D. labrax skin 
samples per staining technique. Number of cells counted per treatment: 
n=44; source: one fish. 

 



  
 

42 
 

Figure 3.3: Initial (t=0) and final weight (g) of D. labrax (N=55, n=5) fed 
experimental diets ‘Fish Oil’, ‘Soybean Oil’, ‘Fish Oil + MOS’ and 
‘Soybean Oil + MOS’ for 8 weeks. Factorial ANOVA for significance 
testing. No significant differences were observed between the different 
treatments (P<0.05) for final weights. 

 

Figure 3.4: Initial (t=0) and final total length (cm) of D. labrax (N=55, n=5) 
fed experimental diets ‘Fish Oil’, ‘Soybean Oil’, ‘Fish Oil + MOS’ and 
‘Soybean Oil + MOS’ for 8 weeks. Factorial ANOVA for significance testing. 
No significant differences were observed between the different treatments 
(P<0.05) for final weights. 

 

3.2.  Growth Parameters 
 

 No mortalities were registered in the tanks during the dietary treatment. After 8 weeks 

of feeding, the groups showed no significant differences in body weight and total length 

between each other. However, fish fed the control diets presented higher means in weight 

and length, compared with fish fed MOS-supplemented diets (Figures 3.3 and 3.4). 
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3.3. Mucous Cells 
 

3.3.1. Anterior Gut 
 

Differences between mean mucous cell area and density from the anterior gut were 

evident in fish fed different diets (Figures 3.5, A.1). The mean mucous cell area in the 

anterior gut was 100.43 ± 15.48 µm2 and 95.22 ± 9.35 µm2 for fish fed the control diets ‘Fish 

Oil’ and ‘Soybean Oil’, respectively, and this difference was not significant. With the MOS-

supplemented diets, mucous cell area decreased, non-significantly, to 78.33 ± 15.43 µm2 

for ‘Fish Oil’ and increased significantly (P<0.01) to 124.16 ± 14.13 µm2 for ‘Soybean Oil’. 

There were significantly bigger mucous cells in the mucosal tissue of fish fed the ‘Soybean 

Oil’ diet supplemented with MOS over the non-supplemented ‘Soybean Oil’ diet and the 

‘Fish Oil’ diet supplemented with the prebiotic (P<0.01).  

The mucous cell density, measured as a percentage of the total epithelial tissue, was 

at 10.25 ± 2.95 % and 7.90 ± 0.78 % for fish fed the control diets ‘Fish Oil’ and ‘Soybean 

Oil’, respectively, and the difference was significant (P<0.05). With the MOS-supplemented 

diets, mucous cell density was insignificantly reduced to 7.85 ± 2.07 % for ‘Fish Oil+MOS’ 

whereas it increased significantly (P<0.05) to 13.80 ± 6.01 % for ‘Soybean Oil+MOS’. So, 

there was a significantly higher density (P<0.05) of mucous cell in the anterior gut of fish fed 

soybean oil diet with MOS than in fish fed the control ‘Soybean Oil’ diet and the fish oil diet 

supplemented with MOS. Likewise, the fish fed the control ‘Fish Oil’ diet showed a higher 

density (P<0.05) of mucous cells than the fish fed the control ‘Soybean Oil’ diet.  

Looking at the ratio ‘area:density’ (Figure 14), we notice a large standard deviation and 

no significant differences are observed.   

Note that a high density is not necessarily an indicator of higher number of mucous 

cells, but rather can reflect bigger mucous cells in the epithelium or reduced epithelium area. 

The surrounding epithelium can impact the density because its area can be affected by the 

type of diet and become decreased or enlarged. 
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3.2.2. Posterior Gut 

 

In the posterior gut, significantly bigger mucous cells were observed on fish fed the fish 

oil diets over the soybean oil diets (Figures 3.6, A.2). For non-supplemented diets, ‘Fish Oil’ 

presented bigger (P<0.05) cells (88.35 ± 2.59 µm2) than ‘Soybean Oil’ (78.69 ± 11.04 µm2). 

For MOS supplemented diets, ‘Fish Oil + MOS’ resulted on bigger (P<0.05) mucous cells 

(88.46 ± 1.35 µm2) than ‘Soybean Oil + MOS’ (75.30 ± 3.20 µm2). No significant differences 

were observed in cell density, nonetheless, similarly to the observed for ‘cell area’, the Fish 

A 

C 

B 
* 

* * 

• 

• 

Figure 3.5: Effects of the diets in mucous cell density (A), mucous cell area (B) and 
area/density ratio (C) from the anterior gut of D. labrax (Total fish sampled = 33, 
number of counting frames (analyzed per fish/section)= 20). Factorial ANOVA for 
significance testing. Statistically significant differences are: * (P<0.05) and • 
(P<0.01). F.N- ‘Fish Oil’ , SB.N- ‘Soybean Oil’, F.Y-‘Fish Oil’ with MOS, SB.Y- 
‘Soybean Oil’ with MOS.  
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Oil diets resulted on a higher density of cells in the tissue (3.40 ± 0.34 % for ‘Fish Oil’ and 

4.02 ± 1.75 % for ‘Fish Oil + MOS’) then the Soybean Oil diets (2.88 ± 1.07 % for ‘Soybean 

Oil’ and 2.70 ± 0.24 % for ‘Soybean Oil + MOS’). It is important to point out the diet effect, 

which suggests an important modulatory effect by the oil component in this region of the gut. 

On the other hand, MOS seems to have no modulation effect, suggesting a loss of its 

potential properties when it arrives to the hindmost region of the intestine. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.6: Effects of the diets in mucous cell density (A), mucous cell area (B) 
and area/density ratio (C) from the posterior gut of D. labrax (Total fish sampled 
= 11, number of counting frames (analyzed per fish/section)= 20). Factorial 
ANOVA for significance testing. Statistically significant differences are * (P<0.05). 
F.N- ‘Fish Oil’ , SB.N- ‘Soybean Oil’, F.Y-‘Fish Oil’ with MOS, SB.Y- ‘Soybean Oil’ 
with MOS.  
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3.2.3. Skin 
 

In the skin epithelium, no significant differences in mucous cells area and density were 

observed (Figure 3.7). Nonetheless, the control diets ‘Fish Oil’ and ‘Soybean Oil’ gave rise 

to mucous cells with a mean area of 164.21 ± 27.13 µm2 and 184.00 ± 18.71 µm2, 

correspondingly. The MOS-supplemented diets resulted in mucous cells with 161.10 ± 15.76 

µm2 for ‘Fish Oil+MOS’ and 182.79 ± 30.35 µm2 for ‘Soybean Oil+MOS’.  

Non-supplemented ‘Fish Oil’ diet resulted on a mean density of 2.38 ± 1.64 % whereas 

supplementation insignificantly increased density to 3.86 ± 1.54%. The non-supplemented 

‘Soybean Oil’ diet had a density of 4.16 ± 1.71 % which was relatively unchanged by 

supplementation at 3.89 ± 2.42 %. 
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Figure 3.7: Effects of the diets in mucous cell density (A), mucous cell area (B) and 
area/density ratio (C) from the skin epithelium of D. labrax (Total fish sampled = 33, 
number of counting frames (analyzed per fish/section) = 20). Factorial ANOVA for 
significance testing (P<0.05). No significant differences observed. 
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3.2.4. Mucosal sites comparison 
 

Comparison of the mucous cells parameters from the anterior gut, the posterior gut 

and the skin (Figures 3.8 - 3.10) reveals some differences between the mucosal tissues. 

The skin has much bigger mucous cells then the gut (P<0.01), regardless of diet. This 

indicates a natural adaptation towards that difference in terms of mucous cell morphology, 

since skin is more exposed to the external environment then the intestine, thus needs a 

continuous and faster synthesis and release of mucous and a bigger storage capacity. Cell 

area is significantly bigger (P<0.01) in the anterior gut of fish fed the both the supplemented 

and non-supplemented soybean oil based diets than in the posterior gut.  

The anterior gut has a significantly higher density of cells than does the posterior gut 

and the skin, regardless of diet. The mucous cell density on the skin is about the same as 

that of the posterior gut but the cells are larger, as referred above. The highest density of 

mucous cells is observed in the anterior gut of fish fed the ‘Soybean Oil + MOS’ diet and in 

the posterior gut of the ‘Fish-Oil + MOS’ diet, although with a large standard deviation. 

The area:density in the skin epithelium is about twice that of the posterior gut and about 

5-8 times higher than the anterior gut, and only, but displays a big standard deviation in all 

treatments so significance is not observable in all treatments between skin and posterior gut 

(Figure 3.10). Area:density is significantly lower (P<0.05) in all treatments but for ‘Fish-

Oil+MOS’, on the anterior gut compared with the posterior gut. 

 

 

 

  

  

 

 

 

 

 

 

  

 

Figure 3.8: Mucous cells area from the different mucosal tissues by dietary treatment. 
T-test for significant difference testing between means. Statistically significant 
differences are: * (P<0.05) and • (P<0.01). 
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Figure 3.9: Mucous cells density from the different mucosal tissues by dietary 

treatment. T-test for significant difference testing between means. Statistically 

significant differences are: * (P<0.05) and • (P<0.01). 

Figure 3.10: Mucous cells area/density ratio from the different mucosal tissues by 

dietary treatment. T-test for significant difference testing between means. 

Statistically significant differences are: * (P<0.05) and • (P<0.01). 
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4. Discussion 
 

4.1. Stain optimization 
 

The histological methodology developed by Pittman et al., (2011, 2013) to quantify 

mucous cells was successfully applied to this study for the analysis of gut samples. 

However, for the histological study of the skin samples from the European seabass, PAS-

Alcian Blue did not result in satisfactory staining of the epithelium, which is crucial for density 

assessment. Although, this dye stains specifically for mucopolysaccharides, binding to 

neutral and acidic glycoproteins (Yamabayashi, 1987), the epithelium was not clear and 

differentiable probably due to a low penetration of the dye through the embedding plastic 

medium and the calcified structures of the skin. We used Toluidine Blue in two different 

concentrations (100% and 10%) to optimize the staining protocol. Toluidine Blue is a basic 

thiazine metachromatic dye with high affinity for acidic tissue elements and is commonly 

used to highlight mucins as well (Sridharan and Shankar, 2012). It is a high penetrative dye, 

good to sharpen histology images and easy to prepare. No significant differences (P<0.05) 

were obtained for mean mucous cell area and the epithelium was totally differentiable, 

allowing for density measurements. These results allowed use to optimize the methodology 

to stain highly calcified samples for Mucosal Mapping™. Since both Toluidine Blue 100% 

and 10% yielded similar results, we decided to utilize the diluted version for reagent usage 

maximization purposes. The staining protocol was altered for skin sample as follows: dilution 

of 1 part of Toluidine Blue dye in 9 parts of distilled water, bathing the slides in the dye for 

40 seconds and washing in water for 10 seconds.  

It is, however, important to take into consideration the non-significant different peaks 

of mucous cell dimensions yielded by both dyes. Toluidine Blue seems to shift the mean 

mucous cell area to higher values, which means that cells with small dimensions were more 

difficult to distinguish on the skin, leading to a potential misidentification of smaller mucous 

cells. Therefore, an eventual increase of cell turnover might be masked by the use of 

Toluidine Blue.  

Further research in staining procedures is highly recommended to optimize this 

methodology for any type of tissue resistant to PAS-Alcian Blue. 
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4.2. Mucosal tissue modulation 
 

Epithelial mucosal surfaces have a number of defence mechanisms to avoid bacterial 

adhesion, which include mucus secretion (Ellis, 2001) and anti-adhesive action of mucins 

(Bavington et al., 2004).  Consequently, increased mucus production could be responsible 

for enhanced gut health. The effect of MOS supplementation on improving the functional 

integrity of the intestine of fish species such as Gilthead seabream, White seabream, cobia 

and rainbow trout (see Table III), has been demonstrated in terms of higher microvilli density 

and length (Dimitroglou et al., 2008, 2010a, 2010b; Salze et al., 2008; Zhang et al., 2012) 

as well as increased intestinal fold length (Torrecillas et al., 2011b).  Improved gut 

functionality could be directly  related  to  an  enhanced  gut  mucus  production  as  reported  

in  previous  studies  for D. labrax  fed  MOS  (Torrecillas  et  al.,  2011a,  2011b).  

An improved barrier better protects the enterocytes from damaging, leading to a 

better absorption of nutrients and can also reduce gut infection by harmful bacteria 

(Torrecillas et al. 2007). Generally, mucins are secreted by mucous cells  at  a  baseline  

rate  in  order  to  maintain  the  mucus  layer  in  the  gut epithelium  but,  upon stimulation, 

these mucous cells  might accelerate their release of mucous (Plaisancié et al., 1998). In 

agreement with previous studies, we observed a modulation of the mucous cells area and 

density in the gut of European seabass for MOS supplemented diets, but the effects were 

mostly significant in the anterior region of the intestine. Remarkably, supplemented diets of 

‘Fish Oil’ and ‘Soybean Oil’ produced opposite responses in the anterior gut, suggesting 

alternative mucosal modulation mechanisms depending on the oil source. Moreover, MOS 

added to the ‘Soybean Oil’ diet only produced significant effects in cell area and density in 

the anterior gut, meanwhile in the posterior gut no effects were detected. In the present 

study, all diets tested had in their composition an equal fraction of FM and SBM, but the 

‘Soybean Oil’ diets add an additional soybean element, the oil, which substitutes the fish oil 

present on the ‘Fish Oil’ diets. 

Soybean based feeds are rich in anti-nutrients, which may reduce feed intake, growth, 

nutrient digestibility and utilization, disturb the function of internal organs and affect disease 

resistance. Some important anti-nutritional factors are: fibers, which interfere with digestion, 

absorption and utilization of nutrients (van der Kamp et al., 2004), enzyme inhibitors, which 

slow down digestion of nutrients (Krogdahl and Holm, 1979; Berg-Lea et al., 1989); lectins, 

which bind to gut cell receptors, and are thought to be responsible for stimulating intestinal 
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tissue growth, turning it more permeable for macromolecules influx and bacteria, stimulate 

insulin production and modify the metabolism (Grant, 1991); saponins, which also increases 

the permeability of the gut mucosa, leading to tissue inflammation (Johnson et al., 1986); 

phytoestrogens, which may deregulate the action of endogenous estrogen (Mazur and 

Adlercreutz, 1998); quinolizidine alkaloids, such as lupanin, which can cause nervous 

system conditions and gut disorders (Wink et al., 1998); and oligosaccharides, which can 

modify gut microbiota (Cummings et al., 1986). 

 Therefore, the introduction of extra soybean anti-nutritional factors with the addition 

of soya oils might possibly trigger a stronger inflammatory reaction and modify the gut 

microbiota. The interaction between the different gut microbiota arising from the different 

diets and the mucosal epithelium may be the mechanism by which the differential mucous 

cell stimulation occurred. 

 

 

4.2.1. Anterior gut 
 

In our dietary experiment, when fish were fed the control diets, the ‘Soybean Oil’ diet 

resulted on a significantly lower density of mucous cells in the anterior gut but roughly similar 

cell dimensions than the ‘Fish Oil’ diet. This observation can either mean less mucous cells 

on fish fed the ‘Soybean Oil’ control diet or more epithelium. Previous studies on Atlantic 

salmon reported an inflammation of the epithelial tissue upon feeding the fish with SBM 

based diets, causing enteritis (Baeverfjord and Krogdahl, 1996; Knudsen et al., 2007, 2008; 

Urán et al., 2008)  and the severity was dependent on the quantity and strain of soya used 

(Urán et al., 2009). The salmon displayed normal growth and feed intake, although they 

developed a strong inflammation in the gut, characterized by a great decrease of microvilli 

height, a swelling of the lamina propria and sub-epithelial mucosa, a higher number of 

mucous cells, an increased presence of eosinophilic granulocytes and ultimately a total 

tissue disruption (Urán et al., 2009). 

On previous studies, researchers have assessed the intestinal histology of fish fed 

SBM and have observed that various species can have different tolerance limits to the 

presence of anti-nutrients, which are thought to be the cause of enteritis (van den Ingh et 

al., 1991; Heikkinen et al., 2006; Bonaldo et al., 2008). Soy saponins in particular, which 

increase intestinal permeability, combined with other feed components still to be identified, 
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are the main responsible agents for the inflammatory response on fish (Knudsen et al., 2007, 

2008). The severity of SBM-induced enteritis is also different among fish species (Urán et 

al., 2008; Lilleeng et al., 2009) and, in most of the cases, histopathology was applied after 

6 to 9 weeks of dietary experiment, the range where our trial of 8 weeks is inserted. 

As referred earlier, the presence of an extra soybean component in the ‘Soybean Oil’ 

diet delivers, as expected, additional soybean anti-nutritional factors to the fish intestine. 

Therefore, it is very likely to assume that the lower density of mucous cells in the anterior 

gut of fish treated with the ‘Soybean Oil’ control diet compared with the ‘Fish Oil’ control diet 

is due to an increase of epithelial area because of the additional soybean oil component, 

which might trigger a more evident inflammatory reaction in the gut of European seabass. 

Since the epithelium is the reference volume for density measurements, then the change in 

density regards only the mucous cells, which must be proven to not be altered or reduced 

in undisputed cases of enteritis, but more research is needed to define the behavior of 

mucous cells in enteritis-affected tissues. Nonetheless, when MOS is added to the ‘Soybean 

Oil’ diet, the density and area of mucous cells is significantly increased in the anterior gut, 

comparing with the control. It also produces a higher density of mucous cells then the ‘Fish 

Oil’ based diets (both control and supplemented). The improved density of cells, thus, can 

be explained by both the increased cells dimension and the lower inflammatory response 

due to the presence of MOS.  

On the other hand, the fish oil based diets, although including SBM, also yielded very 

interesting results in the anterior gut. Even though non-significant differences were found 

between both non-supplemented and supplemented diets, there was smaller cells in the 

anterior gut in the anterior gut of fish fed the ‘Fish Oil + MOS’ diet (78.33 ± 15.43 µm2) when 

comparing with the control (100.43 ± 15.48 µm2), even though the density was very similar 

(10.25 ± 2.95% for ‘Fish Oil’ and 7.85 ± 2.07 % for ‘Fish Oil + MOS’). Therefore, since the 

addition of MOS resulted in a decreased mucous cell area but kept the density approximately 

the same, there was necessarily an increase of the number of mucous cells in the epithelium. 

So, an opposite modulation effect on the mucous cells population is produced by MOS when 

added to a soybean oil based diet and a fish oil based diet. 

 The ‘Soybean Oil + MOS’ produces bigger cells and a higher density relative to the 

‘Fish Oil + MOS’ results, yet ‘Fish-Oil+MOS’ had a  higher number of cells than the ‘Fish Oil’ 

control. A greater number of smaller mucous cells suggests an enhanced cell proliferation, 

therefore a faster cell turnover and, ultimately, a potential advantage in terms of mucous 
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production. Relatively to the large mucous cells observed for the ‘Soybean Oil + MOS’ diet, 

these are thought to be formed by a mechanism that increases the mucus storage within the 

cells.  

As stated before, mucus is known to function as a protective barrier against 

pathogens, however, nutrients need to cross that barrier in order to reach the enterocytes 

and be absorbed. If the mucus layer is excessively thick it can act as an obstacle against 

that process. But in the present study no adverse effects were observed in terms of growth 

performance, suggesting no changes in the gut mucus layer against nutrient uptake. This 

does not mean the findings would not affect growth on the long term. The enlargement of 

the mucous cells was also previously observed in the small intestine of chicks after a period 

of starvation, without affecting food conversion rate (Smirnov et al., 2004, 2005) and goblet 

cell hyperplasia and hypertrophy with consequent enhanced mucous production was also 

observed in mammalian intestines (Miller, 1987; Marzouk et al., 2002) and fish intestines 

(Bosi et al., 2005) after parasite infection without affecting growth performance as well. This 

indicates an improved capacity of the gastro-intestinal tract to respond to pathogenic attacks 

through increased flexibility of mucous cell size and storage capacity without deleteriously 

increasing secretion to reduce growth performance. 

 

 

4.2.2. Posterior gut 
 

In the posterior gut no significant differences between dietary treatments were 

observed in terms of cell density. It is, however, remarkable to see that the overall cell 

density in the posterior gut is lower for all diets when compared with the anterior gut. The 

‘Fish Oil + MOS’ diet resulted on both the highest mean cell density observed in the posterior 

gut (4.02 ± 1.75 %) and the lowest mean cell density in the anterior gut (7.85 ± 2.07 %). This 

is an expected outcome since the posterior gut has a naturally larger epithelial area than the 

anterior gut where structures are less for nutrient absorption (generally amino acids and 

proteins) and mostly for the adaptive immunity with high quantities of lymphoid cells and a 

thicker lamina propria, resulting on a lower mucous cell density (Ezeasor and Stokoe 1981; 

Sire and Vernier 1992; Buddington et al., 1997). Therefore, significant effects from the 

different treatments on mucous cell dynamics are more difficult to notice in that region of the 

gut. 
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In terms of cell area, which does not depend on the epithelium dimension, the addition 

of MOS did not result in any significant difference in size of gut mucous cells over the 

controls diets. However, the fish-oil based diets resulted in significantly bigger (P<0.05) cells 

than the soybean-oil based diets, meanwhile no significant differences were found when 

MOS was added. The reason for such effect must be based on the oil-type added to the 

diet, thus the substitution of fish oil with soybean oil induced a reduction in size on the 

mucous cells in the posterior gut and the effect of MOS was undetected.  

By contrast, Torrecillas et al. (2011a, 2011b, and 2013) verified an effect of adding 

MOS 4 g.kg-1 to a ‘Fish Oil’ diet, which improved mucous cells number in the posterior gut 

of European seabass. However, numerical density doesn’t give any information about the 

cell size so the increasing number of cells might not be, by itself, an indication of enhanced 

mucosal immunity.  An unbiased estimation of cell density and cell area given by this 

methodology gives a more precise look into the dynamics of the tissue.  

A possible explanation for the lack of effects of MOS on the posterior gut might be its 

low bioavailability. Hence, the oil-type is the variable that is affecting the mucous cell area 

and the substitution of fish-oil with soybean oil in the diet is driving the mucous cells to 

become smaller in size. 

 

 

4.2.2.1. Comparing both regions of the intestine. 

 

For fish fed the fish oil based diets, with or without MOS, the cells are very similar in 

size (‘Fish Oil’: 100.43 ± 15.48 µm2 in anterior gut and 88.35 ± 2.59 µm2 in posterior gut;  

‘Fish Oil+MOS’: 78.33 ± 15.43 µm2 in anterior gut and 88.46 ± 1.35 µm2 in the posterior gut). 

By contrast, the control ‘Soybean Oil’ diet resulted on a slight, but perceptible difference in 

the size of cells between each region: the anterior gut had cells with 95.22 ± 9.35 µm2 and 

the posterior gut, 78.68 ± 11.04 µm2, significantly smaller (P<0.05) than the control ‘Fish Oil’ 

diet. The soybean oil based diet supplemented with MOS resulted in an even more obvious 

difference in sizes of mucous cells between the regions of the intestine: 124.16 ± 14.13 µm2 

in the anterior gut and 75.30 ± 3.20 µm2 in the posterior gut. Therefore, MOS added to a 

soybean oil based diet significantly increased the mean mucous cell area in the anterior gut, 

but had no effect in the posterior gut. This suggests that MOS has a greater effect at the 
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foremost part of the intestine, maybe due to a lowering of availability along the intestinal 

tract, so the effects are less detectable in posterior gut. 

Since this posterior region has a lower density of mucous cells due to its larger 

epithelium area, it is consequently more difficult to detect an eventual modulatory effect of 

statistical importance. The anterior gut presents the highest density in all the treatments, 

where Mucosal MappingTM takes into consideration both the size and the number in a 

reference volume of epithelium. Other studies use numerical density which does not 

consider size. The presented results are in conflict with other two studies that detected a 

higher numerical presence of mucous cells on the posterior region than in the anterior region 

of D. labrax intestine (Torrecillas et al., 2011a, 2011b). However, the present study shows 

larger cells at higher densities in the anterior gut of all treatments relative to the posterior 

gut. It is therefore the size of the cells which explain the differing conclusions of the studies. 

Nonetheless, the lack of studies on this subject make it difficult to draw a conclusion, and 

further studies are needed to confirm or disprove such observations. 

 

 

4.2.3. Skin 
 

In the skin epithelial tissue, no evidence of significant effects from the diet nor the 

prebiotic were observed.  This suggests that the ability of MOS to modulate the innate 

immunity seems to be more evident in the gut than in the skin. A previous study (Torrecillas 

et al., 2011b) where MOS was also given to European seabass through diet, skin mucus 

innate functions were not significantly modulated, according with our results. Nonetheless, 

another prebiotic, Ergosan, and fermented Saccharomyces cerevisiae (a common probiotic) 

fed to rainbow trout successfully enhanced skin mucus immune parameters (Sheikhzadeh 

et al., 2012a, 2012b). These studies together indicate an underlying communication 

between both gut and skin mucosal tissues in rainbow trout. Therefore, there seems to be 

a species-dependent response to dietary components. More studies addressing the effects 

of dietary prebiotics on the skin are necessary and future dietary experiments on this topic 

should include the analysis of the suite of mucosal epithelia: the gut, the skin and the gills.  

A reference about the methodology should be made in this sub-chapter since the 

results are a direct outcome of the methodology adaptation for skin samples. It is, therefore, 

important to take that into account when interpreting the results. The data from the ‘stain 
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optimization for skin samples’ chapter evidenced a higher frequency of bigger mucous cells 

when skin samples are stained with Toluidine Blue, comparing with PAS-Alcian Blue. Since 

the presence of smaller cells is an important indicator of cell turnover, their misidentification 

can be a problem when we aim for alteration on mucosal cells dynamics. Therefore, the 

possible misidentification of the smaller mucous cells might have masked the potential 

effects of the diet and the prebiotic in the skin. Regarding the exposed, it is not possible to 

completely exclude an effect of the diet and the prebiotic. 

To ensure the accuracy of future experiments, more trials on staining optimization for 

this specific type of highly calcified tissue are needed. 

 

 

4.3. Considerations of potential MOS effects in the gut 
 

Mucosal Mapping of mucous cell quantification gave no significant differences in 

either mucous cell density or mean mucous cell area in the posterior region of the gut. 

Nonetheless, when MOS is added to soybean oil diets, the density and area of the mucous 

cells in the anterior gut increases significantly, confirming the potential of MOS to modulate 

innate immunity.  Likewise, in the anterior gut, the cell density and area were not affected 

by adding MOS to the fish oil diet, through our observations. Torrecillas et al. (2011a) 

demonstrated an enhancement in the total number of mucous cells on posterior gut of 

European seabass fed fish oil diets supplemented with MOS. However, it is important to 

refer that the methodology used by Torrecillas et al. (2007, 2011a) to quantify mucous cells 

was based on number per unit area rather than a percentage (Table VI). 

Torrecillas et al. (2007, 2011b) also demonstrated that fish fed MOS added to fish oil 

based diets with SBM were less infected by V. alginolyticus and V. anguillarum than non-

supplemented fish, and correlated this observation with the higher number  of cells secreting 

mucins (Torrecillas et al., 2011a). Nonetheless, we did not find any evidence of significant 

differences on cell area and density by testing MOS on fish oil based diets. This means that 

significant variations in cell number were unlikely in our experiment. Hence, the lower 

infection rate might not be directly caused by a higher presence of mucous cells but rather 

related with the improvement of other immune parameters, such as head kidney 

macrophages phagocytic activity, eosinophilic granulocytes in the mucosa and mucous 

lysozyme activity (Torrecillas et al., 2011a, 2011b). Nonetheless, the mentioned papers lack 
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a description of the method for a better comparison of both methodologies and 

correspondent results. 

 

 

Table VI: Previous studies on the effects of MOS in D. labrax with gut mucous cell density measurements. 

 

 

Studies about the effects of soybean oils in fish gut and immunity are scarce, and the 

presented experiment intends to shed a light into the subject. Lower infection by Aeromonas 

salmonicida spp. salmonicida was observed in Arctic charr when fed a diet with soybean oil 

(Ringo et al., 2002). Yet, the antibacterial effect detected is probably due to the 

autochthonous microbiota selected by the diet, which themselves are thought to able to 

modulate mucus secretion through liberation of modulatory substances (Kandori et al., 1996; 

Comelli et al., 2008; Wrzosek et al., 2013) The microbiota produces a wide range of 

carbohydrate-degrading enzymes which process otherwise indigestible dietary compounds 

and mucus polysaccharides (Flint et al., 2012; Koropatkin et al., 2012). Therefore, different 

diet compositions are able to select for specific bacteria and, thus, modify gut microbiota 

diversity according to the ability of individuals to metabolize those compounds. For example, 

Wrzosek et al. (2013) showed that Bacterioides thetaiotaomicron enhances goblet cells 

differentiation leading to an increase of goblet cells number and mucin gene expression in 

the colon of gnotobiotic rats. 

 The addition of prebiotics also modulates the fish gut microbiota as it introduces new 

molecules that will interact with the bacterial population. A previous study with rainbow trout 

assessed the effects of MOS on the gut microbiota and intestinal morphology (Dimitroglou 

Fish species       
and 
MOS (dose/time) 

Gut site 

Mucous cell density 

Units References 

Control MOS 

 

European seabass 
(Dicentrarchus labrax) 
 
4 g kg-1 / 8 weeks 

Anterior gut 
 
Posterior gut 

≈ 615 ± 210 
 

≈ 950 ± 275 

≈ 700 ± 300 
 

≈1125 ± 455 

Mucous cell/106 
unit of area 

Torrecillas et al. 
(2011a) 

 

Anterior gut 
 
Posterior gut 

 
406.09 ± 125.36 

 
697.46 ± 355.50 

 

480.84 ± 167.55 
 

869.29 ± 321.76 

Mucous cell/106 
unit of area 

  
 
Torrecillas et al. 

(2011b) 
 

 

Posterior gut 2821.58 ± 283.94 3230.54 ± 538.87 
Mucous cell/106 
unit of area 

Torrecillas et al. 
(2013) 
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et al., 2009) where the control diet had FM and SBM and the oil component was from a fish 

source. MOS was added to this diet at 0.2%. Its addition lead to an increased gut absorptive 

surface area (measured as the ratio between internal perimeter of the gut lumen [villi and 

mucosal folds length] and external perimeter of the gut, and high values indicate augmented 

absorptive surface) from both anterior and posterior regions in sub adult groups as well as 

increased microvilli length and density. The cultured microbiota was significantly reduced by 

MOS. The levels of Aeromonas/Vibrio spp. were significantly reduced in juvenile individuals. 

It also reduced species diversity and increased resemblance of bacterial populations found 

within the groups. Juvenile individuals showed a significant reduction of Micrococcus spp. 

(22 to 7 % of total microbiota), Aeromonas/Vibrio spp. (37 to 9 %) and unidentified gram-

positive rods (25 to 6%). On the other hand, it increased the density of Enterococcus spp. 

(3 to 19 %) and Enterobacteriaceae (5 to 39 %). Sub adult individuals showed a decrease 

in Micrococcus spp. (27 to 6 %) and Enterobacteriaceae (22 to 5 %) and increased 

Pseudomonas spp. (7 to 26 %). MOS is able to bind to certain gram-negative bacteria (like 

Aeromonas/Vibrio, Enterobacteriaceae and other gram-negative strains), inhibiting intestinal 

colonization, resulting in a removal mechanism of bacteria from the gut (Spring et al., 2000). 

This may explain the changes of viable populations observed in rainbow trout, with large 

reduction of gram-negative populations. 

 Another study on rainbow trout (Rodriguez-Estrada et al., 2009) assessed the effect of 

MOS on growth performance and immune response when added to a commercial diet 

without SBM, but the oil component was soybean based. After 12 weeks of feeding, fish fed 

with MOS recorded significantly higher (P<0.05) weight gain and SGR values. Also 

significantly higher hematocrit values were recorded when compared with the control, as 

well as phagocytic activity. A higher quantity of skin mucus was produced on fish fed MOS 

diet, indicated by a significantly higher mucus weight (skin mucus scrapped with a glass 

slide - 10cm line from the base of the operculum). A lower infection of Vibrio anguillarum 

was recorded by a lower presence of this pathogen on head kidney of fish fed MOS. 

Therefore, innate immune function was improved, suggesting that this supplement 

stimulates immune function on rainbow trout. Peterson et al. (2009) and Sang et al. (2009) 

also verified that MOS has an immune stimulant capacity, conferring protection against 

pathogens. It was suggested that MOS may stimulate the mannose receptors (Engering et 

al. 1997) and the mannose binding lectin by liver secretion, activating a cascade that 

stimulates the non-specific immune system (Janeway, 1993). 
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In Gilthead seabream, which is also a carnivorous Mediterranean species as the 

European seabass, feeding 0.2 and 0.4 % MOS for 14 days gave an increase in total 

leucocyte levels and reduction in the culturable microbial load without influencing relative 

abundance of identified bacterial species (Dimitroglou et al., 2010a). The effects of MOS in 

the microbiota was more pronounced in FM based diets than in SBM based diets (higher 

species diversity, richness and reduced similarity between FM groups). It was suggested 

that the contrasting effects of MOS on the gut microbiota of fish fed diets with or without the 

inclusion of SBM might be due to the large numbers of oligosaccharides present in SBM, 

which may themselves affect gut microbiota and mask or overpower the effects of MOS 

(Dimitroglou et al., 2010a). Actually, SBM oligosaccharides have been considered a 

potential prebiotic as they are fermented and metabolized by some species of bacteria and, 

therefore, can modulate the gut microbiota (Gibson et al., 2004). 

 Since our study included only commercial feeds with SBM included, it is important to 

consider a combined effect of soybean components with MOS, which are most likely to 

produce results that are hard to be compared with previous studies that looked into the 

effects of MOS added to exclusively FM based commercial feeds. Unfortunately, the 

mechanism by which MOS regulates intestinal microbiota has not been well described and 

the data that exist about bacterial populations in the fish gut are still limited and variable, 

therefore further studies in relation with this subject are required.  

According to these Results and Discussion, it is clear that there are advantages of 

supplementing the diet of European seabass with MOS when soybean derivatives are used 

as substitutes of fish derivatives, as shown by the mucosal tissue modulation in the anterior 

gut. This is particularly interesting in commercial diets with a fraction of SBM already 

included where soybean oil is used as a substitute for fish oil. This extra vegetable ingredient 

might be adding additional anti-nutritional factors that can disturb the gut microbiota and 

epithelial integrity. The addition of MOS will improve the innate immune system awareness 

by increasing mucous storage capacity of the mucous cells and their density in the gut 

epithelium, which will result on better response upon potentially pathogenic bacteria 

selected by the soybean based diets. 
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4.4. Mechanisms of mucosal modulation in the gut 
 

The opposite effects produced by MOS in the anterior gut when added to a fish oil 

based diet and a soybean oil based diet might be explained by different mechanisms of 

mucosal modulation. 

With the ‘Fish Oil + MOS’ diet, the number of mucous cells was increased and the 

mean cell size was decreased, which indicates a faster turnover of mucous cells in the 

tissue. The role of MOS on the modification of mucous cells dynamics might be explained 

by the following: the gut of D. labrax fed the control ‘Fish Oil’ diet has an assumed normal 

population of autochthonous bacteria. These indigenous bacteria are able to metabolize the 

mucus layer by enzyme degradation (Hoskins and Boulding, 1981; Corfield et al., 1992). 

The presence of allochthonous bacteria is also important in maintaining a good equilibrium 

of both bacteria populations. However, when MOS is added to the diet, it binds to non-enteric 

bacteria and aggregates them, which give a window of opportunity for the enteric bacteria 

to multiply. It was suggested that mucus secretion is typically enhanced in response to 

intestinal microbes (Mack et al., 1999; Deplancke and Gaskins, 2001), thus, increased 

presence of enteric bacteria stimulates the production of more mucus. Therefore, mucous 

cell turnover is also amplified to keep the faster rate of mucus production and more quantity 

of small cells will be available in the tissue. The increased mucus production also increases 

the flushing of the bundled bacteria which increases their elimination from the gut and 

decreases pathological infections. Thus, MOS stimulates mucus production indirectly by 

aggregating and inactivating allochthnous bacteria and allowing the autochthonous to 

multiply and chemically stimulate mucous production.  

The presence of MOS might also promote a better cohesion of the enterocytes 

(Campo et al., 2014), which characterizes a healthy and strong epithelial barrier, and the 

higher pressure that results from it can prevent the mucous cells to grow, reducing the mean 

cell area. In this case, as well, a recruitment of more mucous cells is necessary to keep the 

optimal mucous cell density and normal production of mucous. 

With the ‘Soybean Oil + MOS’ diet the effects were different, as we verified an 

increment of mucous cells sizes in the tissue. A possible explanation is related with an 

increased capacity of the cells to store mucus and, thus, become bigger. The changes in 

microbial population in the gut of fish fed MOS with soybean based diets are low relative to 

the controls, as opposed to the clear modulation from fish based diets (Dimitroglou et al., 



  
 

61 
 

2010a). A possible reason is that the soybean components of the diet (the protein and the 

oil) add additional molecules, as oligosaccharides, that are used as substrate by some 

bacteria and allow specific allochthonous species to develop in the gut. MOS might not be 

enough to eliminate those allochthonous bacteria since those vegetable elements are 

feeding them and letting them multiply and strive. Thus the potential effects of MOS are 

masked by the soya components which select for those bacteria. Therefore, another 

mechanism of protection is in motion. The bundled bacteria by MOS molecules are not being 

flushed out so fast since the mucous is not being released at a fast rate. So, those are more 

prone to be detected by dendritic cells which initiate a cascade of immunological changes 

against the presence of a high number of potentially pathogenic bacteria. The stimulation of 

the mucous cells storage capacity might be one of the results of that immune response, has 

a preventive measure for upcoming bacterial attacks. This allows a higher protection 

capacity in case the homeostasis is disrupted by increased pathogenic assaults due to a 

higher population of allochthnous bacteria. Thus, MOS stimulates innate immunity by 

presenting potentially pathogenic bacterial strains to the cellular immune agents, ultimately 

resulting in the increased storage capacity of the mucous cells as adaptive response. 
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5. Conclusion 
 

The modulation of the mucosal tissues by dietary supplementation with 

immunostimulants has been receiving a lot of attention and has become a very important 

method for controlling pathological infections in aquaculture production. It mitigates the need 

of vaccination, promotes a healthy gut environment and, therefore, reduces the need for 

therapeutic procedures for pathogen control. MOS is a prebiotic that has been tested in 

several fish species in the last decade with promising results. It has shown positive effects 

on improving growth parameters, enhancing gut morphological features and the innate 

immune system (Dimitroglou et al., 2008, 2009, 2010a, 2010b; Refstie et al., 2010; 

Rodriguez-Estrada et al., 2009; Salze et al., 2008; Staykov et al., 2007; Torrecillas et al., 

2007, 2011a, 2011b, 2013; Zhang et al., 2012).   

In the present study we tested the modulatory effects of MOS on gut and skin mucosa 

when added to commercial SBM+FM feed formulations with different oil components: fish 

based and soybean based. This was determined by mucous cell analysis in the target 

tissues using a novel stereology-based image analysis methodology (Pittman et al., 2011, 

2013). 

MOS appear to improve innate immunity in the anterior gut when added to commercial 

diets. However the mechanism of improvement is different when the oil component is fish 

based or soybean based. ‘Fish-Oil + MOS’ resulted on a faster turnover of mucous cells, 

evidenced by the higher number of smaller cells when compared with the control, which 

might also indicate an improved cohesion of the enterocytes. In the other hand, ‘Soybean + 

MOS’ resulted on a greater storage capacity of the mucous cells, demonstrated by the higher 

number of larger cells and consequent increased density of cells in the tissue. 

It is important in the future to analyze the microbe population from the gut of D. labrax 

for the different dietary treatments to see in what extent does the addition of an extra 

soybean component to the diet, in this case the oil, can modify the diversity and type of 

bacteria by selecting specific strains and how MOS is capable to modulate that effect in both 

regions of the gut. 

The use of prebiotics is important not only for improving aquaculture production by 

growing healthier fish, less prone to disease, but also for welfare purposes, which is an 

important subject to take into consideration when breeding live animals as it is also directly 

linked with the mentioned higher productivity. Good welfare is the result of the capacity to 
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maintain homeostasis and the normal biological functions of an individual which ultimately 

reflect on the absence of disease (Segner et al., 2012). This methodology is, therefore, a 

very useful and statistically robust way to assess mucosal health status and, thus, animal 

welfare. 

The observations of the present study give strength to the hypotheses that the ability 

to change the gut mucosal tissue’s cellular response is a key element to improve the 

resistance to pathological infection in the gut. It also points out that diet composition is 

fundamental in the ability of the tissue to exhibit that response, probably by providing crucial 

elements for mucosal cell turnover and increased mucous storage. Indeed, the present 

dissertation could recommend a minimum time of 8 weeks of MOS supplementation (4g.kg-

1) with both commercial diets, which seems to be necessary to result on a positive effect on 

enhanced health status, shown by an improvement of the gut innate immunity. Nevertheless, 

the raw materials used to produce the feeds are determinant in the potential effects of MOS 

in the gut. 

For future goals, it is important to further understand the mechanisms underlying the 

modes of action of MOS in fish gut, and the possible interconnection of the mucosal tissues. 

Furthermore, microbiota populations should be identified and mapped and microbiota 

modulation by MOS should also be addressed in future studies and respective mechanisms 

of selection. Relative to the methodology, more dietary experiments should be performed 

with different species and tissue types in order to optimize the method and create a quick 

and reliable technique to assess mucosal modulation through image analysis. 
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Figure A.1: Anterior gut samples from D. labrax stained with PAS-Alcian Blue. A) Sample from fish fed the 

‘Fish Oil + MOS’. B) Sample from fish fed the ‘Soybean Oil + MOS’ diet. It is possible to identify numerous 

smaller mucous cells on A) and bigger cells on B), which illustrates the results obtained on cell area 

measurements. 

Figure A.2: Posterior gut samples from D. labrax stained with PAS-Alcian Blue. A) Sample from fish fed the 
‘Fish Oil + MOS’. B) Sample from fish fed the ‘Soybean Oil + MOS’ diet. It is possible to identify slightly 
bigger cells and more numerous on A) and smaller and less cells on B), which illustrates the results. 
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Figure A.4: Consecutive tissue section of the same skin sample from Figure A.3, stained with 
Toluidine Blue 100%. 

A 

B 

Figure A.3: Tissue section from D. labrax skin stained with PAS-Alcian Blue. 
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