
BitTorrent based Transmission of

Real-Time Scalable Video over P2P Networks

Pedro L. Rodrigues

Departamento de Engª. Eletrotécnica

Instituto Superior de Engenharia, UAlg

Faro, Portugal

pedro.larguito.rodrigues@gmail.com

Jânio M. Monteiro

INESC Inovação, Lisbon, Portugal &

Instituto Superior de Engenharia, UAlg

Faro, Portugal

Abstract— The number of software applications available on the

Internet for distributing video streams in real time over P2P

networks has grown quickly in the last two years. Typical this

kind of distribution is made by television channel broadcasters

which try to make their content globally available, using viewer’s

resources to support a large scale distribution of video without

incurring in incremental costs. However, the lack of adaptation

in video quality , combined with the lack of a standard protocol

for this kind of multimedia distribution has driven content

providers to basically ignore it as a solution for video delivery

over the Internet. While the scalable extension of the H.264

encoding (H.264/SVC) can be used to support terminal and

network heterogeneity, it is not clear how it can be integrated in a

P2P overlay to form a large scale and real time distribution. In

this paper, we start by defining a solution that combines the most

popular P2P file-sharing protocol, the BitTorrent, with the

H.264/SVC encoding for a real-time video content delivery. Using

this solution we then evaluate the effect of several parameters in

the quality received by peers.

Keywords- Peer-to-Peer (P2P), Video, Scalable Video Coding

(SVC), Real-Time, BitTorrent

I. INTRODUCTION

The massive utilization of video services over the Internet
like YouTube, live Internet video, online video purchases and
rentals, webcam viewing and web-based video monitoring has
increased the global traffic of Internet video so significantly,
that for the first time in ten years P2P file-sharing traffic is no
longer the largest Internet traffic type in the Internet. Video
took its place during 2010, with 40% of the overall traffic, with
some forecasts predicting that it will reach 90% in 2015, as
described in [1].

This growth partially results from the continuous increment
of the utilization of P2PTV software applications like
TVUPlayer or PPStream, that distribute video content in real
time over P2P networks. Typical this kind of distribution is
made by TV broadcast channels from all over the world trying
to make their contents globally available. By using the peer’s
computational and network resources, they are able to
distribute their video content to a much larger number of
receivers, without incurring in additional infrastructure costs.

However, all these software applications suffer from very
similar problems, including: lack of adaption to bandwidth
fluctuations; lack of support for different type of terminals;
low quality of the multimedia streams due to the lack of

support of Quality of Service (QoS) in the Internet; and finally
they are proprietary solutions without a defined standard.

In terms of video the Scalable Video Coding (SVC)
extension [2] of the H.264/AVC standard enables the
transmission and decoding of several layers with different
temporal, spatial or signal-to-noise ratio resolutions. The
scalability property of SVC supports the splitting of the main
bit stream into several sub-streams, forming a base layer, fully
compatible with H.264/AVC devices, and several enhancement
layers. These properties support the adaptation of the video
quality to different bit rates and distinct terminal capabilities.
When combined with an adequate protection mechanism it also
enables a graceful degradation of quality for the transmission
over loss prone channels [3].

In terms of P2P, the BitTorrent protocol is the most popular
P2P file-sharing protocol used on the Internet. In 2008 P2P
file-sharing traffic was the largest type of traffic on Internet
and 70% of this traffic was estimated to be made by BitTorrent
clients [4]. However, although it is extensively used in the
transmission of non-real time data, its adaptation for the
transmission of real-time video is still an open issue.

Given these considerations, the aim of this paper is to
evaluate how to combine the P2P file-sharing protocol
BitTorrent with the scalable extension of the H.264 encoding
(SVC) [2] for the support of real-time video delivery. The rest
of this paper is organized as follows. Section II describes some
of the main features of the BitTorrent protocol. Section III
presents the changes required to enable the transmission of
H.264/SVC over IP networks taking into account its scalability
properties. Section IV describes the implemented simulator and
the improvements made to the BitTorrent protocol to support a
real-time transmission of SVC. Section V presents the obtained
simulation results. Finally, section VI concludes the paper
pointing out future developments that follow from this work.

II. BITTORRENT PROTOCOL

The BitTorrent protocol [5] was designed to distribute large
files in smaller pieces using a mutual distribution method
between a group of peers called a swarm. To download a file
using BitTorrent protocol, besides requiring a BitTorrent client
installed, a torrent file is needed. The torrent file contains very
important information required to download the content files,
including the fixed piece size in which the content files will be
chopped and the URL of the tracker of the swarm. The tracker

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sapientia

https://core.ac.uk/display/61523789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is built from a web server and monitors all the peers in the
swarm. Each peer contacts the tracker to get a list of peers in
the swarm and, after that, starts communicating directly with
the other peers, i.e. without intervention of the tracker. Active
peers that have a complete copy of the content are called seeds
and peers still downloading the content are called leechers [5].

Each peer requests pieces to download from its neighbor
peers in a random order. Each time a peer has successfully
downloaded a piece of the file, it announces it to the other
connected peers within the swarm.

The purpose of each peer is to maximize its piece download
rate in a reciprocal manner. Several policies are implemented
in the protocol to achieve fairness, provide incentives for
mutual exchange, avoid overloading and find better peers with
which to exchange pieces. Each peer should avoid being
overloaded by requests for pieces. For this reason and for good
TCP performance, each peer limits the number of simultaneous
active connections, typically to four different peers [6]. Then
the choke/unchoke mechanism is put into place and the active
connections are placed in the unchoked state, while the other
neighbor connections are placed in the choked state. To avoid
repetitive changes of choked state, called as fibrillation, this
process is limited to occur in intervals of 10 seconds.
Exchanges with neighbors should be fair, that is, each peer
should reciprocate by supplying pieces to peers that also
provide downloads to it. Finally, each peer should try to
connect other peers periodically to see if their download rate is
better than the current ones in its active group of peers.

To achieve the fairness and performance goals, each peer
follows several strategies. First, it uses a rarest-first
prioritization of pieces to download by selecting pieces that
have been least downloaded, increasing the probability of other
peers becoming interested in exchanging pieces with it.
Second, it favors peers with higher capacity of transferring
information, based on previous data transfer rates with each
neighbor peer. Third, it tests other peers periodically to see if
better transfer rates can be obtained. This optimistic unchoking
mechanism selects an interested random peer every 30 seconds.

Additionally, the BitTorrent protocol uses a called tit-for-tat
strategy in which the downloading peer chooses other peers
based on the capacity of that peer to download the piece he is
interested in. By sending pieces to a group of peers, each peer
increases the chances of receiving pieces from them. A peer
indicates it is either interested or uninterested in receiving
exchanges from a neighbor peer in the swarm.

When data is being transferred, downloading peers queue
several piece requests at once to get good transport
performance, this technique is called pipelining.

III. ADAPTATION OF H.264/SVC STREAMS FOR THE

TRANSMISSION OVER IP NETWORKS

In SVC, each NAL unit has a direct association with three
basic scalable dimensions: spatial (i.e., resolution), temporal
(i.e., frame rate) and quality (i.e., SNR), which in turn can be
identified using three identifiers: dependency_id, temporal_id,
and quality_id. These identifiers can also be referred as a
(D,T,Q) tuple, as described in [4].

In the first part of this study, transmission tests were
performed with the H.264/SVC stream [3] in order to analyze
its capability of being transmitted over the Internet without
losing its scalable properties. For that purpose, four different
video sequences were encoded using the H.264/SVC encoder
[7]. Two image definitions (424x240 and 848x480) were used,
with four levels of temporal scalability (30, 15, 7.5 and 3.75
fps) and two levels of SNR quality.

A. Fragmentation and Reassembling of H.264/SVC Streams

In order to explore the scalability options of the H.264/SVC
bit stream, it must be fragmented in several transmission layers,
taking into account the Network Adaptation Layer (NAL) unit
types. To achieve this, the H.264/SVC bit stream is in a first
stage partitioned into smaller files, called chunk files, which in
turn were fragmented into several transmission layers,
according to their NAL unit types and in response to the
scalable spatial, temporal and SNR layers (i.e., (D,T,Q)
identifiers). Table I represents the (D,T,Q) identifiers of each
transmission layer and Figure 1 presents the Block diagram of
the chunk and layer partitioning/reassembling functions.

The fragmentation process starts by analyzing H.264/SVC
bit stream structures searching for NAL units of Supplemental
Enhancement Information (SEI) type. At the encoding it was
defined that each chunks starts by the SEI message.
Afterwards, the splitting into transmission layers is based on
the analysis of the tuple (D,T,Q) of the correspondent NAL
unit.

Both processes for fragmentation and reassembling of the
H.264/SVC bit stream were made in order to obtain a
decodable sequence at the receiver, using a subset of the
original quality and supporting real time H.264/SVC decoding,
as supported by [8]. The real-time requirement also imposed
that recently added receivers could be able to start decoding the
video at any playback time; i.e., not necessarily at the
beginning of a TV program. To this aim, we have imposed that
any chunk should be independently decodable, setting the
chunk length to 2 seconds. Different from traditional
BitTorrent solutions and since the video was encoded in
Variable Bit Rate, consecutive chunks normally have different
sizes.

TABLE I

TRANSMISSION LAYERS ACCORDING TO

 SVC SCALABILITY LAYERS

Transmission

Layer

SVC NAL Unit

D T Q

Layer 0 0 0, 1, 2 and 3 0

Layer 1 0 0 1

Layer 2 0 1 1

Layer 3 0 2 1

Layer 4 0 3 1

Layer 5 1 0, 1, 2 and 3 0

Layer 6 1 0 1

Layer 7 1 1 1

Layer 8 1 2 1

Layer 9 1 3 1

Figure 1. Block diagram representing the Fragmentation and reassembly processes of the H.264/SVC bit streams.

Figure 3. Block diagram representing the transmission of H.264/SVC bit streams using an HTTP Web Server.

During fragmentation of the original bit stream in chunks
and layers an auxiliary description file is created containing the
information of the interdependency of the SVC layers in each
group of chunk files. This file was afterwards used as reference
in the reassembling process.

Since some parts of the bit stream can be lost in the
transmission, during the development of the reassembler
process it was verified the need for an additional field that
references the order of sequence of each NAL unit in the
original H.264/SVC bit stream. A new 2-byte
Sequence Number (SeqNum) was therefore added between the
NAL units start code and the beginning of the NAL
[3], as shown in Figure 2.

4 byte 2 byte

0 0 0 1 SeqNum NAL unit data

Figure 2. Example of the NAL unit structure with the 2

number inserted field.

Finally, the reassembler module combines the
using the interdependency information of the H.264/SVC
layers obtained from the description file and
received NAL units using their sequence numbers.
sequence number of the NAL unit field are only
multiplexing the NAL units at the reassembler process,
discarded after this step.

B. Transmission of H.264/SVC Streams using a Web S

In this step, a system capable of transmitting H.264/SVC
bit streams using the HTTP protocol was implemented
achieve this, minor improvements had to be made to the system
described in section III-A. The description file coming out of
the partitioning process was published online, together with the
chunk and layer files of the H.264/SVC bit stream
HTTP Web Server. Additionally the reassembler process was
made to download these chunk files published
Server.

Block diagram representing the Fragmentation and reassembly processes of the H.264/SVC bit streams.

lock diagram representing the transmission of H.264/SVC bit streams using an HTTP Web Server.

stream in chunks
and layers an auxiliary description file is created containing the
information of the interdependency of the SVC layers in each

was afterwards used as reference

can be lost in the
, during the development of the reassembler

process it was verified the need for an additional field that
of each NAL unit in the

byte field called
added between the

NAL units start code and the beginning of the NAL unit data

NAL unit data

Example of the NAL unit structure with the 2-byte sequence

the chunk files,
information of the H.264/SVC

rom the description file and reorders the
sequence numbers. As the

only used for the
multiplexing the NAL units at the reassembler process, they are

ission of H.264/SVC Streams using a Web Server

a system capable of transmitting H.264/SVC
implemented. To

had to be made to the system
scription file coming out of

together with the
chunk and layer files of the H.264/SVC bit stream using an
HTTP Web Server. Additionally the reassembler process was
made to download these chunk files published in the Web

The complete system, capable of transmitting H.264/SVC
bit streams over the Internet is shown on Fig

C. Transmission of H.264/SVC Streams using a P2P Network

From the architecture implemented i
III-B, the following step was to improve the system with the
capability of transmitting H.264/SVC bit streams over the
Internet using a P2P network. For that purpose, as explained
Section II, the BitTorrent P2P file-sharing protocol was chosen.

Given the system obtained in section
improvements needed to be made. First
needed to be converted in a torrent file, as required by
BitTorrent. For this, all the information
was included in the new torrent file, together with
URL of the tracker and the fixed piece size of the torrent.
Figure 4, represents an example of such torrent file.

Figure 4. Example of a torrent file structure for a H.264/SVC bit stream

The second required change made to BitTorrent was on the
piece selection method. In general, BitTorrent protocol is not
suited for real-time applications and a great part of this derives
from its piece selection method. It does not respect the
chronological order of the events in the bit stream when
downloading the required pieces. To try to solve this issue, we
tested a sequential piece selection method.

Finally, the third and last necessary improvement was to
create a relationship between the torrent pie
network and the several SVC layers. For this, the chunk files

Block diagram representing the Fragmentation and reassembly processes of the H.264/SVC bit streams.

lock diagram representing the transmission of H.264/SVC bit streams using an HTTP Web Server.

The complete system, capable of transmitting H.264/SVC
bit streams over the Internet is shown on Figure 3.

Transmission of H.264/SVC Streams using a P2P Network

implemented in Sections III-A and
step was to improve the system with the

capability of transmitting H.264/SVC bit streams over the
For that purpose, as explained in

sharing protocol was chosen.

Given the system obtained in section III-B three relevant
First, the description file

torrent file, as required by
BitTorrent. For this, all the information of the description file

, together with the required
URL of the tracker and the fixed piece size of the torrent.
Figure 4, represents an example of such torrent file.

Example of a torrent file structure for a H.264/SVC bit stream.

The second required change made to BitTorrent was on the
piece selection method. In general, BitTorrent protocol is not

time applications and a great part of this derives
from its piece selection method. It does not respect the

l order of the events in the bit stream when
downloading the required pieces. To try to solve this issue, we
tested a sequential piece selection method.

Finally, the third and last necessary improvement was to
create a relationship between the torrent pieces over the
network and the several SVC layers. For this, the chunk files

needed to be padded to match multiples of the fixed piece size
defined in the torrent file.

Due to the excessive overhead caused by the padding of the
chunk files, a 16 kByte fixed piece size was used (yielding
aprox. 24% overhead) instead of the standard 256 kByte
(aprox. 635% overhead) commonly used, as described in [5].
The choice of the 16 kByte fixed piece size was only limited by
the minimum value defined by the software used in the tests.

The performed tests consisted in placing a seed online, with
all the chunk files of the torrent file available through the
execution of a common BitTorrent client. In the receiver side,
the torrent file was given as input to the receiver process. As
each peer registered in the swarm and after a few seconds the
download of the pieces of the chunk files started in a sequential
order. The receiver reassembled the H.264/SVC bit stream,
which was then reproduced.

D. Analysis of the Implementation

The defined system was able to deliver the scalable video
using a BitTorrent P2P overlay. However, in this stage several
challenges were still unfulfilled. First of all, the torrent file, as
it was specified, requires the content to be completely available
before the startup of the transmission. Although it works
properly with stored content, it does not support a real-time
encoding, as required by this research.

Additionally, the piece selection process did not
differentiate what layer and chunk should be requested first. In
fact all layers and chunks had the same default priority, set by
the BitTorrent protocol. Also, in a real time transmission of
video there are two important elements that need to be
supported: first, the delay between channel switching and the
start of video reproduction needs to be reduced as much as
possible; and content availability dictated that at least lower
SVC layers should always be delivered in time to receivers for
their reproduction. This last feature avoids the complete loss of
certain chunks with the corresponding subjective quality
degradation.

Until this point, all tests were based on practical
experiments, using real software and computers connect to the
Internet. Given the number of variables that can be used in
such a P2P live distribution, which should be combined with a
high number of peers, in the following steps we decided to
implement a simulation framework using Matlab, in
accordance with the BitTorrent mechanism and reflecting the
system defined up to this point.

IV. SIMULATION FRAMEWORK FOR REAL-TIME H.264/SVC

USING BITTORRENT

The simulation framework was implemented using a
discrete event simulator developed using Matlab, in accordance
with the BitTorrent protocol specification [5]. Among other
features it included: the announce procedure between peers and
the tracker of the swarm; the information exchange between
peers regarding their different interests, the content availability
and the requests for download of the pieces of the torrent files;
together with the choke/unchoke mechanism of each peer in
the swarm. For this environment to work as expected, an
independent entity within a group of several pre-defined

objects and variables was created in each peer, that translates:
the upload and download available bandwidth; the neighbor
peer list and the associated requests for pieces of each of these
neighbor peers; the status of the choke/unchoke mechanism;
and the entrance/exit instants in the swarm. During the
execution of the simulation tests these variables were
continuously changed and processed. The results obtained for
each of these tests, reflect the sampling of the different values
of these objects and variables for a set of simulations.

During this study the framework suffered several
improvements and changes; however the compatibility of its
behavior with the initial specification of BitTorrent was always
taken into account. The result was an accurate simulation
framework capable of a strict reproduction of the BitTorrent
protocol behavior as described in [5]. This model enabled the
adjustments of variables like chunk and layer priority and a
faster measurement of the results, using a much higher number
of terminals.

According to the characteristics of BitTorrent described in
Section III, its adaptation to support a real-time transmission of
H.264/SVC video, requires some improvements. In the
following we describe these changes.

A. Incremental Torrent File Information

Since the BitTorrent protocol was developed with the
purpose of file-sharing, the torrent file is a static text file
containing the whole structure of the encoded file and the
information required for downloading the content files. In a
real-time encoding and transmission of video however, as new
H.264/SVC chunk files are generated by the source peer, a
mechanism is required to inform other peers within the swarm,
about where these files are located.

To keep track of these updates, peers should have access to
a simple content update mechanism, similar to the one
available in an RSS feed. An RSS feed is a standardized
technology to directly access to subscribed contents on
websites, allowing users to access only new published content
without having to manually inspecting all of the websites they
are interested in. It works by requiring the access to a
standardized XML file that the RSS reader software requests
periodically, searching for updates.

In the following, the usage of an RSS feed was considered
to support the periodic update of information about the
availability of new chunk files among the peers of the swarm.

B. Sliding Window Piece Selection Method

Since the rarest-first piece selection method used by the
BitTorrent protocol is not suited for real-time applications and
a purely sequential piece selection method seems not to be the
best option in terms of real-time, a new piece selection method
was adopted.

A sliding window based solution as the one proposed in [9]
seems to be more appropriate, as some layers could be dropped
after a timeout, in case they are not received. Therefore a
solution similar to the method described in [9] was chosen,
with some improvements to support the scalability properties
of an H.264/SVC bit stream.

Figure 5, shows an example of the sliding window selection
method. The window contains the next N chunks/pieces of the
different layers needed to reproduce the H.264/SVC bit stream
in the original events order. Peers can only request pieces
inside the sliding window and need to discard requests for
pieces of events already reproduced.

When using different H.264/SVC layers, peers must decide
which chunk and layer to request first. For this purpose a
prioritization criteria was defined that combines both the SVC
layer index and the remaining time to its reproduction. Based
on this, lower layers, and chunks closer to playback, have been
given higher priorities.

Figure 5. Example of a sliding window piece selection method for an SVC

bit stream with 3 scalability layers.

In Figure 6, we can observe an example of such priority
scheme. All chunks and layers outside the sliding window
assume the normal value of priority of pieces in the BitTorrent
protocol (priority=2), while priorities inside the sliding window
increase according to the importance of the SVC layer (i.e.
base layer is the most important layer) and decrease according
to the chunk number.

Figure 6. Example of the chunk prioritization criteria according to the layer

scalability level and the time to download before being needed.

By either reducing or enlarging the window sizes peers can
respectively request a higher number of chunks and layers, or
concentrate in obtaining a lower number of chunks and layers.

7 6 5 4 3 2 2 …

 12 1110 9 8 2 2 …

 17 16 15 1413 2 2 …

chunk not received

chunk received

, shows an example of the sliding window selection
ns the next N chunks/pieces of the

different layers needed to reproduce the H.264/SVC bit stream
in the original events order. Peers can only request pieces
inside the sliding window and need to discard requests for

en using different H.264/SVC layers, peers must decide
which chunk and layer to request first. For this purpose a
prioritization criteria was defined that combines both the SVC
layer index and the remaining time to its reproduction. Based

yers, and chunks closer to playback, have been

Example of a sliding window piece selection method for an SVC

, we can observe an example of such priority
scheme. All chunks and layers outside the sliding window
assume the normal value of priority of pieces in the BitTorrent
protocol (priority=2), while priorities inside the sliding window

e importance of the SVC layer (i.e.
base layer is the most important layer) and decrease according

criteria according to the layer

scalability level and the time to download before being needed.

By either reducing or enlarging the window sizes peers can
respectively request a higher number of chunks and layers, or

r of chunks and layers.

Figure 7. SVC layers received using different sliding window sizes: a) 2

chunks b) 3 chunks c) 4 chunks d) 5 chunks.

V. SIMULATION R

The improvements referred in Section V were applied to
the BitTorrent simulation model. Several tests were performed
using a sequence of video encoded in H.264/SVC, fragmented
in 10 transmission layers (as described in section V), with an

a)

b)

c)

d)

chunk not received

t1

t2

SVC layers received using different sliding window sizes: a) 2

chunks b) 3 chunks c) 4 chunks d) 5 chunks.

RESULTS

The improvements referred in Section V were applied to
simulation model. Several tests were performed

using a sequence of video encoded in H.264/SVC, fragmented
in 10 transmission layers (as described in section V), with an

average bit rate of 1.45 Mbps. The tests considered a
transmission on a swarm of 100 peers during 900 seconds. All
peers had a maximum uplink rate of 2.0 Mbps and a maximum
downlink rate of 20.0 Mbps. The maximum P2P upload rate of
peers was limited to 90% of the uplink rate (i.e 1.8Mbps).
During simulations all peers entered the swarm in a random
distribution along the first 30 seconds of the experiment. The
tests were made using four values for sliding window sizes,
namely 2, 3, 4 and 5 chunks.

Figures 7 a), b) , c) and d) show the evolution in the
number of layers received by the peers in the swarm as the
chunks are being transmitted. It can be verified that the best
results were achieved for window sizes equal to 3 and 4
chunks. The solution with 3 chunks guaranties that a higher
number of receivers are able to get higher layers, with the
drawback of a significant amount of peers not receiving any
layers. On the contrary

Table 2 present the average number peers receiving each of
the transmitted layers. For instance it can be verified that the
number of peers receiving 6 layers increases by 31% when
varying the sliding window size from 2 to 5 chunks and that the
number of peers not receiving any layer decreases by 50%.

Figure 8. Histogram of delays verified between the original bit streams and
content reproduction for each receiving peer and considering different sliding

window sizes: 2, 3, 4 and 5 chunks.

Figure 8 presents the histograms of delays between the time
of the original bit stream and its reproduction. The best result

was achieved for a window size of 3 chunks, yielding a delay
of nearly 15 seconds.

VI. CONCLUSIONS AND FUTURE WORK

This paper describes the implementation of a BitTorrent
based H.264/SVC transmission, complemented by the
implementation and testing of several features using a
simulation model.

Globally, the results obtained have shown that the
BitTorrent mechanism can be adapted to support a real-time
H.264/SVC transmission over IP networks.

The tests performed using the simulation model have
shown that a sliding window of 3 or 4 chunks was capable of
delivering at least one layer to nearly all receivers. In terms of
delay, between joining the swarm and the start of video
reproduction, a window of 3 chunks has been capable of
reducing it value to nearly 15 seconds. Both results show that,
given the conditions defined for these tests, the adjustment of
the window size influence the real-time behavior.

These results have also demonstrated that there are still
several improvements that need to be performed to the system
here described. Not only the number of receivers getting at
least one layer should be increased but also the number of
layers.

The need of a mechanism responsible for the reduction of
the delay between the time of the original bit stream and the
reproduction on the different peers should also be considered.

Regarding the increase of the number of SVC layers
received and the maintenance of the BitTorrent swarm,
alternative piece selection methods and the resilience to
random entrance and exit of peers in the swarm should also be
tested and analyzed in a future work.

REFERENCES

[1] Cisco Systems, Inc, “Cisco Visual Networking Index: Forecast and
Methodology, 2010–2015”, White Paper, Jun. 2011.

[2] ITU-T and ISO/IEC JTC 1, ”Advanced video coding for generic
audiovisual services, ITU-T Recom. H.264 and ISO/IEC 14496-10
(AVC),” Version 8, Jul. 2007.

[3] J. M. Monteiro, C. T. Calafate & M. S. Nunes, "Evaluation of the H.264
Scalable Video Coding in Error Prone IP Networks", IEEE Transactions
on Broadcasting, vol. 54, no. 3, pp. 652-659, Sept. 2008.

[4] The Liquidculture Notebook, “The absolute majority of all Internet
traffic is p2p file-sharing”, Internet: http://liquidculture.wordpress.com/
2008/03/14/the-absolute-majority-of-all-internet-traffic-is-p2p-file-
sharing/, accessed: Nov. 13, 2011.

[5] B. Cohen, “The BitTorrent Protocol Specification”, Internet:
http://www.bittorrent.org/beps/bep_0003.html, accessed: Nov. 13, 2011.

[6] J. F. Buford, H. Yu, E. K. Lua, “P2P Networking and Applications”,
Morgan Kaufmann, 2009.

[7] J. Vieron, M. Wien, and H. Schwarz, JSVM-9 Software, Joint Video
Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, Doc. JVT-V203, Jan.
2007.

[8] Sourceforge, “Open SVC Decoder”, Available: "http://sourceforge.net/
projects/opensvcdecoder/”, [Accessed Jun. 5, 2010].

[9] P. Shah, J. F. Pâris, “Peer-to-Peer Multimedia Streaming Using
BitTorrent”, University of Houston, 2007.

TABLE II

RATIO OF RECEIVED SVC LAYERS FOR DIFFERENT SLIDING WINDOW SIZES

Sliding Window Size

2 Chunks 3 Chunks 4 Chunks 5 Chunks

None 22% 11% 9% 11%

Layer 0 78% 89% 91% 89%

Layer 1 76% 88% 91% 89%

Layer 2 73% 86% 91% 89%

Layer 3 70% 84% 90% 89%

Layer 4 67% 82% 89% 89%

Layer 5 54% 65% 80% 85%

Layer 6 29% 33% 26% 34%

Layer 7 19% 20% 11% 14%

Layer 8 13% 13% 8% 9%

Layer 9 9% 9% 7% 7%

