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ABSTRACT 

 

 

 The high integration level achieved as well as complexity and performance 

enhancements in new nanometer technologies make IC (Integrated Circuits) products 

very difficult to test. Moreover, long term operation brings aging cumulative 

degradations, due to new processes and materials that lead to emerging defect 

phenomena and the consequence are products with increased variability in their 

behaviour, more susceptible to delay-faults and with a reduced expected lifecycle.  

 The main objectives of this thesis are twofold, as explained in the following. 

First, a new software tool is presented to generate HDL (Hardware Description 

Language) for BIST (Built-In Self-Test) structures, aiming delay-faults, and inserted 

the new auto-test functionality in generic sequential CMOS circuits. The BIST 

methodology used implements a scan based BIST approach, using a new BIST 

controller to implement the Launch-On-Shift (LOS) and Launch-On-Capture (LOC) 

delay-fault techniques. 

 Second, it will be shown that multi-VDD tests in circuits with BIST infra-

structures can be used to detect gross delay-faults during on-field operations, and 

consequently can be used as an aging sensor methodology during circuits’ lifecycle. 

The discrete set of multi-VDD BIST sessions generates a Voltage Signature Collection 

(VSC) and the presence of a delay-fault (or a physical defect) modifies the VSC 

collection, allowing the aging sensor capability. 

 The proposed Design for Testability (DFT) method and tool are demonstrated 

with extensive SPICE simulation using three ITC’99 benchmark circuits. 

 

Keywords:  Built-In Self-Test, Aging Sensor Methodology, Multi-VDD Tests, HDL 

automatic generation, Launch-On-Shift, Launch-On-Capture. 
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RESUMO 

 

 

 O elevado nível de integração atingida, complexidade, assim como 

performances melhoradas em novas tecnologias nanométricas tornam os produtos em 

circuitos integrados tecnológicos muito difíceis de testar. Para além disso, a operação 

a longo prazo produz degradações cumulativas pelo envelhecimento dos circuitos, 

devido a novos processos e materiais que conduzem a novos defeitos e a consequência 

são produtos com maior variabilidade no seu funcionamento, mais susceptíveis às 

faltas de atraso e com um tempo de vida menor.  

 Os principais objectivos desta tese são dois, como explicado em seguida. 

Primeiro, é apresentada uma nova ferramenta de software para gerar estruturas de 

auto-teste integrado (BIST, Built-In Self-Test) descritas em linguagens de descrição de 

hardware (HDL, Hardware Description Language), com o objectivo de detectar faltas 

de atraso, e inserir a nova funcionalidade de auto-teste em circuitos genéricos 

sequenciais CMOS. A metodologia de BIST utilizada implementa um procedimento 

baseado em caminhos de deslocamento, utilizando um novo controlador de BIST para 

implementar técnicas de faltas de atraso, como Launch-On-Shift (LOS) e Launch-On-

Capture (LOC). 

 Segundo, irá ser mostrado que testes multi-VDD em circuitos com infra-

estruturas de BIST podem ser usados para detectar faltas de atraso grosseiras durante a 

operação no terreno e, consequentemente, pode ser usado como uma metodologia de 

sensor de envelhecimento durante o tempo de vida dos circuitos. Um número discreto 

de sessões BIST multi-VDD geram uma Colecção de Assinaturas de Tensão (Voltage 

Signature Collection, VSC) e a presença de uma falta de atraso (ou um defeito físico) 

faz modificar a colecção VSC, comportando-se como sensor de envelhecimento. 

 

 O trabalho foi iniciado com o estudo do estado da arte nesta área. Assim, 

foram estudadas e apresentadas no capítulo 2 as principais técnicas de DfT (Design for 

Testability) disponíveis e utilizadas pela indústria, nomeadamente, as técnicas de SP 

(Scan Path), de BIST e as técnicas de scan para delay-faults, LOS e LOC. No capítulo 

3, ainda referente ao estudo sobre o estado da arte, é apresentado o estudo sobre os 
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fenómenos que provocam o envelhecimento dos circuitos digitais, nomeadamente o 

NBTI (Negative Bias Temperature Instability), que é considerado o factor mais 

relevante no envelhecimento de circuitos integrados (especialmente em 

nanotecnologias). 

 

 Em seguida, iniciou-se o desenvolvimento do primeiro objectivo. 

Relativamente a este assunto, começou-se por definir qual o comportamento das 

estruturas de BIST e como se iriam interligar. O comportamento foi descrito, bloco a 

bloco, em VHDL comportamental, ao nível RTL (Register Transfer Level). Esta 

descrição foi então validada por simulação, utilizando a ferramenta ModelSim. 

Posteriormente, esta descrição comportamental foi sintetizada através da ferramenta 

Synopsys, com a colaboração do INESC-ID em Lisboa (instituição parceira nestes 

trabalhos de investigação), e foi obtida uma netlist ao nível de porta lógica, que foi 

guardada utilizando a linguagem de descrição de hardware Verilog. Assim, 

obtiveram-se dois tipos de descrição dos circuitos BIST: uma comportamental, em 

VHDL, e outra estrutural, em Verilog (esta descrição estrutural em Verilog irá 

permitir, posteriormente, fazer a simulação e análise de envelhecimento). 

A nova estrutura de BIST obtida é baseada no modelo clássico de BIST, mas 

apresenta algumas alterações, nomeadamente ao nível da geração de vectores de teste 

e no controlo e aplicação desses vectores ao circuito. Estas modificações têm como 

objectivo aumentar a detecção de faltas e permitir o teste de faltas de atraso. É 

composto por três blocos denominados LFSRs (Linear Feedback Shift Registers), um 

utilizado para gerar os vectores pseudo-aleatórios para as entradas primárias do 

circuito, outro para gerar os vectores para a entrada do scan path, e o último utilizado 

como contador para controlar o número de bits introduzidos no scan path. 

Relativamente ao controlador, este foi especificamente desenhado para controlar um 

teste com estratégia de test-per-scan (ou seja, um teste baseado no caminho de 

varrimento existente no circuito) e tem uma codificação de estados que permite 

implementar as estratégias de teste de faltas de atraso, Launch-On-Shift (LOS) e 

Launch-On-Capture (LOC). Na secção de saída do novo modelo de BIST, o processo 

de compactação usa o mesmo princípio do modelo tradicional, utilizando neste caso 

um MISR (Multiple Input Signature Register). 

 Ainda relativamente ao primeiro objectivo, seguiu-se o desenvolvimento da 

ferramenta BISTGen, para automatizar a geração das estruturas de BIST atrás 
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mencionadas, nos dois tipos de descrição, e automaticamente inserir estas estruturas 

num circuito de teste (CUT, Circuit Under Test). A aplicação de software deve 

permitir o manuseamento de dois tipos de informação relativa ao circuito: descrição 

do circuito pelo seu comportamento, em VHDL, e descrição do circuito pela sua 

estrutura, em Verilog. Deve ter como saída a descrição de hardware supra citada, 

inserindo todos os blocos integrantes da estrutura num só ficheiro, contendo apenas 

um dos tipos de linguagem (Verilog ou VHDL), escolhida previamente pelo utilizador. 

No caso dos LFSRs e do MISR, o programa deve permitir ao utilizador a escolha de 

LFSRs do tipo linear ou do tipo modular (também conhecidos por fibonacci ou 

galois), e deve também possuir suporte para automaticamente seleccionar de uma 

base de dados quais as realimentações necessárias que conduzem à definição do 

polinómio primitivo para o LFSR. Será necessário ainda criar uma estrutura em base 

de dados para gerir os nomes e o número de entradas e saídas do circuito submetido a 

teste, a que chamamos CUT, de forma a simplificar o processo de renomeação que o 

utilizador poderá ter de efectuar. Dar a conhecer ao programa os nomes das entradas e 

saídas do CUT é de relevante importância, uma vez que a atribuição de nomes para as 

entradas e saídas pode vir em qualquer língua ou dialecto, não coincidindo com os 

nomes padrão normalmente atribuídos. 

Relativamente às duas linguagens que o programa recebe através do CUT na 

sua entrada, no caso VHDL após inserir BIST o ficheiro final terá sempre uma 

estrutura semelhante, qualquer que seja o ficheiro a ser tratado, variando apenas com 

o hardware apresentado pelo CUT. No entanto, para o caso Verilog a situação será 

diferente, uma vez que o programa tem de permitir que o ficheiro final gerado possa 

surgir de duas formas dependendo da escolha desejada. A primeira forma que o 

software deve permitir para o caso Verilog é gerar um ficheiro contendo módulos, de 

uma forma semelhante ao que acontece no caso VHDL. No entanto, deve permitir 

também a obtenção, caso o utilizador solicite, de um ficheiro unificado, sem sub-

módulos nos blocos, para que o ficheiro final contenha apenas uma única estrutura, 

facilitando a sua simulação e análise de envelhecimento nas etapas seguintes.  

 

Relativamente ao segundo objectivo, com base no trabalho anterior já 

efectuado em metodologias para detectar faltas de delay em circuitos com BIST, foi 

definida uma metodologia de teste para, durante a vida útil dos circuitos, permitir 
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avaliar como vão envelhecendo, tratando-se assim de uma metodologia de 

monitorização de envelhecimento para circuitos com BIST.  

Um aspecto fundamental para a realização deste segundo objectivo é 

podermos prever como o circuito vai envelhecer. Para realizar esta tarefa, sempre 

subjectiva, utilizou-se uma ferramenta desenvolvida no ISE-UAlg em outra tese de 

mestrado anterior a esta, a ferramenta AgingCalc. Esta ferramenta inicia-se com a 

definição, por parte do utilizador, das probabilidades de operação das entradas 

primárias do circuito (probabilidades de cada entrada estar a ‘0’ ou a ‘1’). De notar 

que este é o processo subjectivo existente na análise de envelhecimento, já que é 

impossível prever como um circuito irá ser utilizado. Com base nestas probabilidades 

de operação, o programa utiliza a estrutura do circuito para calcular, numa primeira 

instância, as probabilidades dos nós do circuito estarem a ‘0’ ou a ‘1’, e numa segunda 

instância as probabilidades de cada transístor PMOS estar ligado e com o seu canal 

em stress (com uma tensão negativa aplicada à tensão VGS e um campo eléctrico 

aplicado ao dieléctrico da porta). Utilizando fórmulas definidas na literatura para 

modelação do parâmetro Vth (tensão limiar de condução) do transístor de acordo com 

um envelhecimento produzido pelo efeito NBTI (Negative Bias Temperature 

Instability), o programa calcula, para cada ano ou tempo de envelhecimento a 

considerar, as variações ocorridas no Vth de cada transístor PMOS, com base nas 

probabilidades e condições de operação previamente definidas, obtendo um novo Vth 

para cada transístor (os valores prováveis para os transístores envelhecidos). Em 

seguida, o programa instancia o simulador HSPICE para simular as portas lógicas do 

circuito, utilizando uma descrição que contém os Vth calculados. Esta simulação 

permite calcular os atrasos em cada porta para cada ano de envelhecimento 

considerado, podendo em seguida calcular e obter a previsão para o envelhecimento 

de cada caminho combinatório do circuito. É de notar que, embora a previsão de 

envelhecimento seja subjectiva, pois depende de uma previsão de operação, é possível 

definir diferentes probabilidades de operação de forma a estabelecer limites prováveis 

para o envelhecimento de cada caminho. 

Tendo uma ferramenta que permite prever como o circuito irá envelhecer, é 

possível utilizá-la para modificar a estrutura do circuito e introduzir faltas de delay 

produzidas pelo envelhecimento por NBTI ao longo dos anos de operação (modelados 

pelo Vth dos transístores PMOS). Assim, no capítulo 5 irá ser mostrado que testes 

multi-VDD em circuitos com infra-estruturas de BIST podem ser usados para detectar 
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faltas de atraso grosseiras durante a operação no terreno, podendo em alguns casos 

identificar variações provocadas pelo envelhecimento em caminhos curtos, e 

consequentemente, estes testes podem ser usados como uma metodologia de sensor de 

envelhecimento durante o tempo de vida dos circuitos. Um número discreto de 

sessões BIST multi-VDD geram uma Colecção de Assinaturas de Tensão (Voltage 

Signature Collection, VSC) e a presença de uma falta de atraso (ou um defeito físico) 

faz modificar a colecção VSC, comportando-se como sensor de envelhecimento. O 

objectivo será, especificando, fazer variar a tensão de alimentação, baixando o seu 

valor dentro de um determinado intervalo e submetendo o circuito a sucessivas 

sessões de BIST para cada valor de tensão, até que o circuito retorne uma assinatura 

diferente da esperada. Este procedimento de simulação será feito para uma maturidade 

de até 20 anos, podendo o incremento não ser unitário. Na realidade os circuitos nos 

primeiros anos de vida em termos estatísticos não sofrem envelhecimento a ponto de 

causar falhas por esse efeito. As falhas que podem acelerar o processo de 

envelhecimento estão relacionadas com defeitos significativos no processo de fabrico 

mas que ainda assim não são suficientes para no início do seu ciclo de vida fazer o 

circuito falhar, tornando-se efectivas após algum tempo de utilização. 

 Os métodos e ferramentas propostos de DfT são demonstrados com extensas 

simulações VHDL e SPICE, utilizando circuitos de referência. 

 

 

 

Palavras-chave:  Auto-Teste Incorporado, Metodologia para Sensor de 

Envelhecimento, Testes Multi-VDD, geração automática de HDL, 

Launch-On-Shift, Launch-On-Capture. 
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ORA Output Response Analysis 

RM  Response Monitor 

RTL Register Transfer Level 

SIV  Stress Induced Voiding 

SoC System on Chip 

SRAM  Static Random Access Memory 

STF  Slow to Fall 

STR Slow to Rise  

TDDB  Time Dependent Dielectric Breakdown 

TF Transition Fault 

TG  Test Generator 
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VHDL Very high speed integrated circuits (VHSIC) Hardware Description 

Language 

VHSIC Very High Speed Integrated Circuits 

VLSI Very Large Scale Integration 

VSC Voltage Signature Collection 
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LIST OF DEFINITIONS 

 

 

[Aliasing] – During circuit response compaction, because of the information loss, it is 

possible that a signature of a bad circuit may match the good circuit signature, which 

is called aliasing. In such cases, a failing circuit will pass the testing process. 

 

[Compaction] – A method of drastically reducing the number of bits in the original 

circuit response during testing in which some information is lost. 

 

[Compression] – A method of reducing the number of bits in the original circuit 

response during testing in which no information is lost, so the original output 

sequence can be fully regenerated from the compressed sequence. 

 

[Delay Fault] – A delay-fault is a fault that causes the combinational delay of a circuit 

to exceed the clock period. 

 

[Negative Bias Temperature Instability] – Translate an increase in the absolute threshold 

voltage causing a degradation of the mobility, drain current and transconductance of 

P-channel MOSFETs. It is almost universally attributed to the creation of interface 

traps and oxide charge by a negative gate bias at elevated temperature. 

 

[Path Delay Fault] – A delay defect in a circuit is assumed to cause the cumulative 

delay of a combinational path to exceed some specified duration. The combinational 

path begins at a primary input or a clocked flip-flop, contains a connected chain of 

gates, and ends at a primary output or a clocked flip-flop. The specified time duration 

can be the duration of the clock period (or phase), or the vector period. The 

propagation delay is the time that a signal event (transition) takes to traverse the path. 

Both switching delays of devices and transport delays of interconnects on the path, 

contribute to the propagation delay. 
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[Signature] – A statistical property of a circuit, usually a number computed for a circuit 

from its responses during testing, with the property that faults in the circuit usually 

cause the signature to deviate from the signature of the non-faulty circuit. 

 

[Signature Analysis] – A method of circuit response compaction during testing, whereby 

the entire good circuit response is compacted into a good circuit signature. The actual 

circuit signature is generated during the testing process on the CUT, and then 

compared with the good machine signature to determine whether the CUT is faulty. 

 

[Transition Delay Fault Model] – “It is assumed that in the fault-free circuit all gates 

have some nominal delay and the delay of a single gate has changed. The gate-delay, 

usually an increase over the nominal value, is assumed to be large enough to prevent a 

passing transition from reaching any output within the clock period, even when the 

transition propagates through the shortest path. Possible transition faults of a gate are 

slow to-rise and slow-to-fall types and hence the total number of transition faults is 

twice the number of gates. Transition faults model spot defects and are also called 

gross-delay-faults” (excerpted from [27]). 
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1. INTRODUCTION 

 

 
Electronic systems have increased its complexity in the last years in nano 

technologies, which leads to a growth of system functionalities integrated in a single 

chip. High performance applications with Integrated Circuits (IC) are commonly 

found in the networking, banking, aerospace/defence, automotive, computer, 

telecommunications and healthcare industries, and have greatly increased in usability 

and complexity. Such, evolution requires additional fault control in the test 

environment, as testing of IC has a crucial importance to ensure a high level of quality 

in product functionality. Due to the increased complexity in modern ICs, the impact of 

testing affects both IC design and manufacturing. Moreover, given this range of 

design involvement, a major concern is, definitely, how to achieve a high level of 

confidence in IC operation and this desire to attain high quality levels, conflicts with 

the demand for reduced costs and shorten time involved in the development process. 

These two design considerations are at constant odds.  

The traditional solution to achieve a high level of confidence is ruled by 

advanced testers denominated Automated Test Equipment (ATE). Traditionally 

ATE’s cost is only measured using a simple digital cost pin approach which leads to a 

lack of considerations making the cost per-test in many ways disproportionate. In the 

last years other calculations have been made and proposed [1] to improve the 

traditional test cost measurement, considering also base system costs associated with 

equipment infrastructure, central instruments and the beneficial scaling that occurs 

with increasing pin count. As an example, Figure 1 shows the test cost evolution vs. 

manufacturing cost in the last 30 years. 

Therefore, it became essential to find/implement alternative test methods to 

reduce financial costs. Among these methods is Built-In Self-Test (BIST), and has 

become a major design consideration in Design for Testability (DFT) methods. BIST 

has many advantages. This technique can drastically reduce the external test 

equipment dependency. If external test equipment is a part of the enterprise legacy, 

BIST will reduce the global cost and test time even more, making possible to re-direct 

the test equipment towards other devices in the current design, if necessary.  
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Figure 1: Test Cost vs Manufacturing Cost (From Semiconductor Industry Association [2]) 

 

Moreover, new technology products need high speed testers, not always available, as 

ATE is usually a few years behind the latest technology products. Considering that 

testing represents a key cost factor in the production process (up to 70% of total 

product cost is reported in [3] [4] [5]), an optimal test strategy can be a substantial 

competitive advantage in a market comprising billions of electronic components and 

systems. It is therefore not a surprise that the International Technology Roadmap for 

Semiconductors (ITRS), in its last report (2012) has placed the design for self-test on 

the future opportunities in the “Test and Test Equipment” group report [6]. 

Another important advantage is that BIST allows not only circuit tests during 

production, but also to test the circuits during their entire lifetime, which is an 

important feature when long-term degradation effects start to limit circuits expected 

life-cycle for nanotechnology ICs. This opens a new concept and a new era in system 

quality and testing. In addition, BIST can overcome pin limitations due to packaging, 

make efficient use of available extra chip area, and provide more detailed information 

about the faults present.  

The main disadvantages for BIST usability are, commonly, the increased die size 

and design complexity. However, the addition of BIST features to IC design 

nowadays doesn't significantly increase a product's size, cost, and production time, as 

was the case in the past. All the benefits are plentiful motivations for BIST technique 

to become an important DFT technique in the future. 

 

 The present work deals with the automatic generation of BIST structures and 

studies its behaviour during circuit’s expected lifetime, using statistical predictions for 

aging degradations. The accelerated aging effects observed in new technologies ICs 

are also a motivation to develop new techniques to enhance circuit’s reliability. In 

fact, aging effects caused by phenomena like Negative Bias Temperature Instability 



CHAPTER 1: INTRODUCTION 3 

 

(NBTI) (the dominant long-term effect in nanometer CMOS technologies [72]), Hot 

Carrier Injection (HCI), or Time Dependent Dielectric Breakdown (TDDB), among 

others, are gaining increase relevance in new nanometer technologies and degrade 

circuit performance over time [73]. These aging effects are cumulative and cause 

circuit’s safety margins (time slack) to be shrinked, reducing the expected circuit’s 

life time. Therefore, new technology products have a smaller expected lifetime than 

previous technology’s products, imposing the need for auto-test during on-field 

operation (and not only in the production stage), along circuit’s lifecycle. 

 

 

1.1 OBJECTIVES 

 

With the previous motivations in mind, this work tries to put a milestone in the 

development of ICs with BIST capability. The goal is to develop automatic BIST 

structures for generic sequential ICs, aiming the detection of delay-faults, and re-use 

on-chip variable power supply voltage source to implement an aging aware test 

strategy to detect long-term degradations during circuit’s lifetime. 

 

 The objectives for this work are, mainly, twofold: 

1. Implement a software tool to generate BIST structures automatically in a 

circuit under test (CUT), aiming the detection of delay-faults; 

2. Show that a set of auto-tests using a variable VDD power-supply voltage source 

(a set of BIST runs, each run using a different power-supply voltage value) 

can be used as an aging and performance sensor for long-term degradations 

(during circuits’ lifespan). 

 

 The first main objective is a pre-requisite to the second one. It is important to have 

a tool to insert in a general sequential CMOS circuit BIST structures to allow the 

auto-test of the circuit. Starting from a HDL (Hardware Description Language) netlist 

(or behavioural description), the tool must generate automatically a new HDL netlists 

(or behavioural description) of the new circuit with BIST structures and functionality. 

To accomplish this first objective, the BIST structures have to be defined, using 

VHDL (Very high speed integrated circuits Hardware Description Language) and 
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Verilog languages, and defining the structures in a behavioural and netlist 

representation, using a CMOS generic standard cell library designed in a previous 

M.Sc. thesis in ISE-UAlg). The BIST controller defined should also implement LOS 

and LOC based BIST approaches, aiming the detection of delay-faults. 

 The second main objective will use as a test vehicle the BIST structures defined 

with the proposed software tool (from the first objective), already inserted in a Circuit 

Under Test (CUT), and the purpose is to show by simulation (SPICE simulations) that 

using by reusing a variable power-supply already present in the IC, it is possible to 

identified a set of BIST signatures (known as Voltage Signatures Collection, VSC), 

from a set of BIST sessions performed each one at a different power-supply voltage. 

This VSC is unique for each sample circuit, and as aging degradations start to occur 

during circuit’s lifetime, this unique VSC will differ, allowing to detect not only gross 

delay-faults but also to define an aging sensor methodology for BIST circuits. 

 

 

1.2 CONTEXT 

 

This research work was conducted at the Instituto Superior de Engenharia (ISE), 

University of Algarve (UAlg), in close collaboration with INESC-ID Lisbon and with 

the industrial partner Silicongate in Lisbon. The work team formed in the Portuguese 

institutions are working in collaboration with other foreigner R&D institutes and 

universities, namely University of Vigo in Spain, the INAOE institute in Mexico and 

PUCRS University in Brazil. The team has been developing in the last 5 years some 

research work on aging sensors, both for ASIC (Application Specific Integrated 

Circuit) and for emulated circuits in FPGAs (Field-Programmable Gate Array). 

Moreover, in this context, 2 M.Sc. thesis were already finished, and another one is 

currently being developed, in ISE-UAlg, and furthermore M.Sc. and Ph.D. thesis were 

finished and are currently being developed in partner institutions. 
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1.3 OUTLINE 

 

This thesis is organized as follows: 

 

 Chapter 2 reviews basic concepts on Fault Modelling, conventional 

BIST methodology and its architecture. Emphasis is placed on scan 

design for delay-fault detection, namely Launch on Capture and Launch 

on Shift techniques.  

 Chapter 3 outlines the main phenomena and effects that contribute to the 

aging of digital CMOS integrated circuits like NBTI phenomenon. 

 The fourth chapter describes the new proposed dynamic BIST 

methodology. It gives the details about the new methodology, the 

proposed BIST architecture and the characteristics of all their structural 

components. 

 Chapter 5 explains the BISTGen Application Software, its composition 

and hierarchy levels.  

 Chapter 6 presents the test results. 

 Chapter 7 concludes the work with a summary of the proposed 

methodology, its achievements and limitations. It also outlines directions 

for future work. 
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2. DESIGN FOR TESTABILITY 

 

 

The design of a feasible system solution for a given problem is only half of the 

task. Considering that the production stage in the IC design process involves very 

complex procedures, it is very important to be able to test the system to a degree 

which ensures a high confidence level that it is fully functional and this is generally 

not a straight forward task. In very small digital systems scale, it is possible to test it 

exhaustively, and the system can exercise over its full range of operating conditions. 

However, in a larger scale system, it is no longer possible to do this procedure and 

therefore other strategies has to be found to ensure that the system will properly be 

tested.  

When testing a digital logic device, stimulus are applied to its inputs and check 

its response at the outputs to identify if it is performing correctly. The set of input 

stimulus is referred as a test pattern. In general, the response of the device is observed 

at its normal output pins. However, it is possible that the device is specially 

configured during the test, to allow observing some internal nodes, which generally 

would not be accessible to the user. The response of the device is evaluated by 

comparing it to an expected response, which may be obtained by saving the response 

of a known good device, or using simulation on a computer. If the CUT passes the 

test, isn’t possible to say categorically that it is a good device. The only possible 

conclusion is that the device does not contain any of the faults for which it was tested. 

It is important to grasp this point; a device may contain a huge number of potential 

faults, some of which may even mask each other under specified operating conditions. 

The designer can only be sure that the device is 100% good if it has been 100% tested, 

this is rarely possible in real life systems.   

 

 

2.1 DELAY FAULTS 

 

Physical failures and fabrication defects cannot be easily modeled 

mathematically. As a result, these failures and defects are modeled as logical faults. 

Structural faults relate to the structural model of a system and affect 
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interconnections among components of a design. Functional faults relate to a 

functional model, for example an RTL/HDL (Register Transfer Level / Hardware 

Description Language) model, and these affect the nature of components operation in 

a design. Testing for functional faults validates the correct operation of a system, 

while testing of structural faults targets manufacturing defects.  

The faults can be static, if represent a defect that is always present and is 

independent of circuit operation and performance, and dynamic, if the fault only 

manifests itself in pre-determined circuit operating conditions and, therefore, it is not 

always present. Delay faults are dynamic faults related with the delay of paths. In 

other words, if a given timing response is not met, due to a dynamic defect or even 

due to an excessive clock frequency operation, an error is captured by a memory cell 

(usually a flip-flop or latch), and is conclusive that a delay-fault occurred. 

Two popular structural fault models are prevalent in the industries today which 

are the stuck-at fault model and the transition fault model. Stuck-at faults affect the 

logical behaviour of the system and are a representation of static faults. However, 

transition faults affect the timing/temporal behaviour of the system and are a 

representation of dynamic faults. An additional fault model being used is the path 

delay-fault model, which is also based on the timing behaviour of the system, but 

cumulative delays along paths are considered, instead of delays at each net as in the 

transition fault model. This previous fault model is also a representation of dynamic 

faults. Therefore, transition and path delay-fault models are commonly mention as 

two delay-fault models. 

 

 

2.1.1 TRANSITION FAULTS 

 

The transition fault model is similar to the stuck-at fault model in many ways. 

The effect of a transition fault at any P point in a circuit is that any transition at P will 

not reach a scan flip-flop or a primary output within the stipulated clock period of the 

circuit. According to the transition fault model [28], there are two types of possible 

faults on all lines (nodes) in the circuit: a slow-to-rise fault (STR) and a slow-to-fall 

fault (STF). A slow-to rise fault at a node means that any transition from ‘0’ to ‘1’ on 

the node does not produce the correct result when the device is operating at its 
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maximum operating frequency. Similarly, a slow-to fall fault means that a transition 

from ‘1’ to ‘0’ on a node does not produce the correct result at full operating 

frequency. In any circuit, the time slack can be defined as the difference between the 

clock period and the propagation delay of the path under consideration (i.e. the 

remaining and unused time of the clock period, in signal propagation). For a gate level 

delay-fault to cause an incorrect value to be latched at a circuit output, the size of the 

delay-fault must be such that it exceeds the slack of at least one path from the site of 

the fault to the site of an output pin or flip-flop. If the propagation delays of all paths 

passing through the fault site exceed the clock period, such a fault is referred to as a 

gross delay-fault [29].  

Any test pattern that successfully detects a transition fault comprises of a pair 

of vectors {V1, V2}, where V1 is the initial vector that sets a target node to the initial 

value, and V2 is the next vector that not only launches the transition at the 

corresponding node, but also propagates the effect of the transition to a primary 

output or a scan flip-flop [30]. In other words, a set of test vectors that test for a delay-

fault at the output or input of a gate are such that: 

 

 A desired transition is launched at the site of the fault 

 If the fault is a slow-to rise fault, the final pattern is a test for a corresponding 

stuck-at-0 fault, and if the fault is a slow-to fall fault, the final pattern is a test 

for a corresponding stuck-at-1 fault. 

 

When compared with tests for stuck-at faults, it can be seen that the only 

additional requirement to test for transition faults is the presence of a pattern that 

initializes a node to the required value, just before the application of a stuck-at fault 

pattern. One might expect that the fault coverage attained by testing transition fault 

patterns will be close to that attained by testing stuck-at fault patterns. However, 

should be remembered that the fault coverage obtained for transition fault patterns 

represent only gross delay-faults. More detailed analysis will be necessary to evaluate 

for smaller delay-faults [31].  
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2.1.2 PATH DELAY FAULTS 

 

The path delay-fault model [34] takes the sum of all delays along a path into 

effect, while the transition fault model accounts for localized faults (delays) at the 

inputs and outputs of each gate. There may be cases where the gate delays of 

individual faults are within specified limits, but the cumulative effect of all faults on a 

path may cause an incorrect value to be latched at the primary outputs, if the total 

delay exceeds the functional clock period. The transition fault model cannot account 

for such defects, but the path delay-fault model can. However, in a design containing 

n  lines, there can be a maximum on n2  transition faults (a slow-to rise and slow-to 

fall fault on each line), but there can potentially be n2  path delay-faults (considering 

all possible paths) [29]. Since all the paths cannot be tested, the path delay model 

requires identification and analysis of critical paths in the design. This makes it more 

complicated to use on large designs and hence, the transition fault model has been 

accepted as a good method to test for delay-faults in the industry [35] [36]. 

 

 

2.2 DFT TECHNIQUES FOR STATIC FAULTS 

 

DfT techniques have been used in digital ICs to achieve, fault detection, test 

circuit insertion, fault coverage analysis and test pattern generation, among other 

things related to test. Digital circuits are usually tested using the stuck-at fault model, 

which considers all faults in a digital IC as either tied up to logic ‘1’ or down to logic 

‘0’. All digital faults can be categorized into either stuck-at-0 or stuck-at-1 faults and 

can assume that every node can have either one of these two possible faults. For any 

given combinational circuit, a truth-table can be generated by simulation of all 

possible inputs. For a certain single-fault existing in the circuit-under-test (CUT), it is 

called a detectable fault if a different truth table is generated by the simulation of all 

possible inputs. For a test sequence, the ratio of detectable faults to all possible faults 

of a digital circuit is called fault coverage. The input values that can detect at least one 

fault are considered test patterns. Thus, test patterns are generated to detect faults in a 

digital device and the testability of the given device can be measured by fault 
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coverage. A path sensitization technique [7] is used to find proper test patterns for any 

given detectable fault. Finally, fault collapsing techniques [8] are used to remove 

many stuck-at faults and to reduce the total number of test patterns. Over the years, 

two major methods have been widely adopted by integrated circuit (IC) industry to 

address the digital testing issues: Scan Path and BIST.  

 

 

2.2.1 SCAN PATH 

 

Since the inception of IC design in the mid-1960s, IC test has been an integral 

part of the manufacturing process. Initially, tests were either randomly generated or 

created from verification suites. But as chips got larger, this process required a more 

targeted approach, one that needed to be easily replicated from one design to another. 

This led to the invention of scan, which made designs combinational and simplified 

the test generation process.  

Scan path is a method to set and observe every flip-flop inside a digital IC chip 

by replacing all regular flip-flops (FF) with scan FFs and two additional input pins, 

test enable (TE) and test input (TI). All SFFs are in a chain which is connected 

through TI pin and SCANOUT pin, as shown in Figure 2.  

 

 

Figure 2: A Scan design schematic. 

 

When TE pin is enabled which means shift mode, the scan chain can be 

accessed by standard JTAG I/O [9] pins to read and set all SFFs. After all SFFs are 
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settled into a desired state, TE pin is disabled (capture mode) and output of 

combinational logic can be captured in SFFs. Then TE pin is enabled again to shift 

out the Q pin of SFFs, bit by bit through the scan chain to SCANOUT, and at the 

same time, a new pattern is shifted in to set all SFFs to the next desired state (through 

TI). Scan chain makes it possible to assign an arbitrary internal state to a digital IC 

and thus may achieve higher test coverage with fewer test patterns. 

In the modern System-on-Chip (SoC) design, many cores are integrated into a 

single chip. Some of them are embedded, and cannot be accessed directly from the 

outside of the chip. Such SoC designs make the test of these embedded cores become 

a great challenge. 

 

 

2.2.2 BIST 

 

BIST is one of most popular test solutions to test embedded cores [10]. As the 

digital circuit technology is moving to high densities of integration, BIST has become 

a primary issue in the realm of VLSI (Very Large Scale Integration) circuit design. 

Techniques for design for testability and BIST consider the testing problem during the 

design stage of digital devices and have been found to be extremely effective. The 

central idea behind BIST is to have the chip to test itself. This technique generates test 

patterns and evaluates output responses inside the chip [11] [12] [13]. Built-in Self-

test is gaining popularity as a means to address test issues at the different packaging 

levels of digital systems. One of the benefits of BIST is the fact that no patterns need 

to be stored in the test equipment, which is simply required to provide a clock and a 

few control signals. This is especially important when high performance systems are 

being tested. BIST also makes the chip/board/system more independent of the specific 

test resources available at each manufacturing stage. BIST is also a convenient way of 

applying more test patterns, to compensate for the weaknesses of the stuck-at fault 

model [14]. BIST can significantly improve the testability of VLSI chips and save 

testing time as well [15]. BIST is a DFT technique that places the testing functions 

physically with the CUT, as illustrated in the Figure 3.  
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Figure 3: Basic BIST Architecture 

 

 

In normal operating mode, the CUT receives its inputs X from other modules 

and performs the function for which it was designed. In test mode a test generator 

(TG) through a Linear Feedback Shift Register (LFSR) applies a sequence of test 

patterns to the CUT, and the response monitor (RM or Output Register Analyser 

(ORA)) using a multiple input signature register (MISR) for the effect compact test 

responses received from primary output. The response signatures are compared with 

reference signatures generated or stored on-chip, and the error signal indicates any 

discrepancies detected. The basic blocks that forms the BIST are: TG (LFSR), CUT, 

RM (SISR/MISR, Single/Multiple Input Signature Register), BIST controller and 

signature analyzer. BIST techniques make testing of a digital IC chip easier, faster, 

more efficient and less costly. At the cost of approximate by 20% – 30% overhead in 

the chip area and a small penalty in performance due to additional BIST hardware 

[16], the IC chip can now perform testing through internal scan chains without an 

external automatic testing equipment (ATE).  

 

 

2.2.2.1 TEST PATTERN GENERATION 

 

 BIST is a DFT technique which allows the circuit to test itself without any external 

equipment [23]. BIST implementation requires primarily two components: a pseudo-

random test pattern generator (for test vector generation) and a data compactor (for 

output response analysis) [24]. There are several types of test patterns that can be used 
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in BIST: deterministic, algorithmic, exhaustive, pseudo-exhaustive, or even random. 

However, due to hardware costs, the most commonly used are the pseudo-random test 

patterns. These components are mostly implemented using LFSRs and Cellular 

Automata (CA). 

 LFSR is constructed using flip-flops connected as a shift register with feedback 

paths that are linearly related using XOR gates. An LFSR can be used for generation 

of pseudo-random patterns, polynomial division, and response compaction. The CA is 

very similar to the LFSRs except that the registers in CA have a logical relationship 

with their neighbours only. This leads more randomness in the pattern generated. 

LFSR is more popular for implementation of both TPG and ORA due to its compact 

and simple structure. However, CA is gaining popularity in many cases because of 

their characteristics and ease of modification. 

 Linear Feedback Shift Register or LFSR is a shift register whose output is the 

result of XOR of some of its inputs [22]. There are two ways to implement LFSRs: 

internal feedback and external feedback. These techniques differ in the way feedback 

is applied. All the flip-flops that feed a XOR gate are known as taps. These taps 

decide the pattern generated by the LFSR and hence define the characteristic 

polynomial of an LFSR, where n is the degree of the polynomial which is defined by 

the number of bits/nodes of the LFSR. Notice that the terms ‘ 0x ’ and ‘ 1nx ’ are 

always present and the remaining terms indicate the location of the taps in the circuit. 

The degree of the polynomial n is equal to the number of bits in an n-bit LFSR 

pattern. An all zeroes state is invalid for an LFSR with XOR gates (the same for all 

‘1’ bits for an LFSR with XNOR gates), as the state would never change if all the bits 

are ‘0’ or ’1’. Therefore, the maximum number of unique patterns an n-bit LFSR can 

generate is 12 n
, where n is the number of bits. Special LFSRs can be constructed to 

generate the all zeroes (ones) state also, but they have a larger area overhead 

associated with them, as described in [25]. In case of an external feedback LFSR, the 

XOR gates are in the feedback path and the input to the shift register is the XOR of all 

the taps.  

 



CHAPTER 2: DESIGN FOR TESTABILITY 15 

 

 

Figure 4: Linear LFSR External 

 

 But let’s take a close look with a mathematical model support and start with the 

standard type (Linear LFSR or external). In the Figure 4 each tap of the coefficient iC  

indicates the presence or absence of feedback from that particular flip-flop position 

into flip-flop position 1nX . This is indicated by setting )10(  niCi to ‘1’ if the 

feedback exists, and to ‘0’ if there is no feedback in that particular position. In the 

actual hardware, if iC  is ‘0’, then there is no XOR gate in the feedback network for 

that bit position; otherwise, the XOR gate is included. Multiplication by x  is 

equivalent to a right shift in the LFSR register by one bit, and the addition operation is 

the XOR ( ) operator. Therefore, addition is equivalent to XOR subtraction, 

so 011 ,101 ,110 ,000  . This is because there are no carries or borrows 

in XORing arithmetic. The following matrix describes the system of equations: 
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Table 1: Linear LFSR System of Equations 

 

This system is written as: 

                                                  X(t) )1( TstX   

 

The first column of Ts is ‘0’, except for the last row, to indicate that the flip-flops shift 

right. The 2
nd

 through thn  columns and 1
st
 through stn 1 rows are the identity matrix, 
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to indicate that 0X  receives input from 1X , and so one. Finally, the thn  element in the 

first column is ‘1’ to indicate that 0X  always feeds back into 1nX  through the XOR 

feedback network. The remaining elements in the thn  row are the feedback 

coefficients iC , which indicate whether the remaining flip-flops feed back into 1nX  

or not. We also see why this LFSR cannot be initialized to all zeros. If that were done, 

the feedback network and the right shifts of the flip-flops would always produce all 

zeros, and the LFSR would hang in the all-zero state. Note that the + operator implied 

in this matrix system is actually the XOR ( ) operator. If X  is the LFSR initial state, 

the LFSR will progress through the states: . ... , , ,  , 32 XTsXTsXTsX The matrix period 

is the smallest integer k such that:  

 

ITsk   

 

Where I is the identity matrix, k is the LFSR cycle length (k = 0 for X  = 0), and Ts is 

known as the companion matrix. Recall that multiplication by x is equivalent to 

shifting a bit through the D flip-flop register of this LFSR. Therefore, we view 0X  as 

the constant 1 and   .,  ...  ,.  ,. 1

2

1201

n

nn xXxXxXxXxXxX  
.This 

hardware system can be described by the characteristic polynomial: 

 










 
n

i

i

i

nn

n

n

ns xcxxcxcxcxcXITxP
0

1

1

2
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2

21 ...1    .)(  

 

 The modular, internal exclusive-OR, or Type 2 LFSR is described by a companion 

matrix T
SM TT  , which is the transpose of ST . It is called an internal XOR LFSR 

because the feedback XOR gates are located between adjacent flip-flops. The modular 

LFSR can run somewhat faster than the standard LFSR because it has at most one 

XOR gate delay between adjacent flip-flops. However, this is not a serious 

consideration in testing because actual circuits always have more logic gates between 

flip-flops than there are XOR gates in the feedback network of the external XOR 

LFSR.  Moreover, for practical tests the test patterns generated by LFSRs are not 

more than 22-25 bits wide, so bigger circuits are partitioned into small sub-circuits of 
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less than 25 primary inputs [26]. The Figure 5 shows the modular LFSR circuit 

implementation.  

 

Figure 5: Modular LFSR Internal 

 

The mathematical respective system of equations is presented in the next matrix. 

 

 

 

)(

)(

)(

)(

)(

)(

   

C-     1       0          0     0      0

C -     0       1          0     0      0

C-     0       0          0     0      0

                                            

  C-     0       0          0      1      0

 C-     0       0          0      0      1

1       0       0          0      0      0

)1(

)1(

)1(

)1(

)1(

)1(

1

2

3

2

1

0

1-n

2-n

3-n

2

1

1

2

3

2

1

0















































































































tX

tX

tX

tX

tX

tX

tX

tX

tX

tX

tX

tX

n

n

n

n

n

n

















  

 

Table 2: Modular LFSR System of Equations 

 

This system is written as: 

     X(t) )1( MTtX   

 

This hardware system can be described by the characteristic polynomial: 
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In the LFSR of the Figure 5, a right shift is equivalent to multiplying the register 

contents by x , and then dividing its value by the characteristic polynomial and storing 

the remainder.  
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 Every LFSR can be realized either in standard or modular form. Both use m XOR 

(or XNOR) gates, where m is the number of non-zero iC  feedback coefficients in the 

LFSR. 

 

 

2.2.2.2 OUTPUT RESPONSE ANALYSIS 

 

 During BIST, it is necessary to reduce the enormous number of circuit responses to 

a manageable size that can be stored on the chip. For example, consider a circuit with 

a hardware pattern generator that computes 5 million test patterns during testing, and 

where there are 300 SPO . The total number of resulting responses will be: 

 

000 000 500 1  300  000 000 5  bits!  

 

This huge amount of information cannot be economically stored, so the circuit 

responses must be compacted. 

 In this matter, we must distinguish between compression and compaction. Circuit 

response compression is lossless, because the original output sequence ( 9105.1  bits 

in the previous example) can be completely regenerated from the compressed 

sequence. Compaction, however, results in information loss, so regenerating the 

original circuit response information is not possible. Compression schemes, at present, 

are impractical for BIST response analysis, because they inadequately reduce the huge 

volume of data, so only compaction schemes are used. In mathematical words, 

compression functions are invertible, but compaction functions are not.  

 Signature analysis is the process of compact the circuit responses into a very small 

bit length number, representing a statistical circuit property, for economical on-chip 

comparison of the behaviour of a possibly defective chip with a good one. Frohwerk 

[81] invented signature analysis in 1977 at Hewlett-Packard. Also, the signature must 

preserve as much as possible of the fault information contained in the circuit output 

response before compaction, and the circuitry used to implement the compacter 

should be small [31]. All compaction techniques require that the fault-free circuit 

signature be known.  
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 Some schemes for response compaction are; (i) Parity checking, where parity is 

formed across all circuit responses; (ii) Ones counting, where the number of ones is 

counted in the output responses from the circuit. Savir [82] pioneered syndrome 

testing, in which pattern generation must be exhaustive, and ones counting is used for 

response compaction.  

 Aliasing occurs when the compacted response of the bad circuit matches the 

compacted response of the good circuit, and there is always a problem with 

compaction because information is lost. In parity checking, aliasing frequently 

happens. Also, with ones counting, it is possible to permute the placement of ones in 

the circuit’s Karnaugh map, and still obtain a correct ones count, so it is also very 

prone to aliasing and also requires significant arithmetic hardware.  

 Hayes [83] described transition count testing. The transition count, C(R), is the 

number of times signals in the circuit response R change during BIST. Transition 

count test aliases less than ones counting, because it not only checks for the correct 

number of ones and zeros in the circuit output response, but also partially test for the 

correct ordering of the ones and zeros in the response. 

 

 

2.2.2.2.1 LFSR FOR RESPONSE COMPACTION 

 

 Frohwerk [81] introduced the LFSR for response compaction by signature analysis. 

The signature is any statistical property of the circuit that is used for checking its 

correct operation. He used the data compaction method of the Cyclic Redundancy 

Check (CRC) code generator, which requires an LFSR hardware device. In this 

method, the circuit output data stream is treated as a descending order coefficient 

polynomial. The output response compacter LFSR performs polynomial division of 

this data stream polynomial by the characteristic polynomial of the LFSR. The Figure 

6 shows a specific modular LFSR as a response compacter. The Table 3 presents the 

response of the circuit as the bits (01010001) are shifted into the LFSR through the 

XOR gate and the respective mathematical support for remainder generation.  
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Figure 6: Modular LFSR as Response Compacter 

 

 

Inputs 0X  1X  2X  3X  4X  

 

Initial State 0 0 0 0 0 

[1º]    1  1 0 0 0 0 

[2º]    0  0 1 0 0 0 

[3º]    0  0 0 1 0 0 

[4º]    0  0 0 0 1 0 

[5º]    1  1 0 0 0 1 

[6º]    0  1 0 0 1 0 

[7º]    1  1 1 0 0 1 

[8º]    0  1 0 1 1 0 

 

Table 3: Five bits Modular LFSR Circuit Response 

 

 

Data stream polynomial = (0 1 0 1 0 0 0 1)   

Data stream polynomial = 76543210 .1.0.0.0.1.0.1.0 xxxxxxxx   

Data stream polynomial = 73 xxx   

 

 

Remainder = (1 0 1 1 0)   

Remainder = 43210 .0.1.1.0.1 xxxxx   

Remainder = 321 xx   
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    7x                     3 x                    x  

    
135  xxx  

    7x      5 x        3 x       2x      12 x  

                5x                      2x      x  

               5 x         3 x                   x        1   
  

                               3 x      2 x                    1                       Remainder 

 

Table 4: LFSR Polynomial Division Result 

 

 

 The final state of the modular LFSR is the polynomial remainder of the division. 

The final state of the standard LFSR is not always the polynomial remainder of this 

division, but is related to the true remainder through a different state assignment. The 

error diction hypothesis is that a faulty data stream changes the output data stream, 

and hence the remainder of this polynomial division, which is used as signature in the 

compaction method. The LFSR must be initialized to the seed value, and after data 

compaction, the signature must be observed and compared with the known good 

circuit signature [31]. The signature analyzer circuit is also easily testable.  

 The Figure 6 shows a modular LFSR that has an extra XOR gate at the input to the 

flip-flop driving the least significant bit 0X . This XOR gate XORs the circuit output 

response stream, (01010001) in this case, into the least significant bit of the modular 

LFSR. Here, (01010001) is interpreted as:  

 

7376543210   .1.0.0.0.1.0.1.0 xxxxxxxxxxx   

 

 Reading the LFSR tap coefficients from left to right in Figure 6, we see that the 

characteristic polynomial of this modular LFSR is 531 xxx  . The Table 3 

shows how eight clock periods are simulated after the LFSR is initialized do (00000). 

It also shows in Table 4 the long division of the reversed data stream polynomial by 

the reversed characteristic polynomial of the LFSR. The remainder of the division, 

321 xx  , also matches the remainder left after eight clock periods in the LFSR, 

because only 0X , 2X  and 3X  are ones. Thus we have agreement between the 
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signature predicted by polynomial division and the signature produced by logic 

simulation. 

 

 

2.2.2.2.2 MULTIPLE INPUT SIGNATURE REGISTER 

 

 In the example of the Figure 6, [84] one primary circuit output requires an LFSR 

for signature analysis with 5 flip-flops and 3 XOR gates. However, consider the case 

where the circuit of Figure 6 has 300 outputs. Then, we would need 300 x 5 =1500 

flip-flops and more than 300 x 3 = 900 XOR gates. This is a serious hardware 

overhead. Fortunately, we can exploit the fact that the hardware pattern generation 

and response compaction system using LFSRs is a linear system, obeying the 

equation X(t) )1( STtX  . Therefore, because of its linearity, this system also obeys 

the superposition principle. If we superimpose all the responses of the 300 circuit 

outputs in the same LFSR for response compaction, then the final remainder will be 

the sum (under XOR logic arithmetic) of the remainders due to all of the circuit 

outputs. This is highly advantageous, as it reduces the flip-flop count from 1500 to 

300 and the XOR gate count from more than 900 to approximately 3+300. The 300 

added XOR gates are needed to XOR all of the circuits outputs into different bits of 

the LFSR, where there must be one bit for each circuit PO, called id . This new 

response compacter is known as Multiple Input Signature Register (MISR), and an 

example is shown in the Figure 7 with a linear type 1, and Figure 8 with a modular 

type 2. 

 

 

 

Figure 7: Linear Multiple Input Signature Register 
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Figure 8: Modular Multiple Input Signature Register 

 

 The alternative to use the MISR structure is to provide only one simple LFSR for 

one circuit output, but multiplex it among the 300 different outputs. This then requires 

300 different testing epochs, where for each epoch the LFSR compacts the response 

from a different circuit output. It is much more attractive to use the MISR, because it 

eliminates a 300 to 1 MUX, and also because the response compaction time with the 

MISR is 300 times less than the time with a multiplexed LFSR. The generic linear 

MISR can be represented by the following system of equations (Table 5): 
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Table 5: Linear MISR System of Equations 

 

The vector of )(td i values represents the circuit outputs at time iP O . 

 

 

 The modular MISR can be translated by the following system of equations (Table 

6): 
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Table 6: Modular MISR System of Equations 

 

The next example in the Figure 9 shows a modular LFSR converted into a 

MISR, by XORing a different circuit output into each flip-flop position. 

 

 

 

Figure 9: Modular Multiple Input Signature Register with 3 bit Input Pattern 

 

The resulting signature, since this system is linear, is the XORing of the three 

different signatures due to the polynomial division from each of the three sPO . It 

implements the following equation system presented in Table 7: 
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Table 7: Modular MISR System of Equations with 3 Input bits 
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2.3 DELAY FAULT TESTING USING TRANSITION FAULT MODEL 

 

 There are three main methods that can be used to generate and apply transition 

fault tests. The first method, termed Broad-side delay test, is also referred to as 

functional justification or the launch-from-capture technique, or even launch-on-

capture (LOC). In this technique, the first vector of the pair is scanned into the chain 

and the second vector is derived as the combinational circuit’s response to the first 

vector [32].  

 The second method, termed Skewed load transition testing, is also referred to as 

the launch-from-shift technique, or even launch-on-shift (LOS). In this method, both 

the first and second vectors of the pair are delivered through the scan cells themselves 

[32]. If the scan-chain is n bits long, an n-bit vector is loaded by scanning in the first 

(n-1) bits. The last shift clock is used to launch the transition, followed by a quick 

capture.  

 In the third method, termed Enhanced-scan transition testing, the two vectors 

(V1, V2) are stored in the tester memory. Vector V1 is first applied and this initializes 

the circuit. Vector V2 is then scanned in, followed by applying it to the circuit under 

test and capturing its response. The important point is that it is assumed the 

initialization provided by V1 is not lost while loading V2. Therefore, this type of test 

assumes a hold-scan design [33]. For inclusion of hold-scan cells, an area overhead is 

evident and there is an additional routing requirement for the control signal. As a 

result, such hold-scan cells are not used in the ASIC industry and thus, enhanced 

scan-design is not always useful in a practical environment. 

 

 

2.3.1 LAUNCH ON CAPTURE 

 

This technique is also known as the broad-side or functional justification 

technique. As we know, transition fault tests require a pair of vectors, one, to set a 

target node to an initial value, and the next, to launch the transition and propagate the 

effect to a primary output or scan cell [6] [19]. In this technique, the first vector of the 
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pair is scanned into the chain and the second vector is derived as the combinational 

circuit’s response to the first vector [15].  

In a scan-based design, if the scan chain contains n cells, a vector pair is 

obtained by applying the following steps: 

 

 Shift the data into the scan-chain n times. 

 Toggle the scan-enable signal and allow the circuit to settle (new PI values 

may be applied if required). 

 Pulse the clock twice. The first pulse will launch the transition and the 

second pulse will capture the response from the combinational portion of the 

circuit. 

 If required, primary input (PI) or primary output (PO) changes could be 

made with the application of the first clock pulse. 

 If the tester hardware does not support at-speed PI changes, the PI values 

across launch and capture cycles will have to be held constant. If at-speed 

output strobing is not supported, the effects of all faults have to be observed 

only at flip-flops on the scan chain. 

 

The timing diagram for this method is shown in next picture.  

 

 

Figure 10: Launch on Capture 

 

The important point to note here is that the launch and capture are performed 

with the scan-enable signal set to functional mode. The scan-shift frequency is much 

slower than the functional operation frequency in most industrial designs. The scan-

shift speed may also be limited by the maximum frequency supported by the tester 

hardware being used. As a result, two different waveforms (or timesets), one to enable 



CHAPTER 2: DESIGN FOR TESTABILITY 27 

 

scan-shift and the other to perform the at-speed capture, may need to be applied to the 

same clock pin, while the device is being tested. 

 

 

2.3.2 LAUNCH ON SHIFT 

 

 This technique is also known as the Skewed-Load or Transition Shifting 

technique. Here, both the first and second vectors of the pair are delivered through the 

scan cells themselves [15]. In a scan chain containing n cells, this approach consists of 

the following steps: 

 

 Shift the scan-chain (n-1) times to obtain the first vector in the pair. 

 Simultaneously, apply the first of the two sets of PI values to the non-scan 

pins. 

 Most designs consist of a muxed data scan cell, where a mux is used to choose 

between the value from the combinational logic and the value from the scan-

chain. The scan-enable signal is used to control this mux. In such designs, 

setting the scan enable signal to scan mode and shifting the scan chain once 

more generates the second of the two vectors. 

 Toggle the scan-enable pin 

 Change the PI values as required. 

 Pulse the clock to capture the response data into the scan flip-flops. 

 If the tester hardware supports at speed output strobing, the PO pins are 

strobed during this cycle to detect transition faults propagating to the POs. 

 

The timing diagram for this method is shown in the Figure 11.  
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Figure 11: Launch on Shift 

 

The most important difference between the two techniques described above 

with respect to muxed data scan designs is the need for at-speed scan-enable operation 

in the launch-on-shift technique. Further, the launch-on-capture technique requires a 

sequential ATPG algorithm, while launch from-shift patterns can be generated with a 

purely combinational ATPG algorithm. 
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3. AGING EFFECTS IN CMOS NANO TECHNOLOGIES 

 

 

 With relentless scaling of CMOS technology, circuit timing uncertainty due to 

temporal degradation and static process variations poses a dramatic challenge to IC 

design [74][85]. The deterioration of circuit performance over time, i.e., aging, is 

usually caused by several physical mechanisms such as channel-hot-carrier (CHC), 

negative-bias-temperature-instability (NBTI), and time-dependent-dielectric-

breakdown (TDDB) [86][87][88][44][89]. Among these effects, NBTI is the leading 

mechanism that is responsible for the majority part of circuit aging [90][88] in [88], 

the authors show that for 65nm technology, CHC degradation is much smaller than 

NBTI degradation, almost one order lower in the degradation magnitude). NBTI 

primarily increases the threshold voltage (Vth) of PMOS devices and it significantly 

affects circuit lifetime and performance (e.g., power, speed and failure rate). In the 

worst case condition, it may even result in a complete parametric failure of a system 

[92][88][44][93][17][42].  

To cope with this threat and guarantee circuit lifetime, it is critical to include 

NBTI into circuit analysis and adaptively develop design techniques to effectively 

mitigate its negative impact on performance. For a VLSI design, an accurate 

prediction of circuit performance degradation under NBTI remains as a tremendous 

challenge. As shown in [88], NBTI has a strong dependence on dynamic operation 

conditions, such as supply voltage (VDD), temperature (T) and input signal probability 

(αs). Usually these parameters are not spatially or temporally uniform, but vary 

significantly from gate to gate and from time to time. Similar to the burning process, 

we may use high voltage and high temperature to guardband the worst case condition. 

However, the search for the worst case αs is computationally inhibitive due to the 

extremely large space of signal probabilities for each input node. 

 

 The expected lifetime of a circuit is, then, limited by these long-therm and 

cumulative degradations, that we call aging. Although NBTI is the dominant 

phenomena, as mentioned, it is the effect of simultaneous causes that could easily 

make a circuit to fail. And, considering other effects that could also cause a delay- 
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fault, in literature one can identify static and dynamic effects like Process, power-

supply Voltage and Temperature variations (PVT), just to mention the most important 

ones. These parametric variations, operation dependent or not, along with cumulative 

degradations (PVT and Aging, PVTA), can seriously impose a high variation in a 

critical path delay, causing the circuit to fail. 

 In this section we are focusing on aging effects, and a description of the most 

important phenomena will be presented in the following. 

 

 

3.1 NEGATIVE BIAS TEMPERATURE INSTABILITY 

 

Negative bias temperature instability has been known since 1966 [37]. 

However, only in the last few years it has become a reliability issue in silicon 

integrated circuits, because the gate electric fields have increased as a result of 

scaling, increased chip operating temperature, surface p-channel MOSFETs have 

replaced buried channel devices, and nitrogen is routinely added to thermally grown 

SiO2. In 2003 for example, it was poorly understood that the time between NBTI 

stress and measuring the effect after terminating the stress was important, because the 

NBTI recovery was just beginning to be understood. Now it is understood that the 

sooner a degraded device is measured after stress, i.e., within mili-seconds (ms) or 

sooner, the more relevant are the data.  

In the recent years, NBTI has been identified as a major and critical reliability 

issue for PMOS devices in nano-scale designs, and with the continuous decrease of 

the transistor dimensions, it will continue to be one of the biggest effects (if not the 

higher effect). It manifests as a negative threshold voltage shift, thereby degrading the 

performance of the PMOS devices over the lifetime of a circuit, and the degradation 

worsens at high temperatures, causing a larger shift in the threshold voltage. As a 

result, considering degradations in a long period of time, the threshold voltage shift 

can potentially cause a significant increase in delay of the p-MOSFET devices ([17], 

[20]) and, ultimately, a delay-fault may occur.  

A vast number of studies have already been conducted to investigate the effect 

of NBTI on digital circuits [43] [38] [42] [40] [41]. Moreover, many studies have also 

developed several design-time and run-time techniques to cope with the NBTI 
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degradation, like [39][45][40][44]. These studies include the use of CAD tools for 

managing transistor degradation mechanism [39], the use of dynamic voltage scaling 

(DVS) [45], the use of data flipping to recover the static noise margin of the static 

random access memory (SRAM) [45], and the use of device parameter tuning (VDD, 

Vth and gate-size) in digital circuits [44]. 

For more information on NBTI, on the degradation process caused by the 

generation of traps, and the partial recovery associated with the reduction in traps, 

please refer to [17][18][19]. 

 

 

3.2 TIME DEPENDENT DIELECTRIC BREAKDOWN 

 

Time Dependent Dielectric Breakdown (TDDB) is a phenomenon where the 

oxide underneath the gate degrades. As the name implies, it is the breakdown of a 

dielectric over time. There are other ways a dielectric can breakdown but in a digital 

system, the only variables are: operating frequency, voltage supply, MOSFET 

characteristics (such as gate area or dielectric material), temperature, and time. As the 

gate-oxide is scaled down, breakdown of the oxide and oxide reliability becomes 

more of a concern. Higher fields in the oxide increase the tunneling of carriers from 

the channel into the oxide and these carriers slowly degrade the quality of the oxide 

and, over time, leads to failure of the oxide [46].  

Once a dielectric breaks down, current is able to flow more easily through the 

gate into the drain/source of a P/NMOSFET, completely destroying functionality. 

Evidence of TDDB are changes in the threshold voltages and the drain currents, as 

well as a great increase in current through the dielectric [47] and, ultimately, the gate 

breakdown, as shown in the Figure 12. 
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Figure 12: Relationship between TDDB and Leakage Current [49]. 

 

There are many hypotheses for why TDDB occurs. Many models describe what 

occurs in the dielectric material over time, and each model, consequently, has a 

mathematical model that can predict the expected failure of a device. There has been 

much speculation for the last 50 years as to which model correctly predicts the failure 

time. However, there is general consensus that the electric field through the dielectric 

material is the direct cause of TDDB. This relationship is shown in Figure 13.  

 

Figure 13: Relationship between TDDB and the Electric Field [49]. 

 

The simple explanation is that the electric field breaks down the oxide, but 

electric fields could be the cause of more specific phenomena, such as band-to-band 

impact ionization, hole trapping near the injecting interface, and electron trapping 

[47]. Nevertheless, it is accepted that it is caused by charge that remains in the oxide 

[48]. Ideally, the charge should not pass through the oxide, but thinner oxides and 

stronger electric fields make it possible. 
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3.3 HOT CARRIER INJECTION 

 

Hot carrier damage has been one of the important degradation mechanisms in 

MOSFETs [50]. The major source of the hot carriers is the electric field inside the 

channel of a transistor. The energetic carriers themselves, or the carriers generated 

through impact ionization, can cause the parametric degradation, i.e., shifts in device 

characteristics or catastrophic failure such as oxide breakdown. Significant effort has 

been focused on understanding the hot carrier phenomena and its implications for 

circuits.  

One of the early pioneering works was done in 1980s, and involved the 

calculation of HCI lifetime, based on experimental device characteristics during hot 

carrier stressing [51]. In that work, it was assumed that the carriers heated by the 

channel electric field can lead to impact ionization. For an NMOSFET, the holes 

generated by ionization flow out of the substrate contact, giving rise to substrate 

current (Isub), whereas the electrons contribute to the drain current (and if they are 

injected into the oxide, constitute the gate current, IG).  

 

 
Figure 14: Substract and Gate Currents in a NMOSFET at Low VG 

 

 

In the Figure 14 it is possible to see the holes (open circles) generated by 

impact ionization, flow out of the substrate. Some fraction can be injected into the 

gate oxide, since the vertical electric field favours holes at low VG. The Figure 15 

shows that at high VG, the vertical electric field attracts electrons (filled circles) into 

the gate oxide and the electrons form the gate current. The substrate current is still due 

to holes.  
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Figure 15: Substract and Gate Currents in a NMOSFET at High VG 

 

 

The hot carrier damage is also attributed to the energetic electrons. The Isub was 

conventionally taken as a monitor for the hot carrier damage, because it reflects the 

energy of the hot electrons.  

 

 

3.4 ELECTROMIGRATION  

 

 When a sufficiently strong electric current is passed through a metal interconnect, a 

diffusive motion of impurities and/or vacancies takes place in a direction along or 

opposite to the current flow. This phenomenon is called electromigration (EM). The 

technological interest in EM arises from its manifestation as a cause of failure in 

integrated circuits. 

 The phenomenon of electromigration has been known for over 100 years. The 

earliest observation can be traced back to 1861, when Gerardin observed EM in lead 

[52]. Following, was the work of Sakupy in 1907 [53], who studied mass transport of 

impurities in molten metals. Sakupy was also the first to use the term ‘‘electron 

wind’’.  

 More recently, the technological interest for EM started in 1966, when IBM, 

Fairchild, Motorola, and Texas Instruments independently observed failures in 

integrated circuits, which could not be explained. At the time, the metal interconnects 

in ICs were still about 10 micrometers wide and EM surprised, and briefly threatened 

the existence of the integrated circuit industry [54]. Currently, interconnects are only 

hundreds to tens of nanometers in width, making research in electromigration 

increasingly important. 
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 In general, EM decreases the reliability of chips. It can cause the eventual loss of 

connections or failure of a circuit. Since reliability is critically important for space 

travel, military purposes, anti-lock braking system, medical equipment (like 

Automated External Defibrillators) and is also important for personal computers or 

home entertainment systems, the reliability of chips (ICs) is a major focus of research 

efforts. Due to difficulty of testing under real conditions, Black’s equation [55] is used 

to predict the life span of integrated circuits. To use Black’s equation, the component 

is put through High Temperature Operating Life (HTOL) testing. The component's 

expected life span under real conditions is extrapolated from data gathered during the 

testing [55].  

 Athough EM damage ultimately results in failure of the affected IC, the first 

symptoms are intermittent glitches, and are quite challenging to diagnose. As some 

interconnects fail before others, the circuit exhibits seemingly random errors, which 

may be indistinguishable from other failure mechanisms. 

 With increasing miniaturization the probability of failure due to electromigration 

increases in circuits, because both power density and current density increase. In 

advanced semiconductor manufacturing processes, copper has replaced aluminium as 

the interconnect material of choice. Despite its greater fragility in the fabrication 

process, copper is preferred for its superior conductivity. It is also intrinsically less 

susceptible to electromigration. However, EM continues to be an ever present 

challenge to device fabrication and, therefore, the EM research for copper 

interconnects is ongoing (though a relatively new field). 

 In modern consumer electronic devices, ICs rarely fail due to electromigration 

effects. This is because proper semiconductor design practices incorporate the effects 

of electromigration into the IC's layout. Nearly all IC design houses use Electronic 

Design Automation (EDA) tools to check and correct electromigration problems at the 

transistor layout-level. When operated within the manufacturer's specified 

temperature and voltage range, a properly designed IC device is more likely to fail 

from other (environmental) causes, such as cumulative damage from gamma-ray 

bombardment. 

 Nevertheless, there are documented cases of product failures due to 

electromigration. In the late 1980s, one line of Western Digital (WD) desktop drives 

suffered widespread, predictable failure 12–18 months after field usage. Using 

forensic analysis of the returned bad units, engineers identified improper design-rules 
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in a third-party supplier's IC controller. By replacing the bad component with another 

one from a different supplier, WD was able to correct the flaw, but not before 

significant damage to the company's reputation. 

 EM can also be a cause of degradation in some power semiconductor devices, such 

as low voltage power MOSFETs, in which the lateral current through the source 

contact metalization (often aluminium) can reach the critical current densities during 

overload conditions. The degradation of the aluminium layer causes an increase in on-

state resistance, and can eventually lead to complete failure. 

 

 

3.5 STRESS INDUCED VOIDS 

 

The phenomenon of stress induced voiding is generally understood as a result of 

stress mismatch in materials [56] and structures [57] in copper interconnect. As 

mentioned in the previous section, in the last years copper has replaced aluminium as 

the interconnect metal of choice in microchip fabrication. The main advantage of 

copper is its low electrical resistivity and high resistance to electro-migration and 

stress-migration, (in comparison with aluminium). Lower resistance means that 

smaller and more tightly packed metal lines can carry the same amount of current. 

This leads to fewer levels of metal, faster speed, and lower production costs. The main 

drawback to copper is its high diffusivity. To prevent copper from diffusing into 

transistors, it must be encapsulated in a barrier film, usually a derivative of tantalum 

or titanium. In addition, to reduce the extra parasitic capacitance in denser circuits, 

dielectrics with lower dielectric constants must be used. The spin-on-coat process of 

low-k dielectric material requires furnace annealing to cure the film. During this 

thermal processing, however, the copper is mechanically confined in the bulk layer by 

the barrier metal and in the vias/trenches by sidewalls. As the copper and dielectric 

materials are heated and cooled, their different thermal coefficients of expansion lead 

to a mismatch in the residual stress of the copper in the bulk layer and trenches. The 

mismatch leads to stress migration and to stress induced voiding (SIV) in the copper 

during chip operation. Voids increase the resistance and lead to chip failure. 

Obviously, this causes a severe problem in chip reliability. 
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Microstructural analysis of copper thin film is increasingly important for 

understanding stress-induced voiding kinetics. Microstructure dependence of stress 

induced voiding in copper thin films mainly comes from its effects on vacancy 

diffusion and void nucleation [58][59][60][61]. The grain boundaries themselves are 

full of vacancies, and the free volume released by grain growth as the result of grain 

boundary elimination creates sizeable voids. Also, the grain boundary is one of the 

fast diffusion paths in copper interconnect, and the diffusivities are influenced by the 

misorientation angle of grain boundaries [59][60]. Moreover, twin boundaries have 

been found to be nucleation sites for stress induced voiding due to thermal stress 

concentration at their interfaces [61]. So, copper films with larger grains (fewer grain 

boundaries) that also maintain strong crystallographic orientation and minimum twin 

formation are preferred for stress induced voiding resistance in copper interconnects.  

Many methods have been suggested to suppress stress voiding in copper 

interconnects. Most of these, involve either altering the geometry of the line/via 

structure, changing the dielectric materials to improve passivation, or optimizing the 

thermal cycling process in an attempt to make it more robust [58]. In addition, it has 

been theorized that the inclusion of a small amount of a second metal in copper thin 

films during electroplating, and its subsequent segregation at grain boundaries by 

thermal treatment suppresses the copper grain boundary diffusivity. Also, in addition 

to possibly creating interstitial defects in the copper crystallite lattice, the alloyed co-

element may fill the vacancies inherent at grain boundaries. The co-element thereby 

affects both the grain size distribution and thermalmechanical properties (i.e. flow 

stress) of the copper thin films by particle pinning of grain boundaries. 

 

 

3.6 TOTAL IONIZING DOSE 

 

The need to follow, as much as possible, Moore’s law, pushes the commercial 

manufacturer to increase the device density of modern Integrated Circuits (ICs) down 

to the feasibility limit [62][63]. At the time, Intel’s 22nm microprocessors are 

available on commercial market, though, looking at the next step, down to 14 nm. 

This scaling trend impacts the ionizing radiation response, as well as introducing new 

challenges, while removing some historical issues. The main degradation mechanism 
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that occurs in a MOS device subjected to ionizing radiation is the oxide charge 

trapping [64][65] and [66]. A schematic band diagram for a NMOS device is reported 

in Figure 16.  

 

 

Figure 16: Schematic Representation of the Damage Induced by Radiation in a MOS Structure [64]. 

 

 

Immediately after electron-hole pair generation, induced by radiation, the 

electrons and holes that survive the initial recombination are split by the electric field 

and drift toward the Si/SiO2 interface (holes) and gate (electrons). As the holes arrive 

at the interface, some fractions are trapped in pre-existing localized defects, leading to 

a net positive charge otN . The positively charged hydrogen can be released as well 

from the gate/oxide interface and drift to the Si/SiO2 interface, where it can react, 

forming interface traps, itN  [67]. Both interface traps, which can be negatively or 

positively charged and trapped charges, influence the electrostatics of CMOS 

transistors, affecting the main parameters, such as threshold voltage, drain current, 

transconductance, and carrier mobility [66]. The thinning of the gate oxide below 5 

nm has significantly mitigated the Total Ionizing Dose (TID) effects, reducing the 

charge trapping phenomena that plagued the older technologies built with thicker 

oxides, when employed in radiation environments [68]. 

In contrast, the very thick lateral oxide has become the Achilles heel of modern 

CMOS transistors exposed to ionizing radiation. In fact, the large amount of charge 

that can be trapped at the edges of the device influence the electrostatics of the 

transistor, leading to large shifts of the characteristics parameters [69]. As a 

consequence, the lateral isolation engineering will be one of the key points to have 

commercial electronics with a good resilience to total ionizing dose effects [70]. 
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However, despite the increased STI sensitivity, the total dose hardness of commercial 

CMOS devices increased during the last ten years, featuring for the 130 nm and 90 

nm technology nodes a TID tolerance of about 200 krad(SiO2) [71], doses of interest 

for space applications. 
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4. BIST FOR DELAY-FAULTS 

 

 

The purpose of this chapter is to present and generate the BIST architecture and 

structures necessary to implement a self-test that aims the detection of delay-faults. 

The goal is to reuse BIST functionality and base structures, and combine it with 

standard DfT techniques for delay-faults, namely: LOC and LOS. The idea of 

combining these two DfT techniques, BIST and LOC/LOS, was previously published 

in [75] [76]. However, only the concept and a limited set o test circuits were 

implemented. In fact, the controller functionality was defined for scan based BIST for 

sequential circuits, but it was never simulated with all BIST infrastructure and CUT. 

In the present work, the BIST strategy used to detect delay-faults is the same as 

described in [75] [76]. However, the new contributions in this matter are: 

1. Redesign the BIST controller, to allow full auto-test with simulation of the 

complete BIST infrastructure and CUT; 

2. Implement and simulate the behavioural description of the BIST 

infrastructure’s RTL level in VHDL; 

3. Implement the structural description of the BIST infrastructure’s gate level in 

Verilog; 

4. Implement and simulate the SPICE netlist for BIST infrastructure and CUT, 

from the gate level description, using the generic CMOS library described in 

[77]; 

5. Study the aging degradation (expected) of BIST infrastructure and CUT; 

6. Implement a software tool to automatically insert BIST structures in a CUT, 

both in behavioural RTL level VHDL format, and in structural gate level 

Verilog format. 

 

In the first section the BIST structures and BIST functionality are presented, and 

the second section is dedicated to the BISTGen software tool, developed to 

automatically generate the BIST structures of first section. 
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 It is also important to mention that all the BIST structures and circuitry was 

developed and described in VHDL format, using a behavioural RTL level description 

of the blocks. After the VHDL description of each block and circuitry was validated 

through logic simulation in ModelSim environment, it was synthesized with 

Synopsys software environment, at INESC-ID in Lisbon, to generate the Verilog 

structured gate level description. Therefore, each circuitry has two identical behaviour 

implementations, although different in the format. Moreover, the library used to 

synthesize the structure of each gate level netlist was the AMS (Austria Micro 

Systems) 350nm CMOS technology library, that was also previously been translated 

to a generic SPICE netlist in a previous M.Sc. thesis at UAlg (please refer to [77]). 

 

 

4.1 SCAN BASED BIST FOR DELAY-FAULTS 

 

 The main idea of the scan based BIST for delay-faults is to implement a traditional 

scan based BIST approach that implements the delay-fault techniques used 

traditionally with scan: LOS and LOC. In fact, it implements 3 possible test methods, 

the mentioned LOS, LOC and a combined test with LOS and LOC used together in 

the same test set.  

 The test methodology is defined by the architecture shown in Figure 17. It’s an 

enhanced approach from the traditional scan based BIST architecture. Taking a closer 

look, the block diagram is a bit more complex than the traditional one, special in the 

number and type of modules used, and in their interconnections. As shown, the 

architecture have in its composition a MUX, three LFSR chains, two triangular blocks 

representing each one a comparator circuit of n and m inputs for one output, a BIST 

Controller, which is the main core of the entire circuit, the CUT (pre-reconfigured 

with scan flip-flops), a MISR which is a modified LFSR to operate as an n input data 

register and a six input ‘and’ gate to one output. 
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Figure 17 : Parent BIST Block Structure 

 

All the referred blocks will be detailed and explained in the next sections.  

 

 

4.1.1 MUX BLOCK 

 

 In order to switch between the primary inputs in normal circuit operation and the 

test inputs, which in test mode are the outputs of the pseudo-random Linear Feedback 

Shift Register (LFSR), a switch was designed for the effect. The switch have in its 

structure an array of n 2x1 Multiplexers, where n is the number of inputs to select 

from. 

 

 

Figure 18: Switch Multi MUX 

 

 

 The Table 8 shows an example in Verilog format where the global input is 

composed of two entries. 
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   wire SeLMuXCuT; 
   wire [1:0] InAMuXCuT; 
   wire [1:0] InBMuXCuT; 
   wire [1:0] DataOutMuXCuT; 
  
   MUX21 U1MuXCuT ( .A(InAMuXCuT[0]), .B(InBMuXCuT[0]), .S(SeLMuXCuT), .Q(DataOutMuXCuT[0]) ); 
   MUX21 U2MuXCuT ( .A(InAMuXCuT[1]), .B(InBMuXCuT[1]), .S(SeLMuXCuT), .Q(DataOutMuXCuT[1]) ); 

 

Table 8: Mux code slice in Verilog 

 

 One of the best correlations between two languages to describe circuits is when 

both describe the same behaviour. From now one, it will be presented for the 

generality of the examples also its equivalent in VHDL. Table 9 presents the same 

two inputs for the Mux entries but now in VHDL description code.    

 

 
entity MuXCuT is 
 port( SeL : in std_logic; 
 InA, InB : in std_logic_vector(1 downto 0); 
 DataOut : out std_logic_vector(1 downto 0)); 
end MuXCuT; 
  
architecture comportamento of MuXCuT is 
  
begin 
  
 process(Sel, InA, InB) 
 begin 
  if Sel='0' then 
   DataOut <= InA; 
  else 
   DataOut <= InB; 
  end if; 
 end process; 
  
end comportamento; 
 

 

Table 9: Mux code slice in VHDL 

 

 

4.1.2 LFSR PI BLOCK 

 

 This LFSR PI stands for Linear Feedback Shift Register for Primary Inputs, and 

it’s basically the LFSR block that will generate the inputs in test mode for CUT’s 

primary inputs. When the controller receives the information for switching the circuit 

from normal operation mode to test mode, it places the reset line that connects this 

block to logic value ‘0’, setting the initial seed in the LFSR. This initial seed will 
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define the flip-flop composition of the LFSR, as when a specific bit should be ‘0’, the 

flip-flop should have a RESET input connected to the reset signal of the LFSR, 

whereas when a bit should be ‘1’ in the initial seed, the flip-flop should have its SET 

input connected to the reset signal.  

 The LFSR will also have an enable signal to pause the operation of the LFSR, if 

necessary, and a clock signal. The output consists of a bus where the number of lines 

can be equal or bigger than the number of primary inputs in the CUT. The question 

that may arise is: why not the same number of bits than CUT’s primary inputs? The 

answer lies in the randomness and test length that we want to achieve with the flip-

flop chain that constitute the LFSR. It is generally known that a bigger LFSR will 

have a more arbitrary sequence than a smaller one, even if both are used with an equal 

test length. Moreover, the internal feedback connection in the LFSR can also define 

two possibilities: a linear feedback and a modular feedback structure. The linear type 

is usually a smaller structure; however, the modular type usually leads to better test 

results, due to a higher randomness in test vectors.  

 The maximum number of different test vectors generated by an LFSR is 

established by the formula 12 n
. As the initial seed is always the same, defined by 

LFSR structure, if the test length is constant, we guarantee a test with always the same 

test vectors applied to the CUT. Thus, this LFSR’s outputs will also be used to define 

the test length, by identifying a final LFSR output and indicating the controller to stop 

the BIST section.  

 The Figure 19 presents the LFSR PI block diagram of the test pattern generator. 

 

 

Figure 19: LFSR PI 

 

 

 

 The block when requested is capable to generate two different types of LFSRs. The 

Table 10 shows two examples, the first, a linear one and the second a modular type. 

The default value to start, known as the seed is ‘10110’ in binary format representing 

an m of five outputs.  

 Also an analogue example but this time in VHDL is provided in the Table 11. 
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   wire resetLfsrPICuT; 
   wire enableLfsrPICuT; 
   wire [4:0] DataOutLfsrPICuT ; 
 
   wire [4:0] QoutLfsrPICuT ; 
   wire y1LfsrPICuT; 
  
   DFEC1 U0LfsrPICuT ( .D(QoutLfsrPICuT[1]), .E(enableLfsrPICuT), .C(clock), .RN(resetLfsrPICuT), .Q(QoutLfsrPICuT[0]) ); 
   DFEP1 U1LfsrPICuT ( .D(QoutLfsrPICuT[2]), .E(enableLfsrPICuT), .C(clock), .SN(resetLfsrPICuT), .Q(QoutLfsrPICuT[1]) ); 
   DFEP1 U2LfsrPICuT ( .D(QoutLfsrPICuT[3]), .E(enableLfsrPICuT), .C(clock), .SN(resetLfsrPICuT), .Q(QoutLfsrPICuT[2]) ); 
   DFEC1 U3LfsrPICuT ( .D(QoutLfsrPICuT[4]), .E(enableLfsrPICuT), .C(clock), .RN(resetLfsrPICuT), .Q(QoutLfsrPICuT[3]) ); 
   DFEP1 U4LfsrPICuT ( .D(y1LfsrPICuT), .E(enableLfsrPICuT), .C(clock), .SN(resetLfsrPICuT), .Q(QoutLfsrPICuT[4]) ); 
   XOR20  U5LfsrPICuT ( .A(QoutLfsrPICuT[0]), .B(QoutLfsrPICuT[2]), .Q(y1LfsrPICuT);  
   assign DataOutLfsrPICuT = QoutLfsrPICuT; 
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   wire resetLfsrPICuT; 
   wire enableLfsrPICuT; 
   wire [4:0] DataOutLfsrPICuT ; 
 
   wire [4:0] QoutLfsrPICuT ; 
   wire y1LfsrPICuT; 
  
   DFEC1 U0LfsrPICuT ( .D(QoutLfsrPICuT[4]), .E(enableLfsrPICuT), .C(clock), .RN(resetLfsrPICuT), .Q(QoutLfsrPICuT[0]) ); 
   DFEP1 U1LfsrPICuT ( .D(QoutLfsrPICuT[0]), .E(enableLfsrPICuT), .C(clock), .SN(resetLfsrPICuT), .Q(QoutLfsrPICuT[1]) ); 
   DFEP1 U2LfsrPICuT ( .D(y1LfsrPICuT), .E(enableLfsrPICuT), .C(clock), .SN(resetLfsrPICuT), .Q(QoutLfsrPICuT[2]) ); 
   XOR20  U5LfsrPICuT ( .A(QoutLfsrPICuT[1]), .B(QoutLfsrPICuT[4]), .Q(y1LfsrPICuT));  
   DFEC1 U3LfsrPICuT ( .D(QoutLfsrPICuT[2]), .E(enableLfsrPICuT), .C(clock), .RN(resetLfsrPICuT), .Q(QoutLfsrPICuT[3]) ); 
   DFEP1 U4LfsrPICuT ( .D(QoutLfsrPICuT[3]), .E(enableLfsrPICuT), .C(clock), .SN(resetLfsrPICuT), .Q(QoutLfsrPICuT[4]) ); 
   assign DataOutLfsrPICuT = QoutLfsrPICuT; 
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Table 10: LFSR PI Linear and Modular code slice in Verilog 

 

 

LINEAR TYPE MODULAR TYPE 
    

entity LfsrPICuT is 
port( clock, reset, enable: in std_logic; 
      DataOut: out std_logic_vector(4 downto 0)); 
end LfsrPICuT; 
 

architecture comportamento of LfsrPICuT is 
  signal Qin, Qout: std_logic_vector (4 downto 0); 
begin 
  
  comb_LfsrVhdlLinear: process(Qout,enable) 
  begin 
   if enable = '0' then 
    Qin <= Qout; 
   else 
     Qin(0)<=Qout(1);     
     Qin(1)<=Qout(2);     
     Qin(2)<=Qout(3); 
     Qin(3)<=Qout(4);     
     Qin(4)<=Qout(0) xor Qout(2); 
   end if; 
end process; 
  

sinc_LfsrVhdlLinear: process(clock,reset) 
begin 
  if reset = '0' then 
    Qout <= "10110"; 
  elsif clock'event and clock = '1' then 
    Qout <= Qin; 
  end if; 
end process; 
 

   DataOut <= Qout; 
 

end comportamento; 

      
entity LfsrPICuT is 
port( clock, reset, enable: in std_logic; 
      DataOut: out std_logic_vector(4 downto 0)); 
end LfsrPICuT; 
 

architecture comportamento of LfsrPICuT is 
  signal Qin, Qout: std_logic_vector (4 downto 0); 
begin 
  

  comb_VhdlLFSRModular: process(Qout,enable) 
  begin 
   if enable = '0' then 
    Qin <= Qout; 
   else 
     Qin(0)<=Qout(4);    
     Qin(1)<=Qout(0); 
     Qin(2)<=Qout(1) xor Qout(4); 
     Qin(3)<=Qout(2);     
     Qin(4)<=Qout(3); 
   end if; 
end process; 
  

sinc_VhdlLFSRModular: process(clock,reset) 
begin 
  if reset = '0' then 
    Qout <= "10110"; 
  elsif clock'event and clock = '1' then 
    Qout <= Qin; 
  end if; 
end process; 
 

   DataOut <= Qout; 
 

end comportamento; 
 

 
Table 11: LFSR PI Linear and Modular code slice in VHDL 
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4.1.3 LFSR SCAN 

 

 The LFSR Scan block is similar to LFSR PI. The differences rely on the fact that 

this LFSR will generate the test vectors for the CUT’s scan chain. This fact implies 

that only one output will be used, and the vectors are serialized to CUT’s scan chain. 

It is possible to use a unique LFSR module to generate simultaneously the CUT’s 

primary input test vectors and the scan chain test vectors. However, as it is shown in 

[75], two separate LFSR blocks will lead to better test results, achieving higher test 

coverage results.  

 When this block is sending data, the Test_SE line (Controller to CUT) has to be 

enabled in order to switch all the internal flip-flops to scan mode. The objective is to 

load it with known values contained in the LFSR structure. The number of clock 

pulses when in scan mode is the same as the number of the flip-flops contained in the 

sequential part of the CUT in order to shift all. 

 

 

Figure 20: LFSR Scan 

 

 

 The block when requested is also capable to generate two different types of LFSRs. 

The Table 12 shows two examples, the first, a linear one and the second a modular 

type. The seed is also ‘10110’ in binary format. This is five bits LFSR like the 

previous one and its task is to load in serial the flip-flop chain of the CUT. 

 Also an analogue example but this time in VHDL format is provided in the Table 

13. 
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   wire resetLfsrSCANCuT; 
   wire enableLfsrSCANCuT; 
   wire DataOutLfsrSCANCuT ; 
  

   wire [4:0] QoutLfsrSCANCuT ; 
   wire y1LfsrSCANCuT; 
  

   DFEC1 U0LfsrSCANCuT ( .D(QoutLfsrSCANCuT[1]), .E(enableLfsrSCANCuT), .C(clock), .RN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[0]) ); 
   DFEP1 U1LfsrSCANCuT ( .D(QoutLfsrSCANCuT[2]), .E(enableLfsrSCANCuT), .C(clock), .SN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[1]) );  
   DFEP1 U2LfsrSCANCuT ( .D(QoutLfsrSCANCuT[3]), .E(enableLfsrSCANCuT), .C(clock), .SN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[2]) ); 
   DFEC1 U3LfsrSCANCuT ( .D(QoutLfsrSCANCuT[4]), .E(enableLfsrSCANCuT), .C(clock), .RN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[3]) ); 
   DFEP1 U4LfsrSCANCuT ( .D(y1LfsrSCANCuT), .E(enableLfsrSCANCuT), .C(clock), .SN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[4]) ); 
  

   XOR20  U5LfsrSCANCuT ( .A(QoutLfsrSCANCuT[0]), .B(QoutLfsrSCANCuT[2]), .Q(y1LfsrSCANCuT);  
  

   assign DataOutLfsrSCANCuT = QoutLfsrSCANCuT[0]; 
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   wire resetLfsrSCANCuT; 
   wire enableLfsrSCANCuT; 
   wire DataOutLfsrSCANCuT ; 
 

   wire [4:0] QoutLfsrSCANCuT ; 
   wire y1LfsrSCANCuT; 
  

   DFEC1 U0LfsrSCANCuT ( .D(QoutLfsrSCANCuT[4]), .E(enableLfsrSCANCuT), .C(clock), .RN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[0]) ); 
   DFEP1 U1LfsrSCANCuT ( .D(QoutLfsrSCANCuT[0]), .E(enableLfsrSCANCuT), .C(clock), .SN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[1]) ); 
   DFEP1 U2LfsrSCANCuT ( .D(y1LfsrSCANCuT), .E(enableLfsrSCANCuT), .C(clock), .SN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[2]) );  
   XOR20  U5LfsrSCANCuT ( .A(QoutLfsrSCANCuT[1]), .B(QoutLfsrSCANCuT[4]), .Q(y1LfsrSCANCuT));  
   DFEC1 U3LfsrSCANCuT ( .D(QoutLfsrSCANCuT[2]), .E(enableLfsrSCANCuT), .C(clock), .RN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[3]) ); 
   DFEP1 U4LfsrSCANCuT ( .D(QoutLfsrSCANCuT[3]), .E(enableLfsrSCANCuT), .C(clock), .SN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[4]) ); 
  
   assign DataOutLfsrSCANCuT = QoutLfsrSCANCuT[4]; 
 
 

 
 
M 
O 
D 
U 
L 
A 
R 
 
T 
Y 
P 
E 
 

   

Table 12: LFSR Scan Linear and Modular code slice in Verilog 

 

 

LINEAR TYPE MODULAR TYPE 
 

entity LfsrSCANCuT is 
port( clock: in std_logic; 
      reset: in std_logic; 
      enable: in std_logic; 
      DataOut: out std_logic); 
end LfsrSCANCuT; 
 
architecture comportamento of LfsrSCANCuT is 
  signal Qin: std_logic_vector (4 downto 0); 
  signal Qout: std_logic_vector (4 downto 0); 
begin 
  
  comb_LfsrVhdlLinear: process(Qout,enable) 
  begin 
   if enable = '0' then 
    Qin <= Qout; 
   else 
     Qin(0)<=Qout(1); 
     Qin(1)<=Qout(2); 
     Qin(2)<=Qout(3); 
     Qin(3)<=Qout(4); 
     Qin(4)<=Qout(0) xor Qout(2); 
   end if; 
end process; 
  
sinc_LfsrVhdlLinear: process(clock,reset) 
begin 
  if reset = '0' then 
    Qout <= "10110"; 
  elsif clock'event and clock = '1' then 
    Qout <= Qin; 
  end if; 
end process; 
  
   DataOut <= Qout(0); 
  
end comportamento; 
 

      

entity LfsrSCANCuT is 
port( clock: in std_logic; 
      reset: in std_logic; 
      enable: in std_logic; 
      DataOut: out std_logic); 
end LfsrSCANCuT; 
 
architecture comportamento of LfsrSCANCuT is 
  signal Qin: std_logic_vector (4 downto 0); 
  signal Qout: std_logic_vector (4 downto 0); 
begin 
  
  comb_VhdlLFSRModular: process(Qout,enable) 
  begin 
   if enable = '0' then 
    Qin <= Qout; 
   else 
     Qin(0)<=Qout(4); 
     Qin(1)<=Qout(0); 
     Qin(2)<=Qout(1) xor Qout(4); 
     Qin(3)<=Qout(2); 
     Qin(4)<=Qout(3); 
   end if; 
end process; 
  
sinc_VhdlLFSRModular: process(clock,reset) 
begin 
  if reset = '0' then 
    Qout <= "10110"; 
  elsif clock'event and clock = '1' then 
    Qout <= Qin; 
  end if; 
end process; 
  
   DataOut <= Qout(4); 
  
end comportamento; 
 

 
Table 13: LFSR Scan Linear and Modular code slice in VHDL 
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4.1.4 LFSR SCAN COUNTER 

 

 The LFSR Scan Counter structure is related with the number of flip-flops 

comprising the CUT’s chain, since its function is to count the number of clocks to 

scan in to CUT’s flip-flops the test vectors generated in LFSR Scan block. Therefore, 

the flip-flops number in LFSR Scan Counter block should be the round up next 

integer from  k2log where k is the flip-flops number in the CUT’s scan chain. The 

block starts its count and, when it reaches the end, receives information to suspend the 

process for some time. When the block receive a new instruction to continue, the 

LFSR returns to the starting position and begin all the process again. This can be 

repeated several times depending on the number of the LFSR PI test patterns. 

 

 

Figure 21: LFSR Scan Counter 

 

 

 

 Two different types of LFSRs can be generated with the LFSR Scan Counter. The 

Table 14 shows the differences with the first, a linear one and the second a modular 

type. The seed for the Verilog example is ‘01’ and is two bits LFSR because the 

number of the CUT flip-flops is two. 

 The VHDL analogue example is provided in the Table 15. The seed value this time 

is ‘11’ because a random process is present to select the seed for the block.    
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   wire resetLfsrSCountCuT; 
   wire enableLfsrSCountCuT; 
   wire [1:0] DataOutLfsrSCountCuT ; 
  
   wire [1:0] QoutLfsrSCountCuT ; 
   wire y1LfsrSCountCuT; 
  
   DFEP1 U0LfsrSCountCuT ( .D(QoutLfsrSCountCuT[1]), .E(enableLfsrSCountCuT), .C(clock), .SN(resetLfsrSCountCuT), .Q(QoutLfsrSCountCuT[0]));                     
   DFEC1 U1LfsrSCounterCuT ( .D(y1LfsrSCounterCuT), .E(enableLfsrSCounterCuT), .C(clock), .RN(resetLfsrSCounterCuT), .Q(QoutLfsrSCountCuT[1])); 
  
   XOR20  U2LfsrSCountCuT ( .A(QoutLfsrSCountCuT[0]), .B(QoutLfsrSCountCuT[1]), .Q(y1LfsrSCountCuT);  
  
   assign DataOutLfsrSCountCuT = QoutLfsrSCountCuT; 
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   wire resetLfsrSCountCuT; 
   wire enableLfsrSCountCuT; 
   wire [1:0] DataOutLfsrSCountCuT ; 
 
   wire [1:0] QoutLfsrSCountCuT ; 
   wire y1LfsrSCountCuT; 
  
   DFEP1 U0LfsrSCountCuT ( .D(QoutLfsrSCountCuT[1]), .E(enableLfsrSCountCuT), .C(clock), .SN(resetLfsrSCountCuT), .Q(QoutLfsrSCountCuT[0]) ); 
   DFEC1 U1LfsrSCountCuT ( .D(y1LfsrSCountCuT), .C(clock), .RN(resetLfsrSCountCuT), .Q(QoutLfsrSCountCuT[1]) ); 
   XOR20  U2LfsrSCountCuT ( .A(QoutLfsrSCountCuT[0]), .B(QoutLfsrSCountCuT[1]), .Q(y1LfsrSCountCuT));  
  
   assign DataOutLfsrSCountCuT = QoutLfsrSCountCuT; 
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Table 14: LFSR Scan Counter Linear and Modular code slice in Verilog 

 

 

LINEAR TYPE  MODULAR TYPE 
 

entity LfsrScanCounterCuT is 
port( clock: in std_logic; 
      reset: in std_logic; 
      enable: in std_logic; 
      DataOut: out std_logic_vector(1 downto 0)); 
end LfsrScanCounterCuT; 
 
architecture comportamento of LfsrScanCounterCuT is 
  signal Qin: std_logic_vector (1 downto 0); 
  signal Qout: std_logic_vector (1 downto 0); 
begin 
  
  comb_LfsrVhdlLinear: process(Qout,enable) 
  begin 
   if enable = '0' then 
    Qin <= Qout; 
   else 
     Qin(0)<=Qout(1); 
     Qin(1)<=Qout(0) xor Qout(1); 
   end if; 
end process; 
  
sinc_LfsrVhdlLinear: process(clock,reset) 
begin 
  if reset = '0' then 
    Qout <= "11"; 
  elsif clock'event and clock = '1' then 
    Qout <= Qin; 
  end if; 
end process; 
  
   DataOut <= Qout; 
  
end comportamento; 

      
entity LfsrScanCounterCuT is 
port( clock: in std_logic; 
      reset: in std_logic; 
      enable: in std_logic; 
      DataOut: out std_logic_vector(1 downto 0)); 
end LfsrScanCounterCuT; 
 
architecture comportamento of LfsrScanCounterCuT is 
  signal Qin: std_logic_vector (1 downto 0); 
  signal Qout: std_logic_vector (1 downto 0); 
begin 
  
  comb_VhdlLFSRModular: process(Qout,enable) 
  begin 
   if enable = '0' then 
    Qin <= Qout; 
   else 
     Qin(0)<=Qout(1); 
     Qin(1)<=Qout(0) xor Qout(1); 
   end if; 
end process; 
  
sinc_VhdlLFSRModular: process(clock,reset) 
begin 
  if reset = '0' then 
    Qout <= "11"; 
  elsif clock'event and clock = '1' then 
    Qout <= Qin; 
  end if; 
end process; 
  
   DataOut <= Qout; 
  
end comportamento; 
 

 

Table 15: LFSR Scan Counter Linear and Modular code slice in VHDL 
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4.1.5 MISR BLOCK 

 

 The MISR (Multiple Input Signature Register) block is based on the LFSR’s model 

but with multiple input bits connected to the flip-flops of the MISR by XOR gates. 

The number of inputs should be fewer than the number of flip-flops in the MISR and 

these inputs are actually the primary outputs of the CUT and the output of its scan 

chain. To avoid aliasing in a test sequence, the MISR should be as high as possible, 

considering that as the higher as the length is, the higher area overhead we will have 

in the circuit, but the slowest possibility of having aliasing. The block is presented in 

Figure 22 and it’s composed by the following signals; reset, enable, clock, input bus 

lines presented as n variable, and the MISR_out.  

 

 

Figure 22: MISR Block Diagram 

 

 

 The inputs of the MISR will provide connection to CUT’s outputs through a bus 

which also connects to the outputs of the overall block. In the following is presented 

an example in Verilog and VHDL format of a MISR specific case with five flip-flops.  

 

Seed example   -  01100 

 

module LfsrMisrCuT ( InputSLfsrMisrCuT, clock, resetLfsrMisrCuT, enableLfsrMisrCuT, DataOutLfsrMisrCuT ); 
   input clock, resetLfsrMisrCuT, enableLfsrMisrCuT; 
   input [1:0] InPutSLfsrMisrCuT ; 
   output DataOutLfsrMisrCuT; 
 

   wire [4:0] QoutLfsrMisrCuT ; 
   wire y1LfsrMisrCuT, x1LfsrMisrCuT, x2LfsrMisrCuT; 
  

   DFEC1 U0LfsrMisrCuT ( .D(x1LfsrMisrCuT), .E(enableLfsrMisrCuT), .C(clock), .RN(resetLfsrMisrCuT), .Q(QoutLfsrMisrCuT[0]) ); 
   XOR20  U6LfsrMisrCuT ( .A(QoutLfsrMisrCuT[1]), .B(InputSLfsrMisrCuT[0]), .Q(x1LfsrMisrCuT));  
   DFEC1 U1LfsrMisrCuT ( .D(x2LfsrMisrCuT), .E(enableLfsrMisrCuT), .C(clock), .RN(resetLfsrMisrCuT), .Q(QoutLfsrMisrCuT[1]) ); 
   XOR20  U7LfsrMisrCuT ( .A(QoutLfsrMisrCuT[2]), .B(InputSLfsrMisrCuT[1]), .Q(x2LfsrMisrCuT));  
   DFEP1 U2LfsrMisrCuT ( .D(QoutLfsrMisrCuT[3]), .E(enableLfsrMisrCuT), .C(clock), .SN(resetLfsrMisrCuT), .Q(QoutLfsrMisrCuT[2]) ); 
   DFEP1 U3LfsrMisrCuT ( .D(QoutLfsrMisrCuT[4]), .E(enableLfsrMisrCuT), .C(clock), .SN(resetLfsrMisrCuT), .Q(QoutLfsrMisrCuT[3]) ); 
   DFEC1 U4LfsrMisrCuT ( .D(y1LfsrMisrCuT), .E(enableLfsrMisrCuT), .C(clock), .RN(resetLfsrMisrCuT), .Q(QoutLfsrMisrCuT[4]) ); 
   XOR20  U5LfsrMisrCuT ( .A(QoutLfsrMisrCuT[0]), .B(QoutLfsrMisrCuT[2]), .Q(y1LfsrMisrCuT) );  
   assign DataOutLfsrMisrCuT = QoutLfsrMisrCuT[0]; 
  

endmodule 
 

 

Table 16: MISR Linear code slice in Verilog 
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Seed example   -  01100 
 

entity LfsrMisrCuT is 
port( DataIn: in std_logic_vector(1 downto 0); 
      clock: in std_logic; 
      reset: in std_logic; 
      enable: in std_logic; 
      DataOut: out std_logic); 
end LfsrMisrCuT; 
 

architecture comportamento of LfsrMisrCuT is 
  signal Qin: std_logic_vector (4 downto 0); 
  signal Qout: std_logic_vector (4 downto 0); 
 

begin 
 

  comb_VhdlMISRLinear: process(DataIn,Qout,enable) 
  begin 
   if enable = '0' then 
    Qin <= Qout; 
   else 
     Qin(0)<=Qout(1) xor DataIn(0); 
     Qin(1)<=Qout(2) xor DataIn(1); 
     Qin(2)<=Qout(3); 
     Qin(3)<=Qout(4); 
     Qin(4)<=Qout(0) xor Qout(2); 
   end if; 
end process; 
 

sinc_VhdlMISRLinear: process(clock,reset) 
begin 
  if reset = '0' then 
    Qout <= "01100"; 
  elsif clock'event and clock = '1' then 
    Qout <= Qin; 
  end if; 
 end process; 
 

  DataOut <= Qout(0); 
 

end Comportamento; 
 

 

Table 17: MISR Linear code slice in VHDL 

 

 

4.1.6 COMPARATORS 

 

 The comparators have the function to integrate comparison logic for a known 

vector that in a certain moment may arise at the input of this block. Once this vector 

arrives, the logic that is purely combinatorial, will present at the output a logical ‘1’. 

For any other combination that can be presented at the input, the logic value is always 

opposite. It is thus possible in this way to establish a specific point to stop the iterative 

process of the LFSRs (for the scan counter block and for test length count). 

 

 

Figure 23: Comparator Blocks (LFSR PI at right / LFSR Scan Counter at left) 



CHAPTER 4: BIST FOR DELAY-FAULTS 53 

 

 The Table 18 and Table 19 show code slices in Verilog and VHDL respectively. 

Both tables describe two blocks (the LFSR PI and the LFSR Scan Counter). The 

comparators process will be detailed hereafter in the LFSR’s configuration. 

    

LFSR PI Comparator Code  Seed Vector - 10110 Trigger Vector - 00101 

  
 wire WireConnectLpO; 
 wire [4:0] LpOInvOutNandIn0; 
 
 assign LpOInvOutNandIn0[0] = LfsrPiOut[0]; 
 INV0 LpO00 (.A(LfsrPiOut[1]), .Q(LpOInvOutNandIn0[1])); 
 assign LpOInvOutNandIn0[2] = LfsrPiOut[2]; 
 INV0 LpO01 (.A(LfsrPiOut[3]), .Q(LpOInvOutNandIn0[3])); 
 INV0 LpO02 (.A(LfsrPiOut[4]), .Q(LpOInvOutNandIn0[4])); 
 wire [1:0] LpONandOutInvIn0; 
 wire [1:0] LpOInvOutNandIn1; 
 NAND20 NLpO10 (.A(LpOInvOutNandIn0[0]), .B(LpOInvOutNandIn0[1], .Q(LpONandOutInvIn0[0])); 
 INV0 LpO10 (.A(LpONandOutInvIn0[0]), .Q(LpOInvOutNandIn1[0])); 
 NAND20 NLpO11 (.A(LpOInvOutNandIn0[2]), .B(LpOInvOutNandIn0[3], .Q(LpONandOutInvIn0[1])); 
 INV0 LpO11 (.A(LpONandOutInvIn0[1]), .Q(LpOInvOutNandIn1[1])); 
 wire LpONandOutInvIn1; 
 wire LpOInvOutNandIn2; 
 NAND20 NLpO20 (.A(LpOInvOutNandIn1[0]), .B(LpOInvOutNandIn1[1]), .Q(LpONandOutInvIn1)); 
 INV0 LpO20 (.A(LpONandOutInvIn1), .Q(LpOInvOutNandIn2)); 
 wire LpONandOutInvIn2; 
 wire LpOInvOutNandIn3; 
 NAND20 NLpO30 (.A(LpOInvOutNandIn2), .B(LpOInvOutNandIn0[4]), .Q(LpONandOutInvIn2)); 
 INV0 LpO30 (.A(LpONandOutInvIn2), .Q(LpOInvOutNandIn3)); 
  
 assign WireConnectLpO = LpOInvOutNandIn3; 
  

LFSR Scan Counter Comparator Code Seed Vector - 01 Trigger Vector - 10 

  
 wire WireConnectLscO; 
 wire [1:0] LscOInvOutNandIn0; 
  
 INV0 LscO00 (.A(LfsrScanCounterOut[0]), .Q(LscOInvOutNandIn0[0])); 
 assign LscOInvOutNandIn0[1] = LfsrScanCounterOut[1]; 
  
 wire LscONandOutInvIn0; 
 wire LscOInvOutNandIn1; 
  
 NAND20 NLscO10 (.A(LscOInvOutNandIn0[0]), .B(LscOInvOutNandIn0[1], .Q(LscONandOutInvIn0)); 
 INV0 LscO10 (.A(LscONandOutInvIn0), .Q(LscOInvOutNandIn1)); 
  
 assign WireConnectLscO = LscOInvOutNandIn1; 
  

   

Table 18: LFSR Comparators code slice in Verilog 

 

 

LFSR PI comparator Code LFSR Scan Counter comparator Code 
 

BistCountEnd: process(LfsrPiOut) 
begin 
 if LfsrPiOut = "00101" then 
  BistCountFinishedOut <= '1'; 
 else 
  BistCountFinishedOut <= '0'; 
 end if; 
end process; 

      

ScanCountEnd: process(LfsrScanCounterOut) 
begin 
 if LfsrScanCounterOut = "10" then 
  ScanCountFinishedOut <= '1'; 
 else 
  ScanCountFinishedOut <= '0'; 
 end if; 
end process; 
 

 

Table 19: LFSR Comparators code slice in VHDL 
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4.1.7 CUT 

 

 Most integrated circuits incorporate combinational and sequential logic. When a 

particular company designs a circuit for a specific application and want to add a scan 

based test, the circuit has to be changed for such purpose. It is necessary to 

reconfigure circuit’s description, by introducing a scan path, signals and functionality. 

 Basically, for a full-scan methodology, all flip-flops in the CUT are replaced 

by scan flip-flops, that are able to choose between two inputs: the normal input and a 

scan input. After all flip-flops have been replaced and when Test_SE signal is in scan 

mode, the output is connected to the scan input of another flip-flop forming a chain 

connecting all flip-flops, as shown in Figure 24. 

 

 

Figure 24: Insertion of a Scan Chain into a CUT 

 

 

 The Table 20 describes a simple circuit with only two inputs and one output in 

order to clarify the scan insertion method in VHDL environment. Only two flip-flops 

has two be replaced.   

 

CUT VHDL without scan CUT VHDL with scan 

 

entity CuT is 
   port( a, b, clock, reset : in std_logic; 
  z: out std_logic); 
end CuT; 
 
architecture Comportamento of CuT is 
 
signal Qout, Qin: std_logic_vector(1 downto 0); 
begin 
 
  sinc: process(clock,reset) 
    begin 
      if reset = '0' then 
        Qout <= "00"; 
      elsif clock'event and clock = '1' then 
        Qout <= Qin; 
      end if; 
    end process; 

 

entity CuT is 
   port( a, b, teste_se, teste_si, clock, reset : in std_logic; 
  z, scan_out : out std_logic); 
end CuT; 
 
architecture Comportamento of CuT is 
 
signal Qout, Qin, Qin_data, Qin_test: std_logic_vector(1 downto 0); 
begin 
  sinc: process(clock,reset) 
    begin 
      if reset = '0' then 
        Qout <= "00"; 
      elsif clock'event and clock = '1' then 
        Qout <= Qin; 
      end if; 
    end process; 
Qin_data(0) <= b;  
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Qin(0) <= b;  
Qin(1) <= Qout(0); 
 
  comb: process(clock,Qout,Qin,a,b) 
    begin 
      Qin(1) <= not( Qout(0) and a ); 
      z <= not( not( Qin(1) ) and Qout(1) ); 
  end process; 
 
end comportamento; 
 

Qin_test(0) <= teste_si; 
Qin_test(1) <= Qout(0); 
scan_out <= Qout(1);   
  comb_mux: process(clock,teste_se,Qin_data,Qin_test,Qout,Qin,a,b) 
    begin 
      Qin_data(1) <= not( Qout(0) and a ); 
      z <= not( not( Qin_data(1) ) and Qout(1) ); 
        if teste_se = '0' then 
          Qin <= Qin_data; 
        else 
          Qin <= Qin_test; 
        end if; 
  end process; 
 
end comportamento; 
 

 

Table 20: VHDL CUT before and after Scan insertion. 

 

 

4.1.8 BIST CONTROLLER  

 

 The BIST controller is certainly the most important block of the whole BIST 

structure. It’s the core unit responsible for controlling the instructions that are given to 

the various blocks, in order to rule the entire self-test functionality. It is also 

responsible for switching between the normal and test mode. The signal responsible 

for initialize the self-test is the START pin. Once this line receives a logic ‘1’, the 

circuit enters in test mode and the finite state machine will change its state. It will 

leave the idle state and it will go to the reset state and initiate the test. 

 The purpose of the reset state is to prepare the five blocks, LFSR PI, LFSR Scan, 

LFSR Scan Counter, CUT and MISR, so that in the next clock pulse these blocks are 

ready to begin the test sequence. The same analogy has to be applied to the ENABLE 

line of each block that integrates it, except that this signal will also be used during test 

to enable or disable specific blocks (e.g., the LFSR PI have to remain disabled when 

controller is at scan state). It is also important in the reset state to de-activate the 

BIST_done pin and enable (logic ‘1’) the Test_SE signal of the CUT, in order to 

switch all the internal flip-flops to scan mode. The MUX_Sel signal should also 

disable primary inputs and connect the LFSR’s signals to CUT’s inputs. This state 

lasts only one clock cycle. 

 In scan mode, starts the loading process of the CUT’s scan chain. The data is 

received serially through the LFSR scan output line and when the load is complete, 

the LFSR Scan Counter informs the controller that the scan chain is reloaded with a 

new test pattern.  
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 As soon as the controller receives the command, it will jump to launch state and 

will suspend (logic ‘0’) the enable line of the SCAN Counter block. At the same time 

the enable LFSR PI line will be activated, supplying a valid and known vector in the 

respective bus where the CUT primary inputs connect. There is a particular signal in 

the interconnection between the two blocks of the entire circuit that is very important, 

and the way it’s treated defines the fault coverage as well as the cost to implement the 

application, which is, the Test_SE line. Two methods can and were used to define the 

test strategy: LOS and/or LOC. 

 

 

Figure 25: BIST Specific State Machine 

 

 In LOC the Test_SE line become logic ‘0’ in the beginning of the launch state, 

making each individual scan flip-flops inside the CUT to switch to normal operation 

mode and waiting for capture. But this in not true for the LOS method that will drag 

the off state of this line until the beginning of capture mode arrives, and is also more 

complex to implement it in a standard scan test environment (due to the fast clock 

between Launch and Capture). 

 Capture mode has finally arrived and is now possible to obtain the first output 

vector, generated by the first one applied to CUT. Because the MISR block has its 

inputs connected to the CUT outputs, the output vector is present in the MISR inputs. 

It is also here that the LFSR Scan and LFSR Scan Counter enable signals will be 

prepared to be activated again in the next state, and the LFSR PI enable signal has to 

be disabled at this moment also. 
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 The next state is again the scan, and here all the previous process is repeated until 

the last vector that was defined in the LFSR PI block. As the CUT flip-flops chain is 

loaded again with the new values, the old ones will be putted clock by clock, one by 

one, in the MISR Scan_out input, allowing to test not only the combinational logical 

but also all the flip-flops in the CUT and their interconnection when in scan mode. 

The BIST Controller block is presented in the Figure 26.  

 

 

 

Figure 26: BIST Controller Block Diagram 

 

 

The Table 21 and the Table 22 show the code that instructs the controller for 

desired operation. The first table contains the code in Verilog language and the second 

table in VHDL description.    

 

 

Controller based on Launch-on-Shift (Verilog) 
   

  

   wire BistStart; 
   wire Clock; 
   wire ResetController; 
   wire LfsrPiCountFinished; 
   wire LfsrScanCountFinished; 
   wire ResetLfsrPi; 
   wire ResetLfsrScan; 
   wire ResetLfsrScanCounter; 
   wire ResetCut; 
   wire ResetMisr; 
   wire EnableLfsrPi; 
   wire EnableLfsrScan; 
   wire EnableLfsrScanCounter; 
   wire EnableMisr; 
   wire TestSE; 
   wire MuxSelect; 
   wire BistDone; 
  
// -- L . O . S 
  

   wire LonSn1; 
   wire LonSn3; 
   wire LonSn4; 
   wire LonSn5; 
   wire LonSn6; 
   wire LonSn7; 
   wire LonSn8; 
   wire LonSn9; 
   wire LonSn11; 
   wire LonSn12; 
   wire LonSn13; 
   wire LonSn14; 
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   wire LonSn15; 
   wire LonSn16; 
   wire LonSn17; 
   wire LonSn18; 
   wire LonSn19; 
   wire LonSn20; 
  

   wire [2:0] estado; 
   wire [2:0] estado_seguinte; 
  

   assign ResetLfsrPi = ResetMisr; 
   assign ResetLfsrScan = ResetMisr; 
   assign EnableLfsrScan = TestSE; 
   assign EnableLfsrPi = estado_seguinte[2]; 
  

   DFC3 \estado_reg[0]  ( .D(estado_seguinte[0]), .C(Clock), .RN(ResetController), .Q(estado[0]) ); 
   DFC1 \estado_reg[1]  ( .D(estado_seguinte[1]), .C(Clock), .RN(ResetController), .Q(estado[1]), .QN(LonSn1) ); 
   DFC3 \estado_reg[2]  ( .D(estado_seguinte[2]), .C(Clock), .RN(ResetController), .Q(estado[2]) ); 
   INV3 U3ControlleR ( .A(LonSn13), .Q(EnableMisr) ); 
 
 
   

   CLKIN0 U4ControlleR ( .A(LonSn3), .Q(ResetMisr) ); 
   NOR20 U5ControlleR ( .A(estado_seguinte[2]), .B(ResetLfsrScanCounter), .Q(LonSn3) ); 
   AOI2110 U6ControlleR ( .A(LonSn1), .B(LonSn4), .C(LonSn5), .D(LonSn6), .Q(ResetLfsrScanCounter) ); 
   CLKIN0 U7ControlleR ( .A(LonSn7), .Q(LonSn5) ); 
   OAI210 U8ControlleR ( .A(estado[0]), .B(estado[1]), .C(estado[2]), .Q(LonSn7) ); 
   CLKIN0 U9ControlleR ( .A(LonSn8), .Q(ResetCut) ); 
   NOR40 U10ControlleR ( .A(LonSn9), .B(LonSn6), .C(TestSE), .D(estado[2]), .Q(LonSn8) ); 
   CLKIN0 U11ControlleR ( .A(LonSn11), .Q(LonSn6) ); 
   NOR20 U12ControlleR ( .A(estado_seguinte[0]), .B(estado[1]), .Q(LonSn9) ); 
   CLKIN0 U13ControlleR ( .A(LonSn12), .Q(MuxSelect) ); 
   NOR20 U14ControlleR ( .A(EnableMisr), .B(estado_seguinte[0]), .Q(LonSn12) ); 
   NOR20 U15ControlleR ( .A(TestSE), .B(estado_seguinte[2]), .Q(LonSn13) ); 
    

   OAI210 U16ControlleR ( .A(BistDone), .B(LonSn14), .C(LonSn15), .Q(TestSE) ); 
   OAI310 U17ControlleR ( .A(LonSn14), .B(estado_seguinte[0]), .C(BistDone), .D(LonSn15), .Q(EnableLfsrScanCounter) ); 
   NOR30 U18ControlleR ( .A(estado_seguinte[1]), .B(estado_seguinte[2]), .C(estado_seguinte[0]), .Q(BistDone) ); 
   OAI310 U19ControlleR ( .A(LonSn14), .B(LfsrPiCountFinished), .C(LonSn16), .D(LonSn17), .Q(estado_seguinte[0]) ); 
   NAND30 U20ControlleR ( .A(LonSn4), .B(LonSn1), .C(BistStart), .Q(LonSn17) ); 
   NOR20 U21ControlleR ( .A(LonSn11), .B(estado[2]), .Q(estado_seguinte[2]) ); 
   NAND20 U22ControlleR ( .A(estado[1]), .B(estado[0]), .Q(LonSn11) ); 
   OAI210 U23ControlleR ( .A(LonSn18), .B(LonSn14), .C(LonSn15), .Q(estado_seguinte[1]) ); 
   CLKIN0 U24ControlleR ( .A(LonSn19), .Q(LonSn15) ); 
   AOI2110 U25ControlleR ( .A(estado[0]), .B(estado[2]), .C(LonSn4), .D(estado[1]), .Q(LonSn19)); 
   NAND20 U26ControlleR ( .A(LonSn4), .B(estado[1]), .Q(LonSn14) ); 
   NOR20 U27ControlleR ( .A(estado[0]), .B(estado[2]), .Q(LonSn4) ); 
   NOR20 U28ControlleR ( .A(LonSn20), .B(LonSn16), .Q(LonSn18) ); 
   CLKIN0 U29ControlleR ( .A(LfsrScanCountFinished), .Q(LonSn16) ); 
   CLKIN0 U30ControlleR ( .A(LfsrPiCountFinished), .Q(LonSn20) ); 
 

 

Table 21: Verilog Controller code in Launch-on-Shift 

 

Controller based on Launch-on-Shift (VHDL) 
    

 

entity BistControllerCuT is 
port( BistStart : in std_logic; 
      Clock : in std_logic; 
      ResetController : in std_logic; 
      ResetLfsrPi : out std_logic; 
      ResetLfsrScan : out std_logic; 
      ResetLfsrScanCounter : out std_logic; 
      ResetCut : out std_logic; 
      ResetMisr : out std_logic; 
      LfsrPiCountFinished : in std_logic; 
      LfsrScanCountFinished : in std_logic; 
      EnableLfsrPi : out std_logic; 
      EnableLfsrScan : out std_logic; 
      EnableLfsrScanCounter : out std_logic; 
      EnableMisr : out std_logic; 
      TestSE : out std_logic; 
      MuxSelect : out std_logic; 
      BistDone : out std_logic); 
end BistControllerCuT; 
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architecture comportamento of BistControllerCuT is 
  

type estados is (IDLE,RESET,SCAN,LAUNCH,CAPTURE); 
signal estado,estado_seguinte:estados; 
  

begin 
  

saidas_comb:process(estado,estado_seguinte) 
  

 begin 
  case estado is 
    when IDLE => 
  

    ResetLfsrPi <= '0'; 
    ResetLfsrScan <= '0'; 
    ResetLfsrScanCounter <= '0'; 
    ResetCut <= '1'; 
    ResetMisr <= '0'; 
    EnableLfsrScan <= '0'; 
    EnableLfsrPi <= '0'; 
    EnableLfsrScanCounter <= '0'; 
   

  EnableMisr <= '0'; 
    TestSE <= '0'; 
    MuxSelect <= '0'; 
    BistDone <= '1'; 
  

      if estado_seguinte=RESET then 
        ResetCut <= '0'; 
        MuxSelect <= '1'; 
        BistDone <= '0'; 
      end if; 
  

    when RESET => 
  

    ResetLfsrPi <= '1'; 
    ResetLfsrScan <= '1'; 
 

 

    ResetLfsrScanCounter <= '1'; 
    ResetCut <= '1'; 
    ResetMisr <= '1'; 
    EnableLfsrScan <= '1'; 
    EnableLfsrPi <= '0'; 
    EnableLfsrScanCounter <= '1'; 
    EnableMisr <= '1'; 
    TestSE <= '1'; 
    MuxSelect <= '1'; 
    BistDone <= '0'; 
  

    when SCAN => 
  

    ResetLfsrPi <= '1'; 
    ResetLfsrScan <= '1'; 
    ResetLfsrScanCounter <= '1'; 
    ResetCut <= '1'; 
    ResetMisr <= '1'; 
    EnableLfsrScan <= '1'; 
    EnableLfsrPi <= '0'; 
    EnableLfsrScanCounter <= '1'; 
    EnableMisr <= '1'; 
    TestSE <= '1'; 
    MuxSelect <= '1'; 
    BistDone <= '0'; 
  

      if estado_seguinte=LAUNCH then 
  

        EnableLfsrScan <= '1'; 
        EnableLfsrPi <= '0'; 
        EnableLfsrScanCounter <= '0'; 
        EnableMisr <= '1'; 
        TestSE <= '1'; 
  

      elsif estado_seguinte=IDLE then 
  

        ResetCut <= '0'; 
        EnableLfsrScan <= '0'; 
        EnableLfsrPi <= '0'; 
        EnableLfsrScanCounter <= '0'; 
        EnableMisr <= '0'; 
        TestSE <= '0'; 
        MuxSelect<='0'; 
        BistDone<='1'; 
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      end if; 
  

    when LAUNCH => 
  

    ResetLfsrPi <= '1'; 
    ResetLfsrScan <= '1'; 
    ResetLfsrScanCounter <= '0'; 
    ResetCut <= '1'; 
    ResetMisr <= '1'; 
    EnableLfsrScan <= '0'; 
    EnableLfsrPi <= '1'; 
    EnableLfsrScanCounter <= '0'; 
    EnableMisr <= '1'; 
    TestSE <= '0'; 
    MuxSelect <= '1'; 
    BistDone <= '0'; 
  

    when CAPTURE => 
  

    ResetLfsrPi <= '1'; 
 
 

    ResetLfsrScan <= '1'; 
    ResetLfsrScanCounter <= '1'; 
    ResetCut <= '1'; 
    ResetMisr <= '1'; 
    EnableLfsrScan <= '1'; 
    EnableLfsrPi <= '0'; 
    EnableLfsrScanCounter <= '1'; 
    EnableMisr <= '1'; 
    TestSE <= '1'; 
    MuxSelect <= '1'; 
    BistDone <= '0'; 
  

    when others => 
  

    ResetLfsrPi <= '0'; 
    ResetLfsrScan <= '0'; 
    ResetLfsrScanCounter <= '0'; 
    ResetCut <= '1'; 
    ResetMisr <= '0'; 
    EnableLfsrScan <= '0'; 
    EnableLfsrPi <= '0'; 
    EnableLfsrScanCounter <= '0'; 
    EnableMisr <= '0'; 
    TestSE <= '0'; 
    MuxSelect <= '0'; 
    BistDone <= '1'; 
  

 end case; 
 end process; 
  

 CTRL_comb:process(estado,BistStart,LfsrPiCountFinished,LfsrScanCountFinished) 
  

 begin 
    case estado is 
      when IDLE=> 
        if BistStart='1' then 
          estado_seguinte<=RESET; 
        else 
          estado_seguinte<=IDLE; 
        end if; 
      when RESET=> 
        estado_seguinte<=SCAN; 
      when SCAN=> 
        if LfsrScanCountFinished='1' and LfsrPiCountFinished='0' then 
          estado_seguinte<=LAUNCH; 
        elsif LfsrScanCountFinished='1' and LfsrPiCountFinished='1' then 
          estado_seguinte<=IDLE; 
        else 
          estado_seguinte<=SCAN; 
        end if; 
      when LAUNCH=> 
        estado_seguinte<=CAPTURE; 
      when CAPTURE=> 
        estado_seguinte<=SCAN; 
      when others=> 
        estado_seguinte<=IDLE; 
    end case; 
  end process; 
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  CTRL_seq:process(Clock,ResetController) 
    begin 
      if ResetController='0' then 
        estado<=IDLE; 
      elsif Clock'event and Clock='1' then 
        estado<=estado_seguinte; 
      end if; 
  end process; 
  

end comportamento; 
 

   

Table 22: VHDL Controller code in Lunch-on-Shift 

 

 

4.2 BISTGEN SOFTWARE 

 

 In order to automate the whole methodology of the testing process for digital 

CMOS integrated circuits, a software tool called BISTGen was developed, which 

integrates and automates all the procedures described in section 4.1. This present 

section describes it, explaining in detail the most important functions and procedures. 

 

 The BISTGen software application was developed with the use of Object Pascal 

(Pascal version of object-oriented programming), using the compiler Embarcadero ® 

Delphi ® 2010. It is a tool to be used on Windows XP ® operating system, or all their 

latest versions (for example, Windows 7 ®). 

 The main purpose of the tool is to automate a file generation process with BIST 

functionality inside, preparing circuits for test. Starting from a specific input file 

containing a circuit’s description with scan method already implemented, it will be 

possible to generate a new circuit description that integrates the BIST mechanism for 

automatic test that will allow simulating the entire circuit during its period of 

operation whenever desired. 

 

 

4.2.1 DATA ENTRY 

 

 Data entry is made in the program through a Verilog structural file (.v) or a VHDL 

behavioural file (.vhdl). Whatever the file that is present, it must include the scan path 

method and the respective control pins must be present. 
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4.2.2 APPLICATION FLOWCHART 

 

 Once the application is invoked, it must be chosen from two files that may be 

either Verilog or VHDL. As mentioned, the file should have integrated the scan 

method, because when loaded, it will be prompted to register the names of the control 

lines of the CUT including the new associated lines resulting from the method 

addition.  

 

 

Figure 27: Application Flowchart 
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 During program execution, the user will be guided through each block 

specification and generation until the all new circuitry (including CUT) is generated. 

In this work we call it the Aggregate circuit. 

 

 

4.2.3 DATABASE ARCHITECTURE AND COMPOSITION 

 

The system database chosen was the Paradox. Paradox is a relational database 

management system currently published by Corel Corporation. It was originally 

released for DOS by Ansa Software, and then by Borland after it bought the company 

[21]. A Windows version was released by Borland in 1992. At first glance, the 

Paradox tables do not show many differences from InterBase tables and the following 

similarities are evident. 

 

  Access can be done through an alias; 

  The types of possible fields are similar, although they have different names; 

  Tables can be created with the DataBase Desktop; 

  Are used the same components TTable and TQuery to access; 

 

In reality, the BDE (Borland DataBase Engine) creates an illusion that InterBase 

and Paradox tables behave the same way. For some developers, however this illusion 

ends soon. The first disappointment comes in database using the Desktop for 

manipulating tables InterBase. While the Database Desktop is the ideal tool for 

creating and restructuring tables, Paradox is deficient with respect to InterBase, where 

the restructuring and the use of more advanced features can only be achieved by 

mounting scripts that will run on InterBase Windows. Searches and indexes in 

InterBase are case sensitive, while in Paradox differentiation is configurable. Still in 

InterBase defining primary and foreign keys is performed easily, but changing these 

keys is not so trivial. Some operations using InterBase are slower than in Paradox. It 

quickly becomes clear that the InterBase is not automatically better than Paradox. The 

two products have significant differences and the choice of which to use is fully 

dependent on the conditions and objectives of the final application. 

http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Corel_Corporation
http://en.wikipedia.org/wiki/DOS
http://en.wikipedia.org/wiki/Borland
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 The Figure 28 shows the database components architecture and a brief 

description of its internal behavior will also be given. 

 

 

Figure 28: Database Components Architecture 

 

 

 Every dataset that supplies a data control component must have at least one 

TDataSource Component. TDataSource acts as a bridge between one TTable and one 

or more data control components that provide a visible user interface to data. TTable 

can establish connections to a database through the BDE, but cannot display database 

information on a Form. Data Control components as TDBGrid and TDBNavigator 

provide the visible user interface and manipulation to data, but are unaware of the 

structure of the table from which they receive (and to which they send) data.  

 

 The application uses two database tables to store data information. In one stores the 

names of the inputs and outputs of the CUT for further manipulation, and in the other, 

stores the values of the feedback loops that are associated with the size of the LFSRs.  

 

 

4.2.4 LFSR’S CONFIGURATION 

  

 The user chooses the number of counts in binary format. For example if the 

software receives the (10110) binary value (the seed), it will count 31 times ( 52 1). 

Due to the features of the LFSR, the (00000) value can’t be used ( n2 1), otherwise 

the LFSR would stay in this value indefinitely, because of the XOR properties in the 

feedback loops.  
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 In the previous section, it was mentioned that the controller receives information 

when some LFSRs can reach the score limit or the score limit imposed, depending on 

the case. Whenever the user defines the binary LFSR seed, it also sets the counting 

number limit, in the case of the LFSR PI. The software, after receiving the first vector, 

will in background generate all the patterns (process explained hereafter with the 

LFSR Scan Counter) until repeat the first value. What is important to retain is, at the 

end, the first and the last values are known. The Table 23 shows the correlation 

between the binary seed and the type of flip-flops chosen. When a ‘0’ is present the 

DFEC1 flip-flop is used, which mean a ‘D’ flip-flop with ‘enable’ and ‘clear’, but 

when a ‘1’ is present the used flip-flop is a ‘D’ type with ‘enable’ and ‘preset’ 

(DFEP1), which defines the initial state based on the LFSR’s seed. 

 

Verilog LFSR PI file with 10011 seed value (First value)     10011  - first generated value 

00110 - last generated value 

 
module LfsrPICuT ( clock, resetLfsrPICuT,enableLfsrPICuT, DataOutLfsrPICuT ); 
   input clock, resetLfsrPICuT,enableLfsrPICuT; 

   output [4:0] DataOutLfsrPICuT ; 
  

   wire [4:0] QoutLfsrPICuT ; 
   wire y1LfsrPICuT; 
  

   DFEP1 U0LfsrPICuT ( .D(QoutLfsrPICuT[1]), .E(enableLfsrPICuT), .C(clock), .SN(resetLfsrPICuT), .Q(QoutLfsrPICuT[0]) ); 
   DFEP1 U1LfsrPICuT ( .D(QoutLfsrPICuT[2]), .E(enableLfsrPICuT), .C(clock), .SN(resetLfsrPICuT), .Q(QoutLfsrPICuT[1]) ); 

   DFEC1 U2LfsrPICuT ( .D(QoutLfsrPICuT[3]), .E(enableLfsrPICuT), .C(clock), .RN(resetLfsrPICuT), .Q(QoutLfsrPICuT[2]) ); 
   DFEC1 U3LfsrPICuT ( .D(QoutLfsrPICuT[4]), .E(enableLfsrPICuT), .C(clock), .RN(resetLfsrPICuT), .Q(QoutLfsrPICuT[3]) ); 
   DFEP1 U4LfsrPICuT ( .D(y1LfsrPICuT), .E(enableLfsrPICuT), .C(clock), .SN(resetLfsrPICuT), .Q(QoutLfsrPICuT[4]) ); 

  
   XOR20  U5LfsrPICuT ( .A(QoutLfsrPICuT[0]), .B(QoutLfsrPICuT[2]), .Q(y1LfsrPICuT);  

  
   assign DataOutLfsrPICuT = QoutLfsrPICuT; 
  

endmodule 

 

 

Table 23: Linear type Verilog LFSR PI File 

 

 The stop value (00110) is the output trigger in the comparator block. The hardware 

description to create it in Verilog format is more complex than in VHDL. In VHDL 

the code describes a behavioural and then a synthesizer process it; however in Verilog 

is completely different because the code description is structural and it must be 

defined at gate level. The Figure 29 shows the dynamic gate design for this case.  
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Figure 29: Comparator block for LFSR PI Patterns 

 

 

 This is the internal circuit of the comparator block with 5 inputs coming from the 

LFSR PI, for the specific pattern (00110). Other pattern or different inputs number 

lead to another circuit. The goal is when a specific pattern arises, the internal logic 

give a binary ‘1’ in its output, exclusively. The software after receive the pattern will 

decide the internal logic to achieve the result. This is a dynamic process where the 

components are chosen, as the wires to connect it in the right way. The names in the 

Figure 29 give a more clear idea to understand the code in the Table 24 of the 

comparator block.      
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01100  - last generated value ( the stop condition) 

 . 
 . 
 . 

 wire WireConnectLpO; 
 wire [4:0] LpOInvOutNandIn0; 
 INV0 LpO00 (.A(LfsrPiOut[0]), .Q(LpOInvOutNandIn0[0])); 
 INV0 LpO01 (.A(LfsrPiOut[1]), .Q(LpOInvOutNandIn0[1])); 
 assign LpOInvOutNandIn0[2] = LfsrPiOut[2]; 
 assign LpOInvOutNandIn0[3] = LfsrPiOut[3]; 
 INV0 LpO02 (.A(LfsrPiOut[4]), .Q(LpOInvOutNandIn0[4])); 
 wire [1:0] LpONandOutInvIn0; 
 wire [1:0] LpOInvOutNandIn1; 
 NAND20 NLpO10 (.A(LpOInvOutNandIn0[0]), .B(LpOInvOutNandIn0[1], .Q(LpONandOutInvIn0[0])); 
 INV0 LpO10 (.A(LpONandOutInvIn0[0]), .Q(LpOInvOutNandIn1[0])); 
 NAND20 NLpO11 (.A(LpOInvOutNandIn0[2]), .B(LpOInvOutNandIn0[3], .Q(LpONandOutInvIn0[1])); 
 INV0 LpO11 (.A(LpONandOutInvIn0[1]), .Q(LpOInvOutNandIn1[1])); 
 wire LpONandOutInvIn1; 
 wire LpOInvOutNandIn2; 
 NAND20 NLpO20 (.A(LpOInvOutNandIn1[0]), .B(LpOInvOutNandIn1[1]), .Q(LpONandOutInvIn1)); 
 INV0 LpO20 (.A(LpONandOutInvIn1), .Q(LpOInvOutNandIn2)); 
 wire LpONandOutInvIn2; 
 wire LpOInvOutNandIn3; 
 NAND20 NLpO30 (.A(LpOInvOutNandIn2), .B(LpOInvOutNandIn0[4]), .Q(LpONandOutInvIn2)); 
 INV0 LpO30 (.A(LpONandOutInvIn2), .Q(LpOInvOutNandIn3)); 
 assign WireConnectLpO = LpOInvOutNandIn3; 
 . 
 . 
 . 

 

Table 24: Comparator Block Code for LFSR PI Patterns 

 

 With the LFSR Scan Counter is different. When the user chooses the integer 

number of counts, the software translates this number in binary format using a 2log  

mathematical conversion to achieve the purpose. For example with five counts the 

software converts the integer number in binary format (010 seed), the converted 

number may be any in the range of possible values that are 7. The question that arises 

is why it can be any of the 7 values? The answer is because the software uses a 

random function. If the integer count number is five it must be represented in 3 bits at 

least, but with 3 bits it is possible to make 7 counts ( 32 1). Not all the range is used 

in this particular case but the software ‘knows’ when to stop as well as the binary 

number that must be collected.  

 

Figure 30 : LFSR Stop Limit and Rotation 

 

 

 Taking the example of the Figure 30, for the first value (010), the next generated 

six values until repeat the process, will always be the same every cycle. The last one 
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is (100), index 7, but the software will stop at (001) to establish 5 counts. The stop 

index is 6 and not 5 because of the design and the software implementation 

requirements (number of counts plus one (controller issue)). Since we have the exit 

value, it is possible to establish it as a stop vector in hardware description file. Let’s 

take a look in the Table 25 based this time in VHDL files. 

 

 

LFSR Scan Counter BIST File ( LFSR stop condition code slice) Vectors 

 
 

library IEEE; 
use IEEE.std_logic_1164.all; 
  
entity LfsrScanCounterCuT is 
port( clock: in std_logic; 
      reset: in std_logic; 
      enable: in std_logic; 
      DataOut: out std_logic_vector(2 downto 0)); 
end LfsrScanCounterCuT; 
 
architecture comportamento of LfsrScanCounterCuT 
is 
  signal Qin: std_logic_vector (2 downto 0); 
  signal Qout: std_logic_vector (2 downto 0); 
begin 
  
  comb_LfsrVhdlLinear: process(Qout,enable) 
  begin 
   if enable = '0' then 
    Qin <= Qout; 
   else 
     Qin(0)<=Qout(1); 
     Qin(1)<=Qout(2); 
     Qin(2)<=Qout(0) xor Qout(1); 
   end if; 
end process; 
 
sinc_LfsrVhdlLinear:process(clock,reset) 
begin 
  if reset = '0' then 
    Qout <= "011"; 
  elsif clock'event and clock = '1' then 
    Qout <= Qin; 
  end if; 
end process; 
 

 
. 
. 
. 
 
ScanCountEnd: 
process(LfsrScanCounterOut) 
begin 
 if LfsrScanCounterOut = “110” then 
  ScanCountFinishedOut <= ‘1’; 
 else 
  ScanCountFinishedOut <= ‘0’; 
 end if; 
end process; 
. 

. 

. 

 
 
 
 
 
 
 
 
 
 
011 
001 
100 
010 
101 
110 

 

 

Table 25: LFSR Scan Counter Stop Counting Process 

 

 The first column shows the VHDL hardware description of the LFSR. The ‘Qout 

<=”011” ’ row shows the first value obtained through the input random process and is 

the seed. The stop condition is present not in the generated LFSR Scan Counter file 

but in the global BIST file obtained in the end, in a particular slice of code (the 

comparator block) where the ‘ if LfsrScanCounterOut = “110”  then ‘ row is the stop 

condition.   
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 The description uses VHDL and Verilog as examples. The concept is the same, but 

in a global BIST file production, only one type of language can be used at a time.       

 

 

4.2.5 APPLICATION FORMS FUNCTION AND HIERARCHY 

 

 For the final file, first we will need to set up all the necessary parameters required 

in each window. The hierarchy and the sequence of the integral parts of the 

application can be seen generally in Figure 31. The setting begins in the main window 

and prompts to choose the file that contains the test circuit. 

 

Figure 31: Global File Structure 
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 In the next step, the names contained in the input file will be identified. For this 

purpose the application provides a window into a second hierarchical level (the 

leftmost) where the objective is to request the name of the four control signals which 

by convention are assigned in the program with the names; clock, reset, test_se, 

test_si. All files submitted to the test must already have these names, but may 

nevertheless have different ones. 

 Now that the software ‘knows’ the names, the next step is to configure the LFSRs 

and the MISR which are the PI, Scan and Counter windows and previously explained 

in section 4.1. The MISR configuration is similar to the PI configuration since the 

number of entries is not defined here. 

 The last window, the rightmost, is intended to configure the controller, to choose 

which type of method to use: Scan based BIST, LOC, LOS or both LOC and LOS. 

 After the last window in the second level, the next step is to build the file. 

Although the program can generate a file in Verilog or VHDL, there are also two 

possibilities for the file in Verilog. It has to be chosen at the beginning if the final file 

should integrate modules or not. If the file does not have modules in Verilog, means 

that the circuit is suited for the AgingCalc software tool, to compute aging and 

generate SPICE netlists.  

 The ParentBistBlock was the name chosen for the global block entity or module 

depending on the case. The Table 26 shows both entity and module for VHDL and 

Verilog files respectively with two inputs (a, b) and two outputs (z, scan_out) as 

example.       

 

VHDL Type Verilog Type 

 
entity ParentBistBlockCuT is  
   port( a : in std_logic; 
           b : in std_logic; 
           clock : in std_logic; 
           reset : in std_logic; 
           z : out std_logic; 
           scan_out : out std_logic; 
           BistStart : in std_logic; 
           BistDone : out std_logic; 
           MisrOut  : out std_logic); 
end ParentBistBlockCuT; 
. 

. 

. 

 
module ParentBistBlockCuT ( 
  aPBisTB, 
  bPBisTB, 
  clock, 
  resetPBisTB, 
  zPBisTB, 
  scan_outPBisTB, 
  BistStart, 
  BistDone, 
  MisrOut); 
 

. 

. 

. 

 

Table 26: VHDL vs Verilog Entity 
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 The main difference between the CUT and the generated ParentBistBlock entities 

is that there are tree new lines; BistStart, BistDone, MisrOut. These new control lines 

are essential to the process of BIST based on scan. The BistStart is the line to start the 

test process, the MisrOut line receives serially the derived signatures from the test 

patterns and when BistDone became logic ‘1’ the test is completed.   

 If the file is VHDL type, it integrates components and therefore it is possible to 

maintain the same names, due to the hierarchy. However, the Verilog type that 

doesn’t use components, must redefine new names for the new circuit primary 

inputs/outputs. The Table 27, in the left side shows a slice of code where it’s 

presented a CUT component, the respective port map (block connection code) and a 

signal connection (also part of the connection block), but it can be observed in the 

right side of the table that there is no CUT component and if the connection code 

invoke ‘z’ and ‘scan_out’ outputs instead of ‘zPBistB’ and ‘scan_outPBistB’ to 

connect with the ‘CutOutMisrIn’ signal through an assign command, the established 

connection would be made between the vector signal and the CUT, leading to a 

undesired connection. This is the reason for different input and output names for 

VHDL and Verilog files.   

 

VHDL Verilog 

. 

signal CutOutMisrIn : std_logic_vector(1 downto 0); 
 
 

component CuTRelogio 
port( a : in std_logic; 
      b : in std_logic; 
      teste_semm : in std_logic; 
      teste_simm : in std_logic; 
      relogio : in std_logic; 
      reiniciar : in std_logic; 
      z : out std_logic; 
      scan_out : out std_logic); 
end component; 
. 
. 
. 

U4 : CuTRelogio 
port map ( a =>  MuxOutCutIn(0), 
      b => MuxOutCutIn(1), 
      teste_semm => TestSelectEnable, 
      teste_simm => TestSerialInput, 
      relogio => clock, 
      reiniciar => ResetCutInControllerOut, 
      z => CutOutMisrIn(0), 
      scan_out => CutOutMisrIn(1)); 
. 
. 
. 

z <= CutOutMisrIn(0); 
scan_out <= CutOutMisrIn(1); 
. 

. 

. 

. 

 wire [1:0] CutOutMisrIn; 
. 
. 
. 

CuTRelogio U4 ( 
  .a(MuxOutCutIn[0]), 
  .b(MuxOutCutIn[1]), 
  .teste_semm(TestSelectEnable), 
  .teste_simm(TestSerialInput), 
  .relogio(clock), 
  .reiniciar(ResetCutInControllerOut), 
  .z(CutOutMisrIn[0]), 
  .scan_out(CutOutMisrIn[1]) ); 
  
 assign CutOutMisrIn = {zPBistB, scan_outPBistB}; 
. 
. 
. 

 
 

 

 

Table 27: Inputs and Outputs different Names 
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5. AGING SENSOR METHODOLOGY 

 

 

This chapter will present the aging sensor methodology for circuits with BIST. 

The methodology is based on reusing on-chip variable power-supply voltages to 

perform a discrete set of BIST sessions, each using a different power-supply voltage 

value, to define a set of BIST signatures, which include the correct BIST signature 

and incorrect ones. However, these set of BIST signatures, called in this work as 

Voltage Signature Collection (VSC), provide a footprint for circuit’s timing behaviour 

and its analysis can give us information on how the circuit is aging. 

 

 

5.1 BACKGROUND AND PREVIOUS WORK 

 

 The idea of using a variable VDD to allow performing a set of BIST sections, each 

one with a different VDD value, to detect delay-faults was firstly introduced in [78]. 

The purpose of the research work was to define a new methodology to detect delay-

faults not only in production but also during on-field operation. It was shown, in a 

limited way and for small circuits, that some delay-faults could be detected with a 

discrete set of BIST sessions using different power-supply voltage values in the DVS 

structure. The purpose was to show that not only the gross delay defects could be 

detected, but also some small delay defects.  

 However, this work lacked in two aspects: (1) the circuits under test were very 

small and simple; and (2) Monte Carlo simulations were not performed, to study 

circuit behaviour and methodology applicability under process variations. In fact, in 

[76] a more thorough study was performed and it was shown that in bigger circuits 

with BIST, and considering process variations and using Monte Carlo simulations, 

some results obtained in the previous work could not be reproduced, i.e., the 

methodology is suited to detect gross delay defects, but small delay defects can not be 

identified for each sample. In this work, the VSC was defined and generated for a 

discrete set of BIST sessions, each one at a different VDD [76]. It was also shown that 

the presence of a resistive open alters the sequence of BIST signatures in the VSC, for 
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a single sample. However, each sample has a unique VSC and process variations 

alters the VSC, namely the BIST signatures when VDD is reduced, i.e., the faulty BIST 

signatures of the VSC [76].  

 In Figure 32 it is shown the simulation result, as described in [76], for two samples 

of the XTRAN circuit (a fleet management system from Tecmic [79]) implemented 

with BIST structures to allow self-test. In this result we can see that just for these two 

samples, a different VSC (composed by a BIST signature for each discrete VDD) is 

obtained in each sample. Only the BIST signatures obtained at higher VDD values (the 

fault-free signatures) match, for few specific samples / VDD values, and when VDD is 

reduced the signatures differ [76].  

 

 
Set of VDD Signatures for Different XTRAN Samples (Monte Carlo)
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Figure 32: Set of signatures of the XTRAN circuit for two different samples (Monte Carlo analysis), as 

a function of VDD (1.8 ; 3.3) V [76]. 

 

 As explained in [76], this indicates that, for this circuit, it is not possible to define a 

unique set of faulty signatures for all the copies of the design, i.e., a single VSC 

(Voltage Signature Collection). In fact, it is predictable that only a very low 

complexity circuit or a very specific circuit topology may allow the use of a unique 

set of faulty signatures to detect non-critical delay-faults, for all the copies of the 

design [76]. Nevertheless, the BIST signatures for the fault-free operation are the 

same in all samples. This means that gross-delay defects are still possible to detect 

with this method and that small delay defects (delay-faults in non-critical paths) are 

not possible to detect during production stage, as a unique VSC is not possible to 

obtain for all samples (as mentioned). 
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 Nevertheless, if lifetime test is crucial (e.g., safety-critical applications), or if aging 

effects need to be evaluated during circuit’s lifetime (the objective of the present 

M.Sc. thesis), the unique set of faulty signatures of each copy may be used to identify 

delay defects and characterize the aging process of each unique sample. This 

assumption opens new perspectives and reveals that a thorough analysis for this aging 

characterization process may be performed. The purpose of the present work is to 

prove this assumption and, by collecting the VSC during circuit aging degradation, to 

identify the impact of such degradation in the circuit operation. 

 

 

5.2 AGING SENSOR METHODOLOGY FOR SCAN-BASED BIST CIRCUITS 

 

 For sequential CUTs, the top-level diagram of the proposed multi-VDD self-test 

scheme is shown in Figure 33. The underlying idea is to perform a discrete set of 

BIST sessions for a corresponding discrete set of VDD values, using the BIST 

methodology described in chapter 4, and using always the nominal clock frequency, 

fclk=fmax (at-speed testing). We assume a DVS operation can be performed, without 

clock frequency scaling. 

 

Figure 33: Top diagram of the multi-VDD self-test scheme. 
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Power supply variations (like temperature variations) modify the time response of 

the CUT, of the clock distribution network and of the BIST infrastructure [76]. 

Basically, the following effects can be observed. First, what we refer as the accordion 

effect, i.e., the time response stretching of the combinational logic. If this stretching 

exceeds the time slack, a performance error occurs, and a faulty signature is captured 

in the MISR. Hence, a de-synchronization effect occurs [76]. In fact, the logic values 

(output response of the CUT) are captured too early, prior to the time instant in which 

the complete switching of the CUT network occurs. Finally, note that the BIST 

infrastructure is also powered by VDD. Hence, it may also fail, as far as performing its 

functionality at lower power supply voltage levels. This last effect will also lead to 

corrupted signatures, eventually with a fault-free CUT. 

 For a given technology, design, temperature and set of BIST sessions, each sample 

of a fault-free device will generate a set of Si characteristic digital signatures (one for 

each VDD value), compacted by the MISR as the result of applying nT test vectors to 

the CUT, producing the golden VSC (Voltage Signature Collection). In general, VSC 

is a set of (VDDi, Si) pairs of values. Temperature variations can shift these digital 

words along VDD values [76]. Typically, higher temperature shifts the signatures 

towards lower VDD values [76]. In the presence of aging degradations, some paths will 

modify their timing response and, as different paths may age differently, the result is a 

modification in the timing response of the CUT, and the VSC is also modified, 

allowing the detection of aging degradations in the CUT. This underlying principle of 

the proposed methodology has been verified by simulation. Results are presented in 

chapter 6. As stated, we assume that pseudo-random test patterns, generated by the 

LFSR (Linear Feedback Shift Register), with a sufficiently large number of nT  (2
n
-1) 

test vectors, are able to uncover the delay-faults caused by aging, which is not 

necessarily so. But the use of BIST procedures targeting delay-faults, as the one 

described in chapter 4, increases the delay-fault coverage.  

 

 Power consumption is another critical issue. During the at-speed self-test session, it 

can be much higher than in the normal operation [76]. This is an important issue, as in 

traditional scan path focusing delay-faults (LOC and LOS), much of the test process 

operates at low speed, and the test vectors sequences, generated to uncover delay- 

faults, are applied at-speed [76]. In our proposed solution, as the scan-based BIST for 
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delay-faults is operating at-speed, we expect the power consumption to increase. Test 

power can be limited by reducing the test units within test sessions or reducing the 

clock frequency [75]. However, in this case clock frequency reduction is not an 

option, because we want to perform all tests at nominal clock frequency, to uncover 

delay-faults. Nevertheless, in the proposed multi-VDD dynamic BIST methodology, 

power consumption is reduced when running BIST at depleted VDD values [76]. 

Moreover, as this is a test-per-scan architecture, the energy and power consumption 

may be reduced by toggle suppression, as proposed in [80]. 

 

 

5.3 AGING ANALYSIS AND CIRCUIT’S DEGRADATION WITH AGING 

 

 In order to validate the Aging Sensor Methodology proposed in previous section 

5.2, an aging analysis must be made to predict how circuit will age and to implement 

in circuit’s SPICE netlist the necessary modifications to allow simulation of the aged 

circuit. This task is performed with the AgingCalc software tool. 

 AgingCalc was designed to analyze and predict digital circuit’s aging induced by 

NBTI. Agingcalc development started in 2010 at University of Algarve as part of 

Jackson Pachito’s M.Sc thesis [77], with the support of Prof. Jorge Semião, was 

released in 2011 and is currently under continuum development by the former.  

 This program evaluate how individual transistors threshold voltages are affected 

with time, based on the operation probability of each individual PMOS transistor, 

calculates circuit’s path delays, and find which FFs are critical memory elements (i.e., 

those where combinational critical paths end), and generates SPICE netlists for 

different aging moments in time. This is a key procedure to obtain a set of VSC, one 

for each aging year of degradation considered.  

 As it will be shown in chapter 6, the simulation results will produce a three 

dimension graph, calculating BIST signatures for different VDD and aging variations. 

Moreover, the evolution of the VSC with aging allows to determine not only aging 

variations in the CUT, but also in the BIST circuitry. However, the information that 

can be gathered from the set of VSC will differ from one circuit to another, depending 

on circuit architecture and functionality, as will be shown. 
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6. RESULTS 

 

 

In this chapter, the simulation results will be presented, to verify: (1) the 

correctness of the BIST infrastructure developed and the BISTGen software tool 

operation; (2) the effectiveness of the Aging Sensor Methodology for BIST circuits. 

To allow these two analysis, simulations and implementations have been carried out 

in HSpice, CosmosScope and AgingCalc environments, for using SPICE and Verilog 

circuit netlists, and in ModelSim and WaveEditor environment for VHDL behavioural 

file descriptions. 

The first section will present the test procedures and environments used. The 

second section will present the results for the BIST infrastructure and BISTGen 

software tool, whereas the third section will present the results for the Aging Sensor 

Methodology for BIST circuits. 

 

 

6.1 SIMULATION ENVIRONMENT AND TEST PROCEDURES 

 

6.1.1 VHDL SIMULATION PROCEDURE 

 

 VHDL simulation process is explained in the following. First, the new BIST 

circuitry is inserted in a given circuit (CUT), which is achieved by the BISTGen 

software, and this is done in VHDL by opening a VHDL type for VHDL CUT files. 

Next, the ModelSim software, developed by Altera Corporation, performs the VHDL 

file’s simulation and allows also the graphic view (through the ModelSim Wave 

editor) of all digital waveforms related with buses and nodes in the circuit. Figure 34 

shows the steps of a VHDL simulation file.  
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Figure 34: VHDL Simulation Steps 

 

 

 The possibility of Verilog and VHDL simulations also clarifies the reliability 

process of the BISTGen implementation, supplying two ways of simulation for the 

same circuit (CUT) that must be described in both languages for the effect.  

 

 

6.1.2 VERILOG, AGINGCALC, AND SPICE SIMULATION PROCEDURE 

 

The simulations carried out in Verilog files require a set of stages and 

configurations necessary to obtain graphical results for analyzing aging over the years 

from a given circuit. Figure 35 shows the necessary steps. 

 

 

Figure 35: Verilog, AgingCalc and HSpice simulation steps. 

 

 First, the new BIST technology is inserted for a given circuit (CUT) which is 

achieved by the BISTGen software. After that, the AgingCalc tool has the capability 

of converting a Verilog hardware description file (.v) in its equivalent SPICE netlist 

for HSpice (.sp type file) simulation, after adding additional aging calculations for a 
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specific number of years supplied by the user. In fact, AgingCalc instantiates HSPICE 

to allow automatic transistor level simulations of SPICE netlists, automatically 

created by the software. These simulations may give a first analysis on circuit’s path 

delays. 

 In a final stage, AgingCalc exports to a SPICE netlist the circuit at transistor level, 

mapped to a generic CMOS library. This netlist includes the aging analysis previously 

performed on AgingCalc, introducing on each PMOS transistor the aging degradation 

through Vth modulation.  

 The obtained netlist can then be simulated in HSpice, a software tool developed by 

Synopsys. The simulation results, which include one set of simulations for each year 

of aging degradation considered, can be observed with the CosmosScope software, a 

Synopsys tool also.  

 Moreover, using delay measurements available in the HSPICE SPICE distribution, 

it is possible to obtain the final BIST signatures for each BIST session (simulation). 

With the aid of a graphic suit, like Excel from Microsoft, it is possible to plot the set 

of VSCs for the period of aging analysis in a 3-D graph, so that the BIST signatures 

analysis can be straight forward procedure, just by simple inspection. 

 

 It is important to mention, that for all SPICE simulations a 65nm CMOS 

technology is used, with a nominal VDD of 1.1V. 

 

 

6.2 RESULTS FOR BIST CIRCUITRY AND BISTGEN TOOL 

 

 This section will present results for the BISTGen tool, by generating automatically 

the BIST structures for four test circuits. For all the CUTs the Verilog and VHDL 

type descriptions will be presented.  

 The validation of the BIST circuitry will be done in this section by logical 

simulation of the VHDL type files. However, only for CUT_example circuit the 

VHDL behavioural description with scan path is available, so only for this CUT will 

be performed the logic simulation using ModelSim environment. For the remainig 

CUTs, only the structural gate level Verilog description is available, and their 
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simulation will be done in HSPICE environment and it will be presented in section 

6.3. 

 

 

6.2.1 CUT_EXAMPLE CIRCUIT 

 

 The CUT_example circuit is a simple sequential circuit used to demonstrate and 

validate the BIST circuitry functionality. It’s a 5 gate circuit, with 2 FFs and 3 

combinational logic gates (see Figure 36). 

 

 

Figure 36: CUT_example circuit schematic. 

 

 The referred circuit is presented through its hardware description code for VHDL 

and Verilog environments, in the Table 28. 

 

CUT VHDL CUT Verilog 

 

use IEEE.std_logic_1164.all; 
entity CuT is 
   port( a, b, teste_se, teste_si, clock, reset : in std_logic; 
  z, scan_out : out std_logic); 
end CuT; 
architecture Comportamento of CuT is 
signal Qout, Qin, Qin_data, Qin_test: std_logic_vector(1 downto 0); 
begin 
  sinc: process(clock,reset) 
    begin 
      if reset = '0' then 
        Qout <= "00"; 
      elsif clock'event and clock = '1' then 
        Qout <= Qin; 
      end if; 
    end process; 
Qin_data(0) <= b;  
Qin_test(0) <= teste_si; 
Qin_test(1) <= Qout(0); 
scan_out <= Qout(1);   
  comb_mux: 
process(clock,teste_se,Qin_data,Qin_test,Qout,Qin,a,b) 
    begin 
      Qin_data(1) <= not( Qout(0) and a ); 
      z <= not( not( Qin_data(1) ) and Qout(1) ); 

 

module CuT ( a, b, teste_se, teste_si, clock, reset, z, scan_out ); 
  input a, b, teste_se, teste_si, clock, reset; 
  output z, scan_out; 
  wire   q0, q1, n1, n2; 
 
  DFSC1 Q0ScanFlipFlop ( .D(b), .SD(teste_si), .SE(teste_se), .C(clock), 
.RN(reset), .Q(q0) ); 
  DFSC1 Q1ScanFlipFlop ( .D(n1), .SD(q0), .SE(teste_se), .C(clock), .RN(reset), 
.Q(q1) ); 
  NAND20 N0NanDScan ( .A(a), .B(q0), .Q(n1) ); 
  NAND20 N1NanDScan ( .A(n2), .B(q1), .Q(z) ); 
  INV0 N2InVScan ( .A(n1), .Q(n2) ); 
 
  assign scan_out = q1; 
 
endmodule 
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        if teste_se = '0' then 
          Qin <= Qin_data; 
        else 
          Qin <= Qin_test; 
        end if; 
  end process; 
end comportamento; 
 

 
Table 28: Generic CUT Hardware Description either VHDL or Verilog 

 

 Using BISTGen software tool, the BIST circuitry and functionality was inserted 

and the LFSR seeds presented in Table 29 were used. In the following, circuit 

descriptions are presented in Table 29, for VHDL and Verilog LOS based BIST, and 

they were generated automatically through BISTGen as presented in Table 30 and 

Table 31, respectively. For simplicity, only the ParentBistBlock is presented, which is 

the main block that connects the CUT with the BIST blocks. 

 

Block  LFSR type Seed 

LFSR PI Linear 0110 

LFSR Scan Modular 0110 

LFSR Scan Counter Linear 01 

MISR Linear 0110 

 

Table 29: Config features for VHDL and Verilog CUT File 

 

 

Aggregate BIST file generated by BISTGen [ VHDL ] 
   

  

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
-- -- -- PARENTBISTBLOCK 
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
 

library IEEE; 
use IEEE.std_logic_1164.all; 
  

entity ParentBistBlockCuT is  
   port( a : in std_logic; 
  b : in std_logic; 
  clock : in std_logic; 
  reset : in std_logic; 
  z : out std_logic; 
  scan_out : out std_logic; 
  BistStart : in std_logic; 
  BistDone : out std_logic; 
  MisrOut  : out std_logic); 
end ParentBistBlockCuT; 
  

architecture SYN_SYN_BEHAV of ParentBistBlockCuT is  
  

component LfsrPiCuT 
port( clock : in std_logic; 
      reset : in std_logic; 
      enable : in std_logic; 
      DataOut : out std_logic_vector(3 downto 0) ); 
end component; 
  

component LfsrSCANCuT 
port( clock : in std_logic; 
      reset : in std_logic; 
      enable : in std_logic; 
      DataOut : out std_logic); 
end component; 
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component LfsrScanCounterCuT 
port( clock : in std_logic; 
      reset : in std_logic; 
      enable : in std_logic; 
      DataOut : out std_logic_vector(1 downto 0) ); 
end component; 
  

component CuT 
port( a : in std_logic; 
      b : in std_logic; 
      teste_se : in std_logic; 
      teste_si : in std_logic; 
      clock : in std_logic; 
      reset : in std_logic; 
      z : out std_logic; 
      scan_out : out std_logic); 
end component; 
  

component LfsrMisrCuT 
port( DataIn : in std_logic_vector(1 downto 0); 
      clock : in std_logic; 
      reset : in std_logic; 
      enable : in std_logic; 
      DataOut : out std_logic); 
end component; 
  

component MuXCuT 
port( SeL : in std_logic; 
      InA : in std_logic_vector(1 downto 0); 
      InB : in std_logic_vector(1 downto 0); 
      DataOut : out std_logic_vector(1 downto 0)); 
end component; 
  

component BistControllerCuT 
port ( BistStart : in std_logic; 
      Clock : in std_logic; 
      ResetController : in std_logic; 
      ResetLfsrPi : out std_logic; 
      ResetLfsrScan : out std_logic; 
      ResetLfsrScanCounter : out std_logic; 
      ResetCut : out std_logic; 
      ResetMisr : out std_logic; 
      LfsrPiCountFinished : in std_logic; 
      LfsrScanCountFinished : in std_logic; 
      EnableLfsrPi : out std_logic; 
      EnableLfsrScan : out std_logic; 
      EnableLfsrScanCounter : out std_logic; 
      EnableMisr : out std_logic; 
      TestSE : out std_logic; 
      MuxSelect : out std_logic; 
      BistDone : out std_logic); 
end component; 
  

signal MuxOutCutIn : std_logic_vector(1 downto 0); 
signal MuxInParentBistBlockIn : std_logic_vector(1 downto 0); 
signal MuxSelectInControllerOut : std_logic; 
signal CutOutMisrIn : std_logic_vector(1 downto 0); 
signal LfsrPiOut : std_logic_vector(3 downto 0); 
signal LfsrScanCounterOut : std_logic_vector(1 downto 0); 
signal ResetCutInControllerOut : std_logic; 
signal ResetLfsrPiInControllerOut : std_logic; 
signal ResetLfsrScanInControllerOut : std_logic; 
signal ResetLfsrScanCounterInControllerOut : std_logic; 
signal ResetMisrInControllerOut : std_logic; 
signal AndInControllerOutPiReset : std_logic; 
signal AndInControllerOutScanReset : std_logic; 
signal AndInControllerOutScanCounterReset : std_logic; 
signal AndInControllerOutCutReset : std_logic; 
signal AndInControllerOutMisrReset : std_logic; 
signal BistCountFinishedOut : std_logic; 
signal ScanCountFinishedOut : std_logic; 
signal EnableLfsrPiInControllerOut : std_logic; 
signal EnableLfsrScanInControllerOut : std_logic; 
signal EnableLfsrScanCounterInControllerOut : std_logic; 
signal EnableMisrInControllerOut : std_logic; 
signal TestSerialInput : std_logic; 
signal TestSelectEnable : std_logic; 
  

begin 
  

ResetAll: process(reset, AndInControllerOutPiReset, AndInControllerOutScanReset, AndInControllerOutScanCounterReset, AndInControllerOutCutReset, 
AndInControllerOutMisrReset) 
begin 
 ResetLfsrPiInControllerOut <= reset and AndInControllerOutPiReset; 
 ResetLfsrScanInControllerOut <= reset and AndInControllerOutScanReset; 
 ResetLfsrScanCounterInControllerOut <= reset and AndInControllerOutScanCounterReset; 
 ResetCutInControllerOut <= reset and AndInControllerOutCutReset; 
 ResetMisrInControllerOut <= reset and AndInControllerOutMisrReset; 
end process; 



CHAPTER 6: RESULTS 85 

 

  

BistCountEnd: process(LfsrPiOut) 
begin 
 if LfsrPiOut = "0110" then 
  BistCountFinishedOut <= '1'; 
 else 
  BistCountFinishedOut <= '0'; 
 end if; 
end process; 
  

ScanCountEnd: process(LfsrScanCounterOut) 
begin 
 if LfsrScanCounterOut = "10" then 
  ScanCountFinishedOut <= '1'; 
 else 
  ScanCountFinishedOut <= '0'; 
 end if; 
end process; 
  

MuxInParentBistBlockIn(0) <= a; 
MuxInParentBistBlockIn(1) <= b; 
  

z <= CutOutMisrIn(0); 
scan_out <= CutOutMisrIn(1); 
  

U1 : LfsrPiCuT 
port map ( clock =>  
      reset => 
      enable => 
      DataOut => 
  

U2 : LfsrSCANCuT 
port map ( clock =>  clock, 
      reset => ResetLfsrScanInControllerOut, 
      enable => EnableLfsrScanInControllerOut, 
      DataOut => TestSerialInput); 
  

U3 : LfsrScanCounterCuT 
port map ( clock =>  clock, 
      reset => ResetLfsrScanCounterInControllerOut, 
      enable => EnableLfsrScanCounterInControllerOut, 
      DataOut => LfsrScanCounterOut); 
  

U4 : CuT 
port map ( a =>  MuxOutCutIn(0), 
      b => MuxOutCutIn(1), 
      teste_se => TestSelectEnable, 
      teste_si => TestSerialInput, 
      clock => clock, 
      reset => ResetCutInControllerOut, 
      z => CutOutMisrIn(0), 
      scan_out => CutOutMisrIn(1)); 
  

U5 : LfsrMisrCuT 
port map ( DataIn =>  CutOutMisrIn, 
      clock => clock, 
      reset => ResetMisrInControllerOut, 
      enable => EnableMisrInControllerOut, 
      DataOut => MisrOut); 
  

U6 : MuXCuT 
port map ( SeL =>  MuxSelectInControllerOut, 
      InA => MuxInParentBistBlockIn, 
      InB => LfsrPiOut(1 downto 0), 
      DataOut => MuxOutCutIn); 
  

U7 : BistControllerCuT 
port map ( BistStart =>  BistStart, 
      Clock => clock, 
      ResetController => reset, 
      ResetLfsrPi => AndInControllerOutPiReset, 
      ResetLfsrScan => AndInControllerOutScanReset, 
      ResetLfsrScanCounter => AndInControllerOutScanCounterReset, 
      ResetCut => AndInControllerOutCutReset, 
      ResetMisr => AndInControllerOutMisrReset, 
      LfsrPiCountFinished => BistCountFinishedOut, 
      LfsrScanCountFinished => ScanCountFinishedOut, 
      EnableLfsrPi => EnableLfsrPiInControllerOut, 
      EnableLfsrScan => EnableLfsrScanInControllerOut, 
      EnableLfsrScanCounter => EnableLfsrScanCounterInControllerOut, 
      EnableMisr => EnableMisrInControllerOut, 
      TestSE => TestSelectEnable, 
      MuxSelect => MuxSelectInControllerOut, 
      BistDone => BistDone); 
  

end SYN_SYN_BEHAV; 
 

  

Table 30: Main module from VHDL LOS based BIST Aggregate File 
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Aggregate BIST file generated by BISTGen [ Verilog ] 
   
 

module ParentBistBlockCuT ( 
  aPBisTB, 
  bPBisTB, 
  clockPBisTB, 
  resetPBisTB, 
  zPBisTB, 
  scan_outPBisTB, 
  BistStart, 
  BistDone, 
  MisrOut ); 
  

  input aPBisTB; 
  input bPBisTB; 
  input clockPBisTB; 
  input resetPBisTB; 
  output zPBisTB; 
  output scan_outPBisTB; 
  input BistStart; 
  output BistDone; 
  output MisrOut; 
  

// -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
// -- -- -- PI 
// -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
  

   wire resetLfsrPICuT; 
   wire enableLfsrPICuT; 
   wire [3:0] DataOutLfsrPICuT ; 
  

   wire [3:0] QoutLfsrPICuT ; 
   wire y1LfsrPICuT; 
  

   DFEC1 U0LfsrPICuT ( .D(QoutLfsrPICuT[1]), .E(enableLfsrPICuT), .C(clock), .RN(resetLfsrPICuT), .Q(QoutLfsrPICuT[0]) );  
   DFEP1 U1LfsrPICuT ( .D(QoutLfsrPICuT[2]), .E(enableLfsrPICuT), .C(clock), .SN(resetLfsrPICuT), .Q(QoutLfsrPICuT[1]) ); 
   DFEP1 U2LfsrPICuT ( .D(QoutLfsrPICuT[3]), .E(enableLfsrPICuT), .C(clock), .SN(resetLfsrPICuT), .Q(QoutLfsrPICuT[2]) );  
   DFEC1 U3LfsrPICuT ( .D(y1LfsrPICuT), .E(enableLfsrPICuT), .C(clock), .RN(resetLfsrPICuT), .Q(QoutLfsrPICuT[3]) ); 
  

   XOR20  U4LfsrPICuT ( .A(QoutLfsrPICuT[0]), .B(QoutLfsrPICuT[1]), .Q(y1LfsrPICuT);  
  

   assign DataOutLfsrPICuT = QoutLfsrPICuT; 
  

// -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
// -- -- -- SCAN 
// -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
  

   wire resetLfsrSCANCuT; 
   wire enableLfsrSCANCuT; 
   wire DataOutLfsrSCANCuT ; 
 

   wire [3:0] QoutLfsrSCANCuT ; 
   wire y1LfsrSCANCuT; 
  

   DFEC1 U0LfsrSCANCuT ( .D(QoutLfsrSCANCuT[3]), .E(enableLfsrSCANCuT), .C(clock), .RN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[0]) ); 
   DFEP1 U1LfsrSCANCuT ( .D(y1LfsrSCANCuT), .E(enableLfsrSCANCuT), .C(clock), .SN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[1]) ); 
   XOR20  U4LfsrSCANCuT ( .A(QoutLfsrSCANCuT[0]), .B(QoutLfsrSCANCuT[3]), .Q(y1LfsrSCANCuT));  
   DFEP1 U2LfsrSCANCuT ( .D(QoutLfsrSCANCuT[1]), .E(enableLfsrSCANCuT), .C(clock), .SN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[2]) ); 
   DFEC1 U3LfsrSCANCuT ( .D(QoutLfsrSCANCuT[2]), .E(enableLfsrSCANCuT), .C(clock), .RN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[3]) );  
  

   assign DataOutLfsrSCANCuT = QoutLfsrSCANCuT[3]; 
  

// -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
// -- -- -- SCANCOUNTER 
// -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
  

   wire resetLfsrScanCounterCuT; 
   wire enableLfsrScanCounterCuT; 
   wire [1:0] DataOutLfsrScanCounterCuT ; 
  

   wire [1:0] QoutLfsrScanCounterCuT ; 
   wire y1LfsrScanCounterCuT; 
  

   DFEP1 U0LfsrScanCounterCuT ( .D(QoutLfsrScanCounterCuT[1]), .E(enableLfsrScanCounterCuT), .C(clock), .SN(resetLfsrScanCounterCuT), 
.Q(QoutLfsrScanCounterCuT[0]) ); 
   DFEP1 U1LfsrScanCounterCuT ( .D(y1LfsrScanCounterCuT), .E(enableLfsrScanCounterCuT), .C(clock), .SN(resetLfsrScanCounterCuT), 
.Q(QoutLfsrScanCounterCuT[1]) ); 
  

   XOR20  U2LfsrScanCounterCuT ( .A(QoutLfsrScanCounterCuT[0]), .B(QoutLfsrScanCounterCuT[1]), .Q(y1LfsrScanCounterCuT);  
  

   assign DataOutLfsrScanCounterCuT = QoutLfsrScanCounterCuT; 
  

// -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
// -- -- -- CUT 
// -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
  

  wire a; 
  wire b; 
  wire teste_se; 
  wire teste_si; 
  wire clock; 
  wire reset; 
  wire z; 
  wire scan_out; 
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  wire   q0, q1, n1, n2; 
 

  DFSC1 Q0_inst ( .D(b), .SD(teste_si), .SE(teste_se), .C(clock), .RN(reset), .Q(q0) ); 
  DFSC1 Q1_inst ( .D(n1), .SD(q0), .SE(teste_se), .C(clock), .RN(reset), .Q(q1) ); 
  NAND20 N0_inst ( .A(a), .B(q0), .Q(n1) ); 
  NAND20 N1_inst ( .A(n2), .B(q1), .Q(z) ); 
  INV0 N2_inst ( .A(n1), .Q(n2) ); 
 

  assign scan_out = q1; 
  

// -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
// -- -- -- MISR 
// -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
  

   wire resetLfsrMisrCuT; 
   wire enableLfsrMisrCuT; 
   wire [1:0] InputSLfsrMisrCuT ; 
   wire DataOutLfsrMisrCuT; 
 

   wire [3:0] QoutLfsrMisrCuT ; 
   wire y1LfsrMisrCuT, x1LfsrMisrCuT, x2LfsrMisrCuT; 
  

   DFEC1 U0LfsrMisrCuT ( .D(x1LfsrMisrCuT), .E(enableLfsrMisrCuT), .C(clock), .RN(resetLfsrMisrCuT), .Q(QoutLfsrMisrCuT[0]) );  
   XOR20  U5LfsrMisrCuT ( .A(QoutLfsrMisrCuT[1]), .B(InputSLfsrMisrCuT[0]), .Q(x1LfsrMisrCuT));  
   DFEP1 U1LfsrMisrCuT ( .D(x2LfsrMisrCuT), .E(enableLfsrMisrCuT), .C(clock), .SN(resetLfsrMisrCuT), .Q(QoutLfsrMisrCuT[1]) );  
   XOR20  U6LfsrMisrCuT ( .A(QoutLfsrMisrCuT[2]), .B(InputSLfsrMisrCuT[1]), .Q(x2LfsrMisrCuT));  
   DFEP1 U2LfsrMisrCuT ( .D(QoutLfsrMisrCuT[3]), .E(enableLfsrMisrCuT), .C(clock), .SN(resetLfsrMisrCuT), .Q(QoutLfsrMisrCuT[2]) );  
   DFEC1 U3LfsrMisrCuT ( .D(y1LfsrMisrCuT), .E(enableLfsrMisrCuT), .C(clock), .RN(resetLfsrMisrCuT), .Q(QoutLfsrMisrCuT[3]) );  
  

   XOR20  U4LfsrMisrCuT ( .A(QoutLfsrMisrCuT[0]), .B(QoutLfsrMisrCuT[1]), .Q(y1LfsrMisrCuT) );  
  

   assign DataOutLfsrMisrCuT = QoutLfsrMisrCuT[0]; 
  

// -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
// -- -- -- MUX 
// -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
  

   wire SeLMuXCuT; 
   wire [1:0] InAMuXCuT; 
   wire [1:0] InBMuXCuT; 
   wire [1:0] DataOutMuXCuT; 
  

   MUX21 U1MuXCuT ( .A(InAMuXCuT[0]), .B(InBMuXCuT[0]), .S(SeLMuXCuT), .Q(DataOutMuXCuT[0]) ); 
   MUX21 U2MuXCuT ( .A(InAMuXCuT[1]), .B(InBMuXCuT[1]), .S(SeLMuXCuT), .Q(DataOutMuXCuT[1]) ); 
  

// -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
// -- -- -- CONTROLLER 
// -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
  

   wire BistStart; 
   wire Clock; 
   wire ResetController; 
   wire LfsrPiCountFinished; 
   wire LfsrScanCountFinished; 
   wire ResetLfsrPi; 
   wire ResetLfsrScan; 
   wire ResetLfsrScanCounter; 
   wire ResetCut; 
   wire ResetMisr; 
   wire EnableLfsrPi; 
   wire EnableLfsrScan; 
   wire EnableLfsrScanCounter; 
   wire EnableMisr; 
   wire TestSE; 
   wire MuxSelect; 
   wire BistDone; 
  

// -- L . O . S 
  

   wire LonSn1; 
   wire LonSn3; 
   wire LonSn4; 
   wire LonSn5; 
   wire LonSn6; 
   wire LonSn7; 
   wire LonSn8; 
   wire LonSn9; 
   wire LonSn11; 
   wire LonSn12; 
   wire LonSn13; 
   wire LonSn14; 
   wire LonSn15; 
   wire LonSn16; 
   wire LonSn17; 
   wire LonSn18; 
   wire LonSn19; 
   wire LonSn20;   

   wire [2:0] estado; 
   wire [2:0] estado_seguinte; 
  
   assign ResetLfsrPi = ResetMisr; 
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   assign ResetLfsrScan = ResetMisr; 
   assign EnableLfsrScan = TestSE; 
   assign EnableLfsrPi = estado_seguinte[2]; 
  

   DFC3 \estado_reg[0]  ( .D(estado_seguinte[0]), .C(Clock), .RN(ResetController), .Q(estado[0]) ); 
   DFC1 \estado_reg[1]  ( .D(estado_seguinte[1]), .C(Clock), .RN(ResetController), .Q(estado[1]), .QN(LonSn1) );  
   DFC3 \estado_reg[2]  ( .D(estado_seguinte[2]), .C(Clock), .RN(ResetController), .Q(estado[2]) ); 
   INV3 U3ControlleR ( .A(LonSn13), .Q(EnableMisr) ); 
   CLKIN0 U4ControlleR ( .A(LonSn3), .Q(ResetMisr) ); 
   NOR20 U5ControlleR ( .A(estado_seguinte[2]), .B(ResetLfsrScanCounter), .Q(LonSn3) ); 
   AOI2110 U6ControlleR ( .A(LonSn1), .B(LonSn4), .C(LonSn5), .D(LonSn6), .Q(ResetLfsrScanCounter) ); 
   CLKIN0 U7ControlleR ( .A(LonSn7), .Q(LonSn5) ); 
   OAI210 U8ControlleR ( .A(estado[0]), .B(estado[1]), .C(estado[2]), .Q(LonSn7) ); 
   CLKIN0 U9ControlleR ( .A(LonSn8), .Q(ResetCut) ); 
   NOR40 U10ControlleR ( .A(LonSn9), .B(LonSn6), .C(TestSE), .D(estado[2]), .Q(LonSn8) ); 
   CLKIN0 U11ControlleR ( .A(LonSn11), .Q(LonSn6) ); 
   NOR20 U12ControlleR ( .A(estado_seguinte[0]), .B(estado[1]), .Q(LonSn9) ); 
   CLKIN0 U13ControlleR ( .A(LonSn12), .Q(MuxSelect) ); 
   NOR20 U14ControlleR ( .A(EnableMisr), .B(estado_seguinte[0]), .Q(LonSn12) ); 
   NOR20 U15ControlleR ( .A(TestSE), .B(estado_seguinte[2]), .Q(LonSn13) ); 
   OAI210 U16ControlleR ( .A(BistDone), .B(LonSn14), .C(LonSn15), .Q(TestSE) ); 
   OAI310 U17ControlleR ( .A(LonSn14), .B(estado_seguinte[0]), .C(BistDone), .D(LonSn15), .Q(EnableLfsrScanCounter) ); 
   NOR30 U18ControlleR ( .A(estado_seguinte[1]), .B(estado_seguinte[2]), .C(estado_seguinte[0]), .Q(BistDone) );  
   OAI310 U19ControlleR ( .A(LonSn14), .B(LfsrPiCountFinished), .C(LonSn16), .D(LonSn17), .Q(estado_seguinte[0]) ); 
   NAND30 U20ControlleR ( .A(LonSn4), .B(LonSn1), .C(BistStart), .Q(LonSn17) ); 
   NOR20 U21ControlleR ( .A(LonSn11), .B(estado[2]), .Q(estado_seguinte[2]) ); 
   NAND20 U22ControlleR ( .A(estado[1]), .B(estado[0]), .Q(LonSn11) ); 
   OAI210 U23ControlleR ( .A(LonSn18), .B(LonSn14), .C(LonSn15), .Q(estado_seguinte[1]) ); 
   CLKIN0 U24ControlleR ( .A(LonSn19), .Q(LonSn15) ); 
   AOI2110 U25ControlleR ( .A(estado[0]), .B(estado[2]), .C(LonSn4), .D(estado[1]), .Q(LonSn19)); 
   NAND20 U26ControlleR ( .A(LonSn4), .B(estado[1]), .Q(LonSn14) ); 
   NOR20 U27ControlleR ( .A(estado[0]), .B(estado[2]), .Q(LonSn4) ); 
   NOR20 U28ControlleR ( .A(LonSn20), .B(LonSn16), .Q(LonSn18) ); 
   CLKIN0 U29ControlleR ( .A(LfsrScanCountFinished), .Q(LonSn16) ); 
   CLKIN0 U30ControlleR ( .A(LfsrPiCountFinished), .Q(LonSn20) ); 
  
// -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
// -- -- -- PARENTBISTBLOCK 
// -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
 

 wire [1:0] MuxOutCutIn; 
 wire MuxSelectInControllerOut; 
 wire [1:0] CutOutMisrIn; 
 wire [3:0] LfsrPiOut; 
 wire [1:0] LfsrScanCounterOut; 
 wire ResetLfsrPiInControllerOut; 
 wire ResetLfsrScanInControllerOut; 
 wire ResetLfsrScanCounterInControllerOut; 
 wire ResetCutInControllerOut; 
 wire ResetMisrInControllerOut; 
 wire EnableLfsrPiInControllerOut; 
 wire EnableLfsrScanInControllerOut; 
 wire EnableLfsrScanCounterInControllerOut; 
 wire EnableMisrInControllerOut; 
 wire TestSerialInput; 
 wire TestSelectEnable; 
 wire clock; 
  

 wire [1:0] NoTLpO; 
 wire [2:0] NandOutInvInLpO; 
 wire [2:0] InvOutNandInLpO; 
  

 INV0 LpO0 (.A(LfsrPiOut[0]), .Q(NoTLpO[0])); 
 INV0 LpO1 (.A(LfsrPiOut[1]), .Q(NoTLpO[1])); 
  

 INV0 NanDnaNLpO0 (.A(NandOutInvInLpO[0]), .Q(InvOutNandInLpO[0])); 
 INV0 NanDnaNLpO1 (.A(NandOutInvInLpO[1]), .Q(InvOutNandInLpO[1])); 
 INV0 NanDnaNLpO2 (.A(NandOutInvInLpO[2]), .Q(InvOutNandInLpO[2])); 
  

 NAND20 NLpO0 (.A(NoTLpO[0]), .B(NoTLpO[1]), .Q(NandOutInvInLpO[0]) ); 
 NAND20 NLpO1 (.A(InvOutNandInLpO[0]), .B(LfsrPiOut[2]), .Q(NandOutInvInLpO[1]) ); 
 NAND20 NLpO2 (.A(InvOutNandInLpO[1]), .B(LfsrPiOut[3]), .Q(NandOutInvInLpO[2]) ); 
  

 wire NoTLscO; 
 wire [0:0] NandOutInvInLscO; 
 wire [0:0] InvOutNandInLscO; 
  

 INV0 LscO0 (.A(LfsrScanCounterOut[0]), .Q(NoTLscO)); 
  

 INV0 NanDnaNLscO0 (.A(NandOutInvInLscO[0]), .Q(InvOutNandInLscO[0])); 
  

 NAND20 NLscO0 (.A(NoTLscO), .B(LfsrScanCounterOut[1]), .Q(NandOutInvInLscO[0]) ); 
  

 wire [4:0] NandOutInvInResetS; 
 wire [4:0] NandInControllerOutResetS; 
  

 INV0 INVRST1 (.A(NandOutInvInResetS[0]), .Q(ResetLfsrPiInControllerOut) ); 
 INV0 INVRST2 (.A(NandOutInvInResetS[1]), .Q(ResetLfsrScanInControllerOut) ); 
 INV0 INVRST3 (.A(NandOutInvInResetS[2]), .Q(ResetLfsrScanCounterInControllerOut) ); 
 INV0 INVRST4 (.A(NandOutInvInResetS[3]), .Q(ResetCutInControllerOut) ); 
 INV0 INVRST5 (.A(NandOutInvInResetS[4]), .Q(ResetMisrInControllerOut) ); 
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 NAND20 NDRST1 (.A(resetPBisTB), .B(NandInControllerOutResetS[0]), .Q(NandOutInvInResetS[0]) );  
 NAND20 NDRST2 (.A(resetPBisTB), .B(NandInControllerOutResetS[1]), .Q(NandOutInvInResetS[1]) ); 
 NAND20 NDRST3 (.A(resetPBisTB), .B(NandInControllerOutResetS[2]), .Q(NandOutInvInResetS[2]) );  
 NAND20 NDRST4 (.A(resetPBisTB), .B(NandInControllerOutResetS[3]), .Q(NandOutInvInResetS[3]) ); 
 NAND20 NDRST5 (.A(resetPBisTB), .B(NandInControllerOutResetS[4]), .Q(NandOutInvInResetS[4]) );  
  

 assign resetLfsrPICuT = ResetLfsrPiInControllerOut; 
 assign enableLfsrPICuT = EnableLfsrPiInControllerOut; 
 assign DataOutLfsrPICuT = LfsrPiOut; 
  

 assign resetLfsrSCANCuT = ResetLfsrScanInControllerOut; 
 assign enableLfsrSCANCuT = EnableLfsrScanInControllerOut; 
 assign DataOutLfsrSCANCuT = TestSerialInput; 
  

 assign resetLfsrScanCounterCuT = ResetLfsrScanCounterInControllerOut; 
 assign enableLfsrScanCounterCuT = EnableLfsrScanCounterInControllerOut; 
 assign DataOutLfsrScanCounterCuT = LfsrScanCounterOut; 
  

 assign a = MuxOutCutIn[0]; 
 assign b = MuxOutCutIn[1]; 
 assign teste_se = TestSelectEnable; 
 assign teste_si = TestSerialInput; 
 assign clock = clockPBisTB; 
 assign reset = ResetCutInControllerOut; 
 assign z = CutOutMisrIn[0]; 
 assign scan_out = CutOutMisrIn[1]; 
  

 assign CutOutMisrIn = {scan_outPBisTB, zPBisTB}; 
  

 assign InputSLfsrMisrCuT = CutOutMisrIn; 
 assign resetLfsrMisrCuT = ResetMisrInControllerOut; 
 assign enableLfsrMisrCuT = EnableMisrInControllerOut; 
 assign DataOutLfsrMisrCuT = MisrOut; 
  

 assign SeLMuXCuT = MuxSelectInControllerOut; 
 assign InAMuXCuT = {aPBisTB, bPBisTB}; 
 assign InBMuXCuT = LfsrPiOut[1:0]; 
 assign DataOutMuXCuT = MuxOutCutIn; 
  

 assign Clock = clockPBisTB; 
 assign ResetController = resetPBisTB; 
 assign ResetLfsrPi = NandInControllerOutResetS[0]; 
 assign ResetLfsrScan = NandInControllerOutResetS[1]; 
 assign ResetLfsrScanCounter = NandInControllerOutResetS[2]; 
 assign ResetCut = NandInControllerOutResetS[3]; 
 assign ResetMisr = NandInControllerOutResetS[4]; 
 assign LfsrPiCountFinished = InvOutNandInLpO[2]; 
 assign LfsrScanCountFinished = InvOutNandInLscO[0]; 
 assign EnableLfsrPi = EnableLfsrPiInControllerOut; 
 assign EnableLfsrScan = EnableLfsrScanInControllerOut; 
 assign EnableLfsrScanCounter = EnableLfsrScanCounterInControllerOut; 
 assign EnableMisr = EnableMisrInControllerOut; 
 assign TestSE = TestSelectEnable; 
 assign MuxSelect = MuxSelectInControllerOut; 
  

endmodule 
 

  

Table 31: Verilog LOS based BIST File 

 

 

 To validate the generated circuit, the VHDL type representation was simulated at 

logic level, using ModelSim environment. The logic level simulation is necessary, not 

only to validate BIST circuitry, but also to obtain the MISR final signature, known as 

the good signature. Such signature will allow us to identify the failing and fault-free 

circuits. Figure 37 presents the signals and buses obtained by logic simulation for the 

circuit in VHDL. 
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Figure 37: VHDL CUT Signature through ModelSim 

 

 The MISR correct signature is the final output of the MISR, obtained at the end of 

simulation. To allow an easy identification of the BIST signatures, all signatures will 

be represented in unsigned decimal value, and the correct signature for this circuit is 

number 10. 

 

 As this CUT is available in both representations, structural in Verilog and 

behavioural in VHDL, the BIST circuitry was also generated for the Verilog file type. 

After AgingCalc convert it to a SPICE netlist, the circuit was also simulated at 

transistor level in HSPICE environment. In this case, as the circuit and functionality is 

the same, if the implementation is correct, the simulation in the SPICE netlist should 

return the same BIST signature value, at the end of simulation. 

 As it can be seen in Figure 38, the MISR final signature in the SPICE simulation is 

also the decimal number 10. Both simulations show the same value near the 120 ns of 

simulation time. 

 

  

Figure 38: Verilog CUT Signature through HSpice (CosmosScope) 
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6.2.2 B01, B06 AND PIPELINE MULTIPLIER CIRCUITS 

 

 The following example circuits are additional test vehicles for the BISTGen 

software tool validation. B01 and B06 are two ITC’99 benchmark circuits and 

Pipeline Multiplier, as the name mentions, a 4 bit multiplier circuit with two pipeline 

stages.  In more detail, B01 is a Finite State Machine (FSM) that compares serial flow, 

has 49 logic gates, 2 Primary Inputs (PI), 2 Primary Outputs (PO) and 5 FFs. B06 is 

an interrupt handler with 56 logic gates, 2 PI, 6 PO and 9 FFs. Finally, the Pipeline 

Multiplier has 4 bits input, with 2 pipeline stages, and multiplies the two 4 bit inputs 

and places the result at the 8-bit output. It has 52 logic gates, 10 PI, 8 PO and 36 FFs. 

Table 32, Table 33 and Table 34 present the LFSRs seeds used respectively in B01, 

B06 and Pipeline Multiplier circuits, when the BISTGen software was used to insert 

the BIST structures and functionality in these circuits. 

 

Block LFSR type Seed 

LFSR PI Linear 0110110 

LFSR Scan Modular 0110101 

LFSR Scan Counter Linear 101 

MISR Linear 011010 

    

Table 32: Config features for Verilog BIST B01 File 

 

Block LFSR type Seed 

LFSR PI Linear 0100111 

LFSR Scan Modular 0011100 

LFSR Scan Counter Linear 0111 

MISR Linear 101010 

    

Table 33: Config features for Verilog BIST B06 File 

 

Block LFSR type Seed 

LFSR PI Linear 01101010101010 

LFSR Scan Modular 0110101010 

LFSR Scan Counter Linear 001001 

MISR Linear 01101010101 

 

Table 34: Config features for Verilog BIST Pipeline Multiplier 4-2 File 
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 To avoid reproducing here all the VHDL and Verilog codes for the generated 

circuits, the BISTGen results for these CUTs are available in the Compact Disc (CD) 

that accompanies this M.Sc. dissertation. 

 

 

6.3 RESULTS FOR THE AGING SENSOR METHODOLOGY 

 

 This section presents the results for the Aging Sensor Methodology. Using the 

Verilog type netlists obtained with BISTGen tool (previously introduced in section 

6.2 and before) with the inserted BIST functionality in the CUTs, the AgingCalc tool 

was used to performed the aging analysis from 0 to 20 years of lifespan, with an 

interval of 5 years from one analysis to another. Moreover, the SPICE netlists, with 

one netlist for each degradation year, were simulated in HSPICE environment. The 

purpose is to perform a set of 17 simulations of BIST sessions, one for each variable 

VDD value, and one set for each aging year to evaluate (0, 5, 10, 15 and 20 years 

considered, with an overall of 85 simulations/BIST runs per circuit). The VDD will be 

depleted by 40%, from a nominal value of 1.1V and a maximum depleted value of 

0.66V (a step of 0.0275V will be used in each new depleted VDD value). The result of 

all simulations, with VDD and aging variations, will be observed in a graph, to allow 

easier delay-fault identification (as we will see in the present section). As mentioned 

previously, the BIST signatures will be represented in unsigned decimal values, for 

easier depiction. 

 

 

6.3.1 CUT_EXAMPLE CIRCUIT 

 

 For the CUT_example circuit, the HSPICE simulations resulted in the following 

set of VSCs, which are represented in Figure 39. In the graph we can easily identify 2 

aging degradations in the simulations. The left-most is the first aging degradation 

spotted during circuit lifetime and is a small-delay defect. This degradation does not 

limit circuit’s reliability, as it is degradation in a small path, or a change in path-delay 

reordering occurred in small-paths, and therefore the safety-margin of the circuit, 
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known as time-slack, is not changed. However, the right-most degradation spotted is a 

gross-delay defect and it reduces the circuit’s safety margin to accommodate delay 

variations. To maintain the original circuit’s time-slack for all the expected lifetime, 

one of two actions must be taken for 20 years of operation: (1) reduce clock frequency 

or (2) increase power-supply voltage, to recover the circuit’s initial safety margin. 
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Figure 39: CUT_example’s BIST signatures for VDD and aging variations (VSC evolution with aging). 

 

 

6.3.2 B01 CIRCUIT SIMULATION RESULTS 

 

 The aging degradation results for the B01 circuit are represented in Figure 40. This 

circuit is a more complex circuit, when compared with the previous example, and 

therefore it is expected that higher number aging degradations should be spotted. In 

fact, just for 5 years of lifetime it is possible to spot the two left-most aging variations, 

signalized in the picture. This are variations in small-delay paths and do not reduce 

circuit’s time-slack. For 10 and 15 years of lifetime there are also aging variations 

detected, but in this graph they are unseen. However, a simple inspection on graph’s 

data allows us to detect them. Finally, for 20 years of life-time, a gross-delay variation 

alters circuit’s time-slack (the right-most variation spotted), making the circuit more 

vulnerable and reducing its reliability. 
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Figure 40: B01’s BIST signatures for VDD and aging variations (VSC evolution with aging). 

 

 

6.3.3 B06 CIRCUIT SIMULATION RESULTS 

 

 The last example circuit is B06 and the simulation results are presented in Figure 

41. The result is interesting as only 2 BIST signatures were obtained in each VSC 

(393 and 213). The reason is that this is a particular circuit where several critical paths 

were obtained in the BIST circuitry and not on the CUT. For that reason, it creates a 

specific condition that makes CUT’s CPs to be masked by the BIST circuitry’s CPs, 

and therefore the BIST signatures are limited in a VSC. Nevertheless, it is possible to 

identify aging degradations, as can be seen, and in this case circuit’s time-slack is 

reduced just for 5 years of life-time.  

 The interesting aspect in this circuit example is that, not only CUT’s aging 

degradation can reduce circuit’s reliability. The BIST circuitry is also subject to aging 

variations during circuit lifetime and their CPs may also impose a limit for circuit’s 

performance. However, this aging sensor methodology can identify gross-delay 
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defects that may limit circuit operation, but also small delay defects that give 

information on how the circuit is aging (in terms of path-delay variations), regardless 

of their origin. 

 

0

5

10

15

20

0

50

100

150

200

250

300

350

400

0,66
0,715

0,77
0,825

0,88
0,935

0,99
1,045

1,1

BIST result

B06 circuit

 

Figure 41: B06’s BIST signatures for VDD and aging variations (VSC evolution with aging). 
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7. CONCLUSIONS AND FUTURE WORK 

 

 

7.1 CONCLUSIONS 

 

 A large amount of investigations has been done in the past to conceive efficient test 

processes for transition faults and path delay-faults. Delay test still remains one of the 

greatest challenges in the field of testing. Due to the new 65nm technologies and 

below, delay testing is becoming more and more important. Hundred of million gates 

are operating now in the GHz range and new processing materials and manufacturing 

processes were conceived. Consequently, new methods are required to test small 

delay-faults along with the usual transition faults. The great difficulty is how to derive 

a cost-effective test process with the increasing complexity, performance, power 

consumption and low pin count of today’s SoC. 

 

 

7.1.1 CONCLUSIONS ON SCAN-BASED BIST AND BISTGEN TOOL 

 

 BIST is an attractive technique for digital system test. Scan BIST merges BIST and 

Scan Design techniques, with their associated costs and benefits.  

 For external test, scan design is widely used, and has been extended to cope with 

delay testing. Launch-on-Capture (LOC) and Launch-on-Shift (LOS) are the two most 

common transition fault pattern generation methods, differing on the way of applying 

the second vector. Launch-on-Capture is easier to implement but leads to low 

transition fault coverage. On the other hand, Launch-on-Shift leads to higher 

transition fault coverage; however, due to the at-speed change of the Scan_Enable 

signal, it is much difficult to implement with traditional ATE (Automatic Test 

Equipment). 

 Adapting Scan BIST to uncover delay-faults, which is mandatory for digital SoC 

implemented in nano-CMOS, is the first main objective of this work. In this 

Dissertation a new methodology for dynamic scan BIST addition has been proposed, 
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implemented and automated with the new BISTGen tool. The underlying principle is 

to apply LOS and LOC techniques to scan BIST. The proposed methodology uses 

linear and modular implementation which is dual architecture permission. However, 

using the same architecture, the system implements three new Scan BIST solutions to 

cover fault pattern generation. They are referred as scan BIST based on LOC, scan 

BIST based on LOS and scan BIST based on LOS and LOC (which merges the other 

two techniques in the same BIST test). The new architecture is composed also by the 

addition of new modules, and the BIST controller as Finite State Machine (FSM) has 

one additional state as compared to the traditional scan BIST controller. In scan BIST 

based on LOC approach, the BIST controller act in a way that the ‘Teste_SE’ signal 

goes low during LAUNCH and CAPTURE states. In scan BIST based on LOS, it only 

goes low in CAPTURE state. The third proposed solution allows the two TF detection 

techniques, by switching only one input signal. If the ‘BistStart’ control signal is at 

high level, LOS is performed. If it is at low level, the LOC approach is performed. All 

three solutions have approximately the same total transistor count (and the same 

silicon area) and pin count, although the hardware changes. Performance degradation 

in the CUT by BIST insertion is similar to the one of classic scan BIST and the 

additional propagation delays associated with the input MUX and with the 

replacement of the CUT’s flip-flops by scan flip-flops don’t change substantially. 

 

 The generation and insertion in the CUT of this new scan-based BIST approach for 

delay-faults was automated, and a new software tool, BISTGen, was developed to 

allow this automated procedure.  

 In section 6.2, it was demonstrated that BISTGen tool can effectively generate and 

insert BIST circuitry, aiming delay-fault detection, into a CUT. The BISTGen works 

with both behavioural descriptions and structural descriptions for the BIST circuitry, 

and with both VHDL and Verilog type of HDL circuit representations. Its use, allows 

easier BIST application to a CUT, and reduces design time and effort to include DfT 

techniques. As a drawback, the fact that BIST sections performed at-speed should 

increase VDD variations and power consumption, leading to additional delay-faults, 

not present in normal operation. For these fact, a more thorough analysis on this 

problematic is mandatory for future work, as it is out of the scope of this work. 
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7.1.2 CONCLUSIONS ON AGING SENSOR METHODOLOGY 

 

 In respect to the second main objective of this M.Sc. thesis, assuming that on-chip 

power management may be available (to allow applying to a BIST structure a set of 

static VDD values), an Aging Sensor Methodology was proposed, using dynamic BIST 

and multi-VDD self test. The output of the multi-VDD self test is a set of digital 

signatures (one for each VDD value), producing what we refer as the VSC (Voltage 

Signature Collection). The VSC is a set of (VDDi, Si) pairs of values. For a circuit with 

no aging degradations, a specific VSC result will be obtained, and referred as the 

golden VSC. In the presence of cumulative aging degradations and the consequently 

path-delay variations and, eventually, path reordering, the VSC is modified, allowing 

the detection of these aging degradations (in CUT’s small paths or in CUT’s CPs).  

 Simulations demonstrating this aging degradations detection were presented in 

section 6.3. From the simulation results it is possible to show that the Aging Sensor 

Methodology for circuits with BIST can effectively be used to detect aging 

degradations during circuit’s lifetime. In the presence of Temperature variations, it 

causes a shift on the BIST signatures in respect to VDD values. However, in the 

presence of aging degradations it causes the BIST signatures to be changed, allowing 

the identification of an aging degradation. Moreover, this aging degradation can affect 

circuit’s non-critical paths, and no change is made in the circuits’ time-slack, which 

does not affect performance (yet). But, if the aging degradation occurs in CPs, a time-

slack reduction is obtained and the circuit is more vulnerable to delay-faults, 

regardless of their origin. In this last case, to maintain the original slack margin, 

performance should be reduced by reducing clock frequency, or power dissipation 

should be increased by increasing power-supply voltage, in order to recover the lost 

slack margin. 

 

 These results may lead us to conclude that, if only gross-delay defects limit 

circuit’s performance, the VDD reduction needed to implement effectively this aging 

monitoring methodology in real circuits is less demanding than what it was here used 

in simulations. This is important because reduces complexity in the power 

management module that allows DVS and in fact allows an easy implementation in 

real circuits. Moreover, if only gross delay defects are analysed in the performance 
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degradation monitoring, we may also conclude that circuit complexity does not affect 

methodology implementation for bigger circuits, and scalability is assured. The 

correct BIST signature obtained for higher VDD values is the same for all circuit 

samples, and methodology will monitor the VDD margin for which this correct BIST 

signature is valid (considering only the analysis of gross-delay aging defects). 

 In respect to smaller delay defects caused by aging variations, the degradation 

monitoring of the non-critical paths, accomplished with the BIST sessions performed 

with lower VDD values, may be important to spot some defects that are not critical but 

that could become critical in the near future. However, these conclusions can not be 

drawn from the present work and further research on this topic should be made in the 

future. The presence of operation induced variations, like power-supply disturbances 

or temperature hot-spots, may change VSC for the lower VDD signatures, which may 

limit the diagnosis and identification of these non-critical delay-faults. Moreover, this 

problem increases with circuit complexity and therefore further investigation is 

needed to evaluate the impact of operation induced variations on the VSC. 

 

 

7.2 FUTURE WORK 

 

 The work described in this dissertation, as every research & development work, is 

not a task completed. Some improvements were already identified as future work 

possibilities and it also opens new perspectives for undone research. This section 

summarizes these future work possibilities. 

 Regarding BIST structures and BISTGen software, several topics may be identified 

as future works: 

 BIST circuitry should be optimized, specially the controller block, to optimize 

the gate level netlist structure in order to reduce the CP of the BIST circuitry. 

In fact, it is highly recommended that the CPs be located in the CUT and not 

in the BIST circuitry, so that the modified circuit with BIST functionality 

maintains its original performance; 
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 A structural VHDL description and a Verilog behavioural description for the 

BIST circuitry should also be available and implemented in BISTGen, to 

improve BISTGen flexibility regarding input and output files and formats; 

 Implement on BISTGen the possibility of multiple scan-chains and also the 

possibility of partial-scan tests. 

 

 Regarding the developed Aging Sensor Methodology, the topics identified for 

future work perspectives are the following: 

 A thorough analysis on effective power consumption in test-mode and on the 

increased variability obtained in test-mode, namely on VDD variations, is 

necessary, due to the fact that BIST sessions are performed at-speed; 

 A real silicon validation of this methodology is required, being necessary to 

design a test-chip using more complex industry circuits as test vehicles. 

 An investigation is needed to evaluate the impact of operation induced 

variations (like temperature hot-spots and power noise) on the VSC, and to 

identify procedures to limit these influences (like the use multiple scan-chains 

and multiple MISR). 
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