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Abstract 

The sea bream {Sparus aurata L.) is an important aquaculture species along the Mediterranean 

coast. Prolactin (PRL) released by the pituitary gland play a central role in controlling several 

aspects of sea bream physiology. In this study, we examined the effect of several internai and 

externai factors on the activity of PRL cells in cultured pituitary glands. Sea bream pituitaries were 

cultured during 18hrs at 210C and the hormones present in the culture médium separated by 

SDS-PAGE. PRL was identified by Western blotting using antiserum directed against chum 

salmon PRL and quantified by optical densitometry. 

A highly purified PRL was isolated from the médium of cultured pituitaries by continuous elution 

electrophoresis performed using a Model 491 Prep Celi. The yield of purified hormone was 3mg/g 

wet weight of pituitary. Sea bream PRL had an estimated molecular weight of 25kDa after SDS- 

PAGE. PRL did not show size heterogeneity, but multiple charge variants were detected with 

isoelectric points varying between 6.1 and 6.7. The partial amino acid sequence established did 

not reveal genetic differences between PRL molecules. Post-translational modifications were not 

clearly demonstrated but a potential phosphorilation at S^s is proposed on the basis of the 

present data. 

Seasonal and diurnal changes of PRL release to the culture media and pituitary content were 

investigated in immature seabream. A marked annual cycle in the pituitary gland activity was 

observed. This is highlighted by the seasonal variation in the basal pituitary PRL release rates but 

also by a variation in the relative concentration of PRL charge variants released from the pituitary 

gland. Circadian changes were also observed. Temperature (but not photoperiod) influences sea 

bream PRL cells activity, with higher temperature increasing in vitro PRL secretion and lower 

temperature having the opposite effect. 

The effect of estradiol-17/S' (E2) implants on the in vitro secretion of PRL and its modulation by 

galanin (Gal) was determined. Experiments were conducted during winter and spring and it was 

observed that PRL cells responsiveness to E2 varied with season. In control fish Gal caused a 

dose-dependent stimulation of PRL secretion in vitro, but on E2 primed fish Gal had no detectable 

effect on the secretion of PRL. 

The effect of E2 implants on the in vitro secretion of PRL and its modulation by vasoactive 

intestinal peptide (VIP) was determined. Experiments were conducted during winter and spring 

and PRL cells responsiveness to E2 varied with season. In E2 primed fish VIP caused a dose- 

dependent inhibition of PRL secretion in vitro. VIP had no detectable effect on the secretion of 



PRL from control pituitaries. Anatomical evidence of abundant VIP immunoreactive nen/e fibres in 

neurohypophysial (NH) tissue penetrating the rostral pars distalis provide further evidence 

supporting an action for VIP in the regulation of PRL cells. 

PRL is believed to be involved in the adaptation of fish to changes in environmental salinity. The 

effect of freshwater challenge on in vitro PRL release was studied in fish sampled 7 days after the 

onset of seawater dilution. Experiments were conducted during winter, spring, and autumn. 

Results indicate that cultured pituitaries of fish challenged with extremely low values of salinity 

(2ppt) released significantly more PRL that pituitary glands from seawater-adapted fish. This 

suggests a potential role for PRL in FW adaptation of sea bream. Moreover, the study indicates 

that the success of adaptation may depend on the time of year at which transfer to freshwater 

occurs. 



Resumo 

A dourada {Sparus aurata L.) é uma espécie importante para a aquacultura ao longo de toda a 

costa mediterrânea. A prolactina (PRL) é uma hormona libertada pela glândula pituitária e regula 

de um modo fundamental alguns aspectos da fisiologia deste teleósteo. No presente trabalho foi 

estudado o efeito que diferentes factores, externos e internos, exercem na actividade in vitro das 

células de PRL. Para este estudo foram feitas culturas de pituitárias de dourada com uma 

duração de 18 horas a uma temperatura média de 210C. A PRL, após separação por SDS- 

PAGE, foi identificada por "Western blotting" utilizando anticorpos da PRL do salmão e, 

posteriormente, quantificada por densidade óptica. 

Por electroforese de eluiçáo contínua e utilizando uma "Prep Celi, modelo 491", foi purificada a 

PRL secretada In vitro, tendo-se obtido um rendimento aproximado de 3mg/grama de peso 

fresco de pituitária. A hormona purificada tinha um peso molecular aparente de 25kDa em SDS- 

PAGE e formas com pontos isoeléctricos variando entre 6.1 e 6.7. A identificação da proteína 

purificada foi feita por "Western blotting" e pela sequência parcial de amino ácidos. Não foi 

possível demonstrar a existência de variantes genéticas nas moléculas de PRL isoladas, tendo 

sido identificado um local potencial de fosforilação no resíduo Siss- 

A secreção in vitro de PRL apresenta um evidente ciclo anual, não só na quantidade de hormona 

secretada mas também nas formas com diferentes pontos isoeléctricos que são produzidas 

ciclicamente.. Também foi observado um nitido ciclo diário na secreção in vitro de PRL. A 

temperatura influencia directamene a actividade das células de PRL, mas não foi demonstrada 

nenhuma influência do fotoperíodo sobre a actividade daquelas células. 

Foi estudado o efeito do tratamento in vivo com estradiol-17b (E2) modulado in vitro pela 

galanina (Gal). As experiências decorreram durante o inverno e primavera, tendo-se verificado 

uma diferença estacionai na resposta das células de PRL aos implantes do estrogénio. O efeito 

da Gal depende do nível do estrogénio no corpo dos animais, uma vez que estimula a secreção 

in vitro de PRL de pituitárias colhidas de peixes sem implantes de E2 mas não tem qualquer 

efeito nas pituitárias colhidas de animais tratados com o estrogénio. 

Também foi estudado o efeito do tratamento in vivo com E2 modulado in vitro pelo peptídeo vaso- 

intestinal (VIP). O efeito do VIP depende do nível de E2 no corpo dos animais, uma vez que inibe 

in vitro a secreção de PRL de pituitárias collhidas de animais tratados com o E2 e não tem 

qualquer efeito nas pituitárias colhidas de animais sem implantes do estrogénio. 



A PRL está relacionada com a adaptação dos teleósteos às mudanças da salinidade do meio. 

No presente trabalho, foi estudado o efeito sobre a secreção in vitro da PRL da transferência de 

douradas adaptadas a água salgada para água doce .(2ppt). Foram realizadas experiências no 

inverno, primavera e outono em que os animais foram sacrificados 7 dias após o início da 

mudança gradual para a água doce. Os resultados indicam que as células de PRL libertam in 

vitro quantidades significativamente maiores da hormona em animais transferidos para a água 

doce em comparação com as dos animais mantidos em água salgada. A PRL parece assim ter 

um papel importante na adaptação da dourada à diminuição da salinidade do meio, estando o 

sucesso da adaptação dependente da época do ano em que é feita a transferência para a água 

doce. 
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Chapter 1 General Introduction 

CHAPTER 1: General Introduction 

The gilthead seabream {Sparus auratus) is an important aquaculture 

species in the Mediterranean area (FAO, 2002). Its commercial production 

started in the early 1980s and since then production areas have spread and in 

southern Europe its cultivation has become predominant over other finfish 

species. This expansion is related to its relatively straight forward husbandry and 

the initial high market price of this species, although more recently with the 

increase in its availability prices have declined. 

The gilthead sea bream is a marine teleost and belongs to the 

Perciformes, a group which includes a number of other commercially interesting 

species. such as couch's sea bream (Pagrus pagrus), sea bass {Dicentrarchus 

labrax), Nile tilapia {Oreochromis nilotica), and Mozambique tilapia {Oreochromis 

mossambicus). Due to the commercial value of gilthead seabream the ecology 

and biology of this species has been extensively studied. The sea bream is found 

in both marine and brackishwater environments such as coastal lagoons and 

estuarine areas, in particular during the initial stages of its life cycle (Moretti et 

ai, 1999). Born in the sea during wintertime, the fingerlings typically migrate in 

early spring towards protected coastal waters in search for abundant food and 

milder temperatures, and return to the open sea in late autumn, where the adult 

fish breed (Moretti et ai, 1999).The sea bream is a protandrous hermaphrodite, 

i.e., individuais spawn as males during the first breeding season but may 

undergo sex reversal in one of the subsequent seasons. The spawning season in 

southern Portugal extends from October until February (Condeça, 2001). 

2 



Chapter 1 General Introduction 

Homeostasis of a range of physiological processes in fish, in common with 

other vertebrates, is regulated by the endocrine and neuroendocrine systems. 

The latter system regulates development and physiology in fish. Reproduction, 

development, immune function and environmental adaptation are regulated 

through the orderly release of hormones by the neuroendocrine system, which 

integrates information from genes and the environment. One of the most versatile 

hormone is prolactin (PRL) which has numerous biological actions (reviewd by 

Sinha, 1995 and Bole-Feysot et a/., 1998;). Since the discovery, by Stricker and 

Grueter in 1928, of a pituitary factor capable of stimulating milk secretion in 

rabbits, a wealth of knowledge has accumulated about prolactin (PRL). 

1.1 Struture and evolution of PRL 

PRL belongs to a family of polypeptide hormones, which includes growth 

hormone (GH), mammalian placenta! lactogen (PL), and teleostean somatolactin 

(SL). Analysis of their amino acid sequences demonstrates that these hormones 

are highly conserved, and it has been proposed that they evolved from a 

common ancestral gene by duplication and subsequent divergence about 4x108 

years ago (Millerand Eberhardt, 1983; Nicoll et ai, 1986). 

Mammalian PRL is a single polypeptide chain of approximately 190-200 

amino acids (aa) and is synthesized as a prohormone containing a signal peptide 

of approximately 28 aa (Bole-Feysot et a/., 1998). The full-length amino acid 

sequence of PRL has been determined in mammals, birds, reptiles and 

amphibian. Ali PRLs identified so far in tetrapods are 197-199 aa and contain six 

3 



Chapter 1 General Introduction 

cysteines forming three intramolecular disulfide bonds, one at the N-terminus, 

one in the middle, and one at the C-terminal (Bole-Feysot et a/., 1998 and 

Manzon, 2002 for reviews). The amino acid sequence of PRL has also been 

characterised in a variety of teleostean and nonteleostean fish (reviewed by 

Manzon, 2002). Fiscine PRLs are also synthesized as prohormones with a signal 

peptide of 23-24 aa. Ali teleostean PRLs lack the N-terminal disulfide bond due 

to the absence of 12-14 aa at the N-terminus (see Manzon, 2002 for review) (Fig. 

1.1). PRL from sea bream is a protein of 212 amino acids with a putative signal 

peptide of 24 residues and a mature protein of 188 amino acids (Santos et ai, 

1999). 

MíN - v f , 
" t c 

QAPSCyn, 
r <• v D 1 C o „ t s « 

1 ' s j I 
F M c - COOH 

1 ' ' o L S S T M C 

Figure 1.1 - Teleost PRLs (i.e. Nile tilapia PRLiss) lack the N-terminal disulfide 
bridge present in mammals (Manzon, 2002). 

1.2 Isoforms 

PRL is characterized by structural as well as functional polymorphism. The 

existence of both size and charge variants of PRL has been shown in mammals 

(Wallis et ai, 1980; Nyberg et al., 1982; Bollengier et ai, 1988; Lewis et ai, 

4 



Chapter 1    Gener^ntroduc^ 

1989; Martinat et ai, 1990; Sinha et ai, 1991; Briski et ai, 1996;), and two 

molecular forms of PRL have been isolated from pituitary glands of two reptiles, 

alligator and crocodile (Noso et ai, 1992), and from Xenopus laevis (Yamashita 

et ai, 1993). In turkeys, PRL is present in the pituitary gland as three different 

isoforms, a nonglycosylated form of approximately 22.5 KDa and two 

glycosylated forms of 24.5 KDa, which comigrate on SDS-PAGE (Corcoran and 

Proudman, 1991). In some teleosts, chum salmon {Oncorfiynchus keta), 

common carp (Cyprínus carpio), Japanese eel (Anguilla japonica), Mozambique 

tilapia {Oreochromis mossambicus) and Nile tilapia {Oreochromis niloticus), two 

different forms of PRL have been identified (Manzon, 2002 for review). The two 

salmon, carp, and eel PRLs are highly homologous, whereas the two forms of 

PRL secreted by tilapia pituitary share only 69% sequence identity and are 

designated tPRL177 and tPRL188 to indicate the number of amino acid residues 

in each isoform (Specker et ai, 1993). The biological activities of the two variants 

in the maintenance of the hydromineral balance are different as is their effect on 

growth. In addition to their differing biological activities, tPRL177 and tPRL188 

are also differentially regulated during development and in response to 

alterations in environmental salinity (see Manzon, 2000 for review). To date only 

a single form of pituitary PRL has been isolated in sea bream (Santos et ai, 

1999). 

The source of prolactin variants may be by mechanisms such as 

alternative splicing of the primary transcripts, proteolytic cleavage of the protein, 

5 



Chapter 1 General Introduction 

and other posttranslational modifications, such as glycosylation and 

phosphorylation of the amino acid chain. 

ALTERNATIVE SPLICING - Alternative splicing of PRL mRNA has been 

proposed as one source of the variants (Sinha, 1995). Indeed, evidence 

suggestive of the existence of an alternatively spliced prolactin variant has been 

described in the rat anterior pituitary (Emanuele et a/., 1992; Wilson et a/., 1992). 

However, in general alternative splicing is not considered a major source of 

prolactin variants. 

PROTEOLYTIC CLEAVAGE - Some PRL size variants may be the 

products of kallikrein enzymatic activity. Studies in vitro have shown that 

kallikrein is an estrogen-induced, trypsin-like serine protease, that is found in the 

Golgi cisternae and secretory granules of rat lactotrophs, which cleaves the 

25KDa form to a 22KDa form in a thiol-dependent manner (Powers, 1993). Thiol 

alters the conformation of PRL such that kallikrein recognizes it as a substrate 

(Anthony and Powers, 1993). These proteolytic fragments were found to be 

released in substantial amounts during short incubations of rat pituitaries 

(Anthony ef a/., 1993). 

OTHER POSTTRANSLATIONAL MODIFICATIONS - The majority of 

prolactin variants are probably the result of other posttranslational processing of 

the mature molecule in the pituitary gland or the plasma. These modifications 

6 



Chapter 1    General Introduction 

include dimerization and polymerization, phosphorylation, glycosylation, sulfation, 

and deamidation. 

Dimerization and polymerization: macroprolactins. 

High molecular weight forms of PRL are encountered in significant 

amounts both in the pituitary gland and plasma. They represent dimers, polymers 

and aggregales of PRL, and PRL associated with binding proteins. They arise by 

both covalent (disulfide linkages and linkages between the sugar moieties of the 

glycosylated monomer) and noncovalent bonding. In general, these forms have 

reduced biological activity in comparison to the monomer (Sinha, 1995). 

Phosphorylation. 

PRL phosphorylation occurs within the secretory vesicle of lactotrophs just 

before exocytosis and involves esterification of hydroxyl groups of serine and 

threonine residues (Freeman et a/., 2000 for review). Phosphorylation of serine 

or threonin may occur when glutamic or aspartic acid is situated two residues 

away C-terminally (Ser/Thr - X - acidic). Serine residues that occur C-terminally 

to groups of basic amino acid residues may also be phosphorylated (basic - 

basic - X - Ser/Thr) (Dimaline, 1988). Ocurrence of phosphorylated isoforms has 

been demonstrated in the case of rat, bovine, murine, and avian PRLs (Sinha, 

1995 for review). Phosphorylation generally lowers the biological activity of PRL, 

but interaction of heterogenous hormonal forms at the levei of target cell 

receptors may influence the magnitude of the biological effect. For example, 

7 
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Wang and Walker (1993) reported that the biopotency of nonphosphorylated PRL 

variants is diminished as a consequence of coincubation with phosphorylated 

PRL, findings which suggest that posttranslational phosphorylation of the native 

molecule may generate a natural "antagonist" to the biological activity of non- 

modified variants. In rats, in vivo secretion of phosphorylated and 

nonphosphorylated PRL or their ratio, varies at different stages of the estrous 

cycle (Sinha, 1995 for review). 

Glycosylation. 

Glycosylated PRL has been found in the pituitary glands of mammalian, 

amphibian, and avian species. The linkage of the carbohydrate moiety may be 

either through nitrogen (N-glycosylation) or oxygen (O-glycosylation). The 

consensos sequence for N-glycosylation of aspargine is Asn - X - Thr/Ser 

(Dimaline, 1988). In several mammals and reptiles, in which glycosylated PRL 

occurs is N-glycosylation. In rat and turkey, the carbohydrate chains are attached 

through O-linkage (Sinha, 1995 for review). The carbohydrate residues of the 

oligosaccharide chain may contain varying ratios of sialic acid, fructose, 

mannose, and galactose that differ considerably between species and also vary 

with physiological and pathological states. As observed for other PRL variants, 

glycosylation also lowers biological activity and receptor binding, and alters the 

metabolic clearance rate of PRL (Freeman et a/., 2000 for review). 

There is no published evidence in sea bream for the presence of 

glycosylated or phosphorylated forms of PRL. However, analysis of the primary 

8 
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ammo acid sequence reveals a consensus sequence for N-linked glycosylation at 

Asn 148 (N-l-S) and for phosphorylation at Ser 166 (R-R-D-S) (Santos et ai, 

1999). 

1.3 Sites of synthesis and secretion of PRL 

1.3.1 Pituitary PRL 

The principal site of production of PRL is the pituitary gland (Fig 1.2). In ali 

vertebrates, the pituitary gland consists of two parts, separable on the bases of 

embryology, structure, and function. These are the neurohypophysis, a 

downgrowth from the floor of the diencephalon, and the adenohypophysis 

originating as an ectodermal upgrowth (Rathke's pouch) from the roof of the 

embryonic buccal cavity (Ball and Baker, 1969). The adenohypophysis is divided 

into the pars distalis, site of secretion of most adenohypophysial hormones, and 

the pars intermédia (PI). 

RPD PPD 

rim 

■ \ . , ' ^ ^ 

(b) 

Figure 1.2 - (a) Diagram showing a sagital section through the pituitary gland of the 
adult sea bream with the distribution of PRL-cells mdicated by a ^aded area ( ) 
Immunohistochemistry of a sagital section of sea bream pituitary 9la"^ounter®'^ 

with haematoxylin with PRL cells revealed by anti-chum salmon Pra^tm 
(magnification xlOO). (n) neurohypophyseal tissue; (RPD) rostral pars distalis. (PPD) 
próxima!pars distalis-, (PI) pars intermédia-, (ir) mfudibular recess. 
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The adenohypophysis pare distalis is subdivided into rostral pare distahs 

(RPD) and proximal pare distalis (PPD). on the basis of cell types. The fish 

neurohypophysis consists essentially of a hypophysial stalk, suspending the 

gland from the ventral region of the diencephalon (hypothalamus) and contaming 

an extension of the third ventricle {infudibular recess). and at the distai end of the 

stalk an enlargement, the neurohypophysial lobe or core (Ball and Baker, 1969). 

The adenohypophysis is a complex and specialized endocrine tissue that 

contains a functionally heterogeneous population of hormone secretmg cells. At 

the dorsal surface of the piturtary lies the hypothalamus which is responsible for 

integration of a whole range of inputs from other brain centers and for the contrai 

of visceral functions, in many cases via its effects on the secretions of the 

pituitary gland (Chester-Jones et ai., 1987). In teleosts, the hypophysial stalk, 

which suspends the piturtary gland from the hypothalamus, do not have the 

median eminence-portal system of other vertrebrates. The blood to the pituitary 

is supplied by one (or two) hypophyseal artery (ies), and although this runs along 

the floor of the hypothalamus for a variable distance, no neurosecretory 

terminations on the vessels in this region have ever been observed (Chester- 

Jones et a/., 1987). 

The hypothalamus regulates the synthesis and secretion of six major 

hormones: prolactin (PRL), growth hormone (GH). thyroid stimulatmg hormone 

(TSH), adrenocorticotropin (ACTH), melanocyte-stimulating hormone (MSH), and 

gonadotropin (GtH). In the adult sea bream, PRL cells are confmed to the RPD 

and occupy a relatively small proportion of the pituitary (Fig. 1.2). They are oval 

10 
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in shape and do not appear to be arranged in follicles (Power and Canano, 

1992). 

1.3.2 Extrapituitary PRL 

In higher vertebrates the principal site of production of PRL is the pituitary 

gland, but, as reviewed by Ben-Jonathan et ai (1996), the PRL gene is also 

expressed in several PRL target tissues and PRL occurs in the mammary gland 

of rat, human, goat, sheep, and rabbit (Nolin and Witorsch, 1976; Fields et ai. 

1993; Kurtz et ai, 1993; Le Provost et ai, 1994; Gabou et ai, 1996) and in 

mammalian brain and spinal cord (Emanuele et ai. 1992; Wilson et ai, 1992). 

Recently, PRL transcripts were also detected at some extrapituitary sites 

(liver, intestina, and gonads) of the sea bream (Santos et ai, 1999) and in the 

liver, kidney, spleen, gill, muscle, gonads, and brain of goldfish (Imaoka et ai, 

2000). 

1.4 PRL receptors (PRLRs) 

The effects of PRL on target tissues are mediated by the PRL receptor 

(PRLR), which belongs to the cytokine receptor family (Bole-Feysot. 1998). In 

mammals, there are long, intermediate, and short PRLR isoforms (Freeman et 

at 2000). Ali fish PRLR cDNA encode for a mature protein of approximately 600 

aa in length and are most similar in appearance to the long form of mammalian 

PRLRs (Manzon, 2001). The isolation and characterization of fish PRLRs has 

revealed that several important functional domains, receptor activation 
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mechanisms, and signal transduction pathways have been conserved between 

fish and mammals. Generally. the highest PRLR expression leveis were 

observed in the primary osmoregulatory organs (gills, kidney, and intestine). 

However. PRLR transcripts were also detected in other tissues such as the brain, 

gonad, liver, muscle, skin, spleen, head kidney, lymphocytes, and bone of some 

fish (Manzon, 2001 for review). In the sea bream, PRLR expression was also 

detected in early post-hatching stages of larvae (Santos et a/., 2003). 

!.5 PRL actions on target tissues 

Pituitary PRL acts via a classic endocrine pathway, i. e., it Is secreted by 

the pituitary gland, transported by the circulatory system, and acts on target cells 

at some peripheral sites via specific receptors located on the plasma membrane. 

The interaction of PRL with its receptor in various target cells leads to the 

activation of intracellular events that ultimately promote PRL-responsive genes 

responsible for a biological activity in the animal. 

In mammals, PRL binding to its receptor leads to dimerization and 

activation of an intracellular cascade mediated by JAK/STAT signal transduction 

pathway (Ihle, 1996). The Janus kinase JAK2 is constitutively associated with the 

PRLR and is activated upon PRL binding. Following activation of JAK2, tyrosine 

residues on the PRLR and the transcription factor STAT5 are phosphorylated 

(Han et a/., 1997). Activated Stat proteins translocate into the nucleus where they 

bind DNA consensus motifs to mediate activation of target genes (Bole-Feysot et 

ai, 1998). 
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PRL is derived primarily from the anterior pituitary and acts on tissues 

widely distributed through the body (endocrine action). But locally produced PRL 

can act on adjacent cells (paracrine action) or on the PRL-secreting cell itself 

(autocrine action). Intriguingly a paracrine and autocrine mechanisms could 

activate many of the actions associated with PRL, without affecting the circulating 

concentration of the hormone (Bole-Feysot et a/., 1998) and may explain the 

apparent discrepancies of some experiments where despite unchanging leveis of 

circulating hormone specific biological activities are observed. 

1.6 Regulation of PRL synthesis and secretíon 

The secretory cells of the anterior pituitary are influenced by a wide array 

of factors. The general and well-accepted view is that PRL secreting cells have a 

spontaneously high secretory activity. Therefore, pituitary PRL secretion is under 

a tonic and predominantly inhibitory control exerted by a hypothalamic PRL- 

inhibiting factor (PIF) that restrains in vivo PRL secretion (reviewed by Freeman 

et a/., 2000) (Fig. 1.3). But PRL release is also influenced by other 

secretagogues and gene regulators. The old notion that secretagogues act 

rapidly while gene regulators act slowly has been questioned when results on the 

induction of genes such as c-fos are considered. The two types of regulators may 

be better classified by their preferred utilization of cellular compartments, i.e. 

secretagogues act on the cell membrane and activate calcium-dependent 

exocytosis while gene regulators, directly or indirectly, utilize the nuclear 

compartment (Ben-Jonathan et ai, 1996 for review). These secretagogues and 
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Circadian input 

Environmental stimuli; 
Light 
Odor 
Sound 
Stress 

Internai millieu: 
Estradiol/progesterone 
Glucocorticoids 
Plasma osmolarity 

z- 
Regulatory Circuit Hypothalamic 

+ 

Neuroendocrme neurons 

PRF 

Median eminence 

Lactotroph' Pituitary 

(PRL)M" Celi 
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Anterior 
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Fiqure 1.3 An overview of the regulation of PRL secretion in mammals. PRL secretion is 
paced by a light-entrained circadian rhythm. which is modified by environmental input. 
with the internai milieu affecting the inhibitory or stimulatory elements of the 
hypothalamic regulatory circuit. The final common pathways of the central stimulatory 
and inhibitory control of PRL secretion are the neuroendocrme neurons producmg PRL 
inhibiting factons (PIF), or PRL releasing factors (PRF). PIF and PRF from he 
neuroendocrine neurons can be released either at the median em.nence or at the 
neurointermediate lobe and reach the PRL-cells in the anterior lobe of the pituitary 
gland. Thus PRL-cells are regulated by blood-bome agents of central nervous 
or by factors released from neighboring cells (paracrine regulation), or from the PRL- 
cells themselves (autocrine regulation) (adapted from Freeman et a/., 2000). 
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gene regulators are multiple hypothalamic factors, feedback signals from the 

target organs of the pituitary hormones and an increasing number of factors 

produced and secreted within the pituitary (other hormones, particularly steroids), 

and environmental factors. 

1.6.1 Biogenic amines 

DOPAMINE (DA) - In mammals, DA is considered the major PIF. Several 

well-defmed dopaminergic systems have been described in the mammalian 

brain.DA receptors have been detected in preparations of pituitary membranes 

by immunocytochemical methods. which include labelling the receptors with the 

DA antagonist haloperidol, and detection of it with an antibody agamst 

haloperidol and the peroxidase anti-peroxidase technique. Ample experimental 

evidence shows that DA inhibits PRL release from pituitary lactotrophs both in 

vivo and in vitro (reviews by Ben-Jonathan and Hnasko, 2001; Freeman et ai, 

2000). 

In avian species, DA-ir cells were detected in the developing chicken 

adrenal-gland (Sánchez-Montesinos et ai, 1996), In teleosts, the existence of 

dopaminergic nerve fibers innervating PRL cells has not been clearly 

demonstrated. However, the presence of DA in pituitary bioassays reduces PRL 

cell activity in some species suggesting it may also act as a PIF in some fish 

(reviewed by Wigham, 1992). 
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NOREPINEPHRINE AND EPINEPHRINE - In rats, adrenergic modulation, 

mediated by either norepinephrine or epinephrine, plays an important role in 

stress-induced PRL secretion (see Freeman et ai, 2000 for revision). 

In the teleost fish Poecilia latipinna, the respective a adrenergic and (3 

adrenergic agonists phenylephrine and isoproterenol inhibited PRL secretion In 

vitro, but the adrenergic blockers phentolamine and propranolol had no direct 

effect on their own, although they did oppose the inhibitory action of DA 

(Wigham, 1992). Interestingly in the saddleback wrasse {Thalassoma duperrey), 

norepinephrine stimulates both initiation and completion of sex reversal (Larson 

et a/., 2003). 

SEROTONIN - In mammals, serotonin facilitates suckling-induced PRL 

release and regulates the estrogen-induced PRL secretion (Freeman et a/., 

2000). Although receptors for serotonin are present in the anterior lobe of the 

pituitary gland, serotonin does not stimulate PRL release in vitro, suggesting that 

it functions as a neurotransmitter rather than a neurohormone (Freeman et a/., 

2000). 

In avian species, serotonin-ir was localized in the endocrine cells of the 

digestive and respiratory systems (Yamada et a/., 1985; Yamaguchi et a/., 1987, 

Adriaensen et ai, 1994; Lucini et ai, 1996). In the chicken, serotonin-ir is 

expressed in the sympathoadrenal system (Garcia-Arrarás and Martinez, 1990). 

In some teleosts, namely clingfish {Lepadogaster ca n do Hei), fire eel 

{Mastacembelus erythrotaenia), goldfish (Carassius auratus), and turbot 
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(Scophthalmus maximus), serotonin-ir endocrine cells and fibers were observed 

throughout the gastro-intestinal tract, in the skin and in some nerve projections to 

the retina (Fasulo et ai, 1993; Reinecke et ai, 1997; Lima and Urbina , 1998). 

Moreover, the brain, the pituitary, and the ventral spinal cord contam a dense 

innervation of serotonergic fibers in sailfin molly (Poecilia latipinna). garfish 

(Lepisosteus prvductus), and European eel (Anguilla anguitla) (Wigham, 1992, 

Batten et ai, 1993; Chiba and Oka, 1999). Relatively few studies have been 

carried out with serotonin in vitro, in the trout serotonin produces an increase of 

PRL cell activity and stimulates PRL secretion but te action on the PRL cells in 

other species remains to be studied (Wigham, 1992). In the saddleback wrasse 

{Thalassoma duperrey), serotonin inhibits both initiation and completion of sex 

reversal (Larson et a/., 2003). 

1.6.2 Acetylcholine 

|n GH3 cells, the activation of the (muscarinic) acetylcholine receptor 

decreases PRL secretion (Freeman et ai, 2000). Moreover. cholinergic 

stimulation by administration of cholinergic agonists in rats causes a decrease in 

serum PRL concentrations (Freeman et a/., 2000). 

Experiments with the teleost fish rainbow trout (Oncorfiyncus mykiss), in 

vitro, showed that the acetylcholine agonist. carbachol, inhibits PRL synthesis 

and release. Moreover, there is evidence which suggests that the cholinergic 

inhibition of the PRL cells in teleosts operates via muscarinic receptors (Wigham, 

1992). 
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1.6.3 Neuropeptides 

A variety of peptides are known to be involved in the regulation of PRL 

secretion. The list of this type of PRL secretagogues is rather long, but in the 

present study more attention is paid to the following peptides: (1) galanin (Gal), 

which in terms of its potential physiological activity is one of the better 

characterized paracrine factors in the pituitary, (2) vasoactive intestinal peptide 

(VIP), which has long been characterized as a likely local factor influencing 

function of lactotrophs, and recently has been shown to interact with galanin, (3) 

somatostatin (SS) and (4) thyrotropin-releasing hormone (TRH), which have 

received much attention as they are respectively, a potent inhibitor and stimulator 

of PRL secretion in mammals. 

In addition to the aforementioned neuropeptides the other putative PRL 

regulatory factors which will be reviewed in the introduction are those which have 

been studied in teleost fish and include oxytocin and isotocin, neuropeptide Y, 

neurotensin, substance P, and urotensin. 

GALANIN (Gal) - Gal is a 29-amino acid peptide originally isolated from 

porcine small intestine (Tatemoto et ai, 1983). It shares little homology with other 

known peptides. It has been demonstrated that the N-terminal sequence of Gal, 

comprising amino acids 1-15 are highly conserved in ali species from which it 

has been isolated as this region is probably responsible for receptor binding 

(Crawley, 1995). In contrast, the C-terminal region exhibits substantial 
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interspecies variability, suggesting that it might be responsible for the species- 

specific activity of Gal (Crawley, 1995) (Table 1.1). 

Table 1.1 - Endogenously occurring Gal sequences 
(Bartfai, 2000; Chartrel eia/.. 1995; Wang and Conlon, 1994). 

1 -15 16-25 26-30 

Man GWTLNSAGYLLGPHA VGNHRSF SD K N G L T S ** 

Pig GWT L NSAGYLLGPHA I DNHRSFHDK Y G L A * 

Rat GWTLNSAGYLLGPHA l DNHRSFSDK H G L T * 

Chicken GWTLNSAGYLLGPHA VDNHRSF ND K H G F T * 

Frog GWTLNSAGYLLGPHA l DNHRSFNDK H G L A * 

Dogfish GWTLNSAGYLLGPHA VDNHRSF ND K H G L A * 

*C-terminalamide 
"C-terminal free acid 
Boldface denotes aa which were not conserved between species 

Immunohistochemical studies have demonstrated that Gal-like 

immunoreactivity is widoly distributed in the central nervous system and the 

gastroenteric, respiratory, urinary and reproductive system of different mammals 

(Crawley, 1995). Gal and its mRNA have been shown so far to be expressed 

prevalently in neurons, but a number of studies have colocalized Gal with PRL in 

at least a fraction of the lactotrophs (see Schwartz, 2000 for review). These and 

other studies have reported colocalization in other cells in addition to or instead of 

lactotrophs. One study, employing cellular immunoblotting technology with rat 

pituitary cells, localized Gal with PRL or ACTH and in wild type and transgenic 

(human GHRF-expressing) mice, immunocytochemical techniques were used to 

demonstrate the colocalization of Gal with GH, PRL, or TSH (see Schwartz, 2000 

for review). 

In humans, Gal secretion has been measured in cultures of ACTH- 

secreting tumours (Invitti ef a/., 1999). Recently, using immunocytochemical 
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techniques, Gal has also been reported to be present in nerve fibers in monkey 

and canine pituitários in close proximity to ali types of secretory cells (Liu and 

Gao, 1998). 

In reptiles and amphibians, Gal immunoreactivity was observed in brain, 

hypothalamus, heart, bladder, small intestino and oviducts (Crawley, 1995; 

Lamanna et a/., 1999). In avian species, Gal-ir cells and neurons were detected 

in the adrenal-gland of the chick embryo and the adult, in the quail brain, in the 

chicken medulla oblongata, and in the pancreatic islets of the bustard (Azumaya 

and Tsutsui, 1996; Sánchez-Montesinos et ai, 1996; Wang et al., 1997; Ohmori, 

1998; Mensah-Brown et ai, 2000). Avian galanin mRNA was expressed in the 

quail brain, ovary, and intestine (Kohchi and Tsutsui, 2000). 

Some teleost fish revealed similar extensivo systems of Gal 

immunoreactive neurons in brain and pituitary (Moons et ai, 1989; Batten et ai, 

1990; Cornbrooks and Parsons, 1991; Moons et ai, 1991; Olivereau and 

Olivereau, 1991a; Power et ai, 1995; Batten et ai, 1999). In european 

seabream, Gal immunoreactive fibers were observed infiltrated between growth 

hormone, prolactin, and adrenocorticotropin cells (Power et ai, 1995). Studies on 

seabass pituitary revealed that Gal immunoreactive fibers abutted with ACTH, 

PRL, TSH, GtH, and GH cells (Moons et ai, 1989; Batten et ai, 1990; Moons et 

ai, 1991), suggesting it may directly influence the activity of such cells. 

In mammals, Gal receptors have been identified in localized sites in the 

central nervous system, pituitary, pâncreas, stomach and intestine (Crawley, 

1995). Effector systems linked to the Gal receptor in different tissues include 
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inhibition of adenylate cyclase, biockage of voltage-dependent calcium channels 

and activation of ATP-sensitive potassium channels (Crawley, 1995). Recently, 

two Gal receptors - Gal receptor-1 (GalR1) and Gal receptor-2 (GalR2) - have 

been characterized and shown to have different amino acid sequences, 

pharmacology, and second messenger signalling systems. In rats, Gal-R1 

receptors have a broad role in normal synaptic transmission, while Gal-R2 

receptors, in addition to a similar role in particular pathways, seem to be involved 

in processes prominent during the establishment and maturation of synaptic 

connections in developing brain and during neural damage and repair in the 

mature nervous system (Burazin and Gundlach, 1998; Burazin et ai, 2000). In 

three species of teleosts sailfin mollies sea bass {Poecilia latipinna), 

(Dicentrarchus labrax), and North African catfish {Ciarias gahepinus), the 

distribution of binding sites for Gal were described in the pituitary (Batten et ai, 

1999). Moreover, in Atlantic salmon {Salmo salar), a specific Gal receptor was 

identified in the brain (Holmqvist and Carlberg, 1992) strengthening the idea that 

it has a direct action on the nervous system. 

The regulation of Gal synthesis and secretion in pituitary cells is an area of 

ongoing investigation. Estrogens exert the most important influence on Gal 

activity in the pituitary, where estradiol positively regulates Gal-expressing cells, 

either increasing the amount of Gal protein and mRNA or the number of Gal- 

secreting cells. Pituitary Gal content is also controlled by other hormones such as 

thyroid hormones, vasoactive intestinal peptide (VIP) and PRL (see Schwartz, 

2000 for review). 
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In mammalian species, the intensity of Gal innervation has been observed 

to be dependent on the physiological status of the animal. For example, in rats, 

gonadal steroids have a dramatic activational effect on the numbers of visibly 

stained Gal cells in the hypothalamus and pituitary gland (Bloch et a/., 1993; 

Leibowitz et ai, 1998; Rugarn et ai, 1999). Moreover, the capacity of cells 

located in the hypothalamus to express Gal after testosterone or estradiol 

exposure in ferrets shows sexual divergence (Park et ai, 1997). In rats, 

hypothalamic and pituitary leveis of Gal mRNA, increased significantly after 

treatment with estrogen (Gabriel et ai, 1992; Brann et ai, 1993, Hyde et ai 

1993; Crawley, 1995; Tseng et ai, 1997; Shen et ai, 1999; Degerman et ai, 

2002). Gonadotropin-primed rat ovarian tissue cultured in vitro with galanin 

secreted significant amounts of estradiol, progesterone, and androstenedione 

into the médium (Fox et ai, 1994). Moreover, Gal mRNA leveis in the rat ovary 

are increased by treatment with human chorionic gonadotropin (Crawley, 1995). 

In rats, combined autoradiographic and immunohistochemical studies 

have shown colocalization of receptors for estrogens and the neuropeptide Gal 

(Hõsli and Flõsli, 1999). Studies with immortalized LHRH neurons suggest that 

the estrogenic control of Gal gene expression in these neurons is transduced by 

estrogen receptors (Shen et ai, 1998). Studies in the estrogen receptor alpha- 

knock-out mouse revealed that the estrogen receptor subtype alpha is essential 

to estrogen-evoked Gal gene expression in the anterior pituitary of these animais 

(Shen et ai, 1999). 
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Studies in vivo of the involvement of Gal in reproduction corroborate 

observations made in vitro. Exogenously administered Gal regulates the 

reproductive axis by acting as a growth regulator of the lactotrophs in rats 

(Wynick et al., 1993) or by stimulating the lutenizing hormone in monkeys (Finn 

et al., 2000). In female rats, Gal has both direct and indirect effeots on gonadal 

hormone release and this response is impaired in starved animais (Baranowska 

et a/., 2001). 

In reptiles, the evidence which exists does not indicate if the action of Gal 

on the reproductive axis is direct or indirect. Administration of ly^-estradiol to 

non-reproductive female lizards induced a significant increase in neurons 

containing Gal immunoreactivity in the oviduct (Lamanna et al., 1999). Gal 

administration to pre-ovulatory lizard females induced premature oviposition, 

suggesting that Gal could be involved in the egg laying process (Lamanna et al., 

1999). In avian species, estradiol induces an increase in Gal binding sites in 

mature quail oviducts, while 17/5'-estradiol and progesterone induced a marked 

increase in Gal binding sites (Tsutsui et al., 1998). 

In teleost fishes Gal innervation is also dependent on the physiological 

status of the animal. For example, in eels treated with estradiol or methyl 

testosterone, increased Gal immunoreactive material was observed in some 

perikarya and brain fibers (Olivereau and Olivereau, 1991b). Moreover, a Gal-like 

peptide has been shown to have a sexually dimorphic distribution in the brain of 

the sailfin molly (Cornbrooks and Parsons, 1991). 
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In addition to its action on reproduction a myriad of other physiological 

functions have been attributed to Gal. One important role is related to the control 

of appetite. Administration of Gal has been shown to induce feeding in satiated 

rats and ground squirrels; the effect is dose-related, with threshold doses at 

approximately 0.3 mmol (Crawley, 1995). In female rats, animais showing a 

preference for a fat-rich diet or animais with greater body fat, independent of the 

diet, exhibit higher leveis of hypothalamic Gal. This evidence suggests that in the 

female rat, Gal may contribute to the overeating and increased weight gain that is 

associated with a fat-rich diet (Leibowitz et ai, 1998). Interestingly in teleosts Gal 

has also been observed to influence feeding and in goldfish, where stimulation of 

food intake is mediated by the a2-adrenergic system, Gal affects the central 

regulation of feeding, (de Pedro et ai, 1995). 

Gal also has an important role in the mechanism of growth hormone 

release. Gal caused an in vitro increase in release of rat growth hormone 

(Gabriel et ai, 1988; Crawley, 1995) and LHRH (Lopez and Negro-Vilar, 1990), 

an effect proposed to be mediated via an effect on GHRH neurons (Meister et ai, 

1987; Murakami et ai, 1989; Hulting et ai, 1991). Support for this proposal 

comes from in situ hybridisation studies which demonstrate that Gal mRNA is 

present in GnRH neurons (Marks et al., 1994; Selvais et ai, 1995). 

Intraventricular injections of Gal in the rat produce rapid increases of PRL 

(Crawley, 1995). Moreover, Gal and PRL are colocalized within secretory 

granules of the pituitary after estrogen treatment (Hyde et ai, 1991). Results 

from studies in mice carrying a loss-of-function mutation of the endogenous Gal 
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gene, support the hypothesis that Gal acts as a paracrine regulator of PRL 

expression (Wynick et ai, 1998). 

Gal is a potent regulator of a number of neurotransmitters and hormones. 

Its actions in some systems have been shown to involve a decrease in the 

cytosolic Ca2+ concentration. This may be the consequence of the 

hyperpolarization brought about by opening of Gal-receptor-coupled K+-channels 

or it may be a result of the Gal-receptor-mediated closure of some Ca2+ channels 

- or of a combination of both effects (Bartfai, 2000). A Gal suppressing calcium 

current and activating inwardly rectifying potassium current was also 

demonstrated in the enteric neurons of the guinea-pig small intestine. 

Suppression and activation of these channels was dependent on Gal 

concentration (Ren et ai, 2001). An alternative mechanism is observed for Gal 

inhibition of insulin secretion in a number of species (Crawley, 1995), this action 

is brought about by interference of Gal with adenylate cyclase activation and the 

activity of protein kinase C and cyclic AMR (Lindskog and Ahrén, 1991). 

Several other biological activities have been attributed to Gal. In 

mammals, this neuropeptide produces direct effects on smooth muscle activity at 

several sites in the gastrointestinal tract (Botella et ai, 1992; Crawley, 1995). The 

multiple coexistence of Gal with most of the pituitary hormones during the fetal 

development of the rat (Cimini et ai, 2000), could be an indication that Gal may 

also have a role in cytodifferentiation. In elasmobranches, Gal causes differential 

vasoconstriction in vascular beds (Preston et ai, 1995). 
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VASOACTIVE INTESTINAL PEPTIDE (VIP) - VIP is a vasoactive peptide 

which belongs to the secretin/glucagon family, other members include glucose- 

dependent insulin-releasing peptide (GIP), growth hormone releasing-factor 

(GRF), PHI (peptide having N-terminal histidine and C-terminal isoleucine) and 

the reptilian peptides helodermin and helospectins. It was first isolated from 

porcine intestinal extracts (Said and Mutt, 1972) but has subsequently been 

shown to have a widespread distribution in the central and peripheral nervous 

systems in a range of vertebrates. The sequence of VIP appears to have been 

highly conserved during evolution and it is composed of 28-amino acids (Table 

1.2). 

VIP has a wide spectrum of biological activities in mammals (Dockray, 

1987). It acts on cardiovascular, reproductive. pulmonary, immune, and 

gastrointestinal systems. The general physiological effects include vasodilation, 

bronchodilation, immunosuppression, increases in gastric motility and hormonal 

secretion (Brenneman et a/., 2000 for review). VIP is a potent stimulator of PRL 

release from mammalian pituitaries both in vivo and in vitro (see Freeman et a/., 

2000 and Schwartz, 2000 for reviews). 

Table 1.2 - Mammalian amino acid sequence of VIP (Brenneman et a/., 2000) 

Pig H S D A V F T DNYTRLRKQ MAVKKYLNS ILN 
Dog HSDAVFTDNYSRI RKQMAVKKY INSLLA 
Chicken |HSDAVFTDNYSRFRKQMAVKKYLNSVLT 

In reptiles, VIP-ir peptidergic nerves were detected in the pâncreas 

(Buchan et a/., 1982) but PRL actions have not been reported. In amphibians, 

VIP has been proposed to be a PRL-releasing factor (Koiwai et a/., 1986). In 
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avian species, VIP-ir fibers are localized in the brain, hypothalamus, gut, and 

pancreatic islets (Mikami and Yamada, 1984; Epstein and Poulsen, 1991; 

Erichsen et ai, 1991; Mensah-Brown et ai, 2000). VIP is a potent stimulator of 

PRL release in avian species in vivo and in vitro (Hall and Chadwick, 1985a: 

MacNamee et ai, 1986). Recently VIP was also shown to be associated with a 

significant rise in PRL during the breeding season of birds (Youngreen et ai, 

1994; Bédécarrats et ai, 1999; Maney et ai, 1999). In amphibians, the results 

from in vitro studies suggest VIP may be a PRL-releasing factor (Koiwai et ai, 

1986), 

In teleosts relatively few studies of the action of VIP exist. VIP-ir nerves 

have been detected within both the mucosa and muscularis mucosa of the 

swimbladder of cod {Gadus morhua) (Lundin and Holmgren, 1986) and it has 

been shown to cause a slight relaxation in strips of coeliac and swimbladder 

artery). In addition, endocrine cells and fibers were observed throughout the 

gastro-intestinal tract of the turbot (Reinecke et ai, 1997) and VIP influences ion 

and water transport in the intestine of freshwater-adapted Mozambique tilapia 

{Oreochromis mossambicus) (Mainoya and Bem, 1984). Moreover, in cod VIP 

induces potent and persistent inhibition of gastric acid secretion (Holstein and 

Humphrey, 1980). In Mozambique tilapia, VIP appears to inhibit PRL secretion 

(Wigham, 1992). In the sea bream, VIP modulates PRL secretion from E2 primed 

pituitary glands (Brinca et ai, 2002 and present thesis). 
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SOMATOSTATIN RELEASE-INHIBITING FACTOR (SRIF) - SRIF is a 

multifunctional hormone which inhibits the secretion of growth hormone. SRIF is 

a tetradecapeptide (SRIF-14) but multiple N-terminally extended forms such as 

SRIF-28, SRIF-22, SRIF-25, SRIF-34, and SRIF-37 have been isolated from 

hypothalamus, pancreas and intestinal tissue of mammals and non-mammals 

(King and Miller, 1979; Conlon et ai, 1985; Plisetskaya et ai, 1986; Cutfield et 

ai, 1987) (Fig.1.4). 

Scr-Alí-Asn-Scr-Asn-Pro-Ala-Met- ,Phcs 
Ah-Pro-Arg-Glu-Arg-Lys-Ah-Gly-Cys' Trp 

Cys Pho %T Lys 
Somatostal:in28 %Scr-Thr Thr 

Lu5'A5n. ,Ph^ 
Alo-Gly-Cyc ' Ph,::' Trp 

_ „ < Cus Pta Ly- 
Somatostatm 14 ^ Scr-iV vThr' 

Figure 1.4-Amino acid sequence of SS-14 and SS-18 (Rubinow et ai, 2000). 

In mammals, in vitro and in vivo studies have shown that SRIF-14 and 

SRIF-28 not only inhibits GH secretion, but also secretion of PRL, TSH, and 

ACTH (Freeman et ai, 2000 for review). In rat and chick, it has also been shown 

to inhibit the enzyme activities of the small intestine (Taboada et ai, 1985). 

In reptiles, SRIF immunoreactive endocrine cells have been detected in 

the pancreas (Buchan et ai, 1982). In avian species, SRIF-ir fibers and 

endocrine cells are localized in the brain, hypothalamus, proventriculus, gut, 

pancreas, and sympathoadrenal system of embryos and adults (Mikami and 

Yamada, 1984; Yamada et ai, 1985; Yamaguchi et ai, 1987; Garcia-Arrarás and 
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Martinez, 1990; Erichsen et ai, 1991; Epstein and Poulsen, 1991; Erichsen et 

a/., 1994; Lucini eia/., 1996; Sánchez-Montesinos et ai, 1996; Takayanagi et ai, 

1996). 

In teleosts, immunocytochemical investigations have revealed the 

presence of SRIF-like material in the hypothalamus, pituitary, and gastro- 

intestinal tract of several species (Wigham, 1992; Zupanc et ai, 1994; Becerra et 

ai, 1995; Groff and Youson, 1997; Reinecke et ai, 1997; Batten et ai, 1999), 

including the sea bream (Power et ai, 1996). In rainbow trout (Oncorhynchus 

mykiss), preprosomatostatin (a SRIF precursor) has been isolated and 

characterized (Moore et ai, 1995) and has been shown to be expressed in the 

pancreas, stomach, intestine, and brain (Kittilson et ai, 1999). The fruit-eating 

fish, the pacu (Piaractus mesopotamicus), expresses two SRIF genes (de Lima, 

1999). SRIF inhibits PRL synthesis and release in the trout (Wigham, 1992), and 

also appears to regulate the development of new neurons produced in response 

to injuries in the cerebellum (Zupanc, 1999). 

THYROTROPIN-RELEASING HORMONE (TRH) - A hypophysiotrophic 

factor that stimulates thyroid-stimulating hormone (TSF!) secretion from pituitary 

cells was first isolated in 1966 (Schally et ai, 1966). In 1969, a group led by 

Guillemin (Burgus et ai, 1970) and another by Schally (Boler et ai, 1969) 

announced that the hypothalamic substance that causes the anterior pituitary 

gland to release TSH is L-pyroglutamyL-L-histidyl-L-prolineamide (L-pGlu-L-His- 
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L-ProNH2) (Fig.1.5). This tripeptide is now called thyrotropin-releasing hormone 

(TRH) (Mason et ai, 2000). 

In mammals, TRH-like immunoreactivity is widely distributed in the CNS, 

and TRH receptors have been identified on lactotrophs. TRH stimulates PRL 

release in a dose-dependent manner both in vitro and in vivo. Pharmacological 

blockade of VIP receptors attenuates the PRL response to TRH, consistent with 

TRH acting, at least partially, via local production of VIP (see Benker et ai, 1990, 

Freeman et ai, 2000 and Schwartz, 2000 for reviews). 

In avian species, TRH is distributed in the brain and hypothalarnus (Józsa 

et ai, 1988; Geris et ai, 1999). In the chicken, a TRH receptor has been cloned 

and characterized (Sun et ai, 1998). TRH stimulates PRL release from pituitary 

glands of fowl (Hall et ai, 1985b). and this effect is greatly increased in turkeys 

treated with estradiol benzoate (Saeed and el Halawani, 1986). In amphibians, 

TRH also stimulates PRL release (Preece and Licht, 1987). 

In some teleosts, TRH immunoreactivity is detected in the brain, pituitary, 

and retina (Wigham, 1992; Anadón et ai, 2001; Diaz et ai, 2002). Recently, in 

the brain of embryos, alevin, and juveniles of brown trout {Salmo trutta fario), 

TRH-ir neurons were observed to have a wide distribution (Diaz et ai, 2001). In 

Figure 1.5 - Thyrotropin-releasing hormone (Mason et ai, 2000). 
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vitro studies have demonstrated that TRH plays an important role in both PRL 

synthesis and release in teleosts (Kagabu eia/., 1998; Wigham, 1992). Studies 

in chum salmon (Oncorhynchus keta) suggest TRH may be related to changes in 

olfactoryfunction during migration (Hamano eia/., 1996). 

OXYTOCIN (OT) AND ISOTOCIN (IT) - The neurohypophyseal hormone 

oxytocin (OT) was originally identified as a nonapeptide with an amidated C- 

terminus (Acher et a/., 1970) (Table 1.3). In mammals it is primarily associated 

with the contraction of uterine and mammary smooth muscle during birth and 

lactation. Recently, plasma hyperosmolality has been identified as a stimulus for 

rat pituitary OT secretion (Rinaman et a/., 2000). OT is also involved in the 

regulation of PRL secretion, and an OT receptor has been localized on 

lactotrophs (Freeman et ai, 2000; Schwartz, J., 2000). In teleosts, oxytocin-ir 

fibers and binding sites are observed in the pituitary (Batten et ai, 1999) and in 

rainbow trout {Oncorhynchus mykiss), oxytocin increases PRL release from 

pituitaries in vitro (Wigham, 1992). 

Table 1.3 - Amino acid sequence and similarities between the peptides isotocin 
and oxytocin 

Isotocin CYISNC PIG* 

Oxytocin CYIQNCPLG* 

G*, amidated glycine residue 

The functional role of isotocin the non-mammalian counterpart of OT 

(Table 1.3), is less well defined. The distribution of isotocin-ir fibers and binding 
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sites have been described in the pituitary of three species of teleost sailfin 

mollies (Poecilia latipinna), sea bass (Dicentrarchus labrax), and North African 

catfish {Ciarias gariepinus) (Batten et a/., 1999), but no physiological studies of 

the activity of this peptide exist in fish. 

NEUROPEPTIDE Y (NPY) - NPY is a member of the pancreatic 

polypeptide family isolated by Tatemoto in 1982 (Table 1.4). In mammals, NPY is 

distributed in the CNS, particularly in the hypothalamus, and it is a substance that 

alters the function of several different pituitary cell types (reviewed by Freeman et 

al., 2000). In rats, NPY inhibits PRL secretion and attenuates both the PRL- 

secretory and intracellular calcium flux responses to TRH in pituitary cells. The 

activity of NPY varies as a function of the estrous cycle, and expression leveis 

also change according to the steroid environment (reviewed by Schwartz, J., 

2000). 

Table 1.4- NPY amino acid sequence 

YPSKPDNPGEDAPAEDLARYYSALRHYINLITRQRY-NH2 

In avian species, NPY-ir fibers were seen in the brain and in the endocrine 

cells of the pancreas (Erichsen et al., 1991; Erichsen et al., 1994; Lucini et al., 

2000; Mensah-Brown et al., 2000). In the chick embryo, NPY-ir cells were 

detected in the developing adrenal-gland (Sánchez-Montesinos et al., 1996). In 

an immunochemical study of the pituitary gland of some teleosts sailfin mollies, 

{Poecilia latipinna), sea bass (Dicentrarchus labrax), and North African catfish 

{Ciarias gariepinus), the distribution of numerous NPY-ir fibers and binding sites 
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were described in the pituitary (Batten et a/., 1999). In turbot, NPY-ir endocrine 

cells and fibers were observed throughout the gastro-.intestinal tract (Reinecke et 

a/., 1997), although no study of the brain was carried out. 

NEUROTENSIN (NT) - Neurotensin (NT) is a tridecapeptide that was 

originally isolated from bovine hypothalamus (Carraway and Leeman, 1973) 

(Table 1.5) and was originally thought to be a vasoactive peptide. Subsequent 

studies have shown in mammals that NT is involved in a range of physiological 

processes, including blood flow, digestion, temperature regulation and 

nociception (Leeman and Carraway, 1982). 

Table 1.5 - NT amino acid sequences of some mammals, avian, and fish 
species (Carraway and Bhatnagar, 1980; Carraway and Leeman, 1973; Hammer et al., 
1980; Rodriguez-Bello et al., 1993; Warner et al., 1998) 

Bovine, canine, human elyenkprrpyil-oh 

Chicken, alligator ELHVNKARRPYIL - OH 

Toad E A 1 VSKARRPYIL - OH 

Boldface denotes aa which are different from bovine sequence 

Immunocytochemical studies have shown that NT is present in the 

mammalian brain and anterior pituitary (Uhl et al., 1977; Emson et al., 1982). 

One of the most potent central effects of NT in mammals is its analgesic action 

which can be blocked by thyroxine releasing hormone (Hernandez et al., 1984). 

Intravenous injection of NT leads to an increase in circulating PRL leveis while 

intracerebroventricular injections cause an inhibition of PRL release (Vijayan and 

McCann, 1979). In contrast NT increases PRL secretion in a dose-dependent 

manner in vitro. The opposite effects of NT in vivo and in vitro have been taken to 
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indicate that NT can affect PRL secretion at multiple leveis (Freeman et a/., 

2000). 

In avian species, NT-ir endocrine cells were localized in the brain, 

proventriculus, and gizzard (Yamada et a/., 1985; Yamaguchi et a/., 1987; 

Esposito et a/., 1997). In vivo and in vitro studies in chickens showed that NT has 

an effect on the motility of the lower gut (Rawson et a/., 1990). 

In the turbot (Scophthalmus maximus) and in the rosy barb (Barbus 

conchonius), NT-ir endocrine cells and fibers were observed throughout the 

gastro-intestinal tract (Rombout and Reinecke, 1984; Reinecke et ai, 1997). In 

the goldfish (Carassius auratus), extensive NT-ir was observed in the brain and 

pituitary (Bello et ai, 1994). Excitatory effects of NT on fish gut smooth muscle 

has been described (Holmgren, 1985). 

SUBSTANCE P - Substance P was first described in 1931 by von Euler 

and Gaddum who demonstrated brain extracts contained substances that caused 

contractions of the intestinal preparations and lowered blood pressure. It was 

only in 1971 that the amino acid sequence of this undecapeptide was determined 

in extracts of bovine hypothalamus (Chang et ai, 1971) (Table 1.6). Substance P 

belongs to a family of neuropeptides known as tachykinins that share in common 

C-terminal sequence; Phe-X-Gly-Leu-Met-Nhb. 

Table 1.6 - Amino acid sequence of substance P 

Mammalian Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH2 
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Substance P has a wide distribution in the nervous system of both 

vertebrates and invertebrates. In primates and rodents numerous 

immunoreactive cell bodies and fibers are present in the hypothalamus. 

Moreover, a high levei of expression of substance P receptors has been detected 

in the hypothalamus and pituitary. Substance P has been shown to regulate both 

in vitro and in vivo PRL secretion in primates (rhesus monkey) and rats, but 

paradoxical effects have been obtained - it appears that the actual effect of this 

peptide on PRL secretion depends on the dose and route of administration 

(reviewed by Freeman et a/., 2000). 

In avian species, substance P-ir fibers are localized in the hypothalamus 

and brain (Mikami and Yamada, 1984; Erichsen ef a/., 1991; Erichsen et ai, 

1994). In the teleosts, substance P-ir fibers have been described in the pituitary 

of sailfin mollies {Poecilia latipinna), sea bass {Dicentrarchus labrax), and North 

African catfish {Ciarias gariepinus) (Batten et ai, 1999). Substance P-ir 

endocrine cells and fibers have been observed in the gastro-intestinal tract of a 

range of teleosts in the elasmobranches and cyclostomes (Jensen, 1989). 

However, an authentic substance P has yet to be found in non-mammalian 

species (Severini et ai, 2002). 

UROTENSIN - The caudal neurosecretory system of teleost fish (Fig. 1.6) 

which terminates in the urophysis, secretes two major regulatory peptides: 

urotensin I and urotensin II (Onstottk and Elde, 1986; Chester-Jones et al, 1987; 

Larsonefa/., 1987), a cyclic 12-amino acid residue peptide that has some 
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Figure 1.6 - Diagrammatic representation of the caudal neurosecretory system of 
fish (CNSS). Descendings neurons in the caudal spinal cord (dn) project axons to the 
urophysis (ur).where the neurosecretory nerve terminais link to the caudal vein (cv) 
of the renal portal system (rps). Dahlgren cells secrete two osmoregulatory peptides 
(urotensin I and urotensin II) (adapted from an original drawing by Dr. Peter 
Hubbard). 

sequence similarity, but is not homologous, to somatostatin-14 (Pearson ef a/., 

1980). Urotensin II is a 12-amino acid peptide, and the structural characterization 

of this peptide from several species of fish has shown that the cyclic region of the 

peptide has been strongly conserved (Le Mevel ef a/., 1996) (Table 1.7). 

Urotensin II is not confined to the caudal neurosecretory system of fish. 

and has been identified in anterior spinal cord and brain of several species (Yulis 

and Lederis, 1988; Wigham, 1992; Chartrel etal., 1998). 
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Table 1.7 - Amino acid sequence of Urotensin II from two teleosts (trout and 
carp) and an elasmobranch (Waugh and Conlon, 1993) 

Trõut G G N SE CFW KYCV-OH 
Carp GGN TECFWKYCV-OH 

Skate NN FSDCFWKYCV-OH 
Boldface denotes aa which are different from 
trout sequence 

Although the precise physiological role of urotensin II remains unclear, the 

diverse actions of urotensin II suggest the possibility of cardiovascular and renal 

effects on human, rat, frog, eel and trout (Chan, 1975; Gibson et a/., 1986; Itoh et 

ai, 1987; Yano et ai, 1995; Le Mevel et ai, 1996; Bõhm and Pernow, 2002; 

Zhang et ai, 2003 ), as well as a role in lipid and carbohydrate metabolism in 

coho salmon (Oncoriiynchus kisutch) and dogfish {Torpedo marmorata) 

(Sheridan et ai, 1987; Conlon et ai, 1994). Moreover, urotensin II inhibited PRL 

release, in a dose-related manner from Mozambique tilapia {Oreochromis 

mossambicus) pituitaries cultured in vitro (Rivas et ai, 1986). 

1.6.4 Hormones 

OVARIAM STEROIDS - In mammals the modulation of PRL by ovarian 

steroids is well documented (Labrie et ai, 1978). In rats, estradiol-17í3 (Ez) 

increases the mitotic potency of PRL cells in the pituitary gland and has a 

stimulatory effect on PRL gene expression in the hypothalamo- 

neurohypophyseal system and a concomitant inhibitory action on PRL proteolysis 

at this site (Takahashi and Kawashima, 1986; Torner et ai, 1999). In mink, 

Mustela vison, a high systemic ratio of progesterone to Ez has been shown to be 
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a prerequisite for increasing the expression of uterine PRL receptors (Rose et a/., 

1996). 

Ovarian steroids also affect the pituitary in birds, modulating in vitro PRL 

release (Knapp et a/., 1988). In teleost fish the regulation of PRL cells by ovarian 

steroids has been less extensively studied although there is evidence indicating 

their involvement, for example, pituitary PRL content and in vitro secretion is 

elevated by treatment with E2 in Mozambique tilapia (Borski et ai., 1991; 

Wigham, 1992; Poh et a/., 1997). Moreover, preincubation of tilapia pituitary 

glands with E2 in vitro appears to increase the sensitivity of PRL cells to 

stimulation by TRH and GnRH in vitro (Barry and Grau, 1986; Weber et ai, 

1997). In contrast, E2 treatment of rainbow trout pituitary cultures stimulated in 

vitro PRL synthesis but did not affect release (Wigham, 1992; Williams and 

Wigham, 1994). 

CORTISOL - In fish, cortisol production is located in the interrenal cells. 

These cells do not form a compact gland comparable to the mammalian adrenal 

córtex, but are located in layers, strands, and cords around the walls of the 

posterior cardinal veins and its branches run through the head kidneys (Fig. 1.7) 

(Wendelaar-Bonga, 1997). Studies by Young (1993) on hypophysectomized 

coho salmon (Oncorhynchus kisutch) have indicated that the pituitary gland 

dominates the endocrine control of cortisol secretion. a-Melanophore-stimulating 

hormone (a MSH) and ACTH are the main candidates for cortisol regulation 

with perhaps (3 endorphin as a potentiating factor (Wendelaar-Bonga, 1997). 
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Figure 1.7 - (a) Diagrammatic representation of head (hk) and trunk (tk) kidneys of 
teleost fish showing postcardinal veins (pcv) and their branches surrounded by 
interrenal tissue. (b) Cross section of right head kidney (at plane indicated by arrow 
in (a), showing steroidogenic cells (sc; adrenocortical homologue) and clusters of 
chromaffm cells (cc; adrenomedullary homologue) around postcardinal vem (pcv) 
and small blood vessels (v). Note close association of these cells with surroundmg 
lymphomyeloid tissue (It) (in Wendelaar Wendelaar Bonga. 1997). 

Cortisol appears to be an important extrahypothalamic regulator of PRL 

secretion in mammals and fishes. Cortisol suppressed PRL release from GH3 

cells in vítro, an effect that was related to dose (Tashjian et a/., 1970; Melmed, 

1984; Prager et ai, 1988). In rainbow trout (Oncorhynchus mykiss), experiments 

of chronic confinement suggest a PRL-inhibiting role for cortisol (Pottinger et ai, 

1992). In Mozambique tilapia (Oreochromis mossambicus), physiological 

concentrations of cortisol rapidly inhibit PRL release in vitro and the inhibitory 

effect occurs through the inhibition of both the Ca2+ and cAMP signal 
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transduction pathways (Grau and Helms, 1990; Borski et a/., 2001, 2002, 

Wigham, 1992 for review). 

PROLACTIN - In rats, it is well established that PRL can inhibit its own 

secretion by activating neuroendocrine dopaminergic neurons in the 

hypothalamus. However, there is evidence that PRL can also act directly at the 

lactotroph and inhibit its own secretion in an autocrine/paracrine manner m 

humans (see reviews by Benker et a/., 1990; Freeman et a/.. 2000; Schwartz, 

2000). 

In teleosts, some studies showed that PRL may act to feed back on the 

secretory cells and reduce PRL secretion, in vitro and in vivo (see Wigham, 1992 

for review). 

1.6.5 Other pituitary and hypothalamic factors 

Studies in mammals demonstrate that PRL cells are influenced by 

numerous factors produced and secreted within the pituitary and the 

hypothalamus. These include amino acids, namely gamma-aminobutyric acid 

(GABA), which is partially responsible for the nondopaminergic PIF activity in 

mammals (reviewed by Freeman et a/., 2000). In non-mammalian species the 

GABA effect on PRL secretion is less extensively studied, although GABA-ir 

fibers and neurons are found in the brain of the pigeon (Erichsen et ai, 1994) 

and the sea lamprey (Petromyzon marinus) (Meléndez-Ferro et ai, 2002). 
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Nitric oxide (NO) is a signaling molecule that seems to influence secretion 

of PRL in rats pituitaries (reviewed by Schwartz, 2000). In the Indian catfish 

(Heteropneustes fossilis), a dense plexus of nerve fibers containing neuronal 

nitric oxide synthase (nNOS) is present beneath the gill epithelium (Mauceri et 

a/., 1999). In birds, nNOS-ir neurons occurred in the pancreatic islets (Mensah- 

Brown et ai, 2000). 

PRL cells are also influenced by numerous factors produced and secreted 

within the pituitary and the hypothalamus, such as transforming growth factors 

(TGFs), histamine, opioids, calcitonin, POMC fragments, nerve growth factor 

(NGF), epidermal growth factor (EGF), endothelins (ETs), and ATP (reviewed by 

Freeman et ai, 2000 and Schwartz, J., 2000). Very little is known about the 

activity of these factors in regulation of teleost PRL secretion. 

1.6.6 Externai factors 

PHOTOPERIOD AND TEMPERATURE - Annual clocks of PRL synthesis 

and release are synchronized with the seasons and the responses are very often 

a result of changes in some environmental stimulus, such as photoperiod and/or 

temperature. In mammals and avian species, PRL circulating leveis are 

correlated with ambient temperature (Hooley et ai, 1979; Schams et ai, 1980; 

Maney et ai, 1999; Gahali et ai, 2001) and with photoperiod (Forbes et ai, 1975; 

Spieler, 1979; Pijoan and Williams, 1985; Martinet et ai, 1992; Maney et al, 

1999; Gahali et ai, 2001). In newts, PRL mRNA and plasma leveis were 

inversely correlates with temperature (Takahashi et ai, 2001). 
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In teleosts, photoperiod and temperature influence pituitary PRL release in 

goldfish (Carassíus auratus) (Mckeown and Peter, 1976), and PRL transcription 

in carp (Cyprinus carpio) (Figueroa et ai, 1997). In catfish (Heteropneustes 

fossilis), temperature suppresses the action of dopamine which modulates PRL 

release (Senthikumaran and Joy, 1995). In teleosts, temperature and 

photoperiod also has an effect on reproduction, although if this is associated with 

altered PRL release remains to be established (Zanuy et ai, 1986; Randall et ai, 

1998; Koger et ai, 1999; Martin et ai, 1999; Chaube and Joy, 2002; Shimizu, 

2003). In sea bass (Dicentrarchus labrax), sex determination is temperature- 

dependent (Pavlidis et ai, 2000b). 

STRESS - In fish, the numerous stimuli stressors include sudden or 

extreme changes in the physical environment (temperature, turbidity, salinity), 

animal interactions (predation, parasites, intensive competition for space, food, or 

sexual partners), and human interference, including aquaculture practices 

(netting, handling, transport, and crowding) and water pollution (low water pH, 

heavy metais, and organic chemicals). The primary response to stressors is the 

massive release of catecholamines (CAs) that have a disturbing effect on the 

hydromineral balance. The rise in circulating cortisol follows more slowly and 

more sustained, compensating the hydromineral disturbance during stress (see 

Wendelaar - Bonga, 1997 for review). 

Confinement stress in addition to cause a rise in cortisol leveis also 

causes increased PRL in Nile tilapia (Oreochromis niloticus). Removal of stress 
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leads to a reduction in both cortisol and PRL (Auperin et a/., 1997). In contrast, 

experiments of chronic confinement in the rainbow trout (Oncorhynchus mykiss), 

suggest a PRL-inhibiting role on cortisol (Pottinger et ai, 1992), and in vitro 

experiments with Mozambique tilapia (Oreochromis mossambicus) demonstrate 

that cortisol inhibits PRL release (Grau e Helms, 1990; Wigham, 1992 for review; 

Borski et a/., 2001, 2002;). It is possible that PRL in some teleostean species is 

implicated in the compensation of hydromineral disturbance during stress. 

1.7 Patterns of pítuítary PRL release 

Most animal have a circadian or/and annual clock that are usually related 

to the cyclic physiological processes present during the lifetime. It is clearly 

advantageous for a species to develop a rhythm synchronized with the biological 

cycle and in this way be able to anticipate the most favorable times for a certain 

event to occur. This anticipation can be achieved either by making the control 

responsive to an externai factor or to an intrinsic rhythm which can be 

synchronized with the circadian/annual cycle by some environmental trigger. The 

most likely environmental trigger is day length, but temperature and other 

stimulus could be used (Sage and de Vlaming, 1975). 

Prolactin (PRL) can elicit a variety of physiological responses in different 

groups of animais. Annual clocks of PRL synthesis and release are synchronized 

with the seasons and the responses are very often a result of changes in some 

environmental stimulus. In teleost fish, a correlation exists between annual 

environmental factors and the regulation of PRL cells. In freshwater stickleback 
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(Gasterosteus aculeatus), PRL cells form and release more secretory granules 

during spring (Benjamin, 1974). Moreover, PRL content of the pituitary and the 

functional state of PRL cells anticipate the annual migration of this species (Sage 

and de Vlaming, 1975). Differential expression of PRL mRNA is observed in the 

pituitary of carp (Cyprínus carpio) acclimatized to summer and to winter 

(Figueroa et a/., 1994), with temperature and photoperiod being the major factors 

controlling the circannual pattern of PRL transcription (Figueroa et a/., 1997). 

Circadian clocks regulate the physiological processes that are 

synchronized with the environmental day/night cycle. In humans, PRL leveis 

increase during the late hours of sleep, and pulses of secretion are 

supehmposed on basal secretion (Benker et a/., 1990). In several teleost fishes, 

the pituitary content and plasma PRL concentrations vary significantly with the 

time of the day (Leatherland and Mckeown, 1973; Leatherland et al., 1974, de 

Vlaming ef a/.,1975; Batten and Ball, 1976; Mckeown and Peter,1976). 

1.8 Blological actions of PRL 

PRL is a versatile hormone and multiple actions, ranging from mammary 

development and lactation in mammals to antimetamorphic effects in 

amphibians, have been described (Flirano et al., 1987; Bres and Nicoll, 1993). 

The principal action of PRL is the maintenance of hydromineral balance in 

euryhaline teleosts in fresh water (Loretz and Bern, 1982; Hirano et al., 1987). 

The function of PRL in marine teleosts is less certain and it is iikely that PRL has 

other biological actions including a role in reproduction. 
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REPRODUCTION - In mammals, PRL is best known for the multiple 

effects it exerts on the mammary gland. However, it also exerts effects on other 

targets important to reproduction. In some mammals, particularly rodents, PRL is 

also important for the maintenance and secretory activity of the corpus luteum. It 

also affects other actions related to reproduction such as mating and maternal 

behaviours (see Freeman et ai, 2000 for review). 

In the sea bream, PRLR transcripts are detected in spermiating gonads 

(Santos et a/., 2001), and the levei of sbPRLR mRNA increases significantly after 

E2 treatment of adults, although PRL expression is reduced with the same 

treatment (Cavaco et a/., 2003). In sea bream juveniles the opposite effects are 

observed, suggesting that the stage of maturity influences the action of PRL on 

both testis and ovary via its receptor (Cavaco et a/., 2003). Relatively few reports 

about the effect of PRL on fish reproduction exist. In Mozambique tilapia 

(Oreochromis mossambicus), PRL stimulates testosterone production in 

testicular tissue of courting males (Rubin and Specker, 1992), in vitellogenic 

oocytes of guppies {Poecilia reticulata) PRL stimulates E2 synthesis in vitro (Tan 

et ai, 1988), and suppresses progesterone and E2 in the follicular cells of 

rainbow trout {Oncorhynchus mykiss) ovaries cultured in vitro (Galas and Epler, 

2002). In some teleosts, PRL influences parental behaviour (Slijkhuis et ai, 

1984; de Ruiter et ai, 1986; Tacon et ai, 2000). 

OSMOREGULATION - Fish interact with their environment and extract or 

excrete water and/or salts to maintain the ionic strength of internai fluids within 
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narrow limits. Stenohaline species, both freshwater and seawater, are unable to 

regulate their plasma ionic composition when challenged with changing 

environmental salinity, a process that consequently results in high mortality. In 

turn, euryhaline species are able to adjust their ionic and endocrine systems to 

cope with new environments. The maintenance within a narrow limit of circulating 

water and salts is under ionic and endocrine control. Endocrine factors of 

pituitary origin such as PRL, are believed to pley k^y roles in the ultimate 

adaptation of fish to their environment. In general, PRL has been suggested to 

play an important role in FW osmoregulation by promoting the conservation of 

ions (primarily Na+ and Cl") and decreasing water uptake (reviewed by Manzon 

2002). Na+/K+ ATPase is the main Na+ excreting mechanism in seawater- 

adapted teleosts, that controls not only Na+ concentration in the plasma, but also 

Cl" (Marshall 2002 for extensive review and references). In addition, other factors 

like cortisol, which stimulates hypotolerance in Salmonids (McCormick, 2001), 

atrial natriuretic peptide (Takei and Hirose 2002) or the renin-angiotensin system 

with importance in control of volume and water handling (Olson, 1992, Fuentes 

and Eddy 1997), play important roles in the osmoregulatory process in fish. 

The sea bream is a marine teleost capable of some adaptation to 

reduction in environmental salinity which causes moderate to severe 

haemodilution and activation of PRL cells (Mancera et a/., 1993a, 2002). 
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OTHER ACTIONS - A large number of the reported effects of PRL are 

associated with growth and development, endocrinology and metabolism, and 

Immunoregulation and protection. 

Growth and development 

A large number of the reported effects of PRL are associated with growth 

and development. Many of these are seen in lower vertebrates, but more recent 

data confirm that cellular proliferation is also one of the important functions of 

PRL in mammals (Bole-Feysot et a/., 1998 for review). 

The somatotropic and developmental actions of PRL have also been 

examined in fish. In tilapia {Oreochromis mossambicus), the somatotropic 

activities ascribed to PRL result from the binding of heterologous PRL to GH 

receptors (Shepherd et a/., 1997). In the Japanese flounder (Paralichthys 

olivaceus), PRL antagonized the stimulatory effect of T3 on the resorption of the 

dorsal fin rays of prometamorphic larvae in vitro (De Jesus et a/., 1994). 

Endocrinology and metabolism 

PRL has been reported to affect carbohydrate metabolism in several 

vertebrate classes and has marked effects on lipid metabolism in birds (Bole- 

Feysot et a/., 1998 for review). 

In fish, PRL is also involved in the mobilization of energy substrates 

(Leung et al., 1991; Sheridan, 1986; Weber and Grau, 1999). In Mozambique 

tilapia {Oreochromis mossambicus), seawater transfer of food-deprived animais 
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results in a significant increase in plasma concentrations of glucose, total free 

amino acids, and in hepatic pyruvate kinase and lactate dehydrogenase activities 

(Vijayan et a/., 1996). 

Immunoregulation and protection 

In mammals, PRL plays a significant role in regulation of the humoral and 

cellular immune response. PRL stimulates mitogenesis in both normal T 

lymphocytes and the Nb2 lymphoma cell line. PRLRs are immunocytochemically 

detected on human peripheral lymphocytes, and their mRNA expression is 

regulated by PRL. In the thymus, spleen, lymph nodes, and bone marrow of both 

rats and mice mRNA encoding the short and long PRLRs isoforms is present 

(Freeman et ai, 2000). PRL is involved, directly or indirectly, in the development 

and maturation of immune cells in the thymus and peripheral lymphoid organs, 

the migration of immature lymphocytes to the periphery, and in selected T- and 

B-dependent cellular immune responses (Bole-Feysot et ai, 1998). 

The immune response in fish is composed of both inherited and acquired 

components. For example, the mucus layer on the skin of fish acts as a physical 

and chemical barrier to pathogens. Immune response is adquired at a very early 

age in fish, and the time at antibody production is related to the temperature. In 

some teleosts, PRL stimulate macrophages in vitro and in vivo (Narnaware et ai, 

1998; Sakai et ai, 1996), and increases blood lymphocyte counts of sea bream 

(Narnaware et ai, 1998). 
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1.9 Objectives of project 

The aim of the project was to provide information to further investigate the 

different roles of PRL in sea bream physiology and development. To achieve this 

aim the following objectives were defined; 

1) To isolate and characterize different PRL isoforms released into the 

médium of cultured pituitaries. 

2) To study the influence of estradiol-17^, galanin, and vaso-intestinal 

peptide on in vitro PRL secretion. 

3) To study the influence of photoperiod, temperature, and water salinity 

changes on in vitro PRL secretion. 

4) To describe the annual and circadian variation of PRL cells activity. 
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CHAPTER 2: General Materials and Methods 

This chapter contains the general materiais and methods utilized to 

generate the results presented in chapters 3, 4, 5, 6, and 7. The methods used to 

culture the sea bream pituitaries, to separate proteins using SDS-PAGE and 

isoelectric focusing, to quantify protein bands by optical densitometry, to detect 

proteins by immunoblotting, and to estimate protein molecular weight and 

isoelectric point are described in the present chapter. Additional materiais and 

methods, specific to particular chapters are detailed in the relevant chapter. 

2.1 Incubation of pituitary glands 

Sea bream were anaesthetised using MS-222 (1:10000; Sigma, Madrid), 

sacrificed by decapitation and pituitaries collected into freshly prepared cold 

Kreb's Ringer bicarbonate (KRB) with sodium concentrations of 110mM or 

170mM having osmotic pressure of about 230mOsm/kg (hyposmotic médium) or 

320mOsm/kg (isosmotic médium), respectively. Pituitary glands were transferred 

individually into the wells of a sterile disposable 96 well plate (Gostar, USA) 

containing 25pl of culture medium/well. The culture médium consisted of KRB 

gassed with 95% 02/5% C02, with the pH adjusted to 7.8 and supplemented with 

10 pl/ml of vitamins (MEM 100x Vitamins, Sigma, Madrid), 20 pl/ml essential 

amino acids (MEM 50x, Sigma, Madrid), 10 pl/ml non essential amino acids 

(MEM 100x, Sigma, Madrid), 10 pl/ml antibiotic (penicillin 10,000 lU/ml; 

streptomycin 10,000 UG/ml, GIBCO, Scotland) and 20 pl/ml L-glutamine (200 

mM, Sigma, Madrid). Pituitary glands were incubated for 18hr at 210C in an 
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atmosphere containing 95% 02/5% CO2. After culture pituitary glands and culture 

médium were stored at -70oC or -20oC until analysis. An incubation time of 18-hr 

was chosen on the basis of optimisation studies carried out with sea bream 

pituitary glands and analysis ofthe literature (Wigham, 1992). 

2.2 Electrophoretic separation of PRL 

2.2.1 SDS-PAGE 

Pituitary homogenates were obtained from cultured pituitaries extracted in 

Tris-HCI 0.5mM pH8.6, centrifuged at 10000 rpm for 5 min at 40C, and the 

supernatant removed for analysis. For each pituitary gland, culture médium 

(10pl) and pituitary homogenates (10pl) were mixed with an equal volume of 

sample buffer (6% w/v SDS, 6% v/v 2-mercaptoethanol, 40% w/v sucrose, 0.02% 

bromophenol blue in 0.125M Tris-HCI, pH 6.8), boiled for 5 min, centrifuged (30 

sec, 12,000rpm) and run on SDS-PAGE (12.5%) gels using a discontinuous 

system (Laemmli, 1970). The composition of the separating and stacking gels 

used are included in Table 2.1. Molecular weight markers (low range, Bio-Rad, 

Portugal) were run on ali the gels. 

Table 2.1 -Composition ofthe separating and stacking gels (SDS-PAGE) 

Material Separating gel Stacking gel 

Acrylamide/Bis (40%)* 5.625 ml 0.68 ml 
Deionized water 7.735 ml 3.82 ml 
0.5 M Tris HCl pH 6.8 - 1.45 ml 
1.5 M Tris HCl pH 8.6 4.46 ml - 

10% SDS 180 /xl 60 Ml 
10% ammonium persulfate 70 /xl 20 Ml 
TEMED 10 Ml 15 Ml 
* Acr/bis 29:1; 3.3% C (Bio-Rad; Portugal) 
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2.2.2 Staíning procedures for SDS-PAGE gels 

Coomassie blue staining 

Gels were lightly stained with Coomassie blue (0.025% w/v in 45% v/v 

methanol, 45% v/v distilled water and 10% v/v acetic acid) and then destained (in 

an aqueous solution of 7.5% v/v acetic acid and 5% v/v methanol) before 

analysis. 

Silver staining 

The procedure used for silver staining is described in Johnstone and 

Thorpe, 1987. Gels were rinsed in an aqueous solution of 50% v/v methanol 

during 1hour and soakied in this solution overnight. Gels were soaked during 15 

minutes in freshly prepared staining solution (0.8g silver nitrate dissolved in 4ml 

deionized water and gradually added to 100ml of an aqueous solution of 1.4% 

v/v 14.SM ammonium hydroxide and 0.076% w/v NaOH). Gels were rinsed in 

deionized water for 3x10 minutes and protein bands visualized soaking the gel in 

a freshly prepared aqueous solution of 0.005% citric acid w/v and 0.05% 

formaldehyde (38%). The development of color was stopped by rinsing the gels 

with tap water. Gels were stored until ready to dry in an aqueous solution of 5% 

v/v acetic acid and 45% v/v methanol away from light. 

2.2.3 Isoelectric focusing 

Culture médium (10pl) and pituitary homogenates (lOpI) were separated 

by gel isoelectric focusing, carried out on thin-layer precast polyacrylamide gels, 
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pH 5.5-8.5 or pH 3-10 (Amersham Pharmacia Biotech) using the LKB 2117 

Multiphor II (LKB Produkter AB, Sweden). The procedure for isoelectric focusing 

was as described in the LKB 2117 Multiphor II Electrophoresis System User 

Manual (LKB Produkter AB, Sweden). The temperature of the cooling plate was 

maintained at 10oC by circulating water from a MultiTemp II refrigerated cooling 

bath (LKB Produkter AB, Sweden). Gels were pre-run for 30 minutes at a 

constant current of 50 mA as the voltage increased to 500 V. Samples and a pl 

marker (10 jil) were applied using applicator strips and the voltage increased to 

1500V or to 1600V, depending on the pH range of the gel. The isoelectric 

focusing was allowed to proceed for a further 1 1/2 hours or to 2 Vi hours, 

depending on the pH range of the gel. The gel was then removed from the 

apparatus and immersed in a fixing solution for 30 minutes, washed in destaining 

solution, stained in a solution containing Coomassie Blue R 250 and destained 

until the background was clear. The gel was soaked in preserving solution, 

covered with a cellophane preserving sheet, and dried at room temperature. 

2.3 Quantification of PRL 

PRL bands visible in SDS-PAGE gels were quantified by densitometry 

(Image Master VDS system - Amersham Pharmacia Biotech, Portugal). The 

optical density units were transformed to micrograms/ml using calibration curves 

of BSA (40pg/ml, fraction V, Merck, Germany) prepared by dilution in water to the 

following concentrations: 0.4, 0.6, 1, 2, 4 and 8pg/ml. 
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2.4 Western blotting 

Electrophoretic transference 

Culture médium and pituitaries homogenates separated by SDS-page 

(section 2.2.1) were electrophoretically transferred from a gel to a nitrocellulose 

membrane (Hybond™ - C, Amersham Pharmacia Biotech) in a semi-dry system 

during 1 hour at 1 .SmA/cm2 of membrane. 

Diffusion transference 

Culture médium and pituitaries homogenates separated by isoelectnc 

focusing gels (section 2.2.3) were transferred to a nitrocellulose membrane 

(Hybond™ - C, Amersham Pharmacia Biotech) by capillary blotting using 

phosphate buffered saline (PBS) during 24 hours. 

Protein identification 

The membrane was agitated in blocking solution (Tris-HCI, 0.1M, pH 7.6, 

2% milk powder and 0.05% Tween 20) for 3 hours at 22°C, rinsed in Tris-HCI 

(0.1 M, pH 7,6) and incubated overnight at 40C with anti-chum salmon PRL 

serum (1:100) or anti-sea bream GH serum (1/400). The specificity of this 

antisera has been previously charactensed (Power and Canano, 1992). 

Membranes were washed with Tris-HCI (3x10 minutes) and then incubated with 

anti-rabbit IgG complexed with peroxidase (IgG-PAP, 1/1000; Sigma, Madrid) for 

1h at room temperature. After rinsing in Tris-HCI, membranes were developed 

using 4-chloro-1-napthol (0.75 mg/ml) as the chromagen. 
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2.5 Estimation of PRLmolecular weight and isoelectric point 

Molecular weight estimation 

The molecular weight (MW) determination was made using SDS-PAGE 

(section 2.2.1) with both molecular weight standards (low range, Bio-Rad, 

Portugal) and unknowns running in a single gel system. After staining, the Rf 

values of the molecular weight standards are plotted on the x-axis and the 

corresponding log(MV\/) on the y-axis. The calibration curve can then be drawn. 

By calculating the Rf of the unknown protein, it is possible to estimate the 

molecular weight of the protein from the curve. Rf was calculated by the following 

formula (See et a/., 1990): 

or _ distance of protein miqration x lenqth before de-staininq 
length after de-staining distance of dye migration 

Isoelectric point estimation 

The isoelectric point was estimated with the help of marker proteins 

(Amersham Pharmacia Biotech). The markers are run in parallel with the 

unknown sample on the isoelectric focusing gel (section 2.2.3). After focusing 

and staining, the migration distances from the cathode edge of the gel to the 

different marker protein bands are plotted on y-axis and the corresponding pis of 

the marker proteins plotted on the x-axis. The calibration curve can then be 

drawn. By measuring the migration distance of the unknown protein, it is possible 

to interpolate the isoelectric point of the protein from the curve. 
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CHAPTER 3: Isoiation and characterization of PRL and GH 

3.1 introduction 

PRL belongs to a family of polypeptide hormones, which includes growth 

hormone (GH), placental lactogen (PL), and somatolactin (SL). Analysis of their 

amino acid sequence demonstrates that these hormones are highly conserved, 

and it has been proposed that they evolved from a common ancestral gene by 

duplication and subsequent divergence about 4x108 years ago (Miller and 

Eberhardt, 1983; Nicoll et ai, 1986). PRL is a versatile hormone and multiple 

actions, ranging from mammary development and lactation in mammals to 

antimetamorphic effects in amphibians, have been described in higher 

vertebrates (Hirano et ai, 1987; Bres and Nicoll, 1993). The principal action of 

PRL in teleost fish is the maintenance of hydromineral balance in euryhaline 

teleosts in fresh water (Loretz and Bem, 1982; Hirano et ai, 1987). The function 

of PRL in marine teleosts is less certain and it is likely that PRL has other 

biological actions including a role in reproduction. 

The functional polymorphism of PRL is probably related to the structural 

variability of this hormone. The existence of both size and charge variants of PRL 

has been shown in mammals, reptiles, amphibians and birds (Bollengier et ai, 

1988; Briski et ai, 1996; Corcoran and Proudman, 1991; Lewis et ai, 1989; 

Martinat et ai, 1990; Noso et ai, 1992; Nyberg et al., 1982; Sinha et ai, 1991; 

Waliis et ai, 1980; Yamashita et ai, 1993). In some teleosts, chum salmon 

(Oncorfiynchus /ceia), common carp (Cyphnus carpio), Japanese eel (Anguilla 
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japonica), Mozambique tilapia (Oreochromis mossambicus) and Nile tilapia 

{Oreochromis niloticus) (Manzon, 2002 for review), two different forms of PRL 

have been identified. The two forms of PRL identified in salmon, carp, and eel 

are highly homologous (Manzon, 2002 for review), whereas the two forms of PRL 

secreted by tilapia pituitary share only 69% sequence identity and are designated 

tPRL177 and tPRL188 to indicate the number of amino acid residues in each 

isoform (Specker et al., 1993). 

The amino acid sequence of PRL has been characterised in a variety of 

teleostean and nonteleostean fish (reviewed by Manzon, 2002). Piscine PRLs 

are synthesized as prohormones with a signal peptide of 23-24 aa. Ali teleostean 

PRLs lack the N-terminal disulfide bond due to the absence of 12-14 aa at the N- 

terminus (see Manzon, 2002 for review). PRL from sea bream is a protein of 212 

amino acids with a putative signal peptide of 24 residues and a mature protein of 

188 amino acids (Santos et al., 1999). However, while cDNA sequences reveal 

the potential secretory product arising from the precursor, it does not provide 

information on the actual cleavage and prosthetic modifications that can occur. 

Predictions of protein modifications can be made from the occurrence of 

consensus sequences, but confirmation is possible only by isolation and 

characterízation of the products of post-translational processing. Analysis of the 

putative amino acid sequence of sea bream PRL revealed the existence of a 

consensus sequence for N-linked glycosylation at Asn 148 and for 

phosphorylation at Ser 166 (Santos et al., 1999). Posttranslational modifications 

(chapter 1, section 1.2) of native sea bream PRL can influence the apparent 
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molecular weight because they can reduce protein mobility on SDS-PAGE, or 

may have a significant impact upon net molecular charge with minimal effects on 

size. 

The present chapter characterizes the principie forms of PRL liberated 

from the sea bream pituitary gland cultured in vitro. The principie approaches 

utilized for identification and characterization of this hormone are described. 

Moreover, different isoforms of secreted PRL are purified on a Mini Prep Celi 

(Bio-Rad, Portugal), and partial amino acid sequence obtained by fingerprinting 

and MS/MS ions search. 

3.2 Addítional methods 

The methodology utilized for the pituitary culture, "western blotting", and 

protein separation by SDS-PAGE and isoelectric focusing is described in chapter 

2. The methods reported in this chapter are specific to the protein isolation by 

continuous elution electrophoresis, and N-terminal amino acid sequencing by 

fingerprinting and MS/MS ions search. 

3.2.1 Identification and characterization of PRL and GH 

3.2.1.1 Identification of denatured PRL and GH 

Sea bream pituitaries were collected into freshly prepared culture médium 

and incubated for 18hrs at 210C in an atmosphere containing 95% 02/5% CO2 

(chapter 2, section 2.1). After culture, pituitary glands and culture médium were 

stored at -20oC until analysis (usually a week later). Denatured PRL and GH in 
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the culture médium and in the pituitary homogenates were separated on an SDS- 

PAGE system (chapter 2, section 2.2), and identity confirmed by Western 

blotting, using an antiserum against chum salmon PRL and an antiserum against 

sea bream GH (chapter 2, section 2.4). Gels not transferred to nitrocellulose 

membranes were stained with Coomassie blue and PRL and GH quantified by 

optical densitometry (chapter 2, section 2.3). Estimation of molecular weight was 

carried out by separation on the same gel of both molecular weight standards 

(low range, Bio-Rad, Portugal) and unknown samples (chapter 2, section 2.5). 

3.2.1.2 Identification of native PRL and GH 

Throughout one full calendar year and every two months (from September 

to August) at the same time in the morning (± 9hrs), sea bream samples were 

collected. Pituitaries were collected and incubated as described previously 

(chapter 2, section 2.1). After culture, pituitary glands and culture médium were 

stored at -20oC until analysis (usually a week later). Native PRL and GH in the 

culture médium and in the pituitary homogenates were separated by isoelectric 

focusing (chapter 2, section 2.2) for estimation of isoelectric point (chapter 2, 

section 2.5). Proteins were transferred by diffusion to nitrocellulose membranes 

and identity confirmed by Western blotting using an antiserum against chum 

salmon PRL and an antiserum against sea bream GH (chapter 2, section 2.4). 

This revealed several isoforms of PRL produced during the annual cycle and the 

principie forms were isolated by continuous elution electrophoresis. 
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3.2.2 PRL isolation 

PRL was isolated from the médium where pituitaries were cultured by 

continuous elution electrophoresis, on a Mini Prep Celi (Fig.3.1; Bio-Rad, 

Portugal). During a run, the protein mixtures are electrophoresed through a 

cylindrical gel. As molecules migrate through the gel matrix, they separate into 

ring-shaped bands. Individual bands migrate off the bottom of the gel, where they 

pass directly into the elution chamber. The elution chamber consists of a thin 

polyethylene frit; a dialysis membrane, directly underneath the elution frit, traps 

When elution buffer enters the chamber, 

the proteins and the elution buffer are 

drawn radially inward to an elution tube by 

a peristaltic pump and then driven to a 

fraction collector. As molecules are puhfied, 

they are collected in discrete liquid 

fractions. The composition of the separating 

and stacking gels used are included in 

Table 3.1 

A sample from each fraction 

collected was run in a discontinuous SDS- 

PAGE system. Molecular weight markers 

(low range, Sigma, Madrid) were run on ali 
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Figure 3.1- The Model 491 Prep Celi 
(1) cooling buffer outlet (2) elution 
buffer outlet (3) elution buffer feedline 
(4) gel assembly tube (5) cooling 
core (6) elution chamber. 
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to assist Identification of PRL and GH Th. ptotein bands w.re 

visualized using silver staining (chapter 2, section 2.2). 

Table 3.1 - Composition of the separating and stacking gels 

Matêriil- r  Separatingjel 
Acrylamide/Bis (40%)^_ 
Deionized water 
"Õ^TfríslHCl pH 6.8 

1 Fi M Tris HCI pH 8.6 
10% ammonium persulfate 
TEMED 

8.475 ml 
11.565mí 

Stacking gel 

6.69 ml 
105/4 
15 //I 

0.68 ml 
3.82 ml 
1.45 ml 

50 //l 
10 //I 

Ací7bís^9:1; 3.3% C (Bio-Rad; Portugal) 

The fractions containing pure PRL were pooled (total volumes 20ml) in 

dialysis sacks that retained proteins of MW>12kDa (Sigma, Portugal), and 

dialyzed during 24 hours at 4"C and against a volume of 2000ml of dialysis 

buffer. Tris 20mM, pH 8. The buffer was replaced 3-4 times during the time 

interval. The dialyzed sample was lyophilized during approximately 72 hours at - 

50C using a Serail RP2V (LabNorma, Portugal). Samples were kept at 4 C for 

future utilization. 

3.2.3 Identification of PRL and GH by amino acid sequencing 

PRL and GH N-terminal amino acid sequences were determined by 

searching sequence databases using peptide molecular weights from the 

digestion of PRL molecule by trypsin (Peptide Mass Fingerprint) and mass 

spectrometry (MS) data from one or more peptide. The computer program 

Mascot (Perkins et a/., 1999) integrated the two types of search (Centro de 

Genómica y Proteómica. Facultad de Farmacia, Universidad Complutense de 

Madrid). 
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Peptide Mass Fingerprint 

A mass spectrum of the peptide mixture resulting from the digestion of a 

protein by an enzyme provides a fingerprint of great specificity. Excised gel 

pieces containing the protein separated by SDS-PAGE, were washed in different 

solutions, dried and trypsin added to the dry gel pieces. The PRL mass spectrum 

was obtained by MALDI-TOF (matrix-assisted laser desorption/ionisation-time). 

MS/MS ions search 

Matrix-assisted laser desorption/ionisation-time of flight mass 

spectrometry (MALDI-TOF MS) is a relatively novel technique in which a co- 

precipitate of an UV-light absorbing matrix and a biomolecule is irradiated by a 

nanosecond laser pulse. Most of the laser energy is absorbed by the matrix, 

which prevents unwanted fragmentation of the biomolecule. The ionized 

biomolecules are accelerated in an electric field and enter the flight tube. During 

the flight in this tube, different molecules are separated according to their mass 

to charge ratio and reach the detector at different times. In this way each 

molecule yields a distinct signal. Fragments will only be detected if they carry at 

least one charge. 

PRL identification from primar/ sequence databases 

Database searching was performed using the program Mascot (Perkins et 

ai, 1999), which identifies the protein by searching a sequence database using 
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experimental data from peptide mass fingerprint integrated with tandem mass 

spectrometry (MS/MS) data from one or more peptides. In Mascot, the protein 

molecular weight is applied as a sliding window. That is, for each database entry, 

Mascot looks for the highest scoring set of peptide matches which are within a 

contiguous stretch of sequence less than or equal to the specific protein 

molecular weight. Mascot also takes into account any possible occurrence of 

mis-cleavages and common modifications of peptide such as oxidized 

methionine residues. 

3.2.4 Molecular weight estímation of purified PRL and GH 

Samples of isolated PRL and GH were dissolved in Tris-HCI (10mM pH8) 

and run on a SDS-PAGE system (chapter 2, section 2.2). Proteins were 

transferred by diffusion to nitrocellulose membranes and identity confirmed by 

Western blotting using an antiserum against chum salmon PRL and an antiserum 

against sea bream GH (chapter 2, section 2.4). Apparent molecular weights were 

estimated running both molecular weight standards (low range, Bio-Rad, 

Portugal) and unknowns in a single gel (chapter 2, section 2.5). 

3.3 Results 

Identification of denatured PRL and GH 

SDS-PAGE of culture médium followed by Coomassie blue staining 

permitted the visualization of two predominant protein bands and their 

quantification by optical densitometry (Fig. 3.2). Western blotting of culture 
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médium and pituitary homogenates using anti-chum salmon PRL serum revealed 

a single immunoreactive band corresponding to a protein with an estimated 

molecular weight mean value of 25 kDa (Fig.3.2). Identity of GH which migrates 

close to PRL was also confirmed by western blotting using an antiserum against 

sea bream GH. A single immunoreactive band was revealed corresponding to a 

protein with an estimated molecular weight mean value of 22 kDa (Fig.3.2). 
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Figure 3.2 - The left hand panei shows the typical gels obtained after separation of (a) 
right hand lane, the culture médium and (b) the pituitary homogenate by SDS-PAGE. 
Molecular weight markers are indicated on the left hand side of the gel. Western blot (c) 
using antisera against chum salmon PRL and antisera against sea bream GH. The right 
hand panei is a lane profile obtained by optical densitometry after separation of the 
culture médium by SDS-PAGE. PRL and GH peaks are indicated by arrows. 

The results confirm that the approach selected is adequate for separation 

of GH and PRL and substantiates the use of this method for subsequent studies 

in this thesis. 
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Identification of native PRL and GH 

Native PRL and GH present in the culture médium and pituitary 

homogenates were separated by isoelectric focusing followed by Coomassie 

blue staining. Isoelectric focusing exhibited multiple intensely stained bands (Fig. 

3.3). The identity of the bands was confirmed by Western blotting using an 

antisera against chum salmon PRL and sea bream GH. The isoelectric bands of 

the sea bream PRL were estimated to be between 6.1 and 6.7 (Fig. 3.3). GH 

bands had isoelectric points between 6.3 and 7.2 (data not shown). 

Figure 3.3 - The left panei (a) shows culture médium separated by isoelectric focusing 
and stained with Coomassie blue. Marker proteins are indicated on the left hand side of 
the gel. The right hand panei shows several charge variants of native PRL present in 
the culture médium in summer (b) and winter (c), separated by isoelectric focusing and 
identified by Western blotting using antiserum against chum salmon PRL. 
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Isolation of the sea bream PRL and GH 

Pituitaries were collected in winter and summer and incubated in culture 

médium for 48hrs at 210C. After 24hrs the médium was collected, stored at - 

20oC, and replaced by freshly prepared médium. The general procedure is 

described in chapter 2, section 2.1. For each season, a sample of 1.5 ml of 

culture médium was mixed with an equal volume of sample buffer and boiled for 

5 min (chapter 2, section 2.2). Denatured sea bream PRL and GH present in the 

médium of in vitro cultured pituitaries were purified on a Mini Prep Celi by 

continuous elution electrophoresis. The discrete fractions collected were run on a 

SDS-PAGE system and visualized by silver staining (Fig. 3.4). The use of the 

médium from 70 cultured pituitaries yielded 0.2mg of purified PRL and 0.2mg of 

purified GH. A yield of approximately 3mg/g wet weight of pituitary was obtained 

for each hormone. 

60 61 62 63 64 65 66 67 68 69 

31.0 

21.5 

14.4 

Figure 3.4 - Aliquots from the Model 491 Prep Celi fractions containing 
separated GH (fractions 60-63) and PRL (fractions 67-69) analyzed by SDS- 
PAGE and visualized by silver staining. Molecular weight size markers are 
indicated on the left handed side of the image. 
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Molecular weight estimation of purified PRL and GH 

Lyophilized PRL and GH were dissolved in Tris (lOnM, pH8) and 

separated by SDS-PAGE. The gels were stained with Coomassie blue (chapter2) 

section 2.2), and molecular weights of PRL and GH estimated as 25 and 22 kDa, 

respectively (Fig. 3.5). Isolated PRL and GH were identified by Western blotting, 

using anti-chum salmon PRL and anti-sea bream GH (Fig. 3.6). 

(a) (b) (c) 

(a) (b) 

■PRL 
-GH 

Figure 3.5 - SDS-PAGE gel stained 
with Coomassie, showing the 
electrophoretic pattern of the (a) 
purified sea bream PRL, (b) purified 
sea bream GH. Starting material is 
shown in lane (c). 

Figure 3.6 - Western blots 
showing (a) purified sea bream 
PRL detected using antisera 
against chum salmon PRL and (b) 
purified sea bream GH detected 
using antisera against sea bream 
GH. 

Identification of PRL and GH by amino acid sequencing 

SDS-PAGE selected bands of purified PRL and GH, obtained from 

pituitary cultures prepared in winter and summer, were subject to in-gel tryptic 

digestion. Peptides were also obtained by collision-induced fragmentation 
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(MS/MS ions search). The masses and charges of several peptides isolated by 

both methods were estimated by MALDI-TOF/TOF mass spectrometry, and 

amino acid sequences obtained by database searching performed using the 

program Mascot (Perkins et a/., 1999). Table 3.2 shows the amino acid sequence 

of peptides obtained from PRL molecules purified in winter and summer. 

Table 3.2 - Comparison between peptide amino acid sequence obtained by enzymatic 
cleavage (fingerprint) and by MS/MS ion search of purified PRL molecule. Potential 
phosphorylation sites are marked in bold. One potential glycosylation site at N172 is 
marked in italic. 

Observed mass Peptide sequence 
Start - End* fingerprint ions search 

"winter" PRL 25-33 1054.58 1054.51 VPINDLIDR 
150-163 1477.71 1477.70 MGPAAQAISSLPYR 
189-198 1189.60 1189.63 DSHKIDSFLK 

"summer" PRL 82-97 1790.89 1806.88 EQALQLSESDLMSLAR 
129-137 1139.62 IRELQEHSK 
131 - 137 870.44 ELQEHSK 
131 - 149 2026.03 ELQEHSKSLGDGLDILSGK 
138-149 1174.63 SLG DGLDILSGK 
150 - 163 1461.75 1477.74 MGPAAQAISSLPYR 
150-178 2707.32 MGPAAQAISSLPYRGSNDIG 

EDNISK 
164-175 1248.58 GSNDIGEDWSK 
176-187 1554.80 LTNFHFLLSCFR 
189-198 1189.62 DSHKIDSFLK 

* Note: the amino acids are numbered including the signal peptide of 24 amino acids 

Comparison of PRL molecule N-terminal sequence of peptide 150-163 

obtained by fingerprinting in winter and summer, which contains a potential 

phosphorylation site at serine 158 (basic-basic-X-STT, Dimaline, 1988), show 

different mass values (1477.71 and 1461.75 in winter and summer, respectively). 

As the amino acid sequence is similar, the increase of mass during winter may 
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be an indication that some transformation occurred at site Si58- As a 

consequence of the limited sequence data obtained for PRL isolated from winter 

pituitaries other possible post-translational modification sites can not be 

comparable between the proteins isolated from winter and summer cultures. 

The same analysis was made for GH molecules purified in winter and 

summer and results included in Table 3.3. 

Table 3.3 - Comparison between peptide amino acid sequence obtained by enzymatic 
cleavage (fingerprint) and by MS/MS ions search of purified GH molecule. Potential 
phosphorylation sites are marked in bold. 

Observed mass Peptide sequence 
Start - End* fingerprint ions search 

"winter" GH 26-33 892.54 LFSIAVSR 
34-43 1214.72 VQHLHLLAQR 
44-58 1815.83 1815.82 LFSDFESSLQTEEQR 
44-62 2299.11 LFSDFESSLQTEEQR QLNK 
63-80 2188.06 IFLQ DFCNS DYIISPIDK 
63-85 2839.34 2839.36 IFLQDFCNSDYMSPIDKHETQR 
91 -97 851.52 LLSISYR 
98-107 1249.63 1249.61 LVESWEFFPSR 
108-116 831.45 SLSGGSAPR 
123-135 1492.92 LSELKTGIHLLIR 
128-135 922.60 TGIHLLIR 
136-169 3691.66 ANEDGAEIFPDSSALQLAPYG 

NYYQS 
171 - 179 1144.58 TYELLACFK 
181 - 193 1534.80 DMHKVETYLTVAK 
181 - 193 1550.79 DM H KVET Y LTVAK 
185-193 1023.58 VETYLTVAK 

"summer" GH 34-43 1214.65 VQHLHLLAQR 
44-56 1814.80 LFSDFESSLQTEEQR 
44-62 2299.12 LFSDFESSLQTEEQRQLNK 
63-80 2188.06 IFLQDFCNSDYIISPIDK 
63-85 2839.40 2939.43 IF LQ DFCNSDYIISPIDKHETQI 
98-107 1249.57 LVES 
136-169 3691.78 ANEDGAEIFPDSSALQLAPYG 

NYYQS 
136-170 3847.95 ANEDGAEIFPDSSALQLAPYG 

NYYQS L 
181 - 193 1534.75 DMHKVETYLTVAK 
181 - 193 1550.74 DMHKVETYLTVAK 
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GH molecule purified in winter and summer shows multiple potential 

phosphorylation sites (basic-basic-X-S/T, Dimaline, 1988), but no consensus 

sequence for glycocylation sites (N-X-T/S, Dimaline, 1988). In winter and 

summer, two peptides 181-193 with different masses resulted from the 

fragmentation of GH molecule, which may be an indication that a pos- 

translational modification occurs at the Tis/ or Tigo- 

The peptide amino acid sequences were aligned with the deduced amino 

acid sequence from sea bream PRL cDNA (Santos et ai, 1999). Table 3.4 shows 

the amino acid sequence of peptides obtained by fingerprinting and MS/MS ions 

search of PRL purified from pituitary cultures prepared in winter and summer. 

In winter, 18% of the PRL molecule was sequenced, while 46% of the PRL 

isolated in summer was sequenced. Both amino acid sequences were 100% 

identical to the deduced amino acid sequence of sea bream cDNA (Santos et ai, 

1999). In winter, the N-terminal sequence of the first peptide started at V25, the 

first amino acid of the mature protein (Santos et ai, 1999). 

The peptide amino acid sequences were aligned with the deduced amino 

acid sequence from sea bream GH cDNA (Almuly et ai, 2000). Table 3.5 shows 

the amino acid sequence of peptides obtained by fingerprinting and MS/MS ions 

search of GH purified from pituitary cultures prepared in winter and summer. 
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Table 3.4 - Comparison between amino acid sequence deduced from sea bream PRL 
cDNA (Santos et a/., 1999) and "winter" and "summer" PRL peptides (marked in bold), 
obtained by MALDI-TOF/TOF mass spectrometry. Note that amino acids are numbered 
including the signal peptide of 24 amino acids, and that in the "winter" PRL the 7,h 

residue at the N-terminal of the first peptide sequenced (isoleucine) was different from 
the one deduced from PRL cDNA (leucine). 

"winter" PRL 

"summer" PRL 

M A H R E T N G S K L F 1 T V L 
17 C M V A A C S A V P 1 N D L 1 D 
33 R A S Q R S D M L H S L S T L 

i/ D L S N H V P P V G W T M M 
65 P R P P L C H T S S L Q T P N D 
81 K E Q A L Q L S E S D L M S L A 
97 R S L L Q A W Q D P L V D L S N 

113 S A N S L L H P S Q S S 1 S N K 
129 i R E L Q E H S K S L G D G L D 
145 I L S G K M G P A A Q A 1 S S L 
161 P Y R G S N D 1 G E D N 1 s K 
177 N F H F L L s C F R R D s H K 
193 I D S F L K V L R C R A A K V Q 
209 P E M C 

1 M A H R E T N G S K L F 1 T V L 
17 C M V A A C S A V P 1 N D 1 1 D 
33 R A S Q R S D M L H S L S T T L 
49 T K D L S N H V P P V G w T M M 
65 P R P P L C H "T S S L Q T P N D 
81 K E Q A L Q L S E s D L M S L A 
97 R S L L Q A W Q D p L V D L S N 

113 S A N S L L H P S Q S S 1 S N K 
129 I R E L Q E H S K S L G D G L D 
145 1 L S G K M G P A A Q A 1 S S L 
161 P Y R G S N D 1 G E D N 1 S K L 
177 T N F H F L L s C F R R D S H K 
193 1 D S F L K V L R C R A A K V Q 
209 P E M C 

In winter, 75% of the GH molecule was sequenced, while only 53% of the 

GH isolated in summer was sequenced. Both amino acid sequences were 100% 

idêntica! to the deduced amino acid sequence of sea bream cDNA (Almuly et a/., 

2000). 
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Table 3.5 - Comparison between amino acid sequence deduced from sea bream GH 
cDNA (Almuly et ai, 2000) and "winter" and "summer" GH peptides (marked in bold), 
obtained by MALDI-TOF/TOF mass spectrometry. 

"winter" GH 

'summer" GH 

1 M D R V V L M L s V M S L G V S 
Q P D Q R L F S 1 A V s 

33 R V Q H L H L L A Q R L F S D F 
E S S L Q T E E Q R Q L N K 1 F 

65 L Q D F C N S D Y 1 1 S P 1 D K 
81 H E T Q R S s V K L L S 1 S Y 
C~7 R L V E S w E F P S R S L S G G 

113 S A P R N Q | S P K L S E L K T 
129 G I H L L 1 R A N E D G A E 1 F 

I O P D S S A L Q L A P Y G N Y Y Q 
1Ô1 S L G T D E S L R R T Y E L L A 

C F K K D M H K V E T Y L T V A 
193 K C R L S P E A N C T L 

1 M D R V V L M L S V M s L 
17 G V S S Q P 1 T D G Q R 1 F s 
o o •JO A V S R V Q H L H L L A Q R L F 
49 S D F E S S L Q T E E Q R Q L N 
65 K I F L Q D F C N S D Y 1 1 S P 
81 I D K H E T Q R S s V L K L S 
97 I S Y R L V E S w E F P S R s L 

113 S G G S A P R N Q 1 S P K L s E 
129 L K T G 1 H L L 1 R A N E D G A 
145 E 1 F P D S S A L Q L A P Y G N 
161 Y Y Q S L G T D E S L R R Y E 
177 L |_ A c F K K D M H K V E T Y L 
193 T V A K C R L S P E A N C T L 

M D R V V L M L S V M S L 

3.4 Díscussion 

PRL and GH are the predominant components released to the médium by 

the cultured sea bream pituitaries and run very near in reducing systems. 

However, separation of the two proteins by an optimized SDS-PAGE system, 

followed by immunological methods to confirm their identity, and analysis of lane 

profiles obtained by optical densitometry, revealed that this approach is adequate 

for separation of PRL and GH and substantiate the use of this method for studies 

in the present thesis. 
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Human and most mammalian PRLs and GHs have revealed several 

bands on polyacrylamide gel electrophoresis (Wallis et al., 1980; Meuris et a/., 

1984; Bollengieret al., 1988; Shah and Hymer, 1989; Mena et al., 1992; Anthony 

et al., 1993; Warner et al., 1993; Briski et al., 1996; Garcia-Barros et al., 2000). 

Some studies in reptiles, birds, and Atlantic cod demonstrate that the same size 

heterogeneity exists in non-mammalian species (Noso et al., 1992; Rand-Weaver 

et al., 1989; Martinez-Coria et al., 2002). In sea bream, molecular weights of PRL 

and GH separated by SDS-gel electrophoresis were estimated as 25 and 22 

kDa, respectively, and no size heterogeneity was detected for both hormones. 

Charge heterogeneity has been reported to a lesser extent in vertrebrates. 

Some studies in rats, amphibians, and chum salmon (Nyberg et al., 1982; 

Kawauchi et al., 1983; Yamashita et al., 1993; Briski et al., 1996), demonstrated 

the existence of PRL charge isoforms. GH charge variants were also observed in 

birds and chum salmon (Kawauchi et al., 1986; Houston and Goddard, 1988; 

Aramburo et al., 1989; Skibeli et al., 1990; Montiel et al., 1992). In the present 

study, there is charge heterogeneity when the annual cycle is analyzed, and 

multiple charge variants were detected when native sea bream PRL and GH 

were separated by isoelectric focusing. In birds, it was possible to correlate the 

release of GH size and PRL charge variants with different physiological stages 

during the life cycle (Bédécarrats et al., 1999; Aramburo et al., 2000). Different 

biological activities were also demonstrated for tilapia PRLs variants (Sinha, 

1995 and Manzon, 2001 for reviews). The pituitary of this cichlid fish secretes 

two PRLs of different molecular weight and charge, and amino acid sequence 
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information indicated that the tilapia PRLs are distinct proteins. Genetic variants 

of PRL have been found in some teleosts, namely goldfish (Chan et ai, 1996), 

Japanese eel (Suzuki et ai, 1991), chum salmon (Kawauchi et ai, 1986), and 

striped bass (Jackson et ai, 2000). Sea turtle and toads also have two genetic 

PRL variants (Yasuda et al., 1990; Yamashita et ai, 1993) 

In order to try to explain the charge heterogeneity observed in sea bream, 

highly purified PRL and GH from winter and summer were obtained by 

continuous elution electrophoresis performed using a Model 491 Prep Celi, 

followed by partial amino acid sequencing. Database searches based on peptide 

mass fingerprint and MS/MS ions search, provided a reasonable coverage of the 

entire proteins and 18 and 46% of the PRL molecule, in winter and summer 

respectively, while 53 and 75% of the GH molecule, in winter and summer 

respectively, were sequenced. Both isolated PRL and GH molecules had 

sequences which were in agreement with previously published data (Santos et 

ai, 1999; Almuly et ai, 2000). The partial amino acid sequence established in 

the present study does not reveal any differences between molecules isolated 

during winter and summer. However as only 18% of the winter PRL was 

sequenced, further sequence is necessary in order to establish if differences are 

present which can explain the charge heterogeneity. 

Size and charge heterogeneity can also result from different types of post- 

translational modifications. Glycosylation and phosphorylation of PRL and GH 

are major modifications in mammals (Ray et al., 1989; Sinha, 1995; Garcia- 

Barros et ai, 2000), reptiles (Noso et ai, 1992), and birds (Corcoran and 
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Proudman, 1991; Aramburo et ai, 1992). In Atlantic cod, GH charge 

heterogeneity is due to phosphorylation of the native pituitary hormone (Skibeli et 

ai, 1989). In sea bream, these modifications were previously suggested to 

explain the difference detected between the predicted and the observed 

molecular weight of PRL (Santos et ai, 1999). In the present study, PRL 

isoelecthc points were estimated between 6.1 and 6.7 compared with 7.08 

calculated from amino acid sequencing, and GH had isoelecthc points between 

6.3 and 7.2 compared with the calculated value of 6.52. The observed isoelecthc 

points were different from the expected based upon the number of amino acids 

that the molecules contain. If only one form of the protein exists than it seems 

likely that post-translational modifications of the mature protein may cause the 

charge variants detected. Using data from peptide mass fingerprint, it was not 

possible to clearly demonstrate the existence of such transformations, but 

potential phosphorilation at S^for PRL and at Tis? or T^o for GH, are proposed 

on the basis of the present data. 

For each hormone, a yield of approximately 3mg/g wet weight of pituitary 

was obtained and this is higher than the yields obtained from salmon and Atlantic 

cod (Kawauchi et ai, 1983; Kawauchi et ai, 1986; Rand-Weaver et ai, 1989; 

Skibeli et ai, 1989). 

In summary, sea bream PRL and GH gave no detectable molecular 

variants with different size but demonstrated charge heterogeneity, which could 

be accounted for by modifications due to multiple post-translational modifications. 

However, sea bream PRL and GH post-translational modifications were not 
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elucidated in the present study and deserve further investigation. Moreover, the 

procedure of continuous elution electrophoresis performed using a Model 491 

Prep Celi, described in the present study for the purification of sea bream PRL 

and GH, is of general applicability because relatively small amounts of starting 

material are necessary for this procedure and losses are kept at the minimum as 

few steps are employed. 
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CHARTER 4: Circannual and circadian rhythms of PRL in 

vitro release 

4.1 Introduction 

Most of the animais develop biological and behavioral circadian and/or 

annual cycles that are usually related to the cyclic physiological processes 

present during their lifetime. Annual cycles of plasma leveis of steroids (and 

association of these cycles with specific phases of the reproductive cycle) are 

observed in humans, mammals, birds, amphibians, reptiles, and crustaceans 

(Amey and Whittier, 2000; Andersson et al., 2003; Garcia et a!., 2002; Quinitio et 

a/., 1991; Shelby et ai, 2000; Sockman and Schwabl, 1999). In teleost fish, 

circannual variations in serum concentrations of steroids, vitellogenin and thyroid 

hormones are reported in the dentex {Serranas subligarius), sea bass 

{Dicentrarchus labrax), the catfish {Heteropneustes fossilis), the bitterling 

(Acheilognathus rhombea), the jundia {Rhamdia quelen), and the Indian carp 

{Labeo rebita) (Lamba et al., 1983; Shimizu et al., 1985; Cheek et al., 2000; 

Pavlidis et al., 2000; Barcellos et al., 2001; Sen et al., 2002). Changes in 

gonadotropin, lipid and cholesterol are observed during the annual reproductive 

cycle of the freshwater teleost mrigal (Cirrhinus mrigala) (Singh and Singh, 

1984). Pronounced seasonal rhythms in plasma somatolactin leveis were 

observed in rainbow trout {Oncorhynchus mykiss) (Rand-Weaver et al., 1995). 
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In addition to annual cycles there is clear evidence that daily light-dark 

cycle governs rhythmic changes in the behavior and/or physiology of most 

vertebrates. These regularly repeated patterns require a timing mechanism, 

which may be controlled by stimuli externai to the animal, by internai timing 

mechanisms (biological clocks), or a combination of both mechanisms. Mammals 

have an internai biological clock located in the suprachiasmatic nuclei (SCN) of 

the brain, and the most likely exogenous signal is day length, but temperature 

and other stimulus can also be used to entrain the internai clock. In diurnal 

mammals, photoperiodism depends on the generation of a 24-hr nocturnal 

meiatonin signal by the pineal gland, and the decoding of this signal in 

specialized target organs, including the pituitary gland (for a review, see Lincoln 

et a/., 2003). In non-mammalian species there is relatively little information about 

these mechanisms. In amphibians, the photoreceptor cells within the retina 

contain a circadian clock that controls meiatonin release (Zhu et ai, 2000; 

Wiechmann and Smith, 2001). In reptiles, circadian photoreceptors are present in 

the retinas of the lateral eyes, pineal, parietal eye, and, possibly, the SCN (Tosini 

et ai, 2001). In birds, the circadian clock is found in the pineal gland, which is 

sensitive to light and produces meiatonin. Moreover, it was found that 

temperature directly influences the synthesis and release of meiatonin in chicks 

(Barrett and Takahashi, 1995). In Atlantic salmon {Salmo salar), the nocturnal 

increase in circulating meiatonin accurately reflects the duration of darkness, 

which potentially could be used by the animal to time daily and seasonal events 

(Randall et ai, 1995). In trout, meiatonin receptors have been described in 
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visually related areas of the brain, suggesting that in this species the hormone is 

involved primarily in the processing of visual signals (Mazurais et a/., 1999; 

Mazurais et a/., 2000). In pike {Esox lucius), transcripts of melatonin receptors 

and binding sites are expressed in the optic tectum, retina and pituitary gland 

(Gaildrat and Falcon; 1999; Gaildrat and Falcon, 2000; Gaildrat et a!., 2002), and 

the number and activity of melatonin binding sites are synchronized by the 

photoperiod (Gaildrat et a/., 1998). In the white sucker {Catostomus 

commersoni), cultured pineal glands show a circadian rhythmicity on melatonin 

secretion, influenced by photoperiod and temperature (Zachmann et al., 1992). In 

pikes and trouts, arylalkylamine N-acetyltransferases (enzymes involved in 

melatonin synthesis) are controlled by different genes in the retina and in the 

pineal gland (Benyassi et al., 2000). While the duration of raised melatonin 

synthesis is dictated bythe prevailing photoperiod, studies in juveniles of Atlantic 

salmon have shown that the amplitude of melatonin secretion could be 

influenced by other environmental factors such as temperaturas and light 

intensity (Randall et al., 1995; Porter et al., 2001). In Atlantic cod {Gadus 

morhua), body size appears to have an important influence, with the smallest fish 

exhibiting significantly higher leveis of dark phase melatonin (Porter et al., 2000). 

In the sea bass, photoperiod length controls the duration of the nocturnal 

melatonin rise, while water temperature determines the amplitude of the 

melatonin rhythm (Garcia-Allegue et al., 2001). 

The internai clock mechanism appears to be under genetic control. Clock 

genes have been discovered and cloned in the fruit fly (Drosophila 
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melanogaster), and in the fungus Neurospora (for a review, see Wager-Smith 

and Kay, 2000). In mammals, clock genes are expressed in the SCN (for a 

review, see Lincoln et a/., 2003). Recently, circadian rhythms have been 

observed in various isolated mice tissues (Yamazaki et ai, 2000), and restricted 

feeding strongly entrained the expression of circadian genes in the liver (Stokkan 

et ai, 2001). These observations indicate that the cells and tissues of the body 

may be capable of modulating their activity on a circadian basis without the 

participation of an SCN clock function or with the SCN acting as a master 

circadian pacemaker. In teleosts, the expression of genes associated with 

melatonin synthesis in pike and zebrafish {Danio rerio), but not the trout, is 

controlled by a circadian clock in the pineal organ (Bégay et al., 1998; Coon et 

ai, 1998). A homolog of the mouse clock gene has been described in rainbow 

trout with the highest density of clock transcripts observed in the optic tectum and 

the pretectal area (Mazurais et ai, 2000). 

In several species, a nocturnal melatonin signal that reflects nightlength 

and daylength is produced by the pineal gland. In mammals, this signal is 

decoded in the melatonin target cells, calendar cells, localized principally in the 

pars tuberalis of the pituitary gland. The calendar cells are thought to use a clock 

gene-based mechanism to decode melatonin signal to produce a long or short 

day physiology (for a review, see Lincoln et ai, 2003). In non-mammalian 

species there is relatively little information about this mechanism, but in vitro 

studies show that melatonin modulates GH and PRL secretion in trout pituitaries 

(Falcon et al., 2003). 
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The pituitary hormone, PRL, has been observed to elicit a variety of 

physiological responses in different groups of animais in response to 

environmental stimulus. In mammalian and avian species, PRL circulating leveis 

are correlated with ambient temperature (Gahali et al., 2001; Hooley et ai, 1979; 

Maney et ai, 1999; Schams et ai, 1980) and with photoperiod (Gahali et al., 

2001; Forbes et al.,1975; Maney et ai, 1999; Martinet et ai, 1992; Pijoan and 

Williams, 1985; Spieler, 1979). In newts, PRL mRNA and plasma leveis are 

inversely correlated with temperature Takahashi et ai, 2001). In several teleost 

fishes, the pituitary content and plasma PRL concentrations varied significantly 

with the time of the day (Leatherland and Mckeown, 1973; Leatherland et ai, 

1974, deVIaming eia/., 1975; Batten and Ball, 1976; Mckeown and Peter, 1976). 

The effect of annual environmental factors on the regulation of PRL cells 

has been less extensively studied but there is evidence indicating that some 

correlation exists. In freshwater stickleback {Gasterosteus aculeatus), PRL cells 

formed and released more secretory granules during spring (Benjamin, 1974). 

Moreover, PRL content of the pituitary and the functional state of the PRL cells 

anticipate the annual migration of this species (Sage and de Vlaming, 1975). 

Differential expression of PRL mRNA was observed in the pituitary of carp 

{Cyprínus carpio) acclimatized to summer and winter (Figueroa et ai, 1994), and 

temperature and photoperiod appear to be the major factors controlling the 

circannual pattern of PRL transcription (Figueroa et ai, 1997). In goldfish 

{Carassius aurata), longer photoperiods and higher temperatures cause higher 

leveis of pituitary PRL release (Mckeown and Peter,1976). 

84 



Chapter 4 Circannual and circadian rhythms of PRL in vitro release 

It has also been suggested that PRL might participate in regulation of the 

seasonal cycle of growth and metabolism. In mammals, the active immunization 

against PRL suppresses food intake and gain in body weight. Infusion of PRL 

increases nitrogen retention (see Curlewis, 1992 for review). In the golden 

hamster, hyperprolactinaemia induced by ectopic pituitary homographs has also 

been shown to prevent the increase in brown fat mass, protein content and 

thermogenic capacity which is induced by transfer to short daylenght (Kott, 

1989). In teleosts, the somatotropic activities ascribed to PRL result from the 

binding of heterologous PRL to GH receptors in tilapia (Oreochromis 

mossambicus) (Shepherd et a/., 1997). In the prometamorphic larvae of 

Japanese flounder {Paralichthys olivaceus), PRL antagonized the stimulatory 

effect of T3 on the resorption of the dorsal fin rays in vitro (De Jesus et a!., 1994). 

In the sea bream no studies exist describing the effect of 

season/photoperiod on the release of pituitary hormones. The purpose of the 

present study was to investigate the influence of temperature and photoperiod on 

in vitro PRL release, describe the annual and circadian variation of PRL cells 

activity, and characterize the PRL isoforms seasonally secreted into the médium 

of cultured pituitaries. 

4.2 Additional methods 

The methodology concerning the pituitary culture, the identification, 

separation and quantification of PRL is described in chapter 2. The specific 
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methods reported in this chapter describe the characteristics of the animais and 

experimental design used in the experiments. 

Animais 

AH studies were carried out on immature sea bream purchased from 

commercial suppliers who reared the fish in aquaculture ponds, under normal 

photoperiod and temperature in the Southern Iberian Península (MARESA, 

Ayamonte, Spain and TIMAR, Algarve, Portugal). Prior to experiments fish were 

maintained in 5000 liter tanks with a through-flow of aerated sea water (7.0±0.5 

mg/l oxygen) in the experimental facility of the Centre of Marine Sciences, 

Algarve. During the adaptation period salinity was 36±40/oo and the ambient 

water temperature was 24±30C and 14±0.5oC in summer and winter, 

respectively. The average photoperiod for the summer experiment was 14hours 

light/10hours dark and for winter experiments was 10hours light/14hours dark. 

The fish were fed to satiation on dry pellets n03 formulated for marine fish 

(Provimi, Portugal). The summer experiment was conducted in the first week of 

August and temperature and photoperiod were the same as those during the 

adaptation period. The winter experiment was conducted in the last week of 

December and first week of January and fish were acclimated to photoperiod and 

temperature as outlined below. The feeding regime during the experiments was 

the same as those during the adaptation period. 
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Experiment 1: Circannual cycle of PRL retained in the cultured pituitários 

and characterization of PRL released into the culture médium 

Throughout one full calendar year and every two months (from September 

to August) at the same time in the morning (±9hours), sea bream samples (from 

the same commercial lot) were collected from MARESA, Spain. A sample of 20 

specimens was taken, and individual standard length and body weight registered. 

Fish were sacrificed by decapitation and 8 whole pituitaries were frozen in liquid 

nitrogen and stored at -80oC for later analysis. Twelve pituitaries were collected 

into freshly prepared culture médium as described previously (chapter 2, section 

2.1). Pituitary glands were incubated for 18hr at 210C in an atmosphere 

containing 95% 02/5% CO2. After culture, pituitary glands and culture médium 

were stored at -20oC until analysis (usually a week later). Native PRL, in the 

culture médium and in the pituitary homogenates, was separated by isoelectric 

focusing for estimation of isoelectric point (chapter 2, sections 2.2 and 2.5) and 

identity confirmed by Western blotting using an antiserum against chum salmon 

(chapter 2, section 2.4). Proteins in culture médium and pituitary homogenates 

were separated by SDS-PAGE, the gels were stained with Coomassie blue and 

PRL quantified by optical densitometry (chapter 2, section 2.3). The optical 

density units were transformed to micrograms/ml using calibration curves of BSA. 

The estimation of PRL molecular weight was made running molecular markers 

on the same gel as the unknown samples (chapter 2, section 2.5) (see Fig. 4.1 

for a schematic representation of the sampling plan). 
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Experiment 2: Circadian cycle of PRL secreted by cultured pituitárias 

The objective of the present study was to determine if a circadian cycle 

exists for PRL secretion on the seabream. A sample interval of 4 hours was 

selected on the basis of previously published experiments (Leatherland et 

a/., 1974; Leatherland and McKeownJQyS; McKeown and Peter, 1976; Spieler, 

1979;). 

whole pituitaries (n=8) 

pituitary 
homogenates 

pituitaries culture (n=12) 

pituitary 
homogenates 

I 

culture 
media 

•Separation of native hormones by isoelectric focusing and 
band Identification by "Western blotting". 
•Separation of hormones by SDS-PAGE, PRL quantification 
by optical densitometry, and determination of PRL molecular 
weight. 

Figure 4.1 - Experiment 1: Schematic representation of the sampling plan used 
every two months to study the circannual cycle of PRL pituitary content and PRL 
released into the culture médium. 

In order to minimize the effects of handling the same group of fish 

repeatedly, fish were sampled alternately from the two experimental tanks 

ensuring an interval of 8 hours between each sample. At the start of the 

experiment sea bream (+50g) were randomly allocated into two 500 liter (n=18 

per tank) through-flow sea water tanks. The experiment was conducted at the 

beginning of August and fish were acclimated to natural temperature (24±30C) 
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and photoperiod (14hours light/10hours dark), and fed once daily (2-3% of body 

weight) on commercial sea bream pellets (Provimi, Faro, Portugal). After an initial 

adaptation period to the experimental tanks of 8 days three samples were 

collected per tank at a pre-determined time (Table 4.1). 

Table 4.1 - Experiment 2: Sampling regime carried out over the 3 days of the 
experiment. To minimize stress, tanks were sampled alternately. 

Day of 
experiment 

Time 
(hours) 

Tank number 

1 09.00 1 

1 21.00 2 

2 13.00 1 

3 01.00 2 

3 05.00 1 

3 17.00 2 

Pituitary samples were collected from 6 fish at 4 hour intervals over a period of 3 

days, according to the sequence in Table 4.1. Fish were sacrificed by 

decapitation and pituitaries were collected into freshly prepared culture médium 

as described in the methods. After separation by SDS-PAGE of the hormones 

present in the culture médium, the gels were stained with Coomassie blue and 

PRL band quantified by optical densitometry. The optical density units were 

transformed to micrograms/ml using calibration curves of BSA (chapter 2, section 

2.3). 
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Experiment 3: Photoperiod and temperatura influences on growth and in 

vitro PRL secretion in the presence and absence of galanin 

Sea bream (n=84;± 89g) were randomiy allocated into four 500 liter 

through-flow sea water tanks. The experiment was conducted during 

December/January and fish were pre-adapted to experimental tanks for 8 days in 

natural winter temperature (14±0.5oC) and photoperiod (10hours light/14hours 

dark). After the adaptation period, a two-level factorial experimental design was 

defined with the factors photoperiod and temperature set to partially simulate 

different seasons of the year in the Iberian península (Table 4.2). To simulate 

summer, natural water temperature was increased during 3 days at a ratio of 

10C/day. Fish were exposed to the experimental conditions for 3 weeks after 

which 21 fish from each of the different experimental regimes were sampled at 

the same time in the morning (±9hours). Individual weights and lengths were 

recorded for ali specimens. No mortality was recorded during the experiment and 

fish were fed to satiation twice daily on commercial sea bream pellets (Provimi, 

Faro, Portugal). 

Fish were sacrificed by decapitation and pituitaries were collected into 

freshly prepared culture médium as previously described (chapter 2, section 2.1). 

Pituitary glands were incubated for 18hr at 210C in an atmosphere containing 

95% 02/5% CO2. Six pituitaries per experimental group were individually 

incubated with galanin. Galanin is a peptide which has been shown to affect PRL 

secretion in sea bream (chapter 5, sections 5.3 and 5.4). In the present 

experiment in which winter and summer conditions were simulated, it was made 
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a first attempt to study the seasonal effect of galanin on in vitro PRL secretion. 

An aqueous stock solution of galanin (1 mg/ml; Sigma, Madrid) was diluted with 

culture médium to a final concentration of 150nM. After incubation, culture media 

was stored at -20oC until analysis (generally a week later). 

Table 4.2 - Experiment 3: The different experimental regimes of photoperiod and 
temperatura utilized and their designation. 

Regimes Photoperiod Temperatura Approximately 

  seasonal simulation 

1 (short/hot) 10hours light/14hours dark 24±30C (Autumn) 

2 (short/cold) 10hours light/14hours dark 14±0.5oC (Winter) 

3 (long/hot) 14hours light/10hours dark 24±30C (Summer) 

4 (long/cold) 14hours light/10hours dark 14±0.5oC (Spring) 

After separation by SDS-PAGE of the hormones present in the culture 

médium, the gels were stained with Coomassie blue and destained. Time of 

staining and destaining was kept constant between experiments to be as 

comparable as possible. PRL was quantified by optical densitometry with the 

optical density units transformed to micrograms/ml using calibration curves of 

BSA (chapter 2; section 2.3). 

Statistical analysis: 

For each sample, variance was checked for homogeneity using the 

Levene test. Data were statistically evaluated by one-way analysis of variance 

(experiments 1 and 2) or by a two-way analysis of variance (experiment 3). 

Significantly different means were identified by Duncan's multiple range test. The 
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statistical package SPSS version 10.0 (SPSS Inc., USA) was used for analysis of 

the data. 

4.3 Results 

Experiment 1: Circannual cycle of PRL retained in the cultured pituitaries 

and PRL released into the culture médium 

PRL release into the culture media displayed a distinct circannual cycle 

(Table 4.3; Fig. 4.2), with a significantly higher levei (P«0.001) occurring in the 

middle of winter. After this peak, a significant decline in PRL release occurred 

during February followed in the months from spring to summer by a steady and 

slow increase of PRL release, with another significant (P«0.001) but smaller 

peak of PRL release during spring. 

Table 4.3 - Experiment 1: Seasonal pattern of PRL pituitary content and PRL 
released (mean t SEM )by the pituitary glands incubated in vitro. 

n0 of 
pituitaries 

PRL pituitary 
content (//.g/ml) 

PRL release 
(Mg/ml) 

September 5 1.90 ±0.06 0 
November 6 1.34 ±0.06 0 
January 6 7.30 ±0.37 0 
February 6 1.40 ±0.23 4.22 ± 0.31 
April 5 4.41 ±0.25 2.47 ± 0.11 
June 5 4.66 ±0.44 2.37 ±0.03 
August 5 1.28 ±0.08 3.01 ± 0.28 

An annual cycle in the PRL content of the pituitary was also observed 

(Table 4.3; Fig. 4.2). During autumn and winter, very low leveis of PRL were 

observed to be retained in the pituitary. The pituitary PRL contents increased 
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dramatically during February (P«0.001) and subsequently decreased gradually 

during spring when PRL release from the pituitary surged. 

In August a significant (P<0.05) but smaller increase in the PRL pituitary 

content was observed. The secretion pattern observed in February and August is 

similar, with the quantity of PRL retained in the pituitary being 2-3 fold the 

Figure 4.2 - 
Comparison of the 
concentrations of in 
vitro PRL release and 
content of the pituitary 
at different times of the 
year, measured by 
optical densitometry 
after separation by 
SDS-PAGE. 

There was a seasonal variation in the isoforms of PRL secreted from the 

pituitary gland and a number of different charge variants were identified using 

chum salmon anti-PRL serum. Fig. 4.3 presents a schematic representation of 

the PRL isoforms identified after separation by isoelectric focusing. During 

autumn and winter, an acidic isoform (pl=6.1) of PRL was released into the 

médium. In spring and summer, concomitant with the decrease of this variant 

there was a marked increase in the release of multiple less acidic variants 

(pl=6.3-6.7). 
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The charge variants of PRL showed very similar apparent molecular 

weights as assessed by SDS-PAGE (25+ 0.6 kDa), with the exception of a form 

detected during February which was 22 kDa. It was not possible to determine the 

reason for the apparent decrease in molecular weight. Although it is unlikely to 

be due to loss of carbohydrate moieties as treatment of the predominant 25kDa 

form with N- and O-glycosidase (Roche, Portugal) failed to decrease its 

molecular weight. 

7 0 

6.7 m § 

64 
m 
e 

6.1 Ê> é 0 o 

5 8 
Autumn Winter Spring Summer 

Figure 4.3 - Seasonal variation in PRL isoforms released into the médium by 
cultured pituitaries. The solid bars represent the multiple bands of PRL occurring 
during spring and summer (pl = 6.3-6.7). The most acidic form (pl = 6.1) was always 
present in the culture médium but higher leveis were observed during Autumn and 
Winter. 

Experiment 2: Circadian cycle of PRL secreted by cultured pituitaries 

In fish acclimated to natural summer temperature (24±30C) and 

photoperiod (MlighLIOdark), PRL was secreted into the culture media with a 

marked circadian rhythm - significant higher values were observed during 

daylight at 9a.m. (P<0.01) and 5p.m. (P<0.001). A nadir occurred during the dark 

phase (Fig. 4.4). 
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Figure 4.4 - PRL release 
(/,/g/ml) at 4 hours intervals over 
a 24 hours period. The abscissa 
is the time of day samples were 
taken and the underlying 
horizontal bar represents 
the14light:10dark photoperiod. 
Each point on the graph 
represents the mean±SEM of 
PRL secreted by the pituitaries 
of 6 fishes. 
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Experiment 3: Photoperiod and temperatura influences on growth and in 

vitro PRL secretion in the presence and absence of galanin 

A two-way analysis of variance showed that the winter and summer 

photoperiods imposed during the experiment did not affect PRL release. In 

contrast temperature significantly increased PRL release (P«0.001) during short 

and long days (Fig. 4.5a). During hot days, either with short or long photoperiod, 

significantly (P<<0.001) more PRL was released. In ali experimental groups, PRL 

released into the culture médium was always much higher (>4/ig/ml) than the 

PRL retained in the pituitary (<3/i,g/ml). A significantly (P«0.001) higher pituitary 

PRL content was observed during hot days and long photoperiod, which 

simulates summer conditions (Fig. 4.5b). 
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Figure 4.5 - The effects of long (15light:9dark) and short 
(10light:14dark) photoperiods, and hot (23±20C) and cold 
(13±10C) temperatures on (a) PRL release from the pituitary 
gland (pg/ml) and (b) the PRL pituitary content (pg/ml). Each 
point represents the mean±SEM of the results obtained from 15 
fishes. 

The amount PRL released by the fish acclimated to short days dropped 

significantly (P<0.01 and P<0.05 for hot and cold temperature, respectively) 

when 150 nM galanin was included in in vitro pituitary cultures (Fig. 4.6). The 

only pituitaries in which Gal appears to have a stimulatory effect on PRL release 

are those from fish maintained under conditions that simulate summer (long/hot) 

(Fig. 4.6). 
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Figure 4.6 - The effects of long (L) and short (S) photoperiods, hot (H) and 
cold (C) temperatures on in vitro PRL release. Each point represents the 
mean±SEM of PRL secreted (pg/ml) by the pituitary of control fish (n=14, 15, 
15, and 15, respectively) and by the pituitary incubated with 150 nM of Gal 
(n=6, 6, 6, and 4, respectively). (*) significantly different from control value for 
P<0.05;.(**) significantly different from control value for P<0.01. 

Deploying the same factorial design the effect of temperature and 

photoperiod on growth performance of fish was examined. At the end of the 

experiment, mean individual body weight differed between treatments (Table 

4.4). The variation in individual body weight was significantly correlated with both 

water temperature {P«0.001) and, to a lesser extent, to change in daylength 

(P<0.05), but no interaction between the two factors was found. 

Table 4.4 - Experiment 3: The effects of long (L) and short (S) photoperiods, hot (H) and 
cold (C) temperatures on total body weight. Each interval represents the mean±SEM of 
21 animais. 

Environmental Total body 
regime weight (g) 

SH 112.96 1:2.39 

SC 92.52 14.01 

LC 89.68 L 3.31 

LH 101.69 t 3.15 
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Animais experiencing the higher temperature (24±30C) exhibited 

significantly (P<0.05) higher gains in mean individual body weights (101.69g and 

112.96g for long and short days, respectively) over the 3 weeks of the 

experiment, compared to the other treatment groups. Fish that grew more and 

had a larger body weight values showed a positive correlation (r = 0.998) with 

PRL secretion (Fig. 4.7). 
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Figure 4.7 - Positive correlation between the mean value of total body weight in 
each tank sampled and the mean value of PRL released by the cultured 
pituitaries of the same fish. 

4.4 Discussion 

Seasonal differences in pituitary activity and isoforms of PRL release may 

explain the pluripotent nature of PRL activity. Circadian change was also 

observed. The annual cycle in the PRL release and pituitary content observed is 

an indication of the cyclic physiologic stages of the animal during the different 

seasons of the year. Because turnover rates of PRL in the blood of fish and in 

particular in the seabream are unknown it is not possible to establish a direct link 
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between the quantity of PRL released and the amount of hormone utilized and 

catabolized by the animal. However, because the PRL release and pituitary 

content are dependent respectively on the rates of release and synthesis, by 

simultaneously measuring the concentration of both components they give a 

picture of the physiological state of the pituitary and through inference the animal. 

During autumn and winter PRL release and pituitary content show low 

values, suggesting a low activity of release and synthesis. As temperature and 

day length rapidly decrease during December, PRL secretion and pituitary 

content of PRL decline to a minimum. The low levei of pituitary PRL content 

concomitant with the sudden increase in PRL release observed in January 

(which coincides with spawning) suggest that there must be a surge in PRL 

synthesis by the pituitary gland in order to meet secretory needs during this 

month. In February, there was a significant increase in pituitary PRL 

concentration and a decrease in release indicating that the pituitary was 

releasing PRL more slowly than it was being synthesized. Interestingly it has 

previously been shown that the sensitivity of sea bream PRL cells to E2 change 

during this month as well (Brinca et ai, 2003) and are much less sensitive to this 

steroid than during winter. As day length and temperature slowly increases 

during spring there is another combination of changes with a steady decrease in 

the pituitary PRL concentration and an increase in the PRL secretion, again 

suggesting that there must be a surge in PRL synthesis by the pituitary gland in 

order to meet secretory needs during this period (related to growth? related to 

migration of juveniles from coastal waters to more deep waters?). In August the 
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pituitary physiologic state was similar to February suggesting another "less 

sensitivo period" after a peak of PRL release. 

A pattern of seasonal change in PRL cell response to the presence of Gal 

in the culture médium was also suggested by the results of the experiment with 

galanin. The general tendency was that Gal (150 nM) significantly reduced or 

had no effect on PRL release, although during the summer simulation (long days 

and hot temperatura) Gal tend to stimulate PRL release from pituitários in vitro 

(Fig. 4.6). In vertebrates, the involvement of Gal on the reproductive axis has 

been extensively studied (Baranowska et a/., 2001; Cornbrooks and Parsons, 

1991; Finn eia/., 2000; Lamanna et ai, 1999; Olivereau and Olivereau, 1991b; 

Tsutsui et ai, 1998; Wynick et ai, 1993), although other physiological functions 

have also been attributed to this peptide (such as control of appetite) in 

mammals and goldfish (Crawley, 1995; de Pedro et ai, 1995; Leibowitz et ai, 

1998). In the present study, the physiological significance, if any, of Gal 

stimulated PRL release from pituitaries collected from fish maintained under a 

regime simulating summer (Fig. 4.6) remains to be established. 

Somatotropic and developmental actions of PRL have been characterized 

in mammals (Bole-Feysot et ai, 1998 for review), although studies on tilapia and 

Japanese flounder and the early expression of PRL and its receptor in sea bream 

(Santos et ai, 2003) suggest PRL may have similar action in fish (de Jesus et ai, 

1994; Shepherd et ai, 1997). In the present study, higher temperatures and 

feeding ad libidum significantly increased growth rate (Fig. 4.7) and PRL release 

was highly correlated (see discussion of experiment 3). However, complementary 
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studies on the contribution of GH to this growth effect still remain to be 

established in order to clarify this important aspect of the sea bream physiology. 

A seasonal variation was also observed in PRL forms contained in the 

culture médium (Fig. 4.3). During autumn and winter, a single and more acidic 

charge variant (pl=6.1) was detected (related to spawning?). In spring and 

summer, concomitant with the decrease of this variant there was a marked 

increase in the release of multiple variants (pl=6.3-6.7) that showed very similar 

apparent molecular weights by SDS-PAGE (25± 0.6 kDa). The hypothesis of the 

possible involvement of PRL in several physiological events during spring, 

including increase of weight and/or migration of fingerlings towards coastal 

waters, is consistent with the observed peak of PRL release, concomitant with 

the presence of multiple forms secreted in vitro by the sea bream pituitaries. 

An increasing number of teleosts exhibit a circadian rhythm of PRL cell 

activity and/or plasma concentration. However, the diel PRL rhythm does not 

appear to be consistent among different studies or species to the daily light-dark 

cycle. In several species the PRL pituitary activity or plasma leveis were highest 

during the period of darkness and fell to a minimum in the middle to the end of 

the light period (Leatherland and Mckeown, 1973; Leatherland et ai, 1974; de 

Vlaming et a/., 1975; McKeown and Peter, 1976). In freshwater sailfin mollies 

{Poecilia latipinna) the period of highest synthetic activity of the PRL cells was 

from midday to evening (Batten and Ball, 1976). In the present study seabream 

PRL secretion was lower during the period of darkness and the highest value 

(2[ig/ml) was obtained by the end of the light phase; a small peak (1.4|ig/ml) was 
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present in the beginning of the photophase. One possible explanation for the 

discrepancies between different studies could be that the diel rhythm of activity of 

the PRL cells is not directly locked-in to some environmental factor but is linked 

to endogenous changes and its release is modulated in response to random daily 

changes in the environment. The presence of a olear annual cycle in seabream 

and also in goldfish, carp, and freshwater stickleback (Benjamin, 1974; Sage and 

de Vlaming, 1975; Mckeown and Peter, 1976; Figueroa et a/., 1994; Figueroa et 

a/., 1997) will also probably have a significant impact on the dial cycle detected. 

Therefore, depending on the time of the year that samples are taken and the 

physiologic state of the animal, different results are possible even for the same 

species. The results of the present study demonstrated that the activity and 

responsiveness of the sea bream pituitary changes during the year. 

Experiment 3 showed that PRL release was positively stimulated by 

temperature. Previous studies have shown that temperature can modulate 

directly the PRL controlling mechanism; in catfish, environmental factors 

suppressed the dopamine mechanism (Senthikumaran and Joy, 1995) and in 

some mammals there is evidence of changes of pituitary sensitivity to dopamine 

related to changes in environmental factors (Curlewis, 1992). Data from 

experiment 3 is compatible with the circannual cycle observed in the present 

study - as temperature slowly increases there is a steady increase in the PRL 

secretion. Conversely, when the temperature decreased the PRL release also 

decreased until minimum leveis were observed during winter. But temperature 

can also act as a signal to the onset of several biological processes like 
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spawning for instance. In sea bass, spawning time can be advanced or delayed 

by changing water temperatura and photoperiod (Zanuy et ai, 1986). A rapid 

decrease of temperatura during winter may act as a cue for spawning and this 

could explain the sudden increase of PRL release observed in the present study 

in January after a minimum temperature value (=110C) was attained during 

December. In the present study temperature also had a significant effect on PRL 

pituitary content. Increasing the temperature when the fish are on either a short 

or a long photoperiod decreased the PRL pituitary content, which is in 

accordance with the stimulation of PRL release observed with high temperature. 

The relative decrease in the pituitary concentration and the relative increase in 

PRL release probably indicates a faster release rate than the synthetic rate. The 

process under laboratory conditions is in accordance to the changes observed in 

seabream reared in natural conditions. 

Changes in photoperiod are more difficult to interpret. Photoperiod had no 

significant effect on PRL release and positively modulated pituitary content. For a 

range of different animais - lambs, sheep, minks, sparrows, and turkeys - 

photoperiod has been correlated with PRL serum leveis release and/or pituitary 

content (Forbes et ai, 1975; Pijoan and Williams, 1985; Martinet et ai, 1992; 

Maney et ai, 1999; Gahali et al., 2001). In goldfish, a change in photoperiod 

caused both serum and pituitary PRL leveis to change at least at low 

temperaturas (10oC). In fish acclimated to 20oC the photoperiod influenced the 

pituitary content but no effect was observed in serum PRL leveis (Mckeown and 

Peter, 1976). In the present study the photoperiod information was not clearly 
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translated into changes in PRL cell activity. One possible explanation is that the 

laboratory conditions did not simulate the natural progressive changes of 

photoperiod. It is possible that the gradual changes in these two parameters 

provide a signal to the internai calendar about the specific time of the year and 

thus the season. 

In summary, a marked annual cycle in the pituitary gland activity was 

observed. This is highlighted by the seasonal variation in the basal pituitary PRL 

release rates but also by a variation in the relative concentration of PRL charge 

variants released from the pituitary gland. Circadian changes were also 

observed. Results ali suggest that in common with other species sea bream has 

circannual or/and circadian clocks but the evidence is still insufficient for any 

definitive conclusion to be made. Moreover, temperature (but not photoperiod) 

influences sea bream PRL cells activity, with higher temperature increasing in 

vitro PRL secretion and lower temperature having the opposite effect. More 

Information is needed to increase our knowledge of how sea bream translate 

photoperiod information into endocrine signals. 
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CHARTER 5: Effect of Gal on PRL in vitro release 

5.1 Introduction 

Galanin (Gal) is a neuropeptide that has been detected in the central 

nervous system and the gastroenteric, respiratory, urinary, and reproductive 

system of mammals, reptiles, amphibians, birds, and teleost fish (Moons et ai, 

1989; Batten et a!., 1990; Combrooks and Parsons, 1991; Moons et ai, 1991; 

Olivereau and Olivereau, 1991a; Crawley, 1995; Power et ai, 1995; Azumaya 

and Tsutsui, 1996; Sánchez-Montesinos et ai, 1996; Wang et al., 1997; 

Ohmori, 1998; Batten et ai, 1999; Kohchi and Tsutsui, 2000; Mensah-Brown et 

ai, 2000). In mammals, co-expression of Gal and PRL within secretory 

granules have been reported (Schwartz, 2000 for review) and in the pituitary 

gland of european seabream and seabass. Gal immunoreactive fibers have 

also been detected and appearto infiltrate between ACTH, PRL, TSH, GtH, and 

GH cells. The presence of Gal immunoreactive fibres in the pituitary gland 

suggest it may directly influence the activity of such cells (Moons et ai, 1989; 

Batten et ai, 1990; Moons et ai, 1991; Power ef a/., 1995). 

The function of Gal in vertebrates remains to be established but 

numerous studies have shown that Gal may have a direct or indirect effect on 

the reproductive axis. For example, in mammals, Gal regulates the number of 

lactotrophs and stimulates gonadal hormones release (Wynick et ai, 1993; Finn 

et ai, 2000; Baranowska et ai, 2001). Gal also strongly stimulate the release of 

PRL in humans and rats (Bartfai, 2000). In reptiles and avian species, Gal may 
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contribute as a neurotransmitter or a neuromodulator to oviposition (Li et a!., 

1996; Lamana et ai, 1999). 

Estrogens exert an important influence on Gal activity in the pituitary. In 

mammals, gonadal estrogens positively regulate Gal-expressing cells either 

increasing the amount of Gal protein and mRNA (Gabriel et a/., 1992; Brann et 

a/., 1993; Hyde et al. 1993; Crawley, 1995; Tseng et ai, 1997; Shen et ai, 

1999; Degerman et ai, 2002) or the number of Gal-secreting cells (Bloch et ai, 

1993; Leibowitz et ai, 1998; Rugarn et ai, 1999). Estrogens also induced an 

increase in Gal immunoreactive material in the pituitary of lizards, quails, and 

eels (Olivereau and Olivereau, 1991b: Tsutsui et ai, 1998; Lamanna et ai, 

1999). 

Data from transgenic mice deficient in Gal support the hypothesis that 

this peptide acts as a paracrine regulator of PRL expression and lactotroph 

growth and mediates estrogen action on the lactotroph. These mutants have 

reduced PRL mRNA and serum PRL leveis, and females fail to lactate. Their 

lactotrophs do not proliferate in response to high doses of estrogen, nor do they 

up-regulate PRL gene expression and release (Wynick et ai, 1998). 

On the whole there are relatively few studies of the function of Gal in 

teleosts. Moreover, although studies exist demonstrating the distribution in the 

brain and pituitary gland of this peptide (Moons et ai, 1989; Batten et ai, 1990;; 

Cornbrooks and Parsons, 1991; Moons et ai, 1991; Olivereau and Olivereau, 

1991a; Power et ai, 1995; Batten et ai, 1999) relatively few studies have 

demonstrated the action of this peptide on pituitary PRL cells. In the present 
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study, sea bream pituitary glands have been incubated in vitro to study the 

response of PRL cells to Gal, together with an assessment of the effect of E2 

priming in intact fish on the response of PRL cells to Gal. 

5.2 Addítíonai methods 

The methodology utilized for the pituitary culture, the identification, 

separation and quantification of PRL is described in Chapter 2. The methods 

reported in this chapter are specific to the present experiments and describe the 

characteristics of the animais and the experimental design. 

Animais 

AH studies were carried out on immature sea bream purchased from 

commercial suppliers who reared the fish in aquaculture ponds, under normal 

photoperiod and temperature in the Southern Iberian Península (MARESA, 

Ayamonte, Spain and TIMAR, Algarve, Portugal). After transportation to the 

experimental facility of the Centre of Marine Sciences, Algarve, the fish were 

maintained in 5000 liter tanks with a constant through-flow (16 liter/hour) of 

aerated sea water (7.0±0.5 mg/l oxygen) and temperature and salinity for winter 

in the Algarve. The fish were fed once daily to satiation on dry pellets n02 

formulated for marine fish (Provimi, Portugal). 
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Experiment 1; Effect of E2 and Gal on in vitro PRL release during winter 

Sea bream (n = 36) were randomly allocated into two 500 liter through- 

flow sea water tanks. The experiment was conducted during February under 

natural temperature (15±10C) and photoperiod (10hours light/14hours dark). 

After an adaptation period of 7 days, one group of fish (n=18, with an average 

weight and length of 47.2g and 13.8cm, respectively) received an impiant of 

coconut oil alone, and the other group (n=18, with an average weight and length 

of 49.0g and 12.90171, respectively) received 10mg/kg of E2 (Sigma, Madrid) in 

coconut oil. 

From each tank, 18 fish were sacrificed 4 days after impiant by 

anaesthesia with a sub-lethal dose of MS-222 (1:10000; Sigma, Madrid), 

followed by decapitation and pituitaries were collected into freshly prepared 

culture médium (chapter 2, section 2.1). An aqueous stock solution of porcine 

Gal (1 mg/ml, Sigma, Madrid) was diluted with culture médium to the appropriate 

dilution. Pituitaries from fish with coconut oil implants (control, n=18) were 

collected and cultured in 0 and 150 nM Gal (concentration selected based on 

dose/response curve) for 18hours at 210C in an atmosphere containing 

95%02/5% CO2. Pituitaries from the fish implanted with E2 (n=18) were also 

collected and cultured in 0 and 150nM. After culture, pituitary glands and culture 

médium were stored at -20oC until analysis (usually a week later). 
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Experiment 2: Effect of E2 and Gal on in vitro PRL release during 

summer with manipulated short photoperiod and low temperatura 

Sea bream were randomly allocated into a 500 liter through-flow sea 

water tank (n = 75, with an average weight and length of 84.3g and 16.8cm, 

respectively), and into a 200 liter tank (n = 30, with an average weight and 

length of 79.7g and 16.7cm, respectively) equipped with a recirculating cooling 

system. A greater number of control fish were utilized in order to carry out a 

dose/response study with Gal in vitro. The experiment was conducted during 

June and fish were gradually adapted over 8 days to a reduction in temperature 

from the ambient temperature (230C) to the mean spring value (180C). 

Photoperiod was also adjusted from the ambient photoperiod for June (14hours 

light/10hours dark) to that of the spring photoperiod (12hours light/12hours 

dark). After an adaptation period of 3 weeks, the larger group received an 

implant of coconut oil alone and the other one received 10mg/kg of E2 (Sigma, 

Madrid) in coconut oil. 

Fish were sacrificed 7 days after implants by anaesthesia with a sub- 

lethal dose of MS-222 (1:10000; Sigma, Madrid), followed by decapitation and 

pituitaries were collected into freshly prepared culture médium as described 

elsewhere. An aqueous stock solution of porcine Gal (1 mg/ml, Sigma, Madrid) 

was diluted with culture médium. Pituitaries removed from the fish which 

received the coconut oil implant alone were cultured in the following range of 

Gal concentrations: 0, 25, 100, 300, and 600 nM. Pituitaries from the fish which 

received an E2 implant (10mg/kg wet weight) were cultured in the following Gal 
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concentrations; 0 and 100 nM. Fifteen glands were cultured individually per 

experimental group. 

Statistical analysis 

For each sample, variance was checked for homogeneity using the 

Levene test. Data were statistically evaluated by one-way analysis of variance 

or by a two-way analysis of variance, according to the sampling plan. 

Significantly different means were identified by Duncan's multiple range test. 

The statistical package SPSS version 10.0 (SPSS Inc., USA) was used for 

analysis of the data. 

5.3 Results 

Dose response ofpituitary glands to Gal 

During spring and in fish not primed with Ez, the effect of Gal became 

significant and there was a concentration-dependent response with 0-600 nM 

Table 5.1; Fig. 5.1). 

Table 5.1 - The effect of in vitro Gal treatment on PRL release (//g/ml) from pituitaries 
of fish not treated in vivo with E2. Results are given as means±SEM and sample size 
for each treatment group is indicated in brackets. 

Gal dose (nM) 0 25 100 300 600 
0.45 ± 0.03 0.49 ± 0.06 0.60 ± 0.06 0.61 ±0.06 0.52 ±0.03 

(13) (14) (11) (15) (14) 

The amount of PRL released into the médium increased significantly 

(P<0.05) in the presence of 100nM and 300nM of Gal. However, PRL secretion 

decreased to the basal control levei when 600nM of Gal were included in the 
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culture médium presumably because of pharmacological effects (Table 5.1 and 

Fig. 5.1). 

0.70 

0.35 

0.00 
025 100 300 

Gal(nM) 

600 

Figure 5.1 - The effect of Gal (0, 25, 100, 300 and 600nM) on in vitro PRL release 
(yug/ml) from fish not primed with E2, Each point represente the mean±SEM. (*) 
Significantly different from control value, PO.05. 

Modulation of PRL secretion by Gal 

In both experiments, in vitro Gal treatment of pituitaries from control fish 

significantly stimulated (P<0.05) PRL secretion (Fig. 5.2). In contrast, in fish 

primed with E2, PRL secretion when Gal was added to the culture médium was 

not significantly different from secretion in the absence of Gal (Fig. 5.2). 

Circulating E2 seems to "inhibit" the stimulatory action of Gal on PRL-cells. 

Because the effect of £200 basal pituitary PRL secretion depends on season - 

no effect in winter and a significant increase (P<0.05) of PRL secretion in spring 

- the "levei" of PRL secretion from fish treated in vivo with E2 and in vitro with 

Gal show the same seasonai variation (Fig. 5.2). 
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Figure 5.2 - Comparison of PRL 
secretion (pg/ml) from pituitary glands 
collected in winter (a) and spring (b) 
from control fish and fish primed with 
E2. In both experiments, in vitro Gal 
treatment of pituitaries from fish not 
primed with E2, significantly stimulated 
(P<0.05) PRL secretion. PRL released 
from pituitary glands of fish treated in 
vivo with E2 did not show differences 
when incubated with or without Gal. 
Each bar represents mean±SEM and 
numbers inside bars indicate the 
sample size in each treatment group. 

Effect of Gal on PRL in vitro secretion 

5.4 Discussion 

The neuroendocrine control of 

PRL secretion is a multifactorial 

process that involves both 

stimulatory and inhibitory molecules. 

Pituitary PRL cells maintain a high 

rate of active basal secretion in the 

absence of an inhibitory signal. 

Numerous factors are capable of 

stimulating PRL release and gene 

expression. Studies in some teleosts 

have shown that E2 has a stimulatory 

effect on the activity of PRL cells 

(Barry and Grau, 1986; Borski et ai, 

1991; Wigham, 1992; Williams and 

Wigham, 1994; Poh et ai, 1997; 

Weber et al., 1997). The results from 

the present study demonstrate that 

E2 modulates PRL secretion and that 

the responsiveness of PRL cells in 

sea bream varies with season and 

probably with age. During the winter 

experiment, E2 had no effect on PRL 
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secretion, a result which is in conflict with results obtained in other experiments 

(see chapter 6, sections 6.3 and 6.4). One possible explanation is that the 

experiments included in chapter 6 were done in the middle of the spawning 

season, while the present study was carried out by the end of the spawning 

season, when a refractohness of PRL cells to in vivo E2 treatment has 

previously been observed (unpublished results). Another explanation could be 

related to differences in size/age of fish. Smaller fish (50-70g) was used in the 

experiments discussed in chapter 6, compared with fish used in the present 

study (70-100 g). 

Previous studies have shown in juvenile sea bream and during the 

breeding season, PRL expression increased significantly after E2 treatment 

(Cavaco et a/., 2003). The identification of estrogen receptors in the pituitary 

gland of the sea bream (Socorro et ai, 2000) suggests that E2 may act directly 

on PRL cells via its receptors. This action may be similar to that observed in 

mammals, where estrogens may act in both a direct and indirect manner. The 

direct effect of E2 is shown by the up-regulation it induces in mammalian 

pituitary PRL gene expression which is also associated with a subsequent 

increase in PRL secretion (Rose et ai, 1996; Takahashi and Kawashima, 1986; 

Torner et ai, 1999). The indirect effects of E2 appear to be its effect on 

neurotransmitters and neuropeptides which rapidly stimulate PRL release from 

storage granules. 

One of the peptides proposed to be of physiological significance in the 

neuroendocrine regulation of PRL cells is Gal. Gal is a 29-amino acid peptide 
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originally isolated from porcine small intestine (Tatemoto et a/., 1982) which 

shares little homology with other known peptides. In mammals, exogenously 

administered Gai regulates the reproductive axis by acting as a growth 

regulator of the lactotrophs (Wynick et ai, 1993) or by having both direct and 

indirect effects on gonadal hormones release (Finn et ai, 2000; Baranoska et 

ai, 2001). In reptiles, Gal administration in pre-ovulatory lizard females induced 

premature oviposition (Lamanna et a!., 1999). In the present study on the 

marine teleost sea bream, Gal significantly stimulated PRL secretion (P<0.05) 

from pituitary glands cultured in vitro in a dose-dependent manner. The 

mechanism by which Gal affects PRL secretion in this study, either by direct 

stimulation of PRL cells via a receptor or indirectly by increasing the number of 

PRL cells (Ottlecz et al., 1988; Wynick et ai, 1998), remains to be clarified. 

In contrast, in fish primed with E2 PRL secretion when Gal was added to 

the culture médium was not significantly different from secretion in the absence 

of Gal. Circulating E2 seems to "inhibit" the stimulatory action of Gal on PRL- 

cells. This is in contrast with what was observed in other species. For example, 

on rats Gal mRNA increased significantly after treatment with estrogen (Gabriel 

et ai, 1992; Brann et ai, 1993; Flyde et al. 1993; Crawley, 1995; Tseng et ai, 

1997; Shen et ai, 1999; Degerman et ai, 2002), and gonadal steroids have a 

dramatic activational effect on the numbers of visibly stained Gal cells in the 

hypothalamus and pituitary gland with a concomitant increase in basal PRL 

release (Bloch et ai, 1993; Wynick et ai, 1993; Leibowitz et ai, 1998; Rugarn 

et ai, 1999). In teleost fishes, the intensity of Gal innervation is also dependent 
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on circulating leveis of estrogens. For example, in eels treated with estradiol or 

methyl testosterone, increased Gal immunoreactive material was observed in 

some perikarya and brain fibers (Olivereau and Olivereau, 1991b). The reason 

for the discrepancy reported between the observed results in the sea bream 

and the action described for Gal on E2-primed animais in previous studies is not 

clarified and needs further investigation. 

In conciusion, the results confirm that the sensitivity of PRL cells to E2 

varies with season. Moreover, in immature sea bream Gal acts as a potent 

stimulator of in vitro PRL secretion except when fish is primed with E2. So that, 

changes in hormonal status accompanying reproduction in sea bream change 

the sensitivity of PRL cells to Gal. One possible explanation is that the 

responsiveness of PRL cells to Gal is linked to the sexual maturity of this 

species. To clarify this issue it will be of interest to carry out a more detailed 

analysis of the response of PRL cells to Gal using fish at different stages of 

their life cycle. 
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CHARTER 6: Effect of E2 and VIP on PRL in vitro release 

6.1 Introduction 

The pituitary hormone prolactin (PRL) is a versatile hormone and more 

than 300 different actions have been described in vertebrates and many of 

these actions in mammals are associated with reproduction (Bole-Feysot et 

ai, 1998). In teleost fish the principal action of PRL is the maintenance of 

hydromineral balance in euryhaline species in fresh water (Loretz and Bern, 

1982; Hirano et ai, 1987). Relatively few reports about the effect of PRL on 

fish reproduction exist. In tilapia {Oreochromis mossambicus) homologous 

PRL stimulates testosterone production in courting males (Rubin and 

Specker, 1992) and PRL may influence parental behaviour (de Ruiter et ai, 

1986; Slijkhuis et ai, 1984). 

In mammals the modulation of PRL by ovarian steroids is well 

documented (Labrie et ai, 1978). In rats, estradiol-17p (E2) increases the 

mitotic potency of PRL cells in the pituitary gland and has a stimulatory effect 

on PRL gene expression in the hypothalamo-neurohypophyseal system and a 

concomitant inhibitory action on PRL proteolysis at this site (Takahashi and 

Kawashima, 1986; Torner et ai, 1999). In mink, Mustela vison, a high 

systemic ratio of progesterone to E2 has been shown to be a prerequisite for 

increasing the expression of uterine PRL receptors (Rose et ai, 1996). 

Ovarian steroids also affect the pituitary in birds, modulating in vitro 

PRL release (Knapp et ai., 1988). In teleost fish the regulation of PRL cells by 

ovarian steroids has been less extensively studied but there is evidence 

indicating their involvement, for example, in tilapia, Oreochromis 
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mossambicus, pituitary PRL content and in vitro secretion is elevated by 

treatment with E2 (Borski et ai, 1991; Wigham, 1992; Poh et a/., 1997). 

Moreover, preincubation of tilapia pituitary glands with E2 in vitro appears to 

increase the sensitivity of PRL cells to stimulation by TRH and GnRH in vitro 

(Barry and Grau, 1986; Weber et ai, 1997). In contrast, E2 treatment of 

rainbow trout pituitary cultures stimulated in vitro PRL synthesis but did not 

affect release (Wigham, 1992; Williams and Wigham, 1994). 

The way in which peptides regulate E2 stimulated PRL release in fish 

has not been studied, despite the anatomical evidence demonstrating 

peptidergic innervation of the rostral and proximal pars distalis (Batten et a/., 

1983). One of the peptides proposed to be of physiological significance in 

neuroendocrine regulation of PRL cells in mammals and birds, is vasoactive 

intestinal peptide (VIP). This peptide was first isolated from porcine intestinal 

extracts (Said and Mutt, 1972) and was subsequently detected in the brain. In 

mammals, VIP has been identified in the hypothalamus in neurones projecting 

to the median eminence and neurohypophysis and has also been identified in 

the hypophysial portal blood (Said and Porter, 1979; Okamura et a/., 1986). 

Hypophysial VIP is a potent stimulator of PRL release from mammaiian 

pituitaries both in vivo and in vitro (Rostene et a/., 1982; Abe et ai, 1985). 

Similar observations have also been made in the bantam hen in vivo and in 

pituitary cultures of turkey, broiler and bantam chickens (Hall and Chadwick, 

1985; MacNamee et ai, 1986). Recently VIP was also shown to be 

associated with a significant rise in PRL during the breeding season of birds 

(Youngreen et ai, 1994; Bédécarrats et ai, 1999; Maney et ai, 1999). In 

amphibians and fish relatively few studies of the effect of VIP on PRL 
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secretion exist. In Rana catesbeiana, VIP has been proposed to be a PRL- 

releasing factor (Koiwai et al., 1986). However in tilapia, O. mossambicus, the 

only teleost in which the effect of VIP on secretion of pituitary hormones has 

been determined, it appears to inhibit PRL secretion (Wigham, 1992). 

The purpose of the present study was to investigate the influence of 

ovarian steroid exposure (E2) on basal PRL release from in vitro pituitary 

gland cultures of sea bream (Sparus aurata) during winter and spring. The 

modulation by VIP of E2 stimulated PRL secretion in sea bream was also 

studied. 

6.2 Additíonal methods 

The methodology concerning the pituitaries culture, and the PRL 

separation and quantification of PRL, is described in chapter 2. The specific 

methods reported in this chapter describe the characteristics of the animais, 

the experimental design used in the experiments, and the immunochemistry 

technique used on pituitary sections mounted in glass slides. 

Animais 

Ali studies were carried out on immature sea bream (body weight 50- 

70g) purchased from commercial suppliers who reared the fish in aquaculture 

ponds, under normal photoperiod and temperature in the Southern Iberian 

Península (MARESA, Ayamonte, Spain). Prior to experiments fish were 

maintained for 1 month in a 1000 litre tank with a throughflow of aerated sea 

water (7.0+0.5mg/l oxygen) in the experimental facility of the Centre of Marine 

Sciences, Algarve. Salinity was 360/oo and the water temperature was 
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14oC+0.5oC and 18oC+0.5oC in winter and spring respectively. The average 

photoperiod for the winter experiment was 10h 30min light/13h 30min dark 

and for spring experiments was 13h 30min light/10h 30min dark. Fish were 

fed to satiation twice daily on dry pellets formulated for marine fish (Provimi, 

Portugal). Winter experiments were conducted in the first week of February 

and spring experiments were conducted in the last week of April as outlined 

below. Temperature and salinity of water, photoperiod and the feeding regime 

during the experiments were the same as those during the adaptation period. 

Experimental design 

Experiment 1 - Effect of E2 and VIP on in vitro PRL release during 

winter 

Sea bream (n = 130) were randomly allocated into two 500 litre 

through-flow sea water tanks, one group received an implant of coconut oil 

alone and the other one received 10mg/kg of E2 (Sigma, Madrid) in coconut 

oil. Fish were sacrificed 7 days after implants by anaesthesia with a sub-lethal 

dose of MS-222 (1:10000; Sigma, Madrid), followed by decapitation and 

pituitaries were collected into freshly prepared culture médium as described 

above. An aqueous stock solution of porcine VIP1-38 (1 mg/ml, Sigma, 

Madrid) was diluted with culture médium and pituitaries (n = 13 per treatment) 

were cultured in the following VIP concentrations: 0, 25, 50, 100 and 200 nM. 

Thirteen glands were cultured individually per experimental group. The 

concentrations of VIP used in the experiments were based upon results from 

previous experiments in which a wider range of VIP concentrations (25- 

1000nM) was used (results notshown). 
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Experiment 2 - Effect ofE? on in vitro PRL release during spring 

Sea bream (n = 20) were randomly allocated into 2 groups, one group 

of fish (n = 10) received an implant of coconut oil alone and the other group (n 

= 10) received an implant of coconut oil containing 10mg/kg of E2 for 7 days. 

At the end of the experiment pituitaries were collected as described above 

and cultured individually in vitro with 10 glands per experimental group. 

A small-scale study of the effect of VIP on in vitro pituitary cultures in 

sea bream treated with E2 showed that in spring VIP had no effect on PRL 

production in vitro. For this reason no further studies were carried out with VIP 

in spring. 

Immunohistochemistry 

Brains with pituitary glands attached were collected from fish 

anaesthetised in MS-222 (1:10000, Sigma, Madrid). Tissue was fixed in 

Bouin-Hollande sublimate for several days. rinsed in PBS and dehydrated, 

embedded in wax and serial sagittal sections (6pm) cut and mounted on poly- 

L-lysine coated slides for subsequent immunohistochemical studies. 

Immunohistochemistry was carried out using a modification of the 

unlabeled antibody peroxidase-antiperoxidase (PAP) method (Sternberger, 

1986). Briefly sections with both brain and pituitary visible were dewaxed, 

rehydrated through graded alcohols and non-specific background staining 

blocked by immersion in 4% normal goat serum in phosphate buffered saline 

(PBS), containing 1% bovine serum albumin (PBS/BSA) for 60 minutes. 

Excess blocking solution was removed and sections were incubated for 3 
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hours at room temperatura with primary antisera specific for the N-terminus of 

porcine VIP (L25, 1/2000, provided by Dr R. Dimaline, University of Liverpool, 

UK) or C-terminus dogfish VIP (L311, 1/2000, previously characterised in 

Dimaline et a/., 1986) or anti-chum salmon prolactin (1/3000, previously 

characterised in Power and Canario, 1992). After washing in PBS (2x5 

minutes) sections were incubated for 1hr with anti-rabbit IgG (1/50, Dako, 

Sweden) and then 45 minutes with rabbit peroxidase antiperoxidase (1/100, 

Dako, Sweden) and colour developed by reaction with diaminobenzidine and 

hydrogen peroxide. Sections were then counterstained with Meyers 

haematoxylin. 

Method specificity was checked on sections adjacent to those, which 

were positively stained. Several controls were carried out; substitution of 

primary antisera by normal rabbit sera; sequential omission of reagents from 

the various steps of the staining procedure; or pre-absorption of the primary 

VIP antisera with porcine VIP. Ali these procedures abolished staining. 

Statistical analysis 

In each expehment results were obtained for 13 (experiment 1) or 10 

(experiment 2) individuals/group. Variance was checked for homogeneity 

using the Levene test. Results from experiment 1 were analysed with the data 

classified in two-ways, by treatment with E2 and by treatment with VIP (two- 

way analysis of variance). In experiment 2 a one-way analysis of variance 

was used to determine the statistical significance of differences between the 

means of the control group and the group of fish treated in vivo with E2. The 
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statistical package SPSS version 10.0 (SPSS Inc., USA) was used for 

analysis of the data. 

Table 6.1 - The effect of VIP treatment on PRL secretion from pituitaries of control or 
E2 primed fish in winter. Results are given as the mean ± SEM; sample size for each 
treatment group is indicated in brackets. 

VIP dose (nM) E^primed Control 

0 166 ±0.22 (13) 1.08 ±0.14 (13) 

25 1.52 ±0.24 (13) 0.94 ± 0.14 (11) 

50 1.28 ±0.45 (10) 1.22 ±0.17 (12) 

100 1.15 ±0.21 (10) 0.92 ±0.12 (13) 

200 1.05 ±0.12 (12) 1.10±0.17 (12) 

6.3 Results 

Effect of E2 on basal pituitary PRL secretion 

In vivo implants of E2 for 7 days in sea bream during winter (experiment 

1) significantly increased above control leveis in vitro PRL release (P<0.05; 

Fig.6.1). During spring (experiment 2), the basal secretion of PRL by pituitary 

glands was significantly lower than that observed during winter (P<0.01, Fig. 

6.1). Moreover, in vivo implants of E2 significantly lowered in vitro PRL release 

to a levei 15% less than that observed in control pituitaries (P<0.01) Fig.6.1). 

Modulation of E2 stimulated PRL secretion by VIP 

In control fish during winter, co-incubation in vitro of pituitary glands 

with increasing doses of VIP (0 - 200 nM) had no effect on PRL secretion at 

any of the doses used (Table 6.1). However, E2 stimulated pituitary PRL 

secretion in winter was modulated by VIP which reduced PRL release in a 
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dose-dependent manner (Table 6.1). The inclusion of 100 nM and 200nM VIP 

in in vitro cultures of pituitary glands from E2 primed fish caused a significant 

reduction (P<0.05, Fig. 6.2) in PRL secreted into the médium compared to 

control pituitaries collected from E2 primed fish. 

control 

□ winter 
□ spring 

E2 

1.5 

E 1 

0 25 50 100 
VlP(nM) 

200 

Figure 6.1 Comparison of the basal 
secretion of PRL from pituitary glands 
collected during spring and winter. Note that 
the basal secretion of PRL is significantly 
higher in pituitaries collected in winter 
(P<0.01) compared to pituitary glands 
collected during spring (a and b, 
respectively). In vivo implants of E2 for 7 
days during winter, in sea bream significantly 
increased in vitro PRL release above control 
leveis (a and a', P<0.05). In contrast, during 
spring. in vivo implants of E2 significantly 
lowered in vitro PRL release compared to 
the control (b and b', P<0.01). Each bar 
represents mean + SEM of PRL secreted 
(f.ig/ml) by the pituitary of control (n=13) and 
E2 stimulated fish (n=13) in winter and 
control (n=10) and E2 stimulated fish (n=10) 
in spring. 

Figure 6.2 Winter experiment - A 
linear trend of decreasing PRL 
secretion by pituitary glands in vitro 
was found with increasing doses of 
VIP (0, 25, 50. 100 and 200 nM) 
subsequent to prestimulation in vivo 
with E2 (10mg/kg). The amount of 
PRL secreted into the médium 
dropped significantly (P<0.05) in the 
presence of 100 nM and 200nM VIP 
when compared with control fish. 
Each point represents the mean + 
SEM of PRL secreted by pituitaries 
from E2 stimulated fish in the 
presence of increasing concen- 
trations, 0, 25, 50, 100 and 200nM 
of VIP (n = 13, 11. 12. 13 and 12, 
respectively). 
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Immunohistochemistry (W\n6\y carried out by Dr. Deborah Power) 

Intense VIP-immunoreactivity (irVIP) was present in the 

neurohypophysial (NH) tissue penetrating the rostral pars distalis (RPD) and 

proximal pars distalis (PPD) of the pituitary gland (Fig. 6.3b-e). PRL 

immunoreactive cells were observed to be in close proximity with the irVIP 

axons (Fig. 6.3a). The distribution of irVIP in the neurohypophysis differed 

slightly when L311 and L25 were compared. The antiserum against the C- 

terminus of dogfish VIP (L311) stained principally nerve fibres and the 

antiserum against the N-terminus of VIP stained nerve fibres but the 

cytoplasm of some pituitary cells in the PPD and PI was also stained, 

although in the present study it was not possible to establish colocalisation 

with other pituitary hormones. 

6.4 Discussion 

The role of PRL in fish reproduction is largely unstudied. Recently PRL 

receptors were reported to be present in sea bream gonads and their 

expression found to be up-regulated by E2 which also increased pituitary PRL 

expression (Cavaco et ai, 2003). The results from the present study 

demonstrate that ovarian steroids may also modulate pituitary PRL secretion, 

although whether this effect was direct or indirect was not established. The 

responsiveness of PRL cells in sea bream varied with season and in winter 

secretion of PRL was stimulated by E2 but in spring this steroid inhibited PRL 

secretion. These results do not agree with data for pituitary PRL secretion in 

vitro obtained in other experiments (see chapter 5, section 5.4 for discussion 
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Figure 6.3 Immunohistochemistry of consecutive sagittal sections of sea bream 
pituitary gland counterstained with haematoxylin. a) intensely staining PRL cells 
revealed by anti-chum salmon prolactin in the rostral pars distalis (RPD,), b) VIP- 
immunoreactivity (irVIP) detected in nerve fibers in the neurohypophysis using 
antisera specific for the N-terminus of porcine VIP (L25) and c) a similar pattern of 
immunoreactivity was found with antisera specific for the C-terminus of dogfish VIP 
(L311). Note that ir-VIP nerve fibers penetrated the proximal pars distalis (PPD) and 
the rostral pars distalis (RPD). a, b and c are amplified X100. d) and e) are higher 
magnifications (x400) of the sections in b) and c) respectively. Note that at this 
magnification both nerve fibers and nerve terminais of axons appear to stain 
intensely in the neurohypophysial tissue and that the surrounding cells do not 
stained. 
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of results). Immunohistochemical studies with both N- and C-terminal VIP 

antisera showed that the neuropeptide VIP was present in neurohypophysial 

tissue projecting into the RPD of the pituitary gland, suggesting it might be 

involved in the regulation of PRL cells. In vitro pituitary cultures revealed that 

VIP significantly inhibited PRL secretion (p<0.05) from pituitary glands of E2 

primed fish in winter. VIP had no effect on PRL secretion from pituitary glands 

in vitro in the absence of E2 pre-treatment. The results from the present study 

with the sea bream show that ovarian steroids can modulate PRL cell 

secretory activity and may change the sensitivity of PRL cells to VIP, it also 

provides further evidence supporting a role for PRL in fish reproduction. 

It has been proposed that the biological versatility of PRL in vertebrates 

may be a reflection of its molecular heterogeneity. For example, PRL variants 

which differ in both size and charge, regulate osmoregulatory processes in 

tilapia (Borski et ai, 1992). A glycosylated isoform of turkey PRL was recently 

shown to be important in the reproductive cycle (Bédécarrats et ai, 1999) and 

in rats a range of glycosylated forms of PRL have been characterised 

(Bollengier et ai, 1988). The size of sbPRL estimated by SDS-PAGE (26,000) 

was larger than the size predicted from the cDNA sequence (Santos et ai, 

1999) suggesting posttranslational modifications of this hormone may have 

occurred. In fact a consensus sequence for N-linked glycosylation (Asn 148) 

and phosphorylation (Ser 166) exist in sbPRL (Santos et ai, 1999). It will be 

of interest to determine if different isoforms of sbPRL occur and to establish 

their biological function. 

Studies in other teleosts, with the exception of the platyfish 

{Xiphophorus maculatus, Kim et ai, 1979), have shown that E2 has a 
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stimulatory effect on the activity of PRL cells (Barry and Grau, 1986; Borski et 

a/., 1991; Wigham, 1992; Williams and Wigham, 1994; Poh et ai, 1997; 

Weber et ai, 1997), although there are no previous reports about the effect of 

season on pituitary responsiveness. In common with observations in other 

teleosts E2 influences PRL cell function directly in the sea bream although it 

remains to be established if it also acts via the hypothalamus in vivo (Barry 

and Grau, 1986; Borski et ai, 1991; Wigham, 1992). The seasonal differences 

observed in basal PRL cell activity and E2 sensitivity in the sea bream is 

intriguing. In the present study PRL cells were most sensitive to E2 during 

winter and this heightened sensitivity coincided with the natural reproductive 

peak in the sea bream. In contrast, during spring when gonads were 

regressing PRL secretion was inhibited by E2, suggesting PRL may be 

involved in reproduction although its function remains to be established. 

The variation in sea bream PRL cell responsiveness with season raises 

question about whether this also occurs in other teleost fish. The discrepancy 

reported between the action of E2 on PRL secretion in platyfish compared to 

other teleost species may be due to experimental factors, such as season and 

hormonal status of the fish and highlights the need to take into consideration 

these factors when planning experiments. The factors underlying the differing 

seasonal responsiveness of PRL cells in the sea bream remain to be 

established but factors such as photopehod, temperature, age and general 

hormonal status are strong candidates. It will be of interest to determine if the 

activity of other pituitary cell types in the sea bream can also be modulated by 

season. 
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The use of E2 primed sea bream in the present study overcame many 

of the problems reported when E2 treatment is carried out in vitro (Wigham et 

al., 1977; Barry and Grau, 1986; Borski et ai, 1991; Wigham, 1992). Although 

the mechanism by which elevated circulatory leveis of steroid hormones bring 

about the increase in secretion of PRL noted in this and previous studies on 

teleosts remain unclear. In tilapia it has been suggested that E2 may stimulate 

PRL synthesis and that this leads indirectly to enhanced secretion (Wigham et 

ai, 1977; Barry and Grau, 1986). The recent Identification of estrogen 

receptors in the pituitary gland of the sea bream (Soccorro et ai, 2000) and 

the observation that E2 increases transcription of the gene encoding PRL in 

this species (Cavaco et ai, 2003), suggests that E2 acts directly on PRL cells 

via its receptor. It seems likely that in vivo circulating E2 also indirectly 

stimulates PRL release through its action on neurotransmitter and 

neuropeptide systems which normally regulate PRL cell function. Similar 

observations have been made in rats where E2 is reported to enhance PRL 

release via several different mechanisms. It increases the transcription of the 

gene encoding PRL in the pituitary lactotrophs and this increases PRL release 

(Maurer, 1982) and it also decreases the potency of dopamine by uncoupling 

the dopamine D2 receptor (Munemura et ai, 1989). 

The neurotransmitters and neuropeptides, which regulate PRL 

secretion in teleosts remain to be clearly identified but existing studies 

suggest a range of substances may be involved and that regulation may be 

species specific (Batten et ai, 1983). In general two inhibitory factors appear 

to have been identified, SRIF and dopamine (Le Goff et ai, 1992; Williams 

and Wigham, 1994). The available anatomical evidence further supports a 
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role for SRIF and dopamine in the regulation of PRL secretion in fish. A 

detailed immunohistochemical study of the brain and pituitary gland in the 

green molly (Poecilia latipinna, Batten et ai, 1983) demonstrated that 

numerous neuropeptides innervate the pituitary gland. The role of these 

peptides in regulation of pituitary function in teleost fish remains to be 

established. The identification by immunohistochemistry of VIP in the brain 

and neurohypophysial tissue penetrating the RPD in sea bream (Power and 

Ingleton, 1998) and in vitro studies with tilapia pituitaries demonstrating a 

function for this peptide (Kelley et ai, 1988), make it a candidate pituitary cell 

regulating peptide in fish. 

In the present study using immature sea bream, in the absence of E2 

priming VIP had no effect in vitro on PRL secretion. This is in contrast to the 

inhibitory effect of VIP on PRL secretion from untreated adult male tilapia 

pituitaries in vitro (Kelley et ai, 1988). The differing effect of VIP in these two 

species is more likely to be a consequence of the age and associated 

hormonal status of the experimental animais used, than species-specific 

differences. This idea is supported by other studies in tilapia showing that 

both testosterone and E2 increase the sensitivity of PRL cells to GnRH 

(Weber et ai, 1997). It would appear that E2 priming changes pituitary PRL 

release in two ways in the sea bream, it directly stimulates PRL release in 

winter (Fig. 6.1), but it also enhances the sensitivity of PRL-secreting tissue to 

VIP (Fig. 6.2). In sea bream relatively low concentrations of VIP blocked the 

stimulatory action of E2 on pituitary PRL release in a dose dependent manner. 

The results are in contrast to observations in mammals, birds and amphibians 

where VIP generally has a stimulatory action in sexually mature animais 
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(MacNamee et ai, 1986; Koiwai et ai, 1986; Youngreen et ai, 1994; Balsa et 

ai, 1998; Maney et ai, 1999; van der Beek et ai, 1999). The results from the 

sea bream and those previously obtained with tilapia suggest that 

reproductive status may alter the regulation of PRL cells by VIP (Kelley et ai, 

1988). So that in sea bream VIP negatively regulates elevated PRL leveis 

induced by E2 implants. One possible explanation is that the negative 

feedback action of VIP counterbalances the effect of E2 on PRL release, thus 

limiting the increase in circulating PRL leveis. This negative feedback may be 

important in preventing uncontrolled E2-stimulated PRL release during the 

breeding season in the sea bream. 

In birds, VIP stimulates PRL release and in turkeys, a VIP pulse 

generator appears to be located within the hypothalamus (Chaiseha et ai, 

1998). In the turkey, VIP stimulates PRL expression by up-regulating the 

transcription rate of PRL and by enhancing PRL mRNA stability (Tong et ai, 

1998). VIP released by electrical stimulation in turkeys increases PRL 

secretion and is involved in the regulation of pituitary PRL mRNA expression 

(Youngreen et ai, 1994). The responsiveness of PRL cells to VIP in some 

passerine species has been shown to be dependent on season. A rapid 

increase in plasma PRL is induced by VIP during the breeding season, but 

PRL cells subsequently become refractory after termination of this season 

(Maney et ai, 1999). It remains to be established in the sea bream the factors 

which control VIP release in the pituitary gland. Moreover, it will be of interest 

to carry out a more detailed analysis of the response of PRL cells to VIP at 

different stages of the reproductive cycle in sea bream and also using fish at 

different stages of their life cycle. 
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In conclusion, the present study is the first on a nontetrapod species, 

the immature sea bream, in which the interaction between E2 and VIP on PRL 

secretion has been studied. The results from experiments carried out in spring 

and winter suggest that the sensitivity of PRL cells to E2 varies with season. 

Interestingly PRL cells are most sensitive to E2 during the reproductive 

season (winter). These observations suggest that changes in hormonal status 

accompanying reproduction in sea bream, change the sensitivity of PRL cells 

to E2 and that VIP may function as a physiological hypophysiotropic-inhibiting 

factor of PRL cells in sea bream primed with E2. The latter suggestion is 

substantiated by the identification of VIP immunoreactive fibres in the 

neurohypophysis penetrating the RPD and the negative regulation of PRL 

secretion by low concentrations of VIP in vitro. The identification of VIP 

receptors in PRL cells would further substantiate this idea. Overall the 

present study supports the proposal that the fundamental control mechanisms 

of PRL secretion may change with the reproductive status of the animal (Barry 

and Grau, 1986; Weber et ai, 1997). 
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CHARTER 7: PRL release in response to freshwater 

challenge 

7.1 Introduction 

Fish interact with their environment and extract or excrete water and/or 

salts to maintain the ionic strength of their internai fluids within narrow limits. 

Stenohaline species born in either freshwater (FW) or seawater (SW) are 

unable to regulate their plasma ionic composition when challenged with 

changing environmental salinity, a process that consequently results in high 

mortality. In contrast, euryhaline species can adjust to changing 

environmental salinity through adjustment of their ionic and endocrine 

systems to cope with new environments. The maintenance within narrow 

limits of circulating water and salts is under ionic and endocrine control and in 

teleosts, PRL has been viewed as "the" FW adapting hormone, as a 

consequence of its ability to regulate hydromineral balance (reviewed by 

Manzon 2002). Cortisol, under some conditions, may promote ion uptake and 

interacts with PRL during acclimation to FW (Eckert et al., 2001; McCormick, 

2001). 

Ultrastructural and immunocytochemical data demonstrated that in 

Gambusia the activity of PRL cells was stimulated when fish were transferred 

to FW (Olivereau, 1986). In killifish {Fundulus heteroclitus), the volume 

occupied by the PRL cell mass was larger in FW-adapted than in SW-adapted 

specimens and contained larger PRL cells (Betchaku and Douglas, 1980). In 

the sea bream adapted to hypoosmotic environments, ultrastructural evidence 

suggest an activation of synthesis and release of PRL (Mancera et al., 

135 



Chapter 7 PRL release In response to freshwater challenge 

1993b). In Mozambique tilapia, both forms of PRL increased after transfer to 

FW (Yada et a/., 1994; Shepherd et ai, 1999). Moreover, PRL cells from 

larvae hatched and maintained in FW or in those transferred from SW to FW 

had a stronger immunoreaction, a significantly larger PRL cell size, and the 

area occupied by PRL cells was larger (Ayson et ai, 1994). In species that 

are dependent on PRL for FW osmoregulation, pituitary and plasma PRL 

leveis increase during adaptation to FW to regulate both the permeability of 

the osmoregulatory surfaces and the ion transport mechanisms. By 

decreasing water uptake and increasing ion retention PRL regulates the 

hydromineral balance (reviewed by Manzon, 2002). In the sea bream, in vivo 

treatments with PRL induced an increase in plasma osmorality and ion 

concentration in fish transferred to brackish water (5ppt salinity) (Mancera et 

ai, 2002). 

Another link of PRL with osmoregulation is observed from studies on 

PRLR gene expression. In Nile tilapia (Oreochromis niloticus), trout 

(Oncorhynchus mykiss), Japanese flounder (Paralichthys olivaceus), and sea 

bream, high leveis of PRLR gene expression were detected in the 

osmoregulatory organs, such as gills, kidney, and intestine (Sandra et ai, 

2000; Prunet et ai, 2000; Higashimoto et ai, 2001; Santos et ai, 2001). An 

increase in environmental salinity resulted in a decrease in the expression of 

PRLR in the gills of Nile tilapia (Sandra et ai,2000) but did not change the 

abundance of PRLRs (Sandra et ai, 2001), suggesting a down-regulation of 

the PRLR protein may occur in the presence of elevated PRL leveis 

associated with transfer to FW. 
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Pioneering studies in various teleosts identified an inverse relationship 

between environmental salinity and PRL cell activity in vivo, and between 

médium osmorality and PRL release in vitro (for reviews Clarke and Bern, 

1980 and Wigham, 1992). These findings seem to indicate that the release of 

PRL is a direct response to changes in extracellular osmorality during 

adaptation to different salinities. However, studies in vivo with the 

Mozambique tilapia (Oreochromis mossambicus) suggested that plasma 

osmolarity was not the predominant factor in the control of PRL cell activity in 

situ. Wendelaar-Bonga et ai (1985) proposed that PRL cell activity could be 

controlled principally by the hypothalamus, rather than any direct effect of 

plasma osmorality. 

The sea bream is a marine teleost capable of a certain degree of 

adaptation to changes in environmental salinity. The challenge of low salinity 

for short periods of time has been reported to result in the activation of PRL 

cells (Mancera et ai, 1993b, 2002). The aim of the present work was to 

evaluate the ability of the sea bream to survive and adapt to low salinity 

environments and to test the endocrine response of PRL in isolated pituitary 

glands collected from fish maintained at normal (SW 36 ppt) or challenged 

with low salinity for up to 7 days (FW 2 ppt). 

7.2 Additional methods 

The methodology concerning the pituitary culture, the identification, 

separation and quantification of PRL is described in chapter 2. The specific 

methods reported in this chapter describe the characteristics of the animais 

and experimental design used in the experiments. 
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Animais 

AH studies were carried out on immature sea bream (body weight 50 to 

70g) purchased from local commercial suppliers in the Algarve (South 

Portugal). Fish were transferred and maintained at Ramalhete Marine Station 

(University of Algarve) under natural annual conditions of water temperatura, 

photoperiod, and salinity in 1000L tanks with flowing SW and fed once daily 

(1.5%, 2.8%, and 1.8% of body weight during late winter, spring and autumn, 

respectively) on commercial sea bream pellets (Provimi, Faro, Portugal). 

Salinity challenge 

Fish were stocked in 500L tanks (density 5kg/m3) for at least 2 weeks 

before salinity challenge. After the pre-adaptation period to tanks, water 

entering the tanks was SW (control fish) or switched from SW to FW (salinity 

challenged fish) without disturbing the fish. The group of control fish was 

exposed to the natural value of SW salinity of the season (late winter, spring 

and autumn) when the experiment was carried out. The other group was 

exposed to a steady decrease in salinity over 3 days by running FW into the 

tank until a value of 2ppt (4mOsm/kg) was reached. Water salinity was 

checked twice daily and corrected when necessary. In ali experiments fish 

were sampled 7 days after the onset of seawater dilution. 

Experiment 1: Effect of low salinity challenge on in vitro PRL release 

during late winter 

A total of 32 specimens (n=16 from each salinity group) were reared 

during March under natural conditions of temperature (16+20C), photoperiod 
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(12hrs), and salinity (37+ Ippt). Fish were sacrificed 7 days after the onset of 

salinity challenge by anaesthesia with a sub-lethal dose of MS-222 (1:10000; 

Sigma, Madrid) followed by decapitation and pituitaries were collected into 

freshly prepared culture médium. Two different culture media were tested; 

hypotonic and isotonic (chapter 2, section 2.1). Half of the pituitaries collected 

from FW-adapted fish were cultured in hypotonic médium (n=8) and another 

half in isotonic médium (n=8). The same scheme was followed for SW- 

adapted fish. Pituitary glands were incubated for 18hr at 210C. Individual 

pituitaries and culture médium were stored at -20oC and were analyzed 

approximately 1 week later. 

Experiment 2: Effect of low salinity challenge on in vitro PRL release 

duríng spring 

This experiment was performed as described for experiment 1 with the 

exception that a total of 60 specimens were sampled (n=30 from each salinity 

group), and the values of temperature (21+30C), photoperiod (14hrs), and 

salinity (37+ ] ppt), corresponded to natural conditions in May. 

Experiment 3: Effect of low salinity challenge on in vitro PRL release 

duríng autumn 

This experiment was performed as described for experiment 2 with the 

exception that the values of temperature (17±20C), photoperiod (lOhrs), and 

salinity (35+ I ppt), were the values that corresponded to natural conditions in 

November. A total of 60 specimens (n=30 from each salinity group) were 

sampled. 
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Statistical analysis: 

For each experiment, variance was checked for homogeneity using the 

Levene test. Data were statistically evaluated by a one-way or two-way 

analysis of variance. Significantly different means were identified by Duncan's 

multiple range test. The statistical package SPSS version 10.0 (SPSS Inc., 

USA) was used for analysis of the data. 

7.3. Results 

Gradual adaptation of juvenile sea bream to FW in winter, spring, and 

autumn resulted in 40%, 20%, and 20%, respectively of cumulative mortality 

after 7 days of onset of salinity challenge. Total deaths occurred between the 

3rd and the 4th days, when salinity reaches its lowest levei (2ppt) 

corresponding to freshwater. 

In spring and autumn (results not available for winter), higher quantity 

of PRL was released compared to the levei of pituitary gland content (Table 

7.1). In ali experiments, PRL released from pituitaries incubated in isotonic 

médium show significant differences between fish reared in SW and fish 

transferred to FW (Tables 7.1 and 7.2; Fig. 7.1), In contrast, very similar 

results were obtained between FW and SW fish which pituitaries were 

incubated in hypotonic médium, except during autumn. In this season, the 

significant difference between PRL released by pituitaries of FW and SW fish 

may be partly explained by the high variability encountered between the 

values of FW adapted fish (Tables 7.1 and 7.2; Fig. 7.1). 

The results indicate that sea bream PRL cells are directly responsive to 

the culture médium osmorality, although again in autumn the differences were 
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not significant, probably related with the high variability between the values 

obtained in this experiment. Moreover, pituitaries from SW-adapted fish in 

winter secreted the same quantity of PRL in both types of culture médium 

(Tables 7.1 and 7.2; Fig. 7.1). 

A seasonal variation was observed on in vitro PRL release. 

Interestingly, pituitaries collected from FW fish and cultured in isotonic 

médium released similar leveis of PRL in ali seasons (2-3/xg/ml) (Table 7.3; 

Fig. 7.1). 

Table 7.1 - PRL release and pituitary gland PRL content (mean±SEM) after 
incubation in isotonic médium and hypotonic médium. The number of pituitary glands 
analysed are shown in brackets. 

PRL release PRL pituitary content 
Isotonic médium (MQ/ml) (Mg/ml) 
Experiment 1 (winter) FW 2.16 0.27 (8) - 

SW 0.45 ± 0.01 (8) - 

Experiment 2 (spring) FW 2.43 t 0.24 (13) 0.26 ±0.07 (14) 
SW 1.85 t 0.11 (15) 0.27 ±0.07 (14) 

Experiment 3 (autumn) FW 2.58 t 1.74 (13) 0.33 ± 0.08 (14) 
SW 0.94 t 0.48 (13) 0.27 ±0.03 (15) 

Hypotonic médium 
Experiment 1 (winter) FW 0.48 ± 0.03 (8) - 

SW 0.48 0.02 (8) - 

Experiment 2 (spring) FW 1.53 ± 0.24 (14) 0.26 i 0.07 (15) 
SW 1.15 ± 0.12 (14) 0.28 ±0.07 (15) 

Experiment 3 (autumn) FW 1.97 ±1.24 (14) 0.37 i 0.12 (13) 
SW 0.75 ±0.45 (14) 0.35 ±0.11 (15) 

When fish are transferred from SW to FW there is an initial rapid 

adaptative period (± 24hr) with disturbances of osmotic and ionic balance and 

a period of chronic regulation when the preceding parameters achieve 

homeostasis. In the present study, a more detailed analysis was made of in 

vitro PRL release from pituitaries cultured in isotonic médium because fish 

were sacrificed 7 days after the onset of salinity challenge and survivors had 
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already achieved osmotic and ionic balance homeostasis. Moreover, 

incubation of pituitaries from SW-adapted fish in hypotonic médium could 

indicate how osmotic and ionic environment might alter in vitro PRL cells 

activity. In ali the experiments a more detailed analysis of these two aspects 

were carried out. 

Experiment 1: Effect of low salinity challenge on in vitro PRL release 

during late winter 

In isotonic culture médium, cultured pituitary glands obtained from FW- 

adapted fish released significantly (P<0.001) more PRL that the pituitaries 

collected from SW-adapted fish (Tables 7.1 and 7.2; Fig 7.1). Under these 

conditions, the levei of PRL secretion in FW-challenged sea bream was about 

4-fold higher to that shown by SW-adapted fish. 

Pituitaries glands from SW-adapted fish incubated in hypotonic and 

isotonic culture médium released the same amount of PRL (Tables 7.1 and 

7.2; Fig 7.1). 

Table 7.2 - Significant differences between means of PRL released a) by pituitary 
glands incubated in isotonic and hypotonic médium, and b) by pituitary glands 
collected from FW and SW fish. {*), (**), and (***) means significantly different at 
P<0.05, P<0.01, and P<0.001, respectively. 

Isotonic médium Hypotonic médium 
Experiment 1 (winter) 

FW a) *** 
SW 

b) *** 
a) ns 

b) ns 
Experiment 2 (spring) 

FW a) ** 
SW 

br 

a) *** 
b) ns 

Experiment 3 (autumn) 
FW a) ns 
SW 

b) ** 
a) ns 

b) ** 
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Expehment 2: Effect of low salinity challenge on in vitro PRL release 

during spring 

In isotonic culture médium, cultured pituitary glands obtained from FW- 

adapted fish released significantly (P<0.05) more PRL that the pituitaries 

collected from SW-adapted fish (Tables 7.1 and 7.2; Fig 7.1). Under these 

conditions, the levei of PRL secretion in FW-challenged sea bream was about 

3-fold higher than that of SW-adapted fish. 

Pituitary glands from SW-adapted fish incubated in hypotonic culture 

médium, secreted significantly (P<0.001) less PRL compared to the leveis 

obtained in isotonic cultures (Tables 7.1 and 7.2; Fig 7.b). 

Table 7.3 - Seasonal variation of in vitro PRL release expressed as significance 
levei of difference between means. (*), (**), and (***) significantly different at P<0.051 

P<0.01, and PO.001, respectively. 

Isotonic médium 

FW ns 

SW *** 

Hypotonic médium 

FW * 

SW 

Experiment 3: Effect of low salinity challenge on in vitro PRL release 

during autumn 

In isotonic culture médium, cultured pituitary glands obtained from FW- 

adapted fish released significantly (P<0.01) more PRL than the pituitaries 

collected from SW-adapted fish (Tables 7.1 and 7.1; Fig 7.1). In isotonic 

culture, the levei of PRL secretion in FW-challenged sea bream was about 1- 

fold higher than that of SW-adapted fish. 
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late winter 
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pituitaries cultured on either 
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210C., during different times of the 
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Pituitary glands from SW-adapted fish incubated in hypotonic culture 

médium, secreted quantities of PRL which were not significantly different from 

the leveis secreted by pituitaries maintained in isotonic cultures, although the 

lack of a significant difference may be partly explained by the high variability 

encountered between the values obtained in this experiment (Tables 7.1 and 

7.2; Fig 7.1). 

7.4 Discussion 

The present results suggest that PRL has an important role in the 

survival of juvenile sea bream transferred to FW. In late winter, the cumulative 

mortalities of up to 40%, demonstrated at this time of year sea bream had a 

poor osmoregulatory capacity. A clear improvement in efficiency of the 

osmoregulatory mechanism was observed in spring and autumn, when the 

cumulative mortality decreased to about 20%. A similar seasonal change in 

the osmoregulatory ability has previously been reported for brook charr 

(Salvelinus fontinalis) and Atlantic cod (Gadus morhua) (Dutil et a/., 1992; 

Claireaux and Audet, 2000). Moreover, the time needed to restore osmotic 

and ionic balance after transfer was also dependent on season. Establishing 

the existence of a dynamic response to low salinity was beyond the scope of 

the present study, but it has been reported in Mozambique tilapia 

{Oreochromis mossambicus), zander (Stizostedion lucioperca), brook charr 

(Salvelinus fontinalis), and sea bream that the adaptation to changes in 

externai salinity takes place in two different phases (Mancera et ai, 1993a; 

Morgan et ai, 1997; Kelly and Woo, 1999; Claireaux and Audet, 2000; Brown 

et ai, 2001; Seale et ai, 2002). There is an initial rapid adaptative period 
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(± 24hr), with disturbances of osmotic and ionic balance, and a subsequent 

period of chronic regulation, when the preceeding parameters achieve 

homeostasis. The length of the second period is 4, 5, 6 or 7 days and is 

species dependent (Mancera et ai, 1993a; Morgan et ai, 1997; Kelly and 

Woo, 1999; Claireaux and Audet, 2000; Brown et ai, 2001; Seale et ai, 2002) 

and also on the time of the year that transfer takes place (Dutil et ai, 1992; 

Claireaux and Audet, 2000). 

It is possible that there is seasonal variation in the physiological 

response of sea bream to low salinity. The seasonal differences in pituitary 

activity and the differential secretion of PRL isoforms (chapter 4, figures 4.2 

and 4.3) may explain the different results obtained when sea bream are 

exposed to changes in salinity (2ppt) during late winter. 

In sea bream, Mancera et ai (1993b) describe an activation of the PRL 

cells in the pituitary gland after challenge with brackish water. The preceding 

results are in good agreement with the results obtained in the present study 

where in ali experiments PRL secretion was stimulated in pituitaries from FW- 

adapted fish cultured in .isotonic médium (320 mOsm/kg, Na+ 170 mM). 

Isotonic médium was utilized for this analysis because it was considered that 

after 7 days of salinity challenge, the survivors had achieved full acclimation 

and plasma osmorality was not significantly different from SW-adapted fish 

(Mancera et ai, 1993a; Kelly and Woo, 1999; Brown et ai, 2001). In previous 

studies with sea bream a short adaptative period of 24-48hrs exists when a 

significant plasma hypoosmorality and reduction in ion leveis occurs. This is 

then followed by a chronic regulatory period in which osmotic and ionic 

balance are restored to near those prior to transfer (Mancera et ai, 1993a). In 
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the present study the amount of PRL release in isotonic culture médium by 

FW-adapted fish reached similar leveis in ali seasons (2-3/xg/ml) and a 

significant increase compared with the amount secreted by SW fish. The 

increment of PRL release from SW- to FW-adapted fish was smaller in spring 

(31%), when the basal secretion of PRL is relatively high. In contrast, the 

increment obtained in late winter (380%) was significantly higher as it 

coincides with a period when an abrupt decrease in basal PRL secretion is 

observed afterthe spawning season (chapter 4, figure 4.2). 

Low osmolarity challenge by itself in vitro has been used as a model to 

study the control of pituitary secretion and synthesis, but the capacity of 

isolated PRL cells to respond directly to changes in osmolarity of the culture 

médium is unclear. Earlier studies in several different teleost fish identified an 

inverse relationship between médium osmolarity and PRL release in vitro (for 

reviews Clarke and Bern, 1980 and Wigham, 1992). In the present study, the 

results indicate that sea bream PRL cells are directly responsive to the culture 

médium osmorality, although in autumn the differences were not significant 

which was probably due to the high variability between the values obtained in 

that time of the year. Moreover, pituitaries from SW-adapted fish in winter 

secreted the same quantity of PRL in both types of culture médium. There are 

conflicting results in the literature about the effects of osmolarity on in vitro 

PRL release (see Wigham, 1992 for review). One explanation given for the 

vahable results (Wendelaar-Bonga et al., 1985) was that PRL cell activity in 

vitro was related to the ambient osmotic pressure previously experienced in 

vivo, and such an explanation seems to apply to the results of the present 

study. This means that the mechanism which stimulated PRL release in FW- 
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adapted fish was developed in vivo when the salinity challenge took place and 

was retained and reflected in vitro when the pituitary glands were cultured. 

In conclusion, the present results indicate that cultured pituitaries of 

fish challenged with water with extremely low values of salinity (2ppt), release 

significantly more PRL that pituitary glands from SW-adapted fish. This 

suggests a potential role for PRL in FW adaptation of sea bream. Moreover, 

the study indicates that the success of adaptation may depend on the time of 

year at which transfer to FW occurs. 
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PRL released in vitro by cultured pituitaries during winter and summer had 

different isoeiectric points and was isolated by continuous elution 

electrophoresis. Database searches using the partial amino acid sequence of the 

principal fragments obtained by enzymatic cleavage of the winter and summer 

form of PRL revealed they are similar. The existence of PRL genetic variants, 

observed in some teleosts (see Mazon, 2002 for review), was not clearly defined 

in the sea bream. Only 18% of winter PRL molecule was sequenced, while it was 

possible to sequence 46% of the PRL isolated in summer. The amino acid 

sequences obtained from winter and summer PRL were nearly identical to each 

other and 99.5% identical to the deduced amino acid sequence of sea bream 

PRL cDNA (Santos et a/.. 1999). The seasonal charge variants of PRL identified 

by isoeiectric focusing may arise as a consequence of post-translational 

modifications. In summary, sea bream PRL gave no detectable variants which 

differed in molecular weight although charge variants were found, which could be 

accounted for by modifications due to multiple post-translational modifications. 

The present study is the first report to clearly demonstrate that modified forms of 

PRL exist in fish although a brief reference was already made for chum salmon 

PRL by Kawauchi et ai (1983). Although in the present study PRL modifications 

were not elucidated this important aspect of the PRL characterization is an issue 

that still remains to be clarified and needs further investigation. 
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Although teleosts do not possess a hypothalamo-hypophyseal portal 

system, depending instead on more-or-less direct contacts between 

hypothalamic neurosecretory neurons and the endocrine cells of the pituitary, 

accumulating evidence suggests that the regulatory hypothalamic factors in 

these animais are similar to those in other vertebrate which have a well defined 

portal blood system (chapter 1, section 1.6). The list of PRL secretagogues is 

rather long but in the present study attention was paid to galanin (Gal), which in 

terms of its potential physiological activity is one of the better characterized 

paracrine factors in the pituitary, and vasoactive intestinal peptide (VIP), which 

has long been characterized as a likely local factor influencing function of PRL- 

cells, and recently has been shown to interact with galanin. The action of a non- 

hypothalamic factor, the steroid E2, was also studied. It is now well established 

that estrogens in addition to having an important role in the mammalian 

reproductive axis also have a modulatory effect on PRL release. (see 

Falkenstein, 2000 for review). A stimulatory effect of E2 on the activity of PRL 

cells has also been reported in birds (Knapp et a/., 1988) and teleosts (Barry and 

Grau, 1986; Borski et al., 1991; Wigham, 1992; Williams and Wigham, 1994; Poh 

ef a/., 1997; Weber et al., 1997). In sea bream, previous studies have shown that 

during the breeding season, PRL expression increases significantly after E2 

treatment in juveniles. However, PRL expression was significantly reduced by E2 

treatment in adults (Cavaco et al., 2003), suggesting that the response of PRL- 

cells to E2 is not a direct action on the releasing mechanism and is more likely to 

be part of an overall enhancement of the secretory process. In the present study 
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the responsiveness of PRL cells to E2 is not clear cut because results from 

experiments carried out in the same season (but in different years) do not give 

entirely consistent results. The variation in sea bream PRL cell responsiveness to 

E2 raises question about whether this also occurs in other teleost fish, and 

explains the different responsiveness of fish to E2, e.g. the platyfish {Xiphophorus 

maculatus), where E2 had no effect on PRL cells activity (Kim et ai, 1979). If an 

environmental cue such as changing temperature can accurately be used to alter 

the responsiveness of PRL cells to E2, the comparison between experiments 

carried out in the same month but in different years, which may have significant 

fluctuations on environmental factors, should be analyzed with particular care. 

The identification and characterization of interactions between internai and 

externai factors certainly represent a useful approach to understanding the 

complex responsiveness of PRL cells to estrogens. 

The interaction between a range of factors within the pituitary gland, 

although likely to be of a subtle nature, almost certainly temper or potentiate the 

responses to signals both internai and externai of the animal. For example, 

intrapituitary Gal plays a key role in modulating the effect of estrogens on 

mammalian lactotrophs and also seems to be implicated in the response of 

lactotrophs to VIP (see Falkenstein, 2000 for review). Estrogens also induced an 

increase in Gal immunoreactive material in the pituitary of lizards, quails, and 

eels (Olivereau and Olivereau, 1991b; Tsutsui et ai, 1998; Lamanna et ai, 

1999). The interaction between E2 and Gal on the in vitro release of PRL from the 

sea bream pituitary gland has been demonstrated in the present study (Fig. 8.1). 
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In experiments carried out both during winter and spring, Gal stimulated pituitary 

PRL secretion in vitro when the fish from which the pituitary gland was obtained 

had not previously been primed with E2. However, when pituitary glands are 

obtained from fish primed with the E2, Gal had no effect on in vitro PRL secretion. 

VIP has no effect on in vitro PRL release from pituitaries of control fish but blocks 

the stimulatory action of E2 on pituitary PRL release (Fig. 8.1). In general E2 

seems to enhance the sensitivity of PRL cells to both VIP and Gal suggesting 

these peptides may be involved in modulating PRL release during the 

reproductive cycle as has been shown in birds and mammais (Hyde et al., 1991; 

Bloch et al., 1993; Youngreen et a/., 1994; Wynick et al., 1998; Leibowitz et al., 

1998; Bédécarrats et al., 1999; Maney et al., 1999; Rugam et al., 1999). 

Our results seem to confirm that there is an underlying physiological 

difference in the role of peptides in fish and tetrapods. For example, in the 

present study, the effect of VIP on pituitary PRL secretion in sea bream differs 

from that observed in mammais, amphibians, and avian species, where the 

peptide is a potent stimulator of PRL release (Hall and Chadwick, 1985, Koiwai et 

al., 1986; MacNamee et al., 1986; Youngreen et al., 1994; Bédécarrats et al., 

1999; Maney et al., 1999; Schwartz, 2000). But VIP in tilapia has an inhibitory 

effect on PRL secretion (Kelley et al., 1988) and the results of sea bream and 

tilapia taken together may be indicative of a difference in the role of VIP in fish. 

The same rationale could be applied to Gal since estrogens positively regulate 

this peptide in mammais, lizards, quails, and eels (Olivereau and Olivereau, 

1991b; Gabriel et al., 1992; Bloch et al., 1993; Brann et al., 1993; Hyde et al. 
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1993; Crawley, 1995; Tseng et ai, 1997; Leibowitz et ai, 1998; Tsutsui et ai, 

1998; Lamanna et ai, 1999; Rugarn et ai, 1999; Shen et ai, 1999; Degerman et 

ai, 2002), and, in the sea bream Gal inhibited or had no effect on PRL release in 

E2primed animais. 

In addition to the involvement of E2, Gal and VIP in modulating PRL 

release during the sea bream reproductive cycle, PRL also plays a role in water 

and electrolyte balance. In most euryhaline teleosts it is generally accepted that 

PRL is the FW-adapting hormone, although this is not the case for teleosts in 

general (see Manzon, 2002 for review). Sea bream eggs hatch during the winter 

generally in full sea water, the larvae migrate in early spring towards protected 

coastal waters, and return to the open sea in late autumn, where the adult fish 

breed (Moretti et ai, 1999). The lagoon and estuarine systems where sea bream 

inhabit during the juvenile period usualiy suffer wide variations in salinity, and fish 

must adapt at different stages of their life cycle to different salinity challenges. A 

fine endocrine control enabling the fish to cope with such variations of externai 

salinity is essential for their survival. In the present study, the fact that extreme 

low salinity challenge stimulated in vitro PRL release (Fig. 8.1), suggests that the 

hormone, PRL, may be the main candidate for the role of a FW-adapting 

hormone in sea bream. Moreover, studies of the distribution of PRL receptors 

have shown abundant transcripts in sea bream osmoregulatory tissues (Santos 

et ai, 2001). 
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Circadian and circannual cycles 

Internai clock 9 

Higher temperature 

Lower salinity 

Figure 8.1 - An overview of the regulation of in vitro PRL secretion in sea bream. 
Circulating E2 either stimulates or has no effect on PRL secretion but, in general, 
seems to enhance the sensitivity of PRL cells to both VIP and Gal. In pituitary glands 
obtained from control fish Gal stimulates PRL secretion, but on fish primed with E2, 
Gal has no effect on PRL secretion (0). VIP has no effect on in vitro PRL release 
from pituitaries of control fish (0) but blocks the stimulatory action of E2 on pituitary 
PRL release (-). PRL secretion show a circadian and circannual pattem which may 
be controlled by an internai biological clock, entrained by temperature increase. 
Lower salinity is also a stimulatory exogenous signal of sea bream in vitro PRL 
secretion. 

Temperature (but not photoperiod) is another externai factor that influenced 

sea bream PRL cells activity, with higher temperature increasing in vitro PRL 

secretion and lower temperature having the opposite effect (Fig. 8.1). In addition, 

a seasonal variation was observed in the in vitro responsiveness of PRL cells to 

externai (water osmolarity) and internai stimuli (E2, Gal and VIP), and a clear 

annual cycle of pituitary gland activity. This is highlighted by the seasonal 

variation in the basal pituitary PRL release rates but also by a variation in the 

relative concentration of PRL charge variants released from the pituitary gland. 
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For example, during autumn and winter, a single acidic variant of PRL is detected 

(related to spawning?). In contrast, during spring and summer there is a 

decrease in the concentration of the dominant winter PRL variant and a 

concomitant rise in the release of multiple charge variants (related to the 

abundance of food during spring, and/or migrations from the open sea to coastal 

waters?). 

In mammals, some externai factors induce a melatonin signal produced by 

the pineal gland, which is decoded by a gene-based clock mechanism in 

specialized target organs, including the pituitary gland (for a review, see Lincoln 

et ai, 2003). In some teleosts, melatonin secretion from the pineal gland shows a 

rhythmicity and is influenced by externai factors such as temperature, 

photoperiod, and light intensity (Zachmann et ai, 1992; Randall et ai, 1995; 

Garcia-Allegue et ai, 2001; Porter et ai, 2001). The expression of genes 

associated with melatonin production have been proposed to be controlled by a 

circadian clock in the pineal gland (Bégay et ai, 1998; Coon et ai, 1998). In 

trout, melatonin modulates in vitro PRL secretion in this species (Falcon et ai, 

2003). If a similar clock exists in the sea bream, it could be a factor responsible 

for both the cyclic variation in activity and reponsiveness of the pituitary prolactin 

cells identified in the present thesis. 

In summary, PRL cell regulation in the sea bream have a multifactorial 

control, involving the interaction between internai secretagogues and externai 

factors. In the present study, higher temperatures and low salinity stimulate in 

vitro PRL release. There is a physiological difference in the role of VIP and Gal in 
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sea bream compared with tetrapods. Moreover, E2 seems to enhance the 

sensitivity of PRL cells to both VIP and Gal, suggesting that these peptides may 

be involved in modulating PRL release during the reproductive cycle. The 

temporal pattern of pituitary activity and release of PRL charge vanants 

combined with the widespread distribution of PRLR in the sea bream 

reproductive and osmoregulatory tissues (Santos et ai, 1999; Santos et al., 

2001; Cavaco et a!., 2003), suggests that PRL may have an important function in 

reproduction and osmoregulation in this species 
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It has been recognized that PRL is a highly polymorphic hormone. In the 

present study sea bream PRL heterogeneity has begun to be defined in 

structural terms. The results suggested that sea bream PRL is not transcribed in 

more than one genetic form, although after translation a variety of chemical 

modifications may be introduced into the hormone and a potential 

phosphorilation at Sise was proposed based on present data. Moreover, the 

diversity of charge variants detected in the present study gives an indication of 

the high PRL heterogeneity. This important aspect of the sea bream PRL 

characterization is an issue that still remains to be clarified. Further investigation 

to a better understanding of structural modifications in sea bream PRL and their 

biological consequences, would allow us to understand exactly how the hormone 

is produced and how it regulates several physiological functions in sea bream. 

The results from the present thesis into sea bream PRL cell regulation 

confirm that, as for ali vertebrate species, a multifactorial control involving at least 

E2, Gal, VIP, and environmental factors exists. During the reproductive season, 

E2 plays a role of a primary secretagogue and Gal and VIP act as modulators of 

sea bream PRL secretion. But under different physiological circumstances Gal 

and VIP change their mode of action and become primary secretagogues. One 

possible explanation is that the responsiveness of PRL cells to Gal and VIP is 

linked to the sexual maturity of this species. To clarify this issue it will be of 

interest to carry out a more detailed analysis of the response of PRL cells to Gal 

and VIP using fish at different stages of their life cycle. Moreover, the 
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identification of Gal immunoreactive fibres in the pituitary gland and the 

Identification of Gal and VIP receptors in PRL cells would further substantiate the 

results from control mechanisms of in vitro PRL release. The seasonal variation 

of PRL cells responsiveness to E2 observed in the present study also needs a 

more systematic investigation. 

Results ali suggest that in common with other species sea bream has 

circannual or/and circadian clocks but the evidence is still insufficient for any 

definitive conclusion to be made. If a circadian clock exists in the sea bream, it 

could be a factor responsible for both the cyclic variation in activity and 

reponsiveness of the pituitary prolactin cells identified in the present thesis. More 

information is needed to increase our knowledge of how sea bream translate 

environmental information into endocrine signals. 

For the future, both a more comprehensive investigation of sea bream 

PRL cell regulation and a broadening of the research to discover the biological 

roles of PRL in the sea bream are required. 

160 



References 

161 



References 

References 

Abe, H., Engler, D., Molitch, M.E., Bollinger-Gruber, J., and Reichlin, S. (1985) - Vasoactive 
intestinal peptide is a physiological mediator of prolactin release in rat. Endocrinology 116, 1383 - 
1390. 

Acher, R., Chauvet, J., and Chauvet, M-T (1970) - Molecular evolution of the neurohypophysial 
hormones: The active peptides of a primitive bony fish Polypterus bichir. FEBS Letters 11 (5), 
332-335. 

Adriaensen, D., Scheuermann, D. W., Gomi, T., Kimura, A., Timmermans, J. P., and de Groodt- 
Lasseel, M. H. (1994) - The pulmonary neuroepithelial endocrine system in the quail, Cotumix 
cotumix. Light- and electron-microscopial immunohystochemistry and morphology. AnatRec 239, 
65-74. 

Almuly, R., Cavari, B., Ferstman, H., Kolodny, O., and Funkenstein, B. (2000) -Genomic structure 
and sequence of the gilthead seabream (Sparus aurata) growth hormone-encoding gene: 
identification of minisatellite polymorphism in intron I. Genome 43, 836-45. 

Amey, A. P., and Whittier, J. M. (2000) - Seasonal pattems of plasma steroid hormones in males 
and females of the bearded dragon lizard, Pogona barbata. Gen Comp Endocrinol 117, 335^2. 

Anadón, R., Becerra, M., Diaz, M. L, and Manso, M. J., (2001) - Presence and development of 
thyrotropin-releasing hormone-immunoreactive amacrine cells in the retina of a teleost, the brown 
trout {Salmo trutta fario). Neurosci299, 225-8. 

Andersson, A. M,, Carisen, E., Petersen, J. H., and Skakkebaek, N. E. (2003) - 
Variation in leveis of serum inhibin B, testosterone, estradiol, luteinizing hormone, follicle- 
stimulating hormone, and sex hormone-binding globulin in monthly samples from healthy men 
during a 17-month period; possible effects of seasons. J Clin Endocrinol Metab 88, 932-7. 

Anthony, P. K., and Powers, C. A, (1993) - Characterization of cysteamine induction of the 22k 
prolactin variant in the rat pituitary. Neuroendocrinology 57, 167-176. 

Anthony, P. K., Stoltz, R. A., Pucci, M. L, and Powers, C. A. (1993) - The 22K variant of rat 
prolactin: evidence for identity to prolactin-(1-173), storage in secretory granules, and regulated 
release. Endocrinology 132, 806-14. 

Aramburo, C., Carranza, M., Sanchez, R., and Perera, G. (1989) - Partial biochemical and 
biological characterization of puhfied chicken growth hormone (cGH). Isolation of cGFI charge 
variants and evidence that cGH is phosphorylated. Gen Comp Endocrinol 76, 330-9. 

Aramburo, C., Montiel, J. L, Proudman, J. A., Berghman, L. R., and Scanes, C. G. (1992) - 
Phosphorylation of prolactin and growth hormone. J Mol Endocrinol Q, 183-91. 

Auperin,B., Baroiller, J. F., Ricordel, M. J., Fostier, A., and Prunet, P. (1997) - Effect of 
confinement stress on circulating leveis of growth hormone and two prolactins in freshwater- 
adapted tilapia {Oreochromis niloticus). Gen Comp Endocrinol 108, 35-44. 

Ayson, F. G., Kaneko, T., Hasegawa, S., and Hirano, T. (1994) -.Differential expression of two 
prolactin and growth hormone genes during early development of tilapia (Oreochromis 
mossambicus) in fresh water and seawater; implications for possible involvement in 
osmoregulation during early life stages. Gen Comp Endocrinol 95,143-52. 

162 



References 

Ayson, F. G., Kaneko, T., Tagawa, M., Hasegawa, S., Grau, E. G., Nishioka, R. S., King, D. S., 
Bern, H. A., and Hirano, T. (1993) - Effects of acclimation to hypertonic environment on plasma 
and pituitary leveis of two prolactins and growth hormone in two species of tilapia, Oreochromis 
mossambicus and Oreochromis niloticus. Gen Comp Endocrinol Jan 89.138-48. 

Azumava Y, Tsutsui K (1996) - Localization of galanin and its binding sites in the quail brain. 
Brain Res 727,187-95. 

Ball, J. N., and Baker, B. I. (1969) - The pituitary gland: anatomy and histophysiology. In: Hoar, 
W. S. and Randall, D. J. (eds) - Fish Physiology vol 2. Academic Press, New York London, pp 1- 
110. 

Balsa, J. A., Sanchez-Franco, F., Pazos, F., Lara, J. I., Çorenzo, M. J., Maldonado, G., and 
Cacicedo, L. (1998) - Direct action of serotonin on prolactin, growth hormone, corticotropin and 
luteinizing hormone release in cocultures of anterior and posterior pituitary lobes: autocrine 
and/or paracrine action of vasoactive intestinal peptide. Neuroendocrinology 68, 326-333. 

Baranowska, B., Chmielowska, M., Wolinska-Witort, E., Roguski, K., and Wasilewska-Dziubinska, 
E. (2001) - The relationship between neuropeptides and hormones in starvation. Neuroendocrinol 
Lett 22, 349-55. 

Barcellos, L. J., Wassermann, G. F., Scott, A. P., Woehl, V. M., Quevedo, R. M., Ittzes, I., 
Krieger, M. Fl., and Lulhier, F. (2001) - Steroid profiles in cultured female jundia, the Siluridae 
Rhamdia quelen (Quoy and Gaimard, Pisces Teleostei), during the first reproductive cycle. Gen 
Comp Endocrinol Mar 121, 325-32. 

Barrett, R. K., and Takahashi, J. S. (1995) - Temperature compensation and temperature 
entrainment of the chick pineal cell circadian clock. J Neurosei 15, 5681-92. 

Barry, T.P. and Grau, E.G. (1986) - Estradiol 17(3 and thyrotropin-releasing hormone stimulate 
prolactin release from the pituitary gland of a teleost fish in vitro. Gen Comp Endocrinol 62, 306- 
314. 

Bartfai, T. (2000) - Galanin, a neuropeptide with important central nervous system actions. The 
American College of Neuropsychopharmacology. Psychopharmacology (the fourth generation of 
progress). http;//www.acnp.org/g4/ 

Batten, T. F., and Ball, J. N. (1976 ) - Circadian changes in prolactin cell activity in the pituitary of 
the teleost Poecilia latipinna in freshwater. Cell Tissue Res 165, 267-80. 

Batten, T. F., and Ball, J. N. (1977) - Quantitative ultrastructural evidence of alterations in 
prolactin secretion related to externai salinity in a teleost fish (Poecilia latipinna). Cell Tissue Res 
185, 129-45. 

Batten, T. F., Berry, P. A., Maqbool, A., Moons, L, and Vandesande, F. (1993) - 
Immunolocalization of catecholamine enzymes, serotonin, dopamine and L-dopa in the brain of 
Dicentrarchus labrax {Teleostei). Brain Res Buli 31, 233-52. 

163 



References 

Batten, T. F., Moons, L, Cambre, M., and Vandesande, F. (1990) - Anatomical distribution of 
galanin-like immunoreactivity in the brain and pituitary of teleost fishes. Neurosci Lett 111, 12-7. 

Batten, T. F., Moons, L, and Vandesande, F. (1999) - Innervation and control of the 
adenohypophysis by hypothalamic peptidergic neurons in teleost fishes: EM 
immunohistochemical evidence. Microsc Res Tech 44, 19-35. 

Batten, T. F., Young, G., Ball, J. N. (1983) - Secretory activity of Poecilia latipinna (Teleostei) 
pituitary in vitro: rostral pars distalis and proximal pars distalis. Gen Comp Endochnol 51, 113- 
130. 

Becerra, M., Manso, M. J., Rodríguez-Moldes, I., and Anadón, R. (1995) - Ontogeny of 
somatostatin-immunoreactive systems in the brain of the brown trout {Teleostei). Anat Embryol 
(Berl) 191, 119-37. 

Bédécarrats, G., Guémené, D., Kuhnlein, U., and Zadworny, D. (1999) - Changes in leveis of 
immunoreactive prolactin isofroms during a reproductive cycle in turkey hens. Gen Comp 
Endochnol 113, 96-104. 

Begay, V., Falcon, J., Cahill, G. M., Klein, D. C., and Coon, S. L. (1998) -Transcripts encoding 
two melatonin synthesis enzymes in the teleost pineal organ: circadian regulation in pike and 
zebrafish, but not in trout. Endocnnology 139, 905-12.. 

Bello, A. R., Milan, J., Anglade, I., Martin, A., Negrin, I., Diaz, C., Conlon, J. M., Tramu, G., and 
Kah, O. (1994) - Comparative distribution of neurotensin-like immunoreactivity in the brain of a 
teleost (Carassius auratus), an amphibian (Hyla meridionalis), and a reptile (Gallotia galloíi). J 
Comp Neurol 348, 4 511 -30 

Benjamin, M. (1974) - Seasonal changes in the prolactin cell in the pituitary gland of the 
freshwater stickleback, Gasterosteus aculeatus, form leiurus. Cell Tiss Res 152, 93-102. 

Ben-Jonathan, N., and Hnasko, R. (2001) - Dopamine as a Prolactin (PRL) Inhibitor. Endocrine 
Reviews 22, 724-763. 

Ben-Jonathan, N,, Mershon, J. L, Allen, D. L, and Steinmetz, R. W. (1996) - Extra pituitary 
prolactin: distribution, regulation, functions, and clinicai aspects. Endocrine Reviews 17, 639-669. 

Benker, G., Jaspers, C., Hãusler, G., and Reinwein, D. (1990) - Control of prolactin secretion. 
Klin Wochenschr68. 1157-1167. 

Benyassi, A., Schwartz, C., Coon, S. L, Klein, D. C., and Falcon, J. (2000) - Melatonin synthesis: 
arylalkylamine N-acetyltransferases in trout retina and pineal organ are different. Neuroreport 11, 
255-8. 

164 



References 

Betchaku, T, and Douglas, W. W. (1980) - Fine structure of the rostral pars distalis of the 
adenohypophysis of the killifish, Fundulus heteroclitus, in fresh and salt water. Anat Rec Dec 
198, 595-609. 

Bloch, G. J., Eckersell, C., and Mills, R. (1993) - Distribution of galanin-immunoreactive cells 
within sexually dimorphic components of the medial preoptic area of the male and female rat. 
Brain Research 620. 259-268. 

Bohm, F., and Pernow, J. (2002) - Urotensin II evokes potent vasoconstriction in humans in vivo. 
fír J P/?armaco/135, 25-7 

Bole-Feysot, C., Goffin, V., Edery, M., Binart, N.. and Kelly, P.A. (1998) - Prolactin (PRL) and its 
receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor 
knockoutmice. EndocrRev 19, 225-268. 

Boler, J., Enzmann, F., Folkers, K., Bowers, C. Y., and Schally, A. V. (1969) - The identity of 
chemical and hormone properties of the thyrotropin releasing hormone and pyroglutamyL- 
histidyL-prolineamide. Biochem Biophys Comm 37, 505-510. 

Bollengier, F., Velkeniers, B., Hooghe-Peters, E., Mahler, A., and Vanhaelst, L. (1988) - Multiple 
forms of rat prolactin and growth hormone in pituitary cell subpopulations separated using Percoll 
gradient system; disulphide-bridged dimmers and glycosylated variants. J Endocrínol 120, 201- 
206. 

Borski, R. J., Hansen, M. U., Nishioka, R. S., and Grau, E. G. (1992)- Differential processing of 
the two prolactins of the tilapia {Oreochromis mossambicus) in relation to environmental salinity. 
The Journal of Experimental Zoology 264, 46-54. 

Borski, R.J., Helms, L.M., Richman, N.H. and Grau, E.G. (1991) - Cortisol rapidly reduces 
prolactin release and cAMP and 45Ca++ accumulation in the cichlid fish pituitary in vitro. Proc Natl 
Acad Sei 88, 2758-2762. 

Borski, R.J., Hyde, G. N., and Fruchtman, S. (2002) - Signal transduction mechanisms mediating 
rapid, nongenomb effeets of cortisol on prolactin release. Steroids 67, 539-48. 

Borski, RJ.. Hyde. G. N., Fruchtman, S.. and Tsai, W. S. (2001) - Cortisol suppresses prolactin 
release through a non-genomb mechanism involving interactions with the plasma membrane. 
Comp Biochem Physiol B Biochem Mol Bio! 129, 533-41. 

Botella, A., Delvaux, M., Frexinos, J., and Bueno, L. (1992)- Comparative effeets of galanin on 
isolated smooth muscle cells from ileum in five mammalian species. Life Sciences 50, 1253-1261. 

Brann, D. W., Chorich, L. P., and Mahesh, V. B. (1993) - Effect of progesterone on galanin 
mRNA leveis in the hypothalamus and the pituitary; correlation with the gonadotropin surge. 
Neuroendocrinology 58, 531-538. 

Brenneman, D. E., Hill, J. M., and Gozes, I. (2000) - Vasoactive Intestinal Peptide In The Central 
Nervous System. The American College of Neuropsychopharmacology. Psychopharmacology 
(the fourth generation of progress). http:// www.acnp.orq/q4/ 

165 



References 

Brinca, L, Fuentes, J., and Power, D. M. (2003) - The regulatory action of estrogen and 
vasoactive intestinal peptide on prolactin secretion in sea bream {Sparus aurata, L). Gen Comp 
Endocrinol 131, 117-25. 

Briski, K. P., Swanson, G. N., and Sylvester, P. W. (1996) - Size and charge heterogeneity of 
pituitary and plasma prolactin in the male rat. Neuroendocrinology 63, 437-45. 

Brown, J. A., Moore, W. M., and Quabius, E. S. (2001) - Physiological effects of saline waters on 
zander. Journal of Fish Biology, 59, 1544-1555. 

Bres, O., and Nicoll, C. S. (1993) - Effects of prolactin, growth hormone, and triiodothyronine on 
prolactin receptors in larval and adult tiger salamanders {Ambystoma tigrinum). J Exp Zoo! 
266,290-8. 

Buchan, A. M., Lance, V., and Polak, J. M. (1982) - The endocrine pâncreas of Alligator 
mississippiensis. An immunocytochemical investigation. Celi Tissue Res 224, 117-28. 

Burazin, T. C. and Gundlach, A. L. (1998) - Inducible galanin and GalR2 receptor system in 
motor neuron injury and regeneration. J Neurochem 71, 879-82. 

Burazin, T. C., Larm, J. A., Ryan; M. C., and Gundlach, A. L. (2000) - Galanin-R1 and -R2 
receptor mRNA expression during the development of rat brain suggests differential subtype 
involvement in synaptic transmission and plasticity. European Journal of Neuroscience. 12, 2901- 
2917. 

Burgus, R., Dunn, T. F., Desidério, D. M., Ward, D. N., Vale, W., and Guillemin, R. (1970) - 
Biological activity of synthetic polypeptide derivatives related to the structure of hypothalamic 
TRF. Endocrlnology 86, 573-582. 

Carraway, R., and Bhatnagar, Y. M. (1980) - Isolation, structure and biologic activity of chicken 
intestinal neurotensin. Peptides 1,167-74. 

Carraway, R., and Bhatnagar, Y. M. (1980) - Immunochemical characterization of neurotensin- 
like peptides in chicken. Peptides 1, 159-65. 

Carraway, R., and Leeman, S. E. (1973) - The isolation of a new hypotensive peptide, 
neurotensin, from bovine hypothalamus. J Blol Chem 248, 6854-61. 

Cavaco, J. E. , Santos, C. R. , Ingleton, P. M., Canario, A. V., and Power, D. M. (2003) - 
Quantification of prolactin (PRL) and PRL receptor messenger RNA in gilthead sea bream 
{Sparus aurata) after treatment with estradiol-17p S/o/ ReproddQ, 588-94. 

Chaiseha, Y., Youngren, O. M., and El Halawani, M. E. (1998) - Vasoactive intestinal peptide 
secretion by turkey hypothalamic explants. Biol Reprod 59, 670-675. 

166 



References 

Chan, D. K. (1975 ) - Cardiovascular and renal effects of urotensins, I and II in the eel, Anguilla 
rostrata. Gen Comp Endocrinol 27, 52-61. 

Chan, Y. H., Cheng, K. W., Yu, K. L. and Chan, K. M. (1996) - Identification of two prolactin cDNA 
sequences from a goldfish pituitary cDNA library. Biochimica et Biophysica Acta 1307, 8-12. 

Chang, M. M., Leeman, S. E., and Niall, H. D. (1971) - Amino-acid sequence of substance P. Nat 
New Biol 232, 86-7. 

Chartrel, N., Conlon, J. M., Collin, F., Braun, B., Waugh, D., Vallarino, M., and Vaudry, H. (1998) - 
Urotensin II in the central nervous system of the frog Rana ridibunda. Biochemical 
characterization and immunohistochemical localization. Ann N Y Acad Sei 839, 506-7. 

Chartrel, N., Wang, Y., Fournier, A., Vaudry, H., and Conlon J. M. (1995) - Frog vasoactive 
intestinal polypeptide and galanin; primary structures and effects on pituitary adenylate cyclase. 
Endocrinology 136, 3079-86. 

Chaube, R., and Joy, K. P. (2002) - Effects of altered photoperiod and temperature, serotonin- 
affecting drugs, and melatonin on brain tyrosine hydroxylase activity in female catfish, 
Fieteropneustes fossilis: a study correlating ovarian activity changes. J Exp Zoo! 1 293, 585-93. 

Cheek, A. O., Thomas, P., and Sullivan C. V. (2000) - Sex steroids rela tive to alternative mating 
behaviors in the simultaneous hermaphrodite Serranus subligarius (Perciformes: Serranidae). 
Horm Behav 37,198-211. 

Chester-Jones, I., Ingleton, P. M., and Phillips, J. G. (1987) - Fundamentals of Comparative 
Endocrinology. Plenum Press, New York. 

Chiba, A., and Oka, S. (1999) - Serotonin-immunoreactive structures in the central nervous 
system of the garfish Lepisosteus productus {Semionotiformes, Osteichthyes). Neurosci Lett 281, 
73-6. 

Cimini, V. (2000) - Galanin coexsts with pituitary hormones in the fetal rat. Peptides 21, 1711- 
1716. 

Claireaux, G., and Audet, C. (2000) - Seasonal changes in the hypo-osmoregulatory ability of 
brook charr: the role of environmental factors. Journal of Fish Biology, 56, 347-373. 

Clarke, W. C., and Bem, H. A.(1980) - Comparative endocrinology of prolactin. In "Hormonal 
proteins and peptides", 8 (Li C. H., ed.). Academic Press. New York: pp 105-197. 

I67 



References 

Condeça, J. A. B. (2001) - Hormonal control of sex differentiation and reversal in sea bream 
Sparus aurata (L). Dissertação apresentada à Universidade do Algarve para obtenção do grau 
de Doutor. Universidade do Algarve, Faro. 

Conlon, J. M., Agius, L, George, K., Alberti, M. M., and Hazon, N. (1994 ) - Effects of dogfish 
urotensin II on lipid mobilization in the fasted dogfish, Scyliorhinus canicula. Gen Comp 
Endochnol 93, 177-80. 

Conlon J. M.. Agoston D. V., Thim L. (1985) - An elasmobranchian somatostatin: primary 
structure and tissue distribution in Torpedo marmorata. Gen. Comp. Endocr. 60, 406-413. 

Coon, S. L, Begay. V., Falcon, J., and Klein, D. C. (1998) - Expression of melatonin synthesis 
genes is controlled by a circadian clock in the pike pineal organ but not in the trout. Biol Celi 90, 
399-405. 

Corcoran, D. H., and Proudman, J. A. (1991) - Isoforms of turkey prolactin: evidence for 
differences in glycosylation and tryptic peptide mapping. Comp Biochem Physiol B 99, 563-570. 

Combrooks, E. and Parsons, R. L. (1991) - Source of sexually dimorphic galanin-like 
immunoreactive projections in the teleost fish Poecilia latipinna. The Joumal of Comparativo 
Neurology 304, 658-4365. 

Crawley, J. N. (1995)- Biological actions of galanin; review. Regulatory Peptides 59, 1-16. 

Cutfield, S. M., Carne, A., Cutfield, J. F. (1987) - The amino-acid sequences of sculpin islet 
somatostatin-28 and peptide YY. FEBS Leíí 214, 57-61. 

Curlewis, J. D. (1992) - Seasonal prolactin secretion and its role in seasonal reproduction: a 
review. Reprod Fértil Dev 4,1 -23. 

Degerman, A., Chun, D., Nguyen, T. B., Bravo, D. T., Alanis, J., Ròkaeus, A., and Waschek, J A. 
(2002) - Local action of estrogen and thyroid hormone on vasoactive intestinal peptide (VIP) and 
galanin gene expression in the rat anterior pituitary. Neuropeptides 36, 50-7. 

De Jesus, E. G., Hirano,T., and Inui, Y. (1994) - The antimetamorphic effect of prolactin in the 
Japanese flounder. Gen Comp Endocrinol 93, 44-50. 

De Lima, J. A., Oliveira, B., and Conlon, J. M. (1999) - Purification and characterization of insulin 
and peptides derived from proglucagon and prosomatostatin from the fruit-eating fish, the pacu 
Piaractus mesopotamicus. Comp Biochem Physiol B Biochem Mol Biol 122, 127-35. 

De Pedro, N., Céspedes, M. V., Delgado, M. J., and Alonso-Bedate, M. (1995) - The galanin- 
induced feeding stimulation is mediated via a2-adrenergic receptors in goldfish. Regulatory 
Peptides 57, 77-84. 

168 



References 

De Ruiter, A. J., Wendelaar Bonga, S. E., Slijkhuis, H., and Baggerman, B. (1986) - The effect of 
prolactin on fanning behavior in the male three-spined stickleback, Gasterosteus aculeatus L 
Gen Comp Endocrinol 64, 273-83. 

de Vlaming, V. L, Sage, M., Tiegs, R. (1975) - A diurnal rhythm of pituitary prolactin activity with 
diurnal effects of mammalian and teleostean prolactin on total body lipid deposition and liver 
metabolism in teleost fishes. J Fish B/o/7, 717-726. 

Diaz, M. L, Becerra, M,, Manso, M, J., and Anadón, R. (2001) - Development of thyrotropin- 
releasing hormone immunoreactivity in the brain of the brown trout Salmo trutta fario. J Comp 
Neurol 429,299-320. 

Diaz, M. L, Becerra, M., Manso, M. J., and Anadón, R. (2002) - Distribution of thyrotropin- 
releasing hormone (TRH) immunoreactivity in the brain of the zebrafish (Dan/o rerio). J Comp 
Neurol 450, 45-60. 

Dimaline, R. (1988) - Post-translational modification of peptide messengers in the gut. Q J Exp 
Physiol73, 873-902. 

Dimaline, R., Thomdyke, M. C. and Young, J. (1986) - Isolation and partial sequence of 
elasmobranch VIP. Regul Pept, 14, 1-10. 

Dockray, G. J. (1987) - Physiology of enteric neuropeptides. In "Physiology of the gastrointestinal 
tract", 2nd ed. Raven Press, New York, pp41-66. 

Dutil, J. D., Munro, J., Audet, C., and Besner, M. (1992) - Seasonal variation in the physiological 
response of Atlantic cod (Gadus mohrua) to low salinity. Canadian Journal of Fisheries and 
Aquatic Sciences 49, 1149-1156. 

Eckert, S. M., Yada, T., Shepherd, B, S., Stetson, M. H., Hirano, T., and Grau, E. G. (2001) - 
Hormonal control of osmoregulation in the channel catfish Ictalurus punctatus. Gen Comp 
Endocrinol 122, 270-86. 

Emanuele, N. V., Jurgens, J. K., Halloran, M.M., Tentler, J. J.. Lawrence, A. M., and Kelley, M. R. 
(1992) - The rat prolactin gene is expressed in brain tissue: detection of normal and alternatively 
spliced prolactin messenger RNA, Mol Endocrinol 6, 35-42. 

Emson, P. C., Goedert, M., Williams, B., Ninkovic, M., and Hunt, S. P. (1982) - Neurotensin: 
regional distribution, characterization, and inactivation. Ann N Y Acad Sei 400, 198-215. 

Epstein, M. L, and Poulsen, K. T (1991) - Appearance of somatostatin and vasoactive intestinal 
peptide along the developing chicken gut. J Comp Neurol 311,168-78. 

169 



References 

Erichsen, J. T., Bingman, V. P., and Krebs, J. R. (1991) - The distribution of neuropeptides in the 
dorsomedial telencephalon of the pigeon {Columbia //V/a): a basis for regional subdivisions. J 
Comp N eu rol 314, 478-92. 

Erichsen, J. T., Cioccheti, A., Fontanesi, G., and Bagnoli, P. (1994)- Neuroactive substances in 
the developing dorsomedial telencephalon of the pigeon {Columbia //V/a): differential distribution 
and time course of maturation. J Comp Neurol 345, 537-61 

Esposito, V., De Girolamo, P., and Gargiulo, G. (1997) - Neurotensin-like immunoreactivity in the 
brain of the chicken, Gallus domesticus. J Anaf 191, 537-46. 

Falkenstein, E., Tillmann, H.C., Christ, M., Feuring, M, and Wehling, M. (2000) - Multiple actions 
of steroid hormones- a focus on rapid, nongenomic effects. Pharmacological Reviews, 52, 513- 
556. 

Falcon, J., Besseau, L, Fazzari, D., Attia, J., Gaildrat, P., Beauchaud, M., and Boeuf, G. (2003) - 
Melatonin modulates secretion of growth hormone and prolactin by trout pltuitary glands and cells 
in culture. Endocrinology 144, 4648-58. 

FAO (2002) - The World State of Fishery and Aquaculture (SOFIA). 

Fasulo, S.. Tagliafierro, G.. Contini, A., Ainis, L. Ricca, M. B., Yanaihara, N., and Zaccone, G. 
(1993) - Ectopic expression of bioactive peptides and serotonin in the sacciform gland cells of 
teleost skin. Arch Histol Cytol 56, 117-25. 

Fields, K., Kulig, E., Lloyd, R. V. (1993) - Detection of prolactin messenger RNA in mammary and 
other normal and neoplastic tissues by polymerase chain reaction. Lab Invest 68,354-60. 

Figueroa, J., Molina, A., Alvarez, M., Villanueva, J., Reyes, A., León, G., and Krauskopf, M. 
(1994) - Prolactin gene expression and changes of prolactin pituitary levei during the seasonal 
acclimatization of the carp. Comp Biochem Physiol 108B, 551-560. 

Figueroa, J., Reyes, A., Rios, M., Vera, M. I., and Krauskopt, M. (1997) - Effect of temperatura 
and photopehod on prolactin transcription in Cyprinus carpio. Zoological Science 14, 353-357. 

Finn, P. D., Pau, K. Y., Spies, H. G., Cunningham, M. J., Clifton, D. K., and Steiner, R. A. (2000) - 
Galani^s functional significance in the regulation of the neuroendocrine reproductive axis of the 
monkey. Neuroendocrinology 71,16-26. 

Forbes, J. M.. Driver, P. M., El Shahat, A. A., Boaz, T. G., and Scanes, C. G. (1975) - The effect 
of daylength and levei of feeding on serum prolactin in growing lambs. J Endocrinol 64. 549-54. 

170 



References 

Fox, M. D., Hyde, J. F., Muse, K. N., Keeble, S. C., Howard, G., London, S. N., and Curry Jr., T. 
E. (1994) - Galanin: a novel intraovarian regulatory peptide. Endocrinology 135, 636-641. 

Freeman. M. E.. Kanyicska, B., Lerant, A., and Nagy, G. (2000) - Prolactin: structure, function, 
and regulation of secretion. Physiol Rev 80, 1523-1631. 

Fuentes, J.. and Eddy, F. B. (1997) - Effect of manipulaíion of the renin-angiotensin system in 
control of drinking in juvenile Atlantic salmon (Salmo salar L) in fresh water and after transfer to 
sea water. J Comp Physiol [B] 167, 438-43. 

Gabou, L, Boisnard, M., Gourdou, I., Jammes, FE, Dulor, J. P., and Djiane, J. (1996) - Cloning of 
rabbit prolactin cDNA and prolactin gene expression in the rabbit mammary gland. J Mol 
Endocrinol 16,27-37. 

Gabriel, S. M., Milbury, O. M., Nathanson, J. A., Martin, J. B. (1988) - Galanin stimulates rat 
pituitary growth hormone secretion in vitro. Life Sei42, 1981-6. 

Gabriel, S. M.. Washton, D. L, and Roncancio, J. R. (1992) - Modulation of hypothalamic galanin 
gene expression by estrogen in peripubertal rats. Peptides 13, 801-806. 

Gahali, K., El Halawani, M. E.. and Rozenboim, I. (2001) - Photostimulated prolactin release in 
the turkey hen: effect of ovariectomy and environmental temperature. Gen Comp Endocrinol 124, 
166-172. 

Gaildrat, P., Becq, F.. and Falcon, J. (2002) - First cloning and functional characterization of a 
melatonin receptor in fish brain; a novel one?. J Pineal Res 32, 74-84. 

Gaildrat, P., and Falcon, J. (1999) - Expression of melatonin receptors and 2-[125l]iodomelatonin 
binding sites in the pituitary of a teleost fish. Adv Exp Med Biol 460, 61-72. 

Gaildrat, P.. and Falcon, J. (2000) - Melatonin receptors in the pituitary of a teleost fish: mRNA 
expression,'2-[(125)l]iodomelatonin binding and cyclic AMP response. Neuroendocrinology 72, 
57-66. 

Gaildrat, P., Ron, B., and Falcon, J. (1998) - Daily and circadian variations in 2-[125l]- 
iodomelatonin binding sites in the pike brain (Esox lucius). J Neuroendocrinol 10, 511-7. 

Galas, J., and Epler, P. (2002) - Does prolactin affect steroid secretion by isolated rainbow trout 
ovarian cells? Comp Biochem Physiol B Biochem Mol Biol 132, 287-97. 

Garcia, A. J., Landete-Castillejos, T., Garde, J. J., and Gallego, L. (2002) - Reproductive 
seasonality in female Iberian red deer (Cervus elaphus hispanicus). Theriogenology 58,1553-62. 

171 



References 

Garcia-Allegue, R.t Madrid, J. A., and Sánchez-Vázquez, F. J. (2001) - Melatonin rhythms in 
European sea bass plasma and eye: influence of seasonal photoperiod and water temperature. J 
Pineal Res 31, 68-75. 

Garcia-Arrarás, J. E., and Martinez, R. (1990) - Developmental expression of serotonin-like 
immunoreactivity in the sympathoadrenal system of the chicken. Celi Tissue Res 262, 363-72. 

Garcia-Barros, M., Costoya, J. A., Rios, R., Arce, V., and Devesa, J. (2000) - N-glycosylated 
variants of growth hormone in human pituitary extracts. Horm Res 53, 40-5. 

Geris, K. L, D'Hondt, E., Kúhn, E.R., and Darras, V. M. (1999) - Thyrotropin-releasing hormone 
concentrations in different regions of the chicken brain and pituitary: an ontogenetic study, Brain 
Res 818, 260-6. 

Gibson, A., Wallace, P., and Bem, H. A. (1986) - Cardiovascular effects of urotensin II in 
anesthetized and pithed rats. Gen Comp Endochnol 64, 435-9. 

Grau E. G., Helms L. M. H. (1990) - The tilapia prolactin cell, twenty-five years of investigation. 
Proceedings of the Eleventh International Symposium on Comparativo Endocrinologynal, Spain 
1989. Wiley-Liss, New York. pp 534-540. 

Grau, E. G., Nishioka, R. S., and Bern, H. A. (1982) - Effects of somatostatin and urotensin II on 
tilapia pituitary prolactin release and interactions between somatostatin, osmotic pressure Ca++, 
and adenosine 3',5'-monophosphate in PRL release in vitro. Endocrinology '\'\0, 910-5. 

Groff, K. E.. and Youson, J. H. (1997) - An immunohistochemical study of the endocrine cells 
within the pâncreas, intestine, and stomach of the gar (Lepisosteus osseus L). Gen Comp 
Endocrinol 106, 1-16. 

Hall, T. R.. and Chadwick, A. (1985) - Peptide-stimulating release of prolactin from the fowl 
anterior pituitary gland. Experientia 41, 496-497. 

Hall, T. R., Harvey, S., and Chadwick. A. (1985) - Mechanisms of release of prolactin from fowl 
anterior pituitary glands incubated in vitro: effects of calcium and cyclic adenosine 
monophosphate. J Endocrinol 105, 183-8. 

Hamano, K., Yosida, K., Suzuki, M., and Ashida, K. (1996) - Changes of thyrotropin-releasing 
hormone concentrations in the brain and leveis of prolactin and thyroxin in the serum during 
spawning migration of the chum salmon Oncorhynchus keta. Gen Comp Endocrinol 101, 275-81. 

Hammer. R. A., Leeman, S. E., Carraway, R., and Williams, R. H. (1980) - Isolation of human 
intestinal neurotensin. J Bio! Chem 255, 2476-80. 

172 



References 

Han. Y., Watling, D., Rogers, N. C., and Stark, G. R. (1997) - JAK2 and ST ATS, but not JAK1 and 
STAT1, are required for prolactin-induced beta-lactoglobulin transcription. Mol Endocrinol 11, 
1180-8. 

Hara, R., Wan, K., Wakamatsu, H., Aida, R., Moriya, T., Akiyama, M., and Shlbata, S. (2001) 
Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes 
Celis 6. 269-78. 

Hernandez, D. E., Richardson, C. M., Nemeroff, C. B., Orlando, R. C.. St-Pierre, S., Rioux, F.t 

and Frange, A. J. (1984) - Evidence for biological activity of two N-terminal fragments of 
neurotensin, neurotensin1-8 and neurotensin1-10. Brain Res 301,153-6. 

Higashimoto, Y., Nakao, N., Ohkubo, T., Tanaka, M., and Nakashima, K. (2001) -Structure and 
tissue distribution of prolactin receptor mRNA in Japanese flounder (Paralichtys olivaceus): 
conserved and preferential expression in osmoregulatory organs. Gen Comp Endocrinol 123, 
170-9. 

Hirano, T., Ogasawara, T.. Bolton, J.P., Collie, N.L., Hasegawa, S.. and Iwata, M. (1987) - In 
"Comparative Endocrinology: Developments and Directions", pp53-74. Edited by C.L. Ralph. A.R. 
Liss, New York. 

Holmgren, S. (1985) - Neuropeptide functions in the fish gut. Peptides 6, 363-8. 

Holmqvist B I.. and Carlberg, M. (1992) - Galanin receptors in the brain of a teleost: 
autoradiographic distribution of binding sites in the Atlantic salmon. The Journal of Comparative 
Neurology 326, 44-60. 

Holstein, B., and Humphrey, C. S. (1980) - Stimulation of gastric acid secretion and suppression 
of VlP-li'ke immunoreactivity by bombesin in the Atlantic codfish, Gadus moitiua. Acta Physiol 
Scand 109,217-23. 

Hooley, R. D., Findlay, J. K., and Stephenson, R. G. (1979) - Effect of heat stress on plasma 
concentrations of prolactin and luteinizing hormone in ewes. Aust J Biol Sei 32,231-5. 

Hõsli, E. and Hõsli, L. (1999) - Cellular locakization of estrogen receptors on neurons in various 
regions of cultured rat CNS: coexistence with cholinergic and galanin receptors. Int J Dev 
Neurosei 17, 317-30. 

Houston, B., and Goddard, C. (1988) - Molecular forms of growth hormone in the chicken 
pituitary gland. J Endocrinol 116, 35^11. 

Hulting, A-L, Meister, B., Carlsson, L, Hilding, A., and Isaksson, O. (1991) - On the role of the 
peptide galanin in regulation of growth hormone secretion. Acta Endocrlnologica 125, 518-525. 

173 



References 

Hyde, J. F., Engle, M. G., and Maley, B. E. (1991)- Colocalization ofgalanin and prolactin within 
secretory granules of anterior pituitary cells in estrogen-treated Fischer 344 rats. Endocrinology 
129,270-276. 

Flyde, J. F., Morrison, D. G., Moore, J. P., and Floward, G. (1993) - MtTW-10 pituitary tumor 
cells; galanin gene expression and peptide secretion. Endocrinology 133, 2588-2593. 

Ihle, J. N. (1996)- STAis: signal transducers and activators of transcription. Celi 84. 331-4. 

Imaoka, T., Matsuda, M., and Mori, T. (2000) - Extra pituitary expression of the prolactin gene in 
the goldfish, African clawed frog and mouse. Zoologlcal Science 17, 791-796. 

Invitti, C.. Giraldi, F.P., Dubini, A., Moroni, P., Losa, M., Piccoletti, R., Cavagnini, F. (1999) - 
Galanin is released by adrenocorticotropin-secreting pituitary adenomas in vitro and in vivo. J Clin 
Endocrinol Metab 84,'\35'\-'\356. 

Itoh, H., Itoh, Y., Rivier, J., and Lederis, K. (1987) - Contraction of major artery segments of rat by 
fish neuropeptide urotensin II. Am J P/?ys/o/ 252, R361-6. 

Jackson, L. F., Swanson, P., Duan, C., Fruchtman, S.. and Sullivan, C. V. (2000) - Purification, 
characterization, and bioassay of prolactin and growth hormone from temperate basses, genus 
Morone. Gen Comp Endocrinol 117,138-50. 

Jensen, J. (1989) - Substance P and other tachykinins In "The comparative physiolgy of 
regulatory peptides", Ed Holmgren, S. 

Johnstone, A. and Thorpe, R. (1987) - Immunochemistry in practice, 2nd edition. Blackwell 
Scientific Publications. Oxford, 306 pp. 

Józsa, R., Korf, H. W., Csemus, V., and Mess, B. (1988) - Thyrotropin-releasing hormone (TRFI)- 
immunoreactive structures in the brain of the domestic mallard. Celi Tissue Res 251,441-9. 

Kagabu, Y., Mishiba, T., Okino, T. and Yanagisawa, T. (1998) - Effects of thyrotropin-releaasing 
hormone and its metabolites, Cyclo (Flis-Pro) and TRFI-OFI, on growth hormone and prolactin 
synthesis in primary cultured pituitary cells of the common carp, Cyprinus carpio. Gen Comp 
Endocrinol 111, 395-403. 

Kawauchi, Fl., Abe, K., Takahashi, A., Hirano, T., Hasegawa, S., Naito, N., and Nakai, Y. (1983) - 
Isolation and properties of chum salmon prolactin. Gen Comp Endocrinol 49, 446-58. 

Kawauchi, H., Moriyama, S., Yasuda, A., Yamaguchi, K., Shirahata, K., Kubota, J., and Flirano, T. 
(1986) - Isolation and characterization of chum salmon growth hormone. Arch Biochem Biophys 
244, 542-52. 

174 



References 

Kelley, K. M., Nishioka, R. S., and Bern, A. (1988) - Novel effect of vasoactive intestinal 
polypeptide and peptide histidine isoleucine; inhibition of in vitro secretion of prolactin in the 
tilapia, Oreochromis mossambicus. Gen Comp Endocrinol 72, 97-106. 

Kelly, S. P., and Woo, N. Y. S (1999) - The response of sea bream following abrupt hyposmotic 
exposure. Journal of Fish Biology, 55, 732-750. 

Kim, Y. S., Sar, M., and Stumpf, W. E. (1979) - Estrogen target cells in the pituitary of platyfish, , 
Xiphophorus maculatus. Celi Tissue Res 198, 435-440. 

King, J. A., and Millar, R. P. (1979) - Phylogenetic and anatomical distribution of somatostatin in 
vertebrates. Endochnology 105, 1322-9. 

Kittilson, J. D., Moore, C. A., and Sheridan, M. A. (1999) - Polygenic expression of somatostatin 
in rainbow trout, Oncorhynchus mykiss: evidence of a preprosomatostatin encoding somatostatin- 
14. Gen Comp Endocrinol 114, 88-96. 

Knapp, T.R., Fehrer, S.C., Silsby, J.L., Porter, T.E., Behnke, E.J. and El Halawani, M.E. (1988) - 
Gonadal steroid modulation of basal and vasoactive intestinal polypeptide-stimulated prolactin 
release by turkey anterior pituitary cells. Gen Comp Endocrinol 72, 226-236. 

Koger, C. S., Teh, S. J.t and Hinton, D. E. (1999) - Variations of light and temperature regimes 
and resulting effects on reproductive parameters in medaka (Oryzias latipes). B/o/ Reprod 61, 
1287-93. 

Kohchi, C., and Tsutsui, K. (2000) - Avian galanin: cloning of complementary DNAs and 
characterization of transcripts in different tissues. J Exp Zoo/287,183-90. 

Koiwai, K., Kikuyama, S., Seki, T.. and Yanaihara, H. (1986) - In vitro effect of vasoactive 
intestinal polypeptide and peptide histidine isoleucine of prolactin secretion by the bullfrog 
pituitary gland. Gen Comp Endocrinol64, 254-259. 

Kott, K. S., Moore. B. J., Fournier, L, and Horwitz, B. A. (1989) - Hyperprolactinemia prevenis 
short photoperiod-induced changes in brown fat. Am J Physiol 256, R174-80. 

Kurtz, A., Bristol, L. A., Toth, B. E., Lazar-Wesley, E., Takacs, L, and Kacsoh, B. (1993) - 
Mammary epithelial cells of lactating rats express prolactin messenger ribonucleic acid. B/o/ 
Reprod 48, 1095-103. 

Labrie, F., Drouin, J., Ferland, L, Legace, L, Beautieu, M., DeLean, A., Kelly, P., Caron, M. and 
Raymond, V. (1978) - Mechanism of action of hypothalamic hormones in the anterior pituitary 
gland and specific modulation of their activity by sex steroids and thyroid hormones. Recent Prog 
Horm Res. 34, 25-81. 

175 



References 

Laemmli U.K. (1970) - Cleavage of structural proteins during the assembly of íhe head of 
bacteriophage 14. Nature 227, 680, 

Lamanna, C., Assisi, L, Costagliola, A., Vittoria, A., Botte, V., and Cecio, A. (1999) - Galanin in 
the lizard oviduct; its distribution and relationships with estrogen, VIP and oviposition. Life 
Sciences 65, 91-101. 

Lamba, V. J., Goswami, S. V., and Sundararaj, B. I. (1983) - Circannual and circadian variations 
in plasma leveis of steroids (cortisol, estradiol-17 beta, estrone, and testosterone) correlated with 
the annual gonadal cycle in the catfish, Heteropneustes fossilis (Bloch). Gen Comp Endócrino! 
50, 205-25. 

Larson, B. A., Bem, H. A., Lin, R. J., and Nishioka, R. S. (1987) - A double sequential 
immunofluorescence method demonstrating the co-localization of urotensins I and II in the caudal 
neurosecretory system of the teleost, Gillichthys mirabilis. Celi Tissue Res 247, 233-9. 

Larson, E. T., Norris, D. O., Gordon Grau, E., and Summers, C. H. (2003) - Monoamines 
stimulate sex reversal in the saddleback wrasse. Gen Comp Endocrinol 130, 289-98. 

Leatherland, J. F., and McKeown, B. A. (1973) - Circadian rhythm in the plasma leveis of 
prolactin in goldfish, Carassius auratus L. J. interdiscipl. Cycle Res 4: 137-143. 

Leatherland, J. F.. McKeown, B. A. and John. T. M. (1974). Circadian rhythm of plasma prolactin, 
growth hormone, glucose and free fatty acid in juvenile kokanee salmon, Oncorhynchus nerka. 
Comparativo Biochemistry and Physiology. a: Comparativa Physiology 47, 821-8. 

Leeman, S. E., and Carraway, R. E. (1982) - Neurotensin: discovery, isolation, characterization, 
synthesis and possible physiological roles. Ann N Y Acad Sei 400, 1-16. 

Le Goff, P., Weil, C., Valotaire, Y., Gonnard, J. F.,and Prunet, P. (1992) - Effect of somatostatin 
on prolactin in rainbow trout (Oncorhyncus mykiss) pituitary cells in primary culture. J Mol 
Endocrinol 9,13746. 

Leibowitz, S. F., Akabayashi, A., Alexander, J.T.. and Wang, J. (1998) - Gonadal steroids and 
hypothalamic galanin and neuropeptide Y: role in eating behavior and body weight control in 
female rats. Endocrinology 139,1771-80. 

Le Mevel, J. C., Olson, K. R., Conklin, D., Waugh, D., Smith, D. D.. Vaudry, FL, and Conlon, J. M. 
(1996) - Cardiovascular actions of trout urotensin II in the conscious trout, Oncorhynchus mykiss. 
Am J Physiol 271, R1335-43. 

Le Provost, F., Leroux, C., Martin, P., Gaye, P., and Djiane, J. (1994) - Prolactin gene expression 
in ovine and caprine mammary gland. Neuroendocrinology 60, 305-13. 

Leung, T. C., Ng, T. B., and Woo, N. Y. (1991) - Metabolic effeets of bovine growth hormone in 
the tilapia Oreochromis mossambicus. Comp Biochem Physiol A 99A, 633-6. 

176 



References 

Lewis, U. J., Singh, R. N. and Lewis, L. J. (1989) - Two forms of glycosylated human prolactin 
have different pigeon crop sac-stimulating activities. Endocrinology 124, 1558-63. 

Li D., Tsutsui, K., Muneoka, Y., Minakata, H., and Nomoto. K. (1996) - An oviposition-inducing 
peptide: isolation, localization, and function of avian galanin in the quail oviduct. Endocnnology 
May 137, 1618-26. 

Lima , L. and Urbina, M. (1998) - Serotonergic projections to the retina of rat and goldfish. 
Neurochem 32, 133-41. 

Lincoln, G. A.. Andersson, H., and Loudon, A. (2003) - Clock genes in calendar cells as the basis 
of annual timekeeping in mammals--a unifying hypothesis. 
J Endocrinol 179, 1-13, 

Lindskog, S., and Ahrén, B. (1991) - Studies on the mechanism by which galanin inhibits insulin 
secretion in islets. European Journal of Pharmacology 205, 21-27. 

Liu, S., and Gao, J. (1998) - The relationship of galanin immunoreactive nerve fibres to glandular 
cells in the anterior pituitary in the monkey. Brain Res 781,114-120. 

Lopez F. J., and Negro-Vilar, A. (1990) - Galanin stimulates luteinizing hormone-releasing 
hormone secretion from arcuate nucleus-median eminence fragments in vitro: involvement of an 
a-adrenergic mechanism. Endocrinology 127, 2431-2436. 

Loretz, C.A. and Bem, H.A. (1982) - Prolactin and osmoregulation in vertebrates. 
Neuroendocrinology 35, 292-304. 

Lucini, C., Casta Ido, L., and Lai, O. (1996) - An immunohistochemical study of the endocrine 
pancreas of ducks. EurJ Histochem 40, 45-52. 

Lucini, C., Romano. A., and Castaldo, L. (2000) - NPY immunoreactivity in endocrine cells of 
duck pancreas: an ontogenetic study. AnatRec 259, 35-40. 

Lundin, K., and Holmgren, S. (1986) - Non-adrenergic, non-cholinergic innervation of the urinary 
bladder of the Atlantic cod, Gadus morhua. Comp Biochem Physiol, Pari C 84, 315-323. 

MacNamee, M. C., Sharp, P. J., Lea, R. W., Sterling, R. J., and Harvey, S. (1986) - Evidence that 
vasoactive intestinal polypeptide is a physiological prolactin-releasing factor in the bantam hen. 
Gen Comp Endocrinol 62, 470-478. 

Mainoya, J.R., and H.A. Bem (1984) - Influence of vasoactive intestinal peptide and urotensin II 
on the absorption of water and NaCI by the anterior intestine of the tilapia, Sarotherodon 
mossambicus. Zoological Science 1,1-150. 

177 



References 

Mananós, E. L, Zanuy, S., and Carrillo, M. (1997) - Photoperiodic manipulations of the 
reproductive cycle of sea bass {Dicentrarchus labrax) and their effects on gonadal development, 
and plasma 17b-estradiol and vitellogenin leveis. Fish Physiology and Biochemistry 16, 211-222. 

Mancera, J. M., Perez-Figares, J. M., Fernandez-LLebrez, P. (1993a) - Osmoregulatory 
responses to abrupt salinity changes in the euryhaline gilthead sea bream (Sparus aurata L). 
Comparativa Biochemistry and Physiology 106, 245-250. 

Mancera, J. M., Femandez-Llebrez, P., Grondona, J. M., and Perez-Figares, J. M. (1993b) - 
Influence of environmental salinity on prolactin and corticotropic cells in the gilthead sea bream 
(Sparus aurata L). Gen Comp Endocrinol 90, 220-31. 

Mancera, J. M., Carrion, R. L, and Rio, M. P. M. (2002) - Osmoregulatory action of PRL, GH, and 
cortisol in the gilthead seabream {Sparus aurata L). Gen Comp Endocrinol 129, 95-103. 

Maney, D. L, Schoech, S. J., Sharp, P. J., and Wingfield, J. C. (1999) - Effects of vasoactive 
intestinal peptide on plasma prolactin in passerines. Gen Comp Endocrinol '\'\3, 323-330. 

Manzon, L.A. (2002) - The role of prolactin in fish osmoregulation; a review. Gen Comp 
Endochnol 125, 291-310. 

Marks, D. L, Lent, K. L, Rossmanith, W. G., Clifton, D. K., and Steiner, R. A. (1994) - Activation- 
dependent regulation of galanin gene expression in gonadotropin-releasing hormone neurons in 
the female rat. Endocrinology 134, 1991-1998. 

Marshall, W.S. (2002) - Na+, Cl-, Ca2+ and Zn2+ transport by fish gills: retrospective review and 
prospective synthesis. J Exp Zoo/293, 264-283. 

Martin, P., Rebollar, P. G., San Juan, L. D., Illera, J. C., and Alvarino, J. M. (1999) - Plasma 
estradiol-17beta leveis and gonadosomatic index in tench (Tinca tinca L.) reared in natural and 
controlled conditions. J Physiol Biochem 55, 309-14. 

Martinat, N., Anouassi, A., Fluet, J. C., Pemollet, J. C., and Combarnous, Y. (1990) - Purlficatbn 
and characterization of glycosylated and nonglycosylated forms of prolactin from the dromedary 
{Camelus dromedahus). Comp Biochem Physiol B 97, 667-74. 

Martinet, L, Mondain_Monval, M. and Monnerie, R. (1992) - Endogenous circannual rhythms and 
photorefractoriness of testis activity, moult and prolactin concentrations in mink (Mustela vison). J 
Reprod Fértil 95, 325-38. 

Martinez-Coria, FF, López-Rosales, L. J., Carranza, M., Berumen, L, Luna, M., and Aramburo, C. 
(2002) - Drfferential secretion of chicken growth hormone variants after growth hormone- 
releasing hormone stimulation in vitro. Endocrine 17, 91-102. 

178 



References 

Mason, G. A., Garbutt, J. C., and Prange, A. J. (2000) - Thyrotropin-Releasing Hormone: Focus 
on Basic Neurobiology. The American College of Neuropsychopharmacology. 
Psychopharmacology (the fourth generation of progress). http:// www.acnp.org/g4/ 

Mauceri, A., Fasulo, S., Ainis, L, Licata. A., Lauriano, E. R., Martinez, A., Mayer, B., and 
Zaccone, G. (1999) - Neuronal nitric oxide synthase (nNOS) expression in the epithelial 
neuroendocrine cell system and nen/e fibers in the gill of the catfish Heteropneustes fossilis. Acta 
Histochem 101,437-48. 

Maurer, R. A. (1982) - Estradiol regulates the transcription of the prolactin gene. J B/o/ Chem 257, 
2133-2136. 

Mazurais, D., Brierley, I., Anglade, I.. Drew, J., Randall, C.. Bromage, N., Michel, D., Kah, O., and 
Williams, L. M. (1999) - Central melatonin receptors in the rainbow trout; comparative distribution 
of ligand binding and gene expression. J Comp NeurolAOd, 313-24. 

Mazurais, D., Le Drean, G., Brierley, I.. Anglade, I., Bromage, N., Williams, L. M., and Kah, O. 
(2000) - Expression of clock gene in the brain of rainbow trout: comparison with the distribution of 
melatonin receptors. J Comp Neurol 10 422, 612-20. 

McCormick, S. D. (2001) - Endocrine control of osmoregulation in teleost fish. American 
Zoologista, 781-794. 

McKeown, B. A., and Brewer, K. J. (1978) - Control of prolactin secretion in teleosts with special 
reference to recent studies in pacific salmon. Comparative Endocrinology. Gaillard, P. J. and 
Bóer, Fl. H., eds. Elsevier/North-Flolland Biomedical Press, Amsterdam. 

McKeown, B. A., and Peter, R. E. (1976) - The effects of photoperiod and temperature on the 
release of prolactin from the pituitary gland of the goldfish, Carassius auratus L. Canadian 
Joumal of Zoology 54: 1960-8. 

Meister, B., and Flulting, A. L. (1987) - Influence of coexisting hypothalamic messengers on 
growth hormone secretion from rat anterior cells in vitro. Neuroendocrinology 46, 387-94. 

Meléndez-Ferro, M., Pérez-Costas, E., Villar-Cheda, B., Abalo, X. M., Rodríguez-Muhoz. R., 
Rodicio, M. C., and Anadón, R. (2002) - Ontogeny of gamma-aminobutyric acid-immunoreactive 
neuronal populations in the forebrain and midbrain of the sea lamprey. J Comp Neurol 446, 360- 
78. 

Melmed, S. (1984) - Insulin suppresses growth hormone secretion by rat pituitary cells. J Clin 
Invest73, 1425-33. 

179 



References 

Mena, F., Hummelt, G., Aguayo, D., Clapp, C., Martinez de la Escalera, G., and Morales, M. T. 
(1992) - Changes In molecular variants during in vitro transformation and release of prolactin by 
the pituitary gland of the lactating rat. Endocrinology 130, 3365-77. 

Mensah-Brown, E. P., Bailey, T. A., Pallot, D. J., and Garner, A. (2000) - Peptidergic hormones 
and neuropeptides, and aminergic neurotransmitters of the pancreatic islets of the Houbara 
bustard {Chlamydotis undulata). J Anat 196 (pt 2), 233-41. 

Meuris, S., Svoboda, M., Christophe, J., and Robyn, C. (1984) - Cleaving of disulfide bridgesand 
apparent molecular weight of human prolactin variants as revealed by immunoperoxidase 
electrophoresis. Anal Biochem 143, 163-9. 

Miller, W, L, and Eberhardt, N. L. (1983) - Structure and evolution of the growth hormone gene 
family. EndocrRev 4, 97-130. 

Montiel, J. L, Berghman, L. R., and Arámburo, C. (1992) - Identification of growth hormone 
molecular variants in chicken serum Gen Comp Endocnnol 88, 298-306. 

Moons, L, Batten, T., and Vandesande, F. (1991) - Autoradiographic distribution of galanin 
binding sites in the brain and pituitary of the sea bass {Dicentrarchus labrax). Neuroscience 
Letters 123, 49-52. 

Moons, L, Cambré, M., Ollevier, F., and Vandesande, F. (1989) - Immunocytochemical 
demonstration of close relationships between neuropeptidergic nerve fibers and hormone- 
producing cell types in the adenohypophysis of the sea bass {Dicentrarchus labrax). Gen Comp 
Endocnnol 73, 270-83. 

Murakami, Y., Kato, Y., Shimatsu, A., Koshiyama, H., Hattori, N., Yanaihara, N., and Imura, H. 
(1989) - Possible mechanisms involved in growth hormone secretion induced by galanin in the 
rat. Endocrinology 124, 1224-9. 

Nicoll, C. S., Tarpey, J. F., Mayer, G. L. and Russell, S. M. (1986b) - Similarities and differences 
among prolactins and growth hormones and their receptors. AmerZool26, 965-983. 

Noso, T., Swanson, P., Lance, V. A. and Kawauchi, H. (1992) - Isolation and characterizatíon of 
glycosylated and non-glycosylated prolactins from alligator and crocodile. International Journal of 
Peptide and Protein Research 39, 250-7. 

Mikami, S., and Yamada, S. (1984) - Immunohistochemistry of the hypoyhalamic neuropeptides 
and anterior pituitary cells in the Japanese quail. J Exp Zool 232, 405-17. 

Moore, C. A., Kittilson, J. D., Dahl, S. K., and Sheridan, M. A. (1995) - Isolation and 
characterizatíon of a cDNA encoding for preprosomatostatin containing rryr7, Gly10]- 
somatostatin-14 from the endocrine pancreas of rainbow trout, Oncorhynchus mykiss. Gen Comp 
Endocrinol 98, 253-61. 

180 



References 

Moretti, A., Fernandez-Criado, M. P., Cittolin, G., and Guidastri, R. (1999) - Manual on hatchery 
production of seabass and gilthead seabream. Food and Agriculture Organization of the United 
Nations. 

Morgan, J. D., Sakamoto, T., Grau, E. G., and Iwama, G..K. (1997) - Physiological and 
Respiratory Responses of the Mozambique Tilapia [Oreochromis mossambicus) to Salinity 
Acclimation. Comparativa Biochemistry and Physiology - Part A: Physiology, 117, 391-398. 

Munemura, M., Agui, T. and Sibley, D. R. (1989) - Chronic estrogen treatment prometes a 
functional uncoupling of the D2 dopamine receptor in rat anterior pituitary gland. Endocrlnology 
124, 346-355. 

Namaware, Y. K., Kelly, S. P., and Woo, N. Y. (1998) - Stimulation of macrophage phagocytosis 
and lymphocyte count by exogenous prolactin administration in silver sea bream {Sparus sarda) 
adapted to hyper- and hypo-osmotic salinities. Vet Immunol Immunopathol61, 387-91. 

Nolin, J. M. , and Witorsch, R. J. (1976) - Detection of endogenous immunoreactive prolactin in 
rat mammary epithelial cells during lactation, Endocrinology 99, 949-58. 

Nyberg, F., Roos, P., and Isaksson, O. (1982) - Isolation of rat pituitary prolactin isohormones 
differing in charge, size, and specific immunological activity. Prep Biochem 12, 153-73. 

Ohmori, Y. (1998) - Localization of biogenic amines and neuropeptides in adrenal medullary cells 
of birds. Horm Metab Res 30, 384-8 

Okamura, H., Murakami, S., Kukui, K., Uda, K., Kawamoto, K., Kawashima, S., Yanaihara, N. and 
Ibata, Y. (1986) - Vasoactive intestinal peptide- and peptide histidine isoleucine amide-like 
immunoreactivity colocalize with vasopressin-like immunoreactivity in the canine hypothalamo- 
hypophyseal neuronal system. NeurosciLett69, 227-232. 

Olivereau, M. (1986) - The pituitary of teleost fish: some recent ultrastructural and 
immunocytochemical data. Pars Distalis of the Pituitary Gland - Structure, Function and 
Regulation. Yoshimura, F. and Gorbman, A. eds. Elsevier Science Publishers (Biomedical 
Divis ion). 

Olivereau, M., and Olivereau, J. M. (1991a) - Immunocytochemical localization of a galanin-like 
peptidergic system in the brain and pituitary of some teleost fish. Histochemistry 96, 343-354. 

Olivereau, M., and Olivereau, J. M. (1991b) - Galanin-like immunoreactivity is increased in the 
brain of estradiol- and methyltestosterone-treated eels. Histochemistry 96, 487-497. 

Olson, K. R. (1992) - Blood and extracellular volume regulation; role of the renin-angiotensin 
system, kallikrein-kinin system and atrial natriuretic peptides. In: Hoar, W.S., Randall, D.J. and 
Farrell, A.P. (Eds.) Fish Physiology. The cardiovascular system. Academic Press, San Diego, pp. 
136-232. 

Onstottk D, and Elde, R. (1986) - Immunohistochemical localization of urotensin l/corticotropin- 
releasing factor, urotensin II, and serotonin immunoreactivities in the caudal spinal cord of 
nonteleostfishes. J Comp Neurol 249, 205-25. 

Ottlecz, A., Snyder, G. D., and McCann, S. M. (1988) - Regulatory role of galanin in control of 
hypothalamic-anterior pituitary function. Proc Natl Acad Sei U S A 85, 9861-5. 

181 



References 

Pan, Q. S., and Fang, Z. P. (1993) - An immunocytochembal study of endocrine cells in the gut 
of a stomachless teleostfish, grass carp, Cyprinidae. Celi TransplantZ, 419-27. 

Pavlidis, M., Greenwood, L., Mourot, B., Kokkari, C., Le Menn, F., Divanach, P., and Scott, A. P. 
(2000a) - Seasonal variations and maturity stages in relation to differences in serum leveis of 
gonadal steroids, vitellogenin, and thyroid hormones in the common dentex (Dentexdentex). Gen 
Comp Endócrino! 118, 14-25. 

Pavlidis, M., Koumoundouros, G., Sterioti, A., Somarakis, S., Divanach, P., and Kentouri, M. 
(2000b) - Evidence of temperature-dependent sex determination in the European sea bass 
(Dicentrarchus labraxL). J Exp Zoo/287, 225-32. 

Pearson, D., Shively, J. E., Clark, B. R., Geschwind, I. I., Barkley, M., Nishioka, R. S., and Bem, 
Fi. A. (1980) - Urotensin II: a somatostatin-like peptide in the caudal neurosecretory system of 
fishes. Proc Natl Acad Sei D S A 77, 5021-4. 

Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999)- Probability-based protein 
identifica tio n by searching sequence databases using mass spectrometry data. Electrophoresis 
20,3551-3567. 

Pijoan, P. J., and Williams, H. LI. (1985) - The effect of light environment on post-partum 
reoroductive activity and prolactin leveis in two breeds of sheep. Br Vet J, 141, 272-281. 

Plisetskaya E. M., Pollock H. G., Rouse J. B., Hamilton J. W., Kimmel J. R., Andrews P. C., 
Gorbman A. (1986) - Characterization of coho salmon {Oncortiynchus kisutch) islet 
somatostatins. Gen. Comp. Endocr 63, 252-263. 

Poh, L. H., Munro, A. D,, and Tan, C. H. (1997) - The effeets of oestradiol on the prolactin and 
growth hormone content of the pituitary of the tilapia, Oreochromis mossambicus, with 
observations on the incidence of black males. Zoological Science 14, 979-986. 

Porter, M. J. R., Duncan, N., Handeland, S, O., Stefansson, S. O., and Bromage, N. R. (2001) - 
Temperature, light intensity and plasma melatonin leveis in juvenile Atlantic salmon. Journal of 
Fish Biology 58, 431-38. 

Porter, M. J. R., Stefansson, S. O., Nyhammer, G., Karlsen, 0, Norberg, B., and Bromage, N. R. 
(2000) - Environmental influences on melatonin secretion in Atlantic cod {Gadus morhua L.) and 
their relevance to commercial culture. Fish Physiology and Biochemistry 23: 191-200. 

Pottinger, T. G., Prunet, P., and Pickering, A. D. (1992) - The effeets of confinement stress on 
circulating prolactin leveis in rainbow trout (Oncortiynchus mykiss) in fresh water. Gen Comp 
Endocrinol 88,454-60. 

Power, D. M., and Ingleton, P. M. (1998) - Distribution of vasoactive intestinal peptide in the brain 
and hypothalamo-hypophysial system of the sea bream {Sparus aurata) - Annals of New York 
Academyof Sciences, 839, 356-357. 

Power, D. M., and Canario, A. V. M, (1992) - Immunocytochemistry of somatotrophs, 
gonadotrophs, prolactin and adrenocorticotropin cells in larval sea bream {Sparus aurata) 
pituitaries. Celi Tissue Res 269, 341-346. 

I82 



References 

Power, D. M., Canario, A. V. M., and Ingleton, P. M. (1995) - Somatotropin release-inhibiting 
factor and galanin innervation in the hypothalamus and pituitary of seabream {Sparus aurata). 
Gen Comp Endocrinol 101, 264-274. 

Power, D. M., Canario, A. V., Ingleton, P. M. (1996 ) - Somatotropin release-inhibiting factor and 
galanin innervation in the hypothalamus and pituitary of seabream (Spams aurata). Gen Comp 
Endocrinol 101, 264-74. 

Powers, C. A. (1993) - Anterior pituitary glandular kallikrein: a putative prolactin processing 
protease. Mol Celi Endocrinol 90, C15-C20. 

Prager, D., Yamashita, S., and Melmed, S. (1988) - Insulin regulates prolactin secretion and 
messenger ribonucleic acid leveis in pituitary cells. Endocrinology 122. 2946-52. 

Preece, H., and Licht, P. (1987) - Effects of thyrotropin-releasing hormone in vitro on thyrotropin 
and prolactin release from the turtle pituitary. Gen Comp Endocrinol 67, 247-55. 

Preston, E., McManus, C. D., Jonsson, A-C, and Courtice, G. P. (1995) - Vasoconstrictor effects 
of galanin and distribution of galanin containing fibers in three species of elasmobranch fish. 
Regulatory Peptides 58, 123-134. 

Prunet, P., Sandra, O., Le Rouzic, P., Marchand, O., and Laudet, V. (2000) - Molecular 
characterization of the prolactin receptor in two fish species, tilapia Oreochromis niloticus and 
rainbow trout, Oncorhynchus mykiss; a comparative approach. Can J Physiol Pharmacol Dec 78, 
1086-96. 

Quinitio, E. T., Yamauchi, K., Hara, A., and Fuji, A. (1991) - Profiles of progesterone- and 
estradiol-like substances in the hemolymph of female Pandalus kessleri during an annual 
reproductive cycle. Gen Comp Endocrinol 81, 343-8. 

Randall, C. F., Bromage, N. R., Duston, J., and Symes, J. (1998) -Photoperiod-induced phase- 
shifts of the endogenous clock controlling reproduction in the rainbow trout: a circannual phase- 
response curve. J Reprod Fértil 112, 399-405. 

Randall, C. F., Bromage, N. R., Thorpe, J. E., Miles, M. S., and Muir, J. S. (1995) - Melatonin 
rhythms in Atlantic salmon (Salmo salar) maintained under natural and out-of-phase 
photoperiods. Gen Comp Endocrinol 98, 73-86. 

Rand-Weaver, M., and Kawauchi, Fl. (1992) - A rapid procedure for the isolation of bioactive 
growth hormone. Gen Comp Endocrinol 85, 341-5. 

Rand-Weaver, M., Pottinger, T. G., and Sumpter, J. P. (1995) - Pronounced seasonal rhythms in 
plasma somatolactin leveis in rainbow trout. J Endocrinol 146, 113-9. 

183 



References 

Rand-Weaver, M., Walther, B. T., and Kawauchi, H. (1989) - Isolation and characterization of 
growth hormone from Atlantic cod {Gadus morhua). Gen Comp Endocrinol 73, 260-9. 

Rao, P. D., Murthy, C. K., Cook, H., and Peter, R. E. (1996 ) - Sexual dimorphism of galanin-like 
immunoreactivity in the brain and pituitary of goldfish, Carassius auratus. J Chem Neuroanat Apr 
10, 119-35. 

Rawson, R. E., Duke, G. E., and Brown, D. R. (1990) - Effect of avian neurotensin on motility of 
chicken {Gallus domesticas) lower gut in vivo and in vitro. Peptides 11, 641-5 

Ray, J., Jones, B. K., Liebhaber, S. A., Cooke, N. E. (1989) - Glycosylated human growth 
hormone variant. Endocrinology 125, 566-8. 

Reinecke, M., Muller, C., and Segner, H. (1997) - An immunohistochemical analysis of the 
ontogeny, distribution and coexistence of 12 regulatory peptides and serotonin in endocrine cells 
and nerve fibers of the digestive tract of the turbot, Scophthalmus maximus (Teleosteí). Anat 
Embryol 195, 87- 101. 

Ren,J., Hu, H-Z, Starodub, AL. M., and Wood, J. D, (2001) - Galanin suppresses calcium 
conductance and activates inwardly rectifying potassium channels in myenteric neurons from 
guinea-pig small intestine. Neurogastroenterology and Motility 13, 247. 

Rinaman, L., Sherman, G., and Stricker, E. M. (2000) - Vasopressin and Oxytocin in the Central 
Nervous System. The American College of Neuropsychopharmacology. Psychopharmacology 
(the fourth generation of progress). http:// www.acnp.orq/q4/ 

Rivas, R. J., Nishioka, R. S., and Bern, H. A. (1986) - In vitro effects of somatostatin and 
urotensin II on prolactin and growth hormone secretion in tilapia, Oreochromis mossambicus. 
Gen Comp Endocrinol 63, 245-51. 

Rodriguez-Bello, A., Kah, O., Tramu, G., and Conlon, J. M. (1993) - Purification and primary 
structure of alligator neurotensin. Peptides 14, 1055-8. 

Rombout, J. H., and Reinecke, M. (1984) - Immunohistochemical localization of (neuro)peptide 
hormones in endocrine cells and nerves of the gut of a stomachless teleost fish, Barbas 
conchonius (Cyprinidae). Celi Tissue Res 237. 57-65. 

Rose, J., Slayden, O., and Stormshak, F. (1996) - Melatonin-induced downreguiation of uterine 
prolactin receptors in mink {Mustela vison). Gen Comp Endocrinol 103,101-106. 

Rostene, W.H., Dussaillant, M. and Rosselin, G. (1982) - Rapid inhibition by somatostatin of 
vasoactive intestinal-peptide induced prolactin secretion in rat pituitary cells. Relationship to cyclic 
AMP accumulation. FEBS /etf 146, 213-216. 

184 



References 

Rubin, D. A., and Specker, J. L. (1992) - In vitro effects of homologous prolactins on testosterone 
production by testes of tilapia {Oreochromis mossambicus). Gen Comp Endócrino! 87, 189-96. 

Rubinow, D. R., Davis, C. L, and Post, R. M. (2000) - Somatostatin in the Central Nervous 
System. The American College of Neuropsychopharmacology. Psychopharmacology (the fourth 
generation of progress). http:// www.acnp.orq/q4/ 

Rugarn, O., Theodorsson, A., Hammar, M., and Theodorsson, E. (1999) - Effects of estradiol, 
progesterone, and norethisterone on regional concentrations of galanin in the rat brain. Peptides 
20, 743-8, 

Sage, M, and de Vlaming, V, L. (1975) - Seasonal changes in prolactin physiology. Amer Zool 
15, 917-922. 

Saeed, W., and el Halawani, M. E. (1986) - Modulation of the prolactin response to thyrotropin 
releasing hormone by ovarian steroids in ovariectomized turkeys {Meleagris gallopavo). Gen 
Comp Endocrinol62, 129-36. 

Sakai, M., Kobayashi, M., and Kawauchi, H. (1996) - In vitro activation of fish phagocytic cells by 
GH, prolactin and somatolactin. J Endocrinol 151.113-8. 

Said, S I. and Mutt, V. (1972) - Isolation from porcine intestinal wall of a vasoactive 
octacosapeptide related to secretin and to glucagon. EurJ Biochem 28. 199-202. 

Said, S.l. and Porter, J.C. (1979) - Vasoactive intestinal polypeptide; Release into hypophysial 
portal blood. Life Sei 24, 227-230. 

Sánchez-Montesinos. I., Mérida-Velasco, J. A., Espín-Ferra, J. and Scopsi, L. (1996) - 
Development of the sympathoadrenal system in the chick embryo: an immunocytochemical study 
with antibodies to pan-neuroendocrine markers, catecholamine-synthesizing enzymes, 
proprotein-processing enzymes, and neuropeptides. Anaf Rec 245, 94-101. 

Sandra, O., Le Rouzic, P., Cauty, C., Edery, M., and Prunet, P. (2000) - Expression of the 
prolactin receptor (tiPRL-R) gene in tilapia Oreochromis niloticus: tissue distribution and cellular 
localization in osmoregulatory organs. J Mol Endocrinol 24, 215-24. 

Sandra, O.. Le Rouzic, P., Rentier-Delrue, F., and Prunet, P. (2001) - Transfer of tilapia 
(Oreochromis niloticus) to a hyperosmotic environment is associated with sustained expression of 
prolactin receptor in intestine, gill, and kidney. Gen Comp Endocrinol 123, 295-307. 

Santos. C. R. A.. Brinca, L., Ingleton, P. M., and Power, D. M. (1999) - Cloning. expression, and 
tissue localisation of prolactin in adult sea bream {Spams aurata). Gen Comp Endocrinol 114, 57- 
66. 

185 



References 

Santos, C. R., Cavaco, J. E., Ingleton, P. M., and Power, D. M. (2003) - Developmental ontogeny 
of prolactin and prolactin receptor in the sea bream (Sparus aurata). Gen Comp Endocrinol 132, 
304-14. 

Santos, C. R., Ingleton, P. M., Cavaco, J. E., Kelly, P. A., Edery, M., and Power, D. M. (2001) - 
Cloning, characterization, and tissue distribution of prolactin receptor in the sea bream (Sparus 
aurata). Gen Comp Endocrinol 121, 32^17. 

Schally, A. V., Bowers, C. Y., Redding, T. W., and Barrett, J. F. (1966) - Isolation of thyrotropin 
releasing factor (TRF) from porcine hypothalamus. Biochem Biophys Res Commun 25, 165-9. 

Schams, D., Stephan, E., and Hooley, R. D. (1980) - The effect of heat exposure on blood serum 
leveis of anterior pituitary hormones in calves, heifers and bulis. Acta Endocrinol (Copenh) 94, 
309-14. 

Schwartz, J. (2000) - Intercellular communication in the anterior pituitary. Endocrine Reviews 21, 
488-513. 

Seale, A. P., Riley, L. G., Leedom, T. A., Kajimura, S., Dores, R. M., Flirano, T., and Grau, E. G. 
(2002) - Effects of environmental osmolality on release of prolactin, growth hormone and ACTFI 
from the tilapia pituitary. Gen Comp Endocrinol, 128, 91-101. 

See Y. P., and Jackowski G. (1990) - Protein structure - a practical approach. Edited by T. E. 
Creighton. IRL Press at Oxford University Press, England, pp 1-20. 

Selvais, P. L, Denef, J-F, Adam, E., and Maiter M. (1995) - Sex-steroid control of galanin in the 
rat hypothalamic-pituitary axis. Journal of Neunoendocnnology 7, 401^07. 

Sen, U., Mukherjee, D., Bhattacharyya, S. P., and Mukherjee, D. (2002) -Seasonal changes in 
plasma steroid leveis in Indian major carp Labeo rohita; influence of homologous pituitary extract 
on steroid production and development of oocyte maturational competence. Gen Comp 
Endocrinol 128, 123-34. 

Senthilkumaran, B., and Joy, K. P. (1995 ) - Changes in hypothalamic catecholamines, 
dopam ine-beta-hydroxylase, and phenylethanolamine-N-methyltransferase in the catfish 
Fleteropneustes fossilis in relation to season, raised photoperiod and temperature, ovariectomy, 
and estradiol-17 beta replacement. Gen Comp Endocrinol 97,121-34. 

Severini, C., Improta, G., Falconieri-Erspamer, G., Salvadori, S., and Erspamer, V. (2002) - The 
Tachykinin Peptide Family. Pharmacological Reviews 54, 285-322. 

Shah, G. N., and Flymer, W. C. (1989) - Prolactin variants in the rat adenohypophysis. Mol Celi 
Endocrinol , 97-107. 

Shelby, J. A., Mendonca, M. T., Home, B. D., and Seigel, R. A. (2000) - Seasonal variation in 
reproductive steroids of male and female yellow-blotched map turtles, Graptemys flavimaculata. 
Gen Comp Endocrinol Jul 119, 43-51. 

I86 



References 

Shen, E. S., Hardenburg, J. L. Meade, E. H.. Arey. B. J.. Merchenthaler. I., and Lopez F. J. 
(1999) _ Estradiol induces galanin gene expression in the pituitary of the mouse in an estrogen 
receptor alpha-dependent manner. Endochnology, 140, 2628-2631. 

Sheridan M. A. (1986) - Effects of thyroxin, cortisol, growth hormone, and prolactin on lipid 
metabolism of coho salmon, Oncorhynchus kisutch, during smoltification. Gen Comp Endócrino! 
64, 220-38. 

Sheridan, M. A., Plisetskaya, E. M., Bern, H. A., and Gorbman, A. (1987) - Effects of 
somatostatin-25 and urotensin li on lipid and carbohydrate metabolism of coho salmon, 
Oncorhynchus kisutch. Gen Comp Endócrino! 66. 405-14. 

Shepherd, B. S., Sakamoto, T, Hyodo, S., Nishioka, R. S., Ball, C., Bern, H. A., Grau, E. G. 
(1999) - Is the primitive regulation of pituitary prolactin (tPRL177 and tPRL188) secretion and 
gene expression in the euryhaline tilapia (Oreochromis mossambicus) hypothalamic or 
environmental? J Endocmo/ 161, 121-9. 

Shepherd B.S., Sakamoto. T., Nishioka, R. S.. Richman, N. H., Mori, I., Madsen, S. S., Chen, T. 
T., Hirano, T., Bern, H. A., and Grau. E. G. (1997) - Somatotropic actions of the homologous 
growth hormone and prolactins in the euryhaline teleost, the tilapia, Oreochromis mossambicus. 
Proc Natl Acad Sei USA 94, 2068-72. 

Shimizu, A. (2003) - Effect of photoperiod and temperature on gonadal activity and plasma 
steroid leveis in a reared strain of the mummichog (Fundulus heteroclitus) during different phases 
of its annual reproductive cycle. Gen Comp Endócrino! 131, 310-24. 

Shimizu, A., Aida. K., and Hanyu I. (1985) - Endocrine profiles during the short reproductive cycle 
of an autumn-spawning bitterling, Acheilognathus rhombea. Gen Comp Endócrino! 60, 361-71. 

Singh, l. J., and Singh, T. P. (1984) - Changes in gonadotrophin, lipid and cholesterol leveis 
during annual reproductive cycle in the freshwater teleost, Cirrhinus mrigala (Ham.). Ann 
Endócrino! (Paris) 45, 131-6. 

Sinha, Y. N. (1995) - Structural variants of prolactin; occurrence and physiological significance. 
Endocrine Reviews 16, 354-69. 

Sinha, Y. N., DePaolo, L. V., Haro, L. S., Singh, R. N., Jacobsen, B. P., Scott, K. E., and Lewis, 
D. J. (1991) - Isolation and biochemical properties of four forms of glycosylated porcine prolactin. 
Mo! Celi EndocrinolQO, 203-13. 

Skibeli, V., Andersen, O., and Gautvik, K. M. (1990) - Purification and characterization of Atlantic 
salmon growth hormone and evidence for charge heterogeneity. Gen Comp Endocnnol Dec 
80.333-44. 

Slijkhuis, H., de Ruiter, A. J.. Baggerman, B., and Wendelaar Bonga, S. E. (1984) - Parental 
fanning behavior and prolactin cell activity in the male three-spined stickleback, Gasterosteus 
aculeatus L. Gen Comp Endócrino! 54, 297-307. 

187 



References 

Specker, J. L, Kishida, M., Huang, L, King, D. S., Nagahama, Y., Ueda, H. and Anderson, T. R. 
(1993) - Immunocytochemical and immunogold localization of two prolactin isoforms in the same 
pituitary cells and in the same granules in the tilapia {Oreochromis mossambicus). General and 
Comparaí/Ve Endocrinology 89, 28-38. 

Sternberger, L. A. (1986) - Immunocytochemistry. 3,d edn. Wiley; New York. 

Sockman, K. W., and Schwabl, H. (1999) - Daily estradiol and progesterone leveis relative to 
laying and onset of incubation in canaries. Gen Comp Endocnnol 114, 257-68 

Socorro, S., Power, D. M., Olsson, P. E., and Canario, A. V. (2000) - Two estrogen receptors 
expressed in the teleost fish, Sparus aurata: cDNA cloning, characterization and tissue 
distridution. J Endocrinol 166, 293-306. 

Spieler, R. E. (1979) - Diel rhythms of circulating prolactin, cortisol, thyroxine, and thiodothyronine 
leveis in fishes; a review. Rev Can Bio! 38; 301-315. 

Stokkan, K. A., Yamazaki, S., Tei, H., Sakaki, Y., and Menaker, M. (2001) -Entrainment of the 
circadian clock in the liver by feeding. Science 291,490-3. 

Sun, Y. M., Millar, R. P., Ho, H., Gershengorn, M. C., and llling, N. (1998) - Cloning and 
characterization of the chicken thyrotropin-releasing hormone receptor. Endocrinology 139, 3390- 
8. 

Suzuki, R., Yasuda, A., Kondo, J., Kawauchi, H., and Hirano, T. (1991) - Isolation and 
characterization of Japanese eel prolactins. Gen Comp Endocrinol 81, 391-402. 

Taboada, C., Abalde, M., Suarez, M., Andres, D., and Fernandez, P. (1985) - Effect of 
somatostatin on small intestine enzyme activities in rat and chick. Comp Biochem Physiol A 80, 
49-51. 

Tacon, P., Baroiller, J. F., Le Bail, P. Y., Prunet, P., Jalabert, B. (2000) - Effect ofegg deprivation 
on sex steroids, gonadotropin, prolactin, and growth hormone profiles during the reproductive 
cycle of the mouthbrooding cichlid fish Oreochromis niloticus. Gen comp Endocrinol 117, 54-65. 

Takahashi, N., Hasunuma, I., Iwata, T., Umezawa, K., Yamamoto, K., Marin. A., Perroteau, I., 
Vellano, C., and Kikuyama, S. (2001) - Molecular cloning of newt prolactin (PRL) cDNA: effect of 
temperature on PRL mRNA expression. Gen Comp Endocrinol 121,188-195. 

Takahashi, S., and Kawashima, S. (1986) - Mitotic potency of prolactin cells in the pituitary gland 
in rats. Pars Distalis of the Pituitary Gland- Structure, Function and Regulation. Edited by F. 
Yoshimara and A. Gorbman. Elsevier Science Publishers B. V. (Biomedical Division). 

188 



References 

Takayanagi, M., Okada, Y., Kita, K., Naito, J., and Watanabe, T. (1996) - Somatostatin-14 and 
somatostatin-28 in chicken pancreatic islet D-celis. Tissue Celi 28, 495-500. 

Takei, Y. and Hirose, S. (2002) - The natriuretic peptide system in eels: a key endocrine system 
for euryhalinity?. Am J Physiol282, R940-R951. 

Tan, C.H., Wong, L.V., Pang, M. K.t and Lam, T. J. (1988) - Tilapia prolactin stimulates estradio- 
17b synthesis in vitro vitellogenic oocytes of the guppy Poecilia reticulata. J Exp Zoo/ 248, 361- 
364. 

Tashjian, A. H., Bancroft, F. C., and Levine, L. (1970) - Production of both prolactin and growth 
hormone by clonal strains of rat pituitary tumor cells. Differential effects of hydrocortisone and 
tissue extracts. J Celi Bio! 47, 61 -70. 

Tatemoto, K. (1982) - Neuropeptide Y: complete amino acid sequence of the brain peptide. Proc 
Natl Acad Sei USA 79, 5485-9. 

Tatemoto, K., Rokaeus, A., Jomvall, H., McDonald, T. J., and Mutt, V. (1983) -Galanin - a novel 
biologically active peptide from porcine intestine. FEBS Lett 164,124-8. 

Tong, Z., Pitts, G. R., You, S., Foster, D. N., and El Flalawani, M. E. (1998) - Vasoactive 
intestinal peptide stimulates turkey prolactin gene expression by increasing transcription rate and 
enhancing mRNA stability. J Mol Endocrinol. 21, 259-266. 

Torner, L, Nava, G., Duenas, Z., Corbacho, A., Mejia, S., Lopez, F., Cajero, M., Martinez de la 
Escalera, G., and Clapp, C. (1999) - Changes in the expression of neurohypophyseal prolactins 
during the estrous cycle and after estrogen treatment. J Endocrinol 161; 423-432. 

Tosini, G., Bertolucci, C., and Foa, A. (2001) - The circadian system of reptiles; a multioscillatory 
and multiphotoreceptive system. PhysiolBehav72, 461-71. 

Tseng, J. Y., Kolb, P. E., Raskind, M. A., and Miller, M. A. (1997) - Estrogen regulates galanin but 
not tyrosine hydroxylase gene expression in the rat locus ceruleus. Brain Res Mol Brain Res 50, 
100-6. 

Tsutsui, K., Li. D., Ukena, K., Kikuchi, M., and Ishii, S. (1998) - Developmental changes in galanin 
receptors in the quail oviduct and the effect of ovarian sex steroids on galanin receptor induction. 
Endocrinology'\89, 4230-6. 

Uhl, G. R., Kuhar, M. J., and Snyder, S. H. (1977) - Neurotensin: immunohistochemical 
localization in rat central nervous system. Proc Natl Acad Sei U S A 74, 4059-63. 

189 



References 

Van der Beek, E. M., Swarts, H. J. M., and Wiegant, V. M. (1999) - Central administration of 
antiserum to vasoactive intestinal peptide delays and reduces luteinizing hormone and prolactin 
surges in ovariectomized, estrogen-treated rats. Neuroendocrinology 69, 221-261. 

Vijayan, E., McCann, S. M. (1979) - In vivo and in vitro effects of substance P and neurotensin on 
gonadotropin and prolactin release. Endocrinology 105, 64-8. 

Vijayan, M., Morgan, J., Sakamoto, T., Grau, E., and Iwama, G. (1996) - Food-deprivation affects 
seawater acclimation in tilapia: hormonal and metabolic changes, Journal of Experimental Biology 
199, I2467-2475. 

Wager-Smith, K., and Kay, S. A. (2000) - Circadian rhythm genetics: from flies to mice to 
humans. Nat Genet 26, 23-7. 

Wallis, M., Daniels, M., and Ellis, S. A. (1980) - Size heterogeneity of rat pituítary prolactin. 
Biochem J 189, 605-14. 

Wang, Y., and Conlon, J. M. (1994) - Purification and characterization of galanin from the 
phylogenetically ancient fish, the bowfin (Am/a calva) and dogfish {Scyliorhinus canicula). 
Peptides 15. 981-6. 

Wang, J., Ohmori, Y., Watanabe, T., Naito, J., and Fukuta, K. (1997) - Distribution of 
neuropeptide-immunoreactive nerve fibres in the medulla oblongata of the chicken. Eur J 
Histochem 41, 271 -8 

Wang, Y. F., and Walker, A. M. (1993) - Dephosphorylation of standard prolactin produces a 
more biologically active molecule: evidence for antagonism between nonphosphorylated and 
phosphorylated prolactin in the stimulation of Nb2 cell proliferation. Endocrinology 133, 2156- 
2160. 

Warner, F. J., Burcher, E., Carraway, R., and Conlon, J. M. (1998) - Purification, 
characterization, and spasmogenic activity of neurotensin from the toad Bufo marinus. Peptides 
19, 1255-61. 

Warner, M. D., Sinha, Y. N., and Peabody, C. A. (1993) - Growth hormone and prolactin varianís 
in normal subjects. Relative proportions in moming and afternoon samples. Horm Metab Res 25, 
425-9. 

Waugh, D., and Conlon, J. M. (1993) - Purification and characterization of urotensin II from the 
brain of a teleost (trout, Oncorhynchus mykiss) and an elasmobranch (skate, Raja rhina). Gen 
Comp Endocrinol 92,419-27. 

190 



References 

Weber, G. M., and Grau, E. G. (1999) - Changes in serum concentrations and pituitary content of 
the two prolactins and growth hormone during the reproductive cycle in female tilapia, 
Oreochromis mossambicus, compared with changes during fasting. Comp Biochem Physiol C 
Pharmacol Toxico! Endócrino! 124, 323-35. 

Weber, G.M., Powell, J.F.F., Park, M., Fischer, W.H., Craig, A.G., Rivier, J.E., Nanakorn, U., 
Parhar, I.S., Ngamvongchon, S., Grau, E.G. and Sherwood, N.M. (1997) - Evidence that 
gonadotropin-releasing hormone (GnRFI) functions as a prolactin-releasing factor in a teleost fish 
{Oreochromis mossambicus) and primary structures for three native GnRH molecules. J 
Endócrino! 155, 121-132. 

Wendelaar-Bonga, S. E. (1997) - The stress response in fish. Physiological Reviews 77, 591- 
625. 

Wendelaar-Bonga, S. E., Flik, G., Lowik, C. W., and van Eys, G. J. (1985) - Environmental contrai 
of prolactin synthesis in the teleost fish Oreochromis (formetiy Sarotherodon) mossambicus. Gen 
Comp Endócrino! 57,352-9. 

Wiechmann, A. F., and Smith, A. R. (2001) - Melatonin receptor RNA is expressed in 
photoreceptors and displays a diurnal rhythm in Xenopus retina. Brain Res Mo! Brain Res 91, 
104-11. 

Wigham T. (1992) - The regulation of prolactin cells in teleost fishes. In "Advances in 
Endocrinology", vol. 1, pp. 147-166. The Council of Scientific Research Integration, 
Sreekanteswaram, índia. 

Wigham T., Nishioka R. S., Bem H. A. (1977) - Factors affecting in vitro activity of prolactin cells 
in the euryhaline teleost Sarotherodon mossambicus {Tilapia mossambica). Gen. Comp. Endocr. 
32,120-131. 

Williams, A. J., and Wigham, T. (1994) - The regulation of prolactin cells in the rainbow trout 
{Oncorhynchus mykiss). 1. Possible roles for thyrotropin-releasing hormone (TRFI) and 
oestradiol. Gen Comp Endócrino! 93, 388-397. 

Wilson, D. M., Emanuele, N. V., Jurgens, J. K., and Kelley, M. R. (1992) - Prolactin message in 
brain and pituitary of adult male rats is identical; PCR cloning and sequencing of hypothalamic 
prolactin cDNAfrom intact and hypophysectomized adult male rats. Endocrinology 131, 2488-90. 

Wynick, D., Hammond, P. J., Akinsanya, K. O., and Bloom, S. R. (1993) - Galanin regulates 
basal and oestrogen-stimulated lactotroph function. Nature 364, 529-32. 

Wynick, D., Small, C. J., Bacon, A., Holmes, F. E., Norman, M., Ormandy, C. J., Kilic, E., Kerr, N. 
C., Ghatei, M., Talamantes, F., Bloom, S. R., and Pachnis, V. (1998) - Galanin regulates prolactin 
release and lactotroph proliferation. Proc Natl Acad Sei U SA 95, 12671-6. 

191 



References 

Yada, T., Hirano, T., and Grau, E. G. (1994) - Changes in plasma leveis of the two prolactins and 
growth hormone during adaptation to different salinities in the euryhaline tilapia, Oreochromis 
mossambicus. Gen Comp Endocrinol 93, 214-23. 

Yamada, J., Kitamura, N., and Yamashita, T. (1985) - The relative frequency and topographical 
distribution of smatostatin-, GRP-, APP-, glucagon-, 5-HT-, and neurotensin-immunoreactive cells 
in the proventricular of seven species of birds. Arch Histol Jpn 48, 305-14. 

Yamagushi, S., Yamada, J., Kitamura, N., and Yamashita, T. (1987) - Histological and 
immunohistochemical study on ontogeny of the endocrine cells in the quail gizzard, Gegenbaurs 
Morphol Jahrb 133, 71-8. 

Yamashita, K.. Matsuda, K., Hayashi, H., Hanaoka, Y., Tanaka, S., Yamamoto, K. and Kikuyama, 
S. (1993) - Isolation and characterization of two forms of Xenopus prolactin. General and 
Comparative Endocrinology 91. 307-17. 

Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki, Y., Menaker, 
M., and Tei, H. (2000) - Resetting central and peripheral circadian oscillators in transgenic rats. 
Science 288, 682-5. 

Yano, K., Hicks, J. W., Vaudry, H., and Conlon, J. M. (1995) - Cardiovascular actions of frog 
urotensin II in the frog, Rana catesbeiana. Gen Comp Endocrinol 97, 103-10. 

Yasuda, A., Kawauchi, H., and Papkoff, H. (1990) - The complete amino acid sequence of 
prolactin from the sea turtle (Chelonia mydas). Gen Comp Endocrinol 80, 363-71. 

Young, G. (1993) - Effects of hypophysectomy on coho salmon interrenal: maintenance of 
steroidogenic pathway and restoration of in vitro responsiveness to adrenocorticotropin after 
handling. Gen Comp Endocrinol 92, 428-38. 

Youngren, O. M., Silsby, J. L, Rozenboim, I., Phillips, R. E., and Halawani, M. E. (1994) - Active 
imunization with vasoactive intestinal peptide prevents the secretion of prolactin induced by 
electrical stimulation of the tur1<ey hypothalamus. Gen Comp Endocrinol 95, 330-336. 

Yulis, C. R., and Lederis, K. (1988) - Occurrence of an anterior spinal, cerebrospinal fluid- 
contacting, urotensin II neuronal system in various fish species. Gen Comp Endocrinol 70, 301- 
11. 

Zachmann. A., Falcon, J., Knijff, S. C., Bolliet, V., Ali, M. A. (1992) - Effects of photopehod and 
temperature on rhythmic melatonin secretion from the pineal organ of the white sucker 
(Catostomus commersoni) in vitro. Gen Comp Endocrinol 86, 26-33. 

Zanuy, S., Carrillo, M., and Ruiz, F. (1986) - Delayed gametogenesis and spawning of sea bass 
{Dicentrarchus labrax L.) kept under different photoperiod and temperature regimes. Fish Physiol 
Biochem 2, 53-63. 

192 



References 

Zhang, A. Y., Chen, Y. F., Zhang, D. X., Yi, F. X., Qi, J., Andrade-Gordon, P., de Garavilla, L., Li. 
P. L, and Zou, A. P. (2003) - Urotensin II is a nitric oxide-dependent vasodilator and natriuretic 
peptide in the rat kidney. Am J Physiol Renal Physiol 285, F792-8. 

Zhu, H., LaRue, S., Whiteley, A., Steeves, T. D., Takahashi, J. S., and Green, C. B, (2000) - The 
Xenopus clock gene is constitutively expressed in retinal photoreceptors. Brain Res Mol Brain 
Res 75, 303-8. 

Zupanc, G. K. (1999) - Up-regulation of somatostatin after lesions in the cerebellum of the teleost 
físh Apteronotus leptorhynchus. NeurosciLett 268, 135-8. 

Zupanc, G. K., Cécyre, D., Maier, L, Zupanc, M. M., and Quirion, R. (1994) - The distribution of 
somatostatin binding sites in the brain of gymnotiform fish, Apteronotus leptorhynchus. J Chem 
Neuroanat 7. 49-63. 

193 


