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ABBREVIATIONS ANI) ACRONYIMS 

In addition to standard abbreviations for metric measurements (e.g., ml) and chemical 
symbols (e.g., HC1), the abbreviations and acronyms below are used throughout this 

work. 

l,25(OH)2D3 

aa: 

AP: 
bp: 
BGP: 
BMP: 
DNA: 
ddHjO: 

dph: 
dsDNA: 

EDTA: 

Gla: 
GRE: 

KO: 
MGP: 

nt: 
O/N: 

OP: 
ORG: 
PGR: 
RNA: 

rpm: 
R/T: 

RXR: 
S.L. 

spBGP: 
Tris-HCI: 

U: 

VDR 
VDRE: 

vol.: 

approximately 
1,25-dihydroxyvitamin D3 

amino acid 

Alkaline Phosphatase 

base pair 

Bonc Gla Protein 
Bone Morphogenetic Protein 
Deoxyribonucleic acid 

Bidestilled water 

Days post-hatching 
double-stranded DNA 
Ethylenediaminotetracetate 

y-carboxyglutamic acid 

Glucocorticoid Responsive Element 

Knock Out. Depleted 

Matrix Gla Protein 
nucleotides 

Ovemight 
Osteopontin 
Osteocalcin-Related Gene 

Polymerase Chain Reaction 
Ribonucleic Acid 
rotations per minute 

Room Temperature 
Retinoid X Receptor 

Standard Length (length measured from the jaw to the base of the caudal 

fin) 
Sparus aurata BGP 
Tris(hydroxymethyl)aminomethane adjusted to the referred pH with HC1 

Enzyme units (the amount of restriction enzyme necessary to digest one 
microgram of DNA under established conditions) 

Vitamin D Receptor 
Vitamin D Responsive Element 

volume 
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RESUMO 

A proteína Bone Gla (BGP, osteocalcina) é uma pequena proteína dependente- 

da.vitamina K que apresenta resíduos de ácido glutâmico y-carboxilados. A presença destes 

aminoácidos modificados permite à proteína ligar-se a iões Ca2 e interagir com os cristais de 

hidroxiapatite dos tecidos mineralizados. 

Embora a BGP tenha sido isolada pela primeira vez em 1976, só recentemente se 

demonstrou a sua função de modo convincente, permanecendo o mecanismo de acção ao nível 

molecular essencialmente desconhecido. 

O alinhamento das sequências de aminoácidos de todas as BGPs previamente conhecidas 

revela uma notável conservação de certas regiões, as quais se acredita serem essenciais para o 

funcionamento correcto da proteína, ao longo de vários milhões de anos de evolução. O tacto de 

o gene da BGP ter sido clonado apenas em mamíferos (humano e roedores) e de apenas se 

encontrar disponível a sequência parcial de aminoácidos da BGP de um vertebrado inferior (um 

peixe teleósteo) impedia a realização de estudos evolutivos desta proteína, assim como a 

avaliação do seu papel no aparecimento e evolução do osso. 

O presente relatório descreve a clonagem do gene da BGP de um vertebrado inferior, o 

peixe teleósteo Sparus aurata (Dourada), a sua expressão ao longo do desenvolvimento e 

correspondente distribuição tecidular d do RN Am. A organização molecular do gene da BGP de 

Sparus (spBGP) é semelhante à dos genes das BGPs de mamíferos, diferenciando-se apenas por 

um Intrão II mais longo e pela localização dos sítios de inserção dos três intrões. Tal como nos 

mamíferos, a expressão do gene da BGP em Sparus está restricta aos tecidos ósseos e o início da 

sua expressão ao longo do desenvolvimento segue-se ao início da calcificação do esqueleto. 

Estes resultados foram obtidos independentemente por diferentes técnicas de detecção. 

Desenvolveu-se uma cultura celular de células derivadas de osso de Sparus a fim de 

testar a funcionalidade de uma construção promotor spBGP/vector ppGal, demonstrando-se a 

capacidade deste promotor em induzir a transcrição deste vector de expressão nestas células. 

Com base na sequência do gene de spBGP e em outras sequências parciais de RNAm de 

peixe e amííbio igualmente obtidas pelo nosso grupo, efectuou-se uma análise filogenética e 

avançaram-se hipóteses relacionando as BGPs com outra proteína Gla (proteína Matrix Gla), em 

particular, e com a família das proteínas Gla, em geral. Os nossos dados suportam a hipóteses de 

que todas as BGPs terão tido a mesma origem, partilhando um ancestral comum com a proteína 

Matrix Gla. Juntamente com as semelhanças observadas ao nível da distribuição tecidular e do 
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aparecimento no decorrer do desenvolvimento da mensagem da BGP em todos os modelos 

estudados, estes resultados reforçam a hipótese de que a BGP terá atravessado mais de 200 

milhões de anos sem alterações significativas, desempenhando provavelmente o mesmo papel 

desde a alvorada dos vertebrados. 
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ABSTRACT 

The Bone Gla Protein (BGP, osleocalcin) is a small vilamin K-dependent protein 

which presenls Ihree y-carboxylated glutamic acid residues. lhe prcsence oí these 

modified amino acids enables the protein to bind to Ca" ions and to interact with 

hydroxyapatite ciystals of mineralized tissues. 

Although BGP was first isolated in 1976, only recently has its function been 

convincingly demonstrated, the mechanism of action at the molecular levei remaining 

essentially unknown. 

Amino acid sequence alignment of ali previously known BGPs show a 

remarkable conservation of certain regions, which are believed to be essential for the 

correct functioning of the protein, throughout several million years of evolution. The 

fact that the BGP gene had only been cloned in mammalian systems (human and 

rodents) and that parlial BGP amino acid sequences were available only írom one lower 

vertebrate (the teleost bluegill) prevented evolutionary studies ol this protein, as well as 

the assessment of its role in the appearance and evolution of bone. 

This report describes the molecular cloning of the BGP gene from a lower 

vertebrate. the teleost fish Sparus auraía (gilthead seabream), its developmental 

expression and corresponding mRNA tissue distribution. The molecular organization of 

the Sparus BGP (spBGP) gene is similar to that of mammalian BGP genes, the only 

differences being a longer intron II and the sites of insertion ol the three introns. As in 

the mammalian models, BGP gene expression in Sparus is restricted to bony tissues and 

its expression throughout development follows the onset of skeletal calcification. These 

rcsults were independently obtained by different detection tcchniques. 

Different Sparus bone-derived cell strains were obtained and used to test the 

functionality of an spBGP promoter/pPGal vector construction, proving the ability oí 

this promoter to drive the transcription of this expression vector in these cells. 

Based on the spBGP gene sequence and on other partial fish and amphibian 

BGP mRNA sequences also obtained by our group, a phylogenetic analysis was 

performed and evolutionary assumptions were advanced relating BGPs with another 

Gla protein (Matrix Gla Protein), in particular, and with the Gla family of proteins, in 

general. Our data support the hypothesis that ali BGPs have a single origin and share a 

common ancestor with Matrix Gla protein. Together with the similarities observed in 



lhe tissue dislribution and timing of appearance of lhe BGP message in ali sludied 

models. these findings strengthen the hypothesis lhat BGP has crossed more than 200 

million years with only minor changes, probably playing the same role since the dawn 

of the vertebrates. 
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CHAPTER I: INTRODUCTION 

The first chapter of this thesis is meant to give an overview on the current knowledge of 

Gla proteins, in general, and on Bone Gla protein, in particular. Easily noticeable. lhe vast 

majority of infonnation arises from studies using maramals. mostly, and avian. more scarcely, 

as models. Also, the kind of information available is influenced by the "use" this protein has 

been given throughout most of the 23 years that spanned since its discovery, as an indicator of 

bone remodelling in clinicai studies. As described, oniy more recently has a shift occurred m 

the approach chosen to sludy this protein and new infonnation has been obtained conceming 

such aspects as its ftmction and regulation in mammalian models. In this report we desenhe the 

first BGP cDNA and gene structure from a lower vertebrate, and give the first results on its 

tissue distribution in fish and appearance during development. We also report the development 

of bone-derived primary cell cultures. suitable to further analyse BGP gene expression and 

regulation in vitro. With this work we introduce a lower vertebrate, the teleost fish Sparus 

aurala, as a new model for the study of the bone-related proteins. 

1. BONE GLA PROTEIN 

1.1. DISCOVERY AND PURIF1CATION FROM BONE 

Bone Gla protein (BGP, osteocalcin) is a small protein originally isolated from the 

mineralized phase of bovine bone (420, 421). It is the most abundant non-collagenous protein 

of bone in ali species analysed (90, 207, 209, 212, 216, 288, 298), with a molecular weight of 

up to 6500 (chicken; 209). BGP is a very acidic protein, with an isoelectnc point of 4.0 and a 

net negative charge of 9 at pH 8.0 (414, 434). The name osteocalcin (Gr. osteo, bone + Lat. 

ca/c, lime salts + in, protein) derives from (i) its Ca2f affimty (209, 214, 422) and (n) its 

abundance in bone tissue [1-20% of noncollagenous proteins, depending on species, age and 

site (90, 207, 209, 212, 216, 288, 436)]. 
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INTRODUCTION 

Chicken (70, 207, 209) and cow (420) bone were the first tissues from which BGP 

was isolated. More recently, the protein has been purified and sequenced from bonés of 

human (415), rnonkey (215), pig, goat, sheep and wallaby (232), cat (486), rat (387, 400), 

mouse (Hauschka and Gundberg, unpublished observations), rabbit (Hauschka and Tnffitt, 

unpublished observations), emu (234). toad (64), swordfish (422) and seabream (64), and has 

been inelusively detected at low leveis in fóssil bonés, possibly protected from degradation 

through its binding affinity for hydroxyapatite (233, 358). 

1.2. THE BGP GLA RESIDUES: LOCATION. ORIGIN AND FUNCTION 

Location and origin 

One of the most striking features of BGP is the presence of three residues of the 

vitamin K-dependent aminoacid y-carboxyglutamic acid (Gla) [located at positions 17, 21 and 

24 in human, bovine and rat, and at equivalent positions in ali other species], from swordfish 

to mammals (this study, 117, 261, 371, 527), which are thought to be positioned on the same 

face of one helix, spaced at intervals of about 5.4 A (214). Gla residues result from a post- 

translation modification (y-carboxylation) in which specif.c glutamic acid residues are 

modified in a reaction catalysed by a vitamin K-dependent carboxylase (113, 143, 207, 308, 

327, 420, 438, 443, 506), a process that requires the intervention of vitamin K in its reduced 

form, as a cofactor (385, 517, 544). The enzymatic reaction generates y-carboxyglutamate and 

vitamin K 2,3,-epoxide, which is then recycled back to the hydroquinone form by a reductase 

enzyme (173). 

Function 

Since its discovery in the early 70s, the presence of Gla residues has been implicated 

in the ability of vitamin K-dependent proteins to bind to divalent cations, hidroxyapatite, and 

acid phospholipids (301, 370, 501, 505, 541, 545), although the strength of this association is 

relatively weak (439). Seatchard plot analysis of Ca2+ binding to bovine BGP revealed the 

presence of three Ca2+ binding sites with an average dissociation constant of 2-3 mM (214, 
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INTRODUCTION 

373. 422). Since there are three Glas in bovine BGP, it seemed resonable to postulate that the 

three Ca2+ binding sites were provided by the side chain oi Gla. This inlerpretation is 

supported by the observation that decarboxylation of Gla to Glu abolishes Ca-+ binding to 

BGP (414) and by the prediction that the organization oí the Gla residues on the BGí 

structure is similar to the spacing of Ca2+ in the hydroxyapatile crystal (214). Such 

coordination of Ca2+ by Gla residues in BGP would leave two Ca2' coordination sites 

unoccupied by protein ligands and therefore free to function in binding interactions with bone 

mineral (439). Inhibition of the y-carboxylation by the vilamin K antagonist warfarin, by 

selective proteolysis of lhe Gla domain. or by chelation of the calcium ions results in loss oí 

binding of Gla-containing proteins to metal ions, hydroxyapatile or membranes (375, 428, 

430. 435). 

Do Gla residues play a role in BGP secretion? 

It is unclear whether Gla residues may play an intracellular role in modulating protein 

secretion. From the comparatively low Ca2+ affinity of Gla proteins (Kd=0.2-3 mM, far lesser 

than the affinity for hydroxyapatile) and the paucily of intracellular ionic Ca2+ (<10-6M), it 

might be expected that functionally important Gla- and Ca2+-dependent conformational 

changes will occur only as these proteins leave the cell (218). However, carboxylation does 

appear to play a role in the intracellular fate of vitamin K-dependent proteins (218). In vitro 

studies performed on cells and tissues (286, 375, 400) demonstrate inhibited secretion of 

BGP and accumulation of intracellular precursor in the absence of correct y-carboxylation. 

suggesting that processing occurs intracellularly and that the presence of Gla residues in the 

protein may be required for processing into the mature secreted peptide. Although the 

cleavage enzyme [which may be related to the furin/PACE specific endopeptidase known to 

cleave the propeptide of profactor IX (54)] may prefer the presence of Gla in its substrate, the 

presence of Gla residues is not absolutely required for production of the mature BGP species, 

which has been shown to circulate in the non-carboxylated form (for a revision on this subject 

see 218). 
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Calcium binding to Gla shapes the BGP protein 

Ca2+ binding to fully carboxylated BGP alters lhe circular dichroism spectrum and the 

immunochemical properties of the protein (105, 214). lhe apparent a-helical content oí 

bovine BGP increases from 1% in the absence of Ca2' to 14% in its presence (105), the same 

phenomenon ocurring for chicken BGP (214). It is interesting to note that the a-helical 

content of carboxylated BGP in the presence of Ca2+ approaches that of uncarboxylated BGP 

much more than that of carboxylated BGP in the absence of Ca2 (105). One interpretaiion for 

this phenomenon is that lhe Gla-conlaining region of BGP can only exist as an a-helix when 

the Gla residues bind Ca2+. In lhe absence of this metal. Gla residues would destabilize the a- 

helix. perhaps because of the extra negative charge on the Gla side chains (439). 

Combined chemical, immunochemical, spectral. and predictive investigations of BGP 

structure (214) have yielded the model shown in Figure 1-1. The model consists of two 

antiparalell a-helical domains, the "Gla helix" (residues 16-25 in the chicken protein), and the 

"Asp-Glu helix" (residues 30-41) connected by a peptide segment containing a p-tum 

(residues 26-29) and stabilized by the Cys-23-Cys-29 disulfide bond. Olher P-tums occur at 

positions 5-8 and 12-15, with p-sheel structure in the COOH-terminus from residues 42 to 

48. Additional constraints derive from immunochemical studies that indicate contiguity of the 

NH2- and COOH-termini of BGP (214, 216). From the few two-dimensional NMR spectra 

data available, it appears that the Ca2+ -induced helical conformation is extremely rigid, with 

hydrophobic stabilization of the helical domain by the COOH-terminal domain (214, 216). 

The adjacent carboxyl groups in the Gla residues are aligned in such a way that they project 

from the helix in a plane, potentially facilitating the protein adsorption to hydroxyapatite 

(214). Millimolar leveis of Ca2+ cause normal BGP to change from a random-coil to an alpha- 

helical conformation. Apparently, these milimolar leveis of Ca24 or other specific cations are 

required to offset electrostatic repulsion if the highly anionic BGP molecule is to achieve its 

full potential of ~ 40% a-helix (200, 214, 240). 

Not only must Gla residues be present, they must also be in helical register to fully 

achieve the adsorption specificity for hydroxyapatite (414). The binding oí BGP to 

hydroxyapatite probably involves the bidentate chelation of Ca2 atoms on the crystal 
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surface by the malonate side chain of Gla, which is supported by the fact that binding to 

hydroxyapatite completely prevents the thermal decarboxylation of Gla residues to Glu 

residues (439). 

Figure 1-1. Model for Ca2+- 

induced structure of BGP, 

showing its hypothetical mode of 

interaction with Ca2+ in the 

hydroxyapatite crystal lattice. The 

polypeptide backbone of BGP is 

represented by a blue ribbon and 

the Gla residues by a red inverted 

Y. Hydroxyapatite crystals are 
schematic represented, including 

the three axes, a, b and c. Adapted 
from Hauschka el ai (218) 

The affinity of metal-free BGP for hydroxyapatite is increased fivefold by the addition 

of 5mM Ca2+ (214, 563). Interestingly, Mg2' is known to induce a somewhat aberrant a- 

helical conformation in BGP (214) and simultaneously inhibits the binding to hydroxyapatite 

(219, 560). Magnesium ions compete rather well for the Ca2' binding sites, but Sr2' and Ba2' 

show little or no competition (200, 209). In contrast, the Gla-rich fragment-1 portion of 

prothrombin shows increased hydroxyapatite binding in the presence of either Ca" or Mg" 

(560). Other inhibitors of BGP adsorption to hydroxyapatite are described in Table I-I. 

Finally, it seems interesting to refer that although BGP is distinguished by its normal content 

of Gla residues, the human protein may contain only two fully y-carboxylated Glas (415), a 

fact that may be related to the low concentration of BGP in human bone and plasma (-5% of 

most other species, including other mammals; 425, 427, 431). 

 \ 
l5.45 Âj 
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Table I.I. Most important ions and moléculas that inhibit BGP adsorption to hydroxyapatite, 
suggested mechanism of action and corresponding references. 

Inhibitors of BGP 
adsorption to 

Mode of action 
References 

Magnesium (Mg ) Induces aberranl a-helical 
conformation in BGP 

219,560 

Diphosphonates Competes with BGP íor 
hydroxyapatite 

219,561 

Dicoumarol Prevents y-earboxylation by 
inhihitinp vitamin K production 

211 

Warfarin 

(TioHifAi) 

Prevents y-carboxylation ot Glu 
residues to Gla in BGP 

82,289,375,430, 437, 441 

Decarboxylation Reverts Gla residues lo Glu. 

which are unable to bind 
hydroxyapatite 

213,219,414, 560 

Phenprocoumon 

CigHiôOs 

With a structure very similar to 
warfarin, inhibits vitamin K 

epoxide reductase and, indirectly, 

the aclivity of vitamin K. 

138.226. 277,410,538 

BGP in free solution binds between 2 and 3 mol Ca2+ /mol protein with a dissociation 

constant ranging from 0.8 to 3 mM (200, 209, 214. 422). Binding sites for Ca2t are probably 

formed by carboxyl groups of Gla resíduas, as well as by oppostng carboxyls of asparUc actd 

and glutamic acid in the two helical domains of BGP (218), The interaction of Gla wrth Ca 

is such that only two of the six to nine likely coordination sites are occupied (62, 214). Thus 

the sequestered Ca2+ is available for other types of interaction. Candidate ligands for sharing 

in the interaction of Ca2+ bound to Gla resíduas of BGP include other Ca2+ -binding protems. 

acidie phospholipid surfaces, and calcium phosphate mineral surfaces, such as 

hydroxyapatite. Although BGP apparently fails to bind phosphate antons m solution (422. 

444) a potential arginine moiety for phosphate interaction is absolutely conserved (Arg-20). 

The' ATg-20 is positioned optimally to provide for both i) internai neutralization of 

electrostatic charge in the Gla helix and ii) the eomplementary eharge array in residues 17-24 

(Gla-X-X-Arg-Gla-X-X-Gla), which appears to promote adsorption to the hydroxyapatite 
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surface lattice (Ca2f. PO43 .Ca ) (214,217). 

1.2. BIOCHEMICAL CHARACTER1ST1CS OF BONE GLA PROTEIN 

The biosynthetic pathway of BGP 

The most recent advances in defining the biosynthetic pathway for BGP include (i) 

isolation of the BGP gene and characterization of prometer regulatory elements, (n) 

sequencing of cDNAs eoding for preproBGP from several species, (iii) characterization of 

proBGP (iv) description of the possible role of the propeptide as a vitamin K-dependent 

carboxylase recognition site, (v) in vitro synthesis of the Gla residues and delineation of their 

potentiai role in the processing and the physiologieal fanctioning of BGP, (vi) investigation 

of lissue specificity for BGP synthesis, and (vii) study of the modulation of BGP synthesis by 

the hormone l,25(OH)2D3 and other effectors of BGP activity (218). 

The current knowledge of the mammalian BGP biosynthetic pathway is partially 

summarized in Figure 1-2. A preproBGP, approximately twice the size of the mature peptide, 

is first synthesized, bearing a signal peptide (which direets the protein to the endoplasm.c 

reticulum) and a propeptide. both cleaved off in separate reactions prior to secretion (73, 320, 

374 399 400). After removal of the 23-residue hydrophobic leader sequence by the signal 

peptidase'. concom.tant or immediately after translation (399), it appears that the intracellular 

proBGP (374, 375, 400) undergoes posttranslation modifications, leading to synthesis of the 

three Gla residues, by a processus that requires vitamin K as a cofactor and is C02- and 02- 

dependent (143, 286, 399, 400). This reaction is catalysed by the y-carboxylase enzyme, 

which also contains Gla residues (34), event that seems to be coincidem with membrane 

binding potentiai (182) and proceeds by a mechanism similar to that described for other 

vitamin K-dependent proteins (143, 542). The proregion contains a gamma-carboxylation 

recognition site homologous to corresponding regions in the vitamin K-dependent clottmg 

factors Arg at position -1 and Phe at -16 are strictly conserved and appear to be criticai for 

the binding of the carboxylase enzyme to its substratos (246, 399). Another homologous 

structure possibly involved in substrato recognition by the carboxylase is the invanant 
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occurrence of the peptide sequence Glu-X-X-X-Glu-X-Cys (with X for variable amino acid) 

in ali Gla-containing clotting factors, BGPs and Matrix Gia proteins (MGPs) sequenced 

(442). The two glutamic acid residues in this consensus sequence are normally carboxylated 

to Gla, along with other specific glutamic acid residues, depending on the protein. This 

potential recognition site is part of the Gla-helix domain in BGP (214), and thus substrate 

conformation may play an important role in determining carboxylation specifrcity (218). 

After carboxylation, the propeptide is removed and the protein is secreted (198). 

m 
signal peptidase 

■■ V- 
VV, V t 

CO ,■ ■ 
■ ■ 

propeptide 
cleavage 

Ca2 

Ca2+ 

Ca 
> < 

(;íi2+ 
Ca 

m Vi 
mH b-A 

:V,' 2l-í 

Native BGP 

Blood plasma 

Boné mineral 

Figure 1-2 General pathway of BGP biosynthesis and secretion by osteoblasts. Prepro BGP 

M « 10 000) consists of a 23-26 residue prepeptide, a 22-28-residue propeptide, and a 45 to 

50-residue BGP sequence (this study, 117, 261, 371, 527), the exact size of each fragment bemg 
dependem on the species analysed. After cleavage by signal peptidase resulting P/e00? 13 

presumably targeted for carboxylation by its propeptide (73, 246, 399, 442) Gla (symbolized by 

inverted and horizontal Ys) is normálly formed at residues 17, 21 and 24 (218). Adapted ftom 

-lauschka et al. (218). 
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Two contiguous basic amino acids appear to tbe amino-terminal side of the 

propeptidase cieavage site in most of the vitamin K-dependent proteins. However, additional 

studies with vitamin K-dependent eoagulation factors and protein C mutants (30, 160) 

suggest that the propeptidase substrate specifícity is not restricted to the basic residues at -1 

and -2, but also includes the carboxy-terminal four aminoacids of the propetide. 

1.4. BIOSYNTHESIS. TISSUE DISTRIBUTION AND ABUNDANCE OF BGP 

BGP in bone 

BGP is synthesized in bone. where it represents 1-20% of ali non-collagenous proteins 

(90. 207, 209, 212, 216, 288, 436), being associated with the calcified extracellular matnx 

(214 236, 336, 337, 458). Several lines of evidence point to osteoblasts as the cells in bone 

which synthesize BGP (e.g., 73, 218, 295. 375, 503, 571) and the protein is also synthesized 

in vitro by bone-derived cells, such as primary cultures of osteoblastic cells (25, 33, 57, 273, 

305. 368), and by clonal osteosarcoma cells which display features of the osteoblastic 

phenotype such as high PTH responsiveness and high alkaline phosphatase activity (5, 324, 

374, 375). 

BGP in teeth 

Besides osteoblasts, BGP is also synthesized by odontoblasts in teeth (57, 123). In 

fact, rat incisor dentin has yielded a Gla protein identical to rat bone BGP (123, 303), in 

amounts comparable to those found in that tissue (302), an observation consistent with the 

fact that dentine has a calcified collagenous matrix generally similar to that of bone (304). 

Interestingly, BGP has never been detected in tooth enamel (420), a mineralized tissue that 

differs ffom dentine and bone by the average size of its hydroxyapatite crystals, which are far 

larger, and also by the absence of a collagenous matrix. 
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BGP in athcrosclerotic lesions 

BGP has been also identified in calcified athcrosclerotic plaques (158, 485). Already 

in 1863 the mineral component in calcified arteries was described as "an ossificalion, andnot 

a mere calcification; lhe plates which pervade ,he inner wall of the vessel are real plates of 

bone...We see ossification declare itself in precisely the same manner as when an osteophyte 

forms on the surface of hone...follomng the same course of development" (547). This bone 

associated with atherosclerosis inclusively possesses marrow (156). Not unexpectedly, we 

find in this athcrosclerotic lesions, besides BGP, the same proteins present in normal bony 

tissues, namely MGP (485). Bone Morphogenetic protein-2a (BMP-2a (a potent osteogemc 

differentiation factor (50, 259))) and osteopontin (445). The cells responsible for the 

presumable active calcification observed in atherosclerosis are not known. but it ts possible 

that vascular cells may be able to act in a manner similar to osteoblasts (445). In addition, at 

least some of these cells have morphological and immunocytochemical features of 

macrovascular pericytes (50; a type ol mural cell). 

BGP in plasma 

BGP has been detected in the plasma of ali vertebrates examined (e.g., 197, 425, 427, 

433), suggesting that a significant amount of BGP synthesized by bone cells circulates in 

plasma. Studies have shown that the BGP found in the circulation derives from new protein 

synthesis and not from bone resorption or release of pre-existing BGP from the bone matnx 

(433). This fact, together with the evidences that serum BGP binds strongly to added 

hydroxyapatite [(433) which indicates that the plasma protein has a foll complement of y- 

carboxyglutamate residues] has raised the possibility that BGP found in bone represents 

serum BGP bound to bone hydroxyapatite (425). However, several evidences point against 

that conclusion (e.g., the fact that less than 7% of the 125I-labelled BGP injected into rats 

actually accumulates in bone (433)), and an altemative model appeared suggesting that the 

high BGP concentrations adjacent to hydroxyapatite were due to its secretion near 

mineralizing sites (425). The BGP found in serum would then represent the ífaction of newly 

synthesized BGP escaping from hydroxyapatite binding and diffirsing away from the 

mineralizing site. This model also accounts for the increase in serum BGP upon warfarin 
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administration, which creates an abnormal BGP that cannot bind to hydroxyapatite, or upon 

ethylhydroxydiphosphate injection, which competitively blocks the binding of BGP to 

hydroxyapatite (432). 

The molecular weight of plasma BGP is identical to that for BGP extracted from bone 

(425-427). The turnover of BGP in plasma is quite fast (433), as indicated by the complete 

shift in the ability of serum BGP to bind to hydroxyapatite within 3 hours of warfann 

administration. Sinee warfarin inhibits the Y-carboxylation of BGP at the microsomal levei, 

this result indicates that the interval between new BGP synthesis within the cell and complete 

turnover of BGP in serum is only 3 hours (439). 

BGP in blood 

Sensitivo radioimmunoassays (RIAs) for BGP have shown that this protein circulates 

in blood at concentrations ranging from 2 to 15 ng/ml in normal adult humans (72, 103, 522, 

524) lo as much as 900 ng/ml in young rats (2, 406, 430), Comparable leveis of BGP are 

found in both serum and plasma samples of humans and other species (197), at least in those 

checked until present by this method. 

In contrast with the short half-life of the BGP protein in the circulation (around 5 

minutes), being rapidly metabolized by the kidney (433), the lifetime of the BGP message in 

unstimulated or fully 1,25(OH)2D3-stimulated cells appears to be quite long, which is 

indicated by the fact that 15 hours of exposure to transcriptional inhibitors affects neither 

basal nor fully stimulated BGP synthesis (398). 

Various fragments of BGP are known to circulate in blood. The majonty of circulating 

BGP is composed of the intact molecule and a large N-terminal mid-molecule fragment, 

which is thought to encompass residues 1-43 (199). Reeent studies indicate that there are 

other smaller (< 30 residues) N-terminal immunoreactive species of BGP in the serum (80, 

178, 194). The origin and significance of the N-terminal mid-molecule fragment is uncertain. 

Some authors state, based on animal studies, that the BGP found in the circulation is derived 

from new protein synthesis rather than from bone resorption or release of existing BGP from 

the bone matrix. The dynamics of plasma BGP have been clarif.ed by studies on rats treated 

with various amounts of warfarin and vitamin K, (430, 433, 439). There are still those who 
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believe that the breakdown of BGP may also occur during osteoclastic dissolution of bone 

(467). Proteins like cathepsins (24) and plasmin (379) are capable of degrading BGP, 

producing fragments of diverse lenghts. Osteoblastic degradation of BGP could also serve as 

a mechanism to regulate BGP concentration (199). Whether the generation of BGP fragments 

during bone resorption is related or not to BGP biological funetion in regulatmg bone 

turnover is not clear. 

1.5. DEVELOPMENTAL APPEARANCE OF BGP 

Investigations into the developmental appearance of BGP in calcifying t.ssues have 

relied either on direct bioehemical and immunochemical assays for BGP itself or on chemical 

analysis for y-carboxyglutamic acid. These two approaches, using human and rat models, 

yield different results for the developmental appearance of BGP. Direct assays for BGP in 

demineralized extracts of calcifying tissues indicate that the protein itself does not appear in 

parallel with the accumulation of mineral, but rather 1-2 weeks later, at the approximate Ume 

when the initial minera, phase matures to hydroxyapatite (439, 525). Accord.ngly, the levei of 

BGP in rat bone rises rapidly after birth, from 1.7% of the adult levei in newbom rats to 65% 

of the adult levei in 24-day-old rats (427). The same eonclusion was reached by studies 

analysing the developmental expression of the mouse and rat BGP gene by in situ 

hybridization and Northern techniques, with accumulation of mRNA for BGP occurring at a 

late stage of osteoblast differentiation, suggesting that the protein is not necessary for mtUal 

mineralization of the bone matrix (79, 331, 362, 497). In contrast, chemical analysis of y- 

carboxyglutamic acid in developing bone shows that the appearance of this ammo acid 

parallels the accumulation of mineral, rather than subsequent mineral maturation (427). These 

results are in agreement with those obtained in a previous study (210), where the appearance 

of y-carboxyglutamate in developing chicken bone was shown to correlate with the 

appearance of bone mineral, and with a later study (216) on the developmental appearance of 

BGP in bovine and chicken bone. However, this result is now attributable to the presence in 

bone matrix of at least one other Gla-containmg protein, MGP, whose accumulation is known 
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to occur much earlier than that of BGP during mouse development (19, 309, 316, 388. 497). 

Another interesting fact is that serum BGP in newbom rats is within the adult range, 

what makes clear that the 100-fold lower content of BGP in newbom rat bone is not due to an 

inhibition in expression of the BGP gene (427). The fact that a great number of cells stains 

strongly with anti-BGP antibodies in the bonés of 2- and 3-day-old rodents (32) reinforces the 

conclusion that BGP is synthesized at a high rate by osteoblasts in the newbom rat bone, but 

mostly fails to aceumulate in the mineral phase. The hypothesis that the initial bone mineral 

phase is deficient in a binding domain required for a strong interaction with BGP is 

strengthened by the finding that, in vitro, BGP does not bind to amorphous calcium 

phosphate (420), a less ordered mineral phase than hydroxyapatite. 

From these results we can expect BGP not to be dispersed evenly throughout 

developing bonés. Accordingly, a study using tibial bonés of 2- and 4-week-old rats (431) has 

shown that BGP concentrates mostly in the midshafts, with the proximal and distai growth 

plates containing less that 5% of the midshaft leveis of BGP, a result consistent with the fact 

that most new mineral is deposited at the growth plate. Two weeks later, however, m this 

model, the segments previously located near the growth plate have become part of the bone 

diaphysis and the BGP leveis have risen to midshaft leveis. Other studies (451) have reached 

the same conclusion, i.e., in rat, mineral accumulation precedes BGP appearance by about 2 

weeks. The explanation for this delay lies surely in the still not evident mode of action of 

BGP. which will be discussed in the nexl section. 

1.6. BGP FUNCTION 

The function(s) of BGP 

Because BGP is one of the most abundant noncollagenous proteins in bone, an 

importam, but elusive, function has been inferred since the time of its diseovery. However, 

and despite the concerted efforts of an important number of scientists, the precise function of 

BGP in the formation and metabolism of bone has remained, until recently, unclear. Because 

of its specific interaction with hydroxyapatite, BGP was thought to affect the growth or 
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maturation of Ca2+ -phosphate mineral phases. In agreement with this, BGP developmental 

appearance roughly parallels the onset of mineralization and the increase in synthesis of this 

protein is concomitant with hydroxyapatite deposition during skeletal growth (210, 2B8). 

The adsorption affinity of BGP for hydroxyapatite may be an important factor in 

mineral dynamics of bone. The transition of brushite (CaHPO^HzO) to hydroxyapatite 

[Caio(P04)6(OH)2] is inhibited by very low concentrations of BGP (205). BGP also mhibits 

precipitation of hydroxyapatite from supersaturated solutions (414. 420, 537) and from 

seeded hydroxyapatite systems (416, 462), but has no effect on Ca2+ -phospholipid-PO,,- 

dependent crystallization (48). The degree to which BGP retards cystalhzation, at least m 

supersaturated solutions of calcium phosphate, depends critically on the concentration ot 

BGP. with a doubling of the time required for half-maximal crystal formation at a BGP 

concentration of 6 pM (414). Since the final amount of hydroxyapatite is not affected by 

BGP, the effect of BGP is exclusively on the kinetics of mineral formation, rather than on the 

thermodinamic end point (solubility product) of the mineral phase (439). Similar studies 

performed with supersaturated solutions of calcium phosphate seeded with a small amount of 

hydroxyapatite (416) led to the same conclusion; BGP is a potent inhibitor of mineralization, 

but only if it contains Gla residues and an intact disulfide bond. Its effect is kinetic, rather 

than thermodinamic. The protein binds poorly to amorphous calcium phosphate of 

unspecified surface area (420). BGP adsorption to fluorapatite [Ca^PCXOíFj] exhibits a 

fivefold greater affinity constant than hydroxyapatite (219, 560), which may account for some 

of the known disparate effects of fluoride in bone mineral metabolism, 

Studies addressing the developmental appearance of BGP (see previous section) also 

give insight into the possible function(s) of BGP, The finding that fetal rat bone is nearly 

devoid of BGP (0.09 mg/g of bone; 427) indicates that this protein is not required to be 

present at this stage of rat development but also that any structure or property already present 

in fetal rat bone can be excluded as a possible biological function for BGP. For example, 

BGP cannot be required for the formation of the first mineral phase of rat bone, since a 20- 

day old fetal rat with 0.1% of the adult BGP levei has already 40% of the adult mineral leveis 

(427). BGP also cannot be required for osteoclastic bone resorption in response to hormones 

such as parathyroid hormone, since fetal rat bone is resorbed in response to such hormones 
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(449, 450). The same information is given by the differences in BGP content observed in 

different bone regions, according to its age (see previous section). The fact that, in rats? BGP 

accumulates in calcifying tissues only 1-2 weeks after the aecumulation of mineral may be 

related to the maturation of initially deposited mineral to hydroxyapatite. 

When one tries to analyse changes in bone structure and physiology which occur 

between rat birth and the 24-day old-stage. when the BGP levei rises to 65% of the adult levei 

(427), we find that one change in bone structure which approximately parallels the 

appearance of BGP is the transition from the initially formed amorphous calcium phosphate 

mineral of fetal bone to the hydroxyapatite phase characteristic of adult bone (525). BGP may 

appear concurrently with this mineral transition because its function only requires it to be 

present at this stage. For example, its function could be to catalyze the transition to 

hydroxyapatite, to regulate the size or shape of the hydroxyapatite crystals formed, or to 

orient the crystals epitactically allong the collagen fiber (427). Altematively, BGP could 

appear in bone paralleling the appearance of hydroxyapatite because only this phase of the 

mineral binds BGP (414, 420). The first of these two hypothesis was strenghtened by the 

studies described in the next paragraph. 

Depletion studies carried out in rodents have shed some light on the contribution of 

BGP in bone formation. In one of these studies (135), gene targeting has produced a mouse 

that has had the BGP gene "knocked out" (KO). These mice are characterized by a 

progressivo increase in bone mass, with an accelerated rate of bone formation without 

changes in osteoclast or osteoblast number. No changes in mineral content of the bonés of 

BGP-depleted mice were detectable by von Kossa staining or histomorphometry. However, a 

more sensitive assay of mineralization, Fourier transform infrared microspectroscopy, 

revealed differences in the size and perfection of the crystallites (49). In wild-type animais the 

crystals were larger and more "perfect" in the cortical bone than in trabecular bone. In 

contrast, in the BGP KO animais, the crystal size and perfection were the same in both the 

trabecular and cortical bone. These findings are consistent with impaired mineral maturation 

in the BGP-deficient bone and imply the presence of newer (less remodeled) mineral. Also 

interesting is the fact that the expression of other non-collagenous proteins, such as MGP, 

osteopontin and bone sialoprotein was not signif.cantly affected by the absence of BGP. Over 
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time, the mutant developed abnormalities of bone remodeling which became noticeable in 6- 

month-old animais (135). These findings have led to the intriguing conclusion that, despite its 

abundance in skeletal tissues and its ability to bind calcium and apatite. BGP may actually 

serve as an inhibitor of bone formation. 

Chronic treatment of rats for 2 months with the vitamin K antagonist warfarm reduced 

BGP in bone matrix to less than 2% of the control leveis, but did not affect bone formation or 

structure (430). A visible effect on bone structure was only detected when the same warfarm 

treatment was prolonged for 8 months (435), and resulted on excessive mineralization and 

closure of the growth plate, with cessation of ali longitudinal growth. This phenotype 

resembles the "fetal warlàrin syndrome", a defect characterized by radiological stippling of 

the growth plate in children bom to mothers who have received warfarin during gestation 

(204). The hypothesis that defective synthesis of vitamin K-dependent coagulation factors, 

which results in sporadic bleeding, is responsible for these phenotypes seems to have been 

ruled out, since fetal warfarin syndrome is absent when other anticoagulants. hke heparin. are 

used. One possible explanation for the absence of visible bone alterations may be the 

existence of backup systems that may compensate for a BGP deficiency in rodents. In any 

case, the elucidation of the BGP function in the rodent depletion model may require the 

imposition of an externai stress to bone metabolism other than those tested to date. 

In fulfilling its yet conceptual role, it is possible that BGP may act in combination 

with other hydroxyapatite binding proteins, such as osteopontin, which potentiates osteoclast 

adhesion to mineral surfaces and forms a complex with BGP in vitro (452, 456). It is possible 

that this and other BGP-protein complexes may ftmction as a bone remodellmg signal. 

Further studies in animais depleted of combinations of matrix proteins should provide clues 

to the function of BGP and other bone speciftc proteins. 

Several in vivo and in vitro studies reinforce the above stated conclusion. First, 

disrupted collagen fibrillogenesis in the cloned mouse calvarial cell line MCT3T3-E1 results 

in increased tumover of the collagenous matrix, a decrease in alkaline phosphatase, but a 

five-fold increase in BGP biosynthesis (567). Second, the pattem of BGP distnbution in 

human osteons changes with gender and age, and localized reductions of BGP in the 

extracellular matrix are associated with reduced cortical remodeling (237). Several early 
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sludies have suggested that BGP is involved in recruitment and aclivation of bone resorbing 

cells. The prolein is a chemoaltractant for peripheral mononuclear cells and gianl osteoclasl- 

like cells from tumours (81, 291, 325). 

Immunolocalization sludies show lhal BGP is distributed Ihroughout lhe mineralized 

regions of bone matrix, dentin and calcified cartilage (330, 338). However, a growing 

accumulation of evidence indicates thal BGP is not related to events that allow mineral 

deposition to occur, but rather that it participates in regulation of mineralization or bone 

tumover. Alternatively, Thiede et ai (529) suggest that, since BGP can chelate calcium ions, 

it may act as a natural anticoagulant within bone. 

It is interesting that the presently most credited hypolhetical BGP function, inhibition 

of hydroxyapatite crystal growth. seems to be also performed by a non-y carboxylated protein, 

osteonectin. This protein has a very acidic NfB lerminus containmg glutamic acid and 

aspartic acid residues which, if appropriately spaced, could interact with the hydroxyapatite 

crystal lattice (462). However, the inhibitory effect on crystal growth of a mixture oí BGP 

and osteonectin seems lo be additive (462), which indicates that not only osteonectin and 

BGP do not undergo any synergistic inleraction nor can compete tor binding to 

hydroxyapatite, but also that lhese proteins may play, even if slightly, different roles in 

prevenling hydroxyapatite crystal growth and maturation. 

Finally, it is interesting to note that the odontoblasts already engaged in synlhesizing 

predentine but not yet in mineralizing it to form dentine can already be strongly stained with 

the anti-BGP antibody (57). This observation reveals a temporal dissociation between BGP 

synthesis and mineralization and suggests that the protein could act to delay the 

mineralization of predentine. 

Bone pathologies and BGP 

Although, as referred above, the first clear evidence conceming the exact biological 

function of BGP has been provided only recently (49, 135), the protein has been extensively 

studied since its first identification in bone, mostly as a climcally important diagnostic 

parameter of bone pathologies (e.g., as a marker of bone tumover; 58, 116, 218, 529, 557), 

role that is favoured by its short half-life in the circulation (around 5 minutes), being rapidly 
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metabolized by the kidney (433). Serum BGP concentrations are correlated with 

histomorphometric Índices of bone formation (58, 59, 91, 106, 139, 177), leading most 

investigators to agree that assay of serum BGP is a measure of bone formation in particular 

and bone tumover in general. The serum concentration of BGP reflects that portion of the 

newly synthesized protein that does not bind to the mineral phase of the bone but is released 

directly into the circulation, It is estimated that >90% of the newly synthesized protein is 

deposited in bone in one-month-old rats, but as the animal mature a greater proportion of 

protein is released directly into the serum (340). In normal human adults approximately one- 

third of BGP synthesis ends up in the circulation (340). Deviations from normal 

concentrations of circulating BGP are a consequencc of changes in lhe synthesis or 

degradation pathways of the protein. Such changes may result from physiological alterations 

in skeletal homeostasis that accompany normal development or may be associated with 

specific disease states. The rate of glomerular filtration or renal catabolism also influences 

circulating BGP leveis. Finally, serum concentrations may reflect drug- or disease-induced 

alterations in the normal hydroxyapatite-protein interaction, resulting in an altered proportion 

of existing or newly synthesised protein that binds to bone (218). 

Plasma BGP content is elevated dramatically in patients with metabohc bone diseases 

characterized by increased bone turnover (426). Consequently, this protein can be of great 

utility as a diagnostic tool for such important diseases as (i) osteoporosis (a metabohc bone 

disease characterized by a defect in bone reraodelling and the loss of the normally 

mineralized bone), where it may serve as an early diagnostic critena (103, 104, 142, 372, 

426), (ii) Pagefs disease, as a marker of response to treatment (107, 563), or (m) metastatic 

bone câncer (423). The levei of BGP carboxylation has also been proposed as an indicator of 

the nutritional state of bone with respect to vitamin K (279), which is supported by the results 

of studies showing that BGP can be up to 40% undercarboxylated in postraenopausal women 

when compared with premenopausal women (412). 

Serum BGP is commonly measured by both in house methods and commercial kits 

with various assay formats (e.g., 419, 463). These include high perfonnance liquid 

chromatography (HPLC), radioiramunoassay (RIA), immunoradiometnc assay (IRMA), 

enzyme linked immunosorbent assay (ELISA), and luminescence immunoassay (LIA). Also, 
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BGP has been increasingly used as a highly specific osteoblastic marker produced during 

bone formalion, more explicilly as a marker of lale osteoblast ditterenliation (121, 333, 371, 

524). 

Is the role of BGP crucial to thc same extent in ali vcrtcbratcs? 

There is a possibility lhal lhe role of BGP in bone developmenl/formation may not 

have the same degree of importanee in ali vertebrates. The faet lhal normal BGP leveis are 

dramatieally low in man. when eompared, for example, with ral and calf (see section 1.4) 

suggests lhal the prolein may play a less crucial role in the metabolism of the human skelcton 

when eompared lo other vertebrates, a feature lhal can provide an imporlant clue lo its 

function. However, additional studies using different species are required to address this 

question. 

1.7. THE BONE GLA PROTEJN GENE 

To date. only mammalian BGP genes have been characterized. Therefore it is not 

possible to compare stmctures and pattems of regulation across other than mammalian 

species. 

Chromosome location and gene organization 

The transcribed regions of the BGP genes expressed in bone of human, rat and mouse 

contain three introns and four exons. The promoters of these mammalian BGP genes have a 

similar overall organization and contain comparable promoter regulatory elements (II 

sapiens: 73; M. musculas (OG1): 117; R. norvegicus: 527). Thus these bone-specific BGP 

genes appear to be organized in a manner that supports analogous responsiveness to 

homeostatic physiological mediators and developmental expression in relation to bone cell 

differentiation. 

The human BGP gene has been localized to the Iq distai region of chromosome 1 
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(446). A mouse gene has been mapped to chromosome 3, which conlains genes homologous 

to those located in the distai region of the human chromosome Iq (244). From these and other 

studies, the BGP gene was initially described as a single copy gene. However, more recent 

analysis of several mouse and rat strains has indicated that, in these models, BGP is part of a 

gene cluster (116. 117. 448). In lhe mouse, three contiguous genes were identified in ali 

strains examined, while in the rat, either one or multiple copies were detected dependent on 

the slrain (448). Of the three genes in mouse, two have identical promoters, and one gene 

(ORG, for Osteocalcin-Relaled Gene) has a varianl promoler that is developmenlally 

expressed in vivo in several non-bony tissues, such as brain. lung and kidney (116, 117). The 

coding region of ORG has a similar intron/exon organization to the BGP gene expressed in 

bone but carries five amino acid substitutions, one at lhe propeptide cleavage site. ORG also 

contains an additional exon that is not translated, and a 3 Rb insertion separates the ORG 

coding sequence from its promoter. The inserted sequence has lhe structure of a typical 

retrovirus, an attribute that leads to the downregulation of transcription, possibly explaining 

lhe low leveis of expression of ORG in non-osseous tissues (117). 

The function of the nonosseous expressed gene remains to be established. According 

to some authors (192), consideration should be given to the possibilities that it encodes (i) 

Gla-containing nephrocalcin, a calcium oxalate crystal growth inhibitor found in kidney, 

although never cloned (363-366), (ii) BGP associated with platelets (529) and the 

hematopoietic system (311), and (iii) BGP associated with cartilage and other tissues (281, 

307). Relatively to the first hypothesis, the primary sequence of this protein remains 

unknown, and human specific BGP antibodies do not cross-react with partially purified 

human nephrocalcin (F.L. Coe, Y. Nakagawa and C. Gundberg, unpublished observations). 

In contrast to other bone-related genes (e.g., type I collagen and alkalme phosphatase) 

(29, 577), only a single mRNA transcript has been observed from the BGP gene, in ali 

species analysed to date (mammals and chicken). It should be noted that although regulalion 

of expression does not appear to be modulated by changes in the organization of the mRNA 

transcripts, this does not preclude the presence of sequences in the transcnbed region of the 

BGP gene which contribute to regulation of transcription. A silencer element has been 

identified within the BGP gene (284) and is similar to silencer elements observed in several 
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prokaryotic (326) and eukaryotic genes (66, 175, 465, 560, 570). Interestingly, the BGP gene 

silencer was the first to be identified within the protein coding region of a gene in higher 

eukaryotes (504). 

The bone GLA protein promoter 

A model of the three dimensional organization of the BGP gene promoter is presented 

in Figure 1-3, showing postulated interactions between distinct promoter elements to support 

transcriptional control within a three dimensional context of cell structure and regulatory 

requirements at the cell and tissue levei. 

llNÀCTIVE Nuclear Mairlx 

Silo A Silo B ^lte C. 

prox prom 

TPs 

VCIÍt 

Nudear Matr x BASAL 

NMP-2= AML AML AML 
NA POL II 
i 

NMP mRNA 
TFsjr—r Site Sue Site 

VDRE prox. prom. 

DNascI HS QMase I HS 
VDR/RXR 

Murlnar M.-ifrl VITAMIN D INDUCED 

AML AML NMP-2= AML 
NA POL VDFV RNA 

Site RXR TF's Site Site ,/M irr-; 

prox. prom VDME 

DNasc HS DNasel HS 

Figure 1-3. General model of BGP 

gene regulation. Schematic represen- 

tation of promoter organization and 
occupancy of regulatory elements by 

transcription factors to either i) 

suppress transcription in proliferating 
osteoblasts, ii) activate expression in 
differentiated osteoblasts, or iii) 

enhance transcription by vitamin D. 
Placement of nucleosomes is indi- 

cated, as well as remodelling of 

chromatin structure and nucleosome 

organization to support supression, 

basal expression and vitamin D- 
enhanced transcription of the BGP 

gene. Representation and magnitude 

of Dnase I hypersensitive sites (see 
347) are shown by solid triangles. 

AML, AML-related nuclear matrix 

bound factor; NMP-1 and NMP-2, 
nuclear matrix protein-1 and 2; RNA 

POL II, RNA polymerase II; prox. 
prom., proximal promoter; TF's, 
transcription factors. Adapted from 

Stein et al. (504). 

Regulatory sequenees in the proximal BGP promoter 

Transgenic studies indicate that sequenees residing within the proximal 1,800 bp ot 
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the rat BGP gene promoter support tissue-specif.c transcription (12). In vitro deletion-mutant 

experiments have shown that a 200 bp fragment of the rat promoter (521) and a 160 bp 

fragment of the mouse OG2 promoter (134) are neeessary and suffieient to eonfer osteoblast- 

speeifie express.on to a repórter gene. Frendo et ai (167) have shown that 647 bp of the 

mouse OG2 promoter contain ali the regulatory elements neeessary and sufficrent to d.reet 

bone expression of a repórter gene, including the eis-acting elements required for t.me- 

speciftc expression of the BGP gene. However, th.s does not preelude the contnbuttons of 

additional upstream sequences to BGP gene promoter activity (504), When transgemc 

animais were constructed with 3,900 bp of the human BGP promoter fused wtth a CAT 

repórter (258) expression was observed predominantly in bone but addit.onally at reduced 

leveis in hypertrophic ehondrocytes and kidney. Subtleties in regulatory sequenees and/or 

nuclear proteins that account for these differences remain to be defined. 

Typical sequences associated with most genes transcribed by RNA polymerase II are 

found in 5'-flanking regions of the rat BGP gene (e.g., TATA, CAAT, AP1 and AP2) ( 

527 572) In addition, the BGP promoter also contains a sma.l stretch of altemating punnes 

and pyrimidines just 5' of the CCAAT sequence. This sequence has the potentral of form.ng 

Z-DNA a structure which may play a role in gene regulation (224). Table I.1I summarizes ali 

the factors known to regulate the expression of the BGP gene at the levei of transcnpt.on and 

corresponding DNA binding elements. 

Developmental and tissue specific-control 

Combined activities of overlapp.ng regulatory elements and associated transcnptton factors 

provide a mechanism for complex developmental control of BGP express.on durtng 

osteoblast growth and differentration (147, 367, 383, 392, 472, 504). One such examp.e ,s 

Osteoealcin box, an highly eonserved regulatory sequence required for basal expresston o t e 

rat (295) and mouse (134) BGP genes, which contains multiple regulatory elements, 

including AP-1 and homeodotnain binding sites, The OC box contributes to both bone ttssue- 

specific expression and speeies-specif.c regulation of the BGP gene (222, 223. 227, 228, 521, 

530). 
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Table 1 11 Main regulatory factors of BGP gene expression and corresponding DNA 
binding sequences. Alse "nd.cated are the proposed mechan.sms of act.on of these 

regulatory factors and corresponding references. 

REGULATION 

FACTOR 

VIODE OF ACTION RESPONSIVE 

ELEMENT 

REFERENCES 

1,25 (OH)2D3 Direct and indirect 
transcriptional 

activation/ inhibition 

VDRE 46, 393, 394 

9-c/.s-retinoic acid Moslly indirect 
activation/inhibition. 

Generally wilh no 

effect when alone 

(some exceptions; e.g. 
384). 

RARE/VDRE 47, 264,319,349, 

376, 384. 408. 477. 
480 

Fos-jun proteins Transcriptional 

regulation 

AP-l sites 296, 392, 503 

Dexamelhasone Transcriptional 
inhibition/activation 

GREs 9, 46, 222, 51 J 

17p-Estradiol Induction of estrogen 
receptor gene 
transcription 

ERE 20 

Id-HLH Transcriptional 

regulation, conferring 
tissue-specificity 

E box 357, 381, 487, 504. 
521 

AP1 Transcriptional 

inhibition; regulator 

of osteoblast-specific 
sene expression 

VDRE; OSCARE-2 111, 191, 296, 392, 
395,396, 480 

Cbfal Transcriptional 

activator 

OSE2 18, 134, 136, 254, 
283 

Osfl Transcriptional 

activator 

OSE1 474 

i Parathyroid Transcriptional 

inhibitor 

PTHRE 33,276 

Tumour Necrosis Transcriptional 

inhibitor 

TNFRE 283 

TGF-P Transcriptional 

inhibitor 

TGRE 17, 299 

Nuclear Matrix 

Protein-2 (NMP-2) 

Regulator of 
osteoblast-specific 

gene expression 

Nuclear matrix 

protein binding site 

(AML-1 recognitio 
motif) 

39, 342, 346 

s 

n 
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Dcvelopmental and tissue-specific control 

Contributions of multiple sequences appear to be operativo in tissue-spec.f.c 

regulation (39, 341, 504), thereby providtng opportunities for expression of the BGP gene m 

bone under diverse biological circumstances. 

Osleocalcin cis-actmg response element (OSCARE-1) was identified by Goldberg et 

ai (190) and consists of a short DNA sequence tn BGP that eontributes to basal promoter 

activity. lt has two regulatory elements: a G/C-rich element and an adjacent reverse CCAAT 

element that binds to protein factors in a mutually exclusive manner, Homologous sequences 

have been characterized both as negative and positive basal regulatory elements m the 

promoter of the collagen type 1 (ai) gene (190), which suggests that OSCARE-l-hke umts 

may be a common regulatory feature of osteoblast-expressed genes. 

A negative regulatory domain contributing to developmental expression of the BGP 

gene resides within the coding region, overlapping the first exon (168, 169). This domain, 

designated the osteocalcin s.lencer (504), contains a ACCCTCTCT motif, which is present m 

a series of tissue-specific genes (for example, collagen 11, insulin and growth hormone, 85, 

471) The BGP silencer is a multipartite element that eontributes to transcriptional activity m 

a position- and orientation-dependent manner; the silencer is also operative in nonosseous 

cells further participating in control of tissue-specific expression. In transtent transfectron 

assays deletion of this sequence allows for a 50-fold higher levei of transcript.on to occur tn 

proliferating norma, diploid osteoblasts, implicating the OC silencer in regulating 

developmental expression dunng differentiation and possibly ttssue-spec.fic control. s 

control raight be mediated by variations in protein-DNA interactions (504). 

In conclusion, it is important to reinforce the idea that information encoded wrthm the 

modularly organtzed regulatory elements from the promoter of the BGP gene renders the 

gene competent to support expression during bone tissue development and remodellmg, as 

well as when skeletal involvement is required to control calcium homeostasts. Subtlet.es m 

structure and organization of the BGP gene regulatory sequences must be related to the extent 

to which the gene is transcribed. The overlap of nuclear factor binding domatns wtthtn BGP 

gene regulatory sequences refleets the possibility of using several regulatory pathways to 

expand the potential for responsiveness. The multipartite characteristics of factors bindmg to 
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each promoter element broaden lhe diversity of regulatory responsiveness. Apparent 

redundancy in transcription factor recognition for BGP gene promoter elements supports fine 

tuning of control and the generation of transcription factor heterogeneity, by selective sphcing 

of primary gene transcripts for transactivation faclors which mediale BGP gene promoter 

activity, adds possibilities íor modulaling expression (504). 

1.8. BONE GLA PR GTE IN GENE REGULAI'ION 

On the fiel d where this battle was foughl I saw a very wonderful thing wh.ch the nat.ves po.nted out to me. 
The bonés of the slain lie scattered upon the f.eld in two lots. those of the Persians m one p ace by themse ves 
as the bodies lay at the first - those of the Egyptians in another place apart from lhem: \f then, you stnke the 
Persian skulls even with a pebble, they are so weak, that you break a hole in them; but the Egyptian skulls are so 
sfrong^that you may smite them with a stone and you wil. scarcely break them in. They gave me t e foi owmg 
reason' for this difference, which seemed to me likely enough: The Egyptians (they sa.d) from early ch.ldhood 
have the head shaved and so by the action of the sun the skull becomes thick and hard. The same cause prevents 
baldness in Egypt where you see fewer bald men than in any other land. Such. then, is the reason why the skulls 
of lhe Egypd^ns are so strong. The Persians. on the other hand, have feeb.e skulls, because they keep themselves 
shaded from the first, wearing turbans upon their heads. 

LIic Porvinn WnrK Rook III 

Studies on regulation of BGP expression have been conducted exclusively in hlgher 

vertebrates, mainly in mammals and chicken. Those studies have shown that BGP gene 

expression is tightly regulated at multiple leveis, which may aceount for variations in the 

activity and inducibility of the gene during the osteoblast developmental pathway. Although 

there are species-speciftc differences in the regulation of BGP, common pattems can be 

identified. The expression of the BGP gene is transcriptionally regulated by a broad spectrum 

of hormones and other physiological mediators, as established by activities of the rat as well 

as the human BGP gene promoters, in vivo and in vitro (e.g., 146, 196; reviewed in 298 and 

504). 
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BGP regulation by Vitarain D and analogs 

F.vidence for transcrinlional regulation - effects on bone metabolism—and—calcium 

homeostasis. The first suggestion that vitamin D modulated BGP synthesis derived from the 

observation of decreased bone and serum BGP concentrations in vitamin D-deficient chicks 

(287) and rats (292, 436, 439). Furthermore, when vitamin D-deficient rats were maintained 

on high-calcium diets that normalize serum calcium, decreased BGP leveis were still 

observed in the vitamin D-deficient animal (218). Further studies confírmed the hypothesis 

that the active metabolite of vitamin D, la,25-dihydroxyvitamin D3 [l,25(OH)2D3] plays a 

key role in the transcriptional regulation of BGP gene expression in osteoblasts, both in vivo 

and in vitro [(109, 295, 398, 429, 572); for reviews on the molecular actions of vitamin D 

see, for example, 60, 245, 510, 559]. 

Under basal conditions, the production of BGP by cultured osteoblasts is usually low 

but may be enhanced several fold following stimulation with the hormonally active form of 

vitamin D3, l,25(OH)2D3. This has been demonstrated in vivo (287, 292, 436), as well as in a 

number of rat and human osteoblast-like cell culture systems (32, 77, 248, 420). In the ROS 

17/2 cell line. administration of 1,25(OH)2D3 increases intracellular BGP leveis up to six fold 

above basal leveis within 12 hours (424), with a corresponding six-fold increase in the rate of 

BGP secretion observed by 15 hours. In malignant osteoblast cell Unes BGP synthesis is 

modulated by, rather than dependem upon, vitamin D, since there is often substantial BGP 

synthesis in the absence of 1.25(OH)2D3 (252). In contrast, the synthesis of BGP by normal 

human bone-derived osteoblast-like cells is always dependem upon the addition of 

l,25(OH)2D3 (33, 490). 

It is interesting to note that during development of the osteoblast phenotype BGP gene 

expression can be regulated by transcriptional and post-transcriptional mechanisms. In fact, 

as previously stated, l,25(OH)2D3 can control the rate of transcription during the transition 

from the proliferative to the postproliferative period. Later in the minerahzation phase, 

however, accumulated basal mRNA leveis are stabilized and transcriptional control of the 

hormone is minimal within 24 hours (484). 

l,25(OH)2D3 has multiple actions but its major role is related to bone metabolism and 
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mineral homeostasis. The genomie action of l,25(OH)2D3 is mediated by the nuclear vitamin 

D receptor (VDR), a phosphoprotein member of the nuclear transacting receptor superfamily 

that binds its ligand with high affinity (108, 271). The family which includes the VDR and 

the nuclear receptors for a\Urans retinoic acid (RA), thyroid hormone (3,5,3 

triiodothyronine [Tj]), and peroxisome proliferators is classified as Class II, according to the 

response element recognized (257, 404, 575). Following the binding of l,25(OH)2D3, the 

VDR undergoes covalent modif.cations resulting in rapid protein phosphoiylation (411). This 

phosphorylated receptor form heterodimerizes with the retinoid X receptor (RXR) and then 

associates specifically with vitamin D reponsive elements (VDREs) in target genes (92, 265, 

345). The regulatory role of vitamin D on BGP gene expression occurs, therefore, at the levei 

of transcription (398, 401, 424, 429), which is confirmed by the complete blocking of the 

BGP response by the transcription inhibitors a-amanitin and actinomycin D (398). 

rw^terizatinn of the VDRE. The VDRE of the rat (110, 332, 526, 572) and human (257, 

349) BGP genes has been identif.ed and characterized structurally and functionally by several 

approaches. The BGP VDRE was the first of the VDREs to be identified (257, 349) and bears 

similarities with the members of the superfamily of related steroid response-elements, that 

includes the estrogen responsive element (ERE), the thyroid hormone responsive element 

(TRE), the glucocorticoid responsive element (GRE), and the retinoic acid responsive 

elements (RAREs) (40, 98, 297, 312, 396. 533, 535. 574). The minimal VDRE is 

characterized by two half steroid motifs (either perfect or imperfect direct repeats) separated 

by 3 nt. (54). The variable that determines receptor specificity seems to be the number of 

nucleotides separating the half-sites. The RXR has been shown to have a preference for two 

half-sites separated by a single nucleotide, termed a DR-1 response element, whereas the 

VDR binds to a DR-3 element, the TR to a DR-4 element, and the RAR to a DR-5 element 

(535). Interestingly, almost ali of the naturally occurring VDRE isolated from genes 

upregulated by the VDR have fallen into the DR-3 category (378, 429, 580). The genes 

negatively regulated by VDR, such as PTH and 1L-2, were thought not to follow this rule. 

Initial work with the PTH gene indicated that the vitamin D responsive element in this case 

consisted of only a single half-site. However, more recent work indicates that the PTH VDRE 
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may in fact consist of two half-sites (99), and this leaves only a few exceptions. such as the 

IL-2 gene, to this rule (3). Table l.ffl summarizes most of the information conceming vitamin 

D-regulated genes and their respective VDREs. when known. 

Confirmation of protein-DNA interactions and related functionality has been provided 

by in vitro protein-DNA binding studies (332) and mutational analysis (111). 

Characterization of the VDRE in other vitamin D-regulated genes, osteopontin (378), 

calbindin D9K (97), calbindin D28K (187), parathyroid hormone (112), and the hydroxylase 

enzyme (382, 580) revealed similar features. 

The VDRE of the rat and human BGP genes functions as an enhancer (257, 495). 

l,25(OH)2D3 does not induce transcription but requires basal expression (504). This 

integration of promoter regulatory activities supports the well documented accomodation of 

vitamin D-responsive transcriptional control to several physiological mediators 

simultaneously. Additionally, the VDRE is sensitive to growth and to the physiological status 

of the cell (504). As an example of the two previous statements, in imature osteoblasts 

dexamethasone antagonizes the marked vitamin D-mediated upregulation of BGP 

transcription, as it does in ROS 17/2.8 cells and human osteoblasts, whereas in mature 

osteoblasts within a mineralized matrix, dexamethasone further increases vitamin D 

stimulation of BGP by mRNA stabilization (504). 

In contrast to the rat and human model, l,25(OH)2D3 inhibits mouse BGP expression 

(e.g., 481), at least partially by abolishing the binding of osteoblast nuclear extracts to OSE2, 

a criticai osteoblast-specific cis-acting element present in the BGP promoter (579). 

Hypothetically, the l,25(OH)2D3 treatment would inhibit the transcription of the gene coding 

for Cbfal, an osteoblast-specific activator of transcription (see section 1.9.9). Taken together, 

these relationships provide potential explanations for positive or negative activity of a single 

regulatory factor under different biological conditions. 
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Table IIII Genes known to be regulated by Vitamin D and accepted putative ftmction of their corresponding proteins, VDRE sequence and type 

(when available with a high degree of confidence) present in their respective promoters, the effect of the hormone m the transcnption of the target g 

and significant references are also indicated. 

Target Gene Protein funetion VDRE sequence1 in gene 
promoter 

VDRE 

type* 

Transcriptional 

effect of vitamin D 

References 

Human BGP Bone crystal maturation? Inhibitor of 
mineralization? 

GGGTGAacgGGGGCA DR3 Induction 257,349, 395 

Rat BGP Idem GGGT GAatgAGG ACA DR3 Induction 109, 295, 424, 

572 

Rat BGP Idem 

Idem 

TGC ACT gggtgaatgAGG AC 
A 

GGGCAAatgAGGACA 

IP-9 

DR3 

Induction 

Inhibition 

477 

86, 579 

Chicken BGP 

Rat collagen type I 

Idem 

Among other functions, forms fibnls that 

are a matrix for calcium salts and 
hvdroxvanatite deposition. 

Unknown 
GGGGGCAGAAGAACT 

Unknown Inhibition 

Induction/Inhibition 

56 

42, 162, 247, 
272,392.393, 

550 

Rat bone sialoprotein Regulation of hydroxyapatite crystal 

nucleation and growth? 

Promotes attachment and spreading of 

AGGGTTtatAGGTCA DR3 Inhibition òoi 

Mouse osteopontin 

Chicken osteopontin 

Bone morphogenesis and remodelmg? 

Kidney morphogenesis? 
Idem 

GGTTC AcgaGGTT C A 

Unknown 

DR3 

Unknown 

Induction 

Inhibition 

114. 1 15, 5 /o, 

461 

56 

. Nuclear protein binding sites are indicated in capital and spacers in low case letters. 
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Target Gene Protein funetion VDRE sequence VDRE 

type* 

Transcriptional 

effect of vitamin D 

References 

Chicken carbonic 

anhydrase 11 

Encodes an enzyme in bone-resorbing 

cells derived from the fusion of monocytic 
progenitors. 

AGGGCAtggAGTTCG DR3 Induction 447 

Human PTH Stimulates osteoblast proliferation; 

stimulates or supresses osteoblast 

differentiation; inhibits collagen synthesis; 

aclivates osteoclasts. 

GGTTCAaagCAGACA DR3 Inhibition 112, 253. 488 

Bovine PTH Idem Unknown Unknown Inhibition 221,253 

Rat PTH Idem Unknown Unknown Inhibition 488 

Avian PTH Idem GGGTCAggaGGGTGT DR3 Inhibition 269,306 

Human calbindin Transcellular flux of calcium? TGCCCTtccttatggGGTTCA 1P-9 Induction 477,552 

Mouse calbindin D28k Idem? GGGGGAtgtgAGGAGA DR4 Induction 187, 552 

Avian calbindin D-m- Idem? Unknown Unknown Induction 552 

Avian P3 integrin Transmembrane glycoproteins that serve 

as receptors for a wide variety of ligands 

GAGGCAgaaGGGAGA DR3 Induction 67, 498, 564 

Rat 24-Ohase-Distal Metabolism and regulation of vitamin D3 
funetion 

GGTTC AgcgGGT GCG DR3 Induction 580 

Rat 24-Ohase- 

Proximal 

Metabolism and regulation of vitamin D3 
funetion 

AGGT G AgtgAGGGCG DR3 Induction 248. 378, 382 

*According to Umesono et aí. (535). 
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The specificity of induced BGP synthesis by only the l,25(OH)2D3 metabolite of 

vitamin D3 has been confirmed in several studies (33, 77, 556). lhe 24,25(OH)2D3 metabolite 

that has been implicated in mineralization and calcification of cartilage does not strongly 

influence BGP synthesis (33, 78. 556). However, synthetic analogues of the 1.25(OH)2D3 

metabolites, for example, 1,25-dihydroxy-hexadeuterocholecalcifcrol and 1,25-dihydroxy-26- 

trifluorocholecalciferol in fetal rat calvariae cultures and human bone osteoblast cultures 

(294. 490), and 1,25-dihydroxyvitamin D-2 and 24-epi-l,25-dihydroxyvitamin D-2 in the 

ROS 17/2.8 osteosarcoma cell line (5) do slimulate BGP synthesis. It is important to note, 

however, that, in several model systems. decreased or induced leveis of l,25(OH)2D3 are 

accompanied by paralleled changes in serum BGP values but are not necessarily related to 

bone BGP content (218). 

In viíro (121) and in vivo (287, 436) studies show that synthesis of BGP occurs in the 

absence of vitamin D at relatively high leveis (-60% of normal in vitamin D-deficient 

chickens and mice), suggesting a possible role for BGP in bone metabolism independently of 

vitamin D. Furthermore, this suggests that the physiological role of the l,25(OH)2D3 

regulation of BGP synthesis is to accelerate a normal BGP aclion in bone, in order to adjust 

bone metabolism to stresses such as dietery Ca2, deficiency. As indicated in section 1.6, one 

possible physiological role for BGP as a mineralization inhibitor would be to reduce the tlux 

of calcium and phosphate to bone. The increased rate of BGP synthesis and secretion induced 
2+ 

by l,25(OH)2D3 would, by inhibiting mineralization, reserve for serum the fraction of Ca 

which would otherwise be incorporated into bone. Serum calcium homeostasis would be, 

then, the "reason" why BGP is regulated by vitamin D, while in the non-stimulated phase 

BGP production in bone and dentine probably plays a role in matrix formation rather than in 

regulating serum Ca2f concentration (439 and references therein). 

Regulation bv other steroids. Steroid and steroid-like hormones are potent modulators of 

transcription through binding to nuclear receptors. The DNA binding domain oí a typical 

steroid hormone receptor consists of a structure in which two zinc atoms are coordinated in 

two finger-like domains (166). The N-terminal finger confers specificity to the binding, 

whereas the second finger stabilizes the complex (195). Steroid hormone receptors form 

homodimers (152) and some of them heterodimerize with other members of the family (159, 
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478) or with other nuclear proteins (96, 275, 356). 

Among the steroids, retinoic acid (RA), a vitamin A metabolite, is an important 

signaling molecule involved in the regulation of growth during embryonic development and 

cell difíerentiation, and plays an important role in the normal development oi bone (e.g., 

119). RA has been demonstraled lo increase the number of 1,25-dihydroxyvitamin D3 

receptors in the ROS 17/2 cell (408). Pretreatment with RA also increases BGP secretion in 

1.25-dihydroxyvilamin D3 -treated cultures compared to controls (376). 

Effects of plucocorticoids. Glucocorticoids (GR) have significam eííects on bone and mineral 

metabolism (183). In vivo, the skeletal effects of glucocorticoids, which include increased 

bone resorption (102) and decreased bone formation (183), are associated with diminished 

osteoblastic activity, a decline in serum leveis of BGP (140, 314) and a reduction oí BGP 

gene expression (46. 349). The initially characterized glucocorticoid responsive-element 

(GRE) of the human BGP gene is associated with the TATA domain (513). In rat, the 

presence of GR binding sites in close proximity to the basal TA TA box and CCAAT motifs 

(504) suggests thal interference of GR with the positive transcription lactors, such as TFIID, 

could be responsible for lhe negative regulation of BGP by glucocorticoids documented in 

ROS 17/2.8 cells (8. 255, 413) and in human osteoblasts (482, 514, 566). From studies on the 

rat BGP promoter, it is now known that several GRE domains are involved in modulating 

glucocorticoid effects on BGP gene transcriptional activity (222), ali these GREs appearing to 

be functionally active (504). 

Interaction of other transcription factors with the proximal GREs, that include NF- 

IL6, has been reported (531), further expanding the potential of the BGP gene to be 

transcriptionally regulated by glucocorticoids. It is reasonable to consider that the GREs in 

the BGP gene may be selectively used in a developmenlally and/or physiologically responsive 

manner, and the possibility of functional interactions with transcription factors other than 

glucocorticoid receptors under certain conditions should not be dismissed (504). 

Effects of dexamethasone. Dexamethasone, a synthetic glucocorticoid, affects rat osteoblast- 

like cells via its effect on 1,25-dihydroxyvitamin D3 receptors (76). Dexamethasone alone 

suppresses BGP gene transcription (222, 349, 473, 513). However, the combined effect of 
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1,25(OH)2D3 and dexamethasone is a synergistic increase in the transcriptional aclivity of the 

BGP gene (47, 376. 480). Differences in the influences of vitamin D and dexamethasone on 

BGP gene transcription occur and appear to be dependent on the developmental stage ot 

normal diploid osteoblasts and on maintenance of the normal diploid phenotype (26, 393, 

480. 566). In human osteosarcoma cells, rather than a synergism between l,25(OH)2D3 and 

dexamethasone, a glucocorticoid-dependent abrogalion oí vitamin D-related transcriptional 

enhancement is observed when these cells are simultaneously treated with the two steroid 

hormones. It remains to be determined whether the same promoter regulatory sequences are 

involved in the positive and negative responses associated with independent, compared with 

combined. activities of vitamin D and dexamethasone in normal and in tumour cells. 

However. lhe possibilily can be considered that variations may reflect transiormation-relatcd 

modifications in cellular signaling pathways that determine the largeting and/or activity of 

vitamin D and dexamethasone to promoter regulatory elements. Influences on both receptors 

and other components oí the multipartite transcription íactor complexes that contribulc to 

transcriptional control by vitamin D and dexamethasone are viable considerations within this 

context (504). Indeed, the presence of multiple glucocorlicoid-responsive elements in lhe rat 

BGP gene promoter (8, 9, 222) with positive and negative glucocorticoid-responsive motifs 

and activities lends credibility to these explanations. 

Regulation bv growth factors. Growth factors are small peptides, originally thought only to 

act on tranformed cells, but now known to be key players in regulating cell growth and 

embryonic development (93 and references therein). 

BGP is downregulated upon treatment with TGF-pi (53, 189, 206). Mutational 

analysis, coupled with results of in vitro gel shift and competition assays, led to the 

conclusion that the response of the rat BGP gene to TGF-pi is mediated through at least one 

cis-acting DNA element with similarity to the AP-1 binding consensus sequence and that Fra- 

2 and Jun-B proteins are involved in the interactions al this site (17). 

Regulation bv the nuclear matrix. Involvement of the nuclear matrix in control of the BGP 

gene transcription is provided by several lines of evidence. One of the most compelling is the 

association of a bone-specific nuclear matrix protein designaled Nuclear Matrix Protein-2 
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(NMP-2) wilh sequences flanking the VDRE of the rat BGP gene promoter (39). Several 

results (39. 341) implieate the nuclear matrix in regulatory events that mediate strucluial 

properties of the BGP VDRE domain and may also contribute to link BGP gene expression 

with modulation of pattern formation required for skeletal tissue orgamzation during bone 

formation and remodeling. 

Remilation bv P^thvroid- / Thvroid-produced hormones. Parathyroid hormone (PTH) is one 

of the major regulators of bone, exerting various effects on bone cells, namely stimulating 

osteoblast cell proliferation (318), stimulating or suppressing osteoblastic differentiation (27, 

571) or inhibiting collagen synthesis in osteoblasts (272). lhese eílects seem to be mainly 

mediated by classical PTH/parathyroid hormone-related protein (PTHrP) receptor, although 

novel receptors, such as PTH2 receptor and C-PTH receptor (238, 536) have been reported. 

The precise relationship between parathyroid gland activity and serum BGP 

concentrations has not been clearly established. However, a study by Tsuji et al. (534) 

showed a decrease in serum BGP concentration upon admnistration of PTH to normal and 

hypophosphatemic (HYP) mice. Other studies have reached the same conclusion. 

demonstrating not only that PTH directly impairs BGP synthesis by osteoblasts in vitro (33, 

276), but also that in humans, infusion of PTH to heallhy subjects (161) and HYP patients 

(88) leads to significant decreases in serum BGP. The acute etlect oí PTH on serum BGP is 

in contrast to its long-term effect, which is associated with elevated leveis of serum BGP 

(455). 

Regulation hv r^-like nuclear factors (CBFA. AME, MSX). 

The CBFA family. The nomenclature of the first gene identified from this family (Cbfal) has 

changed several times since it was first isolated. It was onginally called Pebp2al, then Aml3 

(279), and in 1995 the gene nomenclature committee decided to use the Cbfa nomenclature 

for ali the genes of this family (500). 

The Cbfa (Core binding factor a) /AME family of transcriptional activators, which are 

mammalian homologs of the Drosophila segmentation gene runt, are criticai factors for the 

development of hematopoietic and skeletal tissues. Each of the three known genes, Cbfal 

(human AML-3/mouse Pebp2a rhAML-3/mPebp2a]), Cbfa2 (hAML-l/mPebp2b), and Cbfa3 
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(hAML-2/mPebp2c), encodes several mRNA splice variants (1, 279, 500). Several isoforms 

of Cbfal have been described (for a review on Cbfal see 264); one is cxprcssed in 

hematopoietic tissues (578), and another is highly expressed in osteoblast lineage cells ol 

bone (18. 568) and in hypertrophic chondrocytes (267). Ablalion ot the Cbfal gene in mice 

reveals the importance of this factor in development of the skeleton, resulting in a phenotype 

in which the skeleton is composed of cartilage and fibrous tissue, with complete lack ol 

ossification (267. 354, 389). Osteoblasts of the mutant mice expressed low leveis of alkahne 

phosphatase but barely deteclable leveis of osleoponlin and BGP (267, 389). In addition, 

Ducy et ai. (137) have recently shown, through a time-specifíc, cell-specific, and stage- 

specific inhibition-of-function experimenl that Cbfal is required lor bone lormation by 

differentiated osteoblasts after birth. By controlling its own expression positively, Cbfal is at 

the top of a gene regulatory cascade, regulating bone extracellular matrix deposition. 

Inhibition of this autoregulatory loop in differentiated osteoblasts results in an osteopenic 

phenotype caused by the near abolition of expression of extracellular matnx-related genes, 

including type I collagen genes, without any overt effect on osteoblast difíerentiation. These 

results uncover a transcriptional pathway goveming bone formation by differentiated 

osteoblasts and identify Cbfal as the first transcriptional activator of this process. 

Cbfa proteins were also shown to regulate tissue-specific expression of the BGP 

promoter (16. 134, 136, 167). Although overexpression of the Cbfal/AML-3, Cbfa2/AML-1, 

or Cbfa3/AML-2 factors in non-osseous cells can confer expression of the BGP gene (16), the 

DNA binding activity present in mature osteoblasts consists primarily on the Cbfal gene 

product (18, 136). 

The rat BGP promoter contains thrce recognition sites for Cbfa interactions [sites A, 

B and C (342)]. Notably, ali three motifs bind a similar osteoblast-specific DNA binding 

complex, first designated NMP-2 (39, 342). While only one Cbfa site fused to a minimal 

BGP promoter is sufficient to confer enhancer activity in osseous and nonosseous cells (16), 

the presence and positioning of multiple Cbfa sites suggest that spatial organization of the 

native BGP promoter may be important for interaction oí Cbfa proteins with other BGP 

promoter regulatory factors. For example, as described in 1.9.1. of this chapter, transcription 

of the rat and human BGP genes is strongly influenced by l,25(OH)2D3. Cbfa sites A and B 

flank the vitamin D response element which mediates a 3- to 10-íold enhanced activity ot the 
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rat and human BGP promoters. A third Cbfa site, C [also designated OSE2 m mice (134)], is 

located in the proximal promoter. A nucleosome is positioned between Cbfa sites B and C in 

the rat BGP promoter (348). Because Cbfa factors associate with the nuclear matrix and can 

recruit other factors to form complexes (7, 239, 280, 397, 500), Cbfa binding sites may 

impose structural constraints on the BGP promoter to facilitate interaction between proximal 

and distai regulatory elements (e.g., the vitamin D response element [VDRE] and TATA 

domains). Cbfal is, therefore, an indispensable regulator, not only of BGP, but also of 

osteoblast differentiation (e.g., 268), that fullf.lls a function dominant to and nonredundant 

with lhe function of any other gene product. 

The MSX family. Another class of transcription factors that belong to the íamily of runt- 

homologous proteins bind to BGP promoter sequences, more specifically to homeodomain 

protein binding sites within the OC box (222, 530). Competition and mutational analysis. as 

well as binding of purified homeodomain peptides and Msx-1 and Msx-2 proteins in gel shift 

assays provide evidence for interaction of this type of factors with the CCAATT motif (227, 

530). Msx-1 gene encodes an ubiquitous transcription factor expressed in most cells and in 

osteoblasts at a constitutive levei throughout differentiation, while Msx-2 appears to be tissue 

restricted and expressed developmentally during the osteoblast growth and differentiation 

periods (528 and references therein). The 1,25(OH)2D3-dependent upregulation of Msx-2 

expression and its binding to homeodomain sequences within the OC box are consistent with 

a functional relationship between the degree of Msx-2 binding within the OC box and the 

levei of BGP gene transcription. 

The AML family. The transcription factor Acute Myelogenous Leukemia-1 (AML-1) has a 

DNA binding domain that shares 69% identity to runt homology domain proteins and is 

somewhat tissue restricted, found predominantly in T-limphocytes (504). The AML-related 

transcripts are found in osteoblasts by Northern analysis but specific bone-related proteins 

have not been characterized. Two confirmed AML binding sites flank the rat BGP VDRE, 

one within the proximal promoter adjacent to the TGF-p responsive element, which is 

essential for transcription. 
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2. OTHER VITAM1N K-DEPENDENT PROTEINS 

The vitamin K-dependenl proteins comprise a group of macromolecules thal conlain 

the aminoacid y-carboxyglutamic acid (Gla), a protein family that is importam in a variety of 

tissues and cellular fonctions. This family oomprises the proteins involved in the blood 

coagulation cascade, and a few others, functionally not related to the f.rst group. ineluding 

some just recently discovered. The initial discovery of Gla in prothrombin (507) and the 

existence of vitamin K-dependent protein carboxylation in liver microsomes (143) were 

milestones in unraveling the eomplexity of the blood coagulation pathway. The substratos for 

carboxylation were found to include prothrombin (factor II) and coagulation factors VII, IX 

and X (143, 509. 517, 519), and the post-translationally acquired content of Gla was 

understood to confer on these proteins a new and íhnctionally importam potential for 

interaction with Ca2+ (214, 414. 507) and acidic phospholipid surfaces (369, 509, 541). 

Subsequently, protein carboxylation, resulting in the vitamin K-dependent formation of Gla 

residues. was observed in a wide variety of other tissues, ineluding bone (286), kidney (208. 

543) urine (155), renal calculi (285), placenta (171). skin (100), and spleen, lung and testis 

(61. 499, 543). Gla containing proteins occur in cartilage (165, 202, 211, 388), dentin (123, 

188, 303), cementum (188), antler and bone of ali vertebrate classes, ineluding Amphibia and 

Reptilia (240). 

Table I.IV. synthetises some of the information conceming ali lhe presently known 

vitamin K-dependent proteins. 

r.t a nrotein 1MGP). Matrix Gla Protein (MGP) deserves here a special emphasis, 

due to its affinities with BGP, some of which will be addressed in the following 

paragraphs (see also chapter IV, Section 7, on the phylogenetic analysis of spBGP). 

Matrix Gla protein (named that way because of its firm association with the orgamc 

phase of bone and cartilage) belongs to the family of vitamin K-dependent proteins (Table 

I.IV). It was the second vitamin K-dependent protein discovered in bone, being isolated from 

bovine bone in 1983 (438). Upon amino acid sequence, bovine MGP was shown to have 5 
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Gla residues and be 79 residues in length. Subsequently. in each species where the initial 

MGP translation product was determined (e.g., 260, 442) it was observed that it comprises a 

transmembrane signal peptide and the mature prolein. MGP was the first example of a 

vitamin K-dependent protein that lacks a propeptide (442). demonstrating that the y- 

carboxylation and secretion of vitamin K-dependent proteins need not be linked to the 

presence of a propeptide or to its proteolytic removal. 

During bone development, MGP appears before the onset of mineralization. consistem 

with its presence in cartilage (388). The final concentration of MGP attained in mature rat 

bone (388. 430) [0.4 mg/g] is -10% of the BGP levei on a molar basis. Approximately 10- 

20% of the total protein-bound Gla in adult bone is accounted for by MGP, and BGP 

contributes the remainder (218). 

While BGP biosynthesis is restricted to bone and dentin, MGP is synthesised in a 

variety of tissues and cell types, its mRNA being present in ali soft tissues exammed, matnly 

in lung, heart and kidney (165, 167), but also in bone and cartilage (69 for bone; 202 and 388 

for cartilage). The accumulation of the MGP protein in bone and cartilage greatly exceeds 

that of the soft tissues, which fail to accumulate it (165). A wide variety of cartilage types, 

including those that do not normally calcify, contam MGP (202). 

The detection of MGP mRNA in a wide variety of tissues (165) raises new issues 

about the biological fitnction of this protein. Although its function, as with BGP, is not fully 

understood. MGP is thought to have a role in clearing excess calcium from tissues into the 

circulation, thus proteeting against calcif.oation (165, 309). Results showing the protein to be 

a potent inhibitor of hydroxyapatite crystal formation in vitro, via y-carboxylated Gla residues 

(420, 462) support this hypothesis. Recent genetic studies have shown that mice lacking a 

functional MGP gene are viable, but exhibit increased calcification of growth plate cartilage, 

short stature, osteopenia, and fractures (317). The MGP-def.cient mice die between one and 

two months of age as a result of excessive abnormal calcification of their arteries leading to 

blood vessel rupture. 
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■ v Hpr-ípnHpnt nroteins rexcentine BGP). Information on the function, site of production ol 

õf protein locaUzation and relevant references is displayed. Intervenients on the biood 

coagulation cascade are signaled by an asterisk ( ). 

Protein Function(s) Produced by Mr (Da) 

Prothrombin* 

Coagulation factor VII* 

Coagulation factor IX* 

Blood Clotting; feed back activation of 
factor XI; converts fibrinogen into fibrin. 

Forms a complex with Tissue-Factor (TF) 
that activates factor IX. 

Liver 

Liver 

10 

Blood clotting; cofactor of factor Villa; 
converts prothrombin in thrombin; activator 

of factor X. 

Liver 

Anticoagulant factor; cofactor for protein C 

in the inactivation of coagulation factors 
Va and Villa and enhancement of 

fibrinolysis. Provides a link between 
osteoblast and osteoclast? Bone turnover 

69.000 

Tissues of 
presence 

72.000 Blood plasma 

10 50.000 Blood plasma 

~\2 56.000 Blood plasma 

56.000 1 1 Liver 
Converts Prothrombin in Thrombin, in the Coagulation factor X* 

and factor Va. resence of Ca 
75.000 1-12 

Anticoagulant factor ?; growth regulation?. Liver 
Gas 6 

cell survival factor?; ligand for the receptor 
tyrosine kinases. 

Heart, lung, 
stomach, kidney, 

cartilage and 
human 

chondrocytes. 

Blood. bone and 
cartilage 

132 and 
revievvs 

therein; 174, 
313,359 

174, 278 

55, 126, 174, 
278,479 

327,360,361, 
475,512,540 

31, 101, 125, 
180.323,409 

2 First discovcred in 1988 
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Protein Function(s) Produced by Numbe 
r of 
Glas 

IV!r (Da) | Tissucs of 
presence 

References 

and metabolism? Mitogen for smooth 
muscle cells? Some function in the brain? 

osteoblasts and 

cells of the nervous 
system. 

Nephrocalcin Inhibition of the growth of calcium oxalate 
monohydrate crystals; calcium elimination 

through kidney ? 

Kidney 2-3 14.000 Kidney; urine 363, j64 

Protein C* Anticoagulant factor; co-responsible for the 
inactivation of factors Va and Villa by 

cleavage of polypeptide chain; also with 
fibrinolytic activity. 

Liver 11 62,000 Blood 

Plasma 

144, 508. 539 

199 
Protein Z* 

MGP 

Unknown 

Inhibition of ectopic calcification? Vascular smooth 
muscle tissue and 

chondrocytes 

5 10.000 

23 000 

Lung. heart, 
kidney, bone and 

cartilage 

Spinal chord 

69, 165, 167, 
202,388 

274 
PRGP13 

PRGP24 

Unknown 
Unknown 

opiiiâi cnoru 
Thyroid 17.000 Thyroid and 

kidney. among 
others. 

274 

3 First discovered in 1997. 

1 First discovered in 1997. 
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More recent results (355, 569) confirm that MGP is also a powerful and developmentally 

regulated inhibitor of cartilage mineralization, controls mineral quantily but not type, and 

appears to have a previously unsuspected role in regulating chondrocyte maluration and 

ossification processes. 
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3. SPARUSAURATA: THE GILTHEAD SEABREAM 
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molars 
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large black 

blotch atorigin 
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golden band 
between eyes 
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Fiaure 1-4. Drawing showing an adult Sparus aurata specimen, with particular relevance to 
the charaoteristic head and ta„ nrarkings. Aiso displayed are the jaws and teeth, showtng 

canines and molars (in 476). 

II TAXONOMICAL CLASSIFICATIONOFSparus aurata 

Lingdom: ANIMALIA 

ype; CHORDATA 

Jubphylum CRANIAT A 

nfraphylum: VERTEBRATA 

^uperclass: PISCES 

:iass: OSTEICHTHYES 

^ubclass: ACT1NOPTERYGil 

3ivision; TELEOSTEI 

■^ubdivision: EUTELEOSTEI 

Series: PERCOMORPHA 

Order: PERCIFORMES 

Suborder; PERCOIDE1 

Family: SPARIDAE 

Genus: Sparus 

Species: Sparus aurata (Linnaeus. 

1758) 

[according to Long (310)] 
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3.2. GENERAL Sparus aurata BK) LOGIC AL FE ATURES 

Sparus aurata, the gilthead seabream, is a marine, teleost fish, which is common in ali 

the Mediterranean Sea and in the east Atlantic Ocean (from the British islands to lhe Cananes 

and Cape Vert), being rare in the Black Sea (157, 558). In the Mediterranean. lhe juveniles 

can be found during Spring in the salt marches, retuming to lhe marine environment by lhe 

end of Autumn. It is a litoral species, the juveniles being found until 30 m oí deplh and the 

adults until 150 m (157), either isolated or in small groups, mainly near sandy boltoms 

surrounded by rocks, or in the vicinity of muddy bottoms (22, 23). As is typical of litoral- 

dwelling species, 5. aurata is an eurihaline and eurithermic fish, withstanding salinities 

ranging between 4 and 70 0/oo (157), and temperalures between 5 and 320C (87). 

S. aurata is a camivorous species, although sporadically herbivorous (157, 558). Its 

feeding regime is formed mainly by bivalves, crustaceans, worms, other fishes and. 

sometimes, by algae (6). 

The reproductive physiology of S. aurata makes it an interesting species, since it is a 

protandrous hermaphiodite species, its first sexual maturation being masculine, and with a 

sexual inversion that occurs at a given period of its development (157). In fact. in captivity 

and during the first year of life, ali specimens are males, the same occurring, when specific 

conditions are established, throughout the second year. From this date on a percentage of 

males suffers a sexual inversion (386, 582. 583) that seems to be socially controled 

conceming the proportion of males experiencing it (205). The presence of a high number of 

young fish from May to September, period when social and hormonal factors influence sex 

inversion, triggers an increase in the number of older fishes suffering sexual inversion; also, 

the presence of a high number of old females can inhibit sexual inversion in younger 

specimens. 

The laying season of Si aurata extends for several months, with multiple layings (71), 

due to an asynchronous ovocitary development, In the Mediterranean sea the reproduction 

season spans from November until the end of January (6), although in warmer waters, like 

near Israel, it can be extended up to May (584). Laying is bentonic (between 5 and 35 m) and 

eggs and larvae are pelagic. The laying of eggs and the extension of the embrionary 
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development are greatly conditioned by externai factors, such as salinity (583), photoperiod 

(75) and water lemperature (243). 

At the time of eclosion the S. aurata larvae measures about 2 mm and is rather 

transparent. Already formed are the primordial fin, the notochord and the miomers (262). The 

vitelin sac, localised in the antero-ventral region of the body, encompasses nearly half of the 

larvae length and represents its source of nourishment for the first 3-4 days of hfe after 

eclosion (546, 576). During this period the pectoral fins start to develop (262) and the eyes 

become fully fonctional (576). In these first days of exogenous Hfe, the S. aurata brain is 

completely differentiated and the branchial arches are developing (250). 

After the vitellin sac has been reabsorbed the mouth and the remaining parts of the 

digestive tract become functional and the primordial pectoral fins are completely formed 

(546). With transition to exogenous feeding the larvae experience a criticai period, with very 

high mortalities (315, 584). 

The larval slage ends when the specimens develop scales and fins are diiíerentialed. 

which corresponds to an age around 40-45 dph. Calcified structures begin to appear at around 

30 dph (or 70-80 mm in lenght), although a high variability has been observed, depending on 

a series of extrinsic and intrinsic factors which regulate individual development. Around 90 

dph almost ali calcified structures have developed, only the structures necessary íor growing 

of the fish remaining in the cartilaginous state (6 and references therein; 150, 151). 

Its highly appreciated meat makes S. aurata a commercially important species and 

justifies the long-lasting habit of intensive and extensive culture, which dates back to the 

Acient Greece (21). Since the late seventies a growing interest has been tocused on the semi- 

intensive and intensive culture of this species and presently it is possible to control ali stages 

of its life cycle (e.g., 94, 127, 148). 

Sparus aurata has been the subject of various sludies, focusing mainly on larval 

development and nutritional requirements of this species (e.g., 249, 523, 546). However, 

information on cartilage and bone development exist largely for related species (e.g.: 13, 14, 

172, 230) and only recently some studies focusing on the developmental ossification of the 

main Sparus aurata skeletal structures appeared: 4 and 402: malformations of the axial 

skeleton; 262 and 469: developing of the notochord; 150 and 151: development ol osseous 

structures and fins. 
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4. APPEARANCE, STRUCTURE AND 1MPORTANCE OF THE SKELETON IN 
VERTEBRATES IN GENERAL AND IN FISHES IN PARTICULAR 

This section will i) give an overview on the appearance and importance ol skeleton for 

vertebrates and ii) focus on the available information conceming cartilage, bone and other 

calcified structures on S. aurata, in particular, and on the fish class, in general. 

The parts of the vertebrate body which mineralize during life, comprising at least 60% 

of its dry weight. constitutes the skeleton. Besides its obvious mechanical function as the 

body's scaffolding, anchoring muscles and providing levers and articulations for locomotion, 

food acquisition and food processing, as well as holding and protecting fragile organs and 

soft tissues, the skeleton performs equally important (if less obvious) physiological íunctions 

during the life of the animal, from which can be mentioned its involvement in the storage and 

release of calcium and phosphorous salts, as part of the control of body homeostasis. These 

varied and apparently conflicting functional demands are exemplified by the process of 

skeletal growth. which accomodates simultaneous changes in skeletal size, shape and 

proportions with the continuous fulfillment of ali its mechanical and physiological íunctions. 

4.1. THE ORIGIN OF THE SKELETON 

It is usually accepted that true bone is an acquisition of the vertebrates, and that its 

appearance has possibly occurred about 500 million years ago, in the United States 

Ordovicean (LI). However, the discovery of conodonts (the enigmatic, microscopic 

phosphatic remains of a group of primitive chordates; they are mainly tooth-like in shape and 

functioned as a food-gathering apparatus) raised a strong doubt on the accuracy of that 

timespan. Conodonts are found over a very wide stratigraphic range, spanning from long 

before the previously accepted earliest vertebrates are recorded (at least 30 MY prior to this), 

to the period where ali major vertebrate groups (except for the mammals) had already 

diverged (circo 350 MY ago), i.e., from the Cambrian to the Triassic (163 and 494, and 

references therein). 

According to Moss (350, 352, 353), the earliest ossified vertebrates had the intrinsic 

capacity to produce the entire spectrum of vertebrate skeletal tissues. However, there is still 
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some controversy concerning lhe relative timing of appcarance and lhe relationship between 

lhe several primordial hard structures. Whether dermal bone, dentine or bone evolved first is 

contentious (493). According to Moss (352), dentin did not evolve from bone, based on two 

assumptions claiming lhat (i) teeth and dermal denticles are homologous. constrained by 

common developmenlal pattems. and (ii) dermal denticles in the oral cavity gave rise to teeth 

during the evolution of jawed vertebrates (352 and references therein). 

It is fairly consensual that the first hard structures were exoneous, i.e., served 

primarily the function of protection, and that they could have extended trom head to tail in 

those early vertebrates possessing an extensive bony armor ol separale or íused denticles, i.e., 

in the majority of early vertebrates (494). This mineralized dermoskeleton, formed ol dental 

tissues and bone, was well developed in the first jawless fishes (Helerostraci) as early as in 

lhe Late Cambrian. However, endoskeletal calcified cartilages are already well known in at 

least one Ordovician and many Silurian jawless vertebrates, e.g. in the Helerostraci and 

Osleostraci as well as in early jaw-bearing fishes (acanlhodians, placoderms, chondrichtyans, 

etc.), in the Devonian. Thus, dermal and periosteal (perichondral) ossification seems to have 

evolved before true endochondral ossification (for more information on ossification 

mechanisms see section 5.1 of this chapter), but the early history of this process is poorly 

known (163). 

Previous work on conodont histology had looked for a resemblance to acellular bone 

(aspidin) because this was the tissue characteristic of helerostracans, the primitive agnathan 

group. This phylogeny predicts that aspidin would be present in a more primitive outgroup 

(acellular bone assumed to precede cellular bone), The new interpretations that cellular bone 

is present in conodonts and primitive vertebrates have major implications for the evolution of 

vertebrate skeletal tissues, namely, that cellular bone is more primitive than acellular bone. 

This would suggest that this type of vertebrate tissue, with only the cell processes in spaces 

without the inclusion of the cell body, is a later evolutionary development, Suggestions that 

cellular bone is more primitive than acellular were discussed by Smith (1991, in 494) with a 

new evaluation of the earliest vertebrates with well-preserved histology. In one early 

vertebrate with good preservation of histology this author described enamel, cellular dentine 

and cellular bone. 

The evolutionary interpretation of the difference in distribution of potential 

skeletogenic and odontogenic developmenlal mechanisms can be either that odontodes 
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only", is the primitive condition for verlebrates, accepting conodonts without an exoskeleton 

but with tooth elements as a stem-group verlebrate, because helerostracans represent the basal 

verebrate group with an extensive bony armor. Most aulhors recognize the grcat antiquity and 

overall evolutionary stability of vertebrate skeletal lissues, and thus ot their underlying 

cytological and molecular mechanisms. Indeed, skeletal structures oí the third and fourth 

orders. as defined by Petersen (1930, in 163), appear to have been established with the 

earliest known vertebrate fossils. Perhaps since the Late Cambrian and certainly during the 

Ordovician, mineralized vertebrate tissues show lhe main characterislics oí living forms, and 

some components seem to be already specialized in ways almost identical to modem 

verlebrates. It thus seems clear thal bolh lhe fundamental genetical-molccular mechanisms 

and the epigenetical constraints which produce the various specialized lineages ol scleroblasls 

and their specifíc cell-products appeared very early during vertebrate phylogeny and have 

later experienced little, if any, change (203, 454). Collagen fibrils, stellate scleroblasls, bone- 

trapped blood vessels, etc., have not changed their basic structure since the time of their 

initial appearance. The history of bone and other vertebrate skeletal tissues can hardly be 

interpreted as demonstrating an increasingly complex and irreversible evolutionary trend. 

Instead. this history shows ever-changing rearrangements of stable, basic components which 

evolved early in the history of the group (141). 

4.2. SOME JMPORTANT NOTIONS 

Regarding the deposition of mineral as a biologic event, it seems usefull to clearly 

distinguish between some often confused terminology. 

By mineralization we consider the biologically mediated or controlled deposition of 

crystalline or amorphous solid mineral in or on a pre-existing matrix. Most biological 

mineralization requires specialized cells (scleroblasls). 

Calcification is the specifíc process of mineralization which deals with the deposition 

of calcium carbonate (e.g. in otholits) or calcium phosphate (e.g. in enamel), generally in or 

on a pre-existing organic matrix (42, 256). No generally accepted hypothesis yet exists that 

explains the events occurring during calcium phosphate deposition on bone matrix (247). It is 

known that calcifícation begins by the deposition ol calcium salts on collagen fibrils, a 

process induced by proteoglycans and high affmity calcium-binding glycoproteins. lhe 
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deposilion of calcium salls is probably accelerated by the ability of osteoblasts to concentrate 

them in intracyloplasmic vesicles, which also conlain annexin V and alkaline phosphatase 

(263) and to release, when necessary. their contents lo lhe extracellular médium (247). 

Calcification is aided, in some unknown way, by alkaline phosphatase produced by 

osteoblasts and present al ossification sites (247). 

Ossification, a process peculiar to vertebrates, is the formation ol hydroxyapalite on a 

collagenous matrix in the histologically defined bony tissues (247); in other words, is the 

calcification of specific organic matrices made of collagen, non-collagenous proteins and 

complex glucides, by mineral deposits consisting primarily of crystaline hydroxyapalite. a 

calcium phosphate. 

Ali hard tissues in the vertebrate skeleton are mineralized by apatites (although not ali 

ossify) and most have a mesodermai origin (e.g., bone, cartilage and dentine), irrespective of 

their location in the body and of the pattem of mineralization (163). 

4.3. THE F/SH SKELETON 

The origin of ossified tissues in fish is complex but can be subdivided into two main 

groups, intramembranous (achondral) which occurs in the absence of a cartilage matrix and 

gives rise to dermal bone (247), or cartilage replacement bone (which includes parachondral, 

perichondral and endochondral), in which a matrix of cartilage is progressively substituted by 

bone. This and other aspects of the fish skeleton will be dealt with in the following 

paragraphs, divided according to the location of the skeletal part. 

4.3.1. The exo and the dermoskeleton 

The exoskeleton includes skeletal elements which differentiate from the externai 

surface of the skin epidermis (163). It includes denticles, scales, armor (dorsal and ventral 

plates, branchial plates, etc.), fin lepidotrichia, and teeth, both in agnathan and in 

gnathostome fishes. 
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The greatest diversity of skeletal tissues is apparenl among the exoskeletons of lower 

verlebrates. Variations occur in tissue type (enamel, enameloid; mesodentine, semidentine, 

orthodentine); pulp (open, closed, or infilled with dentine or bone); bone (cellular or 

acellular); arrangement of bone tissues (spongy or compact); bone composition (ffom surlace 

parallel lamellae, or lamellae concentric wilh vessels) (38). 

The dermoskeleton ineludes bonés originally formed in the skin dermis, the teeth. 

tooth-like organs and tissues or their dcrivatives among the lower vertebrates, and the bony 

scutes of terrestrial vertebrates (163). The scales of fishes form a more or less continuous 

dermal skeleton on lhe body, which modulates locally into the specialized dermal elements of 

fins (fin rays or dermotrichia sensu Jalo) on one hand, and of lhe mouth and pharynx (teeth) 

on the other (163). Scales are mineralized elements which form in the upper part of the 

dermis, generally close to the epidermis. They differ from dermal bonés which form in the 

deeper pari of lhe dermis. Scales can regenerate after removal (35). 

Contrary to what happens in Osteichthyes (rhomboid) scales, it is generally beheved 

that in Teleost (elasmoid) scales dentine and enamel disappeared, except in Latimeria, where 

obvious odontodes are inserted on lhe posterior area of the scale. Elasmoid scales are 

transparent, thin, lamellar, imbricaled osseous plates. They consist oí two main layers: a 

thick. lamellar, partially mineralized basal plate with a plywood-like structure (- isopedin), 

covered by a thin, omamented superficial layer (the externai layer, or osseous layer). In the 

posterior region, the scale is covered by the epidermis and an outer limiting layer is deposited 

on the surface of the externai layer. These scales are localized in a pocket and they are 

obliquely inserted into the dermis (35). 

4.3.2. The endoskeleton 

Teleosts have a well-calcified but nonetheless lightly built skeleton (44). The term 

endoskeleton refers to the internai position in the body of lhe skeletal elements involved. and 

to their ontogenic development, i.e. preformed by a cartilaginous matrix, hence the name 

"substitution bonés". However, not ali endoskeletal material is formed by the substitution of 

cartilage with bone, since a great part is formed by perioslal or endosteal deposition (163). 
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Derived from the sclerotomic mesenchyme of the embryonic mesoderai, the material 

of the endoskeleton differentiates deep within the body, below the striated musculature. It is 

first forraed as cartilage, but it is later associated with periosteal (penchondral) and 

endochondral ossif.cation, In its final, mature form the endoskeleton consists of bonés of both 

periosteal and endochondral origin associated with permanent cartilages in the joints, and 

with tendons and ligaments which connect bonés to muscles and to each other, respectively. 

The tendons and ligaments may themselves become raineralized and thus integrated within 

the mineralized part of the skeleton system (163). 

In the next paragraphs, the main elements of the vertebrate endoskeleton will be 

concisely characterized. with the main emphasis. when possible, in the fish endoskeleton. 

The skull. The relatively straightforward axial skeleton of elasmobranchiomorphs 

contrasts with the more complex skull and vertebral column of bony fishes. Although the 

skull begins in development as a cartilaginous neurocranium similar to that of sharks. it is 

soon altered by endochondral bonés ossitying in this cartilaginous framework, and by the 

addition of many dermal (membrane) bonés, supposedly derived from a scale layer m the 

skin. The end result is that the bony fish skull is a composite and complicated structure (44). 

In fishes, specially in the most complex forms, the skull is a very complex bony 

structure, having several fimctional units (310). There is a general similarity among 

vertebrates in the embryonic development of the skull, although various groups show 

characteristic differences. The neurocranium forms at the anterior end of the notochord, 

beginning with the formation of two paracordal cartilages from somatic mesoderm. These 

cartilages, one on each side of the notochord, enlarge and form a structure called the basal 

plate by íhsing around the notochord. The basal plate enlarges and fuses with paired occipital 

arch cartilages that develop over the hindbrain, thus forming the backwall of the 

neurocranium. Also uniting with the basal plate and occipital arch cartilages are paired otic 

capsules that form around the inner ears. The synotic tectum, a small cartilage that forras over 

the posterior part of the brain, joins with the occipital arch cartilages. Anteriorly, two 

precordal cartilages, called trabeculae, form from the neural crest. As the trabeculae grow, 

they fuse at their anterior ends to form the ethmoid plate, and urate with the developing basal 

plate posteriorly. Nasal capsules form anteriorly and orbital cartilages extend forward from 
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the otic capsules. Enlargement and dorsal growth of the parts results in the cartilaginous 

cranium, which will be partially covered or replaced by bone in the bony fishes (43, 118). 

Fishes such as the salmonids still retain much cartilage in the cranium, but this is 

mostly replaced by bone in the majority of fishes (118). Ossifications forming around and 

replacing cartilage are called cartilage bonés, perichondral and endochondral, whereas bonés 

that are not preceeded by cartilage but are formed in the dennis are called membrane or 

derrnal bonés (see 1.2.1. of this Chapter). In teleosts, the endochondral bonés are especially 

prominent in the posterior region of the neurocranium. To these, bonés onginating in the 

dennis are added dorsally and ventrally. The latter, called dermal bonés, membrane bonés, or 

investing bonés, may include plates originating from scales, plates formed from coalescmg 

tooth bases, and bonés that fortn directly from membranes. For a detailed description of the 

origin and composition of the teleost skull see (43). 

The vertebrae. The vertebrae of most teleosts are typical endoskeletal bonés which 

sometimes involve little, if any, endochondral ossification (163). In fact, this last kind of 

ossification intervenes only in the vertebral arches. For this type of bonés Patterson (405) 

proposed to restrict the term "membrane bone", i.e., endoskeletal elements which differentiate 

directly during ontogeny without a transitory cartilaginous stage, The vertebrae of the typical 

teleost have ossified biconcave (amphicelous) centra, with the notochord filhng the 

concavities. Basapophyses are present, as well as neural arches and spines, and the caudal 

vertebrae have haemal arches and spines. In every case, arches and centra osstfy 

independently, only secondarily becoming attached. Ventral ribs (pleural ribs) usually attach 

to the basapophyses. Intermuscular bonés that extend into the horizontal skeletogenous 

septum are often called dorsal ribs. Other intermuscular bonés may take their names from the 

structure that bear them. The numerous intermuscular bonés of bony fishes directly ossiíy 

within myosepta, the sheets of connective tissues lining each successive myotome (37, 163). 

There is much modification in the vertebral column in the region of the caudal fin. In htgher 

teleosts the vertebral column ends in an urostyle, which is a raised portion of the last vertebral 

centrum. The hypurals of higher teleosts are usually íhsed into larger plates, sometimes with 

one supporting the upper lobe of the caudal fin and one supporting the lower (37). 
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The fin rays. Fin rays (dermotrichia) are dermoskeletal elements supporting fish fins, 

which differ in structure and origin in the various groups ol fishes. The dermal íin rays oí 

teleosts are generally called lepidotrichia because of lheir presumed origin from rows of 

scales (36, Goodrich, 1904 in 163). 

In teleosts each ray of the median fins is tipically supported by two ossified and one 

cartilaginous pteryogophores. Proximal pteryogophores are elongate tapered bonés set deeply 

into the median skeletogenous septum, usually between the neural or haemal spines. The 

middle pteryogophores are ossified and jointed flexibly to the proximal elements on one end 

and to the distai pteryogophores, if present, on the outer end (36). 

In the pectoral girdle of typical teleosts the scapula and caracoid are ossified as 

endochondral bonés and part of their outer edges forni the articular surface for the radiais 

(actinosts) of the pectoral fin (36). 

The pelvic fin skeleton in teleosts is made up of plate-like basipterygia, one for each 

fin. These bonés usually are joined to each other posteriorly and may meet antenorly (36). 

5. THE BONE TISSUE: FORMATION AND MAJOR CHARACTERIST1CS 

5.1. MECHANISMS UNDERLYING BONE FORMATION AND MAlh 
CHARACTERISTICS 

Bone is a dynamic connective tissue, composed of an exquisite assembly of 

functionally distinct cell populations that are required to support both the structural, 

biochemical, and mechanical integrity of this mineralized tissue and its central role in mineral 

homeostasis (300). 

Bone always forms ffom a pre-existing connective tissue (42, 247, 511). Its formation 

can take place by two distinct ways: (i) direct mineralization from the matnx secreted by 

osteoblasts (intramembranous ossification), or (ii) deposition of an osseous matrix in a pre- 

existing cartilaginous matrix (endochondral ossification). Ossification includes ali processes 

resulting in bone formation. 

According to the mechanisms underlying bone formation, there are several kinds oí 
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ossification: 

Intramcmbranous ossification: is lhe source of most of lhe flat bonés, lhe process begins 

when groups of cells differentiate into osteoblasts. New bone matrix is formed and 

calcification follows, resulting in lhe encapsulation oi some osteoblasts. These islands oí 

developing bone are known as spicules. The connective tissue that remains among the bone 

spicules is penelraled by growing blood vessels and addilional indifferentiated mesenchymal 

cells. giving rise lo the bone marrow cells. Cells of the mesenchymal tissue condensation 

divide, giving rise lo more osteoblasts, which are responsible for the continued growth of the 

ossification center. The portion of the connective tissue layer that does not undergo 

ossification gives rise lo the endosteum and the periosleum of intramembranous bone (42, 

247,511). 

Parachondral ossification: bone fornis directly within the connective tissue in lhe vicinity ot 

a cartilage. The cartilaginous element appears to induce the shape of the bone, and the two 

elements are always separated by at least a layer oí perichondrium and/or periosleum. 

Perichondral ossification: bone appears in contact with an already tormed cartilaginous 

element. The perichondrium stops making cartilage and it changes into penosteum. The 

cartilage then assumes the role of a mold upon which the osseous substance is deposiled and 

thickens. This process is especially conspicuous in the branchial arches oí teleosts (41). This 

term connotes a topographical relationship rather than an histological process, which is also 

true for parachondral ossification. 

Periosteal ossification: this results from the activity of the periosleum at the outer surtace ot 

a bone, and it is characterized by a centriíugal mode of deposition [Gross, 1934 in (163)]. 

Endosteal ossification: results from the activity of the endosteum on the inner surfaces of the 

cavities of a bone. This term is generally applied to ossification occuring after the resorption 

of a pre-existing bony tissue, and this endosteal secondary bone is separated from the primary 

bone by a cementing line. It is characterized by a centripetal mode of deposition [Plourens, 

1845 in (62)]. 
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Endochondral (Gr. endon, within + chondros, cartilage) ossification: substitution of a 

preformed cartilaginous element with bony tissue, with the concomitant destruction of the 

cartilage model: blood vessels invade and the cartilage is broken up into strands. Erosion oí 

the cartilage is only partially complete so that many cartilaginous regions may persist within 

the osseous trabeculae, behind the front of erosion, at least in young bone. When the bone is 

fully grown the areas of ossification unite and the cartilage plates disappear (42, 247, 511). 

This process characterizes the endochondral bonés, which constitute the deep endoskelelon of 

vertebrates (short and long bonés) (247). This process is also met in fishes, where it occurs 

primarily in the verlebrae and skull (41). 

Metaplastic ossification. Two types can be defined in this case. 

I In pre-existing connective tissue: involves the progressive mincralization ot 

lhe malrix and inclusion of the cells without cell multiplication and cell hypertrophy (201). 

Where mechanical requirements preclude the presence of a periosteum, a new bone is lormed 

by "metaplasia", i.e., transformation of a pre-existing fibrous matrix of connective tissue 

direcly into bone. This mode of metaplastic ossification can occur in the formation ot 

osteoders in reptiles. 

II. In cartilaue: Chondro-osseous metaplasia is a direct transformation ol 

cartilage into bone without concomitant destruction oí the cartilage. The only non- 

pathological example of this kind might be the "tissu mixte" oí Stephan [1900 in (163)]. 

Centrifugal and centripetal ossification: centrifugal ossification is bone accretion occuring 

at the free externai surface of a bone and proceeds outwards. Centripetal ossification proceeds 

inwards ífom the periphery of cavities within the bone. Deposition seems to be much slower 

in centrifugal than in centripetal bone tissues. 

Inorganic matter represents about 50% of the dry weight of the bone matrix. Calcium 

and phosphorous are specially abundant (calcium is the fifth most abundant inorganic 

element in the body and phosphorous is the sixth; (457) and references therein), but 

bicarbonate, citrate, magnesium, potassium, fluoride and sodium are also found (163, 247, 
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511). The skeleton contains lhe highest percentage of lhe total calcium oí thc animal body 

and acts as a calcium reservoir. Calcium and phosphorous íorm hydroxyapatite cryslals wilh 

the composition CMPO^OH^ [Posner, 1973 in (510)]. Significam quantities of 

amorphous (noncrystalline) calcium phosphate are also present. 1 he organic matter is type I 

collagen and amorphous ground substance, which contains proteoglycan aggregales. Also, 

several glycoproteins have been isolated from bone. The association oí hydroxyapatite with 

collagen fíbers is responsible for the hardness and resistance that are characteristic of bone 

(42, 247). 

Bone modeling is the acquisition and transiormation oí overall bone form and shapcs 

by differential varialion of local growlh rates. During morphogenesis, the bone may 

homothetically maintain its initial shape (isometric growlh) or change its proportions and 

form (allometric growth). Beginning with an initial shape such as a cartilaginous model, 

conservation or transformation of shape results from the interplay of local osteogenetic rates 

in various direclions (42, 247). 

In order to acquire an adequate form during normal ontogemc growth and íollowing 

fractures, bone needs lo be resorbed al specific spatial and temporal intervals. Bone 

resorption may involve different processes: a) osteoclasia, the erosion of bone surlaces by 

osteoclasts. which produces bone surfaces named Howship's lacunae; and b) periosteocytic 

osíeolysis, bone resorption by osteocytes at their own periphery. Osteoclastic resorption and 

periosteocytic osteolysis deal with the total removal of bone lissue, both organic matnx and 

mineral. The third process, which involves the removal of mineral without destruction of the 

organic matrix, was named halastatic demineralization by Rutishauser et al. (466). 

"Halastasis" is a word of greek origin which means "unstable salts". In bony fishes, 

remodeling is generally weak, except among some forms with a very active metabolism 

(tunas) (163). 

Conceming the presence or absence of living cells entraped in the matrix, bone is 

classifíed as follows: 

Cellular bone, which is any kind of bone tissue containing bone cells (osteocytes) 

enclosed in (periosteocytic) bone lacunae. Tipically, bone cells remam alive and 

physiologically active, communicating with each other by means of fine cytoplasmic 

extensions housed in minute bone canaliculi. Osteocytes are "mature bone cells resulting 

from the entrapment of former osteoblasts within the mineralizing bone matrix. However, 
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some osteocytes do not derive from typical osteobasts of the periosteum or endosteum. This 

is the case for bone cells within the densely fibrous mineralizing tissues forming the insertion 

sites of ligaments and tendons. 

Acellular bone, which is a lissue devoid of osteocytes. More precisely, acellular bone 

never contains complete osteocytes in typical periosteum lacunae, but, at most, fine 

cytoplasmic extensions of cells housed in long minute canaliculi. Although acellular bone 

occurs in various groups of vertebrates. it is by far most common among advanced teleosts 

(highly evolved bony fishes), as first recognized by Kõlliker [1859, in (163)]. Hence, at least 

among bony fishes, acellular bone represents an apomorphic (advanced or speciahzed) rather 

than a plesiomorphic (primitive or generalized) condition (343,403). Altematively. acellular 

bone may entrap young bone cells (osteoblasts) within the bone matrix. but these ultimately 

shrink and die before mineralization takes place (351). 

5.2. THE BONE CELLS 

The contribution of the cellular elements to the bone total mass is small (445). In 

actively growing bonés four different cell types can be distinguished: osteoprogenitor cells. 

osteoblasts (osteon + Gr. blastos, germ), osteocytes (Gr. osteon, bone + kytos, cell) and 

nsteoclasts (osteon + Gr. klastos, broken). Excepting osteoclasts, this division represents four 

different fimctional states of the same cell type. The reversible changes that this cells 

experience represent examples of celular modulation, a process which is dintinct from 

differentiation, this last term applicable to the, apparently irreversible, progressive 

specialization of the structure and function (42). 

Osteoblasts: Osteoblasts synthesise the organic components (type I collagen, 

proteoglicans and glicoproteins) of the matrix (247, 445) and deposition of the morgamc 

components of bone is also dependent on their presence (247), They are exclusively located at 

the surfaces of bone tissue, side by side (247). Secretion of matrix components occurs at the 

cell surface, which is in contact with older bone matrix, producing a layer of new (but yet 

uncalcified) matrix, called osteoid, between the osteoblast layer and the previously formed 
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bone. This process, bone apposition, is completed by subsequent deposition of calcium salts 

inlo lhe newly formed malrix (247). 

More detailed, the temporal sequence of gene expression defines iour principal 

developmental periods in osteoblast development (1- prolifcration; 2- maturation; 3- 

mineralization; 4- remodelling). The more inleresting, in this case, are: the first, when 

proliferation supports expansion of the osteoblast cell population and biosynthesis of lhe type 

1 collagen bone extracellular matrix; and the third (mineralization period), which involves 

gene expression related to the ordered deposition of hydroxyapalite. Osteopontin and BGP 

exhibit maximal expression at this time, when maturation of bone-tissue like organizalion is 

ongoing. Once surrounded by the matrix which has synthesised. lhe osteoblast becomes an 

osleocyte (247, 445, 504). 

Osteocytes: Osteocytes, which derive from osteoblasts, are buried within the 

mineralized bone matrix. Newly formed osteocytes are very similar to osteoblasts, but when 

more mature, they become flatter, loose some of their abundant cytoplasm and experience a 

regression of some organelles, such as the Golgi apparatus and the endoplasmic reticulum. 

Though these cells seem less active in what refers to protein synthesis, they are not 

metabolically inert (42). Osteocytes vary widely in size and shape (390) and they are 

connected to one another and to osteoblasts on the bone surface by extensive projections of 

canaliculi (42, 247, 511). These cells are actively involved in the mainlenance ot the bony 

matrix, and their death is followed by resorption of this matrix. Osteoblasts and osteocytes do 

not divide after having been formed from the osteoprogenitor cell (247). 

Osteoclasts: Bone is the only organ that contains a cell type, the osteoclast whose 

only function is to constantly destroy the organ hosting it. Osteoclasts are derived trom the 

fusion of blood derived monocytes and thus belong to the mononuclear phagocyte system 

(42, 247, 515). Osteoclasts are a heterogenous group of multinucleate cells (2 to 100 nuclei) 

with several properties in common. They are generally larger than other bone cells, ranging in 

diameter from 20 to 100 pm; secrete acid, collagenase, and other proteolytic enzymes, such as 

acid phosphatase, and are found where bone is being resorbed. Chenu et ai (81) 

demonstrated a chemotactic activity of osteocalcin for osteoclast-like cells, suggesting that 

this protein may represent a component of bone matrix involved in the mechanism for 
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attraction of the osteoclasts to the bone surface. In areas of bone undergoing resorption. 

osteoclasts are found to lye within enzymatically etched depressions in the matrix known as 

Howship's lacunae (42, 247, 511) and, when in contact with the bone surface, their 

membranes form many processes which appear to penetrate the bone surface. They attack the 

bone matrix. liberate the calcified ground substance, and are actively engaged in elimination 

of debris formed during bone resorption (247). It is suggested that one osteoclast is able to 

remove as much bone as is laid down by 100-1000 osteoblasts, a conclusion that takes into 

account their relative numbers (511). 
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6. GENERAL INTRODUCTION AND OBJECTIVES 

From what was presented in the previous sections it can be inferred that Bone Gla 

protein plays an important role in the correct developmenl oí lhe verlebrate bone. Its high 

abundance. stringent regulation and diversified interactions are sufficient molecular rcasons 

lo assume the importance of this protein. 

Bone deficiencies associated with a large array oí palhologies have been, still are and, 

with the expected increase in human longevity, will increasingly be, a serious heallh problem, 

justifying the large amount of research done in this area (e.g., 80, 122, 128, 131, 176, 242, 

581). Other important heallh problems. like atherosclerosis, have also led to studies involving 

BGP (e.g.. 242, 553), without, however, elucidating in a decisive manner the mechanism oí 

action of this small protein. In fact, as it is stressed in lhe "Bone Gla protein" section of this 

chapter. although the first isolation and sequencing of this protein dates back to 1976 (420. 

421), only recently has the search for its biological function produced convincing results (49, 

135). although its mechanism of action at the molecular levei remains largely unknown. With 

this in mind, and taking into account lhe fact that the majority of research involving this 

protein has been done using mammalian models (human, mouse and rat), the use oí a 

different, non-mammalian, system might give a new insight into the function and regulation 

of BGP, in particular in lower verlebrates. 

The major objective of this work was, therefore, to determine the molecular 

organization of the fish BGP gene and study its tissue distribulion and appearance during 

development, thus providing the necessary molecular tools and Information to initiate studies 

on its function in lower vertebrates. Comparison between results obtained in lower and higher 

verlebrates may prove usefull to further understand BGP function throughout evolution. 

The teleost fish Sparus aurata was chosen as model organism for several reasons. 

1. It is a commonly raised and abundant fish in aquaculture facilities, due to important 

economical issues, being already implemented as model organism at the Universidade do 

Algarve. Indeed, gilthead seabream aquaculture is presently in expansion, clearly leaving 

behind the natural catches for this fish, and representing an increasingly important altemative 

source of proteins. Concomitanlly, the amount of money and effort involved. at least in south- 
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European countries like Portugal and Spain, make Sparus aurata a comercially importam 

resource, which justifies ali efforts applied to avoid high juvenile morbidity and mortality. 

2. It reproduces fairly easily, throughout the entire year upon stimulation. 

3. It produces a fast-growing, abundant oftspring, which constitutes a clear advantage 

over the mammalian models. 

4. It has an externai embryonic development, with transparenl embryos and larvae, 

which makes this species an adequate model to bring additional insight into the function of 

BGP. in particular for those aspects related to appearance, regulation and basic role during 

early development. 

5. When raised in closed systems frequently develops various skeletal abnormalities 

(151. 270, 402), mainly at lhe larval stages, thus being an adequate model to analyse a 

possible relalionship between skeletal deformities and changes in BGP expression. 

Finally, it was of interest to analyse the evolutionary relationships of BGP with other 

vitamin K-dependent proteins. In fact, as was already described in previous sections of this 

chapter, BGP shares some features with other proteins. namely Matrix Gla protein (218) and 

the vitamin K-dependent coagulation factors (174). It is likely that at a given time in the 

evolutionary history, a polypeptide precursor originated BGP and MGP. Since fishes evolved 

as the first creatures to have a skeleton, making them lhe ancestors ol ali vertebrates (310), S. 

aurata BGP constitutes a good candidate to fiirther investigate these questions. 
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1. RNA EXTRACTION 

Total RNA from Sparus tissues and whole larvae/juveniles at different developmental 

stages was extracted using the acid guanidinium thiocyanate-phenol-chloroform method (83). 

Briefly. lhe specimens were reduced to powder in liquid nitrogen and 1 ml of solution D 

[Guanidinium Isothiocyanate Solution (Appendix II) : 2-Mercaptoethanol. 100:0.72] was 

added. per 100 mg of tissue. After adding 0.1 vol. 2M NaC2H302, 1 vol, Acidic phenol (pH 

5-6) and 0.2 vol. Chloroform : Isoamyl alcohol (49:1), the mixture was homogenized for 10 

seconds, incubated on ice for 15 minutes and centriftrged at lO.OOOg for 15 minutes at 40C. 

One volume of Isopropanol was added to the aqueous phase, followed by incubation at -30oC 

for one hour. The mixture was centriluged at lO.OOOg for 15 minutes, at 4°C, and the pellet 

ressuspended in 500 pl of solution D. One volume of isopropanol was added to the mixture, 

followed by incubation at -30oC for one hour and centrifugation at top speed for 15 minutes, 

at 4°C. The pellet was washed with 75% ethanol, air-dried and ressuspended in 100 pl of 

DEPC-treated water. 

2. AMPLIFICATION OF A PARTI AL spBGP CLONE BY RT-PCR 

Reverse transcription (RT) of 1 pg of total RNA, extracted from a Sparus juvenile 

with a mineralized skeleton. was performed with Moloney Murine Leukemia Viras Reverse 

Transcriptase (M-MLV-RT) (Promega), using an oligo (dT) linked to an universal adapter, 

under conditions suggested by the supplier (see Protocol 2, Appendix I), Half (10 pl) of the 

RT reaction was used as a teraplate for amplif.cation by the Polymerase Chain Reaction 

(PCR), using a 5' degenerated primer (SBG2F: 5'-TGC/TGAA/GCAC/TATGATGGA- 

C/TACA/C/G/TGA-3'; see Table II.l for localization) designed according to the spBGP 

protein sequence previously obtained (64) and a reverse universal adapter (5'- 

ACGCGTCGACCTCGAGATCGATG -3'). PCR reactions were conducted for 35 cycles 
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(one cycle corresponds to 40 seconds denaturation at 950C, 30 seconds annealing at 520C and 

45 seconds elongation at 720C: an initial denaturation of 3 minutes at 950C and final 

elongation of 7 minutes at 720C were used), according to the following protocol: 5 mM 

MgCl2, Ix Mg-free buffer (Perkin Élmer). 4 pl dNTPs (2.5 mM each), 1 pM forward and 

reverse primers, 0.5 pl Ampli Taq DNA polymerase and ddHjO to complete 50 pl. 

3. CLONING AND SEQUENCING OF DNA FRAGMENTS RESULTING FROM PCR 
AMPLIFICATION 

PCR products of the expected size were identified by agarose (Promega) gel 

electrophoresis, excised from the gel, and eluted from the agarose using the Qiaex II Gel 

Extraction Kit (Qiagen), following the manufactureis instructions. The DNA fragments thus 

obtained were inserted into the pGEM-T plasmid vector (Promega) and this chimeric DNA 

used to transform Escherichia coli DH5a strain (GibcoBRL) (Appendtx II). Bnefly, 2 pl of 

the ligation reaction were added to 100 pl of a suspension of competent DH5a E. coli cells. 

incubated on ice for 30 minutes and heat-shocked at 420C for 45 seconds. The cells were then 

placed on ice and 500 pl of SOC médium (LB-Broth (GibcoBRL) / 1% 2M Glucose) were 

added. Following incubation at 370C with gentle agitation for 45 minutes, 5 pl of a 1 M 

isopropilthio-p-D-galactoside (IPTG; Sigma) solution (in FLO) were added to the bactenal 

cells, which were then plated in LB-Agar (Sigma) supplemented with 50 pg/ml of ampictlm 

and 0.8 mg/plate of a 5-bromo-4-cloro-3-mdolil-P-galactopiroside (X-Gal; Sigma) solution 

(in N-dimethylformamide; Sigma). The plates were incubated ovemight (O/N) at 37°C and 

the positive clones (white colonies) were obtained based on colour selection. Each positive 

clone was transferred to liquid LB médium (Appendix II), supplemented with 50 pg/ml 

ampicilin and allowed to grow O/N with agitation, at 370C. 

Isolation of the plasmid DNA containing the inserts of interest was performed by the 

"boiling technique" (229; Protocol 1, Appendix 1). In each case, the cDNA was excised from 

the plasmid by digestion with EcoRl restriction enzyme (Pharmacia), electrophoresed in a 

1.4% ethidium bromide-containing agarose gel, and positive clones (those containing a DNA 

insert with the expected size) were sequenced. DNA sequence analysis was performed with 

the T7Sequencing Kit (Pharmacia) and the SP6 and T7 vector-specif.c primers, following 

established procedures (see Appendix I, Protocol 3). The labelled DNA thus obtained was 
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loaded on a 19:1 (acrylamide:bisacrilamide) 6% sequencing gel and electrophoresed at 60 W. 

After drying the gel, a Kodak X-Omat AR film was exposed O/N, 

4. AMPLIFICATION AND CLONING OF THE 5'- END OF spBGP cDNA by 5' 

RACE PGR 

Sparus poly(A+) RNA was prepared from total RNA (extracted from whole juveniles 

with a calcified skeleton) using the QuickPrep Micro mRNA Punfication kit (Pharmacia), 

following the suppliers instructions (Appendix I, Protocol 4). The Sparm mRNA thus 

obtained was reverse-transcribed and amplif.ed using the Marathon™ cDNA Amplification 

Kit, according to the suppliePs indications. The first step consisted on the synthesis of a 

Sparus cDNA library. In order to do that 4 pl of poly(A+) RNA (approximately 2 pg) were 

added to 1 pl of 10 pM cDNA synthesis primer (S-TTCTAGAAT1 CAGCGGCCGC(T)joN- 

.N-S', where N.i= G, A or C; N= G, A, C or T), incubated for 2 minutes at 70oC and then at 

4|>C for 2 minutes. After this annealing step, 2 pl of 5x first-strand buffer (Promega), 1 pl of 

10 mM dNTP mix (Promega), 1 pl of DEPC-treated ddH20 and 1 pl of M-MLV Reverse 

Transcriptase (100 U/ pl; Promega) were added. Incubation was performed at 420C for 1 

hour. after what the second-strand cDNA synthesis was performed. following manufactureis 

instructions (Appendix I, Protocol 5). Two microliters of the resulting double-stranded cDNA 

were analysed by electrophoresis in 1.2% agarose gel (Promega), to check its integrity. 

The next step in the cloning of the 5'-end of the BGP cDNA was the Adapter 

Tigation. for which in a 0.5 ml tube were added 5 pl of double-stranded cDNA, 2 pl of 10 

pM Marathon cDNA Adaptar (Clontech), 2 pl of 5x DNA ligation buffer (Clontech) and 1 pl 

of T4 DNA ligase (1U/ pl) (Clontech). 

The reaction mixture was incubated O/N at 16°C, and then heated to 70°C for 5 

minutes to inactivate the enzyme. From the 10 pl ligation reaction, 1 pl was dissolved in 83 

pl of Tricine-EDTA buffer (10 mM Tricine-KOH (pH 8,5), 0.1 mM EDTA), heat denatured 

at 940C for 2 minutes, and immediatelly cooled on ice for 2 minutes. 

The next step consisted in the 5'-Rapid Amplification of the cDNA End (5'-RACE), in 

which the Advantage KlenTaq Polymerase Mix (Clontech) was used, Into a 250 pl stenle 

PCR tube were added 36 pl of sterile ddHjO, 5 pl of lOx Klen Taq PCR Rx Buffer 

(Clontech), 1 pl of 10 mM dNTPs (Clontech) and 1 pl of 50X Advantage Klen Taq 

Polymerase Mix (Clontech), which includes TaqStart Antibody (Clontech) for automatic hot 
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start PCR. The mixture was completed with 5 pi of diluted adaptor-ligated cDNA (previous 

paragraphs), 1 pl of 10 pM AP1 primer (Clontech) (5'-CCATCCTAATACGACTC- 

ACTATAGGGC-3') and 1 pl of 10 pM Gene-specific primer (SBG4R; Table II.I). After 

mixing and centrifuging briefly, the reaction was incubated in a Perkin-Elmer GeneAmp 

PCR System 2400 with the following prograra: 940C, 1 minute; 940C, 10 seconds and 72 C, 4 

minutes (5 cycles); 94°C, 10 seconds and yO-C, 4 minutes (5 cycles); 9rC, 10 seconds and 

680C. 4 minutes (25 cycles). 

Five microliters of the resulting PCR products were analysed by electrophoresis in a 

3% FMC Seakem GTG agarose gel. The DNA fragments of interest were excized from the 

gel with a clean scalpel and eluted from the agarose with the Qiaex II Gel Extraction Kit, 

following the manufactureis instructions. These eluted DNA fragments were cloned into the 

pGEM-T plasmid vector (Promega), and inserted in E. coli DH5a strain, as descnbed in 

Appendix I and section 3 of this chapter. The plates were incubated O/N at 370C and the 

positive clones were eolour-selected and grown O/N on LB médium (Sigma) supplemented 

with 50 pg/ml ampicilin. Plasmid DNA was prepared by the "alkaline lysis" method, as 

described in Protocol 7 (Appendix I), according to Sambrook el ai (468). 

Eight microliters of the purified plasmid DNA were digested with EcoR\ restriction 

enzyme, and the presence of inserts was analysed by electrophoresis in a 1.4 % agarose gel. 

These DNA inserts were sequenced using the Universal and SP6 primers, and the 

Pharmacia^ l7Sequencing kit (Protocol 3, Appendix I). 

In order to get both strands of the cDNAs sequenced. an extra set of primers was 

designed: SBG8F and SBG9R (Table II.I). 

5. EXTRACTION OF GENOMIC DNA 

Genomic DNA was extracted from 0.3 g of muscular tissue of a freshly sacrified adult 

Sparus specimen, using a method adapted from Sambrook et al. (468). Tissue was sliced into 

small fragments with a sterile scalpel and added to 3 ml of Digestion Buffer [100 mM NaCl, 

10 mM Tris.Cl (pH 8.0), 25 mM ED?A (pH 8.0), 0.5 % SDS and 0.1 mg/ml Proteinase K). 

The mixture was incubated O/N at 55°C, with agitation, extracted once with 

phenolxhloroformnsoamyl alcohol (25:24:1) and once with chloroform. The aqueous phase 
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was transferred to a sterile 1.5 ml centrifuge tube and 0.1 volumes of 3M NaCzHjC^ (pH 4.8) 

were added, followed by 2 volumes of 100% R/T ethanol. The precipitated DNA was 

transferred (with a plastic pipete tip) to a sterile 1.5 ml centrifiige tube. washed with ice-cold 

80% ethanol, dried at R/T for -15 minutes and dissolved in 300 pl of TE buffer (see 

composition in Appendix II). Genomic DNA integrity was analysed by electrophoresis in a 

0.8 % agarose gel (Promega). 

6. AMPLIF1CATION OF THE spBGP GENE 

PCR amplification using different pairs of primers (SBG5F+SBG4R. 

SBG8F+SBG4R, SBG13F+SBG15R. SBG8F+SBG10R and SBG8F+SBG1 IR; Table II.I) 

was performed in a GeneAmp PCR System 2400 (Perkin Élmer), under the following 

conditions: 1.5 mM MgCl2, 5 pl lOx PCR buffer (GibcoBRL), 0.05 mM of each nucleotide, 

0.4 pM of each primer, 1 unit of Taq DNA Polymerase (GibcoBRL); denaturation was 

performed at 950C for 2 minutes, annealing at 60oC for 1 minute and elongation at 680C for 2 

minutes, with 35 cycles; an initial denaturation step of 5 minutes and a final elongation step 

of 12 minutes were performed. 

DNA fragments obtained were cloned in pGEM-T Easy, as descnbed in II-3, and 

sequenced (Protocol 3, Appendix I). Ali exons and exon/intron borders were sequenced on 

both strands. 

7. AMPLIFICATION OF THE 5'-FLANKING REGION OF THE spBGP GENE 

The 5' flanking region of the spBGP gene was obtained with the Universal Genome 

Walker™ Kit (Clontech). In summary, 2.5 pg oíSparus genomic DNA were digested with 1 

pl (20U) of BamHl (DLI) or 1,5 pl (18U) of Pstl (DLII) restriction enzymes (Pharmacia) for 

18.5 hours at 370C. Enzymes were inactivated by incubation of the reaction at 650C for 10 

minutes. The digested DNA was then treated with the Klenow (Boheringer) enzyme (4 U), 

after adding 2 pl of 2.5 pM dNTPs (Promega), in order to generate DNA fragments with 

blunt ends; incubation was accomplished for 15 minutes at 250C. The enzyme was 

inactivated at 650C for 15 minutes, the reactions dialysed for 20 minutes against water to 
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remove salts [using a 0.025 um dialysis membrane (Millipore)], lyophilised. and the resulting 

pellets dissolved in 20 pl of TE buffer (pH 7.4). One microliter of each dissolved DNA was 

electrophoresed in a 0.8% agarose gel (Promega), in order to check its integrity. 

An Adaptor ^'-GTAATACGACTCACTATAGGGCACGCGTGGTCGACGG- 

CCCGGGCTGGT-3') was then ligated to each digested DNA fragment (4 pl of DNA + 1.9 

pl 25 pM GenomeWalker Adaptor + 1.6 pl 5x Ligation Buffer + T4 DNA Ligase (lU/pl)) 

for 48 hours at 16T. The enzyme was inactivated at 70»C for 5 minutes and 72 pl of TE 

were added. 

The 5'-flanking DNA of the spBGP gene was amplified by nested PCR. Bnefly, a 

primary PCR amplification was performed using a forward AP1 (Adaptor Primer 1; 

GTAATACGACTCACTATAGGGC) and a reverse SBG19R (see Table Il.I) as Gene 

Specific Primer 1 (GSP1; Protocol 6, Appendix I). Eive microliters of the PCR reaction thus 

obtained were electrophoresed in a 0.8% agarose gel. After analysis of the results of the 

primary PCR reaction, a second PCR reaction was performed, using Adaptor Pnmer 2 (AP2; 

S^ACTATAGGGCACGCGTGGT-S') as forward primer, and SBG19R as reverse pnmer, 

following the manufactureris intructions (Protocol 6, Appendix I). Fifteen microliters of the 

secondary PCR reaction were electrophoresed in a 1.5% agarose gel (Promega). The result.ng 

amplified DNA fragments were excised and extracted from the gel with the Qiaex II Gel 

Extraction Kit (Qiagen), cloned in pGem-T Easy (Promega) and sequenced as descnbed (II- 

3). 

8. GENOMIC SOUTHERN ANALYSIS 

Aliquots (20 to 50 pg) oí Sparus genomic DNA were incubated for 3-4 days with 

sterile ddH20 and enzyme buffer at 4°C, according to a procedure described in Sambrook e, 

al (468) and then digested with ~ 50 U of selected restriction enzymes Bgl I, Hind 

m and Ps, 1 and with Bgl I, Bgl II, EcoR I, Hind III and Pst I), at 37°C for 30 minutes. After 

this period, approximately 25 U of the respective restriction enzymes were added de novo 

and the reaction allowed to proceed for an extra 3 hours at 37°C. The digested DNA was then 

ethanol precipitated (0.1 vol. 3M NaC.HsO,, 2 vol. 100% ethanol), re-suspended tn sample 

loading buffer and size-ffactionated by electrophoresis on a 0.8% agarose gel (Promega) for 9 

hours at 35 Volts. DNA markers (lambda DNA-HindlII digested and 1.0 kb ladder from 
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GibcoBRL) were loaded in adjacent lanes in the gel. Following electrophoresis, DNA in the 

gel was transferred to an N+-Ny!on membrana (Sehleieher & Sehuell) by a capillary method 

(468) and pre-hybridized at 42T for 3 hours in 6x SSPE (see Appendix II for composition), 

]0x Denhardfs solution, 0.5% SDS and 50 pg/ml calf thymus DNA. Hybridization was 

carried for 24 hours in a solution containing 6x SSPE, 0.5% SDS, 50% formamide, 50 pg/ml 

calf thymus DNA and either a 280bp (from nucleotides 323 to 603 of the cDNA) or the iull 

length spBGP cDNA, labeled with a32P-dCTP. Labelling was performed with the Prime-It® 

II Random Primar Labeling Kit (Stratagene) and the unineorporated nueleotides were 

separated from the labelled DNA with NACS 52 PREPAC® columns (GibcoBRL), 

according to manufactureis instructions. The labeled probe thus purified was added to the 

hybridization solution and incubated with the membrana O/N, at 42"C. Blots were washed 

twice in 6x SSPE, 0.1% SDS at R/T for 15 min, twice in Ix SSPE, 0,1% SDS at 37°C for 15 

minutes and onee in O.lx SSPE, 0.5% SDS at 65"C for 30 minutes. Autoradiography was 

performed with Kodak X-Omat AR f.lm and two intensifying screens at -80oC for 8 days. 

9. DETERMI1NATION OF THE TRANSCRIPTION START SITE OF THE spBGP 

GENE 

The transcription start site of the spBGP gene was identified using a 5'-Primer 

extension technique. Fifteen mierograms of total RNA, extracted from the ealcified jaw of a 

juvenile Sparus by established methods (IH), were annealed to a reversa primar (SBG14R; 

Table n.I) extending from +75 to +94 bp upstream from the initiation ATG codon, as 

follows; 10 pl RNA / 15 pl Ix Hybridization Buffer [0,15 M KC1, 10 mM Tns.Cl (pH 8.3), 1 

mM EDTA] / 10 pmol SBG14R primer, for a final volume of 30 pl; the anneahng was 

achieved by incubating the mixture at 65°C for 1.5 hours, after what the tube was allowed to 

cool at R/T. 

The resulting RNA was recovered by precipitation with 0.1 vol. DEPC-treated 3M 

NaC2H302 and 2.5 vol. ice-cold 100% Ethanol, incubated at -20oC for 10 minutes, 

centrifuged at 12000 g for 10 minutes, washed with ice-cold 70% ethanol and dned for 10 

minutes at R/T. 

The extension reaction was performed for 5 minutes, at 37°C, using the M-MLV 

68 



MMERIAI- and methods 

reverse transcriptase (GibcoBRL), 4 pl of 5X First-Strand Buffer (GibcoBRL), 2 pl of 0.1 M 

OTT, 1 pl Of each lOmM dNTP, 4.5 pl of 1 mg/ml actinomycin D and DEPC-treated ddH20 

to complete 19 pl. An additional incubation of 60 minutes, at 37°C, was performed, after 

addition of 10 pCi (1 pl) [a32P] dCTP. The resulting single strand cDNA was RNase-treated 

in the presenee of non-specific DNA [100 pg/ml Calf Thymus DNA (GibcoBRL), 20 pg/ml 

Rnase A] for 15 minutes at 370C and then phenol/chloroform-extracted and ethanol 

precipitated. Pellets were re-suspended in 5 pl of formamide-containing sequencing dye 

(Pharmacia's T7Sequencing kit Stop Solution), heat-denatured (5 min at 65°C) and loaded on a 

9% acrylamide, 7M urea sequencing gel (468). Autoradiography was performed using Kodak 

X-Omat AR film with two intensifying screens at -30°C for 15 hours. The size of the 

amplified fragments was detemuned from a known DNA sequenee reaetíon [corresponding 

to a partial spBGP intron II clone, sequeneed with the SGB29F primer] loaded on adjacent 

lanes. 

10. NORTHERN BLOT ANALYSIS 

Total RNA, extracted ffom Sparus tissues (vértebra, jaw, heart and liver) and from 

whole larvae collected at different developmental stages (18, 75, 82, 86 and 130 dph). was 

size-fractionated by electrophoresis over a 1.4% forma.dehyde-contaming agarose gel, 

transferred onto N+ Nylon membranes (Schleicher & Schuell) by a capillary method (468) 

and pre-hybridized at 42^ in 50% formamide, 5x Denhardfs solution, 5x SSPE and 50 

pg/ml Calf Thymus DNA for 2-3 hours. A partial spBGP cDNA (spanning from nucleotide 

325 to 602 of the spBGp mRNA) was labeled with [a-32P] dCTP using the Prime-It® II 

Random Primer Labeling Kit (Stratagene) and separated from unincorporated nucleohdes on 

a NACS 52 PREPAC® column (Gibco-BRL). The labeled probe thus purified was added to 

the pre-hybridization solution and incubated with the membrane O/N under the same 

conditions described for pre-hybridization. Blots were washed twice in 6x SSPE (Appendix 

II) 0 1% SDS at R/T for 15 minutes and twice in Ix SSPE, 0.1% SDS at 55"C for 30 

minutes. Autorad.ography was performed with Kodak X-Omat AR film with two intensifymg 

screens at —30oC for up to one week. 
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11. RT-PCR SOUTHERN BLOT ANALYSIS 

One microgram of total RNA extracted from various Sparus tissues (vértebra, jaw, 

heart. liver and muscle) and from whole specimens at various developmental stages (neurula, 

2 3 18, 27, 37, 47, 61, 75, 82, 91 and 130 dph) was treated with Rnase-free DNAse I for 3 

hours (370C) and reverse transcribed using the conditions described in Protocol 2 (Appendix 

I). One twentieth of each reaction was amplified by PCR, using two specific oligonucleotide 

primers designed according to the spBGP cDNA sequence previously obtained (SBG8F and 

SBG11R; Table II.I), either for 20, 25 or 35 cycles (one cycle is 30 sec at 95°C, 40 sec at 

60°C and 45 sec at 68°C) followed by a final extension period of 10 minutes at 68°C with Taq 

DNA polymerase (Promega). Positive and negative controls were made by amplifymg 

respectively a clone of spBGP cDNA and a sample without DNA template with the same 

primers, Resulting PCR products obtained with 20 and 35 cycles were Southern transferred 

onto a N+ Nylon membrane (Schleicher & Schuell) and prehybridization/hybridisation 

performed following the procedures described in Section 3 of this chapter. Autoradiography 

was performed with Kodak X-Omat AR film and two intensifying sereens at -30°C. As an 

internai control for the relative amount of RNA used for each sample, Sparus P-actm was 

also amplified from an equal volume of RT reaction, using two specific pnmers designed 

according to the published (470) Sparus beta-actin cDNA sequence (forward pnmer: 5'- 

TTCCTCGGTATGGAGTCC-3'; reverse primer: 5'-GGACAGGGAGGCCAGGA-3 ). 

12. DETECTION OF CARTILAGINOUS AND MINERALIZED STRUCTURES 
IN S. AL!RATA 

The technique of whole mount double staining with Alcian Blue/Alizarin Red was 

used for the detect.on of cartilage and bone, based in established procedures (124, 266, 417, 

554). , J ^ • 

Sparus specimens with ages ranging from 15 to 150 dph were collected and fixed in 

4% paraformaldehyde, at 4»C, from 24 hours to 7 days, according to size. Specimens were 

then hydrated by bathing in a 50% ethanol solution for 30 minutes (60 minutes for specimens 

older than 59 dph), in a 25% ethanol solution for 3x 30 minutes and, finally, in ddH20 for 
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3x 30 minutes. For detection of cartilaginous tissue, specimens were incubated in a solution 

containing 10 mg Alcian Blue 8GX (Sigma; # A-526B), 70 ml 100% ethanol and 30 ml 

glacial acetic acid for 16 hours (for younger specimens) and 20 hours (specimens older than 

59 days), at R/T. Specimens were then re-hydrated by bathing in a decreasmg ethanol senes: 

100% ethanol (2x 30 minutes), 95%, 70%, 40% and 15% ethanol (30 minutes each) and 

ddH20 (2x 30 minutes). For spec.mens older than 59 dph the 100% ethanol and the ddH.O 

baths were applied for 2x 60 minutes. Th.s procedure, followed by incubation O/N w.th 1% 

KOH. removed ali the excess blue colour and prepared the specimens for the followmg step, 

the detection of calcif.ed tissues. Calcif.cation was detected by incubating specimens in a 1% 

Alizarin Red S solution (pH 12.8; Sigma; # A-5533. in 0.5% KOH) for 24 hours. followed by 

removing the excess dye with 2.5% KOH:glycerol (3:1; only for 89 and 150 dph specimens), 

1% KOH-glycerol (3:1; to this solution, 40 pl/ml of 30% H202 were added, lo remove colour 

from chromatophores) (3 days) and then with 1% KOH:g.ycerol (1:1) and 1% KOH:glycerol 

(1:3) for variable periods of time, according to specimens age. Finally, specimens were stored 

in 100% glycerol, supplemented with a few microliters of phenol, to preveni development of 

bactéria and fungi. 

13. INCLUSION OF S.AVRATA BONE IN METHYLMETACRVLATE 

A juvenile Sparus specimen (~ 15 cm S.L.) was sacrified and the bonés of the jaw and 

vertebra extracted, cleaned of adherent tissue and fixed in ,00 ml of Fixation Solution (2 vol 

0 2M sodium cacodylate buffer, 1 vol. 40% formaldehyde (Sigma), 2 vol. methanol; PH 7.3) 

for 6 days at 4°C. After fixation, bonés were cut into small pieces. transferred to 20 ml glass 

vials and incubated in acetone for 2x 12 hours, at 4°C. Acetone was then replaced by the 

Impregnation Solution1 (5 ml Solution A + 30 pl Solution B) and incubation took place for 3 

days at 20°C, with this solution replaced every 24 hours. Inclusion was made with the same 

Impregnation solution, in air-free vials, at R/T. 

After inclusion, the blocks were moulded into a rounded shape (more suitable to be 

held by the cutting apparatus) and stored at R/T until used. 

For sectioning, both the methylmetacrilate blocks and the blade used to section thera 

were kept constantly wet with 35 % Ethanol, Severa, 5 pm sections were prepared. placed on 

1 For details on preparation of solutions see Appendix 11 
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a histological slide covered with 35 % ethanol, and kept over a heating plate, to spread the 

section A small plastic sheet was then placed over each section and ali was covered by 

another glass blade. The assemblage was kept at R/T for 48 hours. held together by fórceps. 

14. HISTOLOGICAL DETECTION OF ALKAL1NE PHOSPHATASES IN OSSEOUS 
T1SSUES OF S. AURATA 

Alkaline phosphatases were detected in methylmetacrylate-included sections of 

juvenile Sparus bone according to an established procedure, Briefly, a detection solution was 

prepared [20 mg Naphtol ASBI Phosphate (Sigma; # N-2125); 1 ml N-N- 

dimethylformamide (Sigma; # D-8654); 10 ml TRIS, pH 8.5; 8 ml NaCl 9.5%o; and 6 mg 

Fast Red Violet LB Salt (Sigma; # F-3381)], and a few drops added to each section, íollowed 

by incubation O/N at 370C. Sections were then washed with ddHíO, fixed O/N with 10% 

formaldehyde, dehydrated in a creseent alcoholic series and mounted in DPX. Alkaline 

phosphatase activity was detected in a Zeiss Axiovert 25 inverted microscope, by the red 

colour staining resulting from the degradation of the substrate. 

15. HISTOLOGICAL DETECTION OF ACID PHOSPHATASES IN OSSEOUS 

TISSUES OF S. AURATA 

A Pararosanilin-HCL stock solution was prepared as follows: 1 g Pararosamhn 

(Sigma- # P-7632) was dissolved in 20 ml of distilled water and 5 ml of concentrated 

hydrochloric acid were added; the solution was heated gent.y, cooled. filtered and stored in 

the refrigerator. The solution was then added. drop by drop, to an equal volume of 40mg/ml 

sodium nitrite, with thorough shaking after each addition. A second solution was prepared by 

adding 0.5 ml Naphthol ASBI phosphate stock (50 mg Naphthol ASBI Phosphate, 5 ml 

Dimethyl formamide), 2.5 ml Veronal Acetate Buffer Stock (3.88 g Sodium Acetate (3H20) 

and 5 88 g Sodium Barbitone, dissolved in 200 ml distilled water) and 6.5 ml distilled water. 

The pararosanilin/sodium nitrite solution was then added to this last solution and the pH 

adjusted to 4.7-5.0, followed by filtering. 
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Tissue sections were incubated in the solution described above ior up to 60 minutes, 

al 370C. washed well in distilled and then tap water and counterstained with 2% Methyl green 

for 15-30 seconds. Sections were then washed, dehydrated. cleared with xylol and mounted 

in DPX. 

U. IN SITU HYBRIDIZATION ANALYS1S 

Animais and tissue preparaiion: 

S. auraía specimens collected at various developmenlal stages were fixed ovemight at 

40C in freshly made 1% paraformaldehyde solution, then washed 3x10 min. in TBS1 bufíer 

(50mM Tris, pH 7.4; 150mM NaCl; 0.1% Triton X-100) and stored in methanol at 40C. 

Samples were dehydrated by passing them through an increasing alcohol series and 

embedded in paraffin. Tissues were cut into longitudinal 5pm thick sections and mounted on 

slides pre-coated with 10% poly-L Lysine (Sigma) or Vectabond® (Vector Laboratones), 

dried for 48 hours at 420C and kept at R/T until use. 

In situ hyhridization: 

Ten micrograms of a 326 bp fragment of spBGP cDNA [spanning from nucleotide 

323 to the 3'end of the cDNA and cloned in pGem®-T vector (Promega)], was linearized 

with either altematively with Ápa\ or Pst\ restriction enzymes, phenol:chlorophorm:isoamyl 

alcohol (25:24:1) extracted, precipitated with 0.1 vol. NaC2H302 / 1 vol. ice-cold 100% 

ethanol. washed briefly with ice-cold 75% ethanol, air-dried and the pellet dissolved in 25 pl 

DEPC-treated H2O. One microliter of each digestion was electrophoresed in a 1.4^ agarose 

gel to check for complete digestion and used to generate sense and anti-sense nboprobes. 

Digoxigenin-11-UTP-labeled single strand RNA probes were prepared with a D1G 

RNA Labeling kit (Boehringer-Mannheim Biochemica), according to the manufacturer s 

instructions (Protocol 8, Appendix I). One tenth of the RNA obtained was analyzed by 

electrophoresis in a 1.4% formaldehyde-containing agarose gel in order to check for RNA 

size and integrity (results not shown). 
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The tissue sections obtained as described above were then treated as follows. 

a) Deparafination: in a rocking platform, sections were treated for 2x 10 min. with xylol. 2x 

8 min, with 100% Methanol. Ix 5 min. with 75% Methanol + 25% H2O DEPC, Ix 5 mm. 

with 50% Methanol + 50% H20 DEPC, Ix 5 min. with 25% Methanol + 75% PTW (Ix 

PTW: Ix PBS + 0.1% Tween 20) and 2x 10 min. with PTW. 

b) Proteinase K digestion and f.xation: a few drops of Proteinase K (40pg/ml in 1M TRIS. 

pH 7.4) were plaeed over each section and incubated at R/T for 15 minutes; sections were 

washed in PTW for 3 min. and re-fixed in 4% formaldehyde (in PTW) for 30 min., followed 

by a final washing with PTW, 2x 5 min.. 

c) Prc-hibridization: the Pre-Hybridization solution was prepared as follows: 2.5 ml 

deionized formamide (Sigma; # F-5786), 1.0 ml 20x SSC (Appendix II), 0.1 ml 50x 

Denhardfs (Sigma; # D-2532), 0.1 ml 50 pg/ml Yeast tRNA, 0.1 ml 2% CHAPS ((3- 

Cholamidopropyl) dimethylammonium-l-propanesulfonate. Sigma; # C-5070), 10 mg/ml 

Heparin (Sigma; # H-6279), and the final volume brought to 5 ml with DEPC-treated ddH20. 

A few drops of pre-hybridization solution were plaeed on top of each section, which was 

covered with parafilm and incubated at 55°C for 3 hours, in an atmosphere saturated with 

20xSSC. 

d) Hybridization; the spBGP probes, prepared as described above, were denatured by 

heating at 80»C for 5 min. and immediatelly plaeed on ice. Twenty microliters of each probe 

were added to 300pl of pre-hybridization solution and the mixture was immed.atelly plaeed 

over each section, which was then covered with parafilm. Hybrid.zation took place O/N. at 

up to 620C, in an atmosphere saturated with 20x SSC. 

e) RNase Digestion: sections were washed 3x 20 min. in RNase-free 2x SSC, at 55°C. Non- 

hybridized RNA was digested with a few drops of 10 pg/ml RNase A (GibcoBRL 10777- 

019), plaeed over each section, which was then covered with parafilm and incubated for 30 

minutes at R/T. 

f) Washing and Blocking: sections were washed as follows: 2x20 min., at 550C, wit 

SSC/CHAPS (600pl 2% CHAPS + 1.5ml 2x SSC); 1x5 min. with PTW, at R/T; 1x10 min, 

with PTW/MAB (1:1), at R/T. Sections were then covered with ~ 200pl of blocking buffer [a 

1% (w/v) blocking buffer (Boehringer) was prepared in Ix Maleic Acid Buffer (MAB; 

Appendix II)] and incubated for 1 hour at R/T. 
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g) Colour devclopmcnt: 0.5pl of Anti-digoxigenin-AP antibody (Boehnnger) were added to 

Iml of blocking buffer. Sections were covered with this solution, and then with parafilm, and 

incubated for 2 hours, at R/T, in an atmosphere saturated with 20x SSC. Sections were then 

washed with PTW for 3x 20 min., at R/T, and incubated for 10 minutes with Colour Buffer 

(50mM Tris, pH9.5; 50mM MgCl2; 100mM NaCl; 0.1% Tween 20), at R/T. The solution 

was then replaced by fresh Colour Buffer, supplemented with NBT and BCIP (Boehringer; # 

1383213 and 1383221, respectively) (337.5 pg/ml of nitroblue tetrazohum salt, 165ng/ml of 

5-bromo-4-chloro-3-indolyl-phosphate in colour buffer). Incubation took place at R/T, 

protected from light, with constant agitation. Sections were visuahzed penodically in a 

reflecting light microscope to check for signal/noise development. and the reaction stopped 

when the signal to noise ratio began lo decrease. 

h) Dehydration and Mounting: sections were briefly washed with tap water, with ddHiO, 

dehydrated in a crescent alcohol series (2x 70%. Ix 80%, Ix 90%, 2x 100%; 30 seconds 

each) and cleared in xylol for 1-2 minutes. A drop of DPX (BDH) was then placed over each 

section and topped with a lamella. 

17. ESTABLISHMENT OF PRIMARY CELL CULTURES DERIVED FROM 
DIFFERENT Sparus TISSUES 

17.1. FROM CALCIFIED TISSUES 

Primary cell cultores of mixed phenotype were obtained from vertebra, jaw and 

cartilage oí Sparus using an adaptation of previously established procedures (459, 565). The 

vertebra, jaw and branchial arches of juvenile Sparus were extracted immediately after 

sacrifice, briefly rinsed in 100% ethanol, placed on PBS supplemented with 1% penincillin / 

streptomycin (GibcoBRL 10378-032) + l%o Fungisone (Amphotericin B; GibcoBRL 15290- 

026) and cleaned of adherent soft tissue. The bonés were then fragmented into pieces of 0.1- 

0 5 cm transferred to sterile 50 ml polypropilene capped tubes (Falcon) and incubated with 5 

ml of Digestion Solution [90% L15 médium (GibcoBRL 11415-049) + 8% sterile ddH20 + 

1% penincillin / streptomycin + 1%» Fungisone + 0.125% Collagenase (Sigma C-0130)] for 

30 minutes, at R/T, with rocking. The supematant was discarded, replaced by 5 ml of fresh 

Digestion Solution, and the incubation prolonged for an extra 2 hours, with rocking, at R/T. 
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The tubes were then centrifuged at 2000 r.p.m. for 5 min., the supematant discarded and the 

fragmenta spread on Tissue Cultura (TC) 010 cm Petri dishes (Sarstedt). About 5 ml of 

Médium 1 (LI 5 médium supplemented with 10% Poetai Calf Serum (GibcoBRL 10270-106). 

,% penincillin / streptomycin, l%o Fungisone) were added to the fragmenta and mcubated on 

a humidified atmosphere at 220C. 

Several days after cultura was initiated, cells that migrated from bone fragmenta filled 

moat of the cultura plate and were collected by centriíhgation following treatment with 

Solution T (140mM NaCl, 2.7mM KC1. 200mM Na2HP04- 1.5mM KH2P04, ImM EDTA 

and 2 %„ Trypsin). Cella were then re-plated in two TC Petri diahea (Saratedt) at a denarty of 

approximately 8xl04 eells/ml. and re-trypsinizated each 3-5 daya. according to the drvra.on 

rate. Médium changes were performed each 4-5 days. 

17.2. FROM SCALES 

Following aacrifice, acalea were extracted from Sparus apecimena with a forcepa, 

briefly rinaed in PBS aupplemented with 1% penincillin / streptomycin (GibcoBRL 10378- 

032) + 1% Fungiaone (Amphotericin B; GibcoBRL 15290-026) and immedratelly placed, 

with the interior aide facing down. on TC Petri diahea (Saratedt), to which a amall volume of 

Medrum I. just enough to cover the bottom aurface, had been prev.oualy added. Incubat.on 

took place at 18-220C, on a humidified atmosphere. 

18. PRESERVATION OF Sporus-DERIVED CELL TYPES 

Periodically (approximatelly each fifth trypsinization), cells obtained from Sparus 

tissues were frozen for .ater uae. Cella were typsmizated as described above, re-auapended m 

culture médium and centrifirged at 2000 r.p.m. for 5 minutes. The pe.leted cel.a were then 

resuspended in 10% serum-containing culture médium, aupplemented wrth 10% Drmethy 

sulfoxide (DMSO; Sigma, D-8779), tranaferred to 2 ml criovessela (Nunc), mcubated for 

minutes on ice and then O/N at -80°C, in a CryolC Freezing container (Nalgene, 5100-0001). 

The next day cells were tranaferred to liquid nitrogen and stored until needed. 

To thaw frozen Sparus cells, tubes containing cells were removed from the hqu.d N2, 
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quickly thawed and transferred to an appropriate volume of culture médium. After incubat.on 

at the suitable temperature for 2 to 3 hours, the eulture médium was replaced by fresh 

médium, to eliminate the DMSO. 

19. AMPLIFICATION OF THE BGP MESSAGE FROM PRIMARY CELL 
CULTURES OF S. A URA TA 

Total RNA was extracted from cells derived from vertebra. jaw and branchial arches 

of Sparus, following the guanidinium thiocyanate-phenol-chlorofonn method (83), as 

described in Section 1 of this chapter. One microgram of total RNA was then reverse 

transeribed with M-MLV-RT (Promega), using an oligo (dT) Unked to an universal adapter 

(Protocol 2, Appendix I). Half (10 pl) of the RT reaetion was used as a template for 

amplification by the Po.ymerase Chain Reaetion (PCR), using SBG5F and SBG4R as 

primers (Table II.I), aceording to the protoeol detailed in Section 11 of th.s chapter. The 

remaining RT volume was used to amplify spPactin. which served to assess the qualtty of the 

RNA used. Specific primers [designed aceording the published spPActin cDNA sequence 

(470)] were used in order to amplify a DNA fragment of 240 bp. 

The resulting PCR produets were eleetrophoresed on a 1.4% agarose gel and the 

bands corresponding to the expected size for spBGP excized with a clean scalpel and eluted 

from the agarose using the Qiaex II Gel Extraction Kit (Qiagen), cloned in pGEM-T Easy 

(Promega), inserted in £. coli DH5« strain (GibeoBRL) (see Seet.on 3 of th.s chapter for 

deseription of methodology and Appendix II for information on vector and bactenal stram 

charaeteristies) and sequeneed with the -Sequeneing Kit (Phannaeia) and the SP6 and 

vector-specific primers (Protocol 3, Appendix I). 

20 DETECTION OF ALKALINE PHOSPHATASE ACTIVITY IN VERTEBRA- 
DER^S PRIMARY CELL CULTURES OF 5. AVRATA 

Sparus vertebra-derived cells were trypsinizated (T4, i.e., fourth trypsinization after 

beginning of eulture) and plated at approximately 40% eonflueney. After 24 hours meubatton 

at 220C in Médium I (see 17.1 for eomposition), médium was removed and cells washed 

with PBS (pH 7.0), followed by f.xation in 70% ethanol (30 minutes, R/T) and f.ve washes 
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with ddH20. Celis were covered by the detection reagent [prepared by adding 1 g 

Naphtol ASB1 (Sigma, N-2125) to 0.5 ml of N,N-Dimethyl-Formamide (Sigma. D-8654); 5 

ml of Tris buffer. pH 8.6; and 4 ml of 9.5 %o NaCl; the solution was mixed and 3 mg of Fast 

Red Violet LB salt (Sigma, F-3381) were added and mixed., incubated for 1 hour at 37°C and 

rinsed with ddH20]. Detection of sites of alkaline phosphatase activity was performed by 

visual examination of the cell layer under a Ze.ss Axiovert 25 inverted microscope. 

21 DETECTION OF MINERAL DEPOSITION IN THE EXTRACELLULAR 
MATRIX OF S.Al! RATA BONE-DERIVED CELLS 

Celis derived from Sparus vertebrae were grown into confluency and then treated 

with a "mineralization solution" consisting of lOmM (I-Glycerophosphate (Sigma, G-9891), 

50 pg/ml Ascorbie acid (Sigma, A-4034), in Médium I, for 30 days, at 20°C, with médium 

replacements every 3-4 days. Negative controls eonsisted of cells with exactly the same 

origin incubated simultaneously in Médium I without the mineralizing supplements, 

After one month of incubation with the "mineralization solution" the presence of 

mineral deposition was revealed by either the Von Kossa method. or the Alizann red-S 

staining, according to the procedures described below. 

Von Kossa: The mineralizing médium was discarded and cells were thoroughly 

washed (3 times) with PBS, pH 7.0. After f.xation with 4% formaldehyde. for 15 minutes at 

R/T cells were thoroughly washed with ddH20 (5 times), at R/T, and incubated with o 

silver nitrate (AgNO^ aqueous solution) for 30-60 minutes, under ultrav.olet light. Celis 

were then washed with ddH20 (3 times), at R/T, and incubated with 2.5% sodium thiosulfa e 

(Na.S.Os-SH.O; aqueous solution) for 5 minutes. A final wash was performed with ddH.O 

(once), at R/T, followed by air-drying. 

Alizarin red staining: The mineralizing médium was discarded and cells were 

thoroughly washed (3 times) with PBS, pH 7.0. After f.xation with 4% formaldehyde, for 15 

minutes, at R/T, cells were thoroughly washed with ddH20 (5 times), at R/T, and incubated 

with a saturated aqueous solution of Alizarin red-S, for ~5 minutes, at R/T. Cells were then 

washed with ddFbO (3 times) and air-dried. 
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22. CLON1NG THE SPBGP 5'-FLANKlNG REGION IN THE PpGAL-BASIC 
EXPRESSION VECTOR 

Preparation of the spBGP promoter 

A DNA fragment conlaining 1.2 kb of the 5' flanking region of the spBGP gene and 

extending 37 bp into Exon 1 (from -1200 to +37), was obtained by PCR amplification of S. 

aura,a genomic DNA, using two spBGP gene-specific oligonucleotide primers (SBG24F and 

SBG25R; Table II.I). Each oligonucleotide carried also the sequence for either Xho\ or 

HMlll restriction enzymes. Briefly, 100 ng of DNA (3 pl) were mixed with 2 pl (50mM) of 

MgCb (GibcoBRL), 5 pi of lOx Mg-free buffer (GibcoBRL), 1 pl of 50 pM SBG24F 

oligonucleotide (Pharmacia), 1 pl of 50 pM SBG25R oligonucleotide (Pharmacia). 4 pl (2.5 

mM each) dNTPs (Promega), 0.3 pl (1.2 Units) Taq Polymerase (GibcoBRL), and the 

volume completed to 50 pl with ultrapure HjO (Sigma). 

Negative controls were made by adding only one or the other primer to the reaction 

mix, to test for non-specific amplifications, and with ali reagents but no DNA, to test for 

possible contaminations. Amplifications were performed in a Perkin-Elmer GeneAmp PCR 

System 2400 for 35 cycles (one cycle was 95°C for 30 seconds, 60°C for 1 minute and 72°C 

for 1 minute), with an initial denaturion step of 3 minutes at 950C, and a final elongation step 

of 10 minutes at 720C. 

Five microliters of the resulting PCR products were analysed by electrophoresis in 

a 1,4% ethidium bromide-containing agarose gel and visualized under ultraviolet light. The 

expected band was excized from the gel with a clean razor blade and eluted from the agarose 

with the Qiaex 11 Gel Extraction Kit (Qiagen). following the manufactureis instructions. The 

DNA fragment obtained was cloned into the pGEM-T Easy plasmid vector (Promega), 

according to the manufacturer instructions, inserted in E. coli DH5a strain (GibcoBRL) (see 

Section 3 and Appendix II). The plates were incubated O/N at 37°C and the positive clones 

were colour selected, isolated and grown O/N on LB médium (Sigma) supplemented with 50 

(a,g/ml ampicilin. 

Plasmid DNA was prepared following the "alkaline lysis" method (Protocol 7, 

Appendix 1). Six microliters of the purified DNA thus obtained were digested with EcoRl 

restriction enzyme, using the appropriate buffer, and the presence of positive clones (selected 

by the presence of the right size DNA insert) was confirmed by electrophoresis in a 1.4 % 
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agarose gel (Promega). One of the positive clones obtained was chosen and digested with 

Hindlll and Xhol restriction enzymes, in order to create the protruding ends that would 

facilitate cloning into the pPgal-Basic vector. The digestion reaction was performed by 

mixing together 20 pl of DNA (~ 100 ng/ml), 6 pl of lOx OPA+ buffer (Pharmacia), 0.5 pl of 

Xhol (7 Units; Pharmacia), 0.5 pl of Hindlll (6 Units; Pharmacia), and 3 pl of H20, and 

incubating at 370C for 1.5 hours. Enzymes were inactivated at 85°C for 30 minutes and 

cooled until R/T for 20 minutes. 

Preparation of the plasmid DNA 

Two microliters of the ppgal-Basic vector were digested with the Hindlll and Xhol 

restriction enzymes, by mixing together 1.5 pl of ppgal-Basic, 6 pl of OPA+ buffer 

(Pharmacia), 0.5 pl of ATíoI (Pharmacia), 0,5 pl of Hindlll (Pharmacia) and 21.5 pl of ddlLO, 

and incubating at 370C for 1.5 hours, In order to avoid re-ligation of the digested plasmid 

DNA, dephosphorilation of the digested ends was performed by adding 1 pl (200 units) of 

Calf Alkaline Phosphatase (Appligene; # 120221), at 37°C, for 30 minutes, followed by a 

phenolxhloroform extraction (30 pl digested/dephosphorilated DNA, 400 pl 

phenol:chloroform (1:1); centriíugation for 5 minutes at 14000 rpm and removal of super- 

natant into a sterile 1.5 ml tube), and re-precipitation (400 pl plasmid DNA, 40 pl 3M 

NaCzHjOz, 800 pl 100% ethanol; 15 minutes incubation at -80oC, centrifugation for 15 

minutes at 14000 rpm, wash with 75% ethanol and air-dry for 15 min.). Pelleted plasmid 

DNA was then dissolved in 20 pl of ddH20 and 4 pl were electrophoresed in a 1.4% 

ethidium-bromide stained agarose gel. 

Cloning of the spBGP promoter into the ppgal-Basic vector 

The spBGP gene putative promoter DNA was inserted into the digested pPgal-Basic 

vector, by adding 2 pl (100 ng) of plasmid DNA to 5.8 pl (290 ng) of spBGP promoter DNA, 

and incubating for 5 minutes at 450C. One microliter of lOx ligase buffer (Stratagene), 1 pl of 

rATP (ImM final concentration) and 0.2 pl of T4 DNA Ligase (1 U; Stratagene; # 600011) 

were then added to the DNA mixture and incubated O/N at 40C. 

Three microliters of the ligation product were inserted in E. coli DH5a strain 

(Appendix II), as described in Section 3 of this chapter. Ten white colonies were picked with 

sterile toothpicks, transferred to LB supplemented with 50 pg/ml ampicihn and incubated 
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O/N at 370C Plasmid DNA was extracted from the bactéria using the "alkaline lysis" 

method (Protoeol 7, Append.x I). Six microl.ters of the DNA thus obta.ned were d.gested 

with the Stu\ restriction enzyme (Pharmacia), using the approppriate buffer, and the presence 

of positive clones (as assessed by the presence of a DNA insert with the expected srze) was 

analysed by electrophoresis in a 1.4 % agarose gel (Promega). One of the presumable 

positive clones obtained was chosen and 44 microliters were used to verify the onentatron 

and integrity of the promoter-vector construct, by double-strand DNA sequence analysrs 

(Protoeol 3, Appendix I). DNA was prepared in large scale using the Wizard Maxiprep DNA 

purification kit (Promega Corp., Madison, WI), following the manufacturer's recommended 

protoeol. 

23. TRANSIENT THANSFECTION OF BONE-DERIVED PRIMARY CULTURES 
OYS.AVRATA 

Sparus vertebra-derived cells (obtained following the procedure described in Section 

17 of this chapter) were cultured to confluency, trypsinized and plated at a dens.ty of 

approximately 8x104 cells/ml. The next day cells were transiently transfected by lipofect.on, 

using the DOTAP Liposomal Transfection Reagent (Boehringer Mannheim, cat.# 1202375), 

with either spBGPprom/phgal construct, the pBgal under the control of human 

cytomegalovirus (CMV) promoter (pCMVPgal), as positive control. or the pPgal-Basrc 

(Clontech; #6044-1) vector, as negative control. Five micrograms of each DNA construct 

were diluted in Hepes buffer (Sigma, H-0763) to a final concentration of 0.1 pg/pl m 50 pi, 

in a sterile 1.5 ml centrifuge tube. Thirty m.croliters of DOTAP were diluted rn Hepes buffer 

to a final volume of 100 pl, in a sterile 1.5 ml centrifuge tube, added to the DNA/Hepes 

solution and mixed by pipeting. The transfection mixture was incubated for 15 mrnutes. at 

R/T and then 5 ml of cell culture médium (see composition in Section 17 of this chapter) 

were added to the transfection solution. The mixture was added to the cells and incubated at 

220C for 6 hours. After this period, the transfection solution was replaeed by cell culture 

médium and incubation continued for an additional 48 hours, at 22Í,C. 

Activation of the repórter gene was detected by exposing the fixed cells to an X-Gal 

containing solution (5mM K4Fe(CN)6.3H20, 5mM K3Fe(CN)6, 2mM MgCl2, Img/ml Xgal) 

at 370C for 24-48 hours. 
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24. CLONING OF A PARTIAL Halobatrachus didactylus (TOAD FISH) BGP cDNA 

Total RNA was extracted from the vertebra of an adult specimen of H. didactylus 

according to the acid guanidinium thiocyanate-phenol-chloroform method (83), as detailed in 

Section 1 of this chapter. One microgram of this RNA was reverse transcribed, following the 

procedure described in Protocol 2 (Appendix I), and the resulting single strand cDNA 

amplified by PCR, using SBG5F and SBG4R as primers (Table II.I). The mixture was 

incubated in a Perkin Élmer GeneAmp PCR System 2400, programmed for an initial 

denaturation step of 9 minutes at 950C (for enzyme activation), and 35 cycles of denaturation 

at 95 °C for 1 minute, annealing at 60oC for 30 seconds and extension at 65°C for 45 seconds, 

followed by a final extension of 10 minutes at 650C. 

Fifteen microliters of the resulting PCR product were electrophoresed on a 1.4% 

agarose gel and the observed DNA fragment cut from the gel with a clean razor blade. DNA 

was eluted with the Qiaex II Gel Extraction Kit (Qiagen), cloned in a pGEM-T plasmid 

vector (Promega). and inserted in E. coli DH-5a strain, as described (Section 3). Three 

positive clones (white colonies) were selected, transferred to liquid LB médium (see 

composition in Appendix II), supplemented with 50 pg/ml ampieilin, and allowed to grow 

O/N with agitation, at 37°C. Purification of the plasmid DNA was performed by the "alkahne 

lysis technique" (Protocol 7, Appendix I). DNA thus obtained was excised from the plasmid 

by digestion with Apa\ and Psã restriction enzymes (Pharmacia) and three ot the positive 

clones selected for sequencing. DNA sequence analysis was performed with the Sequenase 

2.0 kit (USB) and the SP6 and T7 vector-specific primers (Protocol 3, Appendix I). 

25. PHYLOGENETIC ANALYSIS 

Phylogenetic analysis was performed using ali available BGP, MGP and mouse 

nephrocalcin araino acid sequences, and using as outgroup human Coagulation factor II and 

hagfish prothrombin amino acid sequences. Character state changes were ali weighted 

equally. Polymorphisms were treated as uncertain and insertions/deletions were coded as 

missing data, in order to avoid including them as if they were many independem events, 

while still retaining the information about substitutions in other taxa in the indel regions. Ali 
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phylogenetic analyses were performed using the PAUP 4.0 b2a software. Heuristic searches 

with 50 repetitions using random stepwise additions were performed under maximum 

parsimony. This method allows the construction of trees that require the fewest nucleotide 

replacements to explain the descent of extant sequences (192. 193). 

The levei of confidence in each node of the maximum parsimony tree was assessed using 

non-pararaetric bootstrapping (153) based on 1000 rephcates. 

Table II.I 
Oligonucleotides used for PCR amplification of Sparus BGP cDNA and gene 

Primer 

SBG2F 

SBG3R 
SBG4R 
SBG5F 
SBG7R 

SBG8F 
SBG9R 
SBG11R 
SBG12F 
SBG13F 
SBG14R 
SBG15R 
SBG18F 

SBG19R 
SBG20R 

SBG21R 
SBG22F 

SBG26R 
SBG27R 
SBG28F 
SBG29F 

SBG30R 

Sequence' 

TGYGARCAYATGATGGAYACNGA3 

GGGGATCGGTCCGTAGTAGG 
GTTAGGGGAAATGATCGAATCACAGTGGG 
TGCGAGCACATGATGGACACTGAGGGAATC 

GAACCAGGAAGGCCAGAGTC 
TTCGTGGAGAGGGACCAGGC 
GGGGATCGGTCCGTAGTAGG 
CCATCAGCTGTCGTAGTAAGGC 

GAGCTGGAAGTCTCCGGTCCG 
CCAGCCTGCCAGTGACAACCC 
GGTTGTCACTGGCAGGCTGG 
CCGCTCTCTTCTGTCTCACC 
CGGTAAGTTGCATCAAACGG 
CCACTGCGGAGGCCTGGTCCCTCTCC 
GTGGAGGCATCTGAGGGAAAACATCTCG 

CGGACCGGAGACTTCCAGCTCTGTCAC 

GACAAGGCACCAGCATTGACC 

GACGTTTCTATCGGCCAT 

CCCGGGTTGTATGTGC 
CGGAACACTGTTTGAAG 
CCCCAAACTACATAGTGC 
CAGAGTACAACTGAGCAC 

Local ization 

in the genec 

Localization 

in the cDNA 

+ 2453 322 

+ 2518 387 

+ 2733 602 

+ 2453 322 

+ 124 124 

+ 2121 211 

+ 2518 387 

+ 2548 417 

+ 33 33 

+ 371 174 

+ 390 193 

+ 2169 259 

+ 295 - 

+ 2126 241 

+ 364 - 

+ 53 53 

-1119 — 

+ 1912 - 

+ 1589 - 

+ 573 - 

+ 774 - 

+ 1385 - 

a Ali sequences are described in the 5' to 3' direction. 

b Y, pyrimidine; R, purine; N, G+a+T+c. 

c Corresponds to localization of the first nucleotide (5' end of oligonucleotide) in the sequence 

of the spBGP gene. 

83 



CHAPTER III: RESULTS 

1.MOLECULAR CLONING OF spBGP cDNA 

/./. CLONING OFA PARTI AL spBGP cDNA CONTAI N/NG THE 3'-ENI) 

Total RNA extracted from a Sparus juvenile with a completely mineralized skeleton 

(as assessed by alizarin red staining) was used for lhe reverse transcription and amplification 

of spBGP mRNA with SBG2F (Table II.I) and Universal dT. After size fractionation of lhe 

resulting PCR products by agarose gel electrophoresis, three bands within lhe expected size 

were observed (Figure I1I-1). After cloning and sequencing, lhe 314 bp band (band 14) 

proved to be a partial cDNA for spBGP, encoding part of thc aminoacid sequence already 

available (64). This DNA fragment spun from amino acid 23 of lhe mature protein to the stop 

codon, and exlended an additional 239 bp to lhe site of insertion of lhe poly-A tail. 15 bp 

after a consensus polyadenylation signal (Figure 111-3). 

H13 

B14 A 

BI 5 

1018 bp 

506 bp 

Figure 111-1. RT-PCR amplification of 
Sparus bone RNA with SBG2F and 

Universal Adapter. Fifteen microliters 

of RT-PCR product were 
electrophoresed in a 1.4% ethidium- 

bromide containing-agarose gel (lane 1), 
together with a 1 Kb DNA ladder 
(GibcoBRL; lane 2). Bands 13, 14 and 

15 (B13, B14, B 15) were extracted from 
the gel for further analysis. 

DNA from the two other bands observed in Figure III-1 (bands 13 and 15), as well as 

from another band obtained in a previous RT-PCR (not shown) were also cloned and 

sequenced, and, after searching lhe NCBI database, were shown to correspond to partial 

cDNAs for Sparus Pancreatic amylase (band 13), Calmodulin (band 15) and Trypsin. These 
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sequences were submitted to GenBank, being assigned the accession numbers AF316854, 

AF316853 and AF316852, respectively. The spTrypsin clone was later used for testing the in 

situ hybridization technique. 

1.2. CLONING OF THE 5'- END OF spBGP cDNA 

The 5' end of the spBGP cDNA was obtained by 5' RACE PGR, using the 

Marathon™ cDNA Amplification kit (Clontech), as described in Chapter II. Two major 

amplified fragments were obtained, named Band A and B (Figure III-2), which were excised 

from the gel and cloned in pGEM-T Easy, as described in lhe Methods chapter. Following 

cloning and sequence analysis of lhe DNA fragments purified from bands A and B. it was 

shown that they ali corresponded to spBGP cDNA, although extending to different lenghts in 

their 5" ends. This was attributed to the existcnce of different sized single strand cDNAs, due 

to an early stop of the reverse transcriptase and, therefore, wc chose to consider lhe clone 

presenting lhe longest 5-extremity as the most representative of the Sparus cDNA. 

The spBGP cDNA thus obtained spans 635 bp in lenglh and comprises a 5'- 

untranslated region (UTR) of 87 bp, an open reading frame of 291 bp, coding for a 

polypeptide wilh 97 amino acid residues, and a 257 bp 3'- UTR, from the stop codon to the 

site of insertion of the poly-A tail (Figure 111-3 and Table III.I). 

As deduced from the comparison wilh lhe complete cDNAs for mammalian and 

chicken BGPs (Table III.I), the spBGP cDNA encodes a pre-peptide of 24 residues, a pro- 

peptide of 28 residues and a mature protein of 45 residues. Although the Sparus cDNA is 

longer than ils mammalian and avian counterparts, this difference is due to longer 5'and 

3'UTRs, while the coding region is of a size comparable to those from ali known BGP 

cDNAs (Table I1I.I). 

Figure III-2. Amplification of 

Sparus mRNA by 5* RACE PGR, 

with AP1 and SBG4R. Five 
microliters of lhe PGR reaction were 
electrophoresed onto a 3% FMC 

Seakem GTG agarose gel (lane 1), 
together with a 100 bp DNA ladder 

(GibcoBRL; lane 2), and bands A 

and B were extracted from the gel for 

further analysis. 

1 2 

ff 
Band B 

f kIj,—^600 bp 
►400 bp 

Band A I 

*» % 'Ã ** 
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;aaac 

cnd of 5' RACE ^ SBG21R 

T GT GTAAGAGAAÃGAGAAAGAGAGGAGT GACAGAG CT G GAAG 
I I I 
1 20 40 

. sn 
SBG12F Met Ijys Thr LeU 

TCTCCGGTCC^ACTTGTTGCTTGGTATAATACAGACGGTGAAGAAAGAAGCTGAAAG ATG AAG ACT CTG 

60 80 100 
- 40 

Ala Phe Leu Val Leu Cys Ser Leu Ala Ser lie Cys Leu Thr Ser Asp Ala Ser Thr 
GCC TTC CTG GTT CTC TGC TCC CTG GCA GCC ATC TGT CTG ACT TCA GAT GCC TCC ACT 

I I 1 

120 140 16° 

SBG14R   
.30 ^ SBG13F -20      

Gly ser Gln Pro Ala Ser Asp Asn Pfo Ala Asp Glu Gly Met Phe Val Glu Arg Asjj 
GGC TCC CAG CCT GCC AGT GAC AAC CCT GCT GAT GAG GGT ATG TTC GTG GAG AGG GAC 

180 200 220 

SBG8F  SBG15R +1 ^ 
Gln A^a Ser Ala Va? Val Arg Gln Lys Arg Ala Ala Gly Gln Leu Ser Leu Tre Gln 
CAG GCC TCC GCA GTG GTG AGA CAG AAG AGA GCG GCT GGA CAG CTG TCC CTC ACT CAG 

I I 1 

2^0 260 2Q0 

SBG5F  
10 20  SBG2F  

Leu Glu Ser Leu Arg Glu Val Cys Glu Leu Asn Leu Ala Cys Glu His Met Met As^ 
CTG GAG AGC CTG AGA GAA GTG TGT GAG CTC AAC CTG GCT TGC GAG CAC ATG ATG GAC 

300 320 
SBG5F 

40 SBG9R SBG2F_ ^ It    
Tre Glu Gly lie lie Ala Ala Tyr Tre APa Tyr Tyr Gly Pro lie 'ro Tyr 
ACT GAG GGA ATC ATC GCT GCC TAC ACG GCC TAC TAC GGA CCG ATC CCC TAC TAG AAG 

I I 1 

340 360 380 

SBG11R 
CCTTACTACGACAGCTGATGGCTCATCAGCTGTCTTTTTTTATTATCATTATTATTAGAATTATCACCTTTGAGC 

| I 1 ' 
400 420 440 460 

TCTACTTTTTCCTTTATAGTCAAGCCCAAAGCACGTAAGCAAGCTAAAAAGTGTGTGATGTGGAGCAGGAGGAAT 

I I 1 ' 
480 500 520 540 

 SBG4R   
AATATCTTCATGTGAATTTATTTTCCACCCACTGTGATTCGATCATTTCCCCTAACCCGTAGAGTAGCGTGATGA 

560 580 600 620 

AACTG|AATAAA|GACAAATGAACCTGTAAAAAAAAAAAAAAA 

640 

Figure III-3. Complete nueleotide sequenee of Sparus BGP eDNA and deduced amino aeid sequenee of 
polypeptide. Numerieal positions in the nueleotide and amino-aeid sequenees are notated below and above 

eaeh line, respeetively. Numbering of the nueleotides in the eDNA sequenee begins in the eap site. The 
first amino-aeid of the mature protein is identified as amino-aeid +1. The stop codon following the protein 
eoding region is indieated by three asterisks. A box indicates the polyadenylation signal and a bar is drawn 

under the putative y-earboxylase reeognition site, whieh sequenee is in bold. The eodons lor y- 
carboxyglutamate residues are underlined twiee. Loeation of the oligonueleotide primers used to obtain the 

complete eDNA is indieated by arrows.     
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Table IIM. Characteristics of known BGP cDNAs and corresponding proteins. Sizes of ali 

known BGP cDNAs including 5 and 3 untranslated regions (UTR) and coding regions are 
indicated. Comparison of sizes for pre, pro and mature forms oí corresponding BGPs are also 

shown. Genbank accession numbers are provided in the righl column. 

Species cDNA 
size 
(bp)' 

5'UTR 
(bp) 

Coding Region 
(bp) 

3" UTR 
(bp)' 

Protein Size (aa) 
Pre | Pro | Mat. 

Accession 
numbers 

Homo sapiens 451 18 300 133 23 28 49 X53698 

Bos laurus 437 27 300 110 23 28 49 X53699 

Mus musculus 458 48 285 125 23 26 46 X04142 

Ratíus norvegicus 474 36 297 141 23 26 50 X04141 

Ga 11 us gallus 421 18 291 112 24 24 50 U10578 

Sparus auraía 647 99 291 257 24 28 45 AF048703 

2. MOLECULAR CLONING AND ORGANIZATION OF THE spBGP GENE 

The spBGP gene was cloned by a mixture of genomic amplification, using specific 

DNA primers designed according to the spBGP cDNA, and the gene walking technique. 

The spBGP protein was alligned with the known mammalian BGPs for which the 

gene structure is known (Figure III-4) and sites of possible exon-intron borders deduced by 

comparison. Several primers were designed flanking the region of the Sparus BGP thought to 

contain the introns. The primers designed for amplification oí the spBGP introns were 

SBG12F+SBG14R (intron 1), SBG12F+SBG15R (intron 2), and SBG8F+SBG9R (intron 3) 

(Table II.I). Also, other primers were constructed in other regions of the spBGP cDNA in 

order to check the possible existence of other introns, not identified by comparison with the 

published BGP gene sequences. 

For each amplification of the genomic DNA with a specific pair of primers only one 

band was visible on agarose gel following electrophoresis of the resulting PGR product. 

Sequencing of the bands obtained with the three primer pair combinations showed that they 

corresponded to three introns in the BGP gene, starting and ending, in each case, within the 

spBGP cDNA sequence already available. Sequence analysis led us to conclude, therefore, 

that the spBGP gene (Figures III-8 and III-9) is organized into four exons and three introns 
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Seabream BGP 
Chicken BGP 
Mouse OG1 BGP 
Mouse OG2 BGP 
Rat BGP 
Bovine BGP 
Human BGP 

Seabream BGP 
Toadfish BGP 
Chicken BGP 
Mouse OG1 BGP 
Mouse OG2 BGP 
Rat BGP 
Bovine BGP 
Human BGP 

-41) -50 

sCB) a G K T 
L T 

L T A* R T 
A* M R 

R T 
D A* R T 

A G Q A© A 

H Y A Q D 
- L 
- L 

N N 
D H W 

Y L Y Q W 

A G Q L S 

10 
1 -V- 

L T Q L E© IRE V C E L 

AGAP PNPLEAQREV CEL 
ASVPSPDP LEPTRE Q CEL 
ASVPSPDP LEPTRE Q CEL 
APAPYPDPLEPHREV CEL 
APAPYPDPLEPKREV CEL 
APVPYPDP LEPRRE V CEL 
^ A A ^ A 4 A 4 

-20 

QPASDNP A D E © M F 
D* A R S A K AF 
GPESDK ®F 
GPESDK - - ---©F 
DSESDK ®F 
DAESGKGA---AF 
GAESSK ®F 

A A 

lÕ" 30 
| I 
N LAC-EHMMDTEG 
. . .CD-AMMDQEG 
SPDCDELA - D Q I G 
NPACDEL S - DQYG 
NPACDELS - DQYG 
NPNCDEL A - DH I G 
NPDCDEL A - DH I G 
NPDCDELA - D H I G 

A A A 

E R D 
H R Q 
K Q E 
K Q 
K Q 
K Q 
K Q 

-10 
I 
Q 
R 
G 
G 
G 
G 
G 

S A 
E M 
K V 
K V 

V V 
V R 
V N 
V 
V 
V 
V 
A 

R 
R 
R 

N R 
N R 
K R 
K R 

A 

-l 
1 

K R* 
K R* 
R R* 
R R* 
R R* 
R R* 
R R* 

A 

I I A 
I I V 
F Q E 
L K T 
L K T 
F Q D A 
F Q E A Y 
F Q E A Y 

A A 

A Y 
L F 
R F 
R I 
R 1 
R I 
R F 
R F 

40 

Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 

A 

p v 
I T 1 
1 T I 
T T V 
P V 
P V 

Figure III-4 Amino acid sequences of ali known complete pre-proBGPs. Sequences were aligned and conserved residues marked by vertical arrows. 
A box encloses the most conserved region of the protein and a star is located above each gamma-carboxyglutamate residue. Dashes indicated gaps m 
the sequence introduced to increase homology; dots stand for unavailable data. A circle encloses aminoacids correspondmg to sites of intron msertion 
in the corresponding genes. Residues are numbered according to residue 1 of mature spBGP protein. Sequence references are; this study for seabream 
and toadfish; 371 for chicken; 117 for mouse OG1 and OG2; 527 for rat; and 261 for human and bovine.   _ 
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(the first two of phase 1, while the third intron is of phase II, Table III.II), m agreemenl with 

the structure of ali known mammalian BGP genes (Table I1I.II1). It spans 2778 bp, from the 

major start site of transcription to the site of inserlion of the poly(A) tail, and it is 

approximately twice as long as the mammalian genes, mostly due to lhe presence ol a very 

larue intron 2. The three introns account for nearly 78% oi the total DNA ol this gene and 

each exon encodes roughly lhe same protein domain in bolh fish and human genes (1 able 

III.1I1). 

Table Exon-intron splice Junctions and phase of the introns m Sparus aurataB 
nene. 5' and 3' borders for each intron are indicaled. The consensus motif (5 gt....ag 3 ), as 
described by Breathnach et ai (52), is shown in bold. The phase ot each intron is shown 
according to Patthy (407). 

Intron Intron borders 
5' hnrder SMjordcr 

Phase of 
Intron 

Intron 1 
Intron 2 
Intron 3 

..TCA.G gtag.. 

..GAG.G gtaa 

.GAG.AG gtat 

..tcag AT.GCC. 

..gcag GT.ATG. 

..tcag C.CTG. 

I 
I 
II 

Ali exon-intron splice junctions in lhe spBGP gene (Table I1I.II) conform to the 

AG/GT rule (52). Although the overall organization of the gene has been maintained from 

fish to mam the sites of insertion of the three introns within the protein coding sequence 

differ in Sparus as compared to the mammalian genes (Figures I1I-4). 
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Table II1-III. Characteristics of known BGP gene structures. Gene, exon and intron sizes (in 
base pairs, bp) are indicated for ali known BGP genes. Phase of intron is defined accord.ngto 
Patthy (407). Genbank accession numbers for ali gene sequences are indicated in the tar ngnt 
column. References for BGP gene sequences are as follows: H. sapiens-. 73; M musculus 
(OG1): 117; 7?. norvegicus: 527; S. auraia: this study. 

Species Gene 
size (bp) 

Exon 1 Intron 1 
(phase) 

Exon 
2 

Intron 2 
(phase) 

Exon 3 Intron 3 
(phase) 

Exon 4 Accession 
N0 

Sparus 2778 99 (5' 
UTR)+58 

197 
(D 

47 1713 

(I) 

86 221 

(11) 

100 + 257 
(3' UTR) 

AF289506 

Raltus 1145 49 (5' 
UTR)+64 

148 
(D 

o o 143 

(I) 

70 200 

(H) 

130 + 308 
(3' UTR) 

M25490 

Mus 950 48 (5' 
UTR)+64 

144 
(D 

33 142 
O) 

58 206 

(11) 

130+125 
(3' UTR) 

L24429 

Homo 
sapiens 

1077 18(5' 
UTR)+64 

257 
(D 

-> o 175 
(O 

70 201 
(II) 

127+ 132 
(3' UTR) 

X04143 

3. DETERMINATION OF THE START SITE OF TRANSCRIPTION OF THE spBGP 
GENE 

Determination of the site of transcription initiation of the spBGP gene was performcd 

by primer exlension analysis, as described in the Methods chapler, revealmg two possible 

sites of transcription initiation, 99 and 78 bp upstream from lhe first ATG (Figures 111-3 and 

111-5). The site corresponding to the longest S^UTR was found to be located, in the genomic 

DNA, 26 bp downstrcam from a consensus TATA box motif and was considered to 

correspond to the major start site of transcription of the spBGP gene (figure III-9). 

1 2 G A T C 

99 —► — * 

Figure 1II-5. Identification of transcription 
start site of the spBGP gene as determined by 
primer-extension. Poly (A) RNA isolated 

from Sparus jaw was annealed to a spBGP re- 
verse primer, reverse-trancribed and subjected 
to Rnase digestion, electrophoretic fractiona- 
tion and autoradiography. The extension 
products are indicated in lane 1 and their sizes 
are shown on the left margin. Lane 2 shows a 
non-related fragment of known size. A se- 
quencing ladder (lanes G, A, 1 and C) was 
fractionated in the same gel for assignment of 
transcription start sites at single nucleotide 
rp<ínliitinn  
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4. CLONING AND ANALYS1S OF THE 5' FLANKING DNA OF THE spBGP GENE 

Cloning of the 5' flanking DNA 

The 5' flanking DNA of the spBGP gene was cloned by a gene walking strategy, 

using the Gene Walker Kit from Clontceh. as described in lhe Methods chapter. The results 

from the electrophoresis of the primary PGR using AP1 and SBG19R as primers are depicted 

in Figure I1I-6 and those from electrophoresis of the secondary PGR using AP2 and SBG20R 

as primers in Figure I1I-7. Only one proeminent band (lane 2A) was obtained with lhe BaniHl 

digestion, while a major band (lane 2B) and two minor bands were obtained from Psil 

digested DNA. 

£ 
< SC * 

3000 bp 
1600 bp 
1000 bp 

500 bp 

Figure HI-6. Primary amplification of Sparus 
genomic DNA with Adaptor-specific primer I 
(API) and SBGI9R. Resulting PGR products were 
electrophoresed in a 0.8% agarose gel {\A-BaniH\: 

1 B-P.v/I; 1 Kb DNA ladder (GibcoBRL)). 

< 

3000 bp 
1600 bp 

1000 bp 

500 bp 

Figure HI-7. Electrophoresis of the secondary 
amplification of primary PGR (Figure III-6) with 
Adaptor-specific primer 2 (AP2) and SBG20R (2A- 

BamHl, 2B-Pst\; I Kb-DNA ladder (GibcoBRL)). 
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Sequencing of the bands 2A and 2B (Figure 1II-7) showed lhat they corresponded to 

overlapping DNA fragments containing the 5' upstream sequence from the spBGP gene. We 

thus identified a S^flanking DNA sequence with 1145 bp. These resulls also conlirmed the 

position of lhe introns previously obtained. The sequence ol the complete spBGP gene is 

shown in Figure 111-8. The two minor bands seen in lane 2B of Figure 111-7 (blue square) 

were also scquenced, revealing a sequence which we were unable to align with our 

previously obtained BGP or BGP SMlanking sequences. 

Analysis of the spBGP promoter region 

The spBGP 5' -Banking DNA sequence obtained was compared with the available 

databases for identification of specitlc regulatory sequences present. in particular, in other 

BGP genes, revealing that the spBGP gene promoter has a modular organization with 

sequence motifs typical of a gene transcribcd by the RNA polymerase II (Figure 111-8) such 

as the canonical TATA box (TATAAA), located from -31 to -26 bp, and putative CCAAT 

boxes found al positions -256 and -67. We have also identified a series of putative consensus 

sequences for steroid receptor binding sites and bone-specific transcription íactors, known to 

be physiological medialors of BGP gene expression in higher organisms. Belween positions - 

406 and -390, a sequence motif sharing homology with a steroid hormone response elemenl 

(SRE) was identified. In addition, several OSE1 and OSE2-like motifs (134) and one AP1- 

like motif (391) in intron I were also identified. Interestingly, intron 11 was lound to contain 

copies of many of the putative response elements found within the proximal promoter of the 

Sparus BGP gene, including a TATA consensus sequence and two CCAAT boxes. 
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OSEl 

- i 14 5 aTCCATGAAGTCTGTCCTTGAAATAAGACAAGGCACCAGCATTGACCCAGACGGTGAAATTACATACCTATAATACCGTCAGGACCCGTCCAGAATCTAAATGTCCAGTCGGAAAAAACA 

-1025 acatgaagagcaggagacattttcatatcataaattaaacaaggttaaaggatgggtttaggaaatttaacagcacagttaaactgtaatttggtatcaacattaggagaatctacccct 
OSE2 0SE1 

-905 TACTAATAAACCAAGCAAATACGAAATGATTAAAAAAGATTACACAAACACAGTCTTTAGTGGTGAGTTGTGTTTTAATTAAAATGAAATGACATGTTCCACTCTGCTCTGGTAGCTTTC 
OSE2 

-785 CGCCACTTTATAGGCflÃÃcCflCCCACTTGTTTTGGTfiflAftATATCGTCCCACATTTCAfiWWTGCCCTCCTACTAATCTTCfiAACACTCTGTGTTTGTTTCTARfiTGTTGCTTCCTTTAT 

-665 gaaggaaatcactgcggcctgcaataaaggagagaggcctcggattagaatcaigtcacatgctgigggacggtggtttttccctttcagiitgcattacacggttttctccacctcata 
-5<5 TTCTTACAGACCTACAAGTAAAAAGTCTGTGGTTGCGCTGTAAAACTCTGACCTCTCCAGGCTGCCAGCTGGCATTGCATTCCTAAGGTTTCATCTCACTTTTTATTTGTATCACTTAAA1 

SRE 

-425 TCTCACAGGAAGTATTCTGGTGGTGTTTTAGTGTTGCACGCATGTCTTTACACAAGATGTAGGGGACAGAACATGCAAGCAGCGATTCACAAGGACAATCTGGTGTCGGGTGTAAAACAG 

-305 ttttcattgaaacgcattccagtctctgatatttatggctgcgagtcgcEçmÍtttgttgtctcaccacctgtgctttaagacaaataccctccttttggaagcgttctgtgtttgtgt 

-18 5 gtgtttgtgtgtgtccaatgatgcaaacacacatataaaatcagcagttgcatacatgatgttttatggaggtgtgtatctctgcatccatgtgggagtgtgatacacgattccttaS 

-65 ^cacatgcccatgtcacagtgagggctacatÍtÃ^gccactgtgtatttatgtatatatÍÍgtgtaagagaaagagaaagagaggagtgacagagctggaagtctccggtccgac 
Met Lys Thr Leu Ala Phe Leu Val Leu Cys Ser Leu Ala Ser lie Cys Leu Thr Ser 

ttgttgcttggtataatacagacggtgaagaaagaagctgaaag atg aag act ctg gcc ttc ctg gtt ctc tgc tcc ctg gca gcc atc tgt ctg act toa 56 

157 

276 

G gtaggagctgtgtgcatatacagcagtgtgtatacaaaaagctctttattaaaacaatgtatgatttggtgctttcgatgcaaactacaacttaagacccagcgaaattactttgatt 
ftP! SP Ala Ser Thr Gly Ser Gln Pro Ala Ser A 

"^^MGTAAATAAAGTCGGTAAGTTGCATCAAACGGAAAAAAAGCAATCATCATTATTCGAGATGTTTTCCCTCAG AT GCC TCC ACT GGC TCC CAG CCT GCC AGT G 

OSEl 

385 S ^ S gct S g = gtaagacgatgacttttgacttcatcgtcaatgttÃ^^taaaggggcattgtgtagtttgggaattttaatatttacaaaataaatggggtaat 

Ts SSgÍgSg?gSSgcgi=i™™Stcagattgatcattgagtttgttcagtcacgaaaagtgttittttttatttggtttgtctagggatacaaaatcagt 

738 TAATAA AGAICT tTCTCCTCTGATTTAAGTTGCTTCCCCCAAACTACATAGTGCACCTTTGATCAGAGTCGATTCAACACTACTTTAAATACTGAACTTGAAGTTAAGGTAAGAAGGTTA 
BgllI 

1098 TTAACAAAGTTCACTATCGTATTCTTTTG 

1218 TTGfw^TAATAAAAACTCTTATGCACACTGCAACATCTTGATTTCAGCTGATTTGCTTTTCATTACTGTACTTACTGACTTTACTTGAGTATCTATTTTTCTCA AAGCTT TTTACT 

858 
978 

tgtattccgttcatcttaacacaaatagctgtgctc^^^ 
1458 TCATTGCAGGCCGCCTTCCCAACAACACCT^CTGATTTT^CAGTGCAGGCAOTGGTGGTTCTMACCAGTTTT^TA^cTGcTG^cAcTTTAmcTGccmcccTTcAG^c 

""" SS^GGSGSScSSSSGG^^T^SSÍGTACCTCAGTGTGTAGGrTTTGCACATCTGCTAATIAAAACTGGAATTTGGTTTGACA 
ly Met Phe Val Glu Arg Asp Gln Ala Ser Ala Val Val Arg Gln Ly 

GACATCTTGTGTGTTGCCACGATGAGACAAAGTTGAGTTAACTGTGCATGATGTGCAG GT ATG TTC GTG GAG AGG GAC CAG GCC TCC GCA CTG GTG AGA CAG AA 

1338 

1818 
1938 

?058 

S Arg Ala Ala Gly Gln Leu Ser Leu Thr Gln Leu Glu Se TTCACATCACTTATAAGATTAAflCAcACAAGTGCACTCACATATC 
^CSA^CLcaÍG^CA^ 

1—► 
r Leu Arq Glu Val Cys Glu Leu Asn Leu Ala1 Cys Glu His Met Met Asp Thr Glu Gly lie lie 

ATTAACGTCTACCTCTTCCTCTCTCTCCACTCAG C CTG AGA GAA GTG TGT GAG CTC AAC CTG GCT TGC GAG CAC ATG ATG GAC ACT GAG GGA A.. ATC 

ni- Tvr Thr Ala Tvr Tyr Gly Pro lie Pro Tyr *** 
GCT TAO TAC GGA CCG AIC CCC TAC TAG AAGCCTTACTACGACAGCTGATGGGTCATCAGCTGTCTTTTTTTATTATCATTA7TATTAGBATTATC 

BglI 

593 ACCTTTGAGCTCTACTTTTTCCTTTATAGTCAAGCCCAAAGCACGTAAGCAAGCTAAAAAGTGTGTGATGTGGAGCAGGAGGAATAATATCTTCATGTGAATTTATTTTCCACCCACTGT 
^ 1 

713 gattcgatcatttcccctaacccgtagagtagcgtgatgaaactgaaia^gacaaatgaacctgt 

Z162 
2268 

2388 

2486 

Figure I1I-8. Sequence of Sparus BGP gene and 5'-flanking region. The major site of transcnption imtiation is 
desienated as +1 and the corresponding nucleotide is bold. Nucleotides are numbered in the left margin and t e 
predicted amino acid sequence is shown above the coding sequence. The stop codon is indicated by asterisks and 
the polyadenylation signal is underlined twice. Consensus sequences at the intron borders are underlmed and 
bold Putative TATA and CCAAT motifs are boxed. The location of putative steroid-responsive elements (SRE) 
and transcription factor consensus sequences (OSEl, OSE2 and AP1) is indicated. Curved arrows mark the 
localization ofthe partial spBGP cDNA probe used in southem genomic hybridisation (Figure II1-10B). 
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Figure III.9. Map of the Sparus BGP gene and 5'flanking region, showing the major restriction endonucleases sites and the position of exons 
(boxes) and introns (lines between exons). Sizes (in nucleotides) of coding (black boxes) and non-coding (white boxes) sequences are indicated 
underneath the corresponding exons. Sizes of the introns are also shown. Local ization of the cDNA probc used for Gcnomic Southern B (Figure 
III-10B) is shown in grey. The gene begins with the Cap site of the first exon and ends at the site of insertion of the poly-A tail, 15 bp 
downstream from the polyadenylation site located in exon 4 (as deduced from the cDNA sequence).  
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5. HOW MANY BGP GENES EXIST IN Sparus auratal 

Search for the presence of more lhan one BGP gene was performed through genomic 

southern analysis and genomic PCR. In each case, we obtained evidences tor the presence ot 

only one BGP gene within the Sparus genome. 

Genomic Southern approach 

Samples of Sparus genomic DNA were digested wilh restriction enzymes which, 

according to our sequence, should cut within the Sparus BGP gene {Bgl\, BglW and HindWV, 

Figure 111-9) or in its Banking DNA {EcoR\ and Psú), and analyzed by Southern 

hybridization using a specitlc probe spanning the full length spBGP cDNA. lhe positive 

sicnals observed for each restriction enzyme digeslion (Figure I1I-10A) corresponded lo lhe 

expected number of fragments based on lhe known restriction map of lhe spBGP gene 

(Figures II1-8 and 111-9). 

A second genomic southern (using DNA digested with Hind\\\, BamH\, Psú and 

Bgl\) was hybridized with a parlial spBGP cDNA (spanning from nucleolide 322 lo 602; see 

Figure 111-8 for localizalion). This clone was expected. from the known restriction map of the 

Sparus BGP gene, to hybridize only with the genomic restriction fragments located at the 

3'end of the spBGP gene. The resulls obtained showed only the one expected fragment for 

each enzyme digestion (Figure II1-10B), wilh the exception ot Bgl\. In this case one site was 

located within the genomic DNA covered by lhe probe used (spBGP cDNA spanning from 

bp 322 to the Vend of the cDNA; see Figures III-3 and 111-8), and therefore two genomic 

fragments should have hybridized to this probe. However, since this Bgll site was located 43 

bp from the 5' end of the probe used (Figure III-9), lhe second genomic fragment (the top 

Bgll fragment seen in Figure III-10A) would give only a very weak positive signal and was 

not delected in lhe autoradiography. 
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Figure 111-10. Analysis of the Sparus BGP gene locus by Southern hybridization. Following 
restriction enzyme digestion with Bgl\, BglW, EcoRl, Hindlll and Pstl (panei A) or with 
HindlU, BamH\, Pstl and Bgll (panei B), genomic DNA samples werc electrophoresed on a 
0.8% agarose gel (Promega), transferred to a nylon membrane (Nytran+) and hybridized with 

either the complete (panei A) or a partial (panei B) spBGP cDNA, as referred in section 3.1 
of Chapter II. Results from lhe autoradiography are shown. Sizes of the DNA markers are 

indicated on lhe right rnargin. 

6. SEARCH FOR MORE THAN ONE spBGP mRNA 

To analyse the possibility of the existence of more than one transcript of the spBGP 

gene in different tissues or phases of development, spBGP mRNA obtained from several 

adult Sparus tissues and from two stages of development (before and after calcification: 27 

and 130 dph, respectively) was used to amplify the spBGP cDNA by RT-PCR. using two 

primer seis covering distinct intervals in the spBGP cDNA (SBG5F+SBG11R and 

SBG12F+SBG4R; Table II.I and Figure III-3). Following PGR reaction, DNA fragments 

were cloned and identified by sequcnce analysis, revealing the presence in two independem 

clones of a deletion in the 3' UTR region (Figure III-1 IA). Specific primers were constructed 

(see Figure III-1 IA for primer location) in order to determine if these clones represented a 

true cDNA entity or were the result of an artifact. RT-PCR amplification of spBGP mRNA 

from different tissues [brain, muscle, heart (not shown), kidney and vertebra (Figure 111-12)1 
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and developmental stages [18, 37 and 130 dph (Figure 10-12)] was performed according to 

the procedure detailed in section 2 of the Methods chapter. A positive control for the PCR 

reaction was performed by co-amplifícation of a spBGP genomic clone with the 

SBG8F+SBG1 IR primer pair (lane BGP in Figure 111-12). The resulting products were size 

fractionated by electrophoresis over an ethidium bromide-containing 1.4% agarose gel 

(Promega) and observed in a U.V. transilluminator (Figure 111-12). A positive signal was 

observed only when amplification was performed with SBG8F+SBG1 IR, i.e., with primers 

designed to ampliíy DNA only in the absence of the deletion (-d). No amplification was 

obtained with primers designed to amplify DNA in the presence of the deletion (+d), either in 

the several tissues or in the developmental stages considered. No DNA amplification was 

observed in the negative controls (not shown). These results showed that this deletion is most 

probably a PCR artifact, possibly resulting from the formation of an hairpin due to the 

existence of a perfect inverted repeat in this region (Figure III-l 1B). 
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Figure III-ll. Analysis of the deletion observed in clones obtained by RT-PCR. A. Partial 

nucleotide sequences of Sparus BGP cDNA from different clones obtained in independem 
experiments by RT-PCR (l to 8). A box signals the stop codon TAG, dots stand for identical 

nucleotides in lhe different sequences and black bars signal a deletion in lhe sequence when 
compared to spBGP cDNA (Figure II1-3). Reverse primers used in PGR amplification are 
signalled by arrows under and above the sequence. Numbering is shown under the sequence 

as in cDNA (Figure III-3). B. Representation of the pulative loop structure formed within lhe 

site spanned by the deletion. 
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Figure 111-12. RT-PCR amplification of RNA extracted from tissues (vertebra and kidney) and developmental slages (18, 37 and 130 dph) of 
Sparus, using primer pairs designed to test the existence of a deletion in the spBGP cDNA sequence (Figure III-I IA). The primers used were 

SBG8F+SBG1()R, for the presence of deletion (+d), and SBG8F+SBG1IR for the absence of deletion (-d). A genomic spBGP clone (BGP 
lanes) was amplified with SBG8F+SBG1 IR for contrai of PCR reaction.  
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7. EXPRESSION OF THE spBGP GENE 

7.1. TISSUE DISTRIBUTION 

Northern Blot analysis 

Figure III-13 depicts lhe result of lhe Northern hlot analysis. Of lhe different tissues 

analyzed, only calcified tissues (vertebra and jaw) showcd lhe presence of BGP mRNA, with 

lhe strongest signal observed in vertebra-dcrived RNA. No positive hybridization was seen in 

lhe other tissues analyzed (liver and heart, Figure III-13; kidney, muscle and brain, results 

not shown), even alter a longer exposure of lhe membrane (up to two weeks). 

28S 

18S 

BGP H 

Figure 111-13. Tissue distribution of 

spBGP mRNA by Northern analysis. 
Total RNA was extracted from several 

tissues (liver. vertebra, jaw and heart) of 
Spar lis, size fractionated by dcnaturing 

agarose gel electrophoresis and 
transferred to a nylon membrane. RNA 
integrity was controlled by ethidium 
bromide staining of 28 and 18S ribosomal 
RNAs (panei A). Expression of spBGP 
was delected following hybridization with 

a 32P-Iabelled spBGP cDNA (panei B). 
Total RNA from the Xenopus laevis cell 

line A6 was used as negative control. 

RT-PCR Southern Blot analysis 

RT-PCR amplification of spBGP from several tissues of Sparus produced diverse 

results according to the number of cycles used in lhe amplification (Figures III-14 and III- 

15). With 35 cycles (Figure III-14) BGP amplification was detected not only in mineralized 

tissues (vertebra and jaw), bui also in heart, although with a lower intensity. When lhe 

number of cycles was reduced to 20 (Figure III-15), detection of spBGP message was 
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restricted to vertebra and jaw, no signal being present for muscle, heart or liver, even after a 

longer exposure (result not shown). 

C 

- "C 
~ = 

HGP 

Actin 

BGP 

Figure 111-14. Detection by RT-PCR (35 cycles) 

of BGP from several tissues of Sparus. Total 
RNA was extracted from tissues (Muscle, 

Vertebra, Jaw, Liver. Heart and Kidney) of 
Sparus and used lo amplify spBGP (panei A) 
mRNA by RT-PCR with two specific primers 
(SBG8F and SBG4R); Figure III-3), followed by 
visualisation in agarose gel. as described. The 

resulting PGR products for spBGP were 
transferred to a nylon membrane and hybridized 

with a 32P-labelled spBGP cDNA (panei C). The 

same RT reaction was used to amplify spActin as 

a positive control for the integrity and amount of 
mRNA (panei B) 

spp Actin 

spBGP 

Figure III-15. Detection of BGP mRNA in Sparus 

tissues by RT-PCR (20 cycles), coupled with 
Southern hybridization. Total RNA was extracted 
from tissues (Muscle, Heart, Liver, Jaw and 

Vertebra) of Sparus and used to amplify spBGP 
mRNA by RT-PCR, using two specific primers 
(SBG8F and SBG4R; Figure III-3), as described. 

The resulting PCR products were size separated by 
agarose electrophoresis, transferred to a nylon 
membrane and hybridized with a '"P-labelled 

spBGP cDNA (panei B). To check for RNA 
integrity, lhe same RT reactions were used to 

amplify sppActin mRNA, using two specific 
primers based on the published sequence (panei A). 

7.2. DEVELOPMENTAL EXPRESSION 

The expression of the BGP gene was analysed during lhe different stages of Sparus 

larvae and juvenile development by Northern analysis and RT-PCR. BGP gene expression 

was detected only in stages where calcification was apparent during Sparus development, as 

assessed by histological techniques (alizarin red staining). 
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Northern Blot analysis 

Northern analysis (Figure 111-16) showed that spBGP mRNA is abundant in fish 

larvae with 86 dph and older, which correspond lo post-larval (juvenile) stages known to 

have a neaiiy fully mineralized skeleton (as detected by alcian blue/alizarin red staining). No 

BGP mRNA was detected al 27 dph with this method, a slage where calcification of lhe 

larvae skeleton is still restricted to some structures in the head region. 

BGP 

28S 

1SS 

> ..i u. 

> 

Figure 111-16. Analysis of developmental 
expression of spBGP mRNA by Northern blotling. 

Total RNA was extracted from several 
developmental stages (27, 86 and 130 dph) of 

Sparus, size fractionated by denaturing agarose gel 

electrophoresis and transferred to a nylon 
membrane. RNA intcgrity was controllcd by 
ethidium bromide staining of 28 and 18S ribosomal 

RNAs (panei A). Expression of spBGP was 
detected following hybridization with a '"P-labelled 
spBGP cDNA (panei B). Mineralization of the 
skeleton was assessed in specimens with 27 and 130 
dph (panei C) by alcian blue/alizarin red 
hislological technique, as described. 

RT-PCR Southern Blot analysis 

RT-FCR amplification of spBGP from several developmental stages of Sparus 

produced, in general terms, lhe same results as those oblained by Northern blot analysis 

(Figure III-16). However, the lower limit of amplification was different when a different 

number of cycles was performed. In fact, wilh a 35 cycle amplification a signal for spBGP 
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can he observed since 18 dph (Figure 111-17), whereas with 20 cycles onset of spBGP mRNA 

production was only observed al 37 dph (Figure 111-18). The intensity ol the amplitied signal 

increased with age, with lhe strongest hybridization deteeted in lhe older (75 dph and above) 

specimens. No signal was observed, in either case. for stages younger than 18 dph, even alter 

longer autoradiography exposure (not shown). 
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Figure 111-17. Detection of BGP mRNA 

by RT-PCR (35 cycles) in Sparus 
developmental stages. Total RNA was 

extracted from whole Sparus specimens at 
different developmental stages (10 to 130 

dph) and used to amplify spBGP mRNA 

by RT-PCR, as describcd in the Methods 
section. The resulting PCR products were 
size separated by ethidium bromide- 

stained agarose gel electrophoresis (panei 
B), or transferred to a nylon membrane 
and hybridized with a '"P-labelled spBGP 
cDNA (panei C). To check for RNA 
integrity, lhe same RT reactions were used 

to amplify sp(3Actin mRNA, using two 
specific primers based on lhe published 
sequence (panei A). 
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Figure 111-18. Detection of BGP mRNA by RT-PCR (20 cycles) in developmental stages 

of Sparus. Total RNA was extracted from whole Sparus specimens at different 
developmental stages (neurula to 130 dph) and used to amplify spBGP mRNA by RT-PCR, 

using two specific primers (SBG8F and SBG4R; Figure 111-3), as described in the Methods 
chapter. The resulting PCR products were size separated by agarose gel electrophoresis, 

transferred to a nylon membrane and hybridized with a 32P-Iabelled spBGP cDNA (panei 

B). To check for RNA integrity, the same RT reactions were used to amplify sppActin 
mRNA using two specific primers based on the published sequence (panei A). 
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7.3. CORRELATION BETWEEN BGP APPEARANCE AND BONE DEVELOPMENT IN 
SPARUS 

Detection of cartilaginous and calcified structures 

Variables such as stock origin and culture conditions have a high impact on the early 

development of fish speciinens (e.g., 179, 460). The objective ol this pari ol the work was to 

obtain information about the cartilaginous/calcified status of the skcleton ot the individuais 

used in this study. To accomplish lhat we have used two dyes: (a) alcian blue, specific for 

proteoglycans (/. slaining of cartilage) and alizarin red, specific for calcium (.*. staining of 

mineralized structures). 

During embryonic development and immediately after birth Sparus specimens do not 

possess any calcified structures, and only some of lhe head bonés present a cartilaginous 

nature (Figures 111-19), as well as the branchial arches. The axial skeleton. in the absence ot a 

rigid structure, is formed by the notochord (N in Figure 111-19), which allows for a greater 

flexibility, although poorly efficient in terms of helping the locomotion abilities. The only 

other cartilaginous structure in the axial skeleton are lhe hypural 1 and a small ventral 

cartilaginous structure, the coracoid-scapula complex (CO-SCA). Although not visible in 

Figure 111-19. the cleitrum, the first calcified structure, is already present at this stage. 

> CO-SCA 

Figure 111-19. Alcian blue/alizarin red 
staining of 15 days (4.1-5.1 mm) Sparus 
larvae (20x). Cartilaginous structures are 
stained in blue. N signals lhe notochord. 
the coracoid-scapular complex is denoted 

by CO-SCA and the box shows a 
magnification of the hypural 1 (Hyp.l). 

N 
Hyp.l 
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Figure 111-20. Alcian blue/alizarin rcd staining of 20 dph (6.0 mm) Sparus specimens 
(16.5 x). Appearance of neural (NA) and hemal (HA) arches can be observed, as well as an 

increase in the number of hypurals (Hyps) and cartilaginous structures of the head (in 

blue). The box shows a magnification (31 x) of the posterior halls of the two specimens. 

At 20 dph (-6.0 mm) the Sparus larvae show an increase in the number of 

cartilaginous structures, relatively to the previous statc (Figure 111-20). We can see that most 

neural (NA) and hemal (HA) cartilaginous arches are formed, their appearance ocurring in 

the antero-posterior (neural) or postero-anterior (haemal) sense (150). Also, an increase in the 

number of hypurals (Hyps) and of cartilaginous structures of the head can be observed. 

In the individuais with 27 dph (6.2-6.6 mm) wc can notice the onsct of calcification, 

demonstrated by the red-stained structures in Figure 111-20. Calcification begins by the 

structures that are, presumably, more important for an efficient exogenous feeding, which are 

the jaw (J; efficient seizing of preys), the caudal soft rays (CR; rapid swimming) and the 

branchial arches (BA; increased rcspiratory activity -> more active metabolism). No other 

structures are visibly calcified at this stage. It is noteworthy the appearance of the dorsal 

(DPT) and anal (APT) pleriogophores, structures that support, respeclively, lhe dorsal and 

anal fins. As can be observed in Figure 111-21, 12 dorsal pleriogophores exist between the 

11"1 and the 17lh neural spines, whereas I I ventral pleriogophores are situated between lhe 2nd 

and the 7", haemal spines. Appearance of the remnant pleriogophores takes place in the 

anterior and posterior senses, starting from the primordial group [this study and (150)]. 

' / 
» i * V \ , 
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, , 1 V \ ^ ^ ' VV1 ► Hyps 
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Figure 111-21. Alcian blue/alizarin rcd staining of 27 dph (6.2 - 6.6 mm) Sparus larvae 
(16 x). Onset of ossification is noticeablc by the rcd staining in the jaw (J), in the caudal 

rays (CR) and in lhe branchial arches (BA). Previously undetected cartilaginous dorsal 
ptcrieiophorcs (DPT) and anal ptcrigiophores (APT) are signallcd. 

At 35 dph (6.7-8.8 mm) more calcified structures are idenlifiable. Besides the 

previously observed. caleification begins to occur in the vertebral centra (Figure 111-22). As 

observed with the appearance of cartilaginous neural arches, calcification of lhe centra occurs 

in an anterior-posterior sense, beginning in the 2IKl centra and progressing in the posterior 

sense. The first centra only seems to ossify after ossification of the 6lh/7lh centra (326). Also 

conspicuous is the presence of organized pectoral fins and of the basipterigium (BT), 

although still in a cartilaginous state. Calcified soft rays are still absent but structures such as 

the four actinosts (ACT) and the distai radiais (DR) are obvious. 

c 

Figure 111-22. Anterior half of an 
alcian blue/alizarin red-stained 
Sparus specimen with 35 dph (6.7- 

8.8 mm; I7x). Ossification is 

observable in the jaw and in the 

vertebral centra (C). Previously 
undetected cartilaginous actinous 
(ACT), basipterigium (BT) and 

pectoral distai rays (DR) are 
signalled. 

BI 

106 



RESULTS 

Al 72 dph (11-14 mm), ossifícation has progressed into most of lhe previously soft 

and cartilaginous squclctal tissues (Figure 111-23). The urostyle (U; the 24"' centrum) is 

already completely calcifíed as are most of the neural and haemal arches. As can be observed 

in Figure II1-23C (arrow). this calcification proceeds in a proximal-distal sense, starting from 

an ossifícation centre (149). Also calcifíed are the dorsal and ventral soft rays, the caudal soft 

rays (CFSR) and the spines (not shown). The calcifíed soft rays of the pectoral fins (PFSR) 

are present, lhe same occurring with the soft rays of ali other fins. Still in lhe pectoral fin, we 

can observe ossifícation in progress in the actinosts, which, according to Faustino (149) 

occurs in the dorso-ventral sense. The pelvic fin soft rays (PeFSR) are completely calcifíed 

and the onset of ossifícation is noticeablc in the basiptcrigium. Some structurcs remain, 

however, in its former cartilaginous state, namely lhe epurals (EP), lhe acessory cartilages 

(AC), the proximal ends of the caudal soft rays, the distai rays of the pectoral fins and the 

dorsal and ventral pteriogophores, which are ali already present. 

CFSR 

PFSK 

► Per SR 
KP 

► e 

► AC 

Figure 111-23. Alcian blue/alizarin red staining of 72 dph (11-14 mm) S/wn/.v juveniles. A- posterior 
half (6 x); B- Anterior half (14 x): C- magnifícation (22.5 x) of the caudal fin of one of the specimens 

displayed in A. Most skelelal structures show ossifícation (red staining), only a small number of 
structures remaining in the cartilaginous state. PFSR: pectoral fin soft ray; PeFSR; pelvic fin soft ray; 

CFSR; caudal fin soft ray; EP: epurals; U: urostyle; AC: acessory cartilages. 
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Figure 111-24. Alcian blue / alizarin red staining of 110 dph (19-22 mm) .V/wn/.v juveniles. 

A- posterior hall' (9.5 x); B- anterior hall' (6 x). Almost ali skeletal structures are ossified 

(red), only some cartilaginous structures (blue) remaining. AC: acessory cartilage. 

At 110 dph (19-22 mm), ossification is nearly complete (Figure 111-24). Ali lhe fin 

soft rays, the vértebra, almost every bone from the head and the jaw are ossified. The sole 

structures lhat remain cartilaginous are the acessory cartilage (AC), the pectoral distai radiais, 

the proximal ends of the caudal soft rays and the last ventral and dorsal pteriogophores. 

The oldesl specimens analysed (150 dph; 24-27 mm) showed an almost complete 

ossification of the skeletal structures (Figure 111-25), the only remaining skeletal structures 

unossified being the accessory cartilage, the pectoral distai radiais and some ol lhe head 

bonés. 

> L)K 

Figure 111-25. Alcian blue / 

alizarin red staining of 150 dph 

(24-27 mm; 6 x) Sparus 

juvenile (anterior end). I)R: 
pectoral fin distai rays. 
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Detection of BGP mRNA by in sita hybridízatíon 

Localization of specific sites of expression of the BGP gene was determined by in si tu 

hybridization in Sparus sagilal sections, using an antisense riboprobe specific to spBGP 

mRNA. Spanis BGP mRNA was delected (Figure 111-26; arrows) in vertebrae (Al and A2), 

jaw (not shown), sites of fin insertion (not shown) and dermis (A3). Hybridization of Spanis 

sections with a sense spBGP riboprobe. which functioned as negative control, produced no 

signal (A4). 
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Figure 111-26. Localization of spBGP mRNA in Spanis lissues by in sim hybridization. 

Longitudinal 5 (im sections of whole undecalcified 90 dph Spanis were hybridized with an 

antisense digoxigenin-labelled spBGP riboprobe and positive hybridization revealed as 
described in Chapter II. Spanis BGP mRNA was detected (black arrows) in vertebrae (Al and 
A2) and dermis (A3), while distai vertebrae showed less or no hybridization (black and white 

arrows, respectively. in panei A2). Hybridization with sense digoxigenin-labelled spBGP probe 
produced no visible signal (A4). 
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8. STUDY OF THE FUNCTIONALITY OF THE spBGP PROMOTER IN 5. 
AU RATA BONE-DERIVED CELLS 

8. /. OBTENTION OF PRIMARY CELL CUlJURES DERIVEI) EROM Sparus 
T/SSUES 

Primary cell culture derived from vertebra, jaw and branchial arches 

Significam migration of cells from jaw and branchial arches ocurred after 48-96 

hours, whereas vertebra started to release cells usually more than one week after the 

beginning of incubation (Figure 111-27). 

The behaviour of cells in culture conditions was different according to their respeclive 

origin (vertebra-, jaw- or branchial arches-derived). The vertebra-derived cells seemed to 

adapt best to culture conditions, with a doubling time of 2-3 days, and without visible 

phenotype changes for the first 4-6 weeks (Figure 111-28). After this period, differentiation 

(phenolype changing, division rale slowing/arresting) was observed. These cells were able to 

be preserved frozen in liquid nitrogen with a reasonable survival rate after thawing (> 60%). 

When these cells were maintained in lhe same dishes for approximately 30 days, with regular 

médium changes, some differentiation was observed, with development of some tissue-like 

structures (Figure II1-29A. B). 
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Figure HI-27. Significam migration 

of cells from Sparus vertebrae (V) 

was observed only after one week 
incubation. Amplification lOOx. 

Figure 111-28. Phenotype of Sparus 

vertebra-derived cells in active 

growing state. Amplification 200x. 
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Figure 111-29. Sparus vertebrae-derived cclls kcpt without passage for approximately 
30 days cxperienced differcntiation, originating a tissue-like structure (A and B). 
Amplification 200x. 

In comparison with vertebrae-derived cells, jaw- and branchial arches-derived cells 

have a very distinct behaviour. They migrate rapidly from lhe tissue fragments and wilhsland 

the freezing procedure, bui do not endure as many tripsinizations as do vertebra-derived cells. 

Alter no more than 10 passages lhey subslantially deerease their division rate, under lhese 

eulture eonditions. 

Primary ccll eulture obtained from scales of S. aurata 

Significant migration of cells from scales ocurred few hours after the beginning of 

incubation of Sparus scales in médium I (Figure 111-30). However, lhey rapidly begin to 

change phenotype (Figure 111-31), hindering any attempt to trypsinize them, sinee most of 

them do not survive lhe procedure. and those who do are unable to divide. 
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Figure 111-30. Migration of cells 

(aiTOws) from Sparus scales (S) ocurres a 
few hours after beginning of incubation. 
Amplification 200x. 

Figure 111-31. A few days after 

migration from scales, cells begin to 

differentiate (A —> B). Amplification 

200x. 
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RESULTS 

Sparus bone- and cartilage-derived primary cell cultures survive the free/ing procedure 

With lhe exception of cells derived from Sparus scales, which, wilh the present 

culture conditions, rapidly differentiate, do not divide and, perhaps for that reason, are unable 

to survive the free/ing procedure, vertebra-, jaw- and branchial arches-derived cells remain 

viable after being frozen for several months in liquid N2. with an high survival rate. 

According lo our experience, they show an high sensitivily to DMSO, demanding a rapid 

change of media after thawing. 

Sparus vertebra- and jaw-derived cells produce BGP mRNA 

RT-PCR amplification of spBGP transcripts from total RNA extracted from primary 

cultures of cells obtained from vertebra and jaw produced a pulalive spBGP DNA fragment 

of the expected size. Sequcnce analysis revealed that these bands corresponded to spBGP. 

Therefore, both vertebra- and jaw-derived (i.e., bony tissue-derived) cells produce BGP 

mRNA, although the signal could only be detected by RT-PCR and was not strong enough to 

be seen in Northern hybridization (results not shown). 

Sparus vertebra-derived cells produce alkaline phosphatase 

Deteclion of alkaline phosphatase activity by the Naphtol/Fasl red violei method 

showed that this protein was present in some of the cells derived from vertebra of Sparus 

(Figure 111-33). Also, these red-slaining cells showed a distincl phenotype, with a variable, 

irregular form, contrasting with the more regular, non-staining cells. 
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Figure 111-32. Detection of 

alkaline phosphatase activity in 
Sparus vertebra-derived cells of 

Sparus. Red-staining cells 

(square) show alkaline phospha- 

tase activity. a fcaturc distinctive 

of osleoblasts. Asterisks signal 
non-staining cells. Amplification 

200x. 



RHSULTS 

Celis derived from Sparus vertebra produce minerali/ed structures 

Sparus vertebra-dcrived cells maintained in confluent culture for 30 days and treatcd 

with ascorbic acid and (3-glycerophosphate formed a distinct "hill and vallcy" morphology, 

with ccll retraction from some arcas and coalescence into multicellular foci, or nodulcs, in 

other areas (Figures 111-34 to 36). Caleification was found to be associaled with lhe nodules 

by von Kossa and Alizarin Red -S staining (Figures 111-34 and 111-35, respectively). 

In addition lo mineralized structures, vertebra-derived cells produced other structures 

(Figure III-36A), which do not stain with either of the two methods used to detect 

mineralization. These structures were also observed in jaw- and branchial arches-derived 

cells (Figure III-36B and C, respectively). None of these structures, either mineralized or 

non-mineralized, were observed in negalive controls (Figure 111-37). 

Figure 111-33. Von Kossa staining of mineralized structures (in dark brown) in Sparus 

vertebra-derived cells incubated for 30 days in Médium I supplemented with lOmM P- 

Glycerophosphate and 50 pg/ml Ascorbic acid. Amplification 20()x.  
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RHSULIS 

Figure 111-36. Von Kossa staining of Sparus cells derived from verlebra (A), jaw (B) and 

branchial archcs (C) detects no signs of mineralization whcn cclls are incubated in Médium I, 

at 220C, for 30 days. Amplification IQOx,  

H.2. IS THE spBGP 5' FLANKING REGION ABLE TO FUNCTION AS A 

PROMOTER IN VITRO? 

To determine if lhe 5' flanking DNA of lhe spBGP gene could function as a regular 

promoter and drive expression of a repórter gene in Sparus bone-derived cells we have 

cloned lhe enlire 5' flanking sequence (-1 145 lo +37) of lhe spBGP gene (see Figure III-7) in 

lhe Multiple Cloning Site (MCS) of lhe pPgal-Basie expression vector, upstream from a lacZ 

repórter gene. The expression of this gene produces lhe p-galaclosidase enzyme, capable of 

degrading lhe X-Gal substrale (in which we incubate our transfected cells), giving rise to a 

blue-greenish eompound that accumulates inside lhe cells, whieh permits to assess lhe 

functionality of our pulative promoter sequence and identify lhe transfected cells. 

spBGP promoter 

Figure 111-37. Sehematie representation of 

lhe cloning of lhe spBGP gene 5" flanking 
region in the multiple cloning site (MCS) of 

the ppgal-Basic repórter vector. Also 
signaled are the gene for ampicillin 

resislance (Ampr), the lacZ gene, and the fl 
and pUC sites for origin of replicalion; 
GenBank aceession number U13184. 

115 



RHSULTS 

Visual assessmcnt of transfection efficiency revealed that less than 1% of the cells 

were transfected. A small number of cells. however, was stained in blue (Figure II1-39A and 

B). proving the ability of the putative spBGP promoter to induce transcription of repórter 

genes in these cells. Transfection wilh positive control (P-galactosidase repórter gene under 

the control of pCMV promoter) registered a higher efficiency. Endogenous p-galactosidase 

was controlled by transfection with p-galactosidade repórter gene alone, which did not 

produce any blue stained cells (not shown). 

A B 

Figure 111-38. Transient transfection of bone-derived primary cell cultures of 5. aurata with 

spBGPpromoter/pBGal construct. Cells were transiently transfected by lipofection wilh eilher 
the spBGPprom/pRGal construct or the pBGal vector as negativo control. Activation of the 
repórter gene, detected by exposure to an X-Gal containing solution, resulted in a number of 

blue stained cells. A-amplification 2()()x; B- amplification 32()x. 

9. Sparus aurata BGP AND OTHER VITAMIN K-DEPENDENT PROTEINS: 

AN EVOLUTIONARY PERSPECTIVE 

9./. CLONING OF A PARTI AL Halobatmchus didaetylus (TOAI) F/SH) BGP cDNA 

Amplification of a putative load fish partial cDNA was performed by RT-PCR using 

total RNA from toad fish vértebra, as described in the Methods chapter. Electrophoresis of 15 

pi of the RT-PCR product produced a major, clearly visible, band (lane A in Figure 111-39). 

Several identical clones were obtained, following excision of this band from the gel and 
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RESULTS 

cloning of lhe corresponding PCR product. Three of them (tfl, tf4 and tf5) were sequenced, 

revealing lhe same sequence of DNA which, after comparison with lhe NCBI database, 

showed lo be a novel BGP sequence corresponding to a partial toad fish BGP (tfBGP) cDNA. 

This DNA fragmenl contained a putative coding sequence of 69 nucleotides, followed by a 

stop codon and an additional 216 bp to lhe site of insertion of lhe poly-A tail (Figure 111-40). 

This sequence was submitted lo GenBank, being assigned lhe aeession number AF144707. 

1 Kb 

Figure 111-39. RT-PCR amplification of a partial 

Halobatrachus didactylus BGP cDNA. Fifteen microliters of 
lhe RT-PCR product were electrophoresed in a 1.4% agarose 

gel and lhe major band (A) excised, cloned and sequenced. A 
1 Kb DNA marker (GibcoBRL) was loaded in an adjacent 
well. 

1 SBG5F 
Cys Asp Ala Met Met Asp Gln Glu Gly lie lie Val Ala Tyr Thr Leu 
TGT GAC GCA ATG ATG GAT CAG GAG GGA ATC ATC GTC GCC TAC ACG CTT 

49 
Phe Tyr Gly Pro lie Pro Phe *** 
TTT TAC GGG CCG ATT CCC TTT TAGaccgcaaaaccgcaacaaatggttgaattgac 

105 
ctttcgtgacctttacctggtgctgttatcatttattgcatctcctttcctgcagtgaagggt 

158 
gtgtgcccgtaactgtcatgtgaaggaggcaaacaagcgaattaaattttctatctctgagac 

231 
tttactttccgttcattctgtagtgtagtgtgataaatgtcajaataaajtgaatctgtc 

Figure 111-40. Partial Halobatrachus didactylus BGP cDNA and deduced amino acid 
sequence of corresponding polypeptide. Numerical positions in lhe nucleotide sequence are 

notated above each line. The slop codon following lhe protein coding region is indicated by 
three asterisks and a box indicates lhe polyadenylation signal. Sequence corresponding lo lhe 
region of annealing of lhe SBG5F oligonucleotide is in ilalics and signaled with an arrow. 
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RESULTS 

9.2. EVOLUTIONARYANALYSIS OF spBGP 

The phylogenetic analysis performed using ali known amino acid BGP, MGP, marine 

nephrocalcin, human coagulation factor 11 and hagfish thrombin sequences yielded thirty 

Maximum Parsimony (MP) trees, which were summarized using Strict Consensus (i.e., 

retaining only lhe clades that are common to ali thirty MP trees). This can be considered lo bc 

the most conservative estimate of the evolutionary patterns. The Strict Consensus tree (Figure 

111-41) shows two clcarly distinct clades assembling, respectively, BGPs versus MGPs (with 

the exception of shark MGP). Inside lhe BGP clade is nolorious lhe clear separation between 

fish BGP and other BGPs. lhe same occurring with birds and amphibian BGPs. 
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Monkey BGP 

Bovino BGP 
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Cal BGP 
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Rai BGP 

Walluhy BGP 

Chickcn BGP 

Emu BGP 

Xcnopus BGP 

Swordllsh BGP 

Blucgill BGP 
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• Human Coagulation Factor II 
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Figure 111-41. Evolution of BGP in relation to other vitamin K dependem proteins. Slrict 
consensus tree of the 30 Maximum Parcimony Trees generated with lhe available data on 
BGPs, MGPs, Human Coagulation Factor II and Pacific Hagfish Thrombin amino acid 

sequences. Numbers indicate confidence limits of individual clades, estimated by bootstrap 
analysis with 1000 replicates. 
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CHAPTER IV: DISCUSSION 

1.THE Sparus aurata BGP cDNA 

Molecular cloning of the Sparus BGP cDNA, by a mixture ot RI -PCR amplification, 

RACE PCR and 5' primer extension, showed that the spBGP cDNA comprises 647 bp, 

numbered from the major cap site of the spBGP mRNA to the site of insertion of the poly(A) 

tail and encodes a polypeptide of 97 amino acid residues (Figure III-3). Based on its 

homology with the mammalian proteins, it contains a pre-region cncoding the signal peptide 

and a pro-region whose sequence is homologous to the gamma carboxylase recognition site 

found in the pro-pcptides of ali other known BGPs (Table III-I and Figure 1II-5). The 

sequence of the mature form is in full agrcement with the sequence of the mature BGP 

protein previously purified from Sparus bone (64). The proBGP sequence ends, as expected, 

with two basic residues, Lys-Arg, as in the chicken protein (371), and not Arg-Arg as in the 

mammalian BGPs (Figure III-3). Dibasic residues such as arginine are a common feature in 

pro-peptide sequences from proteins known to require proteolytic activation such as peptide 

hormones and clotting factors (e.g., 84). Both motifs are probably cleaved prior to secretion, 

as in higher vertcbrates, to yield the mature spBGP. 

2.THE Sparus aurata BGP GENE AND 5' FLANKING DNA 

The spBGP gene encompasses 2778 bp, being approximately twice as long as the 

mammalian genes, mostly due to an unusually long intron II, ~10x larger than its mammalian 

counterpart (see Table III.III). Allhough the overall organization of the spBGP gene has been 

maintained from fish to man, the sites of insertion of the three introns within the protein 

coding sequence differ in Sparus as comparcd to the mammalian genes (Figures III-5 and III- 

9). 

Identification of promoter regulatory elements that are responsive to basal and tissue- 

reslricted transactivation factors, steroid hormones, and other physiological mediators, 

provides a basis for understanding regulatory mechanisms contribuling to developmental 

expression of BGP, tissue specifícity and biological activity. We have made an attempt to 
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identify several such motifs in the spBGP gene 5' flanking DNA sequence, by comparison 

with the published sequence motifs. 

Ali known BGP gene promoters have a modular organization reflected by the 

presence of RNA polymerase II canonical sequences and of a series of consensus sequences 

for hormone receptor binding sites and nucleotide-responsive elements, which are 

physiological mediators of BGP gene expression (109, 295, 527, 572). A series of elements 

contributing to basal expression in mammalian BGP genes include a TATA sequence and 

osteocalcin box (OC box), a 24-nucleotide element with a CCAA f motit as a central core, 

both required for efficienl transcription of the gene (227, 255, 530). Likewise, the spBGP 

gene promoter shows an organization with sequence motifs typical of a gene transcribed by 

the RNA polymerase II such as TATA and CCAAT boxes, but no clear OC box could be 

identified. 

Sequences with similarities to the core OSE1 and OSE2 sequences (134) were 

identified, both in the 5-fIanking region and in intron II of the spBGP gene. In the 

mammalian system, the OSE1 sequence binds OSF1, an ostcoblast-specific transcription 

factor present in nuclear extracts of osteoblastic cell lines and primary osteoblasts, thought to 

be required for the early steps of osteoblast differentiation (474). As for the OSE2, it binds 

Cbfal/OSF2, a transcription factor which, in mammals, is specific to osteoblastic cells and is 

responsible for the tissue specificity of BGP through transcriptional control of expression 

(136, 137, 254). Both the mouse and rat genes contain, within their promoters, sites of 

interaction for thcse transcription factors (136, 241). Since the tissue distribution of BGP in 

Sparus (Figures III-13, III-15 and 111-26) appears to be confined to mineralized tissues, it is 

likely that in fish, as in mammals, bone specific transcription factors could be involved in this 

tissue specificity. In this case, the putative OSE1 and OSE2 response elements found in the 

promoter of the spBGP gene could be functional. 

Vitamin D, through its active metabolite la,25-dihydroxyvitamin D3 [l,25(OH)2D3] 

plays a key role in the transcriptional regulation of BGP gene expression in mammalian 

osteoblasts, both in vivo and in vitro (54, 86, 295, 398). Several VDREs have been 

characterized in the promoter region of vitamin D-regulated genes, including the rat (46, 110, 

572) and human (145, 257, 395) BGP genes. Although there is considerable variation 

between natural VDREs, a consensus positive VDRE can be defined as a direct repeat (DR) 

of two six-base half elements of the sequence AGGTCA, separated by a spacer of three 

nucleotides (DR-3; Table I.III in Chapter I). This sequence directs the VDR-RXR 
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heterodimer to the promoter region of l,25(OH)2D3-regulated genes (68, 220, 322, 328). In 

contrast with its mammalian counterparts, the proximal promoter of the spBGP gene contains 

no obvious VDRE regulatory elemenls. Although fish are known to store vitamin D (520), 

and in some fish species vitamin D or its metabolitcs have been shown to affect plasma 

parameters such as calcium (516) and phosphorous (11) leveis, no vitamin D responsive 

elements have been, as yet, identified in any fish gene. On the other hand, since even for 

relatively closely related species, such as human and rat, the conservation between regulatory 

elements can be low (395, 447), it may be the case that conscnsus sequences for regulatory 

elements are significantly different in fish gene promoters from those known in higher 

vertebrates. 

Although vitamin D induces BGP expression in humans and rats in vivo and in rats 

and human-derived primary osteoblast cultures and osteoblast cell-lines in viíro (218, 293), a 

negative regulation of the BGP gene by vitamin D has been also described for mouse (86, 

489, 573) and chicken (56), and preliminary results of in vivo treatments of Sparus with 

l,25(OH)2D3 seem to point in the same direction (Pinto, J.P. and Gavaia, P., unpublished). 

VDRE motifs involved in the vitamin D-induccd repression of downstream genes seem to 

present a lower interspecific conservation in the core sequence, as can be concluded by 

examining Table I.III (Chapter I). Therefore, it is possible that failure to find a putative 

VDRE in the spBGP promoter sequence may be related with an inhibitory effect of vitamin 

D on the spBGP gene. Finally, the tripartite sequence found in intron II (Figure III-9) 

resembling the motifs identified in close proximity in the VDRE of the rat BGP gene (110, 

332), leads us to hypothesize that not only a VDRE should be present in the spBGP gene, but 

also that intron II may have some regulatory role previously not advanced for other BGP 

genes. Work with deletion mutants from the spBGP gene promoter, gel mobility shift assays 

and DNase I footprinting analysis is important, in order to identify and characterize 

functional regulatory sequences within the fish BGP gene promoter, and is now being 

initiated. 
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3. Sparus aurata HAS ONE SINGLE BGP GENE? 

Several lines of evidence resulting from our different approaches oí the question of 

one/versus multiple spBGP genes, point in the direction of the existcnce of one single copy oí 

this gene in Sparus. The results obtained with the hybridization of the genomic Southems, 

either with a complete or a partial spBGP cDNA probe (Figures 111-10 A and B, 

respectively), conform with the "single gene hypothesis", since we should expect different 

genes to have different sizes, most probably due to intronic differences, since these parts of 

the genes should be subjcctcd to less evolutionary pressure than exons. We reached this same 

conclusion, i.e., that there secms to be no additional spBGP genes with different sized 

introns, with the RT-PCR approach I, since we werc only able to amplify a single-size band 

corresponding to each of the three introns. Ali these three bands corresponded to the introns 

we already knew from previous scquencing. 

An hypothesis we conceived was that if more than one spBGP message would exist it 

could be differentially tecidular and/or developmentally expressed. The strategy of 

amplification of an spBGP cDNA partial clone from RN As extracted from several Sparus 

tissues and developmental stages (Figures 111-12, 111-14, 111-15, 111-17 and 111-18) indicates 

that, at least for the region of the cDNA covered by the SBG5F+SBG4R and 

SBG8F+SBG1 IR primer pairs there are no altemative messages. 

The appearance of a deletion in the spBGP cDNA sequence of two of the clones 

obtained when trying to obtain the S^end of the spBGP cDNA (Figure III-l IA) could also 

result from the existence of an additional message for the spBGP. However, its presence 

could not be confirmed by RT-PCR amplification in any of the tissues or developmental 

stages analysed by us (Figure III-12). After sequence analysis of this deletion we tound that it 

consists of an inverted repeat, a typc of sequence that would favour the formation of a loop at 

this site (Figure III-11B), thus probably leading to a PCR artifact. 

In conclusion, our attempts to find more than one gene coding for Sparus BGP were 

unsuccessful. Whilst we cannot eliminate the possibility of gene duplication. we consider the 

available data to favour the existence of just one BGP gene in this spccies. These results are 

in contrast with those obtained in rodents where analysis of several mouse and rat strains 

have indicated that BGP is part of a gene cluster. While in the rat either one or multiple 

copies were detected, depending on the strain (448), in the mouse two BGP and one BGP- 

related genes were identified side by side in the genome of ali strains examined (117). Our 
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genomic southem approach followed the same conditions referred in the mouse study, but the 

output points to the existence of one single spBGP gene, instead of the cluster found in the 

mouse genome. Given the very high degree of identity bctween these various mouse genes, it 

is possible that the duplication of the BGP gene in rodents occurred quite recently, after the 

branching of bony fish nearly 200 million years ago. 

4. EXPRESSION OF THE spBGP GENE 

4.1. Tissue distribution: the spBGP gene is only expressed in mineralized tissues 

The results reportcd in section 7.1 of Chapter III show that in Sparus, as previously 

reported for other species (117, 443, 458, 555), the expression of BGP is specific to bone 

tissues undergoing mineralization such as vertebra and jaw, as clearly seen by Northern blot 

and RT-PCR (Figures III-13 to III-15). This conclusion is supported by in siíu hybridization 

results, where specific message was detected exclusively in vertebra, jaw bone, sites of fin 

insertion and dermis (Figure 111-26), this last rcsult being attributed to the production of BGP 

mRNA by the scale-forming cells. The identification, by histological methods, of osteoblasts 

and osteoclasts in the same vertebra and jaw sections (Figure IV-1) used for detection of 

BGP mRNA by in situ hybridization showed that not only the cells resposible for producing 

the spBGP transcripts are present but also that bone deposition and possibly some 

remodelling is actively occurring in the vertebra and jaw of these juvenile specimens. 
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Figure IV-1. Identification of osteoblast-Iike and osteoclast-like cells in uncalcified 

sections of a Spams juvenile (90 dph) by histological detection, respectively, of 
alkaline and acid phosphatases activity. A-B- Osteoblast-Iike staining (red stained 

cells; arrows) in vertebra (A) and jaw (B); C-D- Osteoclast-like staining (arrows) in 

vertebra (C) and jaw (D). 

A faint signal for spBGP was also observed in Spams brain (35 cycles RT-PCR and 

in situ hybridization) and heart (35 cycles PCR). These results, however, must be prudenlly 

considered, since there is thc possibility that they correspond to background noise, i.e., 

detection of residual leveis of spBGP mRNA, due lo the very high sensitivity of bolh 

detection techniques used, with no physiological mcaning. BGP mRNA presencc in non- 

mineralized tissues has previously been reported, namely for tissues such as brain, inlesline, 

and kidney (158), although it is not clear whether these low leveis of BGP gene expression 

are derived from the BGP genes or from the BGP-related genes described in mice and rats 

(117, 448). This doubt is further strenghtened by the fact that during the past two decades. 

radioimmunoassay data have never convincingly demonstrated the presence of BGP protein 

in non-osseous cell cultures or tissues, cxccpt in cctopic calcifications (282). where mineral 

adsorption of circulating BGP is a likelihood. The most unassailable proof of the bone 

specifícity of BGP derives from Northern blot analysis performed by several groups (73, 165. 

295). No BGP mRNA was delected in preparations of rat liver, lung, intestine, heart, spleen. 
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spleen, kidney, brain, skin. or stemal cartilage with a rat BGP cDNA probe. whereas bone 

mRNA was strongly positive (165, 295). Fibroblasts do not synthesize BGP (10) or BGP 

mRNA (73), even when stimulated with 1,25-dihydroxyvitamin D3. In various chondrocyte 

cultures of sternal and vertebral cartilage origin, il has been confirmed that BGP synthesis 

does not occur (185, 186). BGP synthesis has been demonstrated by radioimmunoassay in 

numerous osseous culture systems: 1) bone organ culture models, including chick embryonic 

bone (287), fetal rat calvariae (290), and bovine trabcculae (373) normal osteoblast-like cells 

grown out of human bone trabeculae (10. 33, 490) or isolated by serial enzymatic digestion 

of chick (184) or rat (77, 78) bone; and 2) osteosarcoma cell lines (164, 374, 424). BGP was 

also shown to bc synthesized in a cell-free system directed by mRNA from rat bone (320). 

There are. therefore, no truly convincing reports of BGP synthesis in cells or lissues other 

than those originating from bone, cementum and dentin and so BGP may still be considered 

specific to bone cells, a conclusion strenghtened by our results. 

4.2. Developmental expression: the onset of spBGP gene expression follows the 
appearancc of bony struetures 

Developmental appearance of eartilaginous and mineralized struetures 

Detection of eartilaginous and mineralized struetures in developmental stages of 

Sparus (Figures III-19-25) produced results that are in general agreement with those of 

Faustino (149), mainly in what refers to the relative timing of appearance of the eartilaginous 

and calcifíed struetures. Immediatelly after birth Sparus specimens have already some 

eartilaginous struetures, no ossifieation being detected at that stage. The first clear sign of 

ossification of the skeleton (as determined by alizarin red staining) is detected at 27 dph1 

(6.2-6.6 mm), localized on the struetures that are presumably more important for food 

catching and seizing: the jaw, the caudal soft rays and the branchial arches. At this stage the 

number of skeletal eartilaginous struetures has increased and its ossifieation will take place 

during the ontogenie development of the individual. At 35 dph (6.7-8.8 mm) the centra of the 

vertebral column begin to ossiíy and at 110 dph (19-22 mm) most of the skeleton shows 

ossifieation. At 150 dph (24-27 mm) ossifieation of Sparus skeleton is virtually complete and 

1 An improvement of the alcian blue/alizarin red double staining technique used in this work has recently been developed 
and published (181). Use of this technique allows detection of mineralized stuctures in Sparus earlier than 20 dph. a stage 
where BGP was never detected. either by Northern, PCR-Southem or in situ hybridization. 
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only some structures remain cartilaginous, presumably because of its importance tor the 

mainlenance of growth. 

According to Faustino and Power (151) "three principal phases of 

cartilaginous/osteological development can be identified in Sparus aurala, <3.1 mm Lm, 3.1 

mm Lx-11.6 mm Ls; and > 11.6 mm Ls. The first phase corresponds to the yolk-sac st age (or 

free emhryo) and the cartilaginous/osteological structures which develop are those that are 

necessary for exogenous feeding, the hones of the head which per mil opening and closing of 

lhe mouth and lhe structures which will ultimately support the pectoral fins. The second 

phase is associated with the larval slage, when most of the fin structures form and ossify. 

leading naíurally to the íransition to the juvenile slage. In S. aurala the third distinct phase 

occurs before the rays segment". 

In comparison with other teleost species, developmental appearance of cartilaginous 

and osseous structures in Sparus resemblcs most with whal was observed for Pagrus major 

(334). a closely related species (see Figure IV-2), in terms of timing and of relative order of 

appearance of the structures. Other species show considerable differences in these parameters 

(e.g., 14, 181,230,418). 

Developmental appearance of spBGP message 

Results displayed in Figures III-16 to III-18 show a discrepancy relatively to the onset 

of BGP gene expression during Sparus development. The 35 cycle RI-PCR allows delection 

of message with a greater sensitivity than either the 20 cycle RT-PCR or the Northern 

analysis (Figures III-18 and III-16, respectively). We could, therefore, conclude that BGP 

mRNA is present very early during the Sparus development, at least at 18 dph., covering a 

period where ossification is not yet detecled by histological techniques. Other studies where 

gene messages, including BGP, was detected by RT-PCR (e.g., 117, 137, 154, 273) have 

used a variable number of cycles (25-35), depending on the expected abundance of the 

message to be amplified. However, we believe that such an high number of PCR cycles as 35 

might be ampliíying a residual expression of the BGP gene, so that the positive signals 

observed for the younger Sparus stages in Figure III-17 might not reflect the presence of a 

physiologically significant levei of spBGP mRNA (the hypothesis of genomic DNA 

contamination can, in principie, be ruled out, since ali RNA samples were previously treated 

with DNase) and the corresponding protein. Accordingly, the 20 cycle RT-PCR 

amplification, together with the Northern blot analysis, might give the correct image of 
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lhe real siluation, conccrning lhe presence of BGP message in Sparus developmental stages. 

In that case, lhe spBGP mRNA is only present afler 27 dph, exclusively, which signifies that, 

in Sparus, presence of BGP message is only unambiguously detected after lhe onset of 

ossification, as detecled by alizarin red staining (previous section). This paliem of 

developmental expression of lhe BGP gene parai leis what was previously observed for 

mammalian species (117, 443), with lhe onset of expression of lhe gene following lhe 

appearance of calcified structures and with its levei of expression increasing as 

mineralization is extended to ali the skeletal structures. 

Debate on lhe question of whelher inilial mineralization occurs in the presence or 

absence of BGP has endured the last two decades. In embryonic chick tibiotarsus. the 

presence of BGP as measured by Gla conlent (210) and radioimmunoassay (216) appears 

coincidem with the onset of mineralization at 8 days, judged by alizarin red staining and 

alomic absorption measurements of Ca2" in ashed samples (216). In vivo studies have shown 

that BGP is expressed relatively late in the developmental sequence in long bonés of 

embryonic chicks (210, 212, 216) and fetal rats (427, 431, 572), well after the cartilaginous 

anlagen have formed, and other studies also contend that BGP appears only after the onset of 

mineralization (329, 427, 431). In vivo transcription studies of the BGP gene show also age- 

correlaled expression (483). Developmental control is reflected by the absence of BGP 

expression in proliferating osteoblast progenitor-like cells and expression in postproliferative 

committed cells, albeit at low leveis. Expression is then upregulated in osteoblasts within a 

mineralizing extracellular matrix (391). This developmental expression is stringently 

regulated by steroid hormones and growth factors in normal diploid osteoblasts (393, 394, 

480). However, transcription control is abrogated to a significam extent in osteosarcoma 

cells, where BGP expression and cell proliferation occur concomitantly (47, 503). The more 

recent hypothesis conceming the BGP function state that this protein might be involved in the 

maturation of the hydroxyapatite crystals, i.e., in the transition from the initially formed 

amorphous calcium phosphate mineral of fetal bone to the hydroxyapatite phase 

characteristic of adult bone (49, 135, 525). If this is the case, then we should expect to obtain 

a mineralization signal (by the alizarin red technique), as indeed was observed, earlier than 

the BGP mRNA signal, since this protein would only be necessary when the transition to the 
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Figure IV-2. Brief classification of the Teleostei Division [adapted from Smith and Heemstra (492)]. The genus for which BGP 

cDNA has been obtained are highlited in red. 

TELEOSTEI 

OSTEOGLOSSOMORPHA 

ELOPOMORPHA 

CEUPEOMORPHA CLUPEIFORMES 

EUTEEEOSTEI 

OSTARIOPHYSI 

AC ANTHOPTER Y Gil 

129 

SILURIFORMES 

CYPRINIFORMES 

PERCIFORMES 

BELONIFORMES 

Engraulidae 

Clupeidae 

Clariidae - 

Cobitididae 

Carangidae 

Haemulidae 

Scombridae 

Sparidae — 

Cichlidae - 

Xiphiidae • 

Scomberesocidae 

Adrianichthyidae 

Engraiilicus 

Clupea 

- Ciarias 

■ Misgumus 

■ Trachunis 

Aaisotremus 
Sarda 
Scomher 
Scomberomorns 
Thunnus 
Scomhrolabrax 

Sparns 
Archosargus 
Pagrus 

■ Tilapia 

■Xiphias 

BATRACHOIDIFORMES —Batrachoididae 

PLEURONECTIFORMES - Soleidae   

- Co/o/abis 

- Oryzias 

llalobalraclms 

So/ea 



D1SCUSS1QN 

hvdroxyapatite phase lakes place. Debate on this queslion will surely continue, with 

problems of detection method and sensitivity remaining a central issue. 

The increase in lhe spBGP message with age, observed in our results (Figure 111-18 

and 111-19), has also been observed in other studies, where BGP content was shown to 

increase with increasing bone densily (e.g., 288). It is interesting to note, however, that after 

-75 dph (when the majority of the skeletal structures are calcified; see Figure III-14) the 

amount of spBGP message does not seem to significantly increase with age, which, in 

functional terms, can be interpreted as meaning that BGP needs increase during formation of 

new bony structures, a stage where mineral deposition and maturation is stronger. Once the 

fish skeleton is mostly calcified the levei of BGP mRNA stabilizes, at least in non- 

pathological conditions. A parallel study on the localization of BGP protein during the 

various stages of development of Sparus using a fish antibody is currently being initiated in 

our lab (Simes et ai, in prep.), which should bring additional information to further 

understand this question. 

5. Sparus aurata BONE-DERIVED CELLS AND ASSESSMENT OF spBGP GENE 
PROMOTER ACTIVITY 

Sparus bone-derived cells can be used as a system for in vitro studies 

We have shown that bone-derived Sparus cell cultures have an heterogenous 

morphology and express several osteoblastic diíferentiation markers. After confluency, they 

aggregate into cellular condensations, which later mature into nodules where mineralization 

is localized (Figure 111-34 to 111-36). Similar-looking nodules were shown to be composed of 

calcified deposits similar to hydroxyapatite, the type of calcium phosphate found in bone 

(445). Sparus bone-derived cell cultures retain their phenotype and mineralization capability 

through several passages, and they exhibit osteoblastic markers such as alkaline phosphatase 

enzymatic activity and BGP mRNA. 

From the four different mineralized tissues used as cell sources, vértebra was the one 

that produced better results, mainly in terms of cell resistance and simultaneous presence of 

alkaline phosphatase positive cells and synthesis of BGP mRNA. It is, however, possible that 

the use of different culture conditions, as we are testing presently, will allow the culturing of 
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cells derived from olher mineralized tissues we have tested. In fact, the médium we have 

used in our cell culture experiments, Leibowitz Médium L-15, is commonly used in culture 

of fish cells (170), but olhers, such as Eagle^ Minimum Essential Médium (MEM) or 

Médium 199. ali supplemented with 10% fetal bovine serum. are also reported (170). For the 

culture of osteoblast-like cells, either primary or immortalized, most studies use Dulbecco^ 

Modified Eagle's Médium (DMEM; e.g.. 28. 47. 74, 120. 335) or Modified Eagle's Médium 

(MEM; e.g., 95, 502, 567) and. at least the first of these two culture media, in an atmosphere 

of 10% CO2, seems to be a suitable médium for lhe cells derived from calcified tissues of 

físh, since not only they migrate and divide faster than when grown in L-15 but also they 

mineralize more eficiently than these (Laizé et ai, in prep.). Zebrafish cells have been 

reported to bc very sensitive lo conventional culture media containing high concentrations of 

mammalian serum. being grown in complex media containing insulin and trout embryo 

extract (51, 89). Other studies, however report succcss with fish primary and immortalized 

cell culture using DMEM (133, 532) and L-15 (524), supplemented with mammalian serum. 

We have shown that although distinct cellular types migrate from the mineralized 

tissues, some cells display osteoblast-like properties, such as the ability to synthesize BGP 

and alkaline phosphatase and the capacity to mineralize nodules. This last capacity, however, 

was not always present since in some cases cells were able to form nodules but were unable 

to mineralize them (see Figure 111-36). It is possible that the conditions we have used are sub- 

optimal, either for cell culture, or for mineralization, since this structures are not observable 

in our more recent experiments using a different culture médium. Indeed, preliminary results 

indicate that, among other factors, Sparus bone-derived cells require a higher calcium 

concentration in the culture médium than mammalian cells, in order to be able to mineralize 

nodules in vitro (Laizé et ai, in prep.). 

The spBGP 5' flanking region is able to induce transcription of a downstream repórter 
gene 

Obtaining a culture of Sparus bone-derived cells was criticai in order to perform ali 

kinds of in vitro studies, and thus approach the question of regulation of the spBGP gene 

expression at the levei of transcription. 

Assessment of transfection with the spBGPpromoter/pBGal construct revealed a low 

efficiency (less than 1 %), which may reflect the low number of osteoblast-like cells present 
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in the mixed primary cultures. This low efficiency, however, did not preveni showing that the 

1.2 Kb sequence located upstream from the spBGP gene was capable of acting as an active 

prometer in vitro and drive the expression of the repórter gene (lacZ). The low efficiency of 

the transfection procedure could have different causes. Among them, the presence of an 

heterogenous cell population may have been a criticai factor. In fact, an higher number of 

cells may have been transfected. although not being able lo support lacZ expression. due to 

their non-osteoblastic phenotype. Collagenase digestion of bony tissues releases ali the 

phenotypic variants of the osteoblastic lineage, as well as other "contaminant" cell types. The 

first. which are variably represenled in primary osteoblast cultures (565), are ali capable of 

proliferation under the appropriate culture conditions (218). However, one of the properties 

of the BGP promoter, at least in higher vertebrate models, is the almost complete restriction 

of the BGP gene transcription to mineralized tissues and cells from certain 

osteoblast/odonloblast lineages (see Chapter I for a more complete approach to this subject). 

Additionally, normal rat (77, 78), chick (82, 184), and human (10, 32, 33) primary osteoblast 

cell cultures usually produce modest leveis of BGP, a situation that shiíts if osteoblasts are 

maintained until confluency in a rich médium for production of a dense collagenous matrix 

that can be induced to calcify with P-glycerophosphate, with increases in BGP synthesis up 

to 100-fold (184). Also, primary and transformed osteoblast cultures often require exposure 

to 1,25-dihydroxyvitamin D3 for osteocalcin synthesis to be detecled (376, 490). The Sparus 

cell cultures we have transfected with the spBGPprom/pBGal construct proved to contain 

BGP producing cells, albeit at very low leveis. They also contained cells capable of 

synthesizing alkaline phosphatase, a protein also expressed in osteoblasts (e.g., 565). 

However, not only these osteoblast-like cells were far from being the majority, but also they 

were not either confluent or hormonally treated, in order to stimulate BGP production. 

Another plausible reason for the low efficiency obtained might be that the culture 

médium we have used is not possibly the most suitable for bone-derived cells, an hypothesis 

that seems to be validated by our preliminary results with different culture media. We may 

have, in some way, prevented the bone-derived cells from displaying osteoblast-like 

properties and, concomitantly, inhibited the functionality of the spBGP promoter. 

In conclusion, the development of primary flsh bone-derived cell cultures is a first 

step towards obtaining Sparus bone-derived cell lines and their availability will broaden the 

usefulness of this vertebrate model system. Co-transfection assays in such cells will allow the 

convenient study of the influence of transcription factors and other regulatory proteins on 
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the expression leveis of genes previously found to be important for the control of normal 

Sparus bone development. Transfection studies provide a powerful tool to efficiently study 

specific gene expression in fish. A Sparus cell line could also be used to test whether this 

species is susceptible to any known virai vectors. Retroviruses are an excellent tool for 

insertional mutagenesis in mice (133) and may prove to be of equal quality for Sparus 

mutagenesis. In addition, due to their ease of propagation and limited requirement for 

specialized incubation equipment, Sparus cells can be used for teaching the art of cell culture 

and the study of cell-virus interactions in fish. 

6. Halohatrachus didactylus BGP CLONE SHOWS HIGH S1M1LARITY WITH ITS 

SPARUS COUNTERPART 

Comparison with spBGP cDNA (see Figure III-9) shows that Sparus aurata and 

Halohatrachus didactlylus (toad fish) BGP cDNAs present, at least for the available tfBGP 

cDNA pardal sequence (Figures III-5 and 111-40), a high degree of conservation (~ 70%), 

whercas similarity between tfBGP and human BGP goes down to 43%. The remaining cDNA 

sequence is presently being obtained, which will allow a more complete comparison between 

these apparently very similar BGP sequences. 

7. PHYLOGENETIC ANALYSIS OF spBGP 

Evolution of the sp BGP gene 

Our data support the hypothesis that ali BGPs have a single origin, in agreement with 

a previous suggestion (64). Within the BGP clade (Figure 111-34), the fish form a clearly 

distinct group that might represent the most ancestral forms of BGP. It is known that fishes 

evolved as the flrst creatures to have a skeleton, its evolution spanning 500 million years 

(from the Ordovician), of which the flrst 150 million years were a time span when the fish 

lived on the earth as the pinnacle of evolutionary achievemcnt (310). The first to diverge 

were the jawless Agnatha, of which only two genera are extant: the lampreys and the hagflsh. 

The placoderms followed, originating in the Silurian, some 420 MY ago, and extinguishing 

in the end of the Devonian, 65 MY after (310). They sit in the evolutionary tree somewhere 

between the sharks and the true bony fishes and are characterized by their armour made 
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of overlapping bony platcs, forming a head and a trunk shield. T^he first teleosts seem to have 

arisen only in the Middle Triasic. some 220 million years ago (310), that is, contemporary to 

the first birds, possibly simultaneously with sharks, coevolving from separate ancestors 

(464). 

Figure III-5 shows lhe existence of a high degree of homology between a region of ali 

mature BGPs, even when we compare species whose origins are separated by more than 200 

million years of evolution. The structural features common to lhese different proteins include 

the sequence positions of the three Gla residues and the associated disulfide bond. Indeed. in 

the region between residues +2 and +41, in Sparus, which contains the three Gla residues, 

only 23 amino acids have changed, in comparison with the human protein. The conservation 

of this region, which must be sufficiently important to have survived until our present time. 

and is known to be crucial for the protein to adopt the correct conformation and adsorb to 

hydroxyapatite (62, 182, 369, 399, 507), lead us to conclude that BGP is probably playing the 

same role since the dawn of the vertebrates, its invention probably explaining and allowing 

the invention of bone itself. 

Bonc Gla protein versus Matrix Gla protein 

BGP is evolutionarily related to Matrix Gla protein, or MGP, a 10 KDa vitamin K- 

dependent protein which, although also found in bone matrix, has a more wide tissue 

distribution than BGP. MGP, the second vitamin K-dependent protein lo be discovered in 

bone (438), has, in almost every species where it has been isolated, among other features, 5 

Gla residues, a transmembrane signal peptide and a mature portion, being the first example of 

a vitamin K-dependent protein that lacks a propeptide (442). In contrast with BGP, MGP is 

synthesised in a variety of tissues and cell types: lung, heart and kidney (165), as well as in 

bone and cartilage (69 for bone; 202 and 388 for cartilage), the bone and cartilage 

concentrations greatly exceeding that of the soít tissues (165). Also differently from BGP, 

MGP appears before the onset of mineralization, which is consistem with its presence in 

cartilage (388). Its function, although not entirely understood, seems to be related with the 

clearing of excess calcium from tissues into the circulation, thus protecting against abnormal 

or ectopic calcification (165, 309, 420, 462, 569; for more details on MGP see 1.2.1 of 

chapter I and references therein). 

Comparison of the amino acid sequence of BGP with the COOH-terminal 42 residues 

of MGP (see box in Figure IV-3) reveals a high degree of sequence identity (31%). 
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Although MGP is generally y-carboxylated at five sites, two of the Gla residues are adjacenl 

to a disulfide bond as in BGP, potentially facilitating the interaction of MGP with 

hydroxyapatite. Also, like BGP, MGP contains a 19-amino-acid N-terminal hydrophobic 

transmembrane secretion signal that is cleaved during translocation into the rough 

endoplasmic reticulum (62). These facts lead us, and others, to raise the hypothesis that BGP 

and lhe carboxy-terminal region of MGP could have arisen from a common ancestor by gene 

duplication, preceding the divergence of bony fish from other vertebrates (440). This last 

stalement is corroborated by the fact that bovine MGP is more closely related to swordfish 

BGP lhan lo bovine BGP (442), which can be explained if the putalive gene duplication evenl 

that gave rise to BGP and MGP preceedcd the divergence of swordfish from other 

vertebrates. 

Another possibility raised by some authors (e.g., 453) is that MGP was the ancestral 

lemplate for BGP, as sharks synthesize MGP, but, until now, no BGP was ever detected in 

these fishes. Indeed, one of the lower vertebrates known to synthesize MGP is the shark, 

namely the soupfin shark Galeorhinus galeus, from which lhe protein has been sequenced in 

1994 (453). Sharks belong to a group that appeared about 400 million years ago, in lhe 

Silurian Period. and since then they have changed very little (310). The mistery remains as to 

how they first evolved. Did they evolve from an heavily scaled agnathan group, like the 

thelodonts, or from an as-yet-undiscovered ancestral físh group? The only clue we have to 

their distant origins is the similarity that exists between the scales of early sharks and those of 

the jawless thelodonts (310). Independently of their precise origin, sharks were among the 

first groups to benefict from the vertebrate condition, since, although they lack an intemally 

ossified bony skeleton, they possess a special type of cartilage forming the braincase, jaws, 

gill arches, vertebrae and fin supports. The only hard bone tissues are developed in their 

defensive fin-spines, teeth and scales. This cartilaginous condition, although once regarded as 

primitive, as a precursor to the evolution of true bone, is now considered by an increasing 

number of authors as a highly specialized condition (15, 310). 

Certainly due to its lack of bone, BGP was never sequenced in sharks. Nevertheless, 

given the previous suggestion (64, 453) that BGP and MGP arose from a common ancestor, 

one could hope to find extra similarities between shark MGP and fish BGP. However, our 

data (Figure 111-34) show that fish BGP is more closely related with mammalian MGP than 

with shark MGP, an intriguing result that is strenghtened by the recent finding that teleost 

MGP is very different from both xenopus and shark MGP (Simes and Cancela, in prep.). 
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In facl, teleost MGP shares with shark MGP a C-terminal extension, and both share some 

homologics with the other known MGPs only in the regions where Glas are present and 

where phosphorylation occurs. Hence, lower vertcbrate MGPs seems to be considerably 

different from ali other known MGPs (see relative position in Figure 111-41), whilc 

amphibian, birds and mammalian MGPs and BGPs seem lo show a stronger relationship 

among thcmselvcs. This could mcan (i) that teleost and shark MGPs, along its evolutionary 

path until our present lime, have changed considerably in relation to its ancestor and/or 

higher verlebrates; or (ii) that lower vertcbrate MGPs rclain more of the primordial sequence, 

in relation lo higher verlebrates. Since, for example, sharks have changed little since its first 

apcarancc, 400 million ycars ago, this last hypothesis seems to be the more plausible. 

The doubts stated above may be soflened by going even lower in the evolutionary 

scale. The scarch for BGP in shark teeth and of MGP. or related proteins, in invertebrates 

may give us some clues to solve the riddle of lhe BGP/MGP origin and evolution. However, 

we must always be aware that the ancestors of verlebrates are now extinct, and that attempts 

to trace the origin of these proteins within the invertebrates, in groups such as the tunicates, 

are speculative and assume that some living animais are dose relatives of the vertcbrate 

ancestor, which may or may not be true. 

The Gla protein family 

The study of the appearance of BGP cannot disregard the analysis of the appearance 

and evolution of the other Gla-containing proteins. In the previous section we analysed the 

possible relationships bctween BGP and the other known bone-related Gla protein, MGP. In 

the following paragraphs we will address what is presently known and hypothesized about 

the appearance and evolution of the Gla proteins involved in the coagulation cascade, the 

most numerous representatives of the family of vitamin K-dependent proteins (see Table 

I.IV. on Chapter I, for more information on coagulation factors and other vitamin K- 

dependent proteins). 

Ali high verlebrates, from fish to man, possess a blood clolting system, although with 

different degrees of complexity and with distinct proteins involved (129, 130, 174, 225, 321). 

Blood coagulation in mammals is a well known and extensively described process, involving 

several proteins, which play diverse roles, either promoting or inhibiting it, and possess a 

varied number of y-carboxylated glutamic acid residues, through which they interact with 

Ca2 , and acidic phospholipid surfaces (174, 218, 369, 509, 518, 541). 
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Allhough less studied, we know now thal blood coagulation in fish is essentially 

similar to clotting in mammals (e.g., 380, 464, 491, 549). Soluble fibrinogen molecules are 

transformed inlo an insoluble fibrin clot by Ihrombin, which is derived from a prolhrombin 

molecule, under the mediation of a tissue factor (extrinsic) or thrombocyle factor(s) 

(intrinsic). Calcium is essenlial for both of these processes (129). The major differences in 

relalion to mammalian blood clotting lie in the intrinsic conversion of prothrombin to 

thrombin, whereas lhe extrinsic systems appear lo bc more similar (129). Even among fishes, 

however, there is a high diversity in the blood clotting process. Elasmobranchs have been 

reported lo be essentially hemorrhagic, and it has even been suggested that their blood 

contains little or no prothrombin (251, 551). Teleost fish, on the other hand. have a very 

rapidly clotting blood. although some reports indicate that prothrombin conversion is not 

always complete (551). 

A group with chordale, and hence vertebrate, affinitics are the echinoderms. They 

were the first deulerostomes (i.e., with indeterminated. radial segmentation and enterocoelic 

coelom) to evolve and constitute one of the main drives towards the evolution of the actual 

more evolved organisms. Although very little is known conceming clotting in echinoderms 
2"b 2"b • 

(e.g., 304), it is a fact thal in this group divalent cations such as Ca and Mg ' are required 

for aggregation of blood cells (45). However, according to Boolootian (45), it is difficult to 

trace the origins of vertebrate clotting systems in the clotting reactions described for lhe 

echinoderms. It is more likely that the calcium-dependents clots of the echinoderms represent 

a case of parai lei evolution with the caleium-dependent vertebrate clot, since little other 

resemblance between the two is found. This being true, lhe possibility that the main 

coagulation cascade factors (V, VII, VIII and X) may be present in ali high and low 

vertebrates, raised by recent reviews on the evolution of blood clotting (e.g., 130, 174), lead 

us to conclude that these factors must have appeared over a relatively short period during the 

evolution of vertebrates from advanced invertebrate deulerostome ancestors that presumably 

did not have these haemosíaíically active factors. 

BGP and MGP share some homology with the more diverged coagulation factors [see 

(218)]. In the case of MGP that homology occurs within the mature protein sequence, 

whereas for BGP the similarities are restricted to its leader peptide sequence and the Gla 

domain. Upon comparison, BGP seems more distant, in evolutionary terms, from the Gla- 

containing coagulation factors than from MGP. The search for a common ancestor for this 

entire group of proteins may lead us, therefore, to an ancestral protein, probably with a 
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totally different funclion, that used carboxylaled glutamic acid rcsidues to adsorb calcium in 

the fulfilment of its obscure function. This protein might have been playing its role in the 

cells of a revolutionary sea-urchin. unaware that its descendants would be involved, some 

million years later, in such exlraordinary deeds as the conquering oí the water and oí the 

land. 

The tale of lhe Gla proteins tells us, once again, that Nature avoids spending and 

always makes good use of what it already has. The picture that seems to arise, conceming 

this group of proteins, is that the ability to bind calcium (conferrcd by the y-carboxyglulamic 

acid residues) has appeared somewhere in lhe past and was fixed in other proteins, either 

by gene duplication, gene modification, or exon shuffling (174 and references therein). These 

proteins remain a prime example of lhe developmenl ol a family oi proteins wilh diverse 

functional properties but common, unified structural elements. 
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Figure IV-3. Protein sequence comparison between mature sequences from ali known MGPs and selected BGPs representing different 

phylogenetic groups. Homologies between fish BGPs or fish BGPs/MGPs are highlited in pink; homologies between fish BGPs/other BGPs 
and/or MGPs are highlited in green. The positions of gamma-carboxyglutamate residues are indicated by (E*). Dashes indicated gaps in the 

sequence, introduced to increase homology. Residues are numbered according to the Xenopus MGP and BGP proteins. MGP sequences: Xenopus 
(65); human (63), mouse (235), rat (442), rabbit (496), cow (440), chicken (562) and shark1 (453). BGP sequences: Xenopus (64), human and 

mouse (73), rat (399), rabbit (548), cow (421), chicken (70), emu (234), Sparus (64), swordfish (422) and bluegill (377). 

1 ihe shaik MGP sequence extends beyond what is shown, but this region is omitted since there is no counterpart in any other species 
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CHAPTER IV: GENERAL CONCLUSIONS AND 

PERSPECTIVES 

More than half a century ago a Danish investigator, Henrik Dam. observed that 

feeding chicks an ether-extracted dict led to a bleeding tendency. From this chance discovery, 

he inferred that the cause of hemorrhagic tendency was the lack of a previously unrecognized 

fat soluble antihemorrhagic factor in the diet. This factor was named vitamin K 

(Koagulations-vitamin) and later shown to be required for the synthesis of specific blood 

coagulation factors by the liver. The discovery of vitamin K opened an exciting new field of 

research on biology and medicine, and many significant achievements were made in the 

following 50 years. These include, among others, the discovery of Dicumarol, the 

identifications of the unique amino acids y-carboxyglutamic acid (Gla) and (3- 

hydroxyaspartic acid, and the discovery of vitamin K-dependent carboxylase. Later, several 

proteins eonlaining Gla rcsidues were found in bone and kidney, indicating that the role of 

vitamin K is not restricted to blood coagulation, but is also associated with other biological 

phenomena. 

One of the Gla proteins not associated with blood coagulation is Bone Gla protein 

(BGP, osteocalcin), a small protein which was isolated in 1976 from the mineralized phase of 

bovine bone by Dr. Paul Price and collaborators. BGP is the most abundant non-collagenous 

protein of bone but, despite the large number of studies involving this protein, liltle was 

known of its function until very recently. Almost simultaneously with the beginning of the 

present work, a study was published by Dr. Gerard Karsent/s group in which a putative 

function for mouse BGP as an intervenient in bone remodelling was advanced. This 

breakthrough marked a tuming point for BGP studies, from a more "clinically orientated" 

phase to a more "functional" approach. 

With the present study we intended to travei back in evolution, towards the origin of 

BGP. In fact, although this protein was probably invented long before the apperance of 

Sparus aurata, there are no reasons to think that its function has changed since the apearance 

of the first bony fishes, about 220 MY ago, to the extant teleosts. We intended to compare 

this "version" of the protein with its mammalian counterpart, in terms either of molecular 

structure, or tissue distribution and timing of appearance. This knowledge should allow us, 

not only to advance hypothesis concerning the evolutionary trajectory of this protein, but 
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also would give us the necessary tools lo perform sludies on lhe developmental appearance 

and regulation of this protein, namely by steroids such as vitamin D and the morphogenic 

hormone retinoic acid. 

Sparus aurata BGP gene is the first gene coding for a Gla protein ever cloned in a 

fish. and bears many similarities wilh its mammalian homologs. at the nucleotide levei as 

well as in tissue distribution and onset of expression during early development. Also as its 

mammalian counterpart. the spBGP gene promotor exhibits a modular organization, with a 

complex series of consensus sequences bearing homology lo response elemcnls for several 

physiologic mediators of BGP gene expression, including Steroid Response Element, OSE1 

and OSE2. In addition, lhe unusually long inlron II of spBGP bears a three-partite element 

which resemble a motif found in close proximity in the Vitamin D Responsive Element 

(VDRE) of the ral BGP gene, suggesting a role for this inlron in the regulation of the spBGP 

gene. 

Another necessary tool for further in vitro studies of BGP in fish is a bone-derived 

cell line, or an equivalent, which is required lo perform studies on the regulation of the fish 

BGP gene. We obtained several isolales of fish-bone derived cells which presented several 

osteoblast-Iike characteristics, such as synlhesis of alkaline phosphatase and BGP mRNA. 

and the capacity for nodule deposition and mineralization. These cells constitule already an 

invaluable tool to initiate regulation studies in vitro, and should permit to obtain fish bone- 

derived cell lines (Laizé et ai, work in progress). 

If we assume that spBGP did not diverge significanlly from the BGP of the earliest 

teleosts, we are led to conclude that this protein crossed more than 200 MY without 

significant changes, in particular in the region which is believed lo be essential for lhe protein 

correct folding. The absence of BGP from the calcified tissues of cartilaginous fish (which 

skeleton is formed of calcified cartilage) supports the view that this small protein may not be 

essential for the deposition itself of Ca2T ions but to control the way in which they are 

deposited (49), allowing for the formation of a more evolved tissue, a role so important that 

might have been essential for the success of the bony fishes, the colonization of land by 

vertcbrates and, ultimately, the origin of man. 
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The following protocols. although extracted total or partially from other sources, 

were the ones more frequently used throughout this work? being described in this special 

section for ease-of-consultation purposes. 



PROTOCOL1 

Isolation of plasmid DNA by the "boiling technique" 

Reagents : - Tris-Cl (Sigma, T-6066) 
- EDTA (Fluka, 03680) 

- Isopropanol (Sigma, 1-9516) 
- Ethanol (Ridel-de Haên, 32221) 
- LB Broth (Sigma, L-3022) 
- Ampicillin (Sigma, A-9393) 

- Bidestilled, auloclaved H2O 
-Triton X-100 (USB, 22686) 
- Sucrose (Sigma, S5016) 

Solutions: 

a) TE: - 10mM Tris-Cl 
- ImM EDTA 

b) STET: - 8% Sucrose 
-5% Triton X-100 

- 50mM EDTA 
- lOmM Tris-Cl 

c) Lisozyme solution freshly made: lOmg/ml lisozyme (Sigma, L6876) in lOmM 

Tris-Cl, pH 8.0. 

Procedures: 

1- Several white bacterial colonies were picked with a sterile toothpick and inoculated 

each in 2 ml LB + 50pg/ml ampicilin. Incubation took place O/N, with agitation, at 37 
0C. 

2- Next morning, 1.5 ml of each culture were transferred into a sterile 1.5 ml 
microcentrifuge tube and centrifuged in a microcentrifuge for 30 seconds at top speed 

(~ 13.000 rpm) to pellet the bactéria. 

3- The culture médium was removed and the pellet ressuspended in 350pl STET, with 

vortex for ~ 1 minute. 

4- 50 pl of lysozyme were added and mixed with Vortex. 

5- The tubes were placed in a boiling water bath for 40 seconds and centrifuged 
immcdiatclly at top speed for 10 minutes. 



6- The pellet was removed with a sterile toothpick and discarded. One vol. of ice-cold 
Isopropanol was added, mixed by inversion and the mixture was incubated at -30oC for 

20 minutes. 

7- The lubes were cenlrifuged at top speed for 15 minutes, lhe supematant discarded 

and the obtaincd precipitaled DNA washed with 350pl ice-cold 75% Ethanol. 

8- The DNA was air-dried and dissolved in 20pl of bidestilled. autoclaved H2O. 



PROTOCOL2 

Reverse transcription of Sparus total RNA (spRNAt) 

Procedures: 

1- One microgram of spRNAt was added to 1.0 pl of 50pM Universal Adapter dt 
primer, in a sterile PCR lube (Perkin Élmer). Incubation was performed at 650C for 3 

minutes, followed by cooling in ice. 

2- The following reagents were added. by this order: 

- 4 pl MgCU (25mM; Promega); 

- 2 pl 1 Ox PCR Buffer II (Promega); 

- 8 pl dNTPs mix (2.5mM each; Perkin Élmer); 

- 1.5 pl de DEPC-treated ddPUO; 

- 1 pl RNaseOUT inhibitor (GibcoBRL; 10777-019); 

- 1 pl Moloney Murine Leukemia Virus Reverse Transcriptase (M-MLV-RT) 
(Promega). 

3- Incubation was performed at 420C for 45 minutes. 

4- The enzyme was inactivated by incubation at 990C for 5 minutes and the reaction 
product was kept at -30oC until needed. 

Note: Ali incubations were performed in a Perkin Élmer GeneAmp PCR System 2400. 



PROTOCOL 3 

Double-strand DNA sequence analysis using the Sanger's dideoxy-chain 

tcrmination technique (l7Sequencing Kit (Pharmacia) 

Procedures: 

1- Double strand DNA (dsDNA) was denalured by adding 0.1 vol. ofa 2 M NaOH, 

2 mM EDTA solution and incubating at 370C for 30 minutes. 

2- The pH was then neutralized by addition of 0.1 vol. NaCifbCb and the DNA 

precipitated by adding 3 vol.s ice-cold 100% ethanol and incubated at -80oC for 15 

minutes. 

3- After eentrifugation for 10 minutes at 13000 rpm, the pellet was washed with 

ice-cold 75% ethanol, air-dried and dissolved in the appropriate volume of sterile 

ddfbO. 

4- To each 10 pl of the denatured dsDNA were added 1 pl oí the appropriate 

sequencing primer (5 pM) and 2 pl of annealing buffer (Pharmacia). The anncaling was 

performed by heating in a water bath at 650C and then allowing the temperature to 

slowly decrease to 30-350C. 

5- To the annealed DNA+primer were added 3 pl of Labelling Mix, 1 pl of [cc- 

35S]dATPaS and 2 pl of diluted (1:5 in Dilution Buffer) T7 DNA Polymerase, and the 

mixture incubated for 5 minutes at R/T. 

6- To each one of four microcentrifuge tubes containing 2.5 pl of each 

dideoxinucleotidc were added 4.5 pl of the labelled DNA, followed by a 5 minute 

incubation at 370C. The reaction was terminated by adding 5 pl of Stop solution. 



PROTOCOL 4 

Poly(A+) RNA isolation from total RNA with the QuickPrep Micro mRNA 
Purification kit (Pharmacia) 

Procedures: 

A. Purification Step 

1. Add DEPC-trealed water to 200 pg of S. aurata total RNA (extracted trom 

several S. aurata's tissues) to reach the volume of 1 ml. 

2. Add Iml of oligo-dT resin (Pharmacia) in a sterile 1.5 ml centrifuge tube and 
centrifuge for 1 minute at 13000 rpm. Remove supematant and add the diluted RNA to 

the oligo-dT pellet. 

3. Mix for 3 minutes and centrifuge for 5 minutes at 13000 rpm. 

4. Add 1 ml of High-Salt Buffer (Pharmacia), ressuspend the resin+RNA pellet 

and centrifuge for 1 minute at 13000 rpm. Repeat this washing step four times. 

5. Add 1 ml of Low-Salt Buffer (Pharmacia), ressuspend pellet and centrifuge 

for 10 seconds at 13000 rpm. Remove supernatant and repeat this washing step once. 

6. Ressuspend pellet in 300 pi ot Low-Salt Buffer. 

7. Add ressuspended resin+RNA to a MicroSpin column (Pharmacia), which 

was previously placed in a centriíhge tube. Centriínge for 5 seconds at 13000 rpm. 

8. Wash three times with 500 pl of Low-Salt Buffer, centriftiging for 5 seconds 

at 13000 rpm. 

9. Replace collecting centrifuge tube for a sterile one, add 200 pl of pre-warmed 

(650C) Elution Buffer (Pharmacia) to the column and centrifuge for 5 seconds at 13000 
rpm. Repeat elution step once. 

B. Concentration Step 

1. To the 400 pl of RNA obtained previously add 10 pl of glycogen solution 

(Pharmacia), 40 pl of 2.5 M potassium acetate solution and 1 ml of pre-chilled (-20oC) 

95% Ethanol. 

2. Precipitate RNA by incubating at least 30 minutes at -20oC and centrifuge at 

40C, for 5 minutes at 13000 rpm. 

3. Remove supematant, dry for 10 minutes and add 5 pl of DEPC-treated 

ddLEO. 



PROTOCOL5 

Construction of a Sparus cDNA library, using the Marathon™ cDNA 

Amplification Kit (Clontech): Second-strand cDNA synthesis 

Procedures: 

To 10 jil of cDNA obtained with the "first strand reaction": 

1. Add : 48.4 fxl of sterile ddfbO; 

16 f.il of 5x sccond strand buffer; 

1.6 fil of dNTP mix; 

4 jal of 20x second strand enzyme cocktail1 

80 jal total volume 

2. incubate at 160C for 1.5 hours; 

3. add 2 jal (10 U) of T4 DNA polymerase; 

4. incubate at 160C for 45 minutes; 

5. add 4 pl of 20x EDTA/Glycogen mix (0.2 M EDTA, 2 mg/ml Glycogen) and 

100 pi of Phenol:Chloroform:Isoamyl alcohol (25:24:1); 

6. centrifuge at 14000 rpm for 10 minutes; 

7. transfer aqueous phase to a sterile 0.5 ml tube; 

8. add 0.5 vol. of 4 M amonium acetate and 2.5 vol. of 95% ethanol at R/T; 

9. centrifuge at 14000 rpm for 20 seconds; 

10. remove supernatant and washing with 80% ethanol; 

11. dry pellet for ~10 minutes and dissolving in 10 pl of sterile ddEbO. 

1 The second-strand enzyme cocktail contains Rnasc H. E. coli DNA polymerase I and E. coli DNA ligase. 



PROTOCOL 6 

PCR amplification of the 5'-cnd of the sparus BGP gene, using the Universal 

Genome Walker™ Kit (Clontech) 

Procedures: 

Primary PCR: 

In a 250 pl PCR tube were added: 

- 37.8 pl H2O (Sigma); 

- 5 pl lOx Tíh PCR Rx buffer (Clontech); 

- 2.2 pl Magnesium Acetale (25 mM); 

- 1 pl DNA templale; 

- 1 pl AP1 (10 pM); 

- 1 pl Gene Specific Primer 1 (GSP1; SBG19R; 10 pM); 

- 1 pl dNTP mix (lOmM each); 

- 1 pl Advantage Tth Polymerase Mix (50x). 

The mixture was incubated in a Perkin Elmer's GeneAmp PCR System 2400. 

with the following program; 

940C - 2 seconds x 7 

720C - 3 minutes 

940C - 2 seconds x 32 

670C - 3 minutes 

670C - 4 minutes 

Secondary PCR: 

A secondary PCR Master Mix was prepared as follows: 

- 37.8 pl ddlUO; 

- 5 pl lOx Tth PCR Rx Buffer; 

- 1 pl dNTPs (lOmM each); 

- 2.2 pl Magnesium Acetate (25mM); 

- 1 pl AP2 (10 pM); 

- 1 pl Advantage Tíh Polymerase Mix (50x) 



Forty-eight microliters of the resulting solution were added to each one of two 

250 gl PCR tubes, followed by 1 jal of 10 |aM Gene Specific Primer 2 (GSP2; SBG20R) 

(see Table II.I for primer sequence) and 1 pl of a 1:50 dilulion of each primary PCR 

reaction. Amplification was performed with the following conditions: 

940C - 2 scconds 

720C - 3 minutes 

940C - 2 scconds 

670C - 3 minutes 

670C - 4 minutes 

Nested PCR: 

In a 250 pl PCR tube were added: 

- 1 pl of each secondary PCR reaction; 

- 5 pl Mg-Free PCR Buffer (GibcoBRL); 

- 4 pl dNTPs (2.5 mM each); 

- 1.5 pl MgCb (GibcoBRL); 

-2.5 pl SBG7R (10 pM); 

- 2.5 pl AP2 (10 pM; Clontech); 

- 0.25 pl Taq Polymerase (GibcoBRL); 

-33.25 pl ddHzO. 

The mixture was incubated in a Perkin Elmefs GeneAmp PCR System 2400, 

programmed as follows: 

950C - 2 minutes 

950C - 2 minutes 

630C - 1 minute 
720C - 2 minutes_ 

720C - 10 minutes 

35 cycles 



PROTOCOL7 

Isolation of plasmid DNA by the alkalínc lysis technique 

Procedures: 

1. 1.5 ml of bactéria grown on LB liquid médium were transferred lo a 1.5 ml 

sterile centrifuge tube. 

2. 100 pl of ice-cold Solution I [50 mM Tris.Cl (pH 8.0), 10 mM EDTA, 100 

pg/ml Rnase A] were added, followed by vortexing. 

3. 100 pl of R/T Solution II (200mM NaOH, 0.1% SDS) were added, followed 

by mixing by inversion and incubation for 5 minutes al R/T. 

4. 100 pl of R/T Solution III (3 M KC2H3O2, pH 5.5) were added, followed by 

mixing by inversion, incubation in ice for 10 minutes and centrifugation at 13000 rpm 
for 5 minutes. 

5. Supematanl was transferred to a sterile 1.5 ml centrifuge tube and the DNA 
precipilated with 2 volumes of R/T Ethanol, followed by centrifugation at 13000 rpm. 

for 1 minute, at R/T. 

6. The pelleted DNA was washed once with 75% ice-cold Ethanol, dried for ~ 

10 minutes and dissolved on 50 pl of sterile ddHbO. 



PROTOCOL8 

Synthesis of a non-radioactivily labcllcd RNA probe, using the DIG RNA Labeling 

kit (Bochringer-Mannheim Biochemica) 

Procedures: 

1 pg Apa I - digested DNA 

2 pl dNTP Labelling Mix Dig (Boehringer) 

4 pl 5x Transcription Buffer (Boehringer) 

2 pl Sp6 Polymerase (Promcga) 

1 pl RNA Guard (Pharmacia) 

DEPC-treated ddl-^O to fill 20 pl 

1 pg Pst I - digested DNA 

2 pl dNTP Labelling Mix Dig 

4 pl 5x Transcription Buffer 

2 pl T7 Polymerase (Promega) 

1 pl RNA Guard (Pharmacia) 

DEPC-treated ddfLO to fill 20 pl 

Sense Probe Antisense Probe 

The mixtures were then: - Incubated at 370C for 2 hours. 

- Treated with 2 pl of Rnase-free Dnase (RQ1, Promega), 

for 25 minutes, at 370C. 

- Precipitated with 0.1 vol. 3M NaC2H302 (pH 4.0) / 1 vol. 

ice-cold 100% ethanol. 

- Washed briefly with 75% ethanol and air-dried. 

- Dissolved in 100 pl of DEPC-treated ddPLO. 
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Maleic acid buffer (MAB): lOOmM maleic acid, 150mM NaCl (pH 7.5). 

Guanidinium Isothiocyanate Solution (for 200 ml): 100 g Guanidine Isothiocyanate. 

7.04 ml 0.75 M Sodium Citrate (pH 7.0), 10.56 ml 10% N-Lauroyl Sarcosine: DEPC- 

treated PbO until 200 ml. 

lOx PBS: 80g NaCl, 2g KC1, 14.4g Na2HP04, 2.4g KH2PO4, pH 7.4; add ddH20 to 
fill 1000 ml. 

20x SSC: Dissolve 175.3 g of NaCl and 88.2 g of sodium citrate in 800 ml of H2O. 
Adjust the pH to 7.0 with a few drops of a 10 N solution of NaOH. Adjust the volume to 
1 liter with H20. Sterilize by autoclaving. 

SSPE (1 x): 180 mM NaCl, 10 mM NaP04 (pH 7.4), 1 mM EDTA. 

TE (pH 7.4): 10 mM Tris.Cl (pH 7.4), ImM EDTA (pH 8.0). 

LB Médium: it is a widely used growing médium. It can be used in the liquid form or 
supplemented with 1.5% agar-agar to obtain a solid médium. It can be supplemented 

with antibiotics lo allow for antibiotic resistance selection. 
Composition: 10g/l bactopeptone; 5g/l yeast extract; 5g/l NaCl. 

Escherichia co/i DH-5a bacterial strain: strain widely used for plasmid amplification. 

AIlows for blue/white selection through a-complementation of p-galactosidase, and for 
ampicilin resistance. 

Genotype: F' (j)80d/acZAM 15 A(lacZYA-argF)\J\69 deoR recA\ endA\ 

hsdRMfa, mk
+)phoA supEAA X thi-\ gyrA96 relA\. 

pGEM®-T plasmid vector (Figure A2a): it is a multicopy phagemid with 3003 bp, 

derived from Promega's pGEM®-5Zf(+). It has 3,-T overhangs at the insertion site and 

the origin of replication of the filamentous phage fl for the preparation of single- 
stranded DNA. 

pGEM®-T Easy plasmid vector (Figure A2b): it is a multicopy phagemid with 3018 

bp. It has 3'-T overhangs at the insertion site and the origin of replication of the 
filamentous phage fl for the preparation of single-stranded DNA. The main difference 

to pGEM®-T plasmid vector resides in the restriction enzyme recognition sites that 

flank the multiple cloning site, which are EcoR I, BstZ I and Not I for pGEM®-T Easy 

and BstZ I for pGEM®-T. 



A B 

Figure Al. Schematic representalion of pGEM@-T (A) and pGEM®-T Easy (B) 

plasmids used in this work as cloning veclors. Boxes in the right show lhe 
localization of the multiple cloning site restriction enzymes. as well as of the T7 and 

SP6 sequences. In the plasmid main body are represented the gene for ampicillin 
resislance (Ampr), as well as the lacZ gene fragment and the fl origin of replication 

(from Promega's technical manual). 

MCS 

SV40 
poly A 

/acZ Amp 
Basic □Bgal 
kb pUC 

Sv40 
poly SV4Q 

mlron 

Figure A2. Schematic representalion of p(3gal-Basic plasmid vector, showing, among 

other features, the localization of the Multiple Cloning Site (MCS) the gene for 
ampicillin resistance (Amp1), the lacZ gene, and the fl and pUC sites for origin of 

replication; GenBank accession number U13184.  
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Abstract 

Bone Gla protein (BGP. Osteocalcin) is a bone-specific vitamin K-depcndcnt protein which has been intensively sludicd in mammals. 
Although BGP is lhe most abundant non-collagenous protein of bone. its mode of action at the molecular levei remains unclear. From an 
evolutionary point of view, the appearance of BGP seems to parallcl the appearance of hydroxyapalite-containing bone structures since it has 
ncver been found in clasmobranchs, whose skeleton is composcd of calcified cartilagc. Accordingly, rccent work indicates thal, in mamma- 
lian bone. BGP is requircd for adequalc maturation of lhe hydroxyapalile crystal. Taken logclhcr. these data suggesl lhat teleost fishcs, 
prcsumably lhe first vcrtcbratcs to dcvelop a BGP-conlaining skeleton, may bc a useful model lo further invesligate BGP funclion. In 
addition. fish offer several advanlages over mammalian modcls, due lo a large progeny, externai embryonic development and transparency of 
larvae. In lhe presenl work, the BGP cDNA and gene were cloned from a teleost fish. Sparus aurata, and its tissue distribution, pattern of 
developmental expression and evolutionary palhways analyzed. The molecular organization of the Sparus BGP (spBGP) gene is similar to 
mammalian BGP genes, and its expression throughout development follows lhe onscl ol calcification. The spBGP gene encodes a pre- 
propeptide of 97 amino acid residues, expressed only in bone and showing extensive homology lo its mammalian homologs. Phylogcnetic 
analysis of lhe availablc BGP scquences supports the hypothesis that ali BGPs have a singlc origin and sharc a common anccstor with a 
related vitamin K-dependcnl protein (Matrix Gla protein). © 2001 Elsevier Science B.V. Ali rights reserved. 

Keywords: BGP; Osteocalcin; Development; Tissue dislribulion: Evolulion 

1. Introduction 

Bone Gla protein (BGP or Osteocalcin) belongs to the 
family of vitamin K-dependent Ca2+-binding proteins and 
is found in bone of ali vertebrates examined to date, from 
bony fish to mammals. In teleost fish BGP is present in the 
bone tissue at leveis comparable to those found in mamma- 
lian bone (Cancela et al., 1995) but could not be found in the 
skeleton of cartilaginous fishes (i.e. shark verlebra), which is 
formed of calcified cartilage (Rice et al., 1994). These 
results suggest that BGP expression may be specific to 
hydroxyapatite-containing bone tissue. 

Abbrcviations: aa, amino acid(s); bp. base pair(s); ORF, opcn rcading 
frame; UTR. untranslated rcgion(s); spBGP, sparus BGP; dph, days post- 
hatching 

* Corresponding author. Present address: University of Algarve, Center 
for Marine Sciences. Campus de Gambelas, 8000-810 Faro, Portugal. Tel.; 
+351-289-800971; fax: +351-289-818353. 

E-mail address: lcancela@ualg.pl (M.L. Cancela). 

Ali known BGPs are synthesized as pre-pro-precursors 
and their mature form is a small acidic protein (pi = 4.0) 
containing a unique sequence ranging from 46 to 50 amino 
acid residues, depending on the species (Cancela et al., 
1995). The characteristic y-carboxylated residues (Gla) 
are derived from a post-translation modification of selected 
glutamates (positions 17, 21 and 24 in the human BGP) 
through a vitamin K- and CCV requiring enzyme complex. 
They are located within a conserved motif in the central 
portion of the molecule, which also includes a disulfide 
loop (Cys-23-Cys-29 in the human BGP). The resulting 
tri-dimensional structure is thought to be responsible for 
the tight binding of BGP to hydroxyapatite. This is further 
corroboratcd by the finding that y-carboxylation of residue 
17 of human BGP is essential for the protein to exhibit its 
calcium-dependent conformational transition and its high 
affinity binding to hydroxyapatite crystals in bone (Nakao 
et al., 1994). 

0378-1119/01/S - see front matter © 2001 Elsevier Science B.V. Ali rights reserved. 
PII; S0378-1 1 19(01)00426-7 
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In mammals, BGP is synthesized by osteoblasts and 
odontoblasts, being found in bone extracellular matrix and 
serum. Although high circulaling leveis of BGP are corre- 
lated with increased states of bone tumover in vivo (Price 
and Nishimoto, 1980; Tsuji et al., 1996), functional studies 
have failed to reveal a criticai role for BGP in bone forma- 
lion. In chronic treatments with the vitamin K antagonist 
warfarin, although the BGP leveis in bone matrix were 
reduced to less than 2% of controls, this did not seem to 
affect bone formation or structure (Price et al., 1982). More 
recently, BGP-deficient mice were shown to develop a 
phenotype marked by higher bone mass, when compared 
to controls, due to increased bone formation (Ducy et al., 
1996) and infrared micro-spectroscopy analysis has 
provided evidence that BGP is required for the correct 
maturation of the hydroxyapatite crystal in mammalian 
bone (Boskey et al., 1998). However, its mode of action at 
the molecular levei remains unclear. 

The amino acid sequence of BGP has been highly 
conserved from fish to man (Cancela et al., 1995), suggest- 
ing that its function has also been maintained, but nolhing is 
known of its regulation of expression and appearance during 
development in species other than mammals and birds. 
Furthermore, there are no BGP cDNA or gene sequences 
available from lower vertebrates. In this work. we present 
the first DNA sequences for BGP from a lower vertebrate, 
the marine fish Sparus aurata, and compare it with those 
from higher vertebrates. The acquisition of these molecular 
tools allowed us to analyse its tissue distribution and expres- 
sion throughout larval development of Sparus. 

2. Materials and methods 

2.1. The Sparus aurata model 

The gilthead seabream Sparus aurata is a marine teleost, 
common in Mediterranean and Atlantic waters. It is a 
protandrous hermaphrodite, developing a testis during the 
first year of life and undergoing sex reversal to female 
between the second and the third years. The Sparus pelagic 
egg produces a 2 mm transparent larvae with the primordial 
íin, the notochord and the miomers completely developed. 
During the first 3-4 days of life after eclosion the pectoral 
fins start to develop, the eyes become functional. the brain is 
completely differentiated and the branchial arches are devel- 
oping. Immediately after this period the mouth and the 
remaining parts of the digestive tract become functional 
and the primordial pectoral fins are completely formed. 
The larval stage ends when the specimens develop scales 
and fins are differentiated, which corresponds to the age of 
40-45 dph. Calcified structures begin to appear at around 30 
dph (or 70-80 mm in length), although a high variability has 
been observed, depending on a series of extrinsic and intrin- 
sic factors which regulate individual development. Around 
90 dph almost ali calcified structures have developed. only 

the structures necessary for lhe growing of the fish remain- 
ing in the cartilaginous state (Arias, 1980, and references 
therein). 

Due lo its high commercial value, aquacullure techniques 
for Sparus have been developed since the late seventies and 
presently it is possible to control ali stages of its life cycle 
(FEAP, 1997). 

2.2. Cloning of a partial Sparus BGP cDNA 

Total RNA from fully calcified Sparus juveniles was 
extracted using the acid guanidinium thiocyanate-phenol- 
chloroform melhod (Chomczynski and Sacci, 1987). Total 
RNA (1 p.g) was reverse transcribed at 420C for 1 h using 
the Moloney Murine Leukemia Virus Reverse Transcriptase 
(M-MLV RT, Promega) and an oligo(dT)-adapter (5'- 
ACGCGTCGACCTCGAGATCGATGfT),^'), followed 
by amplification by lhe polymerase chain reaction (PCR), 
using a 5' degenerated primer (SBG2F: 5'-TGC/TGAA/ 
GCAC/TATGATGGAC/TACA/C/G/TGA-3') designed 
according to the Sparus BGP (spBGP) mature protein 
sequence previously obtained (Cancela et al., 1995) and a 
reverse universal adapter ^'-ACGCGTCGACCTCGA- 
GATCGATG-3'). PCR reactions were conducted for 35 
cycles (I cycle: 40 s at 950C, 30 s at 520C and 45 s at 
720C) followed by a 10 min final extension at 720C with 
AmpliTaq DNA polymerase (Perkin-Elmer). PCR products 
of the expected size were visualized by 1% agarose gel 
electrophoresis and ethidium bromide staining, excised 
from the gel, and eluted from the agarose slice using the 
Qiaex II Gel Extraction Kit (Qiagen). The resulting DNA 
fragments were cloned into the pGEM-T vector (Promega) 
and final idcntification was achieved by DNA sequence 
analysis using the Sequenase 2.0 kit (United States 
Biochemical Corporation) and lhe SP6 and T7 vector-speci- 
fic primers, following established procedures (Sambrook et 
al., 1989). 

2.3. Isolation of the full length spBGP cDNA 

Poly A" RNA from Sparus was purified from 600 p,g of 
total RNA (extracted from Sparus juveniles possessing a 
calcified skeleton. as assessed by alizarin red histological 
procedures; Gavaia et al., 2000) using the QuickPrep Micro 
mRNA Purification Kit (Pharmacia). This purified mRNA 
was used to identify the 5'-end of spBGP cDNA by 5'- 
RACE PCR with the Marathon™ cDNA amplification kit 
(Clontech). Amplification of the 5'-RACE-PCR products 
thus obtained was accomplished with Advantage Klen Taq 
polymerase, using the AP1 oligo (both from Clontech) and a 
specific reverse primer, SBG4R (S^GTTAGGGGAAAT- 
GATCGAATCACAGTGGG-3'), designed according to 
the partial spBGP cDNA sequence previously obtained. 
Amplification conditions were those suggested by the 
supplier. The PCR product obtained was fractionated by 
agarose gel electrophoresis, purified from the gel and cloned 
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Table 1 
Oligonuclcolides used for PCR amplification of Sparus BGP cDNA and gene 

Primer Sequence3 Localization in the gene1. 

SBG2F tgygarcayatgatggayacnga' + 2453 
SBG3R GGGGATCGGTCCGTAGTAGG + 2518 
SBG4R GTTAGGGGAAATGATCGAATCACAGTGGG + 2733 
SBG5F TGCGAGCACATGATGGACACTGAGGGAATC + 2453 
SBG7R GAACCAGGAAGGCCAGAGTC + 124 
SBG8F TTCGTGGAGAGGGACCAGGC + 2121 
SBG9R GGGGATCGGTCCGTAGTAGG + 2518 
SBG1 IR CCATCAGCTGTCGTAGTAAGGC + 2548 
SBG12F GAGCTGGAAGTCTCCGGTCCG + 33 
SBG13F CCAGCCTGCCAGTGACAACCC + 371 
SBG14R GGTTGTCACTGGCAGGCTGG + 390 

SBG15R CCGCTCTCTTCTGTCTCACC + 2169 
SBGI8F CGGTAAGTTGCATCAAACGG + 295 
SBG19R CCACTGCGGAGGCCTGGTCCCTCTCC + 2126 
SBG20R GTGGAGGCATCTGAGGGAAAACATCTCG + 364 
SBG21R CGGACCGGAGACTTCCAGCTCTGTCAC + 53 
SBG22F GACAAGGCACCAGCATTGACC - 1119 
SBG26R GACGTTTCTATCGGCCAT + 1912 
SBG27R CCCGGGTTGTATGTGC + 1589 
SBG28F CGGAACACTGTTTGAAG + 573 
SBG29F CCCCAAACTACATAGTGC + 774 
SBG30R CAGAGTACAACTGAGCAC + 1385 

3 Ml sequences are described in lhe 5' lo 3' direclion. 
h Corrcsponds lo localization of lhe first nucleotide (5' end of oligonucleotide) in lhe sequcncc of lhe spBGP gene. 
c Y. pyrimidinc: R. purinc; N, G + a + T + c. 

in pGEM-T Easy vector (Promega). Sequencing was 
performed as described above. 

2.4. Cloning and sequencing of spBGP gene and 5' flanking 
region 

Genomic DNA was extracted from adult Sparus tissues as 
described (Sambrook et al., 1989) and its integrity checked 
by loading an aliquot onto a 0.8% agarose gel. Several 
oligonucleotide pairs were then used to selectively amplify 
overlapping regions of the BGP gene (see Table 1 for oligo- 
nucleotide sequence and localization). PCR reactions were 
performed using 0.4 jxM of each primer, 1.5 mM MgCE, 
0.05 mM of each nucleotide and 1 Unit of Taq DNA Poly- 
merase (GibcoBRL). After an initial denaturation step (5 
min, 950C), amplification was performed for 35 cycles 
(one cycle: 2 min at 950C, 1 min at 60oC, 2 min at 68 C) 
followed by a final elongation period of 12 min at 680C. The 
resulting PCR produets were cloned in pGEM-T Easy 
(Promega) and DNA sequenced. Ali exons and exon/intron 
borders were sequenced on both strands. The 5 flanking 
region was obtained with the Universal Genome Walker™ 
Kit (Clontech) as specified by the manufacturer and the 
resulting genomic PCR produets were cloned in pGEM-T 
Easy and sequenced as described. 

2.5. Mapping of spBGP gene start site of transcription 

The transcription start site of the spBGP gene was 
mapped by 5'-primer extension analysis. Fifteen micro- 

grams of total RNA. extracted from the calcified jaw of a 
juvenile Sparus by established methods (Chomczynski and 
Sacci, 1987). were annealed to a reverse primer (SBG14R, 
Table 1) extending from +75 to +94 bp downstream from 
the initiation ATG codon (Fig. 1). The extension reaction 
was performed for 5 min using the M-MLV reverse tran- 
scriptase (Gibco BRL), and continued for an additional 60 
min, after addition of 10 pCi [a-32P] dCTP. The resulting 
single strand cDNA was RNase-treated for 15 min at 370C 
and then phenol/chloroform-extracted and ethanol precipi- 
tated. Pellets were re-suspended in 5 |xl of formamide- 
containing sequencing dye, heat-denatured (5 min at 
650C) and loaded onto a 6% bis-acrylamide, 7 M urea 
sequencing gel. Autoradiography was performed using 
Kodak X-Omat AR film (Sigma) with two intensifying 
screens at -30oC for 15 h. The size of the amplified frag- 
ments was determined from a known DNA sequence reac- 
tion loaded on adjacent lanes. 

2.6. Northern bloí analysis 

Total RNA was extracted from Sparus tissues (vertebra, 
jaw, heart and liver) and from Sparus whole larvae 
collected at different developmental stages (27, 86 and 
130 days post-hatching (dph)) and size-fractionated by 
electrophoresis on a 1.4% formaldehyde-containing agar- 
ose gel. The RNA in the gel was transferred onto N~ Nylon 
membranes (Schleicher & Schuell) by a capillary method 
(Sambrook et al., 1989) and pre-hybridized at 420C in 50% 
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i—► 5* RACE 

TGTGTAAGAGAAAGAGAAAGAGAGGAGTGACAGAGCTGGAAGTCTCCGGTCCGACTTGTT i i I-I 
1 20 40 60 

-50 
Met Lys Thr Leu Ala 

GCTTGGTATAATACAGACGGTGAAGAAAGAAGCTGAAAG ATG AAG ACT CTG GCC i ■ 
80 100 

-40 
Phe Leu Val Leu Cys Ser Leu Ala Ser lie Cys Leu Thr Ser Asp 
TTC CTG GTT CTC TGC TCC CTG GCA GCC ATC TGT CTG ACT TCA GAT i i 

120 140 
-30 Pr®/Pro -20 

Ala Ser Thr Gly^Ser Gln Pro Ala Ser Asp Asn Pro Ala Asp Glu 
GCC TCC ACT GGC TCC CAG CCT GCC AGT GAC AAC CCT GCT GAT GAG i i i 
160 180 200 

-10 
Gly Met Phe Val Glu Arg Asp Gln Ala Ser Ala Val Val Arg Gln 
GGT ATG TTC GTG GAG AGG GAC CAG GCC TCC GCA GTG GTG AGA CAG i ■ 

220 240 

Pro/Mat 
-l\l/+l 10 

Lys Arg Ala Ala Gly Gln Leu Ser Leu Thr Gln Leu Glu Ser Leu 
AAG AGA GCG GCT GGA CAG CTG TCC CTC ACT CAG CTG GAG AGC CTG i i 

260 280 

20 SBG2F 
Arg Glu Val Cys Glu Leu Asn Leu Ala Cys Glu His Met Met Asp 
AGA ÇAA GTG TGT gAg CTC AAC CTG GCT TGC GAG CAC ATG ATG GAC 

300 320 34( 

31 
Thr Glu Gly lie lie Ala Ala Tyr Thr Ala Tyr Tyr Gly Pro lie 
ACT GAG GGA ATC ATC GCT GCC TAC ACG GCC TAC TAC GGA CCG ATC i > 

360 380 

Pro Tyr *** 
CCC TAC TAG AAGCCTTACTACGACAGCTGATGGCTCATCAGCTGTCTTTTTTTATTA ■ i < 

400 420 440 

TCATTATTATTAGAATTATCACCTTTGAGCTCTACTTTTTCCTTTATAGTCAAGCCCAAA 
I 1 1 

460 480 500 

GCACGTAAGCAAGCTAAAAAGTGTGTGATGTGGAGCAGGAGGAATAATATCTTCATGTGA 
i i i 

520 540 560 

SBG4R 

ATTTATTTTCCACCCACTGTGATTCGATCATTTCCCCTAACCCGTAGAGTAGCGTGATGA 
i " ' 

580 600 620 

AACTG|AATAAA|GACAAATGAACCTGT   i 
640 

Fig. I. Complete nucleotide scquence of the cDNA encoding Sparus BGP. Numerical positions in lhe nucleotide scquence beginning al lhe cap site (+1, as 
deiermined by 5' primer extension), are noted below lhe sequence. The 5' end obtained by 5' RACE experiments is signalled. Amino acid residues are 
numbered according to rcsidue I of lhe mature prolein and are shown above the rcspcctive scquence. The stop codon is indicalcd by asterisks and the 
polyadenylation signal is boxed. The codons for the Gla residues are underlined twice. Scquenccs used forconstruction of SBG2F and SBG4R oligonucleotides 
are denotcd by horizontal arrows. The Prc/Pro (deduccd from comparison with other BGP sequences) and Pro/Maturc (inferred from Cancela et al., 1995) 
clcavage sites are shown by vertical arrows and putativo y-carboxylase rccognition site is highlighted in bold. 
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formamide, 5 X Denhardt's solulion, 5 X SSPE and 50 fig/ 
ml Calf Thymus DNA for 2-3 h. A spBGP cDNA probe 
(spanning from nucleotide 322 to 602 of the spBGP 
mRNA) was labelled with [a-32P] dCTP using the Prime- 
It® II Random Primer Labeling Kit (Stratagene) and sepa- 
rated from unincorporated nucleotides on a NACS 52 
PREPAC1* column (GibcoBRL). The purified labelled 
probe was added to the pre-hybridization solution and incu- 
bated with the membrane ovemight under the same condi- 
tions described for pre-hybridization. Blots were washed 
twice in 6 X SSPE fl X SSPE is 180 mM NaCI, 10 mM 
NaPCfi (pH 7.4), and 1 mM EDTA], 0.1% SDS at room 
temperature for 15 min and twice in 1 X SSPE, 0.1% SDS 
at 550C for 30 min. Autoradiography was performed with 
Kodak X-Omat AR film with two intensifying screens at 
— 30oC for up to one week. 

2.7. RT-PCR amplificaiion and Southern hybridization of 
BGP message in different tissues and developmental stages 
of Sparus 

One microgram of total RNA extracted from tissues 
(vértebra, jaw, heart. liver, and muscle) and whole Sparus 
specimens from various developmental stages (neurula, 2, 3, 
18, 27, 37, 47, 61, 75, 82, 91 and 130 dph) was treated with 
RNase-free DNase I for 3 h (370C) and reverse transcribcd 
using the same conditions described above. One twentieth of 
each reaction was amplified by PGR, using two specific 
oligonucleotide primers designed according to the spBGP 
cDNA sequence obtained previously (SBG8F and 
SBG1 IR). PGR reactions were carried out with Taq DNA 
polymerase (Promega) for 20 cycles (one cycle: 30 s at 950C, 
40 s at 60oC and 45 s at 680C) followed by a íinal extension 
period of 10 min at 680C. Positive and negative controls were 
made by amplifying, respectively, a clone of spBGP cDNA 
and a sample without DNA template with the same primers. 
As an internai control for the relative amount of RNA used 
for each sample, Sparus beta-actin was also amplified from 
the same amount of RT reaction, using two specific primers 
designed according to the published Sparus beta-actin cDNA 
(GenBank Accession # X89920; forward primer: 5'- 
TTCCTCGGTATGGAGTCC-S'; reverse primer: 5'- 
GGACAGGGAGGCCAGGA-3'). Resulting PGR products 
were Southern transferred onto a NT Nylon membrane 
(Schleicher & Schuell) and prehybridized at 420C for 3 h 
using 5 x SSPE, 10 x Denhardt's, 0.5% SDS and 50 jxg/ 
ml heat denatured calf thymus DNA. Hybridization was 
performed for 15 h at 420C in 50% formamide, 6 X SSPE, 
0.5%SDS. 50 p,g/ml heat-denatured calf thymus DNA and 
the Sparus cDNA fragment labelled with [a-32P]-dCTP, as 
described above. Membranes were washed with 6 X SSC, 
0.2% SDS (2x10 min, room temperature), 2 X SSC, 0.2% 
SDS (30 min., 420C) and 0.1 X SSC, 0.2%SDS (60 min., 
550C). Autoradiography was performed with Kodak X- 
Omat AR film and two intensifying screens at —30oC. 

2.8. Genomic Southern analysis 

Aliquots (20 to 50 p-g) of Sparus genomic DNA were 
digested with different restriction enzymes then ethanol 
precipitated, re-suspended in sample loading buffer and 
size-fractionated by electrophoresis on a 0.8% agarose gel 
for 9 h at 35 V. DNA markers (lambda DNA-HindTII 
digested and 1.0 kb ladder from GibcoBRL) were loaded 
in adjacent lanes in the gel. Following electrophoresis, the 
DNA was transferred to an N r-Nylon membrane (Schlei- 
cher & Schuell) by a capillary method (Sambrook et al., 
1989) and pre-hybridized at 420C for 3 h in 6 X SSPE, 
10 X Denhardfs solution. 0.5% SDS and 50 (xg/ml calf 
thymus DNA. Hybridization was carried for 24 h in a solu- 
tion containing 6x SSPE. 0.5% SDS, 50% formamide, 50 
(xg/ml calf thymus DNA and either the full length or a 280 
bp (from nucleotides 322 to 602) spBGP cDNA probe, 
labelled with [a-32P] dCTP, as described above. Washing 
was performed with 6x SSPE, 0.1% SDS (2x15 min. 
room temperature). IX SSPE, 0.1% SDS (2x15 min. 
370C) and 0.1 X SSPE. 0.5% SDS (30 min, 650C). Auto- 
radiography was performed with Kodak X-Omat AR film 
and two intensifying screens at — 80oC for 8 days. 

2.9. Localization of BGP gene expression by in situ 
hybridization 

2.9.1. Animais and tissue preparation: 
Sparus specimens collected at various developmental 

stages were fixed overnight at 40C in freshly made 1% 
paraformaldehyde solution, washed 3x 10 min. in TBST 
buffer (50 mM Tris, pH 7.4; 150 mM NaCI; 0.1% Triton 
X-lOO), and stored in methanol at 40C. Samples were dehy- 
drated by passing them through an increasing alcohol series 
and embedding in paraffin. Tissues were cut into longitudi- 
nal 5 (xm thick sections and mounted on slides pre-coated 
with 10% poly-L Lysine (Sigma) or VectabondJ1 (Vector 
Laboratories), dried for 48 h at 420C, and kept at room 
temperature until use. 

2.9.2. In situ hybridization 
Digoxigenin-1 l-UTP-labeled single stranded RNA 

probes were prepared with a DIG RNA Labeling kit (Boeh- 
ringer-Mannheim Biochemica), according to the manufac- 
turer's instructions. A 325 bp fragment of spBGP cDNA 
(spanning from nucleotide 322 to the 3'end of the cDNA; 
see Fig. 1) was used to generate sense and anti-sense ribop- 
robes. Transcription products were treated with RNase-free 
DNase and recovered by ethanol precipitation. One tenth of 
the RNA obtained was analyzed by electrophoresis onto a 
formaldehyde-containing agarose gel in order to check for 
RNA size and quality. The tissue sections obtained as 
described above were treated to remove the paraffin, 
hydrated in a decreasing alcohol series and incubated with 
40 (xg/ml of Proteinase K in Tris-HCl (pH 8.0) for 15 min at 
room temperature. Sections were fixed again with 4% 
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formaldehyde for 30 min then washed Iwice wilh PTW (137 
mM NaCI. 2.7 mM KC1, 1.8 mM KH2P04, 10 mM 
Na2HP04, 0.1% Tween-20) for 5 min. 

Pre-hybridization was carried at 55-60oC in 50% forma- 
mide, 4 X SSC, I X Denhardt's solution. I |xg/ml yeast 
tRNA. 0.04% CHAPS ((3-Cholamidopropyl) dimethylam- 
monium-l-propanesulfonate; Sigma) and 0.1 mg/ml heparin 
for 3 h. Hybridization was performed in the same buffer 
after addition of 0.1-1 p.g/ml of digoxigenin-UTP-labeled 
RNA probe, previously diluted with buffer and denatured al 
80oC for 5 min. Approximately 50 p-l of solution was added 
to each section prior to covering il with parafilm and incu- 
bating at 55-60oC ovemight. Following hybridization, 
sections were washed in 2 X SSC at 55-60oC for 3 X 20 
min then digested wilh RNase A (10 pg/ml) for 3 min at 
370C. A second series of washings was performed for 2 X 20 
min with SSC/CHAPS (1.4 X SSC, 0.6% CHAPS) at 550C, 
once with PTW for 5 min at room temperature, and once 
with 1:1 PTW/100 mM maleic acid, 150 mM NaCI, pH 7.5, 
for 10 min at room temperature. Blocking was carried oul 
for I h with blocking buffer (Boehringer-Mannheim 
Biochemica) at room temperature, followed by three washes 
wilh PTW at room temperature. Washed sections were incu- 
bated for 10 min with colour buffer (50 mM Tris, pH 9.5; 50 
mM MgC^; 100 mM NaCI; 0.1% Tween 20) and then for 
several hours to ovemight wilh colour reagent (337.5 pg/ml 
of nitroblue tetrazolium salt, 165 pg/ml of 5-bromo-4- 
chloro-3-indolyl-phosphate in colour buffer), at room 
temperature, with constant agitation. Slides were examined 
for the appearance of maximal signal-to-noise results, then 
washed in distilled water and mounted with DPX (BDH 
Laboratory Supplies). 

2.10. Alcian blue and alizarin red whole mount síaining 

Sparus specimens collected at different stages throughout 
development were fixed, washed and stored as described 
previously in Section 2.9.1. Whole specimens were 
hydrated through a decreasing alcohol series and stained 
for cartilage with Alcian blue 8GX (Sigma, Cl 74240) for 
various periods of time, according to size (Gavaia et al., 
2000). Specimens were removed from the staining solution 
immediately after visible stained structures were observed. 
in order to avoid decalcification of small structures by the 
glacial acetic acid-ethanol solution. The specimens were 
then once again hydrated by passing through a six step 
decreasing alcohol series and incubated in 1% KOH al 
room temperature until cleared. Staining with Alizarin red 
S (Sigma, Cl 58005) was performed as with Alcian blue, 
followed by incubation in a series of glicerol-l%KOH baths 
(starting at 1:3 ratio and increasing until 3:1). Storage in 
absolute glycerol was only initiated when the specimens 
were completely clear, with ali the internai structures clearly 
visible. Five to ten microlitres of alkaline-equilibrated 
phenol were added to glycerol to preveni contamination. 

2.11. Evolulionary analysis of spBGP 

Phylogenetic analysis of BGP evolution was performed 
using ali available amino acid BGP sequences and using as 
outgroup ali known amino acid Matrix Gla Protein (MGP) 
sequences, as well as Pacific hagfish prothrombin and 
human coagulation factor II sequences obtained from 
GenBank. Character state changes were ali weighted 
equally and insertions/deletions were coded as missing 
data, in order to avoid including them as if they were 
many independem events. Ali analyses were performed 
with PAUP4.0b4a software (Swofford. 1998). Phylogenetic 
inferences used maximum parsimony as optimization criler- 
ion, with the heuristic algorithm. Parsimony methods search 
for minimum length trees, i.e. trees that minimize the 
amount of evolulionary change needed to explain the avail- 
able data under a pre-speciíied set of constraints and upon 
permissible character changes. Confidcnce limits of indivi- 
dual clades were estimated by bootstrap analysis (Felsen- 
stein, 1985) with 1000 replicates. 

3. Results 

3.1. Cloning of the S. a ura ta BGP cDNA 

Based on the amino acid sequence of mature spBGP 
previously obtained (Cancela et al., 1995), an oligonucleo- 
tide (SBG2F, Table 1 and Fig. 1) was designed and used to 
amplify a parlial BGP cDNA (325 bp) by RT-PCR, using 
total RNA extracted from Sparus juveniles with a calcified 
skeleton (as assessed by alizarin red staining). This DNA 
fragment extended from amino acid 23 of the mature protein 
lo the stop codon and extended an additional 254 bp to the 
site of insertion of the poly-A tail, 15 bp after a consensus 
polyadenylation signal (Fig. 1). The 5' end of spBGP cDNA 
was obtained by 5' RACE-PCR using a reverse primer 
(SBG4R, Table 1 and Fig. 1), as described in Section 2. 
As deduced from the comparison with the complete 
cDNAs for mammalian and chicken BGPs (Fig. 2 and 
Table 2), the spBGP cDNA encodes a pre-peptide of 24 
residues, a pro-peptide of 28 residues and a mature protein 
of 45 residues. The later is in full agreement with the protein 
sequence previously obtained for mature BGP following its 
purification from the Sparus vértebra (Cancela et al., 1995). 
Although the Sparus cDNA is longer than its mammalian 
and avian counterparts, this difference is due to longer 5'and 
3'UTRs, while the coding region is of a size comparable to 
those from ali known BGP cDNAs (Table 2). 

3.2. Molecular organizaíion of the Sparus BGP gene 

The fish BGP gene spans 2778 bp (Fig. 3) and is orga- 
nized into four exons and three introns (the first two of phase 
I while the third intron is of phase II, Table 3), in agreement 
with the structure of ali known BGP genes (Table 4). 
Comparison with the cDNA sequence allowed the idenlifi- 
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Seabream BGP MKTLAFLV LCSLAAI CLTS (D)A STC-SQPASDNPA DE©MF - VERDQ ASA VVRQKR' 
Chicken BGP MKAAALLL LAALLTFSLCRSAPDG - S D'A R S A K A F I SHRQR GEMVRRQKR" 
Mouse OG1 BGP MRTLFLLT LLT LAAL CL SDLT®A*KPSGPESDK ®FMSKQEG NKV VNRL RR" 
Mouse OG2 BGP MRTLSLLT LLALAAL CL SDL T ©A*K PSGPHSDK 0F MSKQEG NKV VNRL RR* 
Rat BGP MRTLSLLT LLALT AF CL SDL A©A"KPSDSESDK ©FMSKQEGSKVVNRLRR* 
Bovino BGP MRTPMLLA LLALATLCLAGRADA"KPGDAESGKGA - - - AFVSKQEGSEVVKRLRR* 
Human BGP MRALTLLA LLALAALCI AGQ A©A*K PSGAESSK ©FVSKQEG SEV VKRPRR* 

♦ ♦ ♦ A A A A A A 
10 20 30 40 

1 -b 
Seabream BGP  A A G Q L s L T Q L E ©L R E V C E L N L A C - E H M M D T E G 1 1 A A Y T A Y Y G p 1 P 
Chicken BGP HYAQDSGV A G A P - P N P L E A Q R E V C E L S P D C D E L A - D Q 1 G F Q E A Y R R F Y G P V 
Mouse OG1 BGP Y - - - - L © - A S V P s P D P L E P T R E O C E L N P A C D E L S - D Q Y G L K T A Y K R 1 Y G T 1 
Mouse OG2 BGP Y - - - - L © - A S V P s P D P L E P T R E Q C E L N P A C D E L S - D Q Y G L K T A Y K R 1 Y G l T 1 
Rat BGP Y L N N G L © - A P A P Y P D P L E P H R E V C E L N P N C D E L A - D H 1 G F Q D A Y K R 1 Y G T T V 
Bovine BGP Y L D H WL G - A P A P Y P D P L E P K R E V C E L N P D C D E L A - D H 1 G F Q E A Y R R F Y G P V 
Human BGP Y L Y Q WL © - A P V P Y P D P L E P R R E V C E L N P D C D E L A - D H 1 G F Q E A Y R R F Y G P V 

A A A A A A AA A A A ♦ ♦ ♦ A A 

Fig. 2. Amino acid scqucnccs of ali known complete pre-proBGPs. Scquences were aligned and conservcd residues marked bv vertical arrows. A box cncloses 
the mosl conserved region of lhe protein and a slar is located above each gamma-carboxyglutamate residue. Dashes indicaled gaps in lhe sequence. inlroduced 
to increase homology. A circlc cncloses amino acids corresponding to sites of inlron insertion in the corresponding genes. Residues are numbered according lo 
residue I of mature Sporus BGP protein. Sequence GenBank accession numbers are: AF0487()3 for Sparus; U10578 for chicken; X04142 for mouse OG1 and 
OG2; X04141 for rat; X53699 for bovine and X53698 for human. 

cation of exon-intron splice junctions (Table 3), ali of which 
conform to the AG/GT mie (Breathnach et al., 1978). The 
sites of insertion of the three introns within the protein 
coding sequence differ in Sparus as compared to the 
mammalian genes (Figs. 2 and 3). but each exon encodes 
roughly the same protein domain in both fish and human 
genes (Table 4). Primer extension analysis revealed two 
possible sites of transcription initiation, 99 and 78 bp 
upstream from the first ATG (Fig. 4). The site corresponding 
to the longest 5'UTR was found to be located, in the geno- 
mic DNA, 26 bp downstream from a consensus TATA box 
motif and was considered to correspond to the major start 
site of transcription of the spBGP gene (Fig. 3). According 
to these results, the size of the full length BGP cDNA was 
then redefined as 647 bp, numbered from the major cap site. 

3.3. Analysis of the Sparus BGP gene promoter 

In addition to the gene itself, 1145 bp of S^flanking DNA 
were sequenced and analyzed. The spBGP gene promoter 
has a modular organization with sequence motifs typical of 
a gene transcribed by the RNA polymerase II (Fig. 3), such 

as lhe canonical TATA box (TATAAA) located from —31 
to —25 bp and putative CCAAT boxes found at positions 
—256 and —67 (Fig. 3). We have also identified a series of 
putative consensus sequences for slcroid receptor binding 
sites and bone-specific transcription factors, known to be 
physiological mediators of BGP gene expression in higher 
organisms. Between positions -406 and —390, a sequence 
motif sharing homology with a steroid hormone response 
element (SRE) was identified. In addition, several OSE1 and 
OSE2-like motifs (Ducy and Karsenty, 1995) and one AP1- 
like motif (Ozono et al., 1990) in intron I were also identi- 
fied. Interestingly. intron II was found to contain copies of 
many of the putative response elements already identified 
within the proximal promoter of the Sparus BGP gene, 
including a TATA consensus sequence and two CCAAT 
boxes. 

3.4. Tissue distribution of BGP in Sparus 

Of the different tissues analyzed by Northern hybridiza- 
tion, only calcified tissues (vertebra and jaw, Fig. 5A) 
showed lhe presence of BGP mRNA, with the strongest 

Table 2 
Characteristics of known BGF cDNAs and corresponding proteins. Sizes of ali known BGF cDNAs, including 5' and 3' unlranslated regions (UTR) and coding 
regions are indicated. Sparus 5' UTR is according to site of transcription initiation, as determined by primer extension analysis. Comparison of sizes for pre-, 
pro- and mature forms of corresponding BGPs are also shown. GenBank accession numbers are provided in the right column (a.a = amino acid residues. bp 
= base pairs) 

Species cDNA size (bp)' 5'UTR (bp) Coding region (bp) 3'UTR (bp)' Frotcin Size (a.a.) Accession numbers 

Pre Pro Mat. 

Homo sapiens 451 18 300 133 23 28 49 X53698 
Bos taurus 437 27 300 110 23 28 49 X53699 
Mus musculas 458 48 285 125 23 26 46 X04142 
Ratlus norvegicus 474 36 297 141 23 26 50 X04141 
Gallus gallus 421 18 291 112 24 24 50 U10578 
Sparus aurata 648 99 291 256 24 28 45 AF048703 
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OSEl 
-114 5 ATCCATGAAGTCTGTCCTTGAAATAAGACAAGGCACCAGCATTGACCCAGACGGTGAAATTACATACCTATAATACCGTCAGGACCCGTCCRGAATCTAAATGTCCRGTCGGAAAAAACA 
-1025 ACATGAAGAGCAGGAGACATTTTCATATCATAAATTAAACAAGGTTAAAGGATGGGTTTAGGAAATTTAACAGCACAGTTAAACTGTAATTTGGTATCAACATTAGGAGAATCTACCCCT 

OSE2 OSEl 
- 9 0 5 TACTAATAAACCAAGCAAATACGAAATGATTAAAAAAGATTACACAAACACAGTCTTTAGTGGTGAGTTGTGTTTTAATTAAAATGAAATGACATGTTCCACTCTGCTCTGGTAGCTTTC 

OSE2 
-785 CGCCACTTTATAGGCAAACCACCCACTTGTTTTGGTAAAAATATCGTCCCACATTTCAAAATTGCCCTCCTACTAATCTTCAAACACTCTGTGTTTGTTTCTAAATGTTGCTTCCTTTAT 
-665 GAAGGAAATCACTGCGGCCTGCAATAAAGGAGAGAGGCCTCGGATTAGAATCATGTCACATGCTGTGGGACGGTGGTTTTTCCCTTTCAGTTTGCATTACACGGTTTTCTCCACCTCATA 
-54 5 TTCTTACAGACCTACAAGTAAAAAGTCTGTGGTTGCGCTGTAAAACTCTGACCTCTCCAGGCTGCCAGCTGGCATTGCATTCCTAAGGTTTCATCTCACTTTTTATTTGTATCACTTAAA 

SRE 
-425 TCTCACAGGAAGTATTCTGGTGGTGTTTTAGTGTTGCACGCATGTCTTTACACAAGATGTAGGGGACAGAACATGCAAGCAGCGATTCACAAGGACAATCTGGTGTCGGGTGTAAAACAG 
-305 TTTTCATTGAAACGCATTCCAGTCTCTGATATTTATGGCTGCGAGTCGCjGCAAljrTTGTTGTCTCACCACCTGTGCTTTAAGACAAATACCCTCCTTTTGGAAGCGTTCTGTGTTTGTGT 

OSE2 
-185 GTGTTTGTGTGTGTCCAATGATGCAAACACACATATAAAATCAGCAGTTGCATACATGATGTTTTATGGAGGTGTGTATCTCTGCATCCATGTGGGAGTGTGATACACGATTCCTTA^CI 
-65 tlAltlACATGCCCATGTCACAGTGAGGGCTACATCfATAATjGCCACTGTGTATTTATGTATATATTTGTGTAAGAGAAAGAGAAAGAGAGGAGTGACAGAGCTGGAAGTCTCCGGTCCGAC 

Met Lys Thr Leu Ala Phe Leu Val Leu Cys Ser Leu Ala Ser lie Cys Leu Thr Ser 
56 TTGTTGCTTGGTATAATACAGACGGTGAAGAAAGAAGCTGAAAG ATG AAG ACT CTG GCC TTC CTG GTT CTC TGC TCC CTG GOA GCC ATC TGT CTG ACT TOA 

A 
157 G GTAGGAGCTGTGTGCATATACAGCAGTGTGTATACAAAAAGCTCTTTATTAAAACAATGTATGATTTGGTGCTTTCGATGCAAACTACAACTTAAGACCCAGCGAAATTACTTTGATT 

AP1   sp Ala Ser Thr Gly Ser Gln Pro Ala Ser A 
276 TGACTGATGTAAATAAAGTCGGTAAGTTGCATCAAACGGAAAAAAAGCAATCATCATTATTCGAGATGTTTTCCCTCAG AT GCC TCC ACT GGC TCC CAG CCT GCC AGT G 

sp Asn Pro Ala Asp Glu G       
385 AC AAC CCT GCT GAT GAG G GTAAGACCATGACTTTTGACTTCATCGTCAATGTTACATTAAAGGGGCATTGTGTAGTTTGGGAATTTTAATATTTACAAAATAAATGGGGTAAT 
4 98 AATACAAACTCAGAAATATTTATTTTCTCCATAATTGAATAAACAAGCTGGTTCTCAGGGGAAGAAAAGGTTCTCCGGAACACTGTTTGAAGCGAGAAAGGTGGCGGGGTCCGCCACATT 
618 TAAATCAAGTGAAGCAGTGGTGAAACCGTGTCGTCCTTTAAGGTCAGATTGATCATTCAGTTTGTTCAGTCACGAAAACTGTTTTTTTTTATTTGGTTTGTCTAGGCATACAAAATCAGT 

738 TAATAA AGATCT TTCTCCTCTGATTTAAGTTGCTTCCCCCAAACTACATAGTGCACCTTTGATCAGAGTCGATTCAACACTACTTTAAATACTGAACTTGAAGTTAAGGTAAGAAGGTTA 
BglII 

858 GAGATTTTCCAAAGGTTTTCAGATGCAACCTTTATCAAATATACCACAAGTAACTTTTAAGACTTTCTGAAACAGCCCCACCTAAAATCTGATCCTTCTGTTTGACCTACATAAGCAAAG 
978 GAGACCGTCAGCGAGAACACTGGCTGTTTCTGTAGAATTGTTAGAGATATTCCTGCTACTTTTATGGCGGAGTGCAGAGGATGAATCGAGGGCTCTCACAGTCATCTGGTAGTACTGCGC 
1108 TTAACAAAGTTCACTATCGTATTCTTTTGTCCAAAGATGTCGCCAAAACCAAAAAAGGAAAGTTCCTGATCATTAGATTCTAAACACTTAdCCAAlhTTTTTGTTTAATJ^CCAATtTGAT 

1098 TTGT|rATAA7trAATAAAAACTCTTATGCACACTGCAACATCTTGATTTCAGCTGATTTGCTTTTCATTACTGTACTTACTGACTTTACTTGAGTATCTATTTTTCTCA\flAGCTTNTTTACT 
HindiXI 

1218 TGTATTCCGTTCATCTTAACACAAATAGCTGTGCTCAGTTGTACTCTGTAACATTTTCAAAACAGGCTTGTTCTTACTTTAGTTATTTTGATGCATCTCAGTGATCATCTTTATTTTGAG 
1338 TCATTGCAGGCCGCCTTCCCAACAACACCTGACTGATTTTAACAGTGCAGGCAGTGGTGGTTCTAGACCAGTTTTAATAGGGGGGCAAGGTTGGGGCTGGTTTTTTTGATTAGGGGGCAC 
1458 ATACAACCCGGGAAAAAAGGATAAATCCCTCATTCGGACAAAGCAGTGTTTACAATTTCAGCAATTTTGATTGGGTAGTAAACTGCT6AGACACTTTATTTCTGCCTTTCCCTTCAGAAC 
1578 AAAATCATTGCAAGAAATCTGTCATTGTGTTATTAATGCAGACTCACTGTCAGGGGGGCCACAGGGGGGTCCAGACTCAGAGTTACGGGCACTGCCCCTGCTGGCCCCCCCCCCAGAACC 
1698 GCCCCTGAGTGCAGGTGACGTACGGCAGGTGTAGCCAGGCGAAACAACGCAAAGGTTAAGTTAGTTTTGTACAGAAAATGGCCGATAGAAACGTCTTTCAGGGGGACGCTTCTTAGTTTT 
1818 ATACATTTGGGTCTGTACTTCTGCCTTACTTTTACTTGGGTAAAGAAGTTGAATCAGTTCTTGTACCTCAGTGTGTACTTTTTCCACATCTGCTAATTAAAACTGGAATTTCGTTT6ACA 

ly Met Phe Val Glu Arg Asp Gln Ala Ser Ala Val Val Arg Gln Ly 
1938 GACATCTTGTGTGTTGCCACGATGAGACAAAGTTGAGTTAACTGTGCATGATGTGCAG GT ATG TTC GTG GAG AGG GAC CAG GCC TCC GCA GTG GTG AGA CAG AA 

s Arg Ala Ala Gly Gln Leu Ser Leu Thr Gln Leu Glu Se 
2042 G AGA GCG GCT GGA CAG CTG TCC CTC ACT CAG CTG GAG AG GTATTTTCAAATCCCCTTTGTATTCACATCACTTATAAGATTAAACACACAAGTGCACTCACATATC 
214 8 ACAACATGAAACAGCATGTACAGCAGAGTCCCCTGATGCCCTCATAGTGTTGCTGGGTGATCTCTTGAGACGAACATCAGATTATACACGACTTAAAGCGGTACCAAGTGGAATAACGTG 

r Leu Arg Glu Val Cys Glu Leu Asn Leu Ala1 Cys Glu His Met Met Asp Thr Glu Gly lie lie 
2268 ATTAACGTCTACCTCTTCCTCTCTCTCCACTCAG C CTG AGA GAA GTG TGT GAG CTC AAC CTG GCT TGC GAG CAC ATG ATG GAC ACT GAG GGA ATC ATC 

Ala Ala T^r^JThr Ala Tyr Tyr Gly Pro lie Pro Tyr *** 
2366 GCT /GCC TAC ACG GC/C TAC TAC GGA CCG ATC CCC TAC TAG AAGCCTTACTACGACAGCTGATGGCTCATCAGCTGTCTTTTTTTATTATCATTATTATTAGAATTATC 

'' b£ÍÍ'ws~ 
24 73 ACCTTTGAGCTCTACTTTTTCCTTTATAGTCAAGCCCAAAGCACGTAAGCAAGCTAAAAAGTGTGTGATGTGGAGCAGGAGGAATAATATCTTCATGTGAATTTATTTTCCACCCACTGT 

2593 GATTCGATCATTTCCCCTAACCCGTAGAGTAGCGTGATGAAACTGAATAAAGACAAATGAACCTGT 

Fig. 3. Sequcnce of Sparus BGP gene and .V-llanking region. The major site of Iranscriplion initiation is dcsignaled as +1 and lhe corresponding nucleolide is 
bold. Nucleotides are numbercd in the lefl margin and (he predicted amino acid sequence is shown above lhe coding sequence. The stop codon is indicated by 
asterisks and lhe polyadenylation signal is underlined twice. Conscnsus sequenees at the intron bordeis are undcrlincd and bold. Futativc TATA and CCAAT 
motifs are boxcd. The location of putalive steroid-rcsponsive elements (SRE) and transcríption factor conscnsus sequenees (OSEl, OSE2 and API) is 
indicated. Curvcd arrows mark the localizalion of the partial spBGP cDNA probe used in southem genornic hybridization. 

signal observed in vertebra. No positive hybridization was 
seen in the other tissues analyzed (liver and heart, Fig. 5A; 
kidney, muscle and brain, results not shown), even after a 
longer exposure of the membrane (up to two weeks). The 
tissue distribution of BGP in Sparus was confirmed by a 

combination of a semi-quantitative assay (RT-PCR. 20 
cycles) and Southern analysis. Amplification was performed 
using 1 |xg of total RNA extracted from tissues showing a 
positive signal for spBGP mRNA by Northern analysis 
(vertebra, jaw) and from several of those showing no signal 
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Table 3 
Exon-intron splice junclions and type of intron in Sparus aurata BGP gene. 
5' and 3' borders for each inlron are indicaled. The consensus motif 
(5'gt...ag 3'), as dcscribed by Breathnach cl al. (1978), is shown in bold. 
Type of inlron is shown according to Patlhy (1987) 

Intron number Intron borders Type of inlron 

5' border 3'border 

Intron 1 ..TCA.G gtag.. ..tcag AT.GCC. I 
Intron 2 ..GAG.G gtaa ..geag GT.ATG. I 
Intron 3 .GAG.AG gtal ..tcag C.CTG. II 

(muscle, liver and heart). The presence of BGP mRNA was 
once again detected only in jaw and venebra (Fig. 5B). 

3.5. Expression of BGP mRNA throughout developmental 
stages of Sparus 

Northern analysis showed that spBGP mRNA is abundant 
in fish larvae with 86 dph and older, which correspond lo 
post-larval (juvenile) stages known to have a nearly fully 
mineralized skeleton (as detected by alcian blue/alizarin red 
staining; Fig. 5A). No BGP mRNA was detected at 27 dph 
with this method. Southern hybridization of spBGP mRNA 
amplified by RT-PCR (20 cycles, see Section 2 for details) 
produced positive signals in stages of Sparus development 
as early as 37 dph (Fig. 5B). Thereafter, a progressive 
increase in the strength of the signal detected for spBGP 
mRNA was observed as the specimens grew older (Fig. 
5B). No signal was detected for 27 dph or younger, even 
after longer times of exposure of the autoradiography 
(results not shown). 

3.6. Analysis of the BGP gene locus 

Because evidence for BGP gene duplication exists in 
mammals (Desbois et al., 1994), we used genomic Southern 
analysis and gene amplification by PGR coupled with DNA 
sequence analysis to search for lhe possible existence of a 
cluster of BGP genes in the fish genome. Samples of Sparus 
genomic DNA were digested with restriction enzymes 
which, according to our sequence, should cut within the 
Sparus BGP gene (BglI, BglII and HindlII) or in its flanking 
DNA (EcoRI. BamHI and PstI). and analyzed by Southern 
hybridization using a specific probe spanning the full length 
spBGP cDNA. The positive signals observed for each 
restriction enzyme digestion (BglI, BglII, EcoRI, HindlII, 
and PstI) correspond to the expected number of fragments 
based on the known restriction map of the spBGP gene 
(Figs. 3 and 6A). A second genomic southem (using DNA 
digested with HindlII, BamHI, PstI and BglI) was hybri- 
dized with a partial spBGP cDNA (spanning from nucleo- 
tide 322 to 602). This clone was expected, from the known 
restriction map of the Sparus BGP gene, to hybridize only 
with the fragments located at the S^nd of the spBGP gene. 
The results obtained showed only the one expected fragment 
for each enzyme digestion (Figs. 3 and 6B), with the excep- 

tion of BglI. In this case one site was located within lhe 
genomic DNA covered by the probe used. and. therefore, 
two genomic fragments should have hybridized to this 
probe. However, since this BglI site was located 43 bp 
from the 5' end of the probe used (Fig. 3), the second geno- 
mic fragment (the top BglI fragment seen in Fig. 6A) would 
give only a very weak positive signal and was not detected 
in our autoradiography. In a second approach. we investi- 
gated the possibility of the existence of one or more homo- 
logous BGP genes with different intronic sequences. Since 
we found that the spBGP gene contains three introns, 
several primer sets were constructed, each set consisting 
of a pair of primers located in two consecutive exons and 
designed to amplify the intervening sequence located 
between them. Each intron was thus amplified using differ- 
ent pairs of oligonucleotide primers (Table 1). This resulted 
in the amplification, in each case, of a single PCR product of 
lhe expected size, as deduced from lhe molecular organiza- 
tion of the spBGP gene. After cloning and sequencing, each 
DNA fragment analyzed was shown to span the exon-intron 
border closest to lhe PCR primers used and to expand into 
the known intronic sequence. No differences were detected 
after comparison with our spBGP gene sequence. 

A third approach consisted of amplifying the BGP cDNA 
by RT-PCR from different stages of development of Sparus 
and cloning and sequencing the resulting PCR produets. 
Two internai primers were used (SBG5F and SBG4R; see 
Table I) and spBGP mRNA was amplified from samples at 
27 and 130 dph, corresponding to the appearance of first 
calcified structures and almost complete calcification (as 
detected by alizarin red staining; see Fig. 7B). Ali DNA 
sequences obtained were identical to the previously 
obtained spBGP cDNA (results not shown). 

3.7. Detection of BGP mRNA in sagital sections of Sparus 
by in silu hybridization 

Localization of specific sites of expression of the BGP 
gene was determined by in silu hybridization in Sparus 
sagital sections, using an antisense riboprobe specific to 
spBGP mRNA. The presence of BGP message was detected 
in vertebra, jaw, sites of fin insertion and dermis, where the 
scales are originated. Results obtained in vertebra and 
dermis are shown in Fig. 7A (paneis A1-A3). These results 
indicate that the BGP gene is expressed in tissues under- 
going mineralization. The control hybridization with sense 
spBGP riboprobe did not produce any positive signal (data 
not shown). 

3.8. Evolutionary analysis of spBGP 

The phylogenetic analysis performed using ali known 
amino acid BGP sequences yielded thirty Maximum Parsi- 
mony (MP) trees, which were summarized using Strict 
Consensus (i.e. retaining only the clades that are common 
to ali thirty MP trees). This can be considered to be the most 
conservative estimate of the evolutionary pattems. The 
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Table 4 
Characterislics of known BGP genes structures. Gene, exon and inlron sizes (in base pairs, bp) are indicatcd for ali known BGF genes. Phasc of inlron is defined 
according to Patlhy (1987). GcnBank accession numbers for ali gene sequcnccs are indicated in the right column 

Species Gene size Exon 1 Intron 1 Exon 2 Intron 2 Exon 3 Intron 3 Exon 4 Acccssion No. 
(bp) (type) (type) (type) 

Sparus aiirala 2778 99 (5' UTR) + 58 197 (I) 47 1713 (1) 86 221 (11) 100 + 257 (3' UTR) AF289506 
Ru lius nor\'egicus 1145 49 (5' UTR) + 64 148 (I) 33 143(1) 70 200 (II) 130 + 308 (3' UTR) M25490 
Mus musculas 950 48 (5' UTR) + 64 144 (1) 33 142 (I) 58 206 (II) 130 + 125 (3' UTR) L24429 
Homo sapiens 1077 18 (5'UTR)+ 64 257 (1) 33 175(1) 70 201 (11) 127 + 132 (3' UTR) X04143 

Strict Consensos tree (Fig. 8) shows two clearly distinct 
clades assembling, respectively, BGPs versus MGPs (with 
the exceplion ofshark MGP). Inside the BGP clade there is a 
clear separation between fish BGP and other BGPs. the 
same occurring with bird and amphibian BGPs. 

4. Discussion 

In the present work we describe the íirst DNA sequences 
(cDNA and gene) for Bone Gla Protein from a lower verte- 
brate species. In addition, we provide clear data on its tissue 
distribution and developmental appearance and comment on 
lhe conservation of BGP structure and function throughout 
evolution. 

4.1. Analysis of lhe spBGP cDNA and corresponding 
protein 

The Sparus BGP cDNA comprises 647 bp, and encodes a 
pre-propeptide of 97 amino acid residues. The pro-region 
contains a sequence motif homologous to the gamma 
carboxylase recognition site found in ali other known 
BGPs and ends. as expected, with two basic residues, in 
this case Lys-Arg, as in the chicken protein (Neugebauer 
et al., 1995), and not Arg-Arg as in the mammalian BGPs 

1 G A T C 

-99 

-78 

Fig. 4. Identification of iranscriplion start site of the spBGP gene as deler- 
mined by primcr-cxtension. Poly (A)' RNA isolated from Sparus juw was 
annealed to a spBGP rcversc primer, reverse-transcribcd and subjected to 
Rnase digestion. electrophoretic fractionation and autoradiography. The 
exlension products are indicated in lane 1 and their sizes are shown on 
lhe left margin (lane 2 shows a fragment of known size), A scquencing 
ladder (lanes G. A. T and C) was fractionaled in lhe same gel for assignment 
of transcription start sites at single nucleotide resolution. 

(Fig. 2). Such dibasic residues are a common feature in pro- 
peptide sequences from proteins known to require proteoly- 
tic aclivation, such as peptide hormones and clotting factors 
(e.g. Chooet al., 1982). 

Comparison of the protein sequences deduced from ali 
available BGP cDNAs (Fig. 2) shows a conserved region 
spanning from amino acid 2 to 41 in the Sparus sequence 
(46% of identity at the amino acid levei between Sparus and 
human in this region). This region encompasses the three 
glutamic acid residues that are y-carboxylated in the mature 
protein (residues II, 15 and 18) and the two invariable 
cysteine residues at positions 17 and 23 required for the 
disulphide bridge. In this region, a total of 16 invariant 
residues were idenlified. Their presence at those specific 
sites indicates that they must be required for adequate 
protein folding and function, since they have been fully 
conserved over more than 400 million years of evolution. 
the estimated time since divergency of fishes from higher 
vertebrates. When comparing the complete pre-prosequence 
of fish BGP with those from higher vertebrates, two regions 
in the fish sequence have either an insertion (from -21 to 
—17, Fig. 2) or a deletion (located at the N-terminus of the 
fish BGP. between residues — 1 and +1, Fig. 2). Since these 
sites are the only two where significam changes also occur 
in some of the higher vertebrate sequences (Fig. 2), we 
conclude that they are most likely sites where changes affect 
neither the folding (and thus stability) nor the function of the 
protein. In addition, ali BGP cDNAs, from fish to man, 
encode polypeptide chains with pre, pro and mature protein 
regions comparable in size (Table 2). These results suggest 
that some features in the protein structure and size must be 
conserved in order for BGP to adopt a functional three- 
dimensional structure in ali species. 

4.2. Bone specific expression of the spBGP gene 

The results reported in this work show that in Sparus, as 
previously reported for other species (Price et al., 1988; 
Desbois et al., 1994), the expression of BGP is specific to 
bone tissues undergoing mineralization such as vertebra and 
jaw, as clearly seen by Northern blot and RT-PCR (Fig. 5). 
This conclusion is supported by in situ hybridization results, 
where specific message was detected exclusively in verte- 
bra, jaw bone, sites of fin insertion and dermis, this last 
result being attributed to the production of BGP mRNA 
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Fig. 5. (A) Analysis of" lissue distríbution and dcvelopmenlal expression of spBGP mRNA by Northern blotting. I otal RNA was extracted from several tissues 
(livcr, vértebra, jaw and heart) and developmental stages (27. 86 and 130 dph) of Sparus, size fractionatcd by denaturing agarosc gel elcctrophoresis and 
transferred to a nylon membrane. RNA integrity was assessed by ethidiurn bromide staining of 28 and 18S ribosomal RNAs (top panei). Expression ot spBGP 
was detected following hybridization with a 32P-labelled spBGP cDNA (bottom panei). Total RNA from the Xenopus laevis ccll linc A6 was used as negative 
control. (B) Dctcction of spBGP mRNA by RT-PCR. Total RNA was extracted from developmental stages (ncurula to 130 dph) and tissues (Muscle, Heart. 
Livcr. Jaw and Vcrlebra) of Sparus and used to amplify spBGP mRNA by RT-PCR, using two specific primers (SBG8F and SBG4R, see Table 1), as described 
in Seclion 2. The resulting PCR produets were size fractionatcd by agarose eleclrophoresis. transferred to a nylon membrane and hybridized with a ' P-labelled 
spBGP cDNA. To chcck for RNA integrity, the same RT reactions were used to amplify spPActin mRNA using two specific primers based on the published 
sequence (see Section 2 for details). 

by the scale-forming cells. Based on our results we conclude 
that, as in ali other species analyzed, the spBGP gene is 
expressed only in bone tissue. 

4.3. Molecular organization of the spBGP gene 

The Sparus BGP gene spans 2778 bp of genomic DNA, 
from the major start site of transcription to the site of inser- 
tion of the poly(A) tail, and contains three introns which 
account for nearly 78% of the total DNA of this gene. 

From ali the regulatory sequences prcviously identified in 
the promoters of mammalian BGP genes, only OSEl and 
OSE2-Iike sequence elements were readily identified within 
the spBGP gene promoter. These DNA motifs have been 
shown, in mammals, to mediate binding of bone-specific 
transcription factors. The OSEl sequence binds OSEl, an 

osteoblast-specific transcription factor present in nuclear 
extraets of osteoblastic cell lines and primary osteoblasts, 
and is thought to be required for the early steps of osteoblast 
differentiation (Schinke and Karsenty, 1999). OSE2 binds 
CBFA1/OSF2, a transcription factor which, in mammals, is 
expressed only in osteoblastic cells and is responsible for the 
bone specific expression of BGP (Ducy et al., 1997). Since 
the fish BGP gene is also expressed specifically in bone 
tissues, as shown in this work, it is likely that its promoter 
is similarly regulated by bone specific transcription factors. 
This further suggests that fish homologs of OSF1 and OSF2 
could be responsible for this tissue-specific regulation. 

Vitamin D, through its active metabolite Ia,25-dihydrox- 
yvitamin D3 [l,25(OH)2D3] plays a key role in the transcrip- 
tional regulation of BGP gene expression in mammalian 
osteoblasts, both in vivo and in vitro (Pan and Price, 1984: 
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tional regulatory sequcnces within the fish BGP gene 
prometer. 

4.4. Developmenlal expression of spBGP message 

The expression of the BGP gene throughout Sparus devel- 
opment was studied by a coinbination of Northern. RT-PCR 
and Southern analysis in samples ranging from pre-feeding 
larval stages tojuvenile fish. BGP mRNA was clearly preseni 
in fish at 37 dph while no signal could be detected at 27 dph. 
Since calcification was apparent at 30 dph (Fig. 7B). as deter- 
mined by alizarin red-alcian blue histochemical staining. 
these results showed that the BGP gene was expressed in 
bone tissue at or around the same lime that bone mineraliza- 
tion was occurring and the corresponding leveis of mRNA 
increased progressively thereafter (Fig. 5B), as mineraliza- 
lion of the entire skeleton became effective (Fig. 7B). There- 
fore. the pattern of developmental expression of the BGP 
gene in Sparus parallels that previously observed for 
mammalian species (e.g. Desbois et al., 1994), with the 
onset of expression occurring shortly after or being conco- 
mitant with the appearance of calcified bone structures. 
These results strongly suggest that the function of BGP in 
fish is associated with bone mineralization, as previously 
seen in mammals, and indicate that bony fish may be a useful 
model, allowing insight into the evolution of BGP function 
and regulalion at the molecular levei. 

Fig. 6. Analysis of lhe Sparus BGP gene locus by Southem hybridizalion. 
Following restriction cnzyme digestion with Bgll, Bglll, EcoRI. HindllI 
and Pstl (panei A) or with HindllI. BamHI, Pstl and Bgll (panei B), geno- 
mic DNA samples were electrophoresed on a 0.8% agarose gel, transferred 
to a nylon membrane (Nytxan + ) and hybridized with eilher the complete 
(panei A) or a parlial (panei B) spBGP cDNA, as deseribed in Seclion 2. 
Sizes of the DNA markers are shown on the right margin. 

Clemens et al., 1997), and specific vitamin D responsive 
elements (VDREs) were identified in BGP genes from 
different species, including rat (Yoon et al., 1988) and 
human (Ozono et al., 1990). In contrast with its mammalian 
counterparts, lhe proximal promoter of the spBGP gene 
contains no obvious VDRE regulatory elements. Fish are 
known lo store vitamin D (Takeuchi et al., 1986), and in 
some species vitamin D or its metabolites can affect plasma 
calcium (Sundell et al., 1993) or phosphorous (Avila et al., 
1999) leveis, but until now, no VDRE has been identified 
from any fish gene. Furthermore, since even for relatively 
closely related species, such as human and rat, the conser- 
vation between regulatory elements can be low (Ozono et 
al., 1990), it may be the case that consensus sequences for 
regulatory elements are significantly different in fish gene 
promoters from those known in higher vertebrates. There- 
fore, work with deletion mutants from the spBGP gene 
promoter, gel mobility shift assays and DNase I footprinting 
analysis will be required to identify and characterize func- 

4.5. Is lhe spBGP gene duplicaied? 

Our attempts to find more than one gene coding for 
Sparus BGP were unsuccessful. Whilst we cannot eliminate 
the possibility of gene duplication, we consider the available 
data to favour lhe existence of a single BGP gene in this 
species. These results are in contrast with those obtained in 
rodents where analysis of several mouse and rat strains have 
shown that, in these species, BGP is part of a gene cluster. 
While in the rat either one or multiple copies were detected 
depending on the strain (Rahman et al., 1993), in the mouse 
two BGP genes and one BGP-related gene were identified in 
ali strains examined (Desbois et al., 1994). Our genomic 
southem approach followed the same conditions as in the 
mouse study, bui our results point to the existence of a single 
spBGP gene, instead of the cluster found in the mouse 
genome. Given the very high degree of identity between 
the various mouse genes, it is possible that the duplication 
of the BGP gene in rodents occurred quite recently, after the 
branching of bony fish nearly 400 million years ago. 

4.6. Evolution of spBGP gene 

BGP is evolutionarily related to MGP, a 10 kDa vitamin K- 
dependent protein which, although also found in bone matrix, 
is produced by chondrocytes and has a wider tissue distribu- 
tion than BGP. Our data suggest that ali BGPs have a single 
origin and supports the previously stated hypothesis that they 
are derived, together with MGPs, from a common ancestor 
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Fig. 7. (A). Localizalion of spBGP mRNA in Sparus lissucs by in sim hybridization. Longitudinal 5 p.m sections of wholc undccalcitied 90 dph Sparus werc 
hybridized wilh an antisense digoxigenin-labelled spBGP riboprobe. Alkaline phosphatase-coupled antidigoxigenin anlibody was used to delect specifically 
bound probe. as described in Section 2. Intense blue staining, corresponding lo the presence of high quantities of spBGP mRNA, was detected (black arrows) in 
the médium vértebra (Al); less intense staining was observed in the verlebra localized lowards lhe posterior end of the vertebral column (black arrow in A2), 
while no signal was detected in lhe more apical vertebrae (transparenl arrow in A2); signal was also detected in dermis (arrow in A3). (B) Delection of 
cartilaginous and calcified slructures in Sparus. Specimens with 30 (BI) and 90 dph (B2) werc stained with Alcian Blue and Alizarin Red. as described in 
Section 2. Calcified slructures are shown in rcd and non-mineralized cartilage is shown in blue. Scale bar reprcsents I mm. 

(Rice et al., 1994; Cancela et al., 1995). Both proteins also 
share some homology with the more diverged coagulation 
factors, which also belong to the same family of vitamin K- 
dependent proteins. Within the BGP clade, the fish form a 
clearly distinct group that might represent the most ancestral 
forms of BGP. Bird and amphibian BGPs are also more 
closely related among themselves than to ali other verte- 
brates. No other patterns of evolution of BGPs within verte- 
brates could be unambiguously resolved with this data set. 

In conclusion. we have shown in this work that BGP from 
a teleost fish has many similarities with its mammalian 
homologs, at the amino-acid levei as well as in tissue distri- 
bution and onset of expression during early development. 
BGP has been reporled to be absent from the calcified vérte- 
bra of cartilaginous fishes (Rice et al., 1994), indicating that 
the appearance of BGP may have been concomitant with the 
appearance of bone. Although earlier reports presented 
conflicting results on the presence or not of bone in chon- 
drichthyans, recent work has extensively searched for bone- 
like structures in a variety of cartilaginous fishes and clearly 

identified ali mineralized structures in these organisms as 
calcified cartilage (Clemens, 1992). Therefore, the presence 
of BGP in teleost fishes may result from the appearance, in 
these organisms, of an hydroxyapatite-rich matrix compar- 
able to that found in bone of tetrapods. This further suggests 
that in fish, as proposed for mammals (Boskey et al., 1998), 
BGP may be required for the correct maluration of the 
hydroxyapatite crystal, an hypothesis that could explain 
the conservation of this protein over more than 400 million 
years of evolution. Therefore, and given the easy access to 
early embryos and transparenl larvae, fish may be an 
adequate model to bring additional insight into the function 
of BGP, in particular for those aspects related to appearance, 
regulation and basic role during early development. 
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