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SUMÁRIO 

O kiwi (Acíinidia deliciosa A. Chev.) tem sido considerado um fruto climatérico. No 

entanto, este fruto comporta-se atipicamente em resposta à aplicação externa de 

etileno a várias temperaturas. A incapacidade do kiwi para produzir etileno a baixas 

temperaturas, a produção de etileno à temperatura ambiente após um período de frio. 

o limite máximo de temperatura para produção de etileno e o seu comportamento pós- 

armazenamento não estão suficientemente estudados. Nesta tese investigaram-se 

algumas características particulares do percurso da biossíntese do etileno e o 

amadurecimento do kiwi induzidos por propileno a temperaturas de 10 a 450C, após 

armazenamento a baixas temperaturas, assim como após armazenamento em atmosfera 

controlada (CA) e nível de oxigénio ultra baixo (ULO). 

A temperatura de 20oC, o kiwi comportou-se como um fruto climatérico típico 

enquanto a 10oC o seu comportamento foi não-climalérico (capítulo 3). 

As razões pelas quais os frutos tratados com propileno não produziram etileno a 10oC 

foram a falta de transcrição dos genes da 1-aminociclopropano-1-carboxilase sintase 

(ACC sintase) induzidos por propileno e a possível modificação da 1- 

aminociclopropano-1-carboxilase oxidase (ACC oxidase) pós-lranscrição (capítulo 4). 

A temperatura ambiente, o kiwi apresentou autocatálise de etileno e aumento da taxa 

respiratória acompanhados pelo amadurecimento simultâneo do fruto em 

aproximadamente 19 dias após a colheita. O kiwi respondeu à aplicação de propileno a 

20-34oC antecipando o amadurecimento e a respiração climatérica, enquanto a 

autocatálise de etileno ocorreu apenas no final do processo de maturação (capítulo 4 e 

5). A principal razão para a produção tardia de etileno foi o atraso na indução da 

actividade da ACC sintase. No entanto, o período de tempo necessário para o início da 

autocatálise de etileno foi menor nas temperaturas mais elevadas. 

Kiwis expostos a concentrações de 130pl/l de propileno apresentaram uma produção 

reduzida de etileno a 380C e quase nula a 40oC (capítulo 5). A ACC oxidase foi a 

primeira enzima a ser afectada a altas temperaturas seguindo-se a ACC sintase. 
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Sumário 

As temperaturas baixas atrasaram o amadurecimento, enquanto que as temperaturas 

elevadas o bloquearam ou causaram amadurecimento anormal. A respiração do kiwi 

aumentou com a temperatura até 450C. A esta temperatura dcu-se a decomposição dos 

tecidos e por conseguinte a produção de CO2 desceu para níveis basais (capítulo 5). 

Cinco dias de exposição a baixas temperaturas não foram suficientes para induzir a 

autocatálise de etileno após re-aquecimento. Kiwis expostos a temperaturas de 0 a 

150C durante 12 dias começaram a produzir etileno imediatamente após re- 

aquecimento a 20oC, com um aumento simultâneo das actividades da ACC sinlasc e da 

ACC oxidase (Capítulo 6). A produção de etileno foi acompanhada pelo aumento da 

respiração e amadurecimento. Verificou-se um aumento na insaturação dos ácidos 

gordos e na permeabilidade da membrana durante a exposição a baixas temperaturas. 

No entanto, não foi encontrada nenhuma correlação evidente entre estes aumentos e a 

produção de etileno ou o amadurecimento. 

A CA e ULO prolongaram o periodo de armazenamento do kiwi em relação ao 

armazenamento convencional (CS) cm atmosfera normal a 0 C (capítulo 7). A CA 

(2%02+5%C02) e ULO (1%02+1%C02) foram os mais eficientes a atrasar a perda de 

dureza dos frutos. Kiwis de CS foram os que amadureceram mais rapidamente e os 

frutos do tratamento ULO (0,7%02+0,7%C02) acumularam níveis significativos de 

etanol e acelaldeído. Os kiwis não produziram etileno durante 180 dias de 

armazenamento a 0oC em nenhum dos tratamentos. Num armazenamento prolongado 

de 60 dias a 0oC, a actividade da ACC sintase foi induzida e verificou-se acumulação 

do ácido 1-aminociclopropano-l-carboxilico (ACC). A actividade da ACC sintase 

após 60 dias de armazenamento a 0oC deveu-se, provavelmente, à activação dos genes 

da ACC sintase induzidos pelas baixas temperaturas. No entanto, não se observou 

actividade da ACC oxidase, sendo esta a principal razão para a não produção de 

etileno durante o armazenamento. Após o reaquecimento dos frutos depois de 60, 120 

e 180 dias de armazenamento a 0oC, só os kiwis de CS e CA produziram etileno. 

Porém, a capacidade do kiwi para produzir etileno moslrou-se progressivamente mais 

baixa devido ao decréscimo gradual das actividades da ACC sintase e da ACC oxidase. 
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 Sumário 

Frutos de ULO perderam a sua capacidade para produzir etileno, mesmo quando 

tratados com propileno à temperatura ambiente, devido sobretudo à reduzida 

actividade da ACC oxidase. 
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ABSTRACT 

Kiwifruit (Acíinidia deliciosa A. Chcv.) is considcrcd a climactcric fruit. However, it 

bchaves atypically in response to externai ethylene application at different 

temperaturcs. The lack of ability of the kiwifruit to produce ethylene at low 

temperatures, its chilling requirements and maximum temperalure limil for ethylene 

production and its behaviour post-storagc are poorly understood. In this thesis were 

studied some particular features of the ethylene biosynthesis pathway and ripening of 

kiwifruit induced by propylene at temperatures from 10 to 450C, during shelf-life after 

chilling, as well as after storage in controlled atmosphere (CA) and ultra low oxygen 

(ULO) conditions. 

At temperaturcs of 20oC kiwifruit behaved as a typical climacteric fruit, while at 10oC 

it behaved as a non-climacteric fruit (chapter 3). 

The main reasons for the inhibition of the propylcne-induced autocatalytic ethylene 

production in kiwifruit at 10oC were primarily the suppression of the propylene- 

induced ACC synthase gene expression and the possiblc post-transcriptional 

modifícation of ACC oxidase (chapter 4). 

Kiwifruit at room temperature showed simultancous autocatalysis of ethylene, 

climacteric respiration rise and ripening at about 19 days after harvest (chapter 3). 

Kiwifruit senscd propylene at 20-34oC by advancing the onset ol ripening and 

respiration, while the ethylene burst occurred late in the ripening process (chapter 4 

and 5). The main reason for the late ethylene production was the tardy increasc of 

ACC synthase activity. However, the lag period for ethylene production was decreased 

wilh temperature increasc. 

Propylcnc-trcatcd kiwifruit had a reduccd ethylene production at 380C and almost null 

at 40oC (chapter 5). The I-aminocyclopropane-l-carboxylate oxidase (ACC oxidase) 

was the ílrsl lo be affected at high temperatures followed by ACC synthase. 

Low temperaturcs slowcd down ripening, while high stress temperatures blocked or 

caused abnormal ripening. Fruit respiration was increased with temperalure up to 
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Abstrací 

450C. At this temperaturc thcrc was irrcvcrsiblc breakdown of thc tissues and 

consequently respiration came to basal leveis (chapter 5). 

Five days storagc of kiwiífuit at low temperaturc wcrc not cnough to inducc 

autocatalytic ethylene production and ripening upon transference to 20oC. Kiwiífuit 

exposcd to tempcratures from 0 to 150C for 12 days startcd to producc ethylene 

immediately upon rewarming lo 20oC, with concomitant increase in ACC synthase and 

ACC oxidase activities (Chapter 6). Ethylene production was accompanied by the 

increase in respiration and ripening. There was an increase in fatty acid unsaturation 

and membrane permeability during cold treatment, but we found no clear correlation 

bctween them and ethylene production or ripening. 

The CA and ULO increascd storagc life in rclation to convcntional storagc (CS) in air 

at 0oC. The CA (2%02+5%C02) and ULO (1%02+1%C02) were the most effective in 

keeping ffuit firmness for longer time. The CS ífuit ripened faster and thc ULO 

(0.7%02+0.7%C02) accumulated significant leveis of elhanol and acetaldehyde. 

Kiwiífuit did not producc ethylene during storagc up to 180 days at 0oC in any 

treatment (chapter 7). Prolonged storage of 60 days at 0oC induced ACC synthase 

activity and 1-aminocyclopropanc-l-carboxylic acid (ACC) accumulation, but not 

ACC oxidase activity which was the main reason for the lack of ethylene production 

during storage. The increase in ACC synthase activity was probably due to the 

activation of the chilling-induced ACC synthase genes. Upon rewarming of the fruil 

after 60, 120 and 180 days storage, only CS and CA ífuit produccd ethylene with no 

lag period. However, the capacity of kiwiífuit to produce ethylene was progressively 

lower due to gradually lower ACC synthase and ACC oxidase activities. Thc ULO 

treated ífuit lost the abilily to produce ethylene upon rewarming, even when trealed 

with propylene, mostly due to the reduced ACC oxidase activity. 

X 



ACKNOWLEDGEMENTS 

Firstly, I wish to express my gratitude to thc Aristotle University of Thessaloniki, 

Laboratory of Pomology, where 1 found lhe facilities lo complete most of my PhD 

project. 

I very much would like to thank: 

Professor Evangellos Sfakiotakis, my supervisor, for accepting me in his Laboratory, 

as a PhD student, for his advises, facilities and continuous support in the completion of 

this study. 

Dr. Angellos Kanellis for providing me the facilities and his advises at thc Institute of 

Molecular Biology & Biolechnology in Heraklion. 

Professor Carlos Portas, my co-supcrvisor, and Professor Cristina Oliveira, ífom the 

Instituto Superior de Agronomia in Lisbon, for their advises and encouragement. 

Professor Eugénio Faria and Professor José Monteiro for thc rcading of thc 

manuscript. 

Irene Pateraki, Maite and Dr. Phillipos Ververidis for their hclp at the Institute of 

Molecular Biology & Biolechnology in Heraklion. 

Professors Eva and Nikos Tzanetakis for laboratory facilities. 

My eolleagues Tockli and Nanos for their hclp and company at the Laboratory of 

Pomology. 

The Junta Nacional de Investigação Científica e Tecnológica (JNICT) in Portugal and 

the National Greek Foundation for Scholarships (IKY) for sponsoring my studies and 

thc University of Algarve in Portugal for having rclcased me ífom my acadcmic duties 

to carry out these studies. 

My husband Thomas and my son Georgakis for their continuous support and 

encouragement. 

XI 



To my family 

XII 



ABBREV1ATIONS 

ACC 

ACC synthase 

ACC oxidasc 

AEC 

AOA 

AVG 

CA 

CS 

CTAB 

dATP 

dCTP 

EDTA 

ETR1 

HPLC 

KWACC1 

KWACC2 

IAA 

MACC 

MT A 

PLP 

pMELl 

PMSF 

pTOM13 

SAM 

SDS 

SDS-PAGE 

1 -aminocyclopropanc-1 -carboxylic acid 

1 -aminocyclopropane-l -carboxylate synthase 

1 -aminocyclopropanc-1 -carboxylatc oxidasc 

1 -amino-2-ethylcyclopropane-1 -carboxilic acid 

aminooxyacctic acid 

aminoethoxyvinilglycine 

controlled atmosphcre 

conventional storage 

cctyltrimcthylammonium bromide 

2,-deoxy-adenosine-5,-triphosphate 

2' -dcoxy-cytid ine-5' -t ripho sphatc 

ethylenediaminetetraacelic acid 

Arabidopsis thaliana gene essential for ethylene signaling 

high performance liquid chromatography 

31 Ibp ACC synthase cDNA ífom cthylcnc treated kiwiífuit 

mesocarp 

305bp ACC synthase cDNA from woundcd kiwiífuit 

mesocarp 

indolc-acetic acid 

l-(malonylamino) cyclopropane-1-carboxylic acid 

5' - met hy Ithio adeno s ine 

pyridoxal S^phosphate 

cDNA clone of ACC oxidasc ífom a climacteric mclon 

phenylmelhylsulphonyl fluoride 

cDNA clone of ACC oxidasc from ripe tomato 

S-adenosil-L-methionine 

sodium dodccyl sulfate 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

XIII 



Abbreviations 

SSC soluble solids content 

TNS Tri-isopropyl Naphthalene Sulphonic acid - sodium salt 

ULO ultra low oxygen 

XIV 



CHAPTER 1. INTRODUCTION 

The kiwiíruil plant {Ac tini dia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson var. 

deliciosa 'Hayward') is one of the most important commercially (Ferguson, 1990). 

The success of the kiwifruit as an export crop depends on the ability to store the fruit 

for extended pcriods and lo transport them over long distanccs. Much of lhe research 

done until now is related to the development of procedures for harvesting, handling 

and storing the fruit (Given, 1993). Because much of the investigation on kiwifruit 

ripening has been driven from a commercial perspective (Given, 1993), there is a lack 

in the physiology and biochemistry oí fruit ripening. 

The simple gas ethylene is an endogenous regulator of a variety of stress responses and 

developmental processes (Abeles et al., 1992). lucker (1993) reported thal the 

conversion of methionine to S-adenosil-L-methioninc (SAM), which is used in othcr 

biochemical pathways, is considered to be conslant throughout the development and 

ripening of the fruit. Thus, the two key control enzymes for the biosynthesis of 

ethylene are 1-aminocyclopropane-l-carboxylate synthase (ACC synthasc) and 1- 

aminocyclopropane-1-carboxylate oxidase (ACC oxidase). Hoffman and Yang (1980) 

found low leveis of 1-aminocyclopropane-l-carboxylic acid (ACC) in green fruils and 

its rapid accumulation coinciding with ethylene biosynthesis. This implies that ACC 

synthase may be a key enzyme in the control of ethylene synthcsis (Tucker, 1993). 

Though ACC oxidase is expressed constilutively in most tissues, its synlhesis incrcases 

during ripening in some fruit (Picton et al., 1993). 

Kiwifruit was believed to be a climacteric fruit whose ripening was mediated by 

ethylene (McDonald and Harman, 1982; Arpaia et al, 1994a). Ethylene production 

rate by mature kiwifruit at harvest is very low (0.1 to 1.0 pl/kg/h) and increases 

markedly with ripening to 50 to 100 pl/kg/h aíler 17±7 days (Arpaia et al, 1994a). 

However, Yano and Hasegawa (1993a) reported that the ripening related ethylene 

production in kiwifruit rarely occurrcd after harvest without the hclp of exogenous 

ethylene. The application of exogenous ethylene enhanced ripening of kiwifruit but, 

contrarily to most climacteric fruit, the bursl in ethylene production occurred very late 

in the ripening process (Stavroulakis and Sfakiotakis, 1993; Wittaker et al, 1997), 

suggesting that ripening and ethylene biosynthesis in kiwifruit may be regulaled by two 
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Chapter 1. Introduction 

independent mechanisms (Stavroulakis and Sfakiotakis, 1993). Stavroulakis and 

Sfakiotakis (1993) treated kiwifruil with 130pl/l propylene, which is equivalent to lp.1/1 

ethylene (Burg and Burg, 1967), at temperaturcs from 0 lo 350C and found that below 

a criticai range temperature of 11 to 14.80C ethylene biosynthesis of the propylene- 

treated kiwifruit did not occur. Above the criticai range, autocatalysis of ethylene 

proceedcd normally. The same authors reported that kiwifruit is an unique climacteric 

fruit which at low temperature lacks lhe ability for autocatalysis of ethylene 

production, being lhe ACC availability the limiting factor rather than ACC oxidase 

activity. 

Ethylene plays a crucial role in ripening of kiwifruit (Arpaia et ai., 1994a), and the 

elucidation of the controlling factors in ethylene biosynthesis is important in prolonging 

the storage life and keeping the fruit quality during the handling operations. Many 

factors can initiate autocatalysis of ethylene production in the harvested fruit and the 

control of this factors can be of important significance in prolonging the storage life 

and keeping the quality of the fruit. 

Although much effort is devoted to avoid ethylene exposure of kiwifruit in prolonged 

storage, ethylene treatment may bc desirable during harvest and early storage to 

accelerate kiwifruit ripening in order lo capitalize on marketing opportunities (Arpaia 

et ai, 1994b). 

Chilling stress can advance the onset of ripening and ethylene production in kiwifruit 

after rewarming by stimulating the formation of ACC as for other fruit (Hyodo and 

Fukasawa, 1985). Yang and Iloffrnan (1984) suggested that chilling treatment 

unmasked or stimulated production of mRNA coding for ACC synthase, but 

translation did not occur until the tissue was transferred to warm temperatures. 

Storage of kiwifruit in controlled atmosphere (CA) of 2%02+5%C02 is known to 

extend storage life and the fruit ripe normally during shelf-life (Arpaia et al., 1994b). 

Thomai and Sfakiotakis (1997) found that ultra low oxygen (ULO) stored kiwifruit 

(02<1%) did not ripe normally during shelf-life. 
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Chapter 1. Introduction 

The mechanisms of initiation, regulation and the co-ordination oí the diverse 

biochemical changes during ripening are not yet well understood. However, they must 

rely on an interplay between the regulation of gene expression and enzyme activity 

(Tucker, 1993). The atypical bchaviour of kiwifruit in relation to ethylene sensitivity 

and ethylene production and the laek of ability to produce ethylene al low temperatures 

makes it a good system for analyzing the role of ethylene in ífuit ripening. 

The objectives of this thesis are to examine and describe the effeets of temperature and 

ambient gas composition on 'Hayward' kiwifruit ethylene biosynthesis palhway 

induced or not by propylene, the pattern oí CO2 production and ífuit ripening, after 

harvest. Those are important points for the manipulation of harvesting time, storage 

capacily and induction of ripening. The aim is to keep high quality produets al low cost 

and to bc able lo put them in the market at the appropriate time, so that it is more 

profitable for producers and consumers. 

Chapter 2 develops the literature background pertinent to the thesis problem. 

The fírst manuscript (Chapter 3) describes the thermoregulation of autocatalytic 

ethylene production and respiration climacteric induced by propylene in ripening 

'Hayward' kiwifruit. This chapter gives evidence for the non-climacteric behaviour of 

kiwifruit al low temperatures. 

The second manuscript (chapter 4) depiets lhe effect ot low temperature on the 

propyIene-induced autocatalytic ethylene biosynthesis, respiration and ripening of 

'Hayward' kiwifruit. In this chapter it is elucidated why propylene treated kiwifruit 

does not produce ethylene al low temperatures. 

The third manuscript (chapter 5) characterizes the eífect of high temperature stress on 

ethylene biosynthesis, respiration and ripening oí 'Hayward' kiwifruit. In this chapter it 

is defincd lhe upper temperature limits for ethylene and CO2 production and ripening. 

The fourth manuscript (chapter 6) investigales the effect of chilling on the induction of 

ethylene biosynthesis and associated changes of respiration, ripening paramelers and 

fatty acids composition of 'Hayward' kiwifruit. This chapter clarifies the chilling 

requirements for ethylene production in terms of temperature range and time required. 
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Chapter 1. Introduction 

The fífth manuscript (chapter 7) researches the ethylene biosynthesis and ripening 

behaviour of 'Hayward' kiwifruit subjected to conventional storage (CS) in air at 0oC, 

CA and ULO conditions. In this chapter it is elucidatcd the ethylene production pattern 

and ripening behaviour of kiwifruit during storage in the referred conditions, and shelf- 

life post-storage. 

The chapter 8 makes a general discussion where the different chapters are related to 

grant some more information about the post-harvest behaviour of kiwifruit and ways to 

manipulate it according to our objectives of faster ripening or extended storage life. 

Finally, the chapter 9 outlines the most important conclusions of the present thesis. 
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CHAPTER 2. LITERATURE REVIEW 

1. The pathway of ethylene biosynthesis 

The plant hormone ethylene plays an important role in the ripening proccss ol 

climacteric fruits and the post-harvest life of many horticultural products (Pech et al., 

1994). Ethylene is produced by plant tissues in amounls ranging from almost none up 

to 500 nl/g/h and is biologically active in trace amounts (as little as 10-100 nl/1 oí air) 

(Burg, 1962). Ethylene production is induced during several developmental stages, 

including fruit ripening, seed germination, leaí and flower senescence and abscission. Il 

is also induced by externai factors, such as wounding, anaerobiosis, virai infection, 

auxin treatment, chilling injury, drought and Cd and Li ions (Yang and Hoffinan, 

1984). 

Ethylene is formed from methionine via SAM and lhe cyclic, nonprotein amino acid 

ACC. The enzymes catalysing the individual steps of this pathway are SAM synthetase, 

ACC synthase and ACC oxidase (Kende, 1993). 

SAM synthetase which catalyses the conversion of methionine into SAM, has been 

extensively studied (Chou et al., 1977). Inasmuch as SAM is constantly synlhesised 

and also utilised by some other reactions, such as mcthylation and poliamine synthesis, 

additional utilisation of SAM for ACC synthesis may not significantly alter lhe steady 

state levei of SAM. As long as SAM is maintained al a normal levei even when 

ethylene synthesis is active, it is unlike that SAM synthetase bccomes a rate-limiting 

enzyme in ethylene biosynthesis (Yang and Hoffman, 1984). The ethylene pathway is 

designed to allow high rales of ethylene production withoul high intracellular 

concentrations of methionine. This is achieved by recycling S^methylthioadenosine 

(MTA), produced as well as ACC from SAM in lhe reaction catalysed by ACC 

synthase, to methionine (Theologis, 1992). 

Besides being converted to ethylene, ACC is also melabolised to 1-(malonylamino) 

cyclopropane-1 -carboxylic acid (MACC). Malonylation of ACC may conlribute to the 

regulation of ACC leveis and the rale of ethylene formalion (Kende, 1993). The final 
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step of ethylene biosynthcsis (conversion of ACC to ethylene, HCN and CO2) is 

catalysed by ACC oxidasc (Theologis, 1992). 

1.1. 1-aminocyclopropane-l-carboxylate synthase (ACC synthasc) 

ACC synthase is a pyridoxal enzyme which catalyses the conversion of SAM to ACC 

(Yang and Hoffman, 1984). ACC synthase activity was first identifíed in homogenates 

of ripening tomato pericarp tissue by Boller et al. (1979) who found that ACC 

synthase was soluble, had a Km of 13pM for SAM and its activity was inhibited by 

aminoethoxyvinilglycine (AVG) with a Km of 0.2pM, and optimum pH 8.5. Yu et al. 

(1979) confirmed these findings and dctermined the pyridoxal phosphate rcquirement 

oí ACC synthase and showed that the enzymatic reaction yielded, besides ACC, MTA. 

ACC synthase activity was thereafter shown in mung been hypocotyls (Yoshii et al., 

1980), been leaf tissue (Fuhrer, 1982), cantaloupc ffuit (Hofíman and Yang, 1982), 

cucumber skin (Wang and Adams, 1982), orange peei (Riov and Yang, 1982a), winter 

squash mesocarp (Hyodo et al., 1983) and apples (Bufler. 1984; Mansour et al., 1986; 

Yip et al., 1991). Its activity was shown to limit ethylene synthesis in many instances 

and to be enhanced by factors that promote ethylene formation, e.g. by indole-acetic 

acid (IAA) and by stress such as wounding (Yang and Hoffman. 1984). 

Bufler and Bangerth (1983) reported that ACC synthase could be exlracted ífom apple 

fruits in the presence of the detergent Triton X-100. Yip et al. (1991) demonstrated 

that ACC synthase in homogenates of apples is associalcd with a particulate ífaction. 

Because the enzyme activity was found in ali organclle fractions, it is likely that the 

binding of the enzyme to particulate cell components is artificial and that occurs during 

cell disruption (Kende, 1993). 

ACC synthase is a key regulatory enzyme in the pathway of ethylene biosynthcsis 

(Yang and Hoffman. 1984). Many internai factors that induce ethylene production in 

plant tissues were found to exert their efifect by inducing the de novo synthesis of ACC 

synthase. These factors include flooding (Bradford and Yang, 1980), flower 

senescence (Bufler et al., 1980; Suttle and Kende, 1980), auxin (Yu et al., 1980; 

Yoshii and Imaseki, 1981; Yoshii and Imaseki, 1982), physical wounding (Boller and 

Kende, 1980; Yu and Yang, 1980; Hyodo and Nishino, 1981; Kende and Boller 1981; 
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Konze and Kwiatkowski, 1981; Hoffinan and Yang, 1982; Riov and Yang, 1982b), 

chemical wounding (Hogsett et ak, 1981; Fuhrcr, 1982), fruit ripening (HoíTman and 

Yang, 1980; Kende and Boller, 1981), chilling (Wang and Adams, 1980; Field, 1981b; 

Wang and Adams. 1982), wilting (Apelbaum and Yang, 1981), and ethylene (Bufler, 

1984). 

The progress in the purifícation of ACC synthase has been slow because of its low 

abundance and lability (Yang and Hoffinan, 1984; Kende, 1993). Blecker et al. (1986) 

estimated that the levei of ACC synthase in ripening tomato pericarp tissue 

was<0.0001% of the total soluble protein. This low levei can bc boosted about 10-fold 

by wounding the tissue (Kende, 1989). 

ACC synthase activity can be inhibited by AVG (Adams and Yang, 1979) and 

aminooxyacetic acid (AOA) (Yu et al., 1979) known inhibitors oí pyridoxal enzymes 

(Rando, 1974). ACC synthase can be also inactivated by its own substrate SAM. 

Boller et al. (1979) found progressive inhibition of ACC synthase at SAM 

concentrations above 50 pM. These observations were confirmed by Satoh and Esashi 

(1986). Furthermore, Satoh and Yang (1988; 1989a; 1989b) discovered that substrate 

inactivation of ACC synthase was accompanied by covalent attachment of at least a 

ífagment of SAM, probably 2-aminobulyric acid, to the active site of the enzyme. Yip 

et al. (1990) reported that the same active-site lysinc binds the pyridoxal S^phosphate 

(PLP) and covalently links to the 2-aminobutyrate portion of SAM during inactivation. 

Most efforts have been concentrated on characterising and purifying ACC synthase 

from tomato pericarp tissue. Conventional and high performance liquid 

chromatography (HPLC) gel filtration indicated that ACC synthase in homogenates of 

wounded pericarp tissue had a molecular mass ot 55 to 57 kDa (Yang, 1980; Acaster 

and Kende, 1983; Bleecker et al., 1986). The enzyme was purifíed >6500-fold by a 

series of chromatographic methods and identifíed as a protein oí 50 kDa by two- 

dimensional gel elcclrophoresis (Bleecker et al., 1986). lhe calculaled speciíic activity 

of purifíed ACC synthase was 4x105 units per mg protein (one unit = one nmol ACC 

produced per hour at 30oC). 
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A partially purified ACC synthase was used to induce antibody production in mice, and 

monoclonal antibodies were obtained írom murinc hybridoma cell lines (Bleecker et al., 

1986). Immunopurified protein was shown to have a molecular mass of 50 kDa by 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (Bleecker et 

al., 1986; Bleecker et al., 1988). Immunoassays and radioactive labelling showed that 

ACC synthase was de novo synthesised in wound-induced tissue (Bleecker et al., 1986; 

Bleecker et al., 1988). Van Der Staeten et al. (1989) also purified ACC synthase 5000- 

fold ífom wound-induced pericarp tissue of ripening tomatoes and determined by two- 

dimensional gel electrophoresis and substrate labelling that the molecular mass of the 

enzyme was about 45 kDa. 

Purification of ACC synthase in wound-induced mesocarp of winter squash led to the 

isolation of a 50 kDa protein (Nakajima and Imaseki. 1986; Nakajima et al., 1988). In 

mung bean hypocotyls, it was found a 65 kDa protein by SDS-PAGE (Tsai et al., 

1988) and immunoaffinity purification gave a protein of 48 kDa in apple fruit (Dong et 

al., 1991b; Yip et al., 1991). 

Antibodies against ACC synthase from wound-induced mesocarp tissue of winter 

squash recognised ACC synthase ífom wounded tomato pericarp tissue and wounded 

winter squash hypocotils but not ífom auxin-treated winter squash, tomato or mung 

bean hypocotils (Nakagawa et al., 1988). This result indicate that there are two 

isoforms of ACC synthase, one wound-induced and one auxin-induced and that the 

two fornis are sufficiently diíferent to be distinguished immunologically (Kende, 1993). 

ACC synthase requires pyridoxal phosphate, and most such enzymes have a lysine 

residue in their active site (Theologis, 1992). Lysine-278 of a tomato izoenzyme. 

which is conserved in ali ACC synthases so far, has been shown to be the site of 

pyridoxal phosphate attachment (Yip et al., 1990). The active-site of ACC synthase 

was found ífom apple or from ripe and wounded tomato fruit. lo have a peptide 

sequence of Ser-Leu-Ser-Lys-Asp-Met-Gly-Leu-Pro-Phe-Arg (Yip et al., 1990). 

Purification of ACC synthase by gel electrophoresis or imunoprecipitation in tomato 

(Bleeker et al., 1986; 1988), winter squash (Nakajima and Imaseki, 1986; Nakajima et 

al., 1988), zucchini (Sato and Theologis, 1989; Saio et al., 1991) and apples (Dong et 

al., 1991b) showed a molecular weight of 50-60kDa. 
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Increases in ACC synthase activity during wounding (Sato and Theologis, 1989; 

Nakajima et al, 1990; Huang et ai, 1991; Olson et al., 1991; Yip et al., 1992), auxin 

and cytokinin (Saio and Theologis, 1989; Van Der Straelen et al., 1990; Huang et al., 

1991; Nakagawa et al., 1991; Kim et al., 1992; Yip et al., 1992), fruit ripening (Van 

Der Straeten et al., 1990; Dong et al., 1991a; Olson et al., 1991; Rottmann et al, 

1991; Yip et al., 1992), flower fading (Rottmann et al, 1991; Park et al, 1992; 

Woodson et al, 1992) and ethylene (Rottmann et al, 1991; Woodson et al, 1992) 

appear to bc based on increased leveis of ACC synthase mRNA as shown by RNA 

(northem) blotting. 

A cDNA encoding ACC synthase has been cloned írom zucchini using 

immunochemical approaches, and its authenticily has been confirmcd by expression in 

E. coli and yeast (Sato and Theologis, 1989). Thereafter, cDNA clones encoding ACC 

synthase have been reported from winter squash (Nakajima et al, 1990; Nakagawa et 

al, 1991), tomato (Van Der Straeten et al, 1990; Olson et al, 1991; Rottmann et al, 

1991; Yip et al, 1992; Mattoo et al. 1993; Yip, 1993), zucchini (Huang et al, 1991; 

Sato et al, 1991), apple (Dong et al, 1991a; Kim et al, 1992), carnation (Park et al, 

1992; Henskens et al, 1994). Arahidopsis (Van Der Staten et al, 1992; Rodrigues- 

Pousada et al, 1993) and mung bean (Botella et al, 1992; kim et al, 1992; Botella et 

al, 1995). 

There is an emcrging picturc lhat ACC synthase is encodcd by a highly divergem 

multigene family differentially expresscd during ripening, wounding, hormonal and 

environmental stimuli (Nakajima et al, 1990; Van Der Staten et al, 1990; Huang ct 

al, 1991; Olson et al, 1991; Rottmanet al, 1991; Sato et al, 1991; Liang et al, 1992; 

Yip et al, 1992; Botella et al, 1995). 

In kiwiíruit, two cDNAs for ACC synthase wcrc cloncd and thc expression of these 

genes was studied (Ikoma et al, 1995). lhe two cDNAs werc named KWACC1 

(31 Ibp, from ethylene trcaled kiwifruit) and KWACC2 (305bp, from wounded 

mesocarp). The KWACC2 was transcribed only in wounded tissue, while KWACC1 

was transcribed in ethylene-treated ripe fruit and wounded tissue. Both cDNAs showed 

about 50 to 80% amino acid scquence homology to the cDNA oí various origins 

(Ikoma et al, 1995). 
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Differential expression of two ACC synthase genes in ripening and wound-induced 

tomato pericarp tissue have been reported (Olson et al., 1991). Similarly, tomato fruit, 

cell cultures and hypocolyls express four ACC synthase genes that are differentially 

rcgulated during ripening. by wounding and by auxin (Yip et al., 1992). Expression of 

two ACC synthase genes in winter squash is also differentially regulated by auxin and 

wounding (Nakagawa et al., 1991). Two ACC synthase cDNA ífagments from applc 

and mung been hypocotyls showcd by northern blot analyses that their expression is 

regulated by auxin treatment (Kim et al., 1992). These authors reported that auxin 

induces ethylene production transcriptionally by increasing the ACC synthase 

transcripts and that ripening and auxin regulated ACC synthases are encoded by 

diífcrent genes. 

RNA (northern) blotting indicates that the size of the mRNA encoding diíferent forms 

of ACC synthase varies from 1.8-2.1kb (Kende, 1993). The highest levei of homology 

between diíferent ACC synthases is in the interior portion of the polypeptide, while the 

carboxyl termini is more divergem. There are seven regions of high amino acid 

sequence homology among ACC synthases most notable around the active site of the 

enzyme (Kende, 1993). Ali known ACC synthases contain, at comparable positions, 11 

of 12 invariant amino acids that are involved in the binding of pyridoxal phosphate and 

substrate in aminotransferases (Huang et al., 1991; Roitman et al., 1991). The amino 

acid sequence identities of the various ACC synthases vary from 48%-97% (Kende, 

1993). Il appears that the polymorphism of ACC synthases arose prior to the 

divergence of monocotyledonous and dicotyledonous plants (Theologis, 1992). 

ACC synthase may also be regulated at the pos-transcriptional levei (Chappell et al., 

1984; Felix et al., 1991). They found that fungai elicitors added to cultured parsley and 

tomato cells. respeclively, induced ethylene synthesis and ACC synthase activity in the 

presence of lhe RNA synthesis inhibitors actinomicin D and cordicepin. 

1.2. 1-aminocyclopropane-l-carboxylic acid (ACC) 

Adams and Yang (1979) obscrved that methionine was efficiently converled to 

ethylene in air while in nitrogen was converted to MTA and ACC. In the presence of 
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air ACC was rapidly converted to ethylene, indicating thal ACC is an intermediate and 

that the conversion of ACC to ethylene is oxygen dependent. 

Lizada and Yang (1979) developed an assay for ACC based on the conversion of ACC 

to ethylene with NaOCl (a commercial bleach solution) in the presence of Hg2 . Boller 

et al. (1979) also reported a chemical assay of ACC based on the libcration of ethylene 

in a two-step reaction with pyridoxal phosphate, MnCb and H2O2. 

1.3. l-aminocyclopropane-l-carboxylate oxidase (ACC oxidase) 

ACC oxidase previously named ethylene-forming enzyme, the enzyme that catalyses 

the conversion of ACC to ethylene is readily assayed in vivo by supplying tissues with 

its substract (ACC), but its study in vitro was delayed because its activity completely 

disappeared when tissues were homogenised (Yang and Hoffman. 1984; Kende, 1989). 

ACC oxidase catalyses directly the oxidation of ACC yielding ethylene (Yang and 

Hofíman, 1984). The internai concentration of ACC which brings about half-maximal 

ethylene production rate in pea epicotyls was estimated to be 66nmol/g ífesh weight 

(McKeon and Yang, 1982). From the results obtaincd in vivo, it is clear thal the 

reaction is oxygen dependent (Adams and Yang, 1979). The concentration of oxygen 

which results in half-maximal ethylene production by apple ífuit (Burg, 1973) and 

flower tissue (Konze et al., 1980) was estimated to be about 0.2% and 1% (v/v) 

respcctively. 

It has been recognised that various lipophylic compounds which could modify 

membrane structure, greatly reduced the rate of ethylene synthesis in plant tissues 

(Odawara et al., 1977; Imaseki and Watanabe, 1978). These observations together 

with the loss of ACC oxidase activity alter homogenisation of tissues leaded to the 

suggestion that the enzyme required membrane integrity (Liebcrman, 1979). This 

suggestion was supported by the observation that avocado fruits undergo 

ultrastruclural changes in plasma membrane structure (Plalt-Aloia and 1 homson, 1981) 

and a loss in ability lo produce ethylene at posl-climacleric stages (Hoffman and Yang, 

1980), and the observation that there was a rapid decline in ethylene production 

accompanied by a marked increase in electrolyte leakage when bean leaf discs were 

incubated at high temperature (Field, 1981a). Apelbaun et al. (1981) showed that 
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TritonX-100 and osmotic shock inhibited ethylene production at the conversion of 

ACC to ethylene step. 

Guy and Kende (1984) found that vacuoles isolated írom pca leaves produced 80% of 

lhe ethylene evolved by protoplasts. The ACC oxidase activity of isolated vacuoles 

exhibited the same stereospecifícity as did the in vivo enzyme. Just as ACC oxidase 

activity of intact tissues was destroyed by homogenisation, so was the activity of the 

vacuolar enzyme by lysis of the vacuole (Guy and Kende, 1984; Mayne and Kende, 

1986). 

ACC oxidase activity has been observed in membrane vesicles in the juice squeezed 

ífom the pcricarp of ripe kiwiffuit (Mitchcll et al., 1988). The ACC oxidase activity of 

kiwiífuit membranes showed the characteristics of the enzyme in vivo in its 

slereoselectivity towards isomers of l-amino-2-ethylcyclopropane-l-carboxilic acid 

(AEC), its high affinity for ACC, its pattern of development during post-harvest 

ripening and its sensitivity towards inhibitors. However, only 0.5% of the in vivo 

activity could be recovered in vitro. The requirement for vesicle integrity of the 

kiwifruit enzyme resembles that present in vacuoles isolated ífom pea mesophyl 

protoplasts (Guy and Kende, 1984; Mayne and Kende, 1986). 

Furlher work using isolated vacuoles of Vicia faha provided evidence that ACC 

oxidase was associated with the inside face of the tonoplast and that the activity of this 

enzyme depcnded on membrane integrity, probably because of the requirement for a 

transmembrane ion gradient (Mayne and Kende, 1986). Later work showed that ACC 

oxidase activity in Vicia faha was independem of membrane potential, as neither 

dcpolarisation nor hyperpolarisation affected ethylene formation (Guy. 1990). 

Localisation of ACC oxidase in vacuoles derived ífom mesophyl protoplasts of 

Petunia hybrida was also reported by Erdmann et ai. (1989). These authors also 

showed that evacuolation of protoplasts eliminated ACC oxidase activity and that the 

re-formalion ofthe central vacuole restored it. Porter et al. (1986) found that isolation 

of leaf cells and protoplasts of Vicia faha led to a 95% loss of ACC oxidase activity 

compared with in vivo measurements. The same authors reported that vacuoles 

retained much of the ACC oxidase activity of the protoplasts. They conclude that in 
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addition to membrane integrity ACC oxidase also required tissue integrity. Bouzayen 

et al. (1990) studied the subcellular localisation of ACC oxidase and concluded that 

cells of some plants have an externai and internai site of ACC oxidase activity, while 

cells of other plants have only an internai site. The externai site was very sensitive to 

plasmolysis and appeared to bc associatcd with the plasma membrane. The internai site 

was not sensitive lo plasmolysis, and its localisation was not determincd. The above 

studies indicated that ACC oxidase activity was in some way dependcnl on membrane 

and tissue integrity, and that the tonoplast and plasma membrane were likely sites for 

the localisation of ACC oxidase (Kendc, 1993). 

On the basis of in vivo conversion of ACC to ethylcnc, ACC oxidase was judged lo be 

constitutive in mosl instances (Yang and Hoffman, 1984). Increases in ACC oxidase 

activity were obscrved in wounded cantaloup fruit tissue (Hoffman and Yang, 1982), 

citrus leaf discs (Riov and Yang, 1982b), tobacco leaf discs (Chalutz et al., 1984), 

preclimacteric tomato and cantaloupe fruits in response to applicd ethylene (Liu et al., 

1985) and avocado pericarp discs (Sitrit et al., 1986). Induction of ACC oxidase was 

also observed in tomato leaves infected with Phytophíhora infesíans (Spanu and 

Boller, 1989) and in cultured tomato cells trcalcd with an elicitor isolatcd from yeast 

extract (Bouzayen et al., 1991; Felix et al., 1991). On this basis, il was concluded that 

induction of ethylene biosynthesis is based, in many instances, on enhancement of ACC 

synthasc and ACC oxidase is often constitutive, al least at low levei of activity. 

However, lhe transcriplion and activity of ACC oxidase also increases in some plants 

in response to factors that induce ethylene production (Woodson et al., 1992; Kende, 

1993). 

ACC oxidase genes were identified bcfore the enzyme could be isolated. The cDNA 

clone of ACC oxidase pTOM13 had bccn isolatcd írom a ripe tomato fruit library and 

codcd for a prolein of 35 kDa (Slater cl al, 1985). Expression studies showcd that 

leveis of pTOM13-homologous RNA correlalcd positivcly with ethylene evolution in 

wounded leaves and ripening fruits (Holdsworth et al, 1987) and wounded and 

sencscing leaves (Davies and Grierson, 1989). Transgenic tomato plants transformed 

with the pTOM 13 antisence gene produced very low leveis of ethylene supporting lhe 

hypothesis that pTOM protein was involved in ethylene biosynthesis (Hamilton et al, 
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1990). The ultimate proof that pTOM13 encoded ACC oxidase was given by 

functional expression of pTOM13 cDNA in Saccharomyces cerevisiae (Hamilton et 

al., 1991) and Xenopus laevis oocytes (Spanu et al., 1991). 

Several cDNA clones encoding ACC oxidase have bcen isolated írom avocado 

(McGarvey et al., 1990), camation petals (Wang and Woodson, 1991), apple (Dong et 

al., 1992; Ross et al., 1992), Pseudomonas syringae (Fukuda et al., 1992), melon 

(Balague et al, 1993), kiwilruit (MacDiarmid and Gardner, 1993) and pea (Peck et al, 

1993). Ali of them showed a high levei of homology to pTOM13. 

It was found that the deduced amino acid sequence of pTOM13 exhibited similarity to 

that of ílavanone 3-hydroxylase (Hamilton et al., 1990). Based on this founding, 

Ververidis and Jonh (1991) extracted and assayed ACC oxidase activity in 

homogenates of melon ífuits under conditions that had bcen shown to preserve 

ílavanone 3-hydroxylase activity of Petunia hybrida petals. The ACC oxidase activity 

extracted anoxically and assayed in the presence of Fe2^ and ascorbate showed similar 

activity to that observed in vivo throughout the course of ripening. Similar ACC 

oxidase activity in vivo and in vitro was also reporled by Dilley et al. (1993). ACC 

oxidase activity in vitro has also been recovercd from apple (Fernandez-Maculet and 

Yang, 1992; Kuai and Dilley. 1992) and avocado fruiís (McGarvey and Chrisloffersen. 

1992). Ververidis (1991) reported that although ACC oxidase can be fully recovered 

in vitro as a soluble enzyme, the involvement of a cell membrane could still be 

considered as a possible site for ACC oxidase, if the enzyme was to be loosely 

associated with that membrane. rather than being an integral protein. 

Further partial purification and characterisation of ACC oxidase gave a molecular 

weight of 41kDa by gel filtration, an apparent Km of 60pM, and a pH optimum of 

aboul 7.5 (Smith et al., 1992). The region betwccn amino acids 113 lo 134 o f to mato 

ACC oxidase shows strong probability for the formation of an amphipatic a-helix 

containing multiple leucine residues on the hydrophobic site. The presence of this 

putative leucine zipper is conserved in ali known ACC oxidases and may cause binding 

of ACC oxidase to lhe particulate fraction in yeast and may also explain earlier results 

indicaling an associalion of ACC oxidase with plant membranes (Kende, 1993). 
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Accumulation of mRNA encoding ACC oxidase has bcen reported during carnation 

flowers senescence (Woodson et al., 1992), during ripening oí apple (Dilley et al., 

1993) and avocado (Dopico et al., 1993) and after wounding of melon (Balague et al., 

1993). 

2. Factors affecting ethylene biosynthesis 

A variety of environmental factors such as temperature, drought, salinity, ílooding, 

light, carbon dioxide and oxygen are known to influence ethylene production in plant 

tissues (Yang and Hofífnan, 1984). 

It has been recently reported that the plant senses ethylene by a protein kinase cascade 

and that ethylene sensors are encoded by multigene families with members that are 

differentially expressed during plant growth and development (Theologis, 1995). 

Mulations in the ETR1 gene of Arabidopsis íhaliana confer insensitivity to ethylene, 

which indicates a role for the gene product in ethylene signal transduction (Schaller 

and Bleecker, 1995). These authors found that the ETR1 protein acts as an ethylene 

receptor in Arabidopsis. 

2.1. Temperature 

2.1.1. Low temperature 

Low temperatures are generally applied for extending the storage life of fruit. Some 

chilling-sensitive species show marked reduction in ethylene production when they are 

incubated below a growing temperature of 20° to 250C (Field, 1981b; Wang and 

Adams, 1982). In some cases, a cold treatment is absolutely required or advances the 

induction of ethylene production as il has been observed in pcars (Sfakiotakis and 

Dilley, 1974), cucumbers (Wang and Adams, 1980; 1982), bean leaf (Field, 1981b; 

1984), apples (Blankenship and Richardson, 1985; Jobling et al., 1991; Gaudierre and 

Vendrell, 1993) and tomato (Chen and Shewfelt, 1988). Hyodo and Fukazawa, 1985; 

Hyodo et al. (1987) and Arpaia et al. (1994a) reported that the lime required for 

kiwifruit to produce ethylene al room temperature becomes much shorter and uniform 

as the storage period at chilling temperatures (r-20C) is extended. The acceleration of 
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ethylene production can occur during chilling in some fruit (Sfakiotakis and Dilley, 

1974; Wang et al., 1985), or only upon transference of the fruit to warm temperatures 

(Wang and Adams, 1982; Andersen and Kent, 1983; Mcncarelli et al., 1983). In some 

plant tissues ACC synthase is reduced al low temperatures increasing only upon 

rewarming (Wang and Adams, 1982; Knee, 1987). In others ACC accumulates being 

the increase in ethylene production observed upon rewarming mainly a consequence of 

the activation of ACC oxidase activity (Jobling et al., 1991; Gaudierre and Vendrell. 

1993). Kiwifruit increased their ACC content in parallel with MACC, ACC oxidase 

activity and ethylene production only upon rewarming of the fruit (Hyodo et al. 1987). 

Prolonged chilling can reduce ethylene production upon rewarming by damaging ACC 

oxidase (Wang and Adams, 1980; 1982; Andersen, 1986). 

Gaudiere and Vendrell (1993) reported the accumulation of two polypeptides of about 

50 and 55 kD in apples in cold storage. In contrast, a protein of 35kD abundantly 

synthesised by unchilled fruits, declined signifícantly in chilled fruits. The same authors 

referred a possible relationship between the 50 and 55 kD protein with ACC synthase 

and the 35kD with ACC oxidase. 

2.1.2. High temperalure 

High temperatures are generally applied as heat shock in order to extend storage life. 

However, this technology if not applied correctly may cause the failure of the fruit to 

ripe normally when returned to lower temperatures and lead to some physiological 

disorders (Mitchell. 1986; Pech et al., 1994). 

High temperatures inhibit some physiological disorders (Porrit and Lidster, 1978; Lee 

and Young, 1984; Yakir et al., 1984), respiration and ethylene production (Yu et al., 

1980; Lee and Young, 1984; Yakir et al., 1984; Lurie and Klein, 1990), ripening 

(Mitchell, 1986; Lurie and Klein. 1990) and control decay caused by palhogens 

(Mayberry and Hartz, 1992). The temperatures at which each one of lhe physiological 

processes are inhibited depend on the plant tissue (Maxie et al., 1974; Eaks, 1978; Lee 

and Young. 1984; Yakir et al., 1984; Klein and Lurie. 1990: Lurie and Klein. 1990). 

High temperatures cause the rapid synthesis of a group of proteins known as heat- 

shock proteins, concomitanl with a reduction in the rate of normal protein synthesis 
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(Czamecka et al., 1984; Lurie and Klein, 1991). The production of heat-shock proteins 

confers thermotolerance on the tissue in which they were formed, so thal subsequent 

exposure to higher or lower temperatures which normally will cause damage, will be 

harmless (Key et al., 1981; Krishman et al., 1989; Lurie and Klein, 1991). 

2.2. Oxygen 

Oxygen plays an important role in ethylene biosynthesis since it is a co-substrate of 

ACC oxidase (Pech et al., 1994). When the oxygen leveis are reduced ethylene 

production goes down. However, a significant reduction in ethylene production 

rcquires gcnerally O2 leveis lower than 1-1.5% (Marcellin. 1986; Nanos et al., 1992, 

Metzidakis and Sfakiotakis, 1993). In low-oxygen storage the reduction of ethylene 

production is mainly due to reduced ACC oxidase activity (Bufler and Bangerth, 1983; 

Blankenship and Richardson, 1986; Metzidakis and Sfakiotakis, 1993) although in 

some cases ACC leveis and ACC synthasc activity are reduced too (Bufler and 

Bangerth, 1983; Lau et al., 1984). 

The Km of the partially purified ACC oxidase towards O2 is around 6.4 pM (Kuai and 

Dilley, 1992). Low oxygen also reduces the expression of ethylene-regulated genes 

involved in ífuit ripening (Kanellis et al., 1990). 

Reduction of oxygen concentration (<10%) inhibited the eífectiveness of propylene on 

autocatalylic ethylene production and ripening in kiwifruit (Stavroulakis and 

Sfakiotakis, 1997). 

2.3. Carbon dioxide 

High CO2 leveis are considercd as compctitive inhibitors of ethylene action and 

therefore limit the autocatalylic induction of ACC synthase (Bufflcr, 1984; 1986). 

Mosl of lhe effeets of CO2 on delaying ífuit ripening are thought to be mediated 

through ethylene (Sisler and Wood, 1988). 

Carbon dioxide concentralions up to 10% at 20oC notably reduced ethylene production 

rates of kiwiífuit but did nol affect ACC leveis (Rothan and Nicolas, 1994). However, 

in lhe prescncc of saturaling amounts of ACC, ethylene was stimulated by high CO2 
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leveis. The same authors found that the concentrations of ACC at which ACC oxidase 

was inhibited by high CO2, are comparable to the concentrations found in the fruit. So, 

they suggested that the reduction of ethylene production in fruits caused by high CO2 

might be exerted at least partially at lhe levei of the conversion of ACC to ethylene. 

However, it was found that CO2 was required for ACC oxidase activity in vilro with 

an optimum around 2% (Dong et ai., 1992; Smith et ai, 1992; Yang et al., 1993). In 

kiwiífuit pericarp tissue, the maximum ethylene production occurred al 0.2 to 2% CO2 

(Rothan and Nicolas, 1994). The levei of CO2 in fruits is generally high enough to 

allow full expression of ACC oxidase activity (Pech et al., 1994). 

3. Fruit ripening 

Fruit ripening involves a serial of biochemical and structural changes that make the 

fruit acceptablc for eating. Tissue softening generally accompanies fruit ripening and is 

due to the dissolution of cell walls (mainly the pectins of the middle lamella) which 

results in ripening associated changes in cell wall polysaccharides (Rattanapanone et 

al., 1977). There is also an increase in soluble solids content (SSC) during fruit 

ripening. This increase can be due to the conversion of starch to soluble sugars and/or 

a release of cell wall bound neutral sugars (Ahmed and Labavitch, 1980; Chen et al., 

1983). Chlorophyll usually degrades with fruit maturity and ripening and thus the 

carotenoids contribute more to the colour (Goodwin, 1976). Organic acids are 

important sources of respiration energy in lhe plant cell and flavour and aroma 

compounds, particularly in fruits (Zagory and Kader, 1989). Kiwiífuit is considered to 

be eaíing-ripe when firmncss is <lkgf and SSC >14% Brix (Lallu et al., 1989). 

3.1. Climacteric and non-climacteric fruit 

Fruit have been classified as either climacteric or non-climacteric depending on thcir 

respiration behaviour during ripening after lhe fruit matures (Biale and Young. 1981). 

Non-climacteric fruit exhibit a fairly steady respiration rate during ripening and oflen 

change slowly as they ripen (Abeles, 1973). Treatment of non-climacteric fruit with 

ethylene causes an unnatural climacteric-like respiration increase (which subsides on 

removal of ethylene), but not an increase in endogenous ethylene. 
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Climacteric fruits are characterised by a surge of ethylene production at the onset of 

ripening, and it is recognised that ethylene plays an cssential role in the ripening 

process (Pratt and Goeschl, 1969). Climacteric fruil shows a decrease in respiration 

rate as the fruit matures (the pre-climacteric minimum) íbllowed by a large increase 

during ripening (Abeles, 1973). This is accompanied by marked changes in 

composition and texture, and fínally a decrease in respiration rate and ethylene as the 

fruit enters a senescent decline. Treatment with sufficient concentration of ethylene in 

the pre-climacteric stage induces the climacteric response and ethylene production and 

this ripening process is irreversible after the endogenous ethylene increases beyond a 

threshold levei of about 1 pl/1. 

McMurchie et al. (1972) found that propylene, an ethylene homologue, induced 

ethylene production in bananas (climacteric type) but not in citrus fruil (non- 

climacteric type). The same authors suggested two systems involved in ethylene 

biogenesis: System I, which is involved in the regulation of ageing processes and is 

associated with the low rate of ethylene production during growth and is present in 

climacteric and non-climacteric fruit, and system II which is responsible for the 

autocatalytic increase in ethylene production during ripening, inherent to climacteric 

fruit. 

3.2. Respiration 

The fruit respires at the expenses of substrates accumulated during fruit developmenl. 

The presence of respiration enzymes and their substrates indicates that respiration will 

continue after harvest and storage produets will be broken down (Burton, 1982). 

Within a given fruit species, a high respiration rate is commonly associated with a short 

storage life (Blanke, 1991). The rate of respiration is mostly temperature dependent 

and this relationship is expressed as the temperature coefficient (Qio) (Blanke, 1991). 

Chilling of fruits retards respiration by inhibiting the cytochromc oxidase palhway, 

leading to a larger contribution of the cyanide-insensilive palhway (Graham and 

Patterson, 1982). The increase in temperature increases respiration until a limit 

(dependent on fruit specie and time of exposure) above which heat injury occurs (Eaks, 

1978; Lee and Young, 1984; Yakir et al., 1984; Inaba and Chachin, 1988; 1989). 
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4. Post-harvest storage physiology 

4.1. Effcct of temperature 

The rates of progression of ali vital processes, including respiration, ripening, moisture 

loss and decay, increase with a rise in temperature (McDonald, 1990). 

The two post-harvest environmental factors that have the greatest efifect on kiwiffuit 

softening are temperature, which influences the rate of flesh softening, and the 

presence of ethylene during storage, which can hasten the softening process at a given 

temperature by approximately 50% (Arpaia et al., 1994b). The flesh íirmness of 

kiwilfuit (and thcrefore storage life) in CS or CA dccreases with time, at a rate 

dependent on storage temperature (Arpaia et al., 1986; McDonald, 1990). Kiwifruit is 

usually stored at 0oC. A storage temperature below -0.5oC should be avoided for 

kiwifruit, in order to maintain an adequate margin of safety above the freezing point, 

which is -1.7 to -2.rc (McDonald, 1990; Arpaia et al, 1994a). 

4.2. Effects of controlled atmosphere (CA) and ultra low oxygen storage (ULO) 

When cooling reaches the low temperature sensitivity limit of a particular fruit, storage 

and shelf-life can be prolonged by changing the ambient gas composition (Smock, 

1979). Oxygen participales in respiration by the mediation of enzymes which can 

transfer electrons to it, the terminal oxidases (Blanke, 1991). Partial lowering of the 

oxygen levei may first slow down respiration (Tucker and Laties, 1985). Oxygen 

concentrations below 2-5% may cause a switch to anaerobic processes such as 

fermentation and alcohol formation which reverse the reduction in respiration by 

producing CO2 temporarily and raising its concentration to leveis above those in air 

(Burton, 1982; Tucker and Laties, 1985). Fermentation may result in free radical 

formation and collapse, damaging the fruit tissue (Blanke, 1991). 

The CO2 effect results írom reduced internai ethylene production and ethylene action 

in the fruit, thereby delaying fruit ripening and softening (Blanke, 1991). Elevating the 

CO2 concentration can also have a suppressive effect on respiration metabolism. 

depending upon temperature, commodity and cultivar (Zagory and Kader, 1989). 
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The CA storage is used commercially for kiwifruit to allow greater flexibility for 

export marketing (McDonald, 1990; Arpaia et al., 1994b). The CA storage using a 

combination of 2%02+5%C02 has bcen shown to slow kiwifruit softening and 

dcvclopment of decay (Arpaia et al., 1994b). Successful CA storage dcpends on rapid 

establishment (less than 1 week following harvest), careftil temperalure maintenance 

(0oC), exclusion of ethylene at ali times during storage, and close attention to O2 and 

CO2 concentralions. 

Although lowering the oxygen levei will increase storage life, hypoxic conditions may 

cause injuries in plant tissues (Aipi et al., 1985). Hypoxic conditions or leveis of CO2 

above the limits of lolerance of a particular commodity can resull in accumulation ol 

acetaldehyde and ethanol within the tissues indicating a shifl to anaerobic respiration 

(Ke et al., 1990). Nanos et al. (1992) found high leveis of ethanol and acetaldehyde, 

inhibition of loss of greenness and decreases in ethylene and CO2 production in pears 

stored in 0.25% O2 atmosphere. Thomai and Sfakiotakis (1997) reported that kiwifruit 

stored in ULO (02<1%) did not ripe normally during shelf-life. 

4.3. Fruit softening 

The kiwifruit is nonchilling sensitive and possesses a potential six months storage life 

at 0oC although softening will occur during this period (Arpaia et al., 1980; McDonald 

and Harman, 1982; Arpaia et al., 1986). Softening is accelerated by the presence of 

ethylene and reduced under CA conditions. Kiwifruit should be harvested when they 

are mature but hard and unripe, at a ílesh firmncss of 7-10 kgf (McDonald, 1990). 

Atmospheres containing 4 to 10% CO2 had an increased effect in relarding kiwifruit 

softening at 0oC, but additional CO2 above 10% had no frirther effect on fruit firmness 

(McDonald and Harman, 1982). During shelf-life at 20oC, only fruit stored previously 

in a low O2 atmosphere were fírmer than air-stored fruit, being the advantages of the 

high CO2 in air atmospheres bcen lost during the ambicnt storage period (McDonald, 

1990). 
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4.4. Flesh colou r 

Elevated CO2 and/or low O2 leveis reduce ehlorophyll loss in many fruits and 

vegetables (Weiehman, 1986). High eellular pH eaused by elevated CO2 may reduce 

the breakdown of ehlorophyll to pheophytin (Zagory and Kader, 1989). Lowered 

sensitivity of plant tissues to elhylenc in the prescnce of elevated CO2 and/or low O2 is 

presumably partly responsible for the reduced ehlorophyll breakdown (Zagory and 

Kader, 1989). The CA reduced the loss of green colour in kiwiffuit compared to CS 

(Harman and McDonald, 1983; 1989). 

4.5. Soluble solids content (SSC) 

Kiwiffuit are normally fairly high in starch when harvested (5-8%) and this starch 

disappears in storage with a concomitant increase in SSC (Arpaia et al., 1980). A levei 

ot 6.2% Brix SSC at harvest is a suitable minimum maturity levei for kiwiffuit 

(Harman, 1981) and a minimum of 14% Brix is required for best consumer acceptance 

(Mitchell et al., 1991). The CA storage of 2%02+5%C02 does not influence the 

increase in SSC as compared to CS (Arpaia et al., 1984; 1986; 1994b; Harman and 

McDonald, 1989). 

5. Lipids in connection to ripening and ethylene 

5.1. Lipid composition 

Some treatments, such as acclimatisation, that increase the resistance of plant tissues to 

chilling injury also increase the perccntage of unsaturated fatty acids in membrane 

lipids (Forney, 1990). An increase in fatty acids unsaturalion during cold storage has 

been observed in potato and tomato (Spychalla and Desborough. 1990; Whitaker. 

1994). However, Parkin and Kuo (1989) found little changes in fatty acids 

composition of cucumbers bctween conlrol and chilled fruit. 

Fatty acid unsaturalion decreascd slighlly during ripening in apple, cucumber and 

tomato (Lurie and Ben-Arie, 1983; Parkin and Kuo, 1989; Whitaker, 1994) while it 

increased in 'Honey dew' muskmelons due to the increase of palmitoleic and oleie 

acids and coincidentally with the decrease in chilling sensitivity (Forney, 1990). 
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Brackmann et al. (1993) found the amount of fatty acids in the peei of applcs to 

increase with storage time. 

Only a small increase in linolcic acid was observed in chill-sensitive plants after 

hardening (Wilson and Crawford, 1974a). lhe degrce oí unsaturation oí fatty acids 

associated with the phospholipid fraction increascd during hardening of Gossypium 

hirsatum and Phaseolis vulgar is, but the treatmenl produced no eífcct on the fatty acid 

composition of the glycolipid fraction, agreeing with previous results that showed no 

increase in unsaturation of total leaf fatty acid on hardening (Wilson and Crawford. 

1974b). 

A decreasc in the proportion of the unsaturated fatty acids was observed in chilling 

injured tomato plants (Senaratna et al., 1988). Linolenic and linoleic acid decreased 

and there was an increase in saturated fatty acid content. There appears to bc 

contradicting evidence as to the role of fatty acid peroxidation in chilling injury 

(Senaratna et al., 1988). Peroxidation of fatty acids occurs at the double bonds of 

unsaturated fatty acids and the resulting peroxides and hydroperoxides degrade to 

smaller molecules. Consequently the relative proportion of unsaturated fatty acids 

decreases (Frankel, 1980). 

Analyses of each lipid class in peach showed that the predominant fatty acids were 

palmitic and linoleic (Izzo et al., 1995). The double bond index showed a general 

increase during maturation being lhe main changes observed bctween the climacteric 

and postclimacteric stages. 

5.2. Membrane permeability 

Electrolyte leakage is a parameter that has oflen been used to indicate physical damage 

to the plasmalemma resulting from low-temperature stress (Senaratna et al., 1988; 

Parkin and Kuo, 1989). The samc authors found substantial increases in electrolyte 

leakage only afler fruil displayed visible signs of chilling injury. Membrane permeability 

of potato tubers was higher in storage at 30C than at 90C (Spychalla and Desborough, 

1990). Peppers increased their membrane permeability, as measured by electrolyte 

leakage, as fruit approachcd the climacteric in consequence of senescence (Lurie and 

Ben-Yehoshua, 1986). 
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5.3. Lipids possibly related to chilling-índuced ethylene production 

Ethylene is often used as an indicator of stress. The decrease in fatty acid unsaluration 

precedes increases in rates of ethylene evolution, indicating that lipid peroxidation may 

bc responsible for creating stress conditions in chilled cucumber ífuit (Parkin and Kuo, 

1989). 

Since it was observed that lipid peroxidation increases when plant tissues are subjected 

to cellular damage (Galliard, 1978) or undergoing senescence (Dhindsa et al., 1981), it 

was suggested that the lipoxigenase activity is involved in the biosynthesis of ethylene 

under situations like senescence (Bousquet and Thirman, 1984), wounding or low- 

temperature stress (Kacperska and Kubacka-Zebalska, 1985). Although lipoxygenase 

may increase during the above-mentioned situations, considering the lack of affinity of 

the lipoxygenase system for the ACC and the low ACC concentration present in the 

plant tissue (<0.1 mM), it is very unlikely that the lipoxygenase system may produce 

ethylene to any substantial extent in vivo (Wang and Yang, 1987). 

Bousquet and Thimann (1984) and Wang and Yang (1987) described an in viíro model 

system in which ACC was rapidly converted to ethylene in the presence of linoleic 

acid, pyridoxal-phosphate, manganese ion and lipoxygenase. The rate of ethylene 

production by the lipoxygenase system was highest during the first hour, gradually 

decreased thereafler, and essentially stopped after 24 hours (Wang and Yang, 1987). 

However, during the 24 hours of lipoxigenase-medialed reaction, 5% of ACC was 

converted to ethylene, whereas about 45% of the ACC was converted into other 

produets, indicating that in this system the ACC reaction was not spccifíc for ethylene 

production. Linoleic and oleie acid incubation enhanced ethylene production in oat 

leaves by enhancing ACC uptake, explaining their promotive efifect on ethylene 

formation by lhe lipoxygenase system (Wang and Yang, 1987). Pirrung (1986) reports 

that the model system for ethylene biosynthesis developcd by Bousket and Thimann 

(1984) has mechanistic fcatures outwardly similar to those in plants. However, many of 

its characteristics concerning inhibitors and the function of individual components do 

not agree. So, caution should be exercised concerning any cell-ífee ethylene forming 

system requiring pyridoxal phosphate or manganese. 
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Gardner (1995) reports that lipoxygenase is activated by stress conditions and linoleic 

and linolenic acids are its prefcrable substrate. It has been suggested that stress 

ethylene is a direcl product of lipid peroxidation (Mattoo et al., 1986). Linoleic and 

oleie acids incubation enhanccd ethylene production in oat leaves by enhancing ACC 

uptake, explaining their promotive effect on ethylene formation by the lipoxygenase 

systcm (Wang and Yang, 1987). Wise and Naylor (1988) dcmonstrated that even 

under scvere photooxidative stress, accompanied by lipid peroxidation, ethylene is 

synthesised exclusively by the ACC-dependent pathway. However, in the special case 

of copper toxicity, in which Cu+n plays several catalytic roles (Sandmann and Boger, 

1980), ethylene can be shown to arise directly ífom lipid peroxidation (Mattoo et al., 

1986). 

Some biological efíects of methyl jasmonate/jasmonic acid sludied recently include 

ethylene biosynlhesis (Chou and Kao, 1992; Sanz et al., 1993). Gene expression 

induced by methyl jasmonale has been compared with similar promoters, such as 

abcissic acid, desiccation, wounding and sucrose (Lorbeth et al., 1992; Mason et al., 

1992; Reinbothe et al., 1992). 
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CHAPTER 3. THERMOREGULATION OF AUTOCATALYTIC 

ETHYLENE PRODUCTION AND RESPIRATION 

CLIMACTERIC INDUCED BY PROPYLENE IN 

RIPENING 'HAYWARD' KIWIFRUIT 

ABSTRACT 

It is known from a previous study that there is an inhibition of propylene induced 

ethylene production in kiwifruit bellow a criticai temperature range of 11-14.80C 

(Stavroulakis and Sfakiotakis, 1993). This work was underlaken lo find whether 

kiwiífuit behaves as a climacteric or non-climacteric fruit at temperaturcs abovc and 

below the criticai temperature range for ethylene production. 

In one experiment, 'Hayward' kiwifruit were trcated continuously with 130pl/l 

propylene, with interruptions in propylene application and air free of propylene, at 10 

and 20oC. In the other experiment, fruit were treated with concentrations of 0, 100, 

400 and 1000pl/l propylene at the same lemperatures. Ethylene production, 

respiration, and changes of firmness, SSC and ílesh colour were measured. 

Kiwifruit kept at 20oC in air started autocatalysis of ethylene production after they 

reached a threshold levei of 0.2pl/kg/h in 19 days with a concomitant increase in 

respiration. Treating kiwifruit continuously with 130pl/l propylene stimulated 

autocatalysis of ethylene after 79 hours. Their respiration rale increased immediately 

after exposure to propylene, reached a maximum in 24 hours, slightly decreased, 

increased again with the climacteric rise in ethylene and decreased slightly thereafter. 

The application of 130pl/l propylene for 24 hours was enough to induce autocatalysis 

of ethylene production after a lag period of 68 hours. In this case. respiration 

decreased after removal of propylene, resuming with ethylene autocatalysis. 

At 20oC, ethylene production and the respiration rise appeared earlier with increased 

propylene concentrations. The ethylene climacteric peaks were achieved after 180 

hours in ali propylene treatments and were lower at lOOpl/1 treatmenl than at 400 or 

lOOOpl/1, which presented similar values. The respiration peak was increased with 

increasing propylene concentrations. 
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Kiwifruit at 10oC did not show autocatalysis of ethylene production. At 10oC, ífuit 

exposed continuously to 130pl/l propylene increased their respiration rate reaching a 

maximum aftcr 56 hours and remained almosl constant thercafter. When propylene 

was removed, respiration was dccreased resuming upon re-exposure. Respiration rate 

was increased together with propylene concentration. 

Fruit in air did not ripe in 240-260 hours at any temperature. At 10oC, fruit to which 

propylene was removed for two periods were not completely ripe after 240-260 hours, 

while fruit treated continuously with propylene were ripe. 

It is concluded that kiwifruit stored at 20oC behaves as a typical climacteric fruit. while 

at 10oC behaves like a non-climacteric fruit. 

INTRODUCTION 

Fruit are classifíed as climacteric and non-climacteric. Climacteric fruit are 

characterised by an increased rate of respiration that occurs at an carly stage in the 

ripening process which is associaled with a similar pattern of increased ethylene 

production. Non-climacteric fruit do not show any increase in respiration and ethylene 

during ripening (Biale and Yang, 1981). The application of exogenous ethylene to non- 

climacteric fruit results in an increased respiration rate proportional to the 

concentration of ethylene applied and declines to basal leveis upon removal of the 

ethylene. In climacteric fruit the respiration peak is independem of the applied ethylene 

concentration. The main eífect of applied ethylene, in this case, is the advancement in 

time of the fruit's respiration climacteric, this effect being proportional to the 

concentration of applied ethylene (Tucker and Grierson, 1987). The difference is 

caused by the lack of aulocatalytic ethylene synthesis in non-climacteric fruit. The 

application of ethylene to a climacteric fruit, providing it is mature enough, will 

advance the onset of the climacteric. Once aulocatalytic synthesis is triggered, ethylene 

leveis will increase so that the final respiration rate is independem of the original 

exogenous ethylene concentration. The absence of any endogenous ethylene from non- 

climacteric fruit mcans that its respiration rate is proportional to the concentration of 

applied ethylene. Non-climacteric fruit have the ability to produce low leveis of 
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ethylene, about 0.04(al/kg/h throughout ripening and can be induced to produce more 

ethylene under stress conditions. Although non-climacteric fruit do not produce 

autocatalytic ethylene, they respond lo exogenous ethylene advancing ripening like 

climacteric fruit (Tucker and Grierson, 1987). 

McMurchie et al. (1972) postulaled two systems for ethylene production in fruit. 

System I makes background and wound ethylene, while system II is responsible for 

autocatalysis. Climacteric fruit have both systems I and II, while non-climacteric fruit 

have only system I. 

Kiwifruit has been classified as a climacteric fruit whose ripening is mediated by 

ethylene (Pratt and Reid, 1974; McDonald and Harman, 1982; Arpaia et al., 1986; 

Arpaia et al., 1994a). Reid et al. (1982) have suggested that kiwifruit should be 

classified as a climacteric fruit because of the simultancous increase in respiration rate 

and ethylene production. However, Pratt and Reid (1974) and Arpaia et al. (1994a) 

reported that the increased rates of respiration and ethylene production in kiwifruit do 

not occur until the fruit are full ripe, making it different from most climacteric fruit 

where ethylene production and ripening are coincident. 

Ikoma et al. (1995) referred that ripening of kiwifruit seemed different from that of a 

typical climacteric fruit. The ripening-related ethylene production in kiwifruit rarely 

occurred for a long time after harvest without the help of exogenous ethylene. In 

addition, kiwifruit was less sensitive to ethylene for autocatalytic ethylene production 

than the other climacteric fruit. Yano and Hasegawa (1993a) found that when fruit 

were packed individually, most sound fruit did not start evolving ethylene till 40 to 60 

days. The same authors postulated that the ethylene production in sound kiwifruit 

requires an exogenous induction factor such as ethylene gas or a diseased fruit nearby. 

Arpaia et al. (1994a) reported that kiwifruit placed al 20oC after harvest take about 

17+7 days to ripe. Ethylene production rate by mature kiwifruit at harvest is very low 

(0.1 to 1.0 pl/kg/h) and increases markedly with ripening from 50 to lOOpI/kg/h. 

Hyodo and Fukasawa (1985) observed the autocatalytic production of ethylene in 

kiwifruit at 210C after exceeding a threshold levei of O.lpl/kg/h. Sfakiotakis et al. 

(1989) reported the same autocatalytic ethylene production and ripening at 20oC after 
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externai application of 130pl/l of propylene, which is equivalent to lpl/1 ethylene. The 

same authors found that propylene caused ripening of the ffuit at 10 and 0oC at a 

slower rate, although it was nol able to induce autocatalytic ethylene production. 

Stavroulakis and Sfakiotakis (1993) reported a criticai tcmpcrature of 11 to 14.80C 

below which ethylene production induced by propylene does not occur in kiwiffuit. 

However, respiration was not assessed as wcll as the response to several propylene 

concentrations. 

The objective of this study was to find whether kiwiíruit behaves as climacteric or non- 

climacteric ífuit, bascd on the studies of Stavroulakis and Sfakiotakis (1993) and the 

main parameters which classiíy a ifuit as climacteric or non-climacleric: ripening, 

respiration and ethylene production. It was investigated the effect of temperatures 

above and below the criticai range (11-14.80C) for ethylene production induced by 

propylene on autocatalysis of ethylene production, respiration and ripening of kiwiíruit. 

MATERIAL AND METHODS 

1. Plant material and treatments 

1.1. Study on kinetics of temperature-associated inactivation and reactivation of 

ethylene and carbon dioxide production during 'Hayward' kiwifruit 

ripening 

Kiwifruit (cv. Hayward) were harvested from an orchard in Pieria-North Greece with 

7.3 kgf ílesh firmness and 5.9 (% Brix) SSC. After selection for uniformity of size and 

freedom from defeets, 30 ífuit were used the same day for analysis of quality 

parameters and lhe remaining were put in 5-litrc jars through which a continuous. 

humidified, air stream was passed at a rate of lOOml/min. Each set of six jars was kepl 

in a separate water bath at a constant tcmpcrature of 10 and 201>C. Experiments were 

set within 24 hours. The experimental design was a two-factor experiment distributed 

in a complete randomised design with the temperatures as first factor, propylene 

treatmenl as second and the jars as replications. Each trealment consisted of 4 
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replications with 15 fruit per rcplication. Fruit were kept in the air stream at the 

mcntioned tempcratures for 24 hours before propylene treatments started. The first 

trcatment consistcd of air free of propylene (control) and the sccond air+130pl/l 

propylene applied conlinuously. At 10oC, the third treatmcnt consisted of air+130pl/l 

propylene applied for 24 hours, then switchcd to air for 48 hours, again to air+130pl/l 

propylene for 24 more hours and finally transferred to air, while at 20oC it consisted of 

air+130|il/l propylene applied for 24 hours, then fruit were transferred to air. 

1.2. Study on propylene eoneentration-depcndent ethylene and earbon dioxide 

produetion of'Hayward' kiwifruit 

Kiwiífuit (cv. Hayward) were harvesled from an orchard in Pieria-North Greece with 

9.9 kgf flesh firmncss and 5.0 (% Brix) SSC. After selection for uniformity of size and 

ífeedom from defects, ífuil were analysed and experiments were set as described 

above. The first treatment consisted of air free of propylene, the second air+100pl/l, 

the third air+400pl/l and the fourth air+1000pl/l propylene applied continuously. Each 

treatment consisted of 4 replications with 15 fruit per replication. Treatments were 

distributed in a complete randomised design as mentioned above. 

2. Measurements 

2.1. Rípening parameters 

From the ripening parameters were measured firmness of flesh and core separately, 

SSC and green colour of flesh. Ripening parameters were performed within 24 hours 

after harvest and at the end of the experiment. A Minolta Chrome meter CR-200 was 

used to measure flesh colour using the a* valuc, whercby a change lo more positive 

values indicates fading of the green colour. The SSC (% Brix) were measured by a 

digital Atago refractometer in juice from the equatorial zone of the fruit. Firmness was 

recorded by puncture with a Chatillon penelrometer fitted with a flat 8mm lip. The tip 

was inserled after skin removal, at the fruit equator to a depth of 7mm for flesh and 

20mm for core firmness measurements. 
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2.2. Gas analyses 

Ethylene and CO2 production measurements started 1 hour after the experimcnt was 

installcd and proceeded at regular intervals of 12 to 24 hours for ethylene and 2 to 8 

hours for CO2. Measurements were more oflen when fruit were transferred from air to 

propylene and vice-versa. Ethylene measurements were performed by withdrawing a 

1 ml-headspace gas-sample with a syringe and injecting it into a Varian 3300 gas 

chromatograph, equipped with a stainless steel column filled with Porapak, length 

lOOcm, diameter 0.32cm. at 50oC and a flame-ionisation detector at 120oC. The carrier 

gas was N2 at a flow rate of 20ml/min. Respiration was measured as CO2 production 

automalically by an inífared gas analyser connected to a computer, in lhe gas phase of 

lhe jars. 

3. Calculations and Statistical analysis 

The Km values that correspond to the propylene concentration which causes half- 

maximal effect on CO2 and ethylene production were calculated on the basis of the 

Lineweaver-Burk plot (Christensen and Palmer, 1967). 

Statistical analysis were made with a SAS computer program. Two-way analyses of 

variance - ANOVA, Least Significam Difference and Duncan's Multiple-Range Test 

(a=0.05) for comparisons between treatments over time were conducted. 

RESULTS 

1. Study on kinetics of temperature-associated inactivation and 

reactivation of ethylene and carbon dioxíde production during 

'Hayward' kiwifruit ripening 

1.1. Ethylene production at 20oC 

Kiwifruit harvesled at an early stage of maturity showed a clear climacteric pattern of 

ethylene production at 20oC (Fig. 3.1). Autocatalysis of ethylene production started 
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after the fruit reached a threshold levei of 0.2|a.l/kg/h in 19 days (Fig. 3.1Aa). The 

climacteric of ethylene production followed a typical pattem reaching a peak in 24 

days with almost a 20.000 fold increase of the rate of ethylene production (Fig. 3.1 A). 

Treating kiwifruil during 24 hours or continuously with propylene (130pFl) stimulated 

autocatalytic ethylene production after the fruit reached a threshold levei of 0.2- 

0.5pFkg/h in 68 and 79 hours respectively (Fig. 3.2Aa). Values of both treatments 

were not significantly different till 170 hours (Fig. 3.2A). After 170 hours, fruit 

exposed continuously to propylene had significantly higher ethylene production than 

fruit exposed for only 24 hours. Fruit not treated with propylene did not produce 

ethylene during the experiment. 

1.2. Carbon dioxide production at 20oC 

Respiration of kiwifruit not treated with propylene did not change significantly before 

autocatalysis of ethylene production, then had a 2.5 fold increase of the rate of CO2 

and this was closely associated with the increase of ethylene production (Fig. 3.1). 

Kiwifruit increased significantly their respiration rate immediately after they were 

exposed to 130pFl propylene al 20oC, reaching a maximum in 24 hours (Fig, 3.2B). 

Respiration slightly decreased thereafter to a minimum in 55 hours, had again an 

increase coincident with the climacteric rise in ethylene production and then decreased 

slightly through time. When propylene was removed respiration decreased 

significantly, increased again with lhe commencement of autocatalysis of ethylene 

production and decreased slightly thereafter. Kiwifruit not treated with propylene did 

not change their respiration pattem through time. 

1.3. Ethylene production at 10oC 

Fruit al 10oC did not show autocatalysis of ethylene production in none of the 

treatments (Fig. 3.3A). Although differences in ethylene production were statistically 

signifícant higher in air+130pl/l propylene than in the other treatments after 170 hours, 

they are negligible when compared with autocatalysis of ethylene production at 20oC 

(Fig. 3.2A). 
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1.4. Carbon dioxidc production at 10oC 

At 10oC, respiration of kiwiífuit started to increase significantly after 10 hours 

exposure to propylene, reachcd a maximum after 56 hours and rcmaincd almost 

constant thereafter (Fig. 3.3B). Fruit kept continuously in air frec of propylene did not 

signifícantly change thcir respiration rate through time. 

When propylene was rcmoved írom the stream after 24 hours applicalion, CO2 

production decreased signifícantly and thcn rcmained constant (Fig. 3.3B). However, 

values were signifícantly higher than in fruit continuously in air. Re-exposing the fruit 

to propylene resulted in a signifícant increase in respiration to values closc to those of 

fruit kept continuously wilh propylene. By removing again propylene, respiration rate 

decreased signifícantly. 

1.5. Associated changes of firmness, soluble solíds content (SSC) and flesh colour 

Kiwiífuit firmness of flesh and core decreased signifícantly wilh time in ali treatments 

except in air at 10oC (Table 3.1). Fruit treated with propylene showed much lower 

values than fruit in air at both temperatures. Fruit treated continuously with propylene 

or fruit where propylene was removed for some periods showed similar values at 20oC. 

However, at 10oC, values were signifícantly higher in fruit where propylene was 

removed for some periods than in fruit exposcd continuously lo propylene. Firmness 

was signifícantly higher at 10 than at 20oC within cach treatment, except for flesh 

fírmness of fruit treated continuously wilh propylene were values were similar at both 

temperatures. 

At 10oC, SSC and fading of flesh green colour did not change signifícantly with time in 

air, but were signifícantly higher in fruit continuously in propylene followed by fruit 

where propylene was removed for some periods (Table 3.1). At 20oC, SSC and fading 

of flesh green colour increased signifícantly wilh time in ali treatments. After 240 hours 

storage, values were similar in both propylene treatments and signifícantly higher than 

in air treatment (Table 3.1). 
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2. Study on propylene concentration-dependent ethylene and carbon 

dioxíde production of 'Hayward' kiwifruit 

2.1. Ethylene production at 20oC 

Kiwifruit treated with 1000pl/l propylene at 20oC started autoeatalytie ethylene 

production after reaching a threshold levei of 0.5pl/kg/h in 24 hours of exposure, while 

400pl/l and lOOpl/1 treatments needed 72 hours to start it and a threshold levei of 

0.4pl/kg/h (Fig. 3.4Aa). Ethylene production was significantly higher in lOOOpl/l 

propylene than in the other treatments for the first 120 hours of exposure to propylene. 

After this? its values became similar with the 400pl/l propylene treatment (Fig.3.4A). 

Values of the lOOpl/l propylene treatment were significantly lower than the other 

propylene treatments except at the end of the experiment. The peak in ethylene 

production occurred after 180 hours exposure to propylene for ali treatments. Fruit not 

treated with propylene did not produce ethylene during the experimental time. 

2.2. Carbon dioxide production at 20oC 

The respiration rate of kiwifruit at 20oC increased significantly when fruit were treated 

with propylene reaching the respiration peak after 55 hours exposure in ali treatments 

(Fig. 3.4B). Carbon dioxide production increased with increased propylene 

concentration till 120 hours exposure. After that, values were similar in ali propylene 

treatments, coinciding with the increase in ethylene production (Figs. 3.4A and B). 

Respiration increased earlier in fruit treated with lOOOpFl propylene followed by 

400(il/l and 100pl/l (Fig. 3.4B). Carbon dioxide production of kiwifruit from 1000pl/l 

treatment was significantly higher than that of fruit from 400pl/l treatment bctween 5 

and 30 hours of exposure to propylene and was significantly higher than lOOpl/1 

treatment between 5 and 120 hours. Fruit kept continuously in air free of propylene did 

not significantly change lheir respiration rate through time. 

2.3. Ethylene production at 10oC 

Propylene concentration did not induce autocatalysis of ethylene production at 10oC 

(Fig. 3.5A). Although lhere was statistically signifícant increase in ethylene production 
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after 100 hours exposure to propylene, its values were negligible when compared with 

autocatalysis of ethylene production at 20oC (Fig. 3.4A and 3.5 A). 

2.4. Carbon dioxide production at 10oC 

At 10oC, the respiration rate of kiwiífuit inereased significantly with the increase in 

propylene eoneentration, showed a wide pcak and remained almost constant aíler 200 

hours exposure (Fig. 3.5B). Fruit not treated with propylene almost did nol change 

their respiration rate during the experiment. Fruit treated with lOOOpl/1 propylene 

showed signifícantly higher CO2 production than fruit treated with 100pl/l after 30 

hours of exposure. Respiration of fruit in 400pl/l propylene was always lowcr than 

fruit of lOOOpl/1 treatment with significant differcnces between 120 and 200 hours of 

exposure. Fruit in lOOpl/1 propylene had signifícantly lower CO2 production than the 

other propylene treatments. 

2.5. Calculated Km values for propylene induced ethylene and CO2 production 

At 20oC, lhe ethylene production peak had a great increase from 0 to 100pl/l 

propylene with little further effect at higher concentrations (Fig. 3.6A). The calculated 

Km which gives half-maximal ethylene production induced by propylene at 20oC was 

33.3pl/l (Fig. 3.6Aa). 

Maximum CO2 production inereased with propylene eoneentration mostly from 0 to 

400pl/l and had higher values at 20 than at 10oC (Fig. 3.6B). The calculated Km values 

were 83.9 and 37.6pl/l propylene at 10 and 20oC, rcspectively (Fig. 3.6Bb). 

2.6. Associated changcs of firmness, soluble solids content (SSC) and flesh colour 

Kiwifruit not treated with propylene did not signifícantly change firmness, SSC and 

flesh green colour in air free of propylene at 10oC during the experiment (Table 3.2). 

After 260 hours at 10oC fruit signifícantly decreased their fírmness when treated with 

propylene, showing similar values of flesh fírmness in ali propylene treatments. The 

fírmness of the core was signifícantly decreased with propylene eoneentration. The 

SSC and loss of flesh green colour of kiwifruit at 10oC were signifícantly higher after 

260 hours propylene treatment than at harvest, but were nol signifícantly different 

among propylene concentrations (Table 3.2). 
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Fmit significantly decreased their firmness, increased their SSC and lost flesh green 

colour with time in ali treatments at 20oC (Table 3.2). Values were similar in ali 

propylene concentrations and had great differences from air. 

Firmness was significantly higher at 10oC than at 20oC in ali treatments (Table 3.2). 

The SSC and fading of flesh green colour did not have signifícant differences between 

temperatures in air but were significantly higher at 20 than at 10oC in the propylene 

treatments. 

DISCUSSION 

Kiwiíruit showed a typical climacteric pattern at 20oC by autocatalitically incrcasing 

ethylene production after rcached a threshold levei of ethylene production of 0.1- 

0.2fil/kg/h in approximately 19 days, in agreement with previous work (Pratt and Reid. 

1974; Hyodo and Fukasawa, 1985; Arpaia et al., 1994a). By increasing the 

concentration of propylene, kiwifruit showed earlier the respiration rise and 

autocatalysis of ethylene but similar values in the peaks as shown for typical climacteric 

ífuit (Tucker and Gricrson. 1987). 

Brady (1987) and Tucker and Grierson (1987) reported that the increase in respiration 

during the climacteric appears to be a conscquence of the increase in endogenous 

ethylene because, in most ífuit, respiration climacteric occurs after autocatalysis of 

ethylene production (Tucker, 1993). However, in some ífuit the bursl of ethylene 

either coincides with or, more rarely, folio ws the respiration climacteric (Tucker, 

1993). Kiwifruit not treated with propylene at 20oC showed an increase in respiration 

coincident with the autocatalysis of ethylene production. Kiwifruit treated continuously 

with propylene showed an immediate increase in respiration. a small decrease and a 

new increase coincident with the start of autocatalysis of ethylene production. When 

propylene was removed after 24 hours exposure, respiration decreased and resumed 

again only when autocatalysis of ethylene production started after 70 hours. This last 

observation is typical of a nonclimacteric ífuit or a climacteric ífuit that lacks the 

maturity to ripe (Brady, 1987) and is in the system I of ethylene production 

(McMurchie et al., 1972; Sfakiotakis and Dilley, 1973; Sfakiotakis et ai., 1989). The 
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above observations are in accordance with the concept that the respiration increase 

during ripening result simply as a general response to the ethylcnc produced by the 

firuit or the applicalion of exogenous ethylcnc (Tucker, 1993). 

It was previously observed that kiwiífuit strongly inhibits its ethylene production 

(induced by propylene) at tcmperatures below 11-14.80C (Stavroulakis and 

Sfakiotakis, 1993). We observed that by treating kiwiífuit with propylene at 10oC the 

respiration rate increased proportionally lo propylene concentration, and ethylene 

production was very low not showing autocatalysis. This is characteristic of non- 

climacteric ífuit (Tucker and Grierson, 1987; Tucker, 1993). When propylene was 

rcmoved ífom kiwiífuit after 24 hours exposure at 10oC, CO2 production decrcased, 

resumed upon re-exposure lo propylene after 72 more hours and declined again when 

propylene was removed after 48 hours. This behaviour is similar with that of non- 

climacteric ífuit (Brady, 1987; Tucker and Grierson, 1987). 

The results of this study on autocatalytic ethylene production are compalible with the 

concept that two systems of ethylene production are involved in the ripening process 

of climacteric ífuit. System I represents the low levei of ethylene present in climacteric 

ífuit before the onset of ripening and in non-climacteric ífuit and system II represents 

the autocatalytic burst of ethylene production which accompanies lhe ripening process 

unique to climacteric ífuit (McMurchie et ak, 1972; Sfakiotakis and Dillcy, 1973). 

Sfakiotakis et al. (1989) suggested that the applicalion of propylene or ethylene in pre- 

climacteric fruit changes the status ífom system 1 to II. In kiwiífuit tempcralure plays 

an important role since low tcmperatures as 10oC strongly inhibit the conversion ífom 

system I to II. However, by altering temperature in avocado ífuit, only a moderated 

reduction on autocatalytic ethylene production was found (Metzidakis and Sfakiotakis, 

1993), suggesting that the controlling mechanism of ethylene production in kiwiífuit 

and avocado is different. 

Yang et al. (1986) suggested the existence in pre-climacteric ífuit of a 'ripening 

inhibitor' which prevenis the affinity of ethylene to bind to the rcceptors and/or the 

increase in the receptors. According lo this concept lhe low levei of system I ethylene 

produced by the climacteric ífuit plays an essential role by accelerating lhe destruction 

of the 'ripening inhibitor'. When lhe ethylene-receptor complex rcaches a criticai 
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concentration, it induces the synlhesis of both ACC oxidase and ACC synthasc 

resulting in autocatalytic system II ethylene production, and the synthesis of other 

enzymes associated with ripening. It has been recently reported that the plant senses 

ethylene by a protein kinasc cascade and that ethylene sensors are encoded by 

multigene families with members that are differentially expressed during plant growth 

and development (Theologis, 1995). Low temperatures as 10oC seem to interfere with 

lhe destruction of the 'ripening inhibilor' or the expression of genes responsible for the 

formation of ethylene sensors in kiwiffuit preventing the conversion of system I to 

system II. 

Respiration of kiwifruit showed to be sensitive to propylene as reported by other 

authors (Given, 1993; Yano and Hasegawa, 1993b). Besides, respiration rate was 

higher at 20 than at 10oC. This agrees with Arpaia et al. (1994a) who reported that 

kiwifruit respiration is low starling at about 3 to 7mg/kg/h at 0oC and has a 

temperature coefficient (Qio) ncar 3.0. 

The propylene concentration that allows for a half-maximal CO2 production (Km) 

showed values of 83.9pl/l at 10oC and 37.6p.l/l at 20oC. According to the concept of 

Christensen and Palmer (1967), in kiwifruit the process saturates for propylene 

concentrations of 839pl/l at 10oC and 376pl/l at 20oC. These results indicate that as 

temperature increases the propylene concentration that gives maximal CO2 production 

decreases. The Km for ethylene production was 33.3pl/l propylene at 20oC showing 

that the process saturates at propylene concentrations of 333pl/l. 

Treating kiwifruit with propylene at 10oC advanced ripening similar to non-climacteric 

fruit (Tucker and Grierson, 1987). Kiwifruit at 10oC, in which propylene was removed 

for some periods, did not completely ripe since ripening was caused only by externai 

propylene. At 20oC, fruit were equally ripe when continuously in propylene or when 

propylene was applied for only 24 hours because both induced internai autocatalysis of 

ethylene production. Since at 10oC fruit ripened in response to externai propylene but 

there was no induction of autocatalysis of ethylene production, the present work 

suggests that ripening and ethylene biosynthesis in kiwifruit are regulated by two 

independent mechanisms, in agreemcnt with Stavroulakis and Sfakiotakis (1993). 
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The present study suggests that kiwifruit stored at room lemperature behaves as a 

typical climacteric fruit in reference to respiralion and ethylene produclion, whilc al 

tempcraturc low as 10oC it behaves like a non-climacteric fruit. 
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Table 3.1. Ripening parameters of'Hayward' kiwifruit at harvest and after 240 hours 

at 10 and 20oC under a continuous, humidified, air stream (Air), air+130piyi 

propylene continuously (Propylene) and air+130pl/l propylene for 24 hours 

foliowed by air for 48 hours, air+130pl/l propylene for 24 hours and finally 

Hours Temperature Treatments Flesh Core SSC Flesh 

fírmness fírmness colour 

(0C) (kgí) (kgf) (% Brix) (a* value) 

0 (Harvest) 7.25 a** 16.60 a 5.92 e -17.94 d 

240 10 Air 6.62 a 15.93 a 6.57 de -17.83 d 

Prop->Air 1.89 c 4.84 c 10.53 c -16.35 c 

Propylene 0.92 d 3.82 d 12.46 b -14.68 b 

20 Air 5.93 b 15.19b 7.39 d -16.21 c 

Prop->Air 0.36 d 0.44 e 13.53 a -11.04a 

Propylene 0.38 d 0.46 e 13.42 ab -10.77 a 

**Values in the same column folio wed by the same letter are not significantly different 

by Duncan's multiple range test (a=0.05). 

Table 3.2. Ripening parameters of'Hayward' kiwifruit at harvest and after 260 hours 

at 10 and 20oC under a continuous, humidified, air stream, air+100pl/l, 

 air+400pl/l. and air+1000pl/l propylene.     

Hours Temperature Propylene Flesh Core SSC Flesh 

fírmness fírmness colour 

(0C) (pl/l) (Kgí) (kgí) (% Brix) (a* value) 

0 (Harvest) 9.97 a** 17.03 a 5.50 c -19.07 e 

260 10 0 9.07 a 16.63 a 5.13 c -18.64 e 

100 1.83 c 6.40 c 8.87 b -17.79 c 

400 1.50 c 4.77 d 9.07 b -18.09 cd 

1000 1.27 cd 3.20 c 9.60 b -17.82 c 

20 0 7.53 b 15.90 b 5.80 c -18.48 de 

100 0.40 d 0.63 f 10.80a -12.69 ab 

400 0.40 d 0.57 f 10.90a -12.32 a 

1000 0.37 d 0.57 f 11.23a -13.00 b 

**Values in the same column folio wed by the same letter are not significantly different 

by Duncams multiple range test (a=0.05). 
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CHAPTER 4. EFFECT OF LOW TEMPERATURE ON THE 

PROPYLENE INDUCED AUTOCATALYTIC 

ETHYLENE BIOSYNTHESIS, RESPIRATION AND 

RIPENING OF 'HAYWARD' KIWIFRUIT 

ABSTRACT 

Stavroulakis and Sfakiotakis (1993) reported that kiwiíruit lacks the ability for 

autocatalysis of ethylenc production below 11-14.80C due to low ACC availability, 

rather than ACC oxidasc activity. We showed in chapter 3 that kiwiíruit has a 

climacteric pattern above the mentioned temperature range and a non-climacteric 

pattern below it. The aim of this research was to identiíy the biochemical basis of 

inhibition of the propylene-induced ethylene production in kiwiíruit, below the above 

mentioned criticai temperature range. 

'Hayward' kiwiíruit were treated with 130pl/l propylene and air ífec of propylene at 

10 and 20oC. Ethylene and CO2 production, ACC content and ACC synthase and ACC 

oxidase activities, as well as changes in SSC and flesh firmness were mcasured during 

a period of 312 hours. Northern blot hybridisation using specifíc probes for ACC 

synthase and ACC oxidase were performed with total RNA, 192 hours after the 

commcncemcnt of the experimcnt. 

Kiwiíruit treated al 20oC with propylene, resulted in induced ripening and ethylene 

production. Ripening proceeded immediately afler propylene treatment, while ethylene 

autocatalysis needed a lag period of 72 hours. The latter event was attributed to the 

delay found in lhe induction of ACC synthase activity and consequently to the delayed 

increase of ACC content. In contrast, propylene treatment induced ACC oxidase 

activity with no lag period. Morcover, transcriplion of ACC synthase and ACC 

oxidase genes was only active in elhylene-producing kiwiíruit at 20oC. Respiration rate 

in propylcnc-trcated fruil at 20oC incrcascd with almost no lag period and showed a 

climacteric peak between 72 and 91 hours, while ethylene production showed a 

climacteric peak 220 hours after the initiation of the propylene treatment. 
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Contradictory, kiwifruit treated at 10oC with propylene, resulted in a strong inhibition 

of ethylene production which was attributed to the low activities of both ACC 

synthase and ACC oxidase as well as the low initial ACC levei. Inlerestingly, fruit 

treated with propylene at 10oC appeared to be able to transcribe the ACC oxidase but 

not the ACC synthase gene. However, propylene induccd ripening of that ífuit with 

almost the same rate found for the propylene-treated fruit at 20oC. 

It should be noted that during the whole experimental period (312 hours) lhe control 

fruit (treated with air free of propylene) showed no ripening or ethylene production at 

either 10 or 20oC. 

We propose that the main reasons for the inhibition of the propylene induced 

(autocatalytic) ethylene production in kiwifruit at low temperature (<10oC), are 

primarily the suppression of the propylene-induced ACC synthase gene expression and 

the possiblc post-transcriptional modification of ACC oxidase. 

INTRODUCTION 

The onset of ripening in climacteric fruit is marked by a burst of ethylene production. 

Autocatalytic ethylene production in climacteric fruit can be caused by applicalion of 

exogenous ethylene above a threshold levei (Abeles, 1973). Hyodo and Fukasawa 

(1985) and Sfakiolakis et al. (1989) observed the autocatalytic production of ethylene 

in kiwifruit at 20-210C aíler exceeding a threshold levei of O.lpl/kg/h. It is not clear if 

the threshold levei causes ripening or stimulates ethylene production to physiologically 

active leveis, which in turn cause fruit ripening (Sfakiotakis et al., 1989). 

Kiwifruit is very sensitive to the exogenous applicalion of ethylene or propylene 

(McDonald and Harman, 1982; Arpaia et al., 1986; Sfakiolakis et al, 1989). 

However, contrarily to most fruit, ethylene autocatalysis induced by propylene 

proceeded in kiwifruit at 20oC with a lag period relatively long (80 hours), while 

ripening started within a short period (<20 hours), suggesting that for autocatalysis of 

ethylene production there is a rcquirement for de novo synthesis rather lhan the 

activation of pre-existing enzymes (Stavroulakis and Sfakiotakis, 1995). 
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Stavroulakis and Sfakiotakis (1993) reported that kiwifruit is an unique climacteric 

fruit which, at temperatures below a criticai range of 11-14.80C, lacks the ability for 

autocatalysis of ethylene production even when induced by propylene, the limiling 

factor being the ACC availability rather than the ACC oxidase activity. Once induced 

the autocatalysis at temperatures above 11-14.80C, low temperature reduces ethylene 

production by reducing the rate of the enzymatic reaction by itself. 

Ethylene biosynthesis is strictly regulated, and is induced by a number of differenl 

signals, including mechanical trauma, pathogen infection, auxins and developmental 

factors in senescing flowers and ripening fruit (Yip et ai, 1992). Tucker (1993) 

reported that the conversion of methionine to SAM, which is used in other 

biochemical pathways, is considered lo be constant throughout the developmenl and 

ripening of the fruit. Thus, the two key control enzymcs for the biosynthesis of 

ethylene are ACC synthase and ACC oxidase. The conversion of SAM to ACC, 

catalysed by ACC synthase, is generally regarded as the rate limiting step (Yip et al., 

1992). Moreover, Kende and Boller (1981) and Yoshii and Imaseki (1982) reported 

that ACC synthase is a labile enzyme with an apparent half-lifc of about 0.5 hours. 

Thus, the activity of ACC synthase in the tissue is regulated by both the synthesis and 

the decay of the enzyme (Yang and Hoffman, 1984). Though ACC oxidase is 

expressed constitutively in most tissues, its synthesis increases during ripening in 

tomato (Picton et al., 1993). 

ACC synthase is encoded by multigene families in ali species examincd, and differential 

regulation of the individual genes has been reported (Huang et al., 1991; Olson et al., 

1991). Multiple ACC oxidase genes have been isolated from both tomato and petunia. 

and these also are differentially regulated (Tang et al., 1994; Barry et al., 1996). 

The mechanisms of initiation. regulation and the co-ordination of lhe diverse 

biochemical changes during ripening are not yet wcll underslood. However, they must 

rely on an interplay belween the regulation of gene expression and enzyme activity 

(Tucker, 1993). 

The objective of the presenl work was to identify the biochemical basis of inhibition of 

the propylene-induced ethylene production in kiwifruit, below the above mentioned 
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criticai temperature range. It was investigated the effect of temperatures below and 

above the criticai range for ethylene production (11-14.80C) reported by Stavroulakis 

and Sfakiotakis (1993) on ethylene autocatalysis induced by propylene, ACC synthase 

and ACC oxidase activities, ACC content and CO2 production. as well as changes in 

SSC and ílesh firmness. Also, isolation of RNA and northem blotting using the 

complementary probes for ACC synthase and ACC oxidase transcripts was done to 

identify if low temperature exerts its inhibitory effect on these enzyme genes at the 

transcription levei. 

MATERIAL AND METHODS 

1. Plant material and treatments 

Kiwiífuit (cv. Hayward) were harvested ífom a commercial orchard in Pieria-North 

Greece with 10.0 kgf ílesh firmness and 6.7 (% Brix) SSC. Aíler selection for 

uniformity of size and ffeedom ífom defects, ífuit were placed in 5-litre jars through 

which a continuous, humidified, air stream with 130pl/l propylene or air ífee of 

propylene was passed at a rate of lOOml/min. Each set of six jars was kept in a 

separate water bath at a constant temperature of 10 and 20oC. Experiments were sei 

within 24 hours. The experimental design was a two-factor experiment distributed in a 

complete randomised design with the temperatures as first factor, propylene treatment 

as second and the jars as replications. Each treatment consisted of 4 replications with 

30 ífuit per replication. 

At intervals of 0, 48, 120. 192, 240 and 312 hours, 6 ífuit per replication were 

removed ífom the jars and ACC content, ACC synthase and ACC oxidase {in vivo) 

activities, ílesh firmness and SSC were measured. Ethylene and CO2 production were 

measurcd at intervals of 24 hours. Total RNA extraction and Northem blotting were 

pcrformed 192 hours aftcr the experiment started. 
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2. Measurements 

2.1. Gas analysis and ripening parameters 

Gas analysis (ethylene and COi production) and ripening parameters (ílesh firmness 

and SSC) were measured as described in chapter 3. 

2.2. l-aminocyclopropane-l-carboxylate synthase (ACC synthase) activity 

The ACC synthase was extracted from flesh tissue without seeds and its activity was 

assayed by the method described by Bufler (1984) with the foliowing modifícations: 

150mM Tricine-KOH (pH 9.0) were used and 0.5mM PMSF and 150pM lodoacetate 

were added in the extraction buffer, in order to bring the pH of the extract to 8.5 and 

to inhibit the protease actinidin, respectively. The extract was fillered through 4 layers 

of cheeseclolh and cenlrifuged for 20 min at 10700g. Aliquots of cnzyme preparation, 

after sephadex G-50 column separation, were assayed in the presence and absence of 

50pM SAM. One unit of ACC synthase activity was defined as the formation of 1 

nmol of ACC/2hrs at 30oC. 

2.3. 1-aminocyclopropane-l-carboxilic acid (ACC) content 

For determination of ACC leveis in the tissue, after the centrifugation step, aliquots 

(0.4pl) of the homogenate prepared for the ACC synthase assay were analysed directly 

by the method of Lizada and Yang (1979) in accordance with Kende and Boller 

(1981). 

2.4. l-aminocyclopropane-l-carboxylate oxidase (ACC oxidase) activity 

The ACC oxidase activity was determined in vivo by mcasuring the conversion of 

added ACC to ethylene (Cameron et ai., 1979). Thrce cylinders of 0.5g (7mm 

diameter) ílesh tissue without seeds were cut and incubated for 1.5 min, under 

vacuum, in vials containing 350 mM manitol in the presence or absence of ImM ACC. 

The excess solution was removed, the vials were sealed, and gas samples were taken 

after 30 min at 20oC for ethylene analysis by gas chromatography. 
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2.5. RNA extraction 

Total RNA was isolated from flesh tissue without seeds based on the method of Slater 

et al. (1985). 

Five grams of ífozcn kiwilfuit flesh (ífee of seeds) were homogenised using a mortar 

and pestlc in a 5ml solution of 6% (w/v) p-amino salicylic acid, 1% (w/v) Tri- 

isopropyl naphthalene sulphonic acid - sodium salt (TNS), 5% (v/v) phenol reagent 

and 50mM Tris-HCl (pH 8.5). Five ml of phcnoFchloroform solution were also added. 

The homogenate was spun at 10K in a SS34/MSE rotor for 15 min. The supematant 

was transferred to new lubes and re-extraction of the organic phase occurred once 

more with homogenising buffer. Nucleic acids were precipitated with 0.1 volume of 

3M NaOAc and 2 volumes ethanol al -20oC for Ih, then spun for 10 min at 5K. 

Supernatant was discarded and the pellct washed with 80% ethanol. The pellct was re- 

suspended in Iml of sterile water and extracted with the same volume of 2x 

cetyltrimethylammonium bromide (CTAB) extraction buffer (2% (w/v) CTAB, 

lOOmM Tris-HCl pH 8.0, 20mM EDTA pH 8.0 and 1.4M NaCl). Two volumes of 

precipilation buffer (1% (w/v) CTAB, 50mM Tris-HCl pH 8.0 and lOmM EDTA pH 

8.0) were added. The precipitate was then spun down at 7.5K for 45 min at 90C. 

The pellet was then re-suspended in Iml of Ix CTAB extraction buffer and the same 

volume of precipilation buffer was added. The solution was spun at 7.5K for 20 min, 

pellet was re-suspended in 2ml sterile water and precipitated with an equal volume of 

6M LiCl at -20oC for 1.5 hours. Following, it was spun at 7.5K for 20 min and the 

pellet re-suspended in 300pl of sterile water. A 0.1 volume of 3M NaOAc and 2 

volumes of ethanol were added and precipilation occurred at -20oC overnight. 

Spun occurred in a microfuge al full speed for 15 min and pellet was washed with 80% 

ethanol. The RNA pellet was re-suspended in lOOpl sterile water and quantifíed by 

measuring its absorbancc at 260nm. Conccntration was adjusted lo 2pg/pl and then 

stored al -80oC. 
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2.6. Preparation of radioactively labelled nucleic acid probes 

The ACC synthase probe was a 311bp cDNA (KWACC1) írom ethylene-treated 

kiwiíruit (Ikoma et al., 1995). It was used thc wholc inseri gently ceded by Dr. loshino 

from the Fruit Tree Research Station, Okitsu-Japan. The ACC oxidase probe used was 

a 1230bp cDNA clone (pMELl) from a climacteric melon fruit (Balague et al., 1993). 

The insert used was from the 378 to 1079bp. Both KWACC1 and pMELl cDNA 

inserts were labelled using a nick-translation kit (Amersham) in the presence of (a-32P) 

dATP and (a-32P) dCTP, as described by the manufacturer and used as probes. 

2.7. Northern blot hybridisation 

Total RNA (lOpg) was fractionated on a formaldehyde-agarose gel before blotting 

onto a Hybond-N membrane (Amersham) (Sambrook et al., 1989). The membrane 

was then baked al 80oC for 2 hours to fix the RNA. Prehybridisation and hybridisation 

were performed with the Church buffer (1M NaHPCTi/NafTPC^ pH 7.0) (Church and 

Gilbert, 1984) at 520C for ACC synthase and 550C for ACC oxidase. Prehybridisation 

occurred for 30 min and hybridisation ovemight. The blots were washed three times 

with a solulion of 0.15M NaCl+15mM sodium citrate NaOH pH 7.0, 0.1% SDS, for 

20 min at the hybridisation temperature. After drying, the blots were exposed to X-ray 

lilms with an inlensilying screen at -80oC. 

3. Statistical analysis 

Statistical analysis were performed as described in the methods of chapter 3. 

RESULTS 

1. Firmness 

Flesh firmness of kiwifruit treated with propylene decreased signifícantly during the 

fírst 120 hours at both 10 and 20oC (Fig. 4.1 A). Fruit softcncd to a ripe value (<lkgí) 

in 220 hours at 10 and in 120 hours at 20oC. Allhough firmness of fruit treated with 
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propylene was always higher at 10 than at 20oC, differences were not statistically 

signiíicant. 

At both 10 and 20oC, fruit not treated with propylene did not ripe during the 

experiment showing a flesh firmness significantly higher than the propylene treatments 

(Fig. 4.1 A). During the experiment, although fruit at 20oC did not completely ripe they 

decreased significantly their flesh firmness, while at 10oC firmness remained almost 

constant. 

2. Soluble solids content (SSC) 

The SSC of fruit treated with propylene increased significantly reaching a ripe value 

(14% Brix) after 120 hours at 20oC and 240 hours at 10oC (Fig. 4.1B). Values were 

significantly lower at 10 than at 20oC. 

In air free of propylene, kiwifruit did not show significant changes of SSC at any 

temperature (Fig. 4.1B). 

3. Ethylene production 

For fruit kept at 20oC, autocatalysis of ethylene production was induced by propylene 

after the fruit reached a threshold levei of ethylene production of 0.2pl/kg/h and with a 

lag period of 72 hours (Fig. 4.2Aa). For fruit kept in air at 10 and 20oC and for fruit 

treated with propylene at 10oC ethylene production did not proceed over 0.2pl/kg/h. 

At 20oC, ethylene production reached a peak of 300pFkg/h after 216 hours exposure 

to propylene and decreased significantly thereafter (Fig. 4.2A). 

4. Carbon dioxide production 

At 10oC, the respiration rate of fruit treated with propylene increased significantly 

within 48 hours and remained constant thereafter (Fig. 4.2B). Fruit at 20oC had a 

significant increase in respiration within 24 hours of exposure to propylene, reached a 

peak after 72 hours and decreased to a minimum after 168 hours. As ethylene was 
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reaching the climacteric pcak, respiration rate increased again signifícantly and then 

remained almost constanl (Fig. 4.2A and B). 

For fruil trcalcd with propylene, CO2 production was signifícantly higher in íruit kept 

at 20 than at 10oC, with a diíTerence of 30-40ml/kg/h (Fig. 4.2A). Respiration of fruit 

treated with propylene at 10oC was signifícantly higher, with a difference of 10- 

15ml/kg/h, than of fruit kept in air at 20oC. The respiration rate of fruit not treated 

with propylene almost did not change during the experiment, although it was slightly 

higher at 20 than at 10oC. 

5. l-aminocyclopropane-l-carboxilic acid (ACC) content 

The ACC content of kiwifruit was almost null at harvest, but increased signifícantly 

afler 120 hours in fruit treated with propylene at 20oC (Fig. 4.3A). The ACC reached a 

maximum levei afler 240 hours and decreased signifícantly thereafter. 

Fruit treated with propylene at 10oC and fruit in air free of propylene at both 10 and 

20oC were able to produce only small amounts of ACC without significam increases 

during the experiment (Fig. 4.3A). 

6. l-aminocyclopropane-l-carboxylate synthase (ACC synthase) 

activity 

ACC synthase activity was very low at harvest, but increased signifícantly when fruit 

were treated with propylene at 20oC after a lag period of about 120 hours (Fig. 4.3B). 

Pcak values were achieved afler 240 hours and decreased signifícantly thereafter. 

Fruit treated with propylene at 10oC and fruit in air free of propylene at 10 and 20oC 

showed very low ACC synthase activity without significam incrcasc during the 

experiment (Fig. 4.3B). 
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7. l-aminocyclopropane-l-carboxylate oxidase (ACC oxidase) 

activity 

In fruit treated with propylene at 20oC, ACC oxidase activity was almost null at 

harvest, startcd to increase significantly after 48 hours, rcached a peak after 240 hours 

and decreased sharply thereafter (Fig. 4.3C). Fruit treated with propylene at 10HC and 

fruit in air ffee of propylene at 10 and 20oC did not show a significant increase in ACC 

oxidase activity during the experiment. 

8. ACC synthase and ACC oxidase gene transcription 

After 192 hours exposure to propylene, il was found ACC synthase and ACC oxidase 

gene transcription in ethylene producing kiwifruit at 20oC (Fig. 4.4). Kiwiffuit treated 

with propylene at 10oC did not show transcription of ACC synthase gene up to 192 

hours, but it showed for ACC oxidase. The expression of ACC oxidase was stronger 

at 20 than at 10oC. 

Fruit not treated with propylene did not show transcription of ACC synthase or ACC 

oxidase genes at any tempcrature, as well as, just harvested fruit (Fig. 4.4). 

DISCUSSION 

The application of propylene enhanced ripening of mature fruit by initiating a rapid 

softening and increasing the total sugar levei, while the burst of endogenous ethylene 

biosynthesis at 20oC occurred very late in ripening, just bcfore fruit senescence as 

reported by Stavroulakis and Sfakiotakis (1993) and Whittaker et al. (1997). 

Tempcrature of 10oC slowed down a little the ripening but inhibited drastically 

autocatalysis of ethylene production as shown previously (Stavroulakis and 

Sfakiotakis, 1993). The temporal separation of ethylene sensilivity and climacteric 

ethylene production in kiwifruit suggests that bolh ripening and ethylene autocatalysis 

are regulated by two independem mechanisms (Stavroulakis and Sfakiotakis, 1993). 

The burst in CO2 production that occurred immcdiately after propylene application 
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seems to be a response to the stress induced by exogenous propylene and the second 

increase a response to the endogenous ethylene production (Tucker, 1993). 

Although kiwifruit is classified as a climacteric íruit when ripcned at 20oC (chap 3), its 

behaviour is somewhat atypical in the way it is ripening in response lo exogenous 

propylene prior to autocatalysis of ethylene occurs. In this respect, kiwifruit differs 

from avocado and tomato, for instance, which are characterised by a surge in ethylene 

production, respiration and ripening upon exposure of mature fruit to externai ethylene 

(Metzidakis and Sfakiotakis, 1989; Abeles et ai, 1992), 

It is believed that the rate limiting step in ethylene biosynthesis pathway is catalysed by 

ACC synthase (Theologis, 1992; Yip et ai, 1992). However, the aclivity of ACC 

oxidase also increases in some plants in response to internai or externai factors that 

induce ethylene formation (Woodson et ai, 1992; Kende, 1993). In lhe present work. 

transcripts of ACC synthase and ACC oxidase genes were found afler 192 hours 

propylene treatment at 20oC, corresponding to the climacteric rise of ethylene 

production. Similar results were obtained by Ikoma et al. (1995) for ACC synthase 

and Whiltaker et al (1997) for ACC synthase and ACC oxidase in kiwifruit. In 

addition, the latter found ACC synthase gene transcription to increase with climacteric 

ethylene production in ripe fruit, whilc ACC oxidase transcripts were induced earlier, 

immediately after treatment with exogenous ethylene, reaching a maximum before the 

ethylene burst. This may explain the fact that ACC oxidase activity starls immediately 

afrer propylene treatment, while ACC synthase needs a lag period before to start its 

activity. Ikoma et al. (1995) found transcription of KWACC1 (a gene induced by 

ethylene in kiwifruit) afler 48 hours exposure lo ethylene with increasing leveis of 

expression till 144 hours. 

Whittaker et al. (1997) support lhe concept that ACC synthase has a conlrolling role 

in ethylene biosynthesis early in lhe climacteric. Later in the post-climacteric, ACC 

synthase transcript leveis remain high, suggesling that ACC oxidase activity is 

impaired late in ripening as for olher fruit (Abeles et al, 1992). In the present work, it 

was found that late in lhe climacteric, the decline in ethylene production was due to 

decrcased ACC synthase and ACC oxidase activities. However, it is still possible that 
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ACC oxidase is impaired bcfore ACC synthase since there was some accumulation of 

ACC in the post-climacteric. 

ACC synthase activity of kiwiífuit treated with propylene al 20oC increased 

significantly only after a lag period of about 120 hours coincidenl with the climacteric 

rise of ethylene production, while ACC oxidase activity started almost after propylene 

treatment. Based on these findings, we coníirm that ACC synthase is the responsible 

for the atypical behaviour of kiwiífuit at room temperature (=20oC) which needs a lag 

period of about 68-79 hours prior to autocatalysis of ethylene production as 

postulated by Stavrolakis and Sfakiotakis (1995) and Whittaker et al. (1997). 

Kiwiífuit has been classified as an unique climacteric ffuit which at low temperature 

lacks the ability for autocatalysis of ethylene production (induced by propylene) being 

the limiting factor the ACC availability rather than the ACC oxidase activity 

(Slavroulakis and Sfakiotakis, 1995). We found a non-climacteric behaviour of 

kiwiífuit at ]0oC (chapter 3). The present research showed that inhibition of ethylene 

production at 10oC was associated with low activities of ACC synthase and ACC 

oxidase. 

An interesting observation was the fact that we found no transcription of ACC 

synthase gene in kiwiífuit treated with propylene at 10oC, while there was transcription 

of ACC oxidase. It seems that temperature plays a crucial role in controlling lhe gene 

for ethylene induced ACC synthase and, as a conscqucncc, the biosynthesis of 

endogenous ethylene in kiwiífuit, making it diíferent ífom the other climacteric ífuit. 

However, it was found that kiwiífuit infected with Botrytis cinerea produced ethylene 

and showed increased leveis of ethylene at 0 and 10oC (Niklis et al., 1993), suggesting 

that the gene for wound induced ACC synthase is not affectcd by low temperature. 

More research is needed to clarify this point. 

There is an emerging picture that ACC synthase is encodcd by a highly divergent 

multigene family (Thcologis, 1992). In tomato and zucchini. the enzyme is encoded by 

a divergent multigene family differentially expressed during ripening, wounding and 

auxin treatment (Nakajima et al., 1990; Van Der Staeten et al., 1990; Huang et al., 

1991; Olson et al, 1991; Roitman et al, 1991; Sato et al, 1991; Yip et al, 1992; 
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Botella et al., 1995). Similarly, in Arabidopsis, ACC synthase genes are differentially 

expressed in response to developmental, hormonal and cnvironmental stimuli (Liang et 

al, 1992). Like ACC synthase, ACC oxidase is encoded by a multigene family whose 

expression seems to bc differentially regulated (Bouzayen et al., 1992). Ikoma et al. 

(1995) isolatcd two ACC synthase genes ffom kiwiífuit: KWACC1 which was 

expressed afler wounding and ethylene trealment and, KWACC2 which was expressed 

only after wounding. 

Our results suggest that temperature as low as 10(,C inhibits the expression of the ACC 

synthase gene that is induced by propylene. For ACC oxidase, low temperature exerts 

its effect mostly on rcducing enzyme activity or maybe by inhibiting translation of the 

mRNA and the synthcsis of the enzyme. This is supported by Wang (1989) who 

postulated that in tissues where there is accumulation of transcripts of the enzymes of 

ethylene biosynthesis pathway at low temperatures, but ethylene is nol produced until 

after being transferred to warmer temperatures, the translation and the synthesis of a 

new protein were not completed at chilling temperatures. 

Mature unripe kiwiífuit not treated with propylene did not show transcription of ACC 

synthase or ACC oxidase for up to 192 hours at 10 or 20oC. Thus, in kiwiífuit, as 

ACC synthase (Thcologis, 1992; Woodson et al., 1992; Gaudiere and Vendrell, 1993), 

ACC oxidase is not a constitutive enzyme as presumed by Acaster and Kendc (1983) 

and Yang and Hoffman (1984), but is induced by ethylene treatment or other stimuli as 

for a range of other tissues (Maunders et al., 1987; McGarvcy et al., 1992; Ross et al., 

1992; Woodson et al., 1992; Kende, 1993; Kim and Yang, 1994; Tang et al., 1994). 

59 



Chapter 4. Propylene induced ethyIene and ripening influenced by low temperaiurc 

A 

\ N. ' " • - - 

* ^ . 

20oC+Air 

 ♦ 

V *    

LSD | 

10oC+130pl/l Prop 
20'>C+130pl/l Prop^â— 

 ~~—■—4   ♦ 

 1 1 1   1 1 1  -4 ^ 

40 80 120 160 200 
HOURS 

240 280 320 

B 20oC+130pl/l Prop    
     

10oC+130pl/l ProjD 

lsd| 

20"C+Air  ■ 
•   ♦ 

 1 1 1 1 1 1 1  
0 40 80 120 160 200 240 280 320 

HOURS 

Figure 4.1. The eífect of tcmpcrature (10 and 20oC) and propylene (130pl/l) on 

firmness (A) and SSC (B) of harvested 'Hayward' kiwiífuit kepl in a 

conlinuous. humidified, air stream. 

LSD al a=0.05. 
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in a continuous, humidiííed, air stream. Aa shows a blow up graph of thc 
threshold levei for initiation of ethylene autocatalysis. 

LSD at a=0.05. 

61 



Chapter 4. Propylene induced ethylene and rípening influenced by low temperature 

2.0 

20oC+130mI/I Prop 1.6 -- 

^ 1.2 - 

LSD 
^ 0.8 - O 

20oC+Air 0.4 ■■ 
10oC+Air 

0.0 
120 240 280 40 80 160 200 

HOURS 

10oC+130m1/1 Prop 

320 

60 x 

20oC+130pl/l Prop 

40 

30 
LSD 

>- 20 O) 

10 
10oC+130pl/l Prop 20oC+A r 

10oC+Air 
r f 

40 80 120 160 200 
HOURS 

240 280 320 

20oC+130pl/l Prop 

40 

lu 30 

LSD 

O 

10 "C+130ul/l Prop 10 10oC+Air 

20oC+Air 
9 

240 280 120 40 160 200 
HOURS 

320 

Figure 4.3. The efifect of temperature (10 and 20oC) and propylene (130pl/l) on ACC 

content (A) and ACC synthase (B) and ACC oxidase (C) activities of 

harvested 'Hayward' kiwifruit kept in a continuous, humidifíed, air stream. 

1 unit/mg = Ipmol ACC/mg protein/2hours. 

LSD at a=0.05. 
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Figure 4.4. The eíFecl of temperature (10 and 20oC) on ACC synthase and ACC 
oxidase transcription in 'Hayward kiwifruit after 192 hours exposure to a 

continuous, humidified, air stream at 10oC+air free of propylene (A), 

10oC+130pl/l propylene (B), 20oC+air free of propylene (C), 20oC+130pl/l 

propylene (D) and al harvest time (E). I- Northern blot hybridisation. Total 

RNA from each sample was isolatcd and analyscd by Northern blot 
hybridisation using the cDNA probes for ACC synthase (KWACC1) and 

ACC oxidase (pMELl). II- Agarose-gel electrophoresis of total RNA 

slained with ethydium bromide. III- Corresponding ACC synthase and 

ACC oxidase activities, ACC contenl and ethylene production. 

1 unit/mg = 1 pmol ACC/mg protein/2hours. 
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CHAPTER 5. EFFECT OF HIGH TEMPERATURE STRESS ON 

ETHYLENE BIOSYNTHESIS, RESPIRATION AND 

RIPENING OF 'HAYWARD' KIWIFRUIT 

ABSTRACT 

Temperatures up to 350C have been shown to increase ethylene production and 

ripening of the propylene treated kiwifruit (Stavroulakis and Sfakiotakis, 1993). 

'Hayward' kiwifruit were treated with 130p,l/l propylene and air free of propylene at 

temperatures of 30, 34. 38, 40, 42 and 450C in order to study the effect of high 

temperaturc stress on ethylene and CO2 production and ripening. 

At 30-40oC, ethylene and CO2 production, ACC content and ACC synthase and ACC 

oxidase activities, as well as changes in flesh and core firmness and SSC were 

measured during a period of 120 hours. At 38-450C, CO2 production, flesh and core 

firmness, SSC and flesh colour were measured during a period of 72 hours. 

Propylene induced ripening as evaluated by the increase in softening and SSC of 

kiwiífuit at 30-34oC. Fruit failed to ripe normally al 380C showing the core hard when 

the flesh was soft, and above 40oC ripening was inhibited. 

Propylene also induced autocatalysis of ethylene production aífer a lag period of 24 

hours at 30-34oC with concomitant induction of ACC production and ACC synthase 

and ACC oxidase activities. Induction of ethylene production occurred after 72 hours 

at 380C. ACC production was similar at 30-38oC and was very low at 40oC. ACC 

oxidase and ACC synthase activities dccreased with temperature increase above 30oC, 

but ACC oxidase dccreased at a faster rate than ACC synthase. ACC oxidase aclivity 

declined aífer 96 hours at 30-34oC, while ACC synthase remained almost conslanl. 

Ethylene production was drastically reduced at 380C and almost null at 40oC. This was 

attributed to the rcduced activity of ACC oxidase ralher than the reduced activity of 

ACC synthase or ACC production. Fruit not treated with propylene showed no 

ripening response nor ethylene and ACC production or ACC synthase and ACC 

oxidase activities. 
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In propylene-free atmosphere, kiwifruit respiration rate increased with temperature till 

450C reaching the respiration peak in 10 hours. At temperatures up to 380C propylene 

treatment enhanced the respiration rate. Above this temperature, CO2 production was 

similar in fruit treated or not with propylene. After 48 hours at 45HC fruit showcd 

injury symptoms and started then a great decrease in CO2 production and a faster 

fading of green colour. 

The results suggest that high temperature stress inhibits ripening by inhibiting ethylene 

production and sensitivity while respiration proceeds until the breakdown of the 

tissues. Exposing kiwifruit to unusual high temperatures (>380C) causes uneven 

ripening and has a detrimenlal effect on fruit quality paramcters such as fírmness, SSC 

and flcsh colour. 

INTRODUCTION 

High temperatures (above 350C) have been reported to inhibit ripening of many fruits 

(Mitchell, 1986). The effect of high temperature on inhibition of ethylene production 

applied as heat shock has been studied in the last few years (Klein and Lurie, 1990; 

Lurie and Klein, 1990; 1991). However, this technology may lead to physiological 

disordcrs (Pech et al., 1994). 

Ethylene production usually exhibits a Q10 value of about 2 between 20 to 40oC, with 

further increases in temperature generally resulting in a decline in the rate of ethylene 

production (Field, 1985). However, inhibition of ethylene production al temperatures 

up to 40oC does not appear lo be associated with permanent tissue damage. since 

return of the tissue to a permissive lower temperature results in the resumption of 

ethylene production (Field, 1985). 

The failure of fruit lo ripe normally at high temperatures has been atlributed to lhe 

reduction of ethylene biosynthesis at lhese temperatures (Eaks, 1978). The stress 

resulting from high temperature appears to inhibit more ACC oxidase than ACC 

synthase (Yu et al., 1980; Field, 1985). Apelbaum et al. (1981) proposed that high 

temperature causes impairment of ethylene production by perlurbing cellular 
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membranes, resulting in thc inhibition of the membrane-associated ACC oxidase. This 

finding was supported by Yu et al. (1980) but in contrast to Horiuchi and Imaseki 

(1986) and Biggs et al. (1988) who found ACC synthase more sensitive to high stress 

temperature than ACC oxidase. However, Biggs et al. (1988) reported lhat the 

removal of high temperature stress resulted in more rapid recovery of ACC synthase 

than ACC oxidase activity. 

Many climacteric ífuit are inhibited írom ripening or exhibit abnormal ripening at high 

temperatures. The respiration rate and ethylene production of harvested pears and 

avocados were suppressed at temperatures above 30-35oC and ífuit suífered from heat 

injury (Maxie et al., 1974; Lee and Young, 1984). At temperatures above 30oC, colour 

developmenl, softening, respiration rate and ethylene production of tomatoes were 

suppressed (Yakir et ah, 1984; Inaba and Chachin, 1988). Inaba and Chachin (1989) 

reported a maximum ethylene production in tomatoes at 250C, a decrease thereafler 

and only small amounts of ethylene at 40oC. 

Eaks (1978) found lypical climacteric patterns of respiration in avocado ífom 20 to 

350C, with lhe climacteric maximum increasing with temperature and a respiration rate 

decreasing with time at 40oC. Inaba and Chachin (1989) reported that the peak 

respiration rate of tomato ífuit was higher at 30oC, even though the levei of ethylene 

production was lower than at 250C. 

Stavroulakis and Sfakiotakis (1993) found increasing values of ethylene production 

(induced by propylene) in kiwiffuit ífom 17 to 350C. Ripening was induced and was 

similar belween 20 to 350C. Hence, a systematic sludy lo understand bases of 

inhibition of ethylene production and ripening under heat stress has not been 

conducled. 

The purpose of this study was to investigate lhe effect of high temperature stress on 

ACC synthase and ACC oxidase activities, ACC content, ethylene and CO2 production 

and ripening of "Hayward* kiwiffuit induced or not by propylene. The temperature 

limils for the inhibition of the above were also defined. 
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MATERIAL AND METHODS 

1. Plant material and treatments 

1.1. High temperature limit for ethylene production 

Kiwifruit (cv. Hayward) were harvested from an orchard in Pieria-North Greece with 

5.5 kgf flesh firmness and 12.1 (% Brix) SSC. After selection for uniformity of size 

and freedom from defccts, fruit werc placed in 5-litre jars through which a continuous, 

humidified, air stream with 130fil/l propylene or air free of propylene was passed at a 

rate of lOOml/min. Each set of six jars was kepl in a separate water bath at a constant 

temperature of 30°, 34°, 38° and 40oC. Expcriments were set within 24 hours. The 

experimental design was a two-factor experiment distributed in a complete randomised 

design with the temperatures as first factor, propylene treatment as sccond and the jars 

as replications. Each treatment consisted of 4 replications with 30 fruit per replication. 

1. 2. High temperature limit for respiration 

Kiwifruit (cv. Hayward) were harvested from an orchard in Pieria-North Greece with 

3.5 kgf flesh firmness and 11.7 (% Brix) SSC. After selection for uniformity of size 

and freedom from defeets, fruit were analysed and experiments set as described above, 

but at temperatures of 38, 42 and 450C. Each treatment consisted of 4 replications 

with 24 fruit per replication. 

2. Measurements 

For definition of high temperature limit for ethylene production, 6 fruit per replication 

were removed from the jars at intervals of 0, 48, 72, 96 and 120 hours. Measurements 

of ACC contcnt, ACC synlhase and ACC oxidase {in vivo) activities, firmness of flesh 

and core and SSC took placc on thesc fruit. Ethylene production was measured daily. 

Respiration was measured three times in the first day and once per day thereafter. 

For definition of high temperature limit for respiration, firmness of flesh and core, SSC 

and flesh colour (a* value) were measured at intervals of 0, 24, 48 and 72 hours. 
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Ethylene production was measurcd daily. Carbon dioxide production was measured 

four times in thc first day and once per day thcrcafter. 

2.1. Ripening parameters and gas analysis 

Ripening parameters (flesh and core firmness, SSC and flesh colour) and gas analysis 

(ethylene and CO2 production) were measured as describcd in chapter 3. 

2.2. ACC content, ACC synthasc and ACC oxidase activities 

ACC content and ACC synthase and ACC oxidase activities were measured as 

described in chapter 4. 

3. Statistical analysis 

Statistical analysis were performed as described in lhe methods of chapter 3. 

RESULTS 

1. High temperature limit for ripening and ethylene production 

1.1. Firmness 

Flesh firmness of kiwifruit treated with propylene significantly decreased during 72 

hours at 30-38oC, while at 40oC the decrease was significant only between 0 and 96 

hours (Fig. 5.IA). Fruit at 30-34oC reached a ripe firmness value (clkgf) in 72 hours. 

while at 380C needed 120 hours. Fruit at 40oC did not ripe during the experimenl 

showing a flesh firmness significantly higher than lhe other treatments after 72 hours. 

Core firmness of kiwifruit treated with propylene followed the same pattern as ílesh 

firmness at 30 and 340C (Fig. 5.2A). However. at 380C fruit failed to ripe normally; 

the core was still hard when flesh had softened to eating-ripeness, presenting values 

signifícantly higher than at 30 and 340C. The 40oC trcalment signifícantly reduced core 

soflening in comparison with thc other temperatures. 
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There were no signifícant changes in ílesh and core firmness in kiwifruit not treated 

with propylene during the experimental time at any temperature (Figs. 5.1B and 5.2B). 

1.2. Soluble solids content (SSC) 

The SSC increased significantly during 72 hours when fruit were treated with 

propylene in ali temperatures (Fig. 5.3A). Although values were always lower at 40oC 

than in the other treatments, diíFerences were not signifícant. In air free of propylene, 

kiwifruit did not have signifícant changes of SSC during the experimental time at any 

temperature (Fig. 5.3B). 

1.3. Ethylene production 

Autocatalysis of ethylene production was induced by propylene after kiwifruit reached 

a threshold levei of 0.1-0.3pl/kg/h ethylene production with a lag period of 24 hours at 

30 and 340C and 48 hours at 380C (Fig. 5.4Aa). 

Temperature of 380C significantly reduced ethylene production induced by propylene 

(Fig. SAA). After 120 hours exposure to propylene, fruit reached a value of 40pl/kg/h 

ethylene production at 380C, while at 30 and 340C values were of 320 and 380pl/kg/h, 

respectively. Ethylene was drastically inhibited at 40oC, where its production did not 

proceed over 2pl/kg/h (Fig. 5.4Aa). 

Kiwifruit not treated with propylene presented very low values oí ethylene production 

and were not able to induce autocatalysis during the experiment (Fig. 5.4B). 

1.4. 1-aminocyclopropane-l-carboxilic acid (ACC) content 

The ACC leveis of kiwifruit treated with propylene increased significantly after 48 

hours at 30, 34 and 380C without signifícant ditferences between them (Fig. 5.5A). At 

40oC, fruit were able to produce only small amounts of ACC without signifícant 

increasc during the experiment. 

Kiwifruit in air free of propylene showed only trace amounts of ACC for ali 

temperatures (Fig. 5.5B). 
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1.5. 1-aminocyclopropane-l-carboxylate synthase (ACC synthase) activity 

The ACC synthase activity significantly increased when fruit were treated with 

propylcne after 48 hours in ali temperatures (Fig. 5.6A). Values were significantly 

higher at 30oC foliowed hy 34, 38 and 40oC. At 40oC, values were very low in 

comparison with the other temperatures. ACC synthase activity increased significantly 

ífom 48 to 72 hours at 30, 34 and 380C and remained almost constant thereafter. At 

40oC, the increase in ACC synthase activity was constant till 96 hours and then had a 

decrease. 

In air free of propylene, kiwiífuit ACC synthase activity was very low in ali 

temperatures (Fig. 5.6B). 

1.6. 1-aminocyclopropane-l-carboxylate oxidase (ACC oxidase) activity 

ACC oxidase activity was almost null at harvest and started to increase with no lag 

period when fruit were treated with propylene in temperatures from 30 to 380C (Fig. 

5.7A). Values were significantly higher at 30oC folio wed hy 34, 38 and 40oC. At 30 

and 340C, ACC oxidase activity had the highest increase between 48 and 96 hours and 

decreased significantly thereafter. At 380C, fruit had a constant increase in ACC 

oxidase activity, but its values were significantly lower than at 340C except after 120 

hours. ACC oxidase activity of kiwifruil at 40oC did not increase significantly during 

the experiment. 

Kiwifruit not treated with propylene presented very low values of ACC oxidase 

activity during the experiment (Fig. 5.7B). 

1.7. Carbon dioxide production 

The respiration pcak increased significantly with temperature presenting the lowcst 

values at 30oC and the highest at 40oC in fruit treated or not with propylene (Fig. 5.8). 

The respiration peak of fruit treated with propylene was reached after 10 hours in ali 

temperatures and presented no signifícant differences between trealmcnts except 

between 30 and 40oC (Fig. 5.8A). Thereafter, CO2 production decreased to values of 
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about 80 to 100 ml/kg/h until 55 hours had passed and then remained constant in ali 

temperatures. 

Respiration rate of fruit not treated with propylene increased significantly reaching a 

simultaneous peak aíler 4-10 hours at 30 to 38'C and after 10 hours at 40 C (Fig. 

5.8B). Peak values were significantly higher at 40oC followed by 38, 34 and 30 C. The 

30 and 340C treatment did not show significant diíTerences betwccn respiration rates in 

the respiration peak. Carbon dioxide production significantly dccreased lhereafter to 

values of 40 to 70ml/kg/h until 30 hours had passed and remained constant thereafler. 

After 30 hours, there were no significant diíferences between treatments except at 

30l,C which had significantly lower values lhan the other treatments. 

Values of CO2 production in fruit not treated with propylene were lower than in fruit 

treated with propylene (Fig. 5.8). However, diíTerences were decreased with 

temperature increase. DiíTerences in CO2 production, in the respiration peak, between 

fruit treated and not treated with propylene were of 48mFkg/h at 30oC, 51 ml/kg/h at 

340C, 41 ml/kg/h at 380C and 5ml/kg/h at 40oC. 

2. High temperature limit for respiration 

2.1. Carbon dioxide production 

Respiration rate increased significantly in ali treatments reaching a peak after 10 hours 

(Fig. 5.9). At 38 and 420C, CO2 production slightly decreased from 10 to 24 hours and 

then remained constant. Values of respiration were always significantly higher at 42 

than at 380C. At 450C, fruit presented significantly higher values lhan lhe other 

treatments for the first 10 hours, but then respiration rate decreased sharply and after 

48 hours respiration values were significantly lower than for fruit at the other 

temperatures. After 72 hours at 450C, fruit showed a respiration rate lower than in the 

beginning of the experiment. There were no signifícant differences between fruit 

treated or not with propylene at any temperature. 

71 



Chapter 5. High temperature effect on ethyIene and ripening 

2.2. Flesh colou r 

The fading of flesh green eolour was small, without significant differenees between 

Iruit at 38 and 420C (Fig.5.10). During the fírsl 24 hours, fruit at 450C had similar 

flesh eolour lo lhe other treatments. Thereafter, kiwifruit at 450C had a signiíícant 

increase in the loss of flesh green eolour coineident with the great deerease in ffuit 

respiralion (Figs. 5.9 and 5.10). There were no significant differenees in flesh eolour 

between fruit treated or not with propylene at any temperature (Fig.5.10). 

2.3. Firmncss and soluble solids content (SSC) 

Fruit treated with propylene at 380C had a significant deerease in fírmness and increase 

in SSC after 72 hours (Table 5.1). However, fruit did not ripe normally; the core was 

still hard when flesh had softened to eating-ripeness. Fruit not treated with propylene 

at 380C did not show significant allerations of fírmness and SSC. 

Femperatures of 42 and 450C inhibited the fruit to ripe normally independently of 

being treated or not with propylene (Table 5.1). Kiwifruit were destroyed after 72 

hours at 450C. 

DISCUSSION 

In the present investigaiion, il was shown lhat at temperalures of 30-34oC there is an 

induction of ethylene production and ripening, by propylene, as reported by 

Stavroulakis and Sfakiotakis (1993). However, as reported by these aulhors, lhe lag 

period for ethylene production was shorter at 30 and 340C (24 hours) than at 20oC 

(68-79 hours) (chapter 3 and 4). The increase in ethylene production was accompanicd 

by lhe increase in ACC content and ACC synthase and ACC oxidase activities. 

Ripening induced by propylene started at the above temperatures with no lag period 

confírming that kiwifruit senses ethylene for ripening prior to ils aulocalalysis (chapter 

4; Stavroulakis and Sfakiotakis, 1993; Whittaker et al., 1997). 

During lhe experimenl, fruit not treated with propylene and at temperatures that 

normally induce ethylene production did not ripe. did not produce ethylene and did not 
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show ACC synthase or ACC oxidase activities. This is explained by the fact thal 

autocatalysis of ethylene production and ripening of kiwiíruit starts around 19 days 

after harvest as it was shown in chapter 3 and, by Hyodo and Fukasawa (1985) and 

Arpaia et al. (1994a). 

High temperature stress dccreased the rate of ripening and ethylene production in 

kiwiíruit, while respiration was increased. Similar results were obscrved for avocado 

(Eaks, 1978), tomato (Yakir et al., 1984; Inaba and Chachin, 1988) and apple (Lurie 

and Klein, 1990). However, the upper temperature limits vary ífom species to species. 

By exposing kiwiíruit to high stress temperatures (>380C) there was a detrimental 

effect on fruit quality parameters such as firmness, SSC and flesh colour. In kiwiíruit 

high temperature stress affected more firmness than SSC in the same way as il was 

rcported for apples (Lurie and Klein, 1990). Kiwiíruit treated with propylene at 

temperatures up to 40oC attained a SSC oí about 14% Brix considered to be the 

minimum for a mature fruit (Mitchel, 1994). Temperatures above 420C inhibited fruit 

ripening in terms of SSC. 

Kiwiíruit are ripe for eating at a firmness value of 0.5-0.8 kgf (McDonald, 1990). Ripe 

kiwiíruit should have equal flesh and core firmness. Temperature of 380C inhibited 

normal ripening of kiwiíruit induced by propylene since the core was still hard when 

flesh had softened to ealing-ripeness. A physiological disorder with similar symploms 

has been observed in kiwiíruit stored at 0oC in CO2 concentrations above 14% (Arpaia 

et al, 1994a). Over 40oC, softening was significantly reduced and at 450C stress 

gradually accumulaled. injuring the fruit (Inaba and Chachin, 1989). The characteristic 

flesh green colour of kiwiíruit was affected, turning yellow-brown, only at 

temperatures of450C. 

The failure of kiwiíruit lo ripe normally al temperatures above 380C was due not only 

lo the reduction of ethylene biosynthesis at lhese temperatures, as reported by Eaks 

(1978), bui also due to the decreased sensitivity of lhe fruit lo propylene applicalion 

(Maxie et al., 1974). Another reason may be the inhibition of the synthesis or aclivity 

ofcell-wall degrading enzymcs (Klein and Lurie, 1990; Lurie and Klein, 1990). 
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There is a decrease in total protein synthesis during the course of the heat treatment, 

while at elevated temperatures hcat shock proteins are synthesised (Key et al., 1981; 

Lurie and Klein. 1990). The strong inhibition of fruit softening and ethylene 

production at high stress temperatures may be a consequence of the inhibition of 

protein synthesis related to ripening and ethylene production (Brady, 1987; Lurie and 

Klein, 1990). 

The present study showed that from 30 to 340C CO2 production was increased by 

propylene. This is similar to the behaviour at lower temperatures (chapter 3 and 4) and 

seems to be a response to the stress induced by exogenous propylene (Tucker, 1993). 

The small differences in respiration rate between ífuit treated and fruit not trcatcd with 

propylene at 380C and the practical absence of differences o ver 40oC suggest that 

kiwifruit does not sense ethylene at high temperatures. Maxie et al. (1974) found that 

pears in ethylene-free atmosphere showed an initial respiration rate increased with 

temperature up to 40oC and a decrease at 50oC. However, when ethylene was applied 

respiration increased with temperature until 50oC. The same authors reported that the 

failure of pears to ripen at 40oC when exposed to ethylene is an example of stimulation 

of respiration by this gas without affecting olher biochemical events associated with 

ripening. 

Kiwifruit rcachcd the respiration pcak after 10 hours while the peak of ethylene 

production was not attained during the experiment. This observation confirms the 

result presented in chapter 3, that kiwifruit treated with propylene shows the 

respiration peak before the peak of ethylene production. 

In fruit treated or not with propylene mostly at the respiration peak, the present 

research showed an increase in the respiration rate with temperature, while ethylene 

production induced by propylene was inhibited at the same high temperatures. These 

results, together with previous studies in tomatoes and applcs (Inaba and Chachin. 

1989; Klein and Lurie, 1990; Lurie and Klein, 1991) indicate that the respiration rate 

of some fruit is not directly controllcd by lhe levei of ethylene production (Inaba and 

Chachin, 1989). 
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It seems that respiration increases with temperature, from the beginning of storage, as 

a response to stress, until a levei where physiological processes are stooped. At 450C, 

kiwifruit showed the highest respiration rate from the beginning of storage, indicating 

severe stress at this temperature, that finally resultcd in hcat injury after 48 hours 

exposure. This implies that the stress gradually accumulates and alters the 

physiological processes of the fruit after a cerlain time of exposure. Similar results 

were shown for tomatoes at 40oC after 4 days exposure (Inaba and Chachin, 1989). In 

the present study, it was found that heat injury in kiwifruit was expressed by a slrong 

reduction in respiration, increase in fading of flesh green colour and a general flesh 

breakdown. Lee and Yang (1984) and Yakir et al. (1984) reported suppression of 

ethylene and CO2 production as well as heat injury of pears and avocados at 30-350C. 

For kiwifruit treated with propylene, the decrease in ethylene production al 380C was 

caused by low activity of ACC oxidase, since ACC synthase aclivity and ACC conlenl 

had similar values with fruit at 30-34oC. Inhibition of ethylene production at 40oC was 

associated with low activities of ACC synthase and ACC oxidase. Biggs et al. (1988) 

reported a reduction in ACC synthase and ACC oxidase activities in tomatoes at high 

temperatures. However, the decline in ACC synthase activity with temperature rise 

was faster than the decline in ACC oxidase activity. Since in our work, when fruit 

were kept at temperatures above 30oC, ACC oxidase activity decreascd al a faster rate 

than ACC synthase, it seems that ACC oxidase in kiwifruit is more affected by high 

temperatures than ACC synthase as it was reported for apple tissuc and auxin-trcaled 

mung-bean hypocotyls (Yu et al., 1980). This explains the accumulation of ACC at 

380C when ethylene production was very low. The decline in ACC oxidase activity 

observed in kiwifruit after long exposure to high temperature was also observed in 

tomalo by Biggs et al. (1988). 

Treating pericarp dises from hcat-strcsscd pcars with cycloheximide showed no 

reco very of ethylene production upon transfer to 250C, while conlrol fruit produccd 

ethylene (Biggs et al., 1988). These results indicate lhe requiremcnl of de novo 

synthesis of at least onc of the enzymcs involvcd in ethylene biosynlhesis (Biggs et al., 

1988; Lurie and Klein. 1990). Lurie and Klein (1990) hypolhesised that heat treatment 

diíferentially affeets processes which normally increase simultaneously during fruit 
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ripening, by inhibiting those processes which require de novo protein synthesis and 

enhancing those that do not. Lurie and Klein (1991) support this theory with the 

finding that protein synthesis normally associated with ripening was depressed in 

tomatoes kept at high tempcratures, while fruit accumulaled hcat-shock proteins. It is 

know that ethylene production requires continuous protein synthesis (Grierson et ak, 

1986) making ethylene production to be apparenlly one of the most sensitive 

indicators of heat stress (Lurie and Klein, 1990). Tucker et al. (1980) and Tucker and 

Grierson (1982) showed that cell wall-degrading enzymes undergo synthesis at the 

onset of ripening. This may explain the suppression of ethylene production and 

ripening of kiwiífuit at high stress temperatures while respiration was slill increasing. 

According to Lurie and Klein (1990), we suppose that the turno ver of the enzymes 

involved in respiration may bc such that heat treatment up lo 42lC did not appreciably 

affect their aclivity in kiwiífuit up to 72 hours. High CO2 production at 45 C may be a 

response to high stress that gradually accumulates resulting in heat injury after 48 

hours exposure and a consequent decrease in respiration. 
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Figure 5.1. The effect of temperature (30, 34, 38 and 40oC) on flesh fírmness of 

harvested 'Hayward' kiwifruit kepl in a continuous, humidified, air stream 

with 130p.Fl propylcne (A) or air ífee of propylene (B). 

LSD at a=0.05. 
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Table 5.1. Ripening parameters of'Hayward' kiwiíruit at harvest and, after 72 hours at 

38 and 420C and after 48 hours al 450C in a continuous, humidiíied, air 

Hours Temperai ure Propylene Flesh Core SSC 

firmness Firmness 

CC) (ftl/D (kgf) (kgf) (% Brix) 

0 3.5 a** 11.7a 11.7c 

72 38 0 2.5 ab 8.7 ab 12.2 bc 

130 0.97 b 5.9 b 13.5 ab 

42 0 2.43 ab 8.7 ab 12.2 bc 

130 2.43 ab 8.6 ab 12.0 bc 

48 45 0 2.03 ab 8.5 ab 11.6c 

130 2.77 a 8.8 ab 11.7 bc 

**Values in the same column foliowed by the same letter are not signifícantly different 

by Duncan^ multiple range test (a=0.05). 
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CHAPTER 6. EFFECT OF CHILLING ON THE 1NDUCTION 

OF ETHYLENE BIOSYNTHESIS AND 

ASSOCIATED CHANCES OF RESPIRATION, 

R1PENING PARAMETERS AND FATTY AC1DS 

COMPOSITION OF 'HAYWARD' KIWIFRUIT 

ABSTRACT 

The chilling requirements for ethylene production and ripening as well as changes in 

fatty acids and membrane permeability were studied in Tlayward' kiwifruit. Fruit were 

stored at 0, 5, 10, 15 and 20oC for 5, 12 and 17 days before rewarming to 20oC for 10 

more days. Measurements of ethylene and CO2 production, ACC content, ACC 

synthase and ACC oxidase activities, SSC, flesh and core firmness, flesh colour, fatty 

acid composition and electrolyte leakage were performed during the experimenl. 

Kiwifruit stored at 0, 5, 10 and 150C did not ripe, produce ethylene or show ACC 

synthase or ACC oxidase activity during the 17 days. Kiwifruit rewarmed after 5 days 

storage at the above temperatures foliowed the same pattem. After 12 and 17 days 

storage, rewarmed fruit started autocatalysis of ethylene production within 24 hours, 

followed by the ripening of lhe fruit. Autocatalysis of ethylene production during shelf- 

life at 20oC was correlated with the increase in ACC content, and the activities of ACC 

synthase and ACC oxidase. Ethylene production after rearming, for fruit stored for 12 

days, was higher in fruit stored at 0oC, while for fruit stored for 17 days it was higher in 

fruit kepl at 150C. Fruit placed continuously at 20oC started autocatalysis of ethylene 

production after 19 days with concomitanl increase in ACC content, ACC synthase and 

ACC oxidase activities and ripening. Respiration increased after rewarming, 

coincidentally with the increase in ethylene production. 

Membrane permeability and unsaturated/saturated fatty acid ratio increased during 

storage in ali treatments. The highest increase was during the first 5 days and at the 

lowest temperatures. The increase in unsaturated/saturated fatty acid ratio was caused 

mainly by a decrease in palmitic and an increase in oleie acids. Stearic, linoleic and 

linolenic acids had insignificant changes during storage. There was no correlalion 
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between fatty acid unsaturation or membrane permeability and ethylene production or 

ripening in kiwiífuit. 

INTRODUCTION 

At 210C, kiwifruits (cv. Hayward) begin to produce ethylene at an increasing rate 

(exponentially) after exceeding a threshold levei of 0.1 pl/kg/h (Hyodo and Fukazawa, 

1985; Hyodo et al. 1987; Arpaia et al., 1994a). Hyodo and Fukasawa (1985) suggesled 

that chilling stress in kiwiífuit advances the onset of ethylene production in the ffuit when 

transferred to 210C possibly by stimulating the formation of ACC as for other fruit. 

Various chilling sensitive plants respond diíferently to chilling stress regarding the 

stimulation of ethylene production (Wang, 1989). Some tissues such as pears and 

'Honey dew' melons accelerate their ethylene production during the chilling stress 

(Sfakiotakis and Dilley, 1974; Wang et al, 1985; Lipton and Wang, 1987), while 

others do not show any stimulation until after being transferred to warmer 

temperatures, as for example, cucumbers (Wang and Adams, 1982; Andersen and 

Kent, 1983), and zucchini squash (Mencarelli et al., 1983). 

It was observed that chilling induces ethylene biosynthesis in cucumber (Wang and 

Adams. 1982) and bean leaf (Field, 1984) at the ACC synthesis levei, the later being 

increased with transference to warm temperatures. Wang and Adams (1982) and Knee 

(1987) referred a reduced activily of ACC synthase activity at low temperatures in 

cucumbers and pears, its activity increasing only upon rewarming of the ffuit. In 

Granny Smith apples at low temperatures. ACC accumulated while ACC oxidase 

activity was low (Gaudierre and Vendrell, 1993). The sharp increase in ethylene 

production observed upon rewarming was a consequence of the activation of ACC 

oxidase activity ralher than the increase in ACC. This enhancemcnt is probably lhe 

result of an activation of ACC synthase related to a stress response, or an inhibition of 

ACC oxidase probably due to the cold-induced alterations of the membrane properties. 

Similar results were observed by Jobling et al. (1991) in apples stored for more than 8 

days at 0oC. Lelievre et al. (1995) reported that ACC oxidase. in addition to ACC 
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synthase, is induced during chilling of preclimacteric Granny Smith apples and 

accumulates before any transfer of the fruit to warmer temperatures. 

Electrolyte leakage is a parameter that has often been used to indicate physical damage 

to the plasmalemma resulting ífom low-temperature stress (Parkin and Kuo, 1989). 

Chilling injury was evaluated in tomato leaves by the rate of electrolyte leakage that 

increased following chilling treatment, suggesting some degree of injury to the 

plasmalemma (Senaratna et al., 1988). 

The ratio of unsaturated to saturated fatty acids increased with ripening in 'Honey 

dew' muskmelons coincidentally with the decrease in chilling sensitivity that has been 

associated with this factors (Forney, 1990). In apple flesh, however, the degree of 

unsaturation of fatty acids decreased as ífuit ripened (Lurie and Ben-Arie, 1983). 

Heureux et al. (1993) found increasing electrolyte leakage and fatty acid unsaturation 

of tomato during storage at TC. Schirra and Sass (1994) found significant changes in 

fatty acid composition during storage of grapeífuit at temperatures ífom 4 to 12 C 

with the proportion of linolenic and palmitoleic acids increasing and palmitic, stearic 

and oleie acids decreasing. 

Since it was observed that lipid peroxidation increases when plant tissues are subjected 

to cellular damage (Galliard, 1978) or undergoing senescence (Dhindsa et al., 1981), it 

was suggested that the lipoxigenase activity is involved in the biosynthesis ol ethylene 

under situations like senescence (Bousquet and Thirman, 1984), wounding or low- 

temperature stress (Kacperska and Kubacka-Zebalska, 1985). 

Gerasopoulos (1988) reported that the timing of the chilling requirement of pears 

satisfactory correlates with the increase in unsaturated/saturated fatty acid ratio. Also, 

some biological eífeets of methyl jasmonate/jasmonic acid studied recently include 

ethylene biosynthesis (Chou and Kao, 1992; Sanz et al., 1993). 

The purpose of this study was to investigate the chilling requiremenls for ethylene 

production and ripening of mature unripe 'Hayward' kiwifruit. Thus, it was studied 

which chilling temperature and its duration was more eífective in developing 

competency to produce ethylene upon rewarming of the ífuit. The changes in fatty acid 
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composition and membrane permeability and their possible relation to chilling-induced 

ethylene production were also investigated. 

MATERIAL AND METHODS 

1. Plant material and treatments 

Kiwifruit (cv. Hayward) were harvested from an orchard in Pieria-North Greece with 8.5 

kgf flesh firmness and 5.1 (% Brix) SSC. After selection for uniformity of size and 

ífeedom from defects, fruit were placed in 5-litre jars through which a continuous, 

humidified, air stream free of ethylene was passed at a rate of lOOml/min. Each set of six 

jars was kept in a separate water bath at a constant temperature of 0, 5, 10, 15 and 20oC. 

Experiments were set within 24 hours. 

At intervals of 0, 5, 12 and 17 days, 20 fruit per replication were removed from the jars. 

One half was used immediately for measurements of ACC content, ACC synthase and 

ACC oxidase {in vivo) activities, flesh and core firmness, SSC, flesh colour, electrolyte 

leakage and fatty acid analysis. The other half was put at 20oC in the same conditions for 

10 more days. After this period of time the same measurements were performed, except 

for electrolyte leakage and fatty acid analysis. In fruit continuously at 20oC, the above 

mentioned measurements were done at intervals of 0, 8, 15 and 26 days. Ethylene and 

CO2 production were measured daily. Ethylene was measured during ali the experiment. 

while respiration was measured only when fruit were rewarmed. 

The experimental design was a two-factor experiment distributed in a complete 

randomised design with the temperatures as the fírst factor, the number of days in 

storage as second and the jars as replications. Each treatment consisted of 4 replications 

with 60 fruit per replication. 
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2. Measurements 

2.1. Ripening parameters and gas analysis 

Ripening parameters (flesh and core firmness, SSC and flesh colour) and gas analysis 

(ethylene and CO2 production) were measured as describcd in chapter 3. 

2.2. ACC content, ACC synthase and ACC oxidase activities 

ACC content and ACC synthase and ACC oxidase activities were measured as described 

in chapter 4. 

2.3. Electrolyte leakage 

Electrolyte leakage measurements were based on the methods described by Lester et al. 

(1988) and Parking and Kuo (1989) with modifications. Freshly exciscd dises (6 dises 

with a total of 4g) of mesocarp tissue were placed in 20 ml dcstilled water, shackcd and 

incubated at ambient temperature. Conductivity of the suspending solution was measured 

after 5 hours. Then, the flasks were put in an oven at 100oC for 1 hour, cooled to room 

temperature, conductivity was measured again and taken as total electrolyte leakage. 

Values are presented as percentage of total. 

2.4. Fatty acids analysis 

Lipid extraction procedure and fatty acids analysis were based on the methods of Folch 

et al. (1957) and AO AC official methods of analysis (1984). Peeled kiwifruit tissue (20g 

withoul seeds) was homogenised in lOOml of 2:1 chloroform/methanol solvent with a 

polytron homogeniser. The homogenate was íiltcrcd through Whatman #1 fílter paper in 

a separator lunnel and lhe filtered residue was washed with 50ml of the same solvent. 

Twenty fíve ml of 0.58% NaCl were added to lhe filtrate in the separator funnel which 

was shaken well and left for 4 hours to separate lhe two phases. The total lipids were 

obtained in lhe chloroform phasc which was conccnlrated to oil in a rotary evaporalor 

under reduced pressure at 40oC. The oil was placed in an oven at 105oC for 20 min lo 

eliminate any trace of water, dissolved in 2 ml chloroform and transferred to 8.5ml 

Teflon lined screw cap test tubes. Tubes were filled to the top with chloroform and 

stored at -20oC for furlher analysis of fatty acids. 
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For the fatty acids analysis, the oil/chloroform extract was transferred to evaporation 

tubes and the chloroform phase was evaporated with a rotary evaporator at 40oC. 

Concentrated oil was placed in an oven at 60oC for 30min for íurther drying. Four ml 

of 0.5N melhanolic NaOH solution was added to the flasks which were thcn attached 

to a condenser and the mixture was boiled by placing the tubes in a boiling water-bath 

until fat globules disappeared (5-10min); 5ml of BF3/methanol were added with a 

pipette through the condenser and boiling was continued for another 2 minutes. Two 

ml heptane were added through the condenser and boiling was fiirther continued for 1 

min. Heat was removed ífom the condenser and 5ml of saturated NaCl solution were 

added to float heptane phase to the neck of the flask. The upper heptane layer was 

transferred to glass test tubes. Two pl of the heptane solution were injected into a 

Varian 3700 gas chromatograph for melhyl esters fatty acids identification. The gas 

chromatograph was equipped with a 4mm x 2m column packed with 10% DEGS on 

80/100 mesh Chromosorb WAW at 190oC, an injcctor at 220oC and a flame-ionisation 

detector at 250oC. The carrier gas was N2 at a flow rate of 20ml/min. 

Fatty acids are described in the nomenclature by the number of carbon atoms of the 

chain (n) and the number of the double bonds following the colon (n:#) (Lehninger, 

1982). The unsaturated/saturated fatty acid ratio was calculated by the formula: 

(18:1+18.2+18.3)/( 16:0+18:0) 

16:0 = Palmitic acid 

18:0= Stearic acid 

18:1= Oleie acid 

18:2= Linoleic acid 

18:3= Linolenic acid 

3. Statistical analysis 

Statistical analysis were performed as described in the methods of chapter 3. 
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RESULTS 

1. Ripening behaviour of kiwifruit after 5 days storage 

1.1. Ethylene production 

Ethylene production at harvest was almost null and did not increase significantly during 

storage at 0, 5, 10 and 150C for 5 days at any temperature or upon transference to 

20oC for 10 more days (fig. 6.1 A). Values did not pass 0.15pl/kg/h. 

1.2. Carbon dioxide production 

Respiration increased significantly upon rewarming of the ífuit to 20oC in the first 2 

days and then remained constant for ali treatments (Fig. 6.1B). The increase in CO2 

production did not exceeded lOml/kg/h. After 5 days at 20oC, respiration rate was 

always higher in ífuit from 150C storage than in the other treatments, but differences 

were not signifícant. 

1.3. ACC content, ACC synthasc and ACC oxidase activities 

ACC content, ACC synthase and ACC oxidase activities were very low at harvest 

(Table 6.1). Their values did not increase significantly after 5 days storage at 0, 5, 10 

and 150C neither after the 10 following days at 20oC. Although values of ACC and 

ACC oxidase activity showed statistical signifícant increases during storage, their 

maximum values of 0.065 nmol/g and 2.94 nFg/h, respectively, are negligible when 

compared with ífuit aulocatalytically producing ethylene. 

1.4. Changes of firmness, soluble solids content (SSC) and ílesh colour 

Firmness of the flesh and core did not decrease significantly during 5 days storage at 

any temperature or upon rewarming oí the ífuit for 10 more days (1 able 6.2). It was 

observed a small increase in SSC with time. However, this increase did not exceed 2% 

Brix in any treatment, staying the ífuit unripe at the end of the experiment. Similar 

pattern was observed for the green colour oí lhe ílesh. 
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2. Ripening behaviour of kiwifruit after 12 days storage 

2.1. Ethylene production 

Ethylene production was almost null during storage for 12 days at 0, 5, 10 and 150C 

(fig. 6.2A). When fruit were transferred to 20oC, they started autocatalysis of ethylene 

production in 24 hours for ali treatments (Fig. 6.2Aa). Ethylene production did not 

show statistical significant difíerences between treatments except for ífuil stored at 0oC 

which had signifícantly higher values than the other treatments after 6 days shelf-life at 

20oC (Fig. 6.2A). 

2.2. Carbon dioxide production 

Respiration increased upon rewarming of the fruit to 20oC in ali treatments (Fig. 6.2B). 

The increase was signifícant in ali treatments except for fruit transferred from 15 to 

20oC. Values were higher in fruit previously treated with 0oC foliowed by 5, 10 and 

150C. However, differences were signifícant only between fruit pre-treated with 0 and 

10 or 150C, and between 5 and 150C after 1 day shelf-life. Carbon dioxide production 

was almost constant in ali treatments from 4 to 10 days shelf-life at 20oC. Fruit 

producing more ethylene had generally the highest values of respiration (Fig. 6.2A and 

B). 

2.3. ACC content, ACC synthase and ACC oxidase activities 

ACC content, ACC synthase and ACC oxidase activities did not increase signifícantly 

during 12 days storage at 0, 5, 10 and 150C (Table 6.3). However, their values were 

signifícantly higher after 10 days at 20oC than at remo vai from storage, for ali 

treatments. The ACC content was the highest in fruit from 0oC storage followed by 

fruit from 10, 5 and 150C. The ACC synthase and ACC oxidase activities showed 

signifícantly lower values in fruit from 150C than from the other treatments, which 

were not signifícantly differcnt among them. 

2.4. Changes of firmness, soluble solids content (SSC) and flesh colour 

Firmness of the flesh and core did not decrease signifícantly during 12 days except at 

10 and 150C (Table 6.4). However, the decrease in firmness was not signifícant in 
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terms of ripening. Kiwifruit decreased significantly ílesh and core íirmness upon 

rewarming of the ífuit for 10 days at 20oC. Fruit were ripe aíler 10 days shelf-life 

except for fruit from 150C storage which had significantly higher values of core 

firmness than the other treatments. 

The SSC increased significantly after 12 days storage in ali treatments except at 150C 

(Table 6.4). However, the increase was not significant in terms of ripening. After 10 

days shelf-life, SSC increased significantly in ali treatments. Values were significantly 

higher in fruit pre-stored at 150C than in fruit pre-stored at 0, 5 and 10oC, which 

showcd no significant diíferences among thcm. 

Kiwifruit did not significantly lost the green colour of the flesh after 12 days storage at 

any temperature (Table 6.4). After 10 days shelf-life at 20oC, fruit had a significant 

increase in the loss of green colour in ali treatments without significant differences 

among treatments, except for fruit pre-stored at 10oC, which showed significantly 

lower values than fruit pre-stored at 150C. 

3. Ripening behaviour of kiwifruit after 17 days storage 

3.1. Ethylene produetion 

Ethylene produetion was almost null during storage for 17 days at 0, 5, 10 and 15 C 

(fíg. 6.3A). When ífuit were transferred to 20oC, they followed the same pattern as for 

12 days storage, slarting autocalalysis of ethylene produetion without delay in ali 

treatments (Fig. 6.3Aa). Ethylene produetion did not show significant differences 

between treatments except for fruit from 0oC storage, which had significantly lower 

values than the other treatments after 6 days shelf-life at 20oC (Fig. 6.3A). 

3.2. Carbon dioxide produetion 

Respiration was significantly higher after 1 day shelf-life at 20oC than at removal from 

0, 5, 10 and 150C storage and then remained almost constant for ali treatments (Fig. 

6.3B). Values were not significantly different among fruit pre-stored at 5, 10 and 150C. 

Between 2 and 6 days shelf-life, CO2 produetion for fruit from 0oC storage was 
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significantly lower than for ffuit from 10 or 150C. Fruit producing more ethylene had 

generally the highcst values of CO2 production (Fig. 6.3A and B). 

3.3. ACC content, ACC synthase and ACC oxidase activities 

ACC content, ACC synthase and ACC oxidase activities did not increase significantly 

after 17 days storage at 0, 5, 10 and 150C (Table 6.5). The ACC content, ACC 

synthase and ACC oxidase activities were significantly higher afler 10 days shelf-life at 

20oC than at removal ífom storage for ali treatments. The ACC, ACC synthase and 

ACC oxidase activities showed significantly lower values in ffuit pre-stored at 0oC than 

in lhe olher treatments. 

3.4. Changes of firmness, soluble solids content (SSC) and flesh colour 

Firmness of the flesh and core did not decrease significantly during 17 days storage at 

any temperature except at 10"C (Table 6.6). However, as it was obscrved after 12 days 

storage, the decrease in firmness was not signifícant in terms of ripening. After 

rewarming, kiwifruit decreased significantly flesh and core firmness, becoming ripe 

during shelf-life at 20oC. 

The SSC increased significantly after 17 days storage at 0, 5, 10 and 150C (Table 6.6). 

Values were significantly lower at 150C than in the oíher treatments, which were not 

significantly diíferenl among them. After 10 days shelf-life, SSC increased significantly 

in ali treatments. Values were significantly higher in fruit pre-stored at 10 and 150C, 

without signifícant difíerences between them, followed by ffuit pre-stored at 5 and 0oC. 

After 17 days storage, kiwifruit did not significantly lost the green colour of the flesh 

at any temperature (Table 6.6). After 10 days shelf-life at 20oC, fruit had a signifícant 

fading of flesh green colour in ali treatments, with fruit pre-stored at 0oC loosing less 

colour than the other treatments. 
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4. Ripening behaviour of fruit kept continuously at 20oC 

4.1. Ethylcne and carbon dioxide production 

Kiwifruit kept continuously at 20oC started autocatalysis of ethylcne production after 

ethylene reached a threshold levei of 0.2pl/kg/h after 19 days post-harvest (Fig. 

6.4Aa). The ethylene production peak was achieved after 24 days at 20oC and then 

ethylene production decreased (Fig. 6.4A). 

Carbon dioxide production did not change significantly till just before start of 

autocatalysis of ethylene production (Fig. 6.4A). Respiration increased significantly 

after the fruit started to produce ethylene, reached a maximum after 23 days at 20oC 

and then decreased. 

4.2. ACC content, ACC synthase and ACC oxidasc activities 

For kiwifruit stored continuously at 20oC, ACC content, ACC synthase and ACC 

oxidase activities were very low and did not increase significantly in the first 15 days, 

but had a significant increase from 15 to 26 days at 20oC (1 able 6.7). 

4.3. Changes of firmness, soluble solids content (SSC) and flesh colour 

Firmness of the flesh and core did not dccrease significantly for the first 8 days in 

kiwifruit stored continuously at 20oC (Table 6.8). However, it showed a decrease from 

8 to 15 days and a high significant decrease from 15 lo 26 days. 

The SSC and the fading of flesh green colour did not increase significantly till 15 days 

storage at 20oC (Table 6.8). Their values had a highly significant increase from 15 to 

26 days storage. 

5. Effect of chilling on fatty acid composition 

Figures 6.5 and 6.6 show that, generally, the major fatty acid componenl (35-40%) 

consisted of linolenic acid, followed by oleie acid (26-36%), palmitic acid (15-22%), 

linoleic acid (9-11%) and stearic acid (2-5%). 
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Palmitic acid leveis had an insignifícant decrease during 17 days storage at 20oC, while 

in the other treatments the decrease was significant and occurred mostly in the first 5 

days (Fig. 6.5A). Values were always higher at 20oC followed by 15, 10, 5 and 0oC. 

DifFerences were not significant between 20 and 150C or among 10, 5 and 0oC. 

Stearic acid did not change significantly with storage time at any temperature (Fig. 

6.5B). Values were significantly higher at 150C than at 0oC after 5 days. After 12 and 

17 days storage there were not significant diflferences between any treatment. 

Oleie acid had a significant increase in the físt 5 days storage for ali treatments (Fig. 

6.6A). Values were significantly higher at 0, 5 and 10oC than at 15 and 20oC. The 

percentage of oleie acid continued to increase thereafter at 0 and 50C while in the other 

treatments did not significantly change. After 12 days storage, the percentage of oleie 

acid was significantly higher at 0 and 50C than at 15 and 20oC. In the end of the 

experiment, oleie acid was significantly higher at 0 and 50C than in the other treatments 

which did not show significant diíferences among them. 

Linoleic acid did not significantly change during storage in any treatment (Fig. 6.6B). 

After 5 and 12 days storage values were significantly higher at 20oC than at 0oC but 

after 17 days differences among treatments were not significant. 

Linolenic acid did not change or show significant differences between treatments 

during the experiment (Fig. 6.6C). 

6. Effect of chilling on fatty acid unsaturatíon/saturatíon ratio 

Fruit stored at 0, 5 and 10oC had a significant increase in the unsaturated/saturated 

fatty acid ratio after 5 days storage and remained almost constant thereafter (Fig. 

6.1 A). Unsaturated/saturated fatty acid ratio increased significantly at 150C only ífom 

0 to 12 days storage, and at 20oC the increase was insignifícant during ali experiment. 

After 5 days storage, unsaturated/saturated fatty acid ratio was significantly higher at 

0oC followed by 5, 10, 15 and 20 being the last 3 not significantly diíferent among 

them (Fig. 6.1 A). After 12 days storage, values were only significantly higher at 0 than 

at 15 or 20oC. After 17 days storage, the unsaturated/saturated fatty acid ratio was 
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significantly higher at O and 50C followed by 10, 15 and 20oC. Values were 

significantly different between 0 or 50C and 15 or 20 C. 

7. Effect of chilling on membrane permeability 

Membrane permeability of kiwifruit, exprcssed by the change in electrolyte leakage, 

had a signiíicant increase during the first 5 days storage in ali treatments (Fig. 6.7B). 

Values were higher at 0oC followed by 5 and 10 C withoul signiíicant differences 

between them. Fruit at 15 and 20oC showed values of electrolyte leakage significantly 

lower than the other treatments. 

From 5 to 17 days storage, the increase in electrolyte leakage of kiwifruit was higher at 

15 and 20oC than at 0, 5 and 10oC. However, aíler 12 days storage, electrolyte leakage 

was significantly lower at 20 than at 0oC, while after 17days storage it was significantly 

lower at 20oC than in the other treatments, which did not show significam differences 

among them. 

DISCUSSION 

Kiwifruit harvestcd at an early stage of maturity produccd ethylene in about 19 days at 

room temperature likc a climacteric ífuit coníirming the results of chapter 3. The 

increase in ethylene was accompanied by the risc in respiralion and SCC, lhe loss of 

green colour and lhe decrease of firmness. Similar results were observed by Hyodo and 

Fukasawa (1985). The ethylene production was a rcsult of the increase in ACC 

synthase and ACC oxidase activities. 

Five days storage at low temperature were not enough lo induce aulocatalytic ethylene 

production upon transference of kiwifruit to 20oC. A pcriod oí 12 days al tcmperatures 

írom 0 to 150C satisfied the requirement of kiwifruit to autocatalyticaly produce 

ethylene 24 hours after rewarming. A longer period of 17 days induced ethylene 

production with no delay after rewarming of the fruit. This is in agreement wilh other 

authors who reported that the lag period of kiwifruit to produce ethylene at room 
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temperature become shorter as the storage period at 0oC is extended (Hyodo and 

Fukazawa, 1985; Hyodo et al. 1987; Arpaia et ai., 1994a). 

Kiwifruit, as cucumbcr (Wang and Adams, 1982) and contrasling with apples, 

(Larriguadiere and Vendrell, 1993) did not produce ethylene and did not show any 

activity of ACC synthase or ACC oxidase during a chilling period up to 17 days. Some 

plant tissues have a reduced ACC synthase activity at low temperatures increasing only 

upon rewarming (Wang and Adams, 1982; Knee, 1987), while in others tissues, ACC 

accumulates at low temperature, the increase in ethylene production observed upon 

rewarming being mainly a consequence of the activation of ACC oxidase activity 

(Jobling et al., 1991; Gaudicrre and Vendrell, 1993). It is suggested that a message 

involving RNA and protein synlhesis is produced or unmasked during the chilling 

period and probably involves mRNA coding for ACC synthase (Wang and Adams, 

1982; Wang, 1989). In tissues where ethylene is not produced until after being 

transferred to warmer temperatures, the translation and the synthesis of a new protein 

were not completed at chilling temperatures. Although the signal is turned on by 

chilling stress, ethylene is not produced until aíler the completion of the translation and 

the formation of ACC synthase at warmer temperatures (Wang and Adams, 1982). 

However, as for ACC synthase, kiwifruit did not show ACC oxidase activity during 

lhe chilling period, suggesting a similar bchaviour for both enzymes. 

It was shown in chapter 4 (fig. 4.4) that there was no gene transcription of ACC 

synthase or ACC oxidase up to 8 days exposure to low temperatures, when ffuit were 

not treated with propylene. This may explain why the 5 days chilling were not enough 

to induce ethylene production. Twelve days chilling were probably enough to activate 

the transcription of the ACC synthase and ACC oxidase genes induced by chilling, with 

the translation and/or activation of the enzymes being completed at warmer 

temperatures as suggested by Wang and Adams (1982) and Wang (1989). We suggest 

that as lhe time under low temperature is increased, the process of translation and 

activation of the enzymes is probably completed, explaining the decrease in the lag 

period for ethylene production, upon rewarming of the ffuit, as reported by Hyodo and 

Fukazawa (1985), Hyodo et al. (1987) and Arpaia et al. (1994a). However, more 

research is needed at the molecular levei to confirm this hypothesis. 
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The warming up of cucumber exposed to a chilling temperature (2.50C) gave an 

increase in ethylene production whilc fruit exposed to low but non chilling temperature 

(130C) showed very little change in ACC levei, ethylene production or ACC synthase 

activity (Wang and Adams, 1982). In the present study it was observed that not only 

0oC but also temperatures up to 150C can induce an earlier ethylene production and 

ripening of kiwifruit upon transference to 20oC. 

Sfakiotakis and Dilley (1974) reported a better stimulation of ethylene production in 

pears after 7 days at 5o or 10oC rather than at 0o or 7.50C. In the present study it was 

observed that the efficiency of the low temperature on the capacity of the fruit to 

produce ethylene depcnds mostly on lhe time of cxposure. Fruit kepl for 12 days at 

0oC had a greater capacity to produce ethylene than if kept at superior temperatures. 

After 17 days storage, fruit at 0oC had decreased their capacity to produce ethylene 

while the temperature of 150C allowed for better efficiency on ethylene production. 

Wang and Adams (1982) and Andersen (1986) reported that the conversion of ACC to 

ethylene was damaged by prolonged chilling. 

Blankenship and Richardson (1985) reported, for pears, that during the chilling period 

required for initiation of ethylene production, the capacity to convert ACC to ethylene 

developed first, followed by production of ACC and ethylene. Hyodo and Fukasawa 

(1985) and Hyodo et al. (1987) believe that chilling induces an increase in the leveis of 

ACC and ACC oxidase activity in kiwifruit upon rewarming. It was found in the 

present study that, up to 17 days storage at chilling temperatures, ACC conlent and 

ACC synthase and ACC oxidase activities were very low. Ethylene production upon 

rewarming was correlated with the activities oí both ACC synthase and ACC oxidase 

as well as ACC content. Kiwifruit producing more ethylene showed higher ACC 

synthase and ACC oxidase activities than fruit producing less ethylene in agreement 

with Hyodo et al. (1987). 

The warming up of kiwifruit, by itself, increased the respiration rate in 24 hours 

independently from ethylene production coinciding with the postulated by Arpaia et al. 

(1994a). Whcn fruit started to produce ethylene, respiration increased too and was 

gcncrally higher in fruit that produced more ethylene than in fruit that produced less 

ethylene, as a response to the endogenous ethylene (Tucker, 1993). This behaviour 
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showcd that respiration increases due to two factors: the increase in temperature and 

the increase in ethylene production. Jobling et al. (1991) found that respiration of 

apples, when they were rewarmed, increased with time of exposurc to low 

temperature, up to 16 days. The same authors found a rise and a subsequent decrease 

in internai CO2 upon rewarming, while in this work kiwiífuit respiration increased in 

the fírst 24 hours upon rewarming and then remained constant during the 10 days the 

experiment lasted. It seems that respiration remains at a high levei till kiwifruil reaches 

the ethylene climacteric peak as a response to ethylene production. The decrease in 

respiration may occur after the ethylene production declines late in the senescence, as 

for some othcr firuit (Tucker and Grierson, 1987). 

Changes in membrane permeability have been correlated lo changes in the lipid 

composition of the membrane, either in the sterol levei - the ratio of phospholipids to 

sterols - or the fatty acids composition of the phospholipids (Lurie and Ben-Aire, 

1983). In the present study there was a positive correlation between the 

unsaturated/saturated fatty acid ratio and membrane permeability. 

The increase in fatty acid unsaturation and membrane permeability were higher at 

lower temperatures as a response to chilling stress in order to preveni chilling injury as 

reported by Wilson and Crawford (1974a,b). The increase in unsaturation may be the 

cause of the increase on membrane permeability. These results are confirmcd by 

Heureux et al. (1993). However, Spychalla and Desborough (1990) reported that 

higher rates of fatty acid unsaturation were related to lower membrane permeability. 

Whitaker (1994) reported that fatty acid unsaturation increased slighlly during chilling 

in tomato fruit, while Parkin and Kuo (1989) found an increase only upon rewarming 

of cucumber ffuit. 

Forney (1990) reported that the increase in unsaturation of fatty acids was primarily 

due to the increase of palmitolcic and oleie acids since the other fatty acids had only 

small changes. The results of this study showcd that in kiwiífuit the increase in 

unsaturated/saturated fatty acid ratio was mostly due to a decrease in palmilic and an 

increase in oleie acids. The changes in those fatty acids were more pronounced al 

lower temperatures. 
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Gerasopoulos (1988) suggested that the increase in fatty acid unsaturation during 

chilling, which coincides with the chilling requirements for ethylene production, may 

activate membrane-bound enzymcs such as ACC oxidasc and induce ethylene production 

and ripening, upon rewarming, in pears. The results of our experimenl indicated no clear 

correlation between fatty acid unsaturation or electrolyte leakage and ethylene 

production or ripening in kiwiífuit. In the present study, it was observcd that the most 

pronounced increase in the unsaturated/saturated fatty acid ratio and electrolyte leakage 

occurred in the first 5 days storage preceding the requirement for lhe induction of 

ethylene production (12 days). 
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Figure 6.1. Ethylene (A) and CO2 (B) production of harvested 'HaTward' kiwifruit 

kept in a continuous, humidified, air stream at 0, 5, 10, and 150C for 5 days, 

thcn transferred to 20oC. Ethylene was measured during ali the experiment, 

whilc CO2 was measured only when fruit were rewarmed. The fírst arrow in 

A shows when ífuit were transferred to 20oC. 

LSD at a=0.05. 
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Table 6.1. ACC content and ACC synthase and ACC oxidase activities of'Hayward' 
kiwifruit at Harvest, afler 5 days at 0, 5, 10, and 150C under a continuous, 

humidiíied, air stream and after transferred to 2Q0C for 10 more days.  

Days Temperature ACC ACC synthase ACC oxidase 

(0C) (nmol/g) (units/mg) (nl/g/h) 

0 ambient 0.013 c** 2.56 a 0.15 d 

5 0 0.055 ab 1.56 a 0.33 d 

5 0.044 b 1.56 a 1.48 d 

10 0.053 ab 3.39 a 1.00 bc 

15 0.071 a 0.74 a 1.44 b 

5+10 0->20 0.076 a 1.15 a 2.30 a 

5->20 0.055 ab 1.15 a 2.94 a 

10->20 0.042 b 1.56 a 0.69 cd 

15->20 0.065 ab 1.73 a 1.43 b 

**Values in the same column foliowed by the same letter are not significanlly different 

by Dunca^s multiple range test (a=0.05). 

1 unit/mg = Ipmol ACC/mg protein/2hours. 

Table 6.2. Ripening parameters of'Hayward' kiwifruit at Harvest, after 5 days at 0, 5, 

10, and 150C under a continuous, humidified, air stream and after transferred 
to 2Q0C for 10 more days.     

Days Temperature Flesh Core SSC Flesh 

íirmness firmncss colour 

ro (kgf) (kgí) (% Brix) (a* valuc) 

0 ambient 8.45 a** 16.93 a 5.13 d -17.63 a 

5 0 8.77 a 16.97 a 5.87 bc -18.70 ab 

5 9.27 a 16.97 a 6.10 ab -17.29 b 

10 7.83 a 16.77 a 5.93 bc -17.27 a 

15 8.23 a 16.73 a 5.43 cd -18.32 ab 

5+10 0->20 8.60 a 16.70 a 5.87 bc -18.47 ab 

5->20 8.70 a 16.10 b 5.50 cd -17.51 a 

10->20 8.40 a 16.90 a 6.53 a -19.25 b 

15->20 8.43 a 16.80 a 5.57 bcd -18.35 ab 

**Values in the same column followed by the same letter are not significanlly different 

by Duncafrs multiple range test (a=0.05). 
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Figure 6.2. Ethylene (A) and CO2 (B) production of harvested 'Hayward' kiwifruil 

kept in a continuous, humidified, air slream at 0, 5, 10, and 150C for 12 

days, then transferred to 20oC. Ethylene was measured during ali the 

experiment, while CO2 was measured only when fruit were rewarmed. The 

arrow in A shows when fruit were transferred to 20oC. Aa shows a blow up 

graph of the threshold levei for initiation of ethylene autocatalysis. 

LSD at a=0.05. 
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Table 6.3. ACC content and ACC synthase and ACC oxidase activities of 'Hayward' 

kiwifruit at Harvest, afler 12 days at 0, 5, 10, and 150C under a continuous, 
lumidified, air strcam and aftcr transferred to 2Q0C for 10 more days.  

Days Temperature ACC ACC synthase ACC oxidase 

(0C) (nmol/g) (unils/mg) (nl/g/h) 

0 ambient 0.013 e** 2.56 c 0.15 c 

12 0 0.058 e 3.67 c 0.07 c 

5 0.063 e 2.23 c 0.81 c 

10 0.050 e 3.34 c 0.83 c 

15 0.080 e 1.11 c 1.04 c 

12+10 0->20 5.027 a 43.77 a 51.24 a 

5->20 2.279 c 39.87 a 45.21 a 

10->20 3.591 b 34.30 ab 48.99 a 

15->20 1.199 d 24.62 b 31.62 b 

**Values in the same column followed by the same letter are not significantly different 

by Dunca^s multiple range test (a=0.05). 
1 unit/mg = Ipmol ACC/mg protein/2hours. 

Table 6.4. Ripening parameters of'Hayward' kiwifruit at Harvest, after 12 days at 0, 5, 

10, and 150C under a continuous, humidified, air stream and after transferred 
 to 20oC for 10 more days.     

Days Temperature Flesh Core SSC Flesh 

firmness firmness colour 

(0C) (kgf) (kgf) (% Brix) (a* value) 

0 ambient 8.45 ab** 16.93 a 5.13 e -17.63 cd 

12 0 9.10 a 16.93 a 6.73 cd -19.14 d 

5 8.73 a 17.03 a 7.67 c -18.65 d 

10 6.10 c 15.63 b 7.27 c -16.88 c 

15 7.27 bc 15.43 b 6.10 de -18.78 d 

12+10 0->20 0.27 d 0.33 d 11.53 b -12.98 ab 

5->20 0.43 d 1.30 d 11.93 b -13.22 ab 

10->20 0.57 d 0.90 d 12.07 b -12.32 a 

15->20 1.23 d 2.63 c 12.30 a -14.00 b 

**Valucs in the same column followed by lhe same letter are not significantly different 

by Duncan's multiple range test (a=0.05). 
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Figure 6.3. Ethylene (A) and CO2 (B) production of harvested 'Hayward" kiwifruit 

kept in a continuous, humidified, air stream al 0, 5, 10, and 150C for 17 

days, then transferred to 20oC. Ethylene was measured during ali the 
experiment, while CO2 was measured only when fruit were rewarmed. The 

arrow in A shows when fruit were transferred to 20oC. Aa shows a blow up 

graph of the threshold levei for initiation of ethylene autocatalysis. 

LSD at a=0.05. 

108 



Chapter 6. Chilling effect on ethyIene, ripening andfatty acids 

Table 6.5. ACC content and ACC synthase and ACC oxidase activities of 'Hayward' 
kiwifruit at Harvest, after 17 days at 0, 5, 10, and 15 C under a conlinuous, 

iiimidified, air stream and after transíèrred to 20oC for 10 more days.  

Days Temperature ACC ACC synthase ACC oxidase 

(0C) (nmol/g) (units/mg) (nl/g/h) 

0 ambient 0.013 d** 2.56 c 0.15 c 

17 0 0.050 d 2.56 c 0.65 c 

5 0.071 d 3.67 c 0.62 c 

10 0.058 d 1.11 c 0.75 c 

15 0.063 d 2.23 c 0.41 c 

17+10 0->20 0.795 c 19.15 b 32.64 b 

5->20 2.360 a 31.85 a 42.56 a 

10->20 1.953 b 35.41 a 50.39 a 

15->20 2.245 a 31.07a 49.55 a 

**Values in the same column foliowed by the same letter are not significantly different 

by Dunca^s multiple range test (a-0.05). 
1 unit/mg = Ipmol ACC/mg protein/2hours. 

Table 6.6. Ripening parameters of'Hayward' kiwifruit at Harvest, after 17 days at 0, 5, 
10, and 150C under a continuous, humidified, air stream and after transferred 
to 20oC for 10 more days. 

Days Temperature Flesh Core SSC Flesh 

firmness firmness colour 

(0C) (kgf) (kgf) (% Brix) (a* value) 

0 ambient 8.45 a** 16.90 a 5.13 f -17.63 c 

17 0 8.27 a 17.13 a 7.73 d -18.30 c 

5 7.97 a 16.77 a 8.23 d -17.55 c 

10 6.13 b 15.27 b 8.27 d -18.29 c 

15 7.90 a 16.83 a 6.23 e -18.92 c 

17+10 0->20 0.80 c 0.80 d 11.53 c -13.45 b 

5->20 0.40 c 0.50 d 11.83 bc -11.81 a 

10->20 0.27 c 0.27 d 12.73 a -12.00 a 

15->20 0.30 c 0.37 d 12.60 ab -11.89 a 

**Values in the same column folio wed by lhe same letter are not significantly different 

by Duncafrs multiple range test (a-0.05). 
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Table 6.7. ACC conlent and ACC synthase and ACC oxidase activities of 'Hayward' 

kiwifruit at Harvest and after 8, 15 and 26 days at 20oC under a continuous. 

humidified, air stream. 

Days Temperature 

m 

ACC 

(nmol/g) 

ACC synthase 

(units/mg) 

ACC oxidase 
(nl/g/h) 

0 ambient 0.013 b** 2.56 b 0.15 b 

8 20 0.015 b 3.67 b 1.24 b 

15 0.024 b 3.67 b 1.42 b 

26 4.737 a 34.98 a 41.44 a 

**Values in the same column foliowed by the same letter are nol signiíicanlly different 

by Dunca^s multiple range test (a-0.05). 
1 unit/mg = Ipmol ACC/mg protein/2hours. 

Table 6.8. Ripening parameters of'Hayward' kiwifruit at Harvest and after 8, 15 and 
26 days at 2Q0C under a continuous. humidificd, air stream. 

Days Temperature Flesh Core SSC Flesh 

fiminess firmness colour 

rc) (kgf) (kgf) (% Brix) (a* value) 

0 ambient 8.45 a** 16.93 a 5.13 b -17.63 b 

8 20 8.83 a 17.03 a 5.47 b -18.86 c 

15 7.17 b 16.07 b 5.43 b -17.84 bc 

26 0.40 c 0.60 c 12.33 a -13.55 a 

**Values in the same column folio wed by the same letter are nol signifícantly different 

by Dunca^s multiple range test (a=0.05). 
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LSD at a=0.05. 
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CHAPTER 7. ETHYLENE BIOSYNTHESIS AND RIPENING 

BEHAVIOUR OF ' HA Y WARD' KIWIFRUIT 

SUBJECTED TO CONVENTIONAL (CS), 

CONTROLLED ATMOSPHERE (CA) AND ULTRA 

LOW OXYGEN (ULO) STORAGE CONDITIONS 

ABSTRACT 

The effect of conventional storage (CS), controlled atmosphere (CA) and ultra low 

oxygen (ULO) on ethylene biosynthesis and ripening of 'Hayward' kiwifruit during and 

after storage at 0oC were investigated. Fruit were stored for 60, 120 and 180 days at 0oC 

in CS (air-control), CA (2%02+5%C02) and ULO (0.7%02+0.7%C02 and 

1%02+1%C02). At harvest and on remo vai from storage, ífuit were treated with or 

without 130pl/l propylene for 9 days at 20oC. Measurements of ethylene and CO2 

production, ACC content, ACC synthase and ACC oxidase activities, SSC, flesh 

firmness, flesh colour, ethanol and acetaldehyde content were performed during the 

experiment. 

Fruit treated with propylene at 20aC after harvest produced ethylene with a lag period of 

3 days, had concomitant ACC production, ACC synthase and ACC oxidase activities, 

and were ripe after 3-5 days. Fruit not treated with propylene were not able to produce 

ethylene and to ripe during the 9 days experiment. 

On remo vai ífom storage, fruit of CA had the highest firmness followed by ULO and 

CS. Firmness of CS stored fruit decreased faster during the first 60 days storage than 

in the remaining period. This effect was reduced in CA and ULO treatments. After 9 

days shelf-life at 20oC, only CA and CS fruit were eating-ripe. Fruit of ULO storage 

necded to bc treated with propylene to ripe. The SSC increased markedly during the 

first 60 days storage and remained almost constanl thereafter in ali treatments. The 

fading of flesh colour was lower in CA and ULO than in CS. 1 he 0.7%02+0.7%C02 

treatment had the highest accumulation of ethanol and acetaldehyde followed by 

1%02+1%C02. 
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When kiwifinit were placed at 20oC, after 60, 120 and 180 days storage at 0oC, there 

was an induction of ethylene production with no lag period in fruit from CA and CS, 

independently of being treated or not with propylene. There was some accumulation of 

ACC and ACC synthase activity after 60 days storage for ali treatments, while ACC 

oxidase activity increased only upon rewarming of the fruit in CA and CS. Kiwifruit 

removed from ULO storage showed drastically reduced capacity to produce ethylene 

mainly due to low ACC oxidase activity rather than reduced ACC production or ACC 

synthase activity. 

Respiration increased upon rewarming of the fruit in ali treatments. There was a 

tendency of the ethylene producing treatments to have slightly higher values of CO2 

production during shelf-life at 20oC. 

With storage time, there was a decrease in the capacity of the warmed fruit to produce 

ethylene and CO2 as well as in the activities of ACC synthase and ACC oxidase, mostly 

after 60 days storage. 

INTRODUCTION 

Kiwifruit can be air-stored for 4 to 6 months at 0oC, although extensive softening will 

occur (Arpaia et al..l987). The rate of softening in storage will be accelerated if ethylene 

is present (Arpaia et al.,1980; McDonald. 1990). Softening of kiwifruit during cold 

storage has 2 distinct phases: an initial rapid rate of softening followed by a long period 

during which fruit firmness loss is very low (McDonald and Harman, 1982; Arpaia et al., 

1987). 

McDonald and Harman (1982) postulated that low oxygen (2-3%) with 3-5% CO2 

furthcr dclayed the rate of kiwifruit softening and increased storage life up to 3-4 months 

beyond normal air-slorage life. The CA storage has been shown to reduce the rate of 

softening if ethylene is removed from storage rooms (McDonald and Harman. 1982; 

Arpaia et al., 1994b). Diíferences in the way the fruit soften are a result of both maturity 

at harvest and post-harvest treatment (MacRae et al., 1989). The CA storage may 

change the post-storage ripening behaviour of fruits. Arpaia et al. (1986) reported that 
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for firmness retention and maximisation of storage life, kiwiffuit should promptly bc 

cooled to 0oC and immediately stored at the same temperature in 2%02+5%C02, with 

ethylene excluded or removed to maintain its concentration below 0.05pl/1. 

Most studies of CA storage of kiwiífuit have been conducted on its effect on ífuit flesh 

firmness. However, other ripening parameters as well as shelf-life of the ífuit have to bc 

considered. Storage atmospheres containing high CO2 and low O2 concentrations may 

induce abnormal metabolism which would injure fruit tissue (Burton, 1974). High 

concentrations of CO2 may result in hard core (even when the ífuit córtex is soft and 

ripe), flesh brcakdown, loss of normal flavour and development of off-flavours (Harman 

and McDonald, 1989). The presence of ethylene in CA when combined with high CO2 

can induce some physiological disorders (Arpaia et al., 1986). 

The effect of ULO on storage life, qualily and shelf-life has not been extensively studied 

in kiwiífuit. Previous studies have shown that kiwifruit removed from ULO storage did 

not ripe normally (Thomai and Sfakiotakis, 1997). Ripening-related changes in kiwifruit 

after removal ffom storage determine consumer acceplance. Hypoxic conditions increase 

ethanol and acetaldehyde content (Ke et al., 1990) and may cause injuries in plant tissues 

(Aipi et al., 1985). High leveis of ethanol and acetaldehyde in 0.5%02+0%C02 stored 

kiwiífuit were observed previously (Thomai and Sfakiotakis, 1997). 

There is a marked reduction in ethylene production when parts of chilling-sensitive 

species are incubaled below a growing temperature of 20° to 250C (Field, 1981b; Wang 

and Adams. 1982). Ethylene production continues at 2.50C in bcan leaf tissue (Field, 

1981b) and 5-10oC in avocado ífuit (Metzidakis and Sfakiotakis, 1989), while in 

kiwifruit is almost null at temperatures bellow 11-14.80C (Stavroulakis and Sfakiotakis, 

1993). 

Chilling temperatures similar to those encountcred in storage will induce ethylene 

production and ripening upon transference to warm temperatures in kiwiífuit (Hyodo 

and Fukazawa, 1985; Hyodo et al. 1987). The mechanism by which ethylene production 

is induced is not yet known. Hyodo and Fukasawa (1985) suggested that chilling stress 

in kiwifruit may advance the onset of ethylene production in the ífuit when transferred to 

210C possibly by stimulating the formation of ACC as it happens in other ífuit. Chilling 
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induces ethylene production upon rewarming, by stimulating ACC synthesis in cucumber 

and pears (Wang and Adams, 1982; Knee, 1987) or ACC oxidase activity in apples 

(Gaudierre and Vendrell, 1993). 

Oxygen plays an important role in ethylene biosynthesis since it is a co-substrate of ACC 

oxidase (Pech et al., 1994). The system that converts ACC to ethylene is oxygen 

dependent, so in ULO conditions ACC oxidase activity should be low and an 

accumulation of ACC should be expected (Bufler and Bangerth. 1983). Under low- 

oxygen conditions, pears accumulated ACC which was converted to ethylene during 

post-storage ripening (Blankenship and Richardson, 1985; 1986). However, CA 

suppressed internai ethylene and ACC leveis of apples (Bufler and Bangerth. 1983; Lau 

et al, 1984). 

After prolonged chilling, ethylene production was reduced in cucumbers (Wang and 

Adams, 1982; Andersen, 1986), avocados (Eaks, 1983) and nectarines (Brecht and 

Kader, 1984). Differences in ethylene biosynthesis and ripening rates due to storage 

treatmenl can affect marketing decisions. This impairment of the ethylene-synthesising 

capacity may be responsible for the failure of chilled ffuit to ripe normally (Eaks, 1983). 

The scope of the present research was to study the effect of CS, CA and ULO storage on 

ethylene biosynthesis and ripening behaviour of 'Hayward' kiwifruil during storage at 

0oC and posterior shelf-life at 20oC. 

MATERIAL AND METHODS 

1. Plant material and treatments 

Kiwiffuit (cv. Hayward) were harvesled from an orchard in Picria-North Greece with 7.1 

kgf flesh Fm and 6.9 (% Brix) SSC. After selection for uniformity of size and ífeedom 

ífom defeets, 32 fruit were used the same day for analysis of quality paramelers. 

A group of the remaining ífuit were put in 5-litre jars through which a continuous, 

humidified, air stream with 130pl/l propylene or air free of propylene was passed at a 
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rate of 1 OOml/min. Each set of six jars was kept in a separate water bath at a constant 

temperature of 20<>C. At intervals of 0, 3, 5, 7 and 9 days, 6 fruit per replication were 

removed from the jars and measurements of flesh firmness, SSC, ACC contenl, ACC 

synthase and ACC oxidase {in vivo) activities were taken. Ethylene production was 

measured daily. Respiration was measured four times during the first day and twice per 

day thereafter. 

The other group of fruit were submerged in 1 -butilcarbamoyl-2-benzimidone (600ppm) 

for 10 seconds and stored at 0oC. Atmospheres of ULO (0.7%02+0.7%C02 and 

1%02+1%C02) and CA (2%02+5%C02) were attained within 24h. The desired 

concentrations of O2 and CO2 were monitored by a paramagnetic and inífared gas 

analyser connected to a computer. The control consisted of normal atmosphere 

composition (CS). Ethylene scrubbers (K^MnO^ were placed in ali storage chambers 

and the relative humidity was maintained at 90-95%. Ali experiments were set within 

24 hours. 

At intervals of 60, 120 and 180 days, ífuit of each treatment were removed ífom 

storage. Thirty two ífuit were immediately analysed and the rcmaining ones were put 

at 20oC in the same conditions as described above for ífeshly harvested ífuit. 

The experimental design was a three-factor experimenl distributed in a complete 

randomised design with the storage atmospheres as the first factor, the propylene 

concentration as second and the duration of storage as third. Each treatment consisted 

of 4 replications. 

2. Measurements 

2.1. Ripeníng parameters and gas analysis 

Ripening parameters (flesh firmness, SSC and ílesh colour) and gas analysis (ethylene 

and CO2 production) were measured as described in chapter 3. 
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2.2. ACC content, ACC synthase and ACC oxidase actívítícs 

ACC content and ACC synthase and ACC oxidase activities were measured as described 

in chapter 4. 

2.3. Ethanol and acetaldehyde contents 

Ethanol and acetaldehyde contents were measured according to Davis and Chace (1969). 

Five ml of thawed fruit juice were put in a 20ml test tubc, closed with a rubber septum 

and incubated for 1 hour in a water bath at 60oC. One ml of the test tube gas phase was 

then injected into a Varian 3700 gas chromatograph, equipped with a glass column 

(2mmxl.8m) at 850C and a flame-ionisation detector at 250oC. The column contained 

5% Carbowax 20M on 60/80 Carbopack as stationary phase and N2, at a flow rate of 

20ml/min, as mobile phase. 

3. Statistical analysis 

Statistical analysis were performed as described in the methods of chapter 3. 

RESULTS 

1. Ripening behaviour during storage 

1.1. Flesh firmness 

Flesh firmness decreased signiílcantly during storage in ali treatments (Fig. 7.IA). On 

removal ífom storage, kiwifruit were firmer in 2%02+5%C02 treatmcnt followed by 

1%02+I%C02, 0.7%02+0.7%C02 and air-control. Firmness of CS stored ífuil 

decreased mostly during the first 60 days and remained almost constant thereafter. This 

effect was decreased in CA and ULO treatments. Firmness of lhe control ífuit was 

always significantly lowcr than in the othcr treatments except at the end of the 

experiment where its values did nol show significant differences from the fruit kept at 

0.7%02+0.7%C02. Aíler 60 days storage, 2%02+5%C02 and 1%02+1%C02 stored 
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fruit did not show significant differences between them, but were significantly ílrmer than 

the other treatments. After 120 and 180 days storage, firmness was significantly higher 

for fruit of CA followed by ULO and CS. 

1.2. Soluble solids content (SSC) 

The SSC had a high significant increase during the first 60 days storage and remained 

almost constant thercafter (Fig. 7.1B). There were no significant differences among 

treatments in terms of SSC during storage. 

1.3. Flesh colou r 

There was a significant fading of flesh green colour during storage as it is visible by the 

increase of the a* value (Fig. 7.1C). The loss of green colour (due to chlorophyll 

breakdown) was similar in ali treatments except in control fruit which presented a 

significantly higher degreening. The loss of flesh green colour was more pronounced 

during the first 60 days storage in the control, while in the other treatments it was 

constant during ali storage period. 

1.4. Ethanol content 

There was a higher significant accumulation of ethanol in 0.7%02+0.7%C02 trealmenl 

during storage than in the other treatments (Fig. 7.2A). Ethanol content of 

0.7%02+0.7%C02 stored fruit started to increase from the beginning of storage, while in 

the other treatments incrcased significantly only after 60 days storage. There were no 

significant differences between 1%02+1%C02, 2%02+5%C02 and control treatments 

except after 180 days storage where 1%02+1%C02 showed significantly higher values of 

ethanol than 2%02+5%C02 and control. 

1.5. Acctaklehyde content 

On rcmoval from 60 days storage, acetaldehydc was significantly higher in 

0.7%02+0.7%C02 followed by 1%02+1%C02, 2%02+5%C02 and control (Fig. 7.2B). 

Acetaldehydc remained almost constant thereafter in 0.7%02+0.7%C02 stored fruit, 

while it significantly increased in the other treatments. There were no significant 

differences between CA and CS during storage. After 120 days, acetaldehydc content 
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was significantly higher at 0.7%02+0.7%C02 than al 2%02+5%C02 or the control, 

while at the end of the experiment there were no signifícant differences between 

treatments. 

1.6. Ethylene production 

Ethylene production was almost null during storage at 0oC in ali treatments (Fig. 7.3A). 

1.7. l-aminocyclopropane-l-carboxilic acid (ACC) content 

The ACC content of kiwiífuit was almost null at harvest, but increased signifícantly 

during the first 60 days of storage in ali treatments (Fig. 7.3B). The ACC content 

continued to increase in CS and CA till 120 days and then decreased till 180 days 

storage. Fruit of ULO treatments decreased their ACC content after 60 days storage 

with a more pronounced decrease ífom 120 to 180 days. 

1.8. 1-aminocyclopropane-l-carboxylate synthase (ACC synthase) activity 

The activity of ACC synthase was almost null at harvest, increased signifícantly during 

the first 60 days storage in ali treatments and decreased slightly thereafter (Fig. 7.4A). 

The ACC synthase activity was always higher in CA and CS than in ULO. However, 

differences were signifícant only between CA and ULO treatments till 120 days, while at 

the end of the experiment CS and CA were signifícantly higher than ULO. 

1.9. 1-aminocyclopropane-l-carboxylate oxidase (ACC oxidase) activity 

The ACC oxidase activity was almost null at harvest and remained very low during 180 

days storage (Fig. 7.4B). Although values were signifícantly higher in 2%02+5%C02 

and 1%02+1%C02 after 120 days and in 2%02+5%C02 after 180 days than in the other 

treatments, lhey did not pass 3nl/g/h which is insignifícant in terms of ACC oxidase 

activity in ethylene producing kiwiífuit. 
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2. Ripening behaviour during shelf-life 

2.1. Flesh firmness 

Flesh firmness of kiwifruit trealed with propylene at harvest decrcased rapidly in the first 

3 days at 20oC and had a slower decrease thereafter (Fig. 7.5). Fruit were fully ripe after 

5 days. Fruit not treated with propylene did not significantly changed their flesh firmness 

during 9 days at 20oC. 

When placed at 20oC, after 60 days storage, and treated with propylene, fruit of CA and 

ULO significantly decreased their fírmness reaching Ikgf after 5 days (Fig. 7.6A). 

Contro 1 fruit had only a small decrease in fírmness during shelf-life at 20oC because they 

were already soft on removal from storage. After 3 days shelf-life at 20oC, Fruit of CA 

were significantly fírmer followed by ULO and CS, while after 5 days there were no 

significant differences in fírmness among treatments, al! fruit being ripe if treated with 

propylene. 

After 60 days storage, fruit placed at 20oC in air free of propylene behaved differently 

than fruit treated with propylene (Fig. 7.6D). Ali treatments decreased significantly their 

fírmness during shelf-life except control because it was already soft. Fruit of CA were 

significantly fírmer than the other treatments after 3 days shelf-life at 20oC, significantly 

higher than CS after 5 days and significantly lower than ULO after 7 and 9 days. After 9 

days shelf-life at 20oC in air free of propylene, only CA and CS fruit reached a ripe 

fírmness value (<lkgf). Fruit stored in ULO were not able to fully ripe and did not show 

significant differences between them during 9 days shelf-life at 20oC if not treated with 

propylene. 

Fruit treated with propylene after 120 days storage behaved similarly as after 60 days 

storage, but ali treatments reachcd a ripe fírmness value after 3 days shelf-life at 20oC 

and did not change significantly thereafter (Fig. 7.6B). Fruit not treated with propylene 

in the same conditions followed the same pattern as after 60 days storage (Fig. 7.6E). 

After 180 days storage and when treated with propylene, fruit of ali treatments showed a 

similar pattern during shelf-life as after 120 days (Fig. 7.6C). When not treated with 

propylene, fruit of 2%02+5%C02 and 1%02+1%C02 showed significantly higher 
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firmness than 0.7%02+0.7%C02 and control till 3 days at 20oC, but ali trcatments 

reached a firmness value of Ikgf after 7 days (Fig. 7.6F). 

2.2. Soluble solids content (SSC) 

The SSC of kiwifruit treated with propylene at harvest increased significanlly reaching a 

ripe value of 14% Brix after 3 days at 20oC and continued to increase signiíicantly 

reaching a value of 17% Brix after 9 days (Fig. 7.7). In air ífee of propylene, kiwilfuit 

increased significantly their SSC during 9 days. However, they only reached values of 

10% Brix, signiíicantly lower than fruit treated with propylene. 

The SSC increased signiíicantly in the first 60 days storage, reaching values of 14% Brix. 

and remained almost constant thereafter for ali treatments (Fig. 7.8). The SSC did not 

signiíicantly change during 9 days shelf-life at 20oC independently of being treated or not 

with propylene. 

2.3. Ethylene production 

After 3 days exposure to propylene at 20oC, freshly harvested ífuit started to show a 

typical increase in ethylene production reaching 180p,l/kg/h after 9 days (Fig. 7.9). 

Without propylene, ífuit did not produce ethylene during the experiment. 

Ethylene production was almost null in ali treatments on removal ífom storage (Fig. 

7.10). Upon transfer to 20oC in air+130pl/l propylene, only CA and CS fruit exhibited 

the capacity to produce ethylene without delay and no significant differences between 

them (Fig. 7.10A, B and C). However, their maximum capacity to produce ethylene 

after 60 days storage was about 10% ofthat at harvest, 7% after 120 days storage and 

3% after 180 days storage. 

After 60. 120 and 180 days storage, fruit kcpt in air free of propylene at 20oC for 9 

days, showed similar pattem in ethylene production as fruit treated with propylene in 

the same condilions, except that their values were slightly lower (Fig. 7.10D, E and F). 

After removal from 60, 120 or 180 days storage, fruit kept in ULO did not increase 

significantly their ethylene production during shelf-life at 20oC, even when treated with 

propylene (Fig. 7.10). 
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2.4. l-aminocyclopropane-l-carboxilic acid (ACC) content 

Fruit harvested and placed at 20l)C in air+130pl/i propylene started to produce ACC after 

a lag period of 3 days with a significant increase from day 5 to day 9 (Fig. 7.11). Fruit 

not treated with propylene did not increase significantly their ACC leveis during 9 days at 

20oC. 

On removal from 60 days storage, ACC leveis were of about 0.40-0.55 nmol/g in ali 

treatments and remained almost constant during 9 days in air+130pFl propylene at 20oC, 

except for CA which had a signifícant increase in ACC leveis from day 7 to day 9 (Fig. 

7.12A). However, its maximum values were about 42% of thal of fruit ripencd with 

propylene at harvesl. 

After 120 days storage, fruit from CA and CS showed significantly higher ACC content 

than ULO (Fig. 7.12B). The ACC content slightly increased in fruit from CS and CA 

during 9 days treatment with propylene at 20oC, while in ULO treatments it remained 

almost constant. There were no signifícant differences in ACC content between control 

and 2%02+5%C02 and between 0.7%02+0.7%C02 and 1%02+1%C02. 

After 180 days storage, ACC content of fruit treated with propylene for 9 days at 20oC 

foliowed the same pattern as after 120 days for ali treatments, but its values were 40- 

50% lower than after 120 days storage (Fig. 7.12C). Fruit did not show signifícant 

changes in ACC content during 9 days shelf-life at 20oC in air+130pFl propylene. 

Fruit not treated with propylene during shelf-life followcd a similar pattern to fruit 

treated with propylene after the same storage period (Fig. 7.12D, E and F). 

2.5. 1-aminocyclopropane-l-carboxylatc synthase (ACC synthase) activity 

ACC synthase activity followcd lhe same pattern as ACC content both at harvest and 

during shelf-life, after 60 days storage, in fruit treated or not with propylene (Figs. 7.13 

and 7.I4A and D). The maximum ACC synthase activity during shelf-life was about 50% 

lower than at harvest and decreased slightly with storage time (Fig. 7.13 and 7.14). 

After 120 days storage, ACC synthase activity was similar in ali treatments (Fig. 7.14B 

and E). After 5 days treatment with propylene at 20oC, it increased significantly in fruit 
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from CA and CS and remained almost constant in ULO treatments. Fruit in air free of 

propylene followed thc same pattem, except fruit from CS where ACC synthase activity 

did not significantly change during shclf-lite (Fig. 7.14E). 

After 180 days storage, ACC synthase activity followed a similar pattem to ACC 

content (Fig. 7.14C and F). However, in fruit treated with propylene at 20oC, values 

were significantly highcr only in CA than in ULO treatments aíler 7 days shelf-life (Fig. 

7.14C). ACC synthase activity of fruit not treated with propylene during shelf-life, 

differed from ACC content pattem only in that therc were no significanl differences after 

3 days shelf-life between 1%02+1%C02 and control or 2%02+5%C02 (Fig. 7.14F). 

2.6. l-aminocyclopropane-l-carboxylate oxidase (ACC oxidase) activity 

The ACC oxidase activity of kiwifruil was almost null al harvest but increased 

significantly upon exposure to propylene reaching values of 23 nFg/h after 9 days (Fig. 

7.15). Kiwifruit did not significantly increase ACC oxidase activity in air free of 

propylene. 

The ACC oxidase activity was very low and similar in ali treatments on removal from 60 

days storage and increased significantly during 9 days in air+I30pl/l propylene at 20oC in 

fruit from CS and CA treatments (Fig. 7.16A). Fruit of ULO treatments did not show a 

significam increase in ACC oxidase activity till 7 days shelf-life. but there was a 

significam increase between day 0 and day 9. Fruit in air free of propylene showed a 

similar pattem to fruit treated with propylene, except that ACC oxidase of ULO 

treatments did not significantly change during shelf-life (Fig. 7.16D). The maximum ACC 

oxidase activity was about 40% lower than at harvest and decreased slightly thereafter 

(Figs. 7.15 and 7.16). 

After 120 days storage, kiwifruit ACC oxidase activity followed the same pattem as 

after 60 days, except that there was not a significam increase during shelf-life at 20oC 

in ULO treatments independently of being treated or not with propylene (Fig. 7.16B 

and E). 

During shelf-life at 20oC, ACC oxidase of kiwifruit removed from storage after 180 

days followed the same pattem as after 120 days, except that CS showed significantly 
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higher values than CA after 7 and 9 days shelf-life in both fruit treated or not with 

propylene (Fig. 7.16C and F). 

2.7. Carbon dioxide production 

Kiwifruit treated with propylene and kept al 20oC after Harvest, increased significantly 

their respiration rate reaching a peak of 49 ml/kg/h after 1 day, had a signifícant decrease 

from 3.5 to 5.5 days, an increase till day S"' (coinciding with the rise in ethylene 

production) and a slight decrease thereafter (Fig. 7.17). Respiration of fruit not treated 

with propylene increased significantly from 2.5 to 5 days and then remained almost 

constant. Its values were always significantly lower than fruit treated with propylene. 

When fruit were removcd from 60, 120 and 180 days storage and placed at 20 C in 

air+130pl/l propylene or air free of propylene, there was a signifícant increase in 

respiration within 1 day for ali treatments, and then no signifícant changes occurred 

during the remaining 8 days of shelf-life (Fig. 7.18). During shelf-life and for every 

remo vai from storage, CO2 production was similar in fruit treated or not with propylene. 

After 60 days storage, the maximum CO2 production during shelf-life at 20oC was about 

65% of that at harvest and decreased slightly thereafter with storage time (Figs. 7.17 and 

7.18). 

After 60 days storage and 1 day shelf-life at 20oC, CO2 production ol ífuil treated with 

propylene at 20oC reached a peak heighl with 35ml/kg/h in CS fruit and 25ml/kg/h in 

1%02+1%C02, the other treatments presented respiration rates between these values 

(Fig. 7.18A). There were no signifícant differences between treatments, exccpt control 

which was significantly higher than 0.7%02+0.7%C02 after 1 day shelf-life and between 

5.5 and 7 days shelf-life. Fruit not treated with propylene showed similar behaviour with 

significantly higher respiration in control than in 0.7%02+0.7%C02 only after 8.5 and 9 

days at 20oC (Fig. 7.18D). 

After 120 days storage and from 1 to 5 days shelí-life at 20oC, kiwifruit treated with 

propylene showed significantly higher values oí CO2 production in control than in 

1%02+1%C02 (Fig. 7.18B). Fruit in air free of propylene did not show signifícant 

difFerences in respiration between treatments (Fig. 7.18E). 
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After 180 days storage, kiwifruit placed at 20oC in air+130pl/l propylene showed 

signifícantly higher respiration in the control than in 0.7%02+0.7%C02 only after 5 days 

shelf-life (Fig. 7.18C). Fruit not treated with propylene showed the samc differences 

from 7 to 9 days shelf-life (Fig. 7.18F). 

DISCUSSION 

The CA of 2%02+5%C02 has been proved to give good storage performance of 

kiwifruit (Harman and McDonald, 1989; Sfakiotakis et ai, 1989; Arpaia et ai., 1994b). 

In the present work, not only CA but also ULO reduced the rate of softening and 

resulted in fewer quality parameters changes than CS, except when kiwifruit were stored 

under 0.7%02+0.7%C02. The rapid softening of kiwifruit during the first 60 days in CS 

and slow thereafter was already observed by other authors (Arpaia et. al., 1984) and may 

be associated with the solubilization of cell wall components and starch degradation 

reported by Arpaia et. al. (1987; 1994a). Our results showed that CA and ULO storage 

played an important role in decreasing the initial rate of softening in kiwifruit. This effect 

decreased with storage time because fruit were becoming softer. Arpaia et al. (1987) 

suggested that part of the effect of CA on maintaining kiwifruit firmness during storage 

is due to its effect on reducing the rate of starch hydrolysis. 

lhe 2%02+5%C02 and 1%02+1%C02 treatments were effective in prolonging storage 

life of kiwifruit with few changes in quality parameters as reported by McDonald (1990) 

Arpaia et al. (1994b) and Thomai and Sfakiotakis (1997). As observed by Arpaia et al. 

(1994b), the 2%02+5%C02 stored fruit became eating-ripe during shelf-life, while 

1%02+1%C02 did not (unless treated with propylene) (Thomai and Sfakiotakis, 1997). 

In the present study, it was found that fruit from CS and CA were able to produce 

ethylene during shelf-life at 20oC in agreemcnt with Arpaia et al. (1994b), while fruit 

from ULO were not. Wc suggesl that the use of CA or ULO storage conditions to 

reduce flcsh íirmness loss depcnds on the needs of the market. When fruit are needed to 

be marketed immediately after storage, 2%02+5%C02 can be used since, due to their 

ability to produce ethylene, fruit ripened within 9 days in air at 20oC, while ULO stored 

fruit did not ripe. Kiwifruit previously stored in ULO were not able to produce ethylene 
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for the first 9 days at 20oC, so they had longer shclf-life. However, they could bc ripened 

at our will by externai ethylene application. Storage in 0.7%02+0.7%C02 for more than 

120 days resulted in developmenl of flesh breakdown, probably due lo the high 

accumulalion of ethanol, making this ULO trcatment not suitable for long kiwiífuit 

storage. Thomai and Sfakiolakis (1997) reported lhe accumulalion of acetaldehyde and 

ethanol in 0.5% O2 stored kiwifruit. 

The high increase in SSC during the initial 60 days storage and the slow increase 

thereafler may be due to higher starch degradation during the initial period, as reported 

by Arpaia et. al. (1984). It appears lhat lhe pattern of SSC evolution is not greatly 

iníluenced by CA (Arpaia et al., 1984; 1986; 1994b; Harman and McDonald, 1989) or 

ULO treatments. Ali treatments reached a SSC of aboul 14% Brix after 60 days storage 

which is considered as a minimum for good consumer acceptance (Mitchell et al. 1991). 

The CA and ULO were more effective in reducing kiwiífuit flesh colour changes than 

air-storage in agreemcnt with Harman and McDonald (1983; 1989) and Thomai and 

Sfakiolakis (1997). The great loss of flesh green colour in CS ífuit is an imporlant factor 

for reduced consumer acceptability. The better maintenance of quality of kiwiífuit under 

CA or ULO may be also related with the reduction in the expression of genes involved in 

ífuit ripening causcd by low oxygen conditions, as reported by Kanellis et al. (1990). 

In accordance to Arpaia et al. (1994a) the time required by kiwifruit to ripe was lower 

after cold storage than before storage. Kiwiífuit placed at 20oC needed propylene to ripe 

in 3-5 days if not stored, while it ripened without propylene in 3 days if stored for 60 

days under CS and 0-3 days if stored for 120 or 180 days under CS. The CA and ULO 

slightly retarded the ripening in shelf-life moslly aíter the first 60 days storage. Kiwiífuit 

ífom CA were always fully ripe aíter 7 days shelf-life at 20l,C. The CA and CS stored 

ífuit ripened during shelf-life because they were ablc to produce ethylene. Fruil not 

treated with propylene and kepl al 20oC did not ripe during 9 days at harvest or aíter 

storage in ULO, because they were not able to produce ethylene. 

At harvest, ethylene production of kiwiífuit kept at 20oC was strongly stimulatcd by 

130pFI propylene: ethylene production started aíter a lag period of 3 days, as was shown 

previously (Chapter 3 and 4) (Stavroulakis and Sfakiolakis, 1993). This was due lo the 

increase of the activities of both ACC synthase and ACC oxidase. The ACC synthase 
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activity presented a lag period similar to ethylene production and ACC oxidade activily 

presented no lag period, as observed in chapter 4. 

From the results of the present study it can bc scen that during shelf-lifc at 20oC only 

fruit previously stored in CA and CS were able to produce ethylene. The same increase 

in ethylene production afler CA and CS storage was reported by Arpaia et al. (1994b). 

As it was shown in chapter 6, fruit from cold storage started to produce ethylene upon 

rewarming with no lag period. This may be due to the induction of ACC synlhase by 

chilling temperatures, since ACC oxidase does not need a lag period to start its activity 

upon rewarming. 

The ULO stored kiwifruit were not able to produce ethylene even when they were 

rewarmed at 20oC. Nanos et al. (1992) found that ethylene production was inhibited in 

pcars kept under very low oxygen but it resumcd upon removal to air. Blankenship and 

Richardson (1986) found low leveis of ethylene in pears on removal from low O2 

storage, and here ethylene leveis increased upon transfer to air at 20oC. In the present 

research, ULO storage inhibited the system that produces, upon rewarming, ethylene 

induccd by chilling in kiwifruit. 

It was previously reported that ACC accumulates in pears stored in low O2 and that it 

was converled to ethylene upon transfer to air at 20oC (Blankenship and Richardson, 

1986). In this study, it was observed a small ACC accumulation and a corrcsponding 

ACC synthase activity in ali treatmcnts on removal from 60 days storage. This indicates 

that lack of ACC accumulation in storage was not the main factor limiting ethylene 

production as reported for apples by Jobling et al. (1991) and Gaudierre and Vendrell 

(1993). During shelf-life al 20oC, the ACC synthase activity and ACC leveis remained 

constant in fruit from ULO and slightly increased in CA and CS fruit, showing a small 

induction of ACC synlhase only in fruit stored above 2% oxygen. When lhe endogenous 

ACC conccntrations are about equal, the rates of ethylene production should represem 

lheir relative ACC oxidase aclivities (Riov and Yang, 1982a). In this work it was 

observed that low ACC oxidase activity was the main factor for the lack of ability of 

ULO stored fruit to produce ethylene upon rewarming. 
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Hyodo et al. (1987) found leveis of 0.6nmol/g of ACC in kiwifruit after 120 days storage 

in CS, whilc ACC oxidase did not show any activity till fruit were rewarmcd. This 

fínding is in agrecment with the present study. 

In the chapter 4 it was observcd that 8 days storage at low temperature (10oC) were not 

enough to induce transcription of ACC synthase or ACC oxidase ol kiwifruit not trcated 

with propylene. There was induction of ACC oxidase only whcn fruit were treated with 

propylene but not of ACC synthase. In addition, during 17 days al temperatures from 0 

to 150C, kiwifruit did not show ACC synthase or ACC oxidase activities (chapter 6). 

ACC synthase and ACC oxidase are encodcd by multigene families and differentially 

regulated (Huang et al, 1991; Olson et al, 1991; Tang et al, 1994; Barry et al, 1996). 

Ikoma et al. (1995) found two ACC synthase genes from kiwifruit differentially 

expressed. The gene KWACC2 from wounded kiwifruit mesocarp was actively 

transcribcd in only wounded tissue, while the gene KWACC1 from elhylene-treated fruit 

was transcribed not only in ethylene-treated ripe fruit but also in wounded tissue. 

From the results of the present study it is suggested that as the chilling period advances, 

the ACC synthase gene induced by chilling is completing the process of transcription, 

translation and prolein synlhesis. Hence, ACC synthase activity is present at chilling 

temperatures in kiwifruit, although at a slower rate than at warm temperatures. The ACC 

oxidase activity is not present in kiwifruit at low temperature probably due to post- 

transcriptional inhibition as for apples (Jobling et al, 1991; Gaudierre and Vendrell 

1993). More rcsearch is needed lo clarify this point at lhe molecular levei 

Low ACC oxidase activity in low-oxygen stored fruit may not bc due solely to the 

requirement for O2 to convert ACC to ethylene (Blankenship and Richardson, 1986). 

The samc authors reported that in the presence of ample oxygen and given exogenous 

ACC, the low 02-stored fruit still do not equal the ethylene production of air-stored fruit. 

Thus, oxygen was not limiting the conversion of ACC to ethylene during ULO storage al 

0oC. They referred that warm temperatures such as those encountered during ripening 

seem necessary for the conversion oí the pool oí ACC to ethylene. However, in the 

present study the temperature increasc did not induce ACC oxidase activity oí ULO 

stored fruit. Wang and Adams (1980) reported that ACC synthesis is readily stimulated 

by chilling, whereas ACC oxidase is vulnerable to chilling injury. Upon rewarming, 
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kiwifruit leveis of ACC and ACC oxidase activity increased in proportion to the rate of 

ethylene production suggesting that ACC production and ACC oxidase activity are 

limiting step factors affecting ethylene formalion (Hyodo and Fukazawa, 1985; Hyodo et 

al. 1987). Bufler and Bangerth (1983) suggested that a ripening promoter may be 

induced before the autocatalytic ethylene production which depends on oxygen. It 

appears that kiwifruit exposure to less than 1% oxygen for 60 days at 0oC damages the 

receptor of the stimulus that induces ACC oxidase at gene transcription levei, translation 

or enzyme activity. More research is needed to clarify this point at the molecular levei. 

Nevertheless, at 120 and 180 days storage, the lower leveis of ACC in ULO stored fruit 

may also be a cause for the loss of capacity to produce ethylene by those treatments. 

Arpaia et al. (1994a) referred that even after 180 days storage in CS at 0oC, kiwifruit 

exhibit the characteristic increase in respiration and ethylene in the same way as fruit not 

stored but kept at 20oC after harvest. Our results are in agreement with these authors for 

CA and CS stored fruit. However, we observed that for CA and CS stored kiwifruit, as 

storage time increases the capacity to produce ethylene during shelf-life decreases, 

mostly in the first 60 days. After 180 days storage at 0oC, ethylene production during 

shelf-life at 20oC was very low with a maximum of 7p,l/kg/h. Wang and Adams (1982) 

and Andersen (1986) reported that prolonged chilling can reduce ethylene production 

upon rewarming by damaging ACC oxidase. The results of the present sludy showed that 

the loss of the capacity to produce ethylene with storage time is related to decreased 

ACC synthase and ACC oxidase activities, in comparison with freshly harvested fruit 

ripened with propylene at 20oC, probably, duc to a progressive decrease in the 

expression of their respective genes. 

For ali treatments, fruit respiration was low in storage and increased upon rewarming of 

the fruit because the rate of respiration is mostly temperature dependent (Blanke, 1991). 

The tendcncy of the CS and CA to show higher respiration was due to ethylene 

production by these treatments, since respiration increases with ethylene production 

(Arpaia et al., 1994a). It was also observed a decrease in the respiration rate of the 

rewarmed fruit with storage time. This decrease was lower than the decrease in ethylene 

production and may be associaled mainly with the advance in the natural sencscence 

process. 
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Figure 7.12. ACC content of'Hayward' kiwifruit placed at 20oC under a continuous, 

humidified, air stream with 130(il/l propylene (A, B and C) or air free of 

propylene (D, E and F) after 60, 120 and 180 days, respectively, storage at 

0oC in ULO (0.7%02+0.7%C02; 1%02+1%C02), CA (2%02+5%C02) 

and CS (control). —(0.7%02+0.7%C02); —(1%02+1%C02); 

—▲— (2%02+5%C02) ; —•— (control). LSD at a=0.05. 
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Figure 7.14. ACC synthase activity of 'Hayward' kiwiíruit placed at 20oC under a 

continuous, humidified, air stream with 130pl/l propylene (A, B and C) or 

air free of propylene (D, E and F) after 60, 120 and 180 days, respectively, 

storage at 0oC in ULO (0.7%02+0.7%C02; 1%02+1%C02), CA 

(2%02+5%C02) and CS (control). —(0.7%02+0.7%C02); ------- 

(1%02+1%C02); —A— (2%02+5%C02); (control). 

LSD at a=0.05; 1 unit/mg = Ipmol ACC/mg protein/2hours. 
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Figure 7.15. ACC oxidase activity of harvested 'Hayward' kiwiíruit kept at 20oC under 

a continuous. humidified, air stream with 130|al/l propylene or air free of 

propylene. LSD at a=0.05. 
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Figure 7.16. ACC oxidase activity of 'Flayward1 kiwiíruit placed at 20oC under a 

continuous, humidified, air stream with 130pl/l propylene (A, B and C) or 

air firee of propylene (D, E and F) aíier 60, 120 and 180 days, respeclively, 

storage at 0oC in ULO (0.7%02+0.7%C02; 1%02+1%C02), CA 

(2%02+5%C02) and CS (control). —»— (0.7%02+0.7%C02); 

(1%02+1%C02); —a— (2%02+5%C02); —(control). 

LSD at a=0.05. 
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under a continuous, humidified, air stream with 130pFl propylene or air 

free of propylene. LSD at a=0.05. 
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Figure 7.18. Carbon dioxide production of'Hayward' kiwiíruil placed at 20oC under a 
continuous, humidified, air stream with 130pl/l propylene (A, B and C) or 

air free of propylene (D, E and F) after 60, 120 and 180 days, respectively, 

storage at 0oC in ULO (0.7%02+0.7%C02; 1%02+1%C02), CA 

(2%02+5%C02) and CS (control). —■— (0.7%02+0.7%C02); 
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LSD at a=0.05. 
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Is kiwifruit a climacíeric fruit? 

Kiwifruit has been classified as a climacteric fruit (Arpaia et ai, 1994a). Ali climacteric 

fruit are characterized by transient increases iu both ethylene synthesis and respiration 

at an early stage of ripening (Tucker and Grierson, 1987). The present research 

confírm that kiwifruit cv. 'Hayward' behaves as a climacteric fruit by starting 

autocatalysis of ethylene production, respiration climacteric and ripening in 

approximately 19 days after harvest when placed at 20oC in air free of propylene (Fig. 

3.1). If we consider the respiration rise as an indicator of the commencement of 

ripening (Yang et ai., 1986), we may conclude that kiwifruit belongs to that group of 

climacteric fruit which shows the respiration rise coincidentally to the rise in ethylene 

production (Tucker, 1993). 

The application of externai ethylene to a climacteric fruit, providing it is mature 

enough, will advance the onset of the climacteric, this eífect being proportional to the 

concentration of applied ethylene (Tucker and Grierson, 1987). We observed that the 

application of increasing propylene concentrations to kiwifruit at 20oC advanced the 

respiration climacteric and the autocatalysis of ethylene production in the same way as 

for other climacteric fruit (Fig. 3.4). However, the application of propylene changed 

the climacteric pattern: the rise in respiration rate and ripening associated changes 

started after 4 to 10 hours, while ethylene burst initiated late in the ripening process, 

after a lag period of 68-79 hours, just preceding fruit senescence, making kiwifruit 

different from most climacteric fruit as reported by Wittaker et al. (1997). 

The remo vai of propylene after 24 hours exposure did not affect autocatalysis of 

ethylene production, but did decrease respiration which rose again when autocatalysis 

of ethylene started (Fig. 3.2). This efifect shows that, after 24 hours, kiwifruit had not 

shifted yet from system I to systcm II of ethylene production postulated by McMurchie 

et al. (1972). 

144 



Chapter 8. General discussion 

Stavroulakis and Sfakiotakis (1993) obscrved that al temperatures below a criticai 

range (11-14.80C) kiwifruit does not produce ethylene even when treated with 130pl/l 

propylene. In the present study, fruil at 10oC did not show autocalalysis of ethylene 

production, but propylene treatment induced an immediate rise in CO2 production 

being the respiration rate dependenl on the concentration of the applicd propylene (Fig. 

3.5). Remo vai of propylene at 10oC decreased respiration rate of kiwifruit which 

recovered upon reexposure to propylene (Fig. 3.3). This behaviour is characteristic of 

a non-climacteric fruit (Tucker, 1993). 

Yano and Hasegawa (1993a) alrcady referred that kiwifruit seems different from the 

other climacteric fruit, showing a long lag period for ethylene production unless 

externai ethylene is applied or a diseased fruit is packed together with sound fruil. 

From the above it is shown that kiwifruit, generally considered as climacteric fruit. is 

an unique fruit which behaves like a climacteric fruit in what concems respiration and 

ethylene production at ambient temperature, while at temperature as low as 10oC it 

behaves like a non-climacteric fruit. 

The results of this study are also compatible with the concepl of 2 systems for ethylene 

production: system I, that is present in preclimacteric and non-climacteric fruit, and 

system II present only in autocatalytically ethylene producing climacteric fruit 

(McMurchie et al., 1972). Temperatures as low as 10oC inhibit, in kiwifruit, the 

conversion of system I to system II in terms of autocalalysis of ethylene production 

induced by propylene. 

This behaviour of kiwifruit with respect to respiration and ethylene production offers 

certain advantages in handling operalions. Aller harvest, by kecping the fruit at low 

temperatures there is no accumulation of ethylene production in storage rooms, thus 

lhe post-harvest life of the fruit is prolonged, providing there are not diseased fruit or 

other sources of ethylene ncarby. 
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Why kiwifruit shifts from climacteric to non-climacteric at WC? 

Propylene induced the transcription of the ACC oxidase and ACC synthasc genes to 

mRNA at 20oC as observed by Whittaker et al. (1997), while at 10oC only ACC 

oxidase genes were transcribed (Fig. 4.4). 

It was also observed that ACC oxidase activity was very low at 10oC (Fig. 4.3C). 

Since there is transcription of the ACC oxidase gene at this temperature, when 

propylene is applied, the inhibitory effect of low temperature can be at the translational 

levei or in the ílinction of the enzyme. However, Stavroulakis and Sfakiotakis (1993) 

observed that the inhibition of ACC production was more pronounced than ACC 

oxidase activity when temperatures were decreased gradually around the criticai range 

for ethylene production in kiwifruit (11-14.80C). 

From the results of the present study, it is suggested that the inhibition of the 

transcription of the ACC synthase genes induced by propylene at temperatures as low 

as 10oC was the main rcason for the non-climacteric pattern of kiwifruit at this 

temperature. 

More research is necded at the molecular levei to clarify how progressively decreasing 

temperature is affecting both ACC synthase and ACC oxidase at the transcriptional and 

translational levei and their activity. 

Thermoregulation of the propylene induced ethylene production and 

ripening 

Kiwifruit ripencd and started autocatalysis of ethylene production when treated with 

propylene at 20-34oC. Ethylene production was strongly inhibitcd at 380C, and at 

temperatures above 40oC or bcllow 10oC autocatalysis did not occur (Figs.4.1. 4.2A 

and 5.4A). The time required for the fruit to reach eating-ripe values of fírmness 

(»0.7kgf) and SSC («14% Brix) decreased as temperature increased till 340C. Ripening 

was not uniform at 380C, the core being hard when ílesh was already eating-ripe, and 

at temperatures above 40oC ripening was inhibiled culminaling with fruit breakdown at 

450C. 
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The inhibition of thc propylene-induced ethylene production at high and low 

temperatures is due to reduced ACC synthase and ACC oxidase activities. However, at 

high temperatures the first enzyme to bc affected is ACC oxidase since there was a 

considerable accumulation of ACC and ACC synthase activily at 380C (Figs. 8.1, 5.5 A 

and 5.6A). At low temperatures ACC synthase is the most affected as we discussed 

above. 
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Figure 8.1. The efifect of temperature on ethylene production and ACC content (A) and 
activities of ACC synthase and ACC oxidase (B) of 'Hayward' kiwifruit 

kept in an atmosphere containing 130pl/l propylene. 

Values were taken four days after the initiation of ethylene autocatalysis. 

1 unit/mg = 1 pmol ACC/mg protein/2hours. 

Thc temporal separation of ethylene sensitivity and climacteric ethylene production in 

kiwifruit trealed with propylene allows us lo distinguish bctween thc responses of the 

ethylene biosynthetic genes to exogenous ethylene and their behaviour during ethylene 

biosynthesis. Whittaker et al. (1997) found transcription of ACC oxidase immediately 

following treatment with exogenous ethylene, while ACC synthase transcription 

occurred later, coincidenlally with the climacteric ethylene production. 

It was observed in our study that in kiwifruit the lag period for ethylene production 

decreased with temperature increase from 20 to 340C as well as with increasing 

propylene concentrations (Figs. 3.4Aa and 5.4Aa). More research is needed al the 

molecular levei to clarify the response of both ACC synthase and ACC oxidase to 

propylene concentration at diíferent temperatures. 

Respiration of kiwifruit increased with temperature up to 45<,C indepcndently of being 
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higher at 450C than at lower tempcratures (142ml/kg/h), but the respiration rate 

decrcased immediately, reaching values of about 20ml/kg/h in 50 hours, because the 

physiological processes stopped at this tempcraturc. 

Chilling induced ethylene production and ripening 

From the results of the present study it is shown that temperatures up to 150C advance 

the onset of ethylene production in kiwiífuit when transferred to 20oC. Five days 

storage of kiwiífuit at low temperature were not enough to induce autocatalytic 

ethylene production and ripening upon transference to 20oC (Fig. 6.IA). A period of 

12 days at temperatures from 0 to 150C satisfied lhe requirement of kiwiífuit to 

autocatalyticaly produce ethylene immediately upon transference to 20oC (Fig. 6.2A). 

Fruit stored for 12 days at 0oC were the most eíficient to produce ethylene upon 

rewarming. 

Upon rewarming. ethylene production of chilled fruit was accompanied by a burst in 

CO2 production and ripening, as it happened for kiwiífuit ripened without propylene at 

harvest (Figs. 6.2B; 6.4 and Tables 6.4; 6.8). In a similar manner, the induction of 

ethylene production was caused by the induction of both ACC synthase and ACC 

oxidase activities which increased lheir activity only upon rewarming of the fruit (Table 

6.3). The only difference bctween kiwifruit ripened at ambient temperature and fruit 

subjected to chilling was that the later advanced the ripening process upon rewarming 

as reported by Arpaia et al. (1994a). 

Maximum ethylene production at 20oC occurred after 12 days storage at 0oC reaching 

a peak value of 140pFkg/h. Longer storage periods gave decreased capacity of 

kiwifruit to produce ethylene upon rewarming: after 180 days storage at 0oC, ethylene 

production during shelf-Iife at 20oC did not pass 7pl/kg/h (Fig. 8.2). Andersen (1986) 

reported that prolonged chilling damages ACC oxidase. In the present research it was 

found that lhe decrease in lhe capacity of kiwifruit to produce ethylene with storage 

time at 0oC was accompanied by a decrease not only in ACC oxidase activity, but in 

ACC leveis and ACC synthase activity, as well. 
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Figure 8.2. Ethylene production of harvested 'Hayward' kiwifruit at 20oC pre-stored at 
0oC for 5, 12, 17, 60, 120 and 180 days. 

Kiwifruit fatty acids include as major components linolenic acid (34-42%), oleie acid 

(26-37%), palmitic acid (15-22%), linoleic acid (8-11%) and stearic acid (1-5%) (Figs. 

6.6 and 6.7). Fatty acid unsaturated/saturated ratio as well as membrane permeability 

increased with storage time and showed higher values at lower storage temperatures 

(Fig. 6.5). Their increase was more pronounced in the beginning of the storage period 

probably in order to help the fruit to adapt to stress conditions. Although there was a 

positive correlation between the unsaturated/saturated fatty acid ratio and membrane 

permeability, we found no clear correlation between unsaturated/saturated fatty acid 

ratio or membrane permeability with induction of ethylene production and ripening by 

low temperatures. 

Controlled atmosphere storage 

During the first 60 days storage in air at 0oC, kiwifruit ripening occurs at an initial high 

rate foliowed by a period of slow ripening that can be up to 120 days or more (Arpaia 

et al., 1984). The use of CA or ULO storage delayed the initial fast ripening rate by 

decreasing the rate of softening and the fading of flesh green color, but did not affect 

SSC increase (Fig. 7.1). The treatments 2%02+5%C02 and 1%02+1%C02 were the 

most efficicnt in extending kiwifruit storage life with fewer quality parameters changes. 

The 0.7%02+0.7%C02 treatment was not effective because resulted in an early 
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accumulation of acetaldehydes and a generally greater ethanol accumulation, which 

resultcd in flesh breakdown aíler 120 days storage (Fig. 7.2). 

When fruit are to bc marketed immediately aíler storage, 2%02+5%C02 can bc used 

since fruit softened within 9 days shelf-life. Fruit storcd at 1%02+1%C02 can be used 

when longer shelf-life is expected and can bc softened al our will by externai ethylene 

application. Long storage periods (180 days) induce íirmness values close to eating- 

ripe fruit and so decrease the importance of thc above mentioned benefíts of CA and 

ULO on firmness, but may still be important in keeping green color of the ílesh in 

comparison with CS storage. 

Kiwifruit CS and CA did not affect the chilling induction of ethylene production. Fruit 

rewarmed produced ethylene and ripened at a similar rate when treated or not with 

propylene (Fig. 7.6 and 7.10). The use of ULO storage may damage thc ethylene 

pathway system since rewarmed fruit did not produce ethylene during 9 days shelf-life, 

even when treated with propylene, and ripened only upon ethylene exposure (Fig. 7.6 

and 7.10). 

Similarly with other fruit (Gaudiere and Vendrel, 1993), kiwifruit accumulated ACC 

and showed ACC synthase activity after 60 days storage in CS, CA and ULO (Figs. 

7.3B and 7.4A). The ACC oxidase activity was very low during storage as for other 

fruit (Gaudiere and Vendrel, 1993), and increased upon rewarming only in fruit from 

CS and CA storage, not in fruit from ULO, indcpendently of bcing treated or not with 

propylene (Fig. 7.16). The low ACC oxidase activity was the main rcason for the 

inability of kiwifruit to produce ethylene after 60 days ULO storage. 

There was a lower ACC synthase activity in fruit of the ULO treatmenls than in CS or 

CA only after 120 days storage, suggesting that ULO damages faster ACC oxidase 

than ACC synthase and this process is irreversiblc. However, more research is needed 

to clarify this point. 
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Future research 

The results of the present research suggest lhat lhe enzymes of ethylene biosynthetic 

pathway in kiwifruit respond difFerently to different stimuli. It is known that ACC 

synthase and ACC oxidase are encoded by mulligene families and differentially 

regulated (Ikoma et ai, 1995; Barry et ai, 1996). When kiwifruit are ripened wilh 

propylene after harvest, the activity of the ACC synthase takes about 4 days to start 

probably because it is needed some time for the perception of the stimuli by the ACC 

synthase gene induced by propylene. More research is needed at the molecular levei to 

clariíy when, after the commencemcnl of propylene treatment, transcription and 

translation occur. In a similar manner it is importanl to clariíy why higher tempcratures 

or propylene concentrations decrease the lag period for ethylene autocatalysis. 

As we observed in our study, the non-climacteric behaviour of kiwifruit at 10oC was 

mainly due to the inhibition of the transcription of the ACC synthase gene induced by 

propylene at this temperature. In addition, we found no transcription of the ACC 

synthase or ACC oxidase genes, induced by low temperature for up to 8 days at 10oC. 

After 12 days at low temperature, we found no ACC synthase or ACC oxidase 

activities but they started upon rewarming of the fruit with no lag period. After 60 days 

storage, kiwifruit showed ACC synthase activity during cold treatment being the 

inhibition of ethylene production at such tempcratures due to low ACC oxidase 

activity. It seems that low tempcratures inhibil lhe transcription of lhe ACC synthase 

genes induced by propylene but not the ACC oxidase ones. During cold treatment up 

to 12 days there is induction of the ACC synthase and ACC oxidase genes induced by 

chilling but translation and/or activation of the enzymes initiates only upon rewarming 

of the fruit (Wang, 1989). We suggest that as time at low tempcratures increases, the 

process of translation and activation of ACC synthase is being completed, explaining 

the activity of this enzyme at low temperaturcs (Gaudierre and Vendrell, 1993). The 

ACC oxidase may undergo a similar process but its activation occurs only upon 

rewarming of the fruit (Gaudierre and Vendrell, 1993). More research is needed at the 

molecular levei to support these hypothesis. 

The decrease in the kiwifruit ACC synthase and ACC oxidase activity during shelf-life 

after prolongcd storage, may be due to progressive decline of ali physiological 
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processes with senescence. More research is needed to clarify how the process occurs 

and affects the enzymes of the ethylene biosynthctic pathway. 

The mechanism by which ULO inhibits ACC oxidase activity upon rewarming was also 

not clarified. It is necessary to search if it occurs at the transcriptional or translational 

levei and why it is irreversible. 
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From the rcsulls of this study il can be concluded that kiwifruit rcspond differently lo 

differenl síimuli for ethylcne produclion: 

1- Kiwifruit behaves as a climacteric fruit at temperatures from 20 to 340C while at 

tempcratures < 10oC it behaves as a non-climacleric fruit. 

2- The main reasons for the inhibition of the propylene-induced autocatalytic ethylene 

production in kiwifruit at low tempcratures (<10oC) are primarily the suppression 

of the propylene-induced ACC synthase gene expression and the possible post- 

transcriplional modiíication of ACC oxidase. 

3- Kiwifruit senses immediately propylene for ripening at room temperature, while 

autocalalysis of ethylene production occurs later due to a lime requirement for ACC 

synthase induction. 

4- Increased temperature (from 20 to 340C) reduces the lag period for autocalalysis of 

ethylene production induced by propylene. 

5- High temperature stress (>380C) inhibits ripening by strongly reduce ethylene 

production and sensitivity while respiration proceeds until the breakdown oí the 

tissues at 450C. The ACC oxidase activity is the first to be affected at high 

tempcratures followed by ACC synthase. 

6- Al 20oC, mature unripe kiwifruit, in air free of propylene, starl to produce ethylene, 

wilh a concomitant increase in ACC synthase and ACC oxidase activilies, and ripe 

in about 19 days post-harvest. 

7- Exposing kiwifruit to temperatures from 0 lo 150C for 12 days advances ethylene 

biosynthcsis and ripening in comparison wilh fruit conlinuously at 20oC, by 

stimulating ACC synthase and ACC oxidase aelivities immediately upon rewarming 

of the fruit. 

8- Storage for more than 60 days induces kiwifruit ACC synthase activity and ACC 

accumulation at 0oC, but not ACC oxidase which increases only upon rewarming of 
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the fruit. This increase in ACC synlhase activity is probably due to the aclivation of 

the chilling-induced ACC synthase genes. However, prolongcd storage 

progressively reduces the capacity of kiwifruit to produce ethylene after rewarming, 

by progressively decreasing ACC synthase and ACC oxidasc activities. 

9- The ULO storage irreversibly inhibits the induction by chilling of ethylene 

production upon rewarming, mostly by destroying the system that converts ACC to 

ethylene. 

10- Some practical implications ífom these studies are that ripening can be advanced 

by applying ethylene to mature unripe kiwifruit or subjecting those fruit to 0-150C 

for 12 days. In addition, due to the non-climacteric behaviour of kiwifruit at 

temperatures below 10oC, their storage can be extended for up to 6 months at low 

temperature (0oC), providing that sources of ethylene are removed from the storage 

chambers. When low temperature is combined with CA (2%02+5%C02) or ULO 

(1%02+1%C02), storage can be íurther extended with fewer changes in quality 

parameters. According to market demand, kiwifruit can be removed from the 

storage chambers and ripened at room temperature in 3-5 days, or in the case of 

ULO storage by the application of externai ethylene. 
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