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Abstract: - Montado ecosystem in the Alentejo Region, south of Portugal, has enormous agro-ecological and 
economics heterogeneities. A definition of homogeneous sub-units among this heterogeneous ecosystem was 
made, but for them is disposal only partial statistical information about soil allocation agro-forestry activities. The 
paper proposal is to recover the unknown soil allocation at each homogeneous sub-unit, disaggregating a complete 
data set for the Montado ecosystem area using incomplete information at sub-units level. The methodological 
framework is based on a Generalized Maximum Entropy approach, which is developed in thee steps concerning the 
specification of a r order Markov process, the estimates of aggregate transition probabilities and the disaggregation 
data to recover the unknown soil allocation at each homogeneous sub-units. The results quality is evaluated using 
the predicted absolute deviation (PAD) and the “Disagegation Information Gain” (DIG) and shows very acceptable 
estimation errors.  
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1. Introduction 
Montado ecosystem, integrated in Mediterranean 
ecosystems, cover about 1 million hectares in the 
Alentejo Region, south of Portugal. Oak forests and 
the savanna-like landscapes, in which Quercus ilex 
spp. rotundifolia and Quercus suber are a dominant 
part of the agro forestry system, produce fodder for 
livestock, as well as cork and firewood. It has been 
extensively used by man in agro-forestry-extensive 
grazing systems. This use has prevented severe 
impacts on the ecosystem, even with strong ecological 
restrictions, such as severe droughts in a summer that 
is very long.  
The Montado ecosystem area in the Alentejo Region 
(MEA) is far from being homogeneous. There are 
enormous and varied heterogeneities, namely in what 

concerns agro-ecological aspects, that determine the 
specialization profile of economic activities, 
particularly the agro-forestry activities.  
The determination of homogeneous sub-units is of 
particular interest. Both international obligations as 
well as European legislation ask for the assessment of 
agricultural practices regarding their effects on the 
environment and on natural resources and ecosystems 
sustainability. Several models and tools can be used to 
analyze natural resources use and to simulate or 
predict the natural resources’ near future 
consequences of changing land use and farming 
practices. The main obstacle to use models or 
modeling tools for environmental impact assessment 
in agriculture from the regional to continental scale or 
vice-versa is the difficulty to match agricultural 
activities with the environmental circumstances where 
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they are taking place [1; 2] and particularly, detailed 
data availability. It is necessary to generate and 
disaggregate relevant data that will allow a much 
better analysis of socio-economic indicators and will 
permit their consideration for planning and policy 
application. Major economic models approaches, as 
CAPRI [3; 4], SEAMLESS [5], SENSOR [6; 7], 
EURURALIS [8], INSEA [9], GENEDEC [10] or 
LUMOCAP [11] deal with linking agricultural 
production models with economic and environmental 
aggregate data for estimating relationships, whit 
consequent aggregation problems. 
The proposal of this paper is to demonstrate the 
adherence of the minimum crossed entropy model as 
a process conducting to dynamic spatial information 
generation and disaggregation. With this model, it 
will be possible to use the disposable information to 
generate data disaggregated to homogeneous sub-
units (HSU) that can be used on the estimation of 
these territories’ soil occupation. 
The paper includes also a reference to the 
homogenous territorial MEA sub-units, a brief review 
of the disaggregation data problem, the 
methodological framework, the results and finally the 
conclusions.            

 
2. Homogeneous territorial units 
The Évora University’s Unit of Macroecology and 
Conservation studied the representative dominant 
patterns in the MEA, for all Alentejo parishes, based 
on: 
 
- Climatic averages; maximum temperature in 

August; minimum temperature in January; Winter 
precipitation; Summer precipitation; inland or 
not; altitude. 

- Dominant agro-forestry use - agriculture, forestry 
or not cultivated. 

- Average farm size. 
- Type and density of Montado: Quercus ilex spp. 

rotundifolia, with low, high and very high 
density; Quercus suber, with low, high and very 
high density; mixed with low, high and very high 
density; Pinus pinea with low density; 

- Livestock: head/ha and proportion of farms with 
sheep, swine, beef cattle and goats. 

 
A non-hierarchical multivariate analysis and non-
linear methods were used. The results allowed the 
identification of six homogeneous agro-forestry 
macro-units in MEA. These macro-units are linked 
with the diversity and regional specificities of 
available resources and how they are used and valued 
by resident populations (Table A1 in Appendix).  

The macro-unit A is characteristic from Alentejo inner 
zones with low precipitation. These zones have 
generally small forest areas, the Quercus ilex spp. 
rotundifolia being the dominant species. Agro-forestry 
farms are big – the most part of the area is 
concentrated in farms over 500 ha. Their economic 
activity is mainly animal production, particularly 
cattle and Alentejo swine, in na extensive way. This 
production pattern determines soil occupation, 
predominating spontaneous pastures. 
Macro-unit B is also present in Alentejo inner zones 
with low precipitation. Although it also has a low 
forestry potential, in general, there are some high-
density Quercus ilex spp. rotundifolia spots. Agro-
forestry farms are medium or small – a significant 
parto f the área is concentrated in farms between 200 
ha and 500 ha. Their main economic activity is cattle 
production. The soil occupation reflects this, the 
objective being to produce cattle food – the rotations 
are usually long term forages-pastures rotations, 
under trees or not.  
The macro-unit C occurs in littoral zones with good 
precipitation level according to regional pattern. 
Quercus suber and Quercus ilex spp. Rotundifolia are 
present with high densities. Agro-forestry farms are 
smaller, the area being mainly occupied by farms with 
less then 200 ha. Vineyards to produce wines with 
Name of Origin or Quality Wines PSR and the animal 
production – cattle, sheep and Alentejo swines – are 
among the main activities.  
Macro-unit D occurs on the higher inner zones of 
Alentejo, with good precipitation level according 
regional pattern. In the agro-forestry pattern the low-
density Quercus ilex spp. Rotundifolia dominates. 
Farms are medium to big and animal production, 
mainly catlle and Alentejo swine, are the main 
activities. As in B, the rotations are usually long term 
forages-pastures rotations, under trees or not.  
The macro-unit E is characteristic from inner zones 
that are already close to littoral, the frontier zones, 
with good precipitation level according to regional 
pattern. There are important high-density Quercus 
suber spots. Farms are usually small and their 
economic activity is mainly cattle. Food for cattle 
comes from the farm and is mainly composed of 
durum wheat straw and stubbles, and spontaneous or 
improved pastures. 
Finally, macro-unit F is associated to Alentejo inner 
zones with low precipitation levels. Frequently high-
density spots of Quercus ilex spp. rotundifolia or 
Quercus suber can be observed. Farms are small to 
medium. Animal production, mainly cattle, is the 
main economic activity. Food for cattle comes mainly 
from the farm – spontaneous and improved pastures, 
straw and stubbles from cereals. The rotation system 
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is cereals-long term pastures (spontaneous or 
improved). 
The six identified macro-units were then crossed with 
environmental protection areas of NATURA 2000 
and National Protected Areas.  
This proceeding allowed the establishment of 31 
homogeneous sub-units (HSU), which are a function 
of their interest for natural values conservation (Table 
A2 in Appendix). 
The pertinent HSU only represents the potential use of 
resources and not his effective use – this is the result 
of technical, economical and institutional factors.  
In her work, Klimešová [12] states exactly that when 
more than one type of data is involved this is 
sometimes referred to as the ‘intersection’ question 
since it is needed to find the intersection of data sets. 
Then, the patterns question allows environmental and 
social scientists and planners to describe and compare 
the distribution of phenomena and to understand the 
processes, which account for their distribution.  
Therefore, to study the MEA it is necessary to 
determine the soil allocation for the year 2004, which 
is the base year for accessing economics. From the 
Agricultural Census [13] it is possible to recover the 
soil allocation in each HSU, crossing the available 
data at county level, but only for years 1989 and 
1999. For the remaining years, there is no information 
at HSU level. 
The model proposed will allow estimating unknown 
soil allocation data for the MEA, at HSU 
disaggregated level in a consistent way. At MEA 
aggregate level, the soil allocation can be obtained for 
the series years 1989 to 2004 from 1989 and 1999 
Agricultural Census [13], Structural Agricultural 
Enterprises Surveys of 2003 and 2005 [14] and 
Annual Agricultural Statistics from 1999 to 2005 
[15]. This complete information and the incomplete 
information known at HSU level for the years 1989 
and 1999 can then be used within a maximum entropy 
framework to estimate the disaggregated unknown 
data for remaining years until 2004. 
The maximum entropy method is a flexible and 
powerful tool for density approximation. According 
to Shamilov [16] there is empirical evidence that 
demonstrates the efficiency of this method. For this 
reason the MaxEnt distributions are much convenient 
if data is not well distributed. 
 
3. The disaggregation data problem 
Disaggregation data problems are present in many 
fields like climate science, geography, business or 
economy [17]. The first valid approaches to go from 
aggregate data to disaggregate data came from the 
political science in the beginning of the Twentieth 

Century [18]. In economics, the linkage between 
aggregate models for all economy and disaggregated 
sectoral models has been a widely recognised 
problem [19].  
According with Howitt and Reynaud [20], valid data 
disaggregation method is interesting and needed in 
agricultural production economics empirical studies, 
for three main reasons. Firstly, because the 
availability of data and the difficulty of obtaining 
adequate micro data. The second reason for 
disaggregation is that consistency among the 
explanatory variables requires that most 
microeconomic models are estimated at the level of 
the least disaggregated variable and, finally, because 
of the necessity to combine agricultural production 
models and biophysical process models. As well, You 
and Wood [21] defend data disaggregation using a 
cross-entropy approach to generate plausible data and 
disaggregated estimates of the distribution of crop 
production on a pixel basis. 
One approach to disaggregate data can be to consider 
some individual behavioural rules to specify 
aggregate data. Another approach is to infer from 
aggregate data the most micro behaviour consistent 
with the observed outcomes. This last one will be 
adopted in this paper and it will be presented to 
proceed.  
Consider that soil allocation at MEA aggregate level 
is given by Sk(t), where k=1,...,K corresponds to 
observed agro-forestry activities and t=1,...T 
corresponds to the year in which they occur. Then the 
probability of producing k activity in year t is: 
 

r,...1=t,k,
)t(

k
kS

)t(kS
=)t(kY 㹻
㺌

                                    (1)                

 
The MEA is composed by i=1,…I HSU and the 
annual probability of each agro-forestry activities 
occur at this disaggregate level is: 
 

r,...1=t,k,
)t(

k
i
ks

)t(i
ks

=)t(i
kY 㹻

㺌
                                    (2)                

 
The information disaggregated at HSU level in what 
concerns soil occupation by each agro-forestry 
activity si

k(t) is available only for the first r periods (r 
< T). The data availability assumption is that there is 
a complete data set at aggregate level, but only partial 
information at disaggregated level.  In our case there 
is only disposable information by county from the 
Agricultural Census of 1989 and 1999. 
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The challenge is to combine complete information at 
MEA aggregate level for t=1,…,T with partial 
information at disaggregated HSU level for t=1,…,r 
and recover the soil allocations si

k(t) for the periods 
t=r+1,...,T. The objective is to obtain a soil allocation 
for each HSU consistent with the aggregate data. The 
estimation of sk

i must guarantee that soil allocation for 
each activity at MEA level is equal to the sum of this 
activity area in all HSU, obeying the following 
restriction: 
 

T,...,1+r=t,k  ,
I

i=i
)t(i

ks=)t(kS 㹻㺌                             (3) 

 
This disaggregation data problem presents more 
parameters to estimate than available moment 
conditions because K-1>T-r. This problem cannot be 
solved by the classical methods like least chi-square, 
maximum likelihood and Bayesian methods. The 
Shannon [22] entropy methods can be used to obtain a 
unique optimal solution. They are more and more 
used in several sciences [23].  
In agricultural economics Miller and Platinga [24] 
applied the ME to estimate land use shares and 
predicting its impact on soil erosion in three Iowa 
counties from a multi-county scale. They also showed 
that the ME approach encompasses the logistic 
regression as a particular case.  
To separate harvested area and yield for irrigated 
crops from rainfall crops in counties of Texas and 
California States (USA) Ximing et al. [25] used the 
principle of ME combined with incomplete data, 
empirical knowledge and priori information. For a 
sample of California State (USA) data, that includes 
six districts in the Central Valley and eight crops, 
Howitt and Reynaud [20] developed a dynamic data 
consistent way to estimate agricultural land use 
choices at a disaggregated level, using more aggregate 
data. This is done in two steps. First it is specified a 
ME dynamic model of land allocation at aggregate 
level. Second, the outcomes are disaggregated from 
the ME model results using the Minimum Cross 
Entropy [26].  This method differs from [24] and [25] 
mainly because the process of soil occupation choice 
is endogenous. 
The cross entropy method can be applied to solving 
difficult combinatorial optimization problems. The 
basic mechanism involves an iterative procedure of 
two phases [27]: 
1. draw random data samples from the currently 
specified distribution. 
2. identify those samples which are, in some way, 
“closest” to the rare event of interest and update the 
parameters of the currently specified distribution to 

make these samples more representative in the next 
iteration  
 
4. The methodological framework 
The methodological framework, based on Howitt et 
Reynaud [20], consists on a dynamic process of 
allocating soil inside each HSU of the MEA. It is 
assumed that the soil allocation follows a finite          
r-order Markov process, which is a probabilistic 
model appropriated for time series when the state 
variable depends only on the previous state values.  
According to Kijima [28], a sequence of r 
observations of soil allocation can be characterized by 
a 1st order Markov process. In this case, any activity 
choice process, among k possibles activities for the 
HSU is defined as a 1st order Markov process in the 
space {1,...Kr}. This means that Kr states of decision 
are considered, corresponding to Kr possible 
strategies, indexed by j�{1,…J} with J=Kr. The 
probability associated to each state j in the HSU i and 
year t is given by qk

i(t). qk
i(t) and corresponds to the 

product of probabilities yk
i(t) to the sequence of states 

j. The soil allocation in a given period { }T..,,1t 㺃 only 
depends on the r previous periods.  
Assuming a 2nd order Markov process the probability 
of producing j in t-1 and j’ in t is yi

j(t-1). yi
j’(t). Let 

Ti
jj’(t) be the (Kr×Kr) Markov transition matrix 

associated to soil allocation at HSU disaggregate level 
in the period t. This gives the probability of passing 
from any state j�{1,…Kr} to any state j’ �{1,…Kr} in 
the period t+1. Then the probability of being in state 
j’ is: 
 

{ } { }1-Tr,...,䞏t䞇 and J,...,1䞏'j䞇        , )t(
J

1=j
i
'jjT).t(i

jq=)1+t(i
'jq � (4) 

 
And the probability of producing the k activity in the 
period t+1 is: 
 

)t(
J

1=j
i
'jjT).t(i

jq
)k(ȥ䞏'j

 =)1+t(i
ky �㺌                               (5) 

 
As the information available at HSU level only 
corresponds to the first r observations, the following 
proceeding has to be taken: 1. Estimate the dynamic 
soil allocation at MEA aggregate level with a r order 
Markov process; 2. Specify an aggregate soil 
allocation using a Generalized Maximum Entropy 
(GME) model to estimate the aggregate transition 
probabilities matrix; and 3. Calculate for a given year 
how disaggregated estimation differs from aggregate 
and are compatible with the same year aggregate data 
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using a Minimum Cross Entropy Model and the 
aggregate transition probabilities before estimates. 
The problem of recovering transition probabilities can 
be expressed by the following GME formulation: 
 

))t(n'jelog().t(n'je
1-T

r=t

N

1=n

J

1=j'
-)m'jjTlog(.m'jjT

M

1=m

J

1='j

J

1=j
-= e)H(T, 

e,T
Max 㺌㺌㺌㺌㺌㺌

(6) 

 
subject to: 
 

t , j'      ,
N

1=n
)t(n'je.nv+m'jjT.mw).t(jQ

M

1=m

J

1=j
=)1+t('jQ 㹻㺌㺌㺌   (7) 

 

j        1=m'jjT.mw
M

1=m

J

1='j
㹻㺌㺌                                   (8) 

 

[ ] j', j   0,1Tjj'  and    1=m'jjT
M

1=m
㹻㺃㺌                             (9) 

 

[ ] t, j'   0,1nj'e  and    1=)t(n'je
N

1=n
㹻㺃  㺌                      (10) 

 
where w={w1,…,wM} and v={v1,…,vN} with M � 2 and 
N � 2 are the support sets of transition probabilities 
{Tjj’1,…,Tjj’M} and of error term {ej’1,…,ej’N}, 
respectively. 
In this optimization problem the objective is to 
maximize the entropy of probabilities distribution Tjj’m 
and of error term ej’n under the constraints (7) to (10). 
According constraint (7), the probability of producing 
j’ activity in t+1 year must equal the product of the 
probability of producing j activity in t year by the 
respective transition probabilities and the error term. 
It is a data consistence constraint, which establishes 
for each year the soil allocation at MEA aggregate 
level. The remaining constraints assure the proprieties 
of probabilities.  
After this, it is still needed to estimate for each year  
the probabilities transition matrix at HSU 
disaggregated level, solving a problem of 
minimization of generalized crossed entropy (GCE), 
and using those estimated transition probabilities to 
finally obtain soil allocation for each HSU. The 
problem of GCE can be formulated as: 
 

))t(knelog().t(kne
T

1+r=t

N

1=n

K

1=k
+)'jjT/i

'jjTlog(.i
jjT

J

1='j

J

1=j

I

1=i
= e),iH(T 

e,iT
Min 㺌㺌㺌㺌㺌㺌

� (11) 
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k   )t(kne.nȗ
N

1=n
+i

'jjT).t(i
jq

)k(ȥ'j

J

1=j

I

1=i
is=)1+t(kS 㹻

㺃
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J
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[ ] t e j'   0,1kne  and    1=)t(kne
N

1=n
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where {ȗ1,...,ȗN} with N � 2 is the support vector 
associated to error probabilities {ek1t,…,ekNt}, si is the 
area of each i HSU, 'jjT̂ is the aggregate transition 

probabilities matrix obtained before with the GME 
model and Ti

jj’is the to be estimate transition 
probabilities matrix at HSU disaggregated level. 
This model minimizes the cross entropy of the 
transition probabilities distribution with noise (11), 
under the constraints (12) to (14). The compatibility 
data constraint (12) assures that for each year the total 
soil allocated to activity k in all HSU disaggregated 
level must be the same allocated to this activity k at 
the MEA aggregate level (Sk). The last two constraints 
concern the proprieties of the probability distribution. 
The HSU soil allocation is available only for the first 
r years, which can be directly computed for t=r. For 
the remaining years t=r+1,…,T the transition 
probabilities matrix Ti

jj’ and the error term ekn are 
estimated year to year. Then this information is used 
to recover the soil allocation at HSU disaggregated 
level.  
 
5. Results 
The GME model formulated in equations (6) to (10) 
was solved as a non-liner optimization problem with 
the General Algebraic Modelling System (GAMS). 
Before solving the model it was necessary to establish 
the support values for the parameters and errors. The 
natural bounds of w={w1,…wM} and v={v1,…vN} are 
zero and one. According to [11], 3 support points for 
vector w were chosen – w={0, 0.5, 1}. For error support 
v the N is also 3 and the bounds were determined using 
the 3ı rule [20].  
To estimate the transition probabilities matrix at 
aggregate level the GME model was applied to MEA 
data years of 1989 and 1999 to 2004.  
The model includes 14 agro-forestry activities, which 
covers the most important soil allocation activities 
observed at MEA. These activities include soft wheat 
production, durum wheat production, maize, rice, 
melon, tomato, sunflower, olive groves, vineyards, 
fruits, pastures, forages, fallow and shrubs and forest. 
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Based on the Agricultural Census of 1989 and 1999, 
Surveys on Agricultural Structures from 2003 to 2005 
and Economic Accounts of Agriculture from 2000 to 
2005 the first order Markov processes were established, 
which translate the probability of each agro-forestry 
activity to happen (and therefore, the MEA soil 
occupation) for years 1989, 1999, 2000, 2001, 2002, 
2003 and 2004. Therefore, to estimate the probabilities 
distribution in each year, we used K=14 activities and 
T=7 years, which gives 196 possible Markov states 
(K×K) for each year.  
For each year a transition probabilities matrix is 
obtained.  
Table 1 presents the annual transition probabilities for 
the years of 1989 and 1999 to 2003 by activity. In the 
transition probabilities matrix columns represents the 
agro-forestry activities at t year and lines the agro-
forestry activities at t-1 year. Each element of Table 1 
is the yearly probability of any agro-forestry activity to 
be produced at year t after any other agro-forestry 
activity has been produced in the previous year t-1.  For 
example, the probability of produce soft wheat in 1999 
after any agro-forestry activity produced in 1989 is 
3.52%.  
To evaluate the coherence of the estimated transition 
probabilities, the predicted results were compared with 
the observed values from years 1989 and 1999 to 2004 
and calculated the prescription absolute deviation 
(PAD) by soil allocation activity:  
 

  100 × 
ky

ky-ky
=kPAD

�

  

 
 

Table 1 – Transition aggregate probabilities 
Activity 1989 1999 2000 2001 2002 2003
Soft wheat 0.0352 0.0382 0.043 0.058 0.062 0.080

Durum wheat 0.2083 0.1323 0.071 0.095 0.057 0.073

Corn 0.0623 0.0639 0.076 0.068 0.075 0.072

Rice 0.0463 0.0667 0.076 0.072 0.073 0.071

Melon 0.0477 0.0676 0.076 0.072 0.074 0.071

Tomato 0.0482 0.0673 0.075 0.072 0.074 0.071

Sunflower 0.0536 0.0717 0.062 0.067 0.071 0.059

Olive 0.0602 0.0701 0.071 0.069 0.072 0.070

Vineyard 0.0552 0.0691 0.080 0.071 0.074 0.074

Fruits 0.0468 0.0684 0.075 0.072 0.072 0.072

Pastures 0.1284 0.0724 0.073 0.071 0.074 0.072

Forages  0.0741 0.0723 0.073 0.071 0.074 0.072

Fallows 0.0428 0.0698 0.071 0.068 0.071 0.069

Forestry 0.0907 0.0702 0.071 0.069 0.072 0.070

Source: GME model results  
 
The PAD results presented in the Table 2 shows that 
the model allows a good prescription of the soil 
allocation at MEA aggregate level. 

The biggest PAD values, which reflects the major 
differences between predicted and observed soil 
allocation activities, occurs at 1999 year, namely on 
durum wheat (27.8%), corn (38%), melon (27.7%) and 
vineyards (46.2%). The PAD values are also highs for 
tomato in 2000 and 2001 and for melon in 2000. The 
remains PAD values are below 15%, which is the value 
considered by Hazell et al. [29] as the reasonable 
calibration threshold. The good quality of the GME 
model results can be confirmed through the weighted 
PAD. In this case the PAD is obtained for all the MEA 
and presents very low values, which varies between 
2.3% at 1999 year and less 1% for the remains years.   

 
Table 2 – Predicted Absolute Deviation 

Activity 1999 2000 2001 2002 2003 2004 
Soft wheat 0.5 4.0 15.4 16.9 26.7 18.4

Durum wheat 27.8 3.7 0.2 0.6 0.6 0.1

Corn 38.0 8.0 0.6 8.9 4.6 0.9

Rice 10.7 9.2 3.4 5.2 1.5 1.4

Melon 27.7 21.6 9.2 0.8 0.8 0.4

Tomato 14.8 30.6 21.3 13.1 15.8 3.8

Sunflower 1.9 1.1 4.8 2.8 1.0 9.2

Olive 0.5 0.2 0.2 0.1 0.2 0.0

Vineyard 46.2 3.5 11.2 2.8 2.5 4.7

Fruits 14.9 7.7 4.5 4.5 36.6 23.2

Pastures 0.2 0.0 0.0 0.0 0.0 0.0

Forages  1.2 0.2 0.1 0.0 0.0 0.0

Fallows 0.0 0.0 0.0 0.0 0.0 0.0

Forestry 1.1 0.0 0.1 0.1 0.5 0.0

Source: Statistical data and predicted results with GME estimators 
 
After estimated the dynamic process of soil allocation 
at aggregate MEA level, it is necessary to use this 
information as prior in the GCE model to estimates the 
HSU disaggregated transition probabilities. Then the 
disaggregated soil allocation is recovered year by year 
using the equation (15). These results should be 
compared with the reality, which can only be done to 
the year 1999, as for the other years there are no 
disaggregated results. It must be stated that the 
estimations obtained with this model were close to the 
reality in 1999.  
To evaluate the results quality we also used the 
weighted predicted absolute deviation (WPAD), 
calculated as follows, for each activity and HSU: 
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and at MEA aggregate level: 
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Table 3 shows that in general the results obtained to 
HSU disaggregated level are good. The WPAD values 
by activity were relatively low. Values above 15%, 
only occur for permanent pastures and fallow and, even 
thought, only for 7 of the 31 HSU. Nevertheless, these 
differences do not compromise the validity of 
disaggregation process. In reality, many of the 
permanent pastures are integrated in very long rotations 
and subject to very low number of heads per hectare 
and the fallows are frequently used as spontaneous 
pastures. So, the errors can be accommodated in current 
practices that can not be reflected in the disposable 
statistical information.  
 
Table 3 – Weighted Predicted Absolute Deviation by 

HSU disaggregated level 
HSU WPAD HSU WPAD HSU  WPAD HSU WPAD
I1 35.7 I9 14.7 I17 23.0 I25 58.6

I2 23.5 I10 35.7 I18 16.6 I26 60.8

I3 41.4 I11 25.4 I19 24.5 I27 15.4

I4 23.4 I12 26.3 I20 21.1 I28 17.0

I5 56.5 I13 25.7 I21 21.4 I29 14.8

I6 28.2 I14 55.1 I22 43.9 I30 27.3

I7 25.6 I15 54.0 I23 34.1 I31 25.6

I8 25.7 I16 24.8 I24 66.9 Total 25.7

Source: Statistical data and predicted results with GCE estimations 
 
 
The WPAD per HSU present values above 25% in 
about half of the cases. However the total WPAD, 
which considers the agro-forestry activity and HSU 
weights for all MEA, is 27.3%, which is an acceptable 
value.  
Analysing the WPAD for each HSU, considering 
pastures and fallows together as the same agro-forestry 
activity, the total WPAD of 27.3% obtained before falls 
to 10.5% (see Table 4). Furthermore the biggest PAD 
value is now 32.4% and only in six HSU this indicator 
is above 15%, which is the reasonable calibration 
threshold. Unlike the PAD values presented in Table 3, 
the PAD values of Table 4 are perfectly accepted as 
estimation errors and confirm the good method’s 
adherence to disaggregate soil allocation data.     

 
Table 4 – Adjusted Weighted Predicted Absolute 

Deviation by HSU disaggregated level  
HSU WPAD HSU WPAD HSU  WPAD HSU WPAD
I1 32.4 I9 11.9 I17 7.2 I25 9.9

I2 9.5 I10 7.6 I18 11.0 I26 6.8

I3 6.7 I11 10.5 I19 12.2 I27 18.6

I4 17.3 I12 7.8 I20 7.7 I28 10.4

I5 16.2 I13 18.3 I21 5.0 I29 8.3

I6 9.8 I14 12.5 I22 14.6 I30 8.8

I7 14.8 I15 16.8 I23 8.3 I31 11.6

I8 14.6 I16 5.1 I24 19.2 Total 10.5

Source: Statistical data and predicted results with GCE estimations 
 
Another way of analysing the interest of this method to 
the given problem is to measure the information gain 
from the disaggregation process. For that it is necessary 
an indicator that measures the quantity of information 
that is changed due to aggregation process. Howitt et 
Reynaud [20] construct an indicator, the “Disagegation 
Information Gain” (DIG), based on the cross entropy 
between the observed values of soil allocation at 
aggregate (yk) and disaggregated (yi

k) level and on the 
crossed entropy between the soil allocation estimated  
by the disaggregation model ( ŷ i

k) and those observed 
at HSU disaggregated level (yi

k). The crossed entropy 
values are calculated as: 
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Then the DIG is given by: 
 

CE
ÊC

1=DIG  

 
CE is the entropy measure of the distance between the 
observed soil allocation at MEA aggregate and HSU 
disaggregated level, while CÊ is the entropy measure of 
how far the HSU disaggregated estimates are from the 
observed values. This way DIG measures the 
proportion of heterogeneity at HSU level that is 
covered by the disaggregation process used.  
In a perfect disaggregation, DIG is equal to 1. In this 
case, the disaggregation process recovers 100% of 
information heterogeneity because ŷ i

k.=yi
k. If there is 

no heterogeneity in the information, it is the case where 
yk=yi

k, the DIG is 0. The DIG varies between 0 and 1 
and increases as the disaggregated estimates are closer 
to the observed data values. 
Our model obtained a DIG of 0.43, which means the 
disaggregation recovers 43% of the information 
heterogeneity at the 31 HSU level, considering the 14 
agro-forestry activities for soil allocation. These results 
are very satisfactory, especially when compared to the 
DIG values between 56 to 69% obtained by Howitt et 
Reynaud [20] in an information disaggregation process   
for only six districts of California State (USA) and 
eight crops activities. 
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6. Conclusions  
This work estimates the unknown soil allocation data at 
homogeneous sub-units disaggregated level for the 
Montado ecosystem in the Alentejo Region. The 
disaggregation process is based on a Generalized 
Maximum Entropy methodological framework that use 
complete information at aggregate level of Montado 
ecosystem area and incomplete information at 
disaggregated level of theirs homogeneous sub-units. 
The method is developed in three steps. In the first it is 
established an r order Markov process, which 
represents the dynamic soil allocation at the Montado 
ecosystem aggregated level. The second step concerns 
the estimates of transition probabilities within a 
Generalized Maximum Entropy model of aggregate soil 
allocation. The last step consists in disaggregating the 
aggregate data using a Generalized Cross Entropy 
model and in recovering the unknown soil allocation at 
each homogeneous sub-units. 
The achieved results show very acceptable estimation 
errors. It can be concluded that the methodological 
framework proposed is able to disaggregate the values 
that exist at Montado ecosystem area level to each of its 
homogeneous sub-units level, allowing the 
representation of soil allocation each year.  
Economic sustainability is an important part of the 
sustainability issue and the economic analysis is surely 
the framework of the structural policy analysis that 
impacts the territory and of the future scenarios’ study, 
technical and economic management models and 
evaluation of determinant factors.  
It is of fundamental interest to have a tool that allows 
the information generation for homogeneous sub-units, 
giving the basis to study socio-economic parameters 
and the impact of agricultural policy scenarios on the 
natural resources exploitation. 
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Appendix 
 
 

Table A1- Alentejo representative Montado Agro-Forestry Production Systems (MAPS) 
 

MAPS 
Soil occupation Livestock 

activity 
Forest characteristics Climatic factors Agricultural economy 

aspects 
 

A 
Pastures under trees Cattle and 

swine 
Weak forest. Predominance 

of Quercus ilex spp. 
rotundifolia 

Inner zones, with 
low level of 
precipitation 

Big farms: 
1366 ha UAS and  6 

AWU 
 
 

B 

Gras and grazings 
activities, under trees or 

not 

Cattle Quercus ilex spp. 
rotundifolia with high 

density 

Inner zones, with 
low level of 
precipitation 

Medium and small 
farms: 377 ha UAS 

and 2,42 AWU 
 
 

C 

Olive oil and vineyards 
systems and gras and 

grazings activities 

Cattle and 
sheep 

Quercus ilex spp. 
rotundifolia and Quercus 
suber with high density 

Littoral zones with 
good level of 
precipitation 

Small farms: 
177 ha UAS and 6,43 

AWU 
 
 

D 

Gras and grazings 
activities, under trees or 

not 

Cattle and 
swine 

Quercus ilex spp. 
rotundifolia with low density 

High inner zones 
with good level of 

precipitation 

Medium to big farms: 
798 ha UAS and 4,21 

AWU 
 

E 
Cereals and pastures, 

under trees or not 
Cattle Quercus suber with high 

density 
Inner zones near 
littoral with good 

level of 
precipitation in 

Winter 

Small farms: 107 ha 
UAS and 1,15 AWU 

 
F 

Cereals and pastures, 
under trees or not 

Cattle Quercus ilex spp. 
rotundifolia and Quercus 
suber with high density 

Inner zones with 
low level of 
precipitation 

 

Small to medium 
farms: 448 ha UAS 

and 3,05 AWU 

Source: k-means analysis, done by the Évora University’s Unit of Macroecology and Conservation  
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Table A2 – Distribution of homogeneous sub-units (HSU) by MEA 

Macro 
Unit ha % 

Homogeneous 
sub-unit Ha % Predominant County 

  I8 61376 3.0 Beja e Almodôvar 
  I11 99829 4.9 Vidigueira e Moura 
  I15 7258 0.4 Mértola 

A  I22 104130 5.2 Mértola 
  I24 8053 0.4 Mértola 
  I26 69653 3.5 Moura 
 374686 18.6 I27 24386 1.2 Mértola 
  I3 37792 1.9 Montemor-o-Novo 
  I10 66176 3.3 Serpa 
  I20 49204 2.4 Arronches e Portalegre 

B  I21 319293 15.8 Évora, Montemor, Arraiolos e Alandroal 
  I23 12437 0.6 Serpa 
  I28 49916 2.5 Almodôvar 
 670140 33.2 I29 135322 6.7 Elvas, Fronteira e Monforte 
  I5 99570 4.9 Portel 

C  I17 3613 0.2 Elvas 
 224850 11.1 I30 121667 6.0 Estremoz e Sousel 
  I1 34367 1.7 Odemira 
  I2 27583 1.4 Alcácer do Sal 
  I6 7161 0.4 Avis 
  I7 73681 3.6 Ponte de Sôr 
  I9 176744 8.8 Alcácer do Sal e Grândola 

D  I13 9743 0.5 Odemira 
  I14 5884 0.3 Almodôvar 
  I18 145323 7.2 Santiago do Cacém e Odemira 
  I19 2400 0.1 Santiago do Cacém 
  I25 38153 1.9 Alcácer do Sal 
 559269 27.7 I31 38231 1.9 Avis 
  I12 56407 2.8 Crato e Gavião 

E 132286 6.6 I16 75880 3.8 Castelo de Vide e Nisa 
F 57690 2.9 I4 57690 2.9 Beja e Ferreira do Alentejo 
- - 100 - 2018921 100.0 - 

Source: Project team, based on K-means analysis  
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