

UNIVERSIDADE DO ALGARVE

INSTITUTO SUPERIOR DE ENGENHARIA

Aging Monitoring Methodology for

Built-In Self-Test Applications

Metodologia de Monitorização do Envelhecimento

para Aplicações de Auto-teste Embutido

João Ricardo dos Santos Coelho

Dissertação para obtenção do Grau de Mestre em

Engenharia Eléctrica e Electrónica

Área de Especialização em Tecnologias de Informação e Telecomunicações

 Orientador: Professor Doutor Jorge Filipe Leal Costa Semião

Setembro, 2013

i

Aging Monitoring Methodology for

Built-In Self-Test Applications

Declaração de autoria de trabalho

Declaro ser o autor deste trabalho, que é original e inédito. Autores e trabalhos

consultados estão devidamente citados no texto e constam da listagem de referências

incluída.

Assinatura:

Copyright © João Ricardo dos Santos Coelho

A Universidade do Algarve tem o direito, perpétuo e sem limites geográficos,

de arquivar e publicitar este trabalho através de exemplares impressos reproduzidos

em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a

ser inventado, de o divulgar através de repositórios científicos e de admitir a sua cópia

e distribuição com objectivos educacionais ou de investigação, não comerciais, desde

que seja dado crédito ao autor e editor.

iii

To my family

v

ACKNOWLEDGMENTS

 This study is not only the result of an individual effort, but rather a set of

efforts that made it possible and without them it would have been much more difficult

to reach the end of this step, which represents an important milestone in my personal

and professional life. Therefore, I express my gratitude to all those who were present

at complex times.

 To Professor Jorge Semião, in particular, I want to express my thanks for the

guidance printed to the whole process, combining the stamp of high scientific

standards, an abiding and fruitful interest, which helped to catalyze the present

investigation. I also want to highlight the critical, objective and motivated vision,

dedicated to the pursuit and constant improvement of this thesis.

 To my daughter and to my wife, who during these years have been a constant

support and encouragement, I want to express a word of thanks for the consideration,

generosity and affection, contributing to tread this path until the end and to all my

family, who encouraged me in the decision to start, continue and complete this

project, and made me taste the true solidarity, when it showed the complex challenge

of ensuring the link between family roles, and professional research.

 I thank also to my colleague and friend Engº Vasco Fernandes, for sharing

again your motivator character in times of special relevance. And to my colleague and

friend Engº Hugo Cavalaria, who helped me in important areas like VHDL, making

faster and effective my learning process in a relevant area to the development of this

work.

 Finally, to all who have provided documentation and miscellaneous

information, I also want to leave a word of thanks.

João Ricardo dos Santos Coelho, Faro, September 30th, 2013

vii

ABSTRACT

 The high integration level achieved as well as complexity and performance

enhancements in new nanometer technologies make IC (Integrated Circuits) products

very difficult to test. Moreover, long term operation brings aging cumulative

degradations, due to new processes and materials that lead to emerging defect

phenomena and the consequence are products with increased variability in their

behaviour, more susceptible to delay-faults and with a reduced expected lifecycle.

 The main objectives of this thesis are twofold, as explained in the following.

First, a new software tool is presented to generate HDL (Hardware Description

Language) for BIST (Built-In Self-Test) structures, aiming delay-faults, and inserted

the new auto-test functionality in generic sequential CMOS circuits. The BIST

methodology used implements a scan based BIST approach, using a new BIST

controller to implement the Launch-On-Shift (LOS) and Launch-On-Capture (LOC)

delay-fault techniques.

 Second, it will be shown that multi-VDD tests in circuits with BIST infra-

structures can be used to detect gross delay-faults during on-field operations, and

consequently can be used as an aging sensor methodology during circuits’ lifecycle.

The discrete set of multi-VDD BIST sessions generates a Voltage Signature Collection

(VSC) and the presence of a delay-fault (or a physical defect) modifies the VSC

collection, allowing the aging sensor capability.

 The proposed Design for Testability (DFT) method and tool are demonstrated

with extensive SPICE simulation using three ITC’99 benchmark circuits.

Keywords: Built-In Self-Test, Aging Sensor Methodology, Multi-VDD Tests, HDL

automatic generation, Launch-On-Shift, Launch-On-Capture.

ix

RESUMO

 O elevado nível de integração atingida, complexidade, assim como

performances melhoradas em novas tecnologias nanométricas tornam os produtos em

circuitos integrados tecnológicos muito difíceis de testar. Para além disso, a operação

a longo prazo produz degradações cumulativas pelo envelhecimento dos circuitos,

devido a novos processos e materiais que conduzem a novos defeitos e a consequência

são produtos com maior variabilidade no seu funcionamento, mais susceptíveis às

faltas de atraso e com um tempo de vida menor.

 Os principais objectivos desta tese são dois, como explicado em seguida.

Primeiro, é apresentada uma nova ferramenta de software para gerar estruturas de

auto-teste integrado (BIST, Built-In Self-Test) descritas em linguagens de descrição de

hardware (HDL, Hardware Description Language), com o objectivo de detectar faltas

de atraso, e inserir a nova funcionalidade de auto-teste em circuitos genéricos

sequenciais CMOS. A metodologia de BIST utilizada implementa um procedimento

baseado em caminhos de deslocamento, utilizando um novo controlador de BIST para

implementar técnicas de faltas de atraso, como Launch-On-Shift (LOS) e Launch-On-

Capture (LOC).

 Segundo, irá ser mostrado que testes multi-VDD em circuitos com infra-

estruturas de BIST podem ser usados para detectar faltas de atraso grosseiras durante a

operação no terreno e, consequentemente, pode ser usado como uma metodologia de

sensor de envelhecimento durante o tempo de vida dos circuitos. Um número discreto

de sessões BIST multi-VDD geram uma Colecção de Assinaturas de Tensão (Voltage

Signature Collection, VSC) e a presença de uma falta de atraso (ou um defeito físico)

faz modificar a colecção VSC, comportando-se como sensor de envelhecimento.

 O trabalho foi iniciado com o estudo do estado da arte nesta área. Assim,

foram estudadas e apresentadas no capítulo 2 as principais técnicas de DfT (Design for

Testability) disponíveis e utilizadas pela indústria, nomeadamente, as técnicas de SP

(Scan Path), de BIST e as técnicas de scan para delay-faults, LOS e LOC. No capítulo

3, ainda referente ao estudo sobre o estado da arte, é apresentado o estudo sobre os

x RESUMO

fenómenos que provocam o envelhecimento dos circuitos digitais, nomeadamente o

NBTI (Negative Bias Temperature Instability), que é considerado o factor mais

relevante no envelhecimento de circuitos integrados (especialmente em

nanotecnologias).

 Em seguida, iniciou-se o desenvolvimento do primeiro objectivo.

Relativamente a este assunto, começou-se por definir qual o comportamento das

estruturas de BIST e como se iriam interligar. O comportamento foi descrito, bloco a

bloco, em VHDL comportamental, ao nível RTL (Register Transfer Level). Esta

descrição foi então validada por simulação, utilizando a ferramenta ModelSim.

Posteriormente, esta descrição comportamental foi sintetizada através da ferramenta

Synopsys, com a colaboração do INESC-ID em Lisboa (instituição parceira nestes

trabalhos de investigação), e foi obtida uma netlist ao nível de porta lógica, que foi

guardada utilizando a linguagem de descrição de hardware Verilog. Assim,

obtiveram-se dois tipos de descrição dos circuitos BIST: uma comportamental, em

VHDL, e outra estrutural, em Verilog (esta descrição estrutural em Verilog irá

permitir, posteriormente, fazer a simulação e análise de envelhecimento).

A nova estrutura de BIST obtida é baseada no modelo clássico de BIST, mas

apresenta algumas alterações, nomeadamente ao nível da geração de vectores de teste

e no controlo e aplicação desses vectores ao circuito. Estas modificações têm como

objectivo aumentar a detecção de faltas e permitir o teste de faltas de atraso. É

composto por três blocos denominados LFSRs (Linear Feedback Shift Registers), um

utilizado para gerar os vectores pseudo-aleatórios para as entradas primárias do

circuito, outro para gerar os vectores para a entrada do scan path, e o último utilizado

como contador para controlar o número de bits introduzidos no scan path.

Relativamente ao controlador, este foi especificamente desenhado para controlar um

teste com estratégia de test-per-scan (ou seja, um teste baseado no caminho de

varrimento existente no circuito) e tem uma codificação de estados que permite

implementar as estratégias de teste de faltas de atraso, Launch-On-Shift (LOS) e

Launch-On-Capture (LOC). Na secção de saída do novo modelo de BIST, o processo

de compactação usa o mesmo princípio do modelo tradicional, utilizando neste caso

um MISR (Multiple Input Signature Register).

 Ainda relativamente ao primeiro objectivo, seguiu-se o desenvolvimento da

ferramenta BISTGen, para automatizar a geração das estruturas de BIST atrás

RESUMO xi

mencionadas, nos dois tipos de descrição, e automaticamente inserir estas estruturas

num circuito de teste (CUT, Circuit Under Test). A aplicação de software deve

permitir o manuseamento de dois tipos de informação relativa ao circuito: descrição

do circuito pelo seu comportamento, em VHDL, e descrição do circuito pela sua

estrutura, em Verilog. Deve ter como saída a descrição de hardware supra citada,

inserindo todos os blocos integrantes da estrutura num só ficheiro, contendo apenas

um dos tipos de linguagem (Verilog ou VHDL), escolhida previamente pelo utilizador.

No caso dos LFSRs e do MISR, o programa deve permitir ao utilizador a escolha de

LFSRs do tipo linear ou do tipo modular (também conhecidos por fibonacci ou

galois), e deve também possuir suporte para automaticamente seleccionar de uma

base de dados quais as realimentações necessárias que conduzem à definição do

polinómio primitivo para o LFSR. Será necessário ainda criar uma estrutura em base

de dados para gerir os nomes e o número de entradas e saídas do circuito submetido a

teste, a que chamamos CUT, de forma a simplificar o processo de renomeação que o

utilizador poderá ter de efectuar. Dar a conhecer ao programa os nomes das entradas e

saídas do CUT é de relevante importância, uma vez que a atribuição de nomes para as

entradas e saídas pode vir em qualquer língua ou dialecto, não coincidindo com os

nomes padrão normalmente atribuídos.

Relativamente às duas linguagens que o programa recebe através do CUT na

sua entrada, no caso VHDL após inserir BIST o ficheiro final terá sempre uma

estrutura semelhante, qualquer que seja o ficheiro a ser tratado, variando apenas com

o hardware apresentado pelo CUT. No entanto, para o caso Verilog a situação será

diferente, uma vez que o programa tem de permitir que o ficheiro final gerado possa

surgir de duas formas dependendo da escolha desejada. A primeira forma que o

software deve permitir para o caso Verilog é gerar um ficheiro contendo módulos, de

uma forma semelhante ao que acontece no caso VHDL. No entanto, deve permitir

também a obtenção, caso o utilizador solicite, de um ficheiro unificado, sem sub-

módulos nos blocos, para que o ficheiro final contenha apenas uma única estrutura,

facilitando a sua simulação e análise de envelhecimento nas etapas seguintes.

Relativamente ao segundo objectivo, com base no trabalho anterior já

efectuado em metodologias para detectar faltas de delay em circuitos com BIST, foi

definida uma metodologia de teste para, durante a vida útil dos circuitos, permitir

xii RESUMO

avaliar como vão envelhecendo, tratando-se assim de uma metodologia de

monitorização de envelhecimento para circuitos com BIST.

Um aspecto fundamental para a realização deste segundo objectivo é

podermos prever como o circuito vai envelhecer. Para realizar esta tarefa, sempre

subjectiva, utilizou-se uma ferramenta desenvolvida no ISE-UAlg em outra tese de

mestrado anterior a esta, a ferramenta AgingCalc. Esta ferramenta inicia-se com a

definição, por parte do utilizador, das probabilidades de operação das entradas

primárias do circuito (probabilidades de cada entrada estar a ‘0’ ou a ‘1’). De notar

que este é o processo subjectivo existente na análise de envelhecimento, já que é

impossível prever como um circuito irá ser utilizado. Com base nestas probabilidades

de operação, o programa utiliza a estrutura do circuito para calcular, numa primeira

instância, as probabilidades dos nós do circuito estarem a ‘0’ ou a ‘1’, e numa segunda

instância as probabilidades de cada transístor PMOS estar ligado e com o seu canal

em stress (com uma tensão negativa aplicada à tensão VGS e um campo eléctrico

aplicado ao dieléctrico da porta). Utilizando fórmulas definidas na literatura para

modelação do parâmetro Vth (tensão limiar de condução) do transístor de acordo com

um envelhecimento produzido pelo efeito NBTI (Negative Bias Temperature

Instability), o programa calcula, para cada ano ou tempo de envelhecimento a

considerar, as variações ocorridas no Vth de cada transístor PMOS, com base nas

probabilidades e condições de operação previamente definidas, obtendo um novo Vth

para cada transístor (os valores prováveis para os transístores envelhecidos). Em

seguida, o programa instancia o simulador HSPICE para simular as portas lógicas do

circuito, utilizando uma descrição que contém os Vth calculados. Esta simulação

permite calcular os atrasos em cada porta para cada ano de envelhecimento

considerado, podendo em seguida calcular e obter a previsão para o envelhecimento

de cada caminho combinatório do circuito. É de notar que, embora a previsão de

envelhecimento seja subjectiva, pois depende de uma previsão de operação, é possível

definir diferentes probabilidades de operação de forma a estabelecer limites prováveis

para o envelhecimento de cada caminho.

Tendo uma ferramenta que permite prever como o circuito irá envelhecer, é

possível utilizá-la para modificar a estrutura do circuito e introduzir faltas de delay

produzidas pelo envelhecimento por NBTI ao longo dos anos de operação (modelados

pelo Vth dos transístores PMOS). Assim, no capítulo 5 irá ser mostrado que testes

multi-VDD em circuitos com infra-estruturas de BIST podem ser usados para detectar

RESUMO xiii

faltas de atraso grosseiras durante a operação no terreno, podendo em alguns casos

identificar variações provocadas pelo envelhecimento em caminhos curtos, e

consequentemente, estes testes podem ser usados como uma metodologia de sensor de

envelhecimento durante o tempo de vida dos circuitos. Um número discreto de

sessões BIST multi-VDD geram uma Colecção de Assinaturas de Tensão (Voltage

Signature Collection, VSC) e a presença de uma falta de atraso (ou um defeito físico)

faz modificar a colecção VSC, comportando-se como sensor de envelhecimento. O

objectivo será, especificando, fazer variar a tensão de alimentação, baixando o seu

valor dentro de um determinado intervalo e submetendo o circuito a sucessivas

sessões de BIST para cada valor de tensão, até que o circuito retorne uma assinatura

diferente da esperada. Este procedimento de simulação será feito para uma maturidade

de até 20 anos, podendo o incremento não ser unitário. Na realidade os circuitos nos

primeiros anos de vida em termos estatísticos não sofrem envelhecimento a ponto de

causar falhas por esse efeito. As falhas que podem acelerar o processo de

envelhecimento estão relacionadas com defeitos significativos no processo de fabrico

mas que ainda assim não são suficientes para no início do seu ciclo de vida fazer o

circuito falhar, tornando-se efectivas após algum tempo de utilização.

 Os métodos e ferramentas propostos de DfT são demonstrados com extensas

simulações VHDL e SPICE, utilizando circuitos de referência.

Palavras-chave: Auto-Teste Incorporado, Metodologia para Sensor de

Envelhecimento, Testes Multi-VDD, geração automática de HDL,

Launch-On-Shift, Launch-On-Capture.

xv

TABLE OF CONTENTS

1. Introduction ... 1

1.1 Objectives .. 3

1.2 Context .. 4

1.3 Outline ... 5

2. Design for Testability .. 7

2.1 Delay Faults ... 7

2.1.1 Transition Faults .. 8

2.1.2 Path Delay Faults... 10

2.2 DfT Techniques for Static Faults .. 10

2.2.1 Scan Path ... 11

2.2.2 BIST .. 12

2.2.2.1 Test Pattern Generation ... 13

2.2.2.2 Output Response Analysis... 18

2.2.2.2.1 LFSR for Response Compaction ... 19

2.2.2.2.2 Multiple Input Signature Register ... 22

2.3 Delay Fault Testing using Transition Fault Model ... 25

2.3.1 Launch on Capture .. 25

2.3.2 Launch on Shift ... 27

3. Aging Effects in CMOS Nano Technologies .. 29

3.1 Negative Bias Temperature Instability .. 30

3.2 Time Dependent Dielectric Breakdown .. 31

3.3 Hot Carrier Injection ... 33

3.4 Electromigration .. 34

3.5 Stress Induced Voids ... 36

3.6 Total Ionizing Dose ... 37

4. BIST for Delay-Faults ... 41

4.1 Scan Based BIST for Delay-Faults ... 42

4.1.1 Mux Block ... 43

4.1.2 LFSR PI Block .. 44

4.1.3 LFSR Scan ... 47

xvi TABLE OF CONTENTS

4.1.4 LFSR Scan Counter ... 49

4.1.5 MISR Block ... 51

4.1.6 Comparators... 52

4.1.7 CUT ... 54

4.1.8 BIST Controller ... 55

4.2 BISTGen Software .. 61

4.2.1 Data Entry .. 61

4.2.2 Application Flowchart ... 62

4.2.3 Database Architecture and Composition ... 63

4.2.4 LFSR’s Configuration ... 64

4.2.5 Application Forms Function and Hierarchy .. 69

5. Aging Sensor Methodology ... 73

5.1 Background and Previous Work .. 73

5.2 Aging Sensor Methodology For Scan-Based BIST Circuits 75

5.3 Aging Analysis and Circuit’s Degradation with Aging................................... 77

6. Results ... 79

6.1 Simulation Environment and Test Procedures .. 79

6.1.1 VHDL Simulation Procedure .. 79

6.1.2 Verilog, AgingCalc, and SPICE Simulation Procedure 80

6.2 Results for BIST Circuitry and BISTGen Tool ... 81

6.2.1 CUT_example Circuit.. 82

6.2.2 B01, B06 and Pipeline Multiplier Circuits .. 91

6.3 Results for the Aging Sensor Methodology .. 92

6.3.1 CUT_example Circuit.. 92

6.3.2 B01 Circuit Simulation Results ... 93

6.3.3 B06 Circuit Simulation Results ... 94

7. Conclusions and Future Work ... 97

7.1 Conclusions ... 97

7.1.1 Conclusions on Scan-Based BIST and BISTGen Tool 97

7.1.2 Conclusions on Aging Sensor Methodology ... 99

7.2 Future Work ... 100

References ... 103

xvii

LIST OF FIGURES

Figure 1: Test Cost vs Manufacturing Cost (From Semiconductor Industry

Association [2]) ... 2

Figure 2: A Scan design schematic. .. 11

Figure 3: Basic BIST Architecture .. 13

Figure 4: Linear LFSR External .. 15

Figure 5: Modular LFSR Internal .. 17

Figure 6: Modular LFSR as Response Compacter .. 20

Figure 7: Linear Multiple Input Signature Register .. 22

Figure 8: Modular Multiple Input Signature Register ... 23

Figure 9: Modular Multiple Input Signature Register with 3 bit Input Pattern 24

Figure 10: Launch on Capture ... 26

Figure 11: Launch on Shift .. 28

Figure 12: Relationship between TDDB and Leakage Current [49]. 32

Figure 13: Relationship between TDDB and the Electric Field [49]. 32

Figure 14: Substract and Gate Currents in a NMOSFET at Low VG 33

Figure 15: Substract and Gate Currents in a NMOSFET at High VG 34

Figure 16: Schematic Representation of the Damage Induced by Radiation in a MOS

Structure [64]. .. 38

Figure 17 : Parent BIST Block Structure .. 43

Figure 18: Switch Multi MUX .. 43

Figure 19: LFSR PI ... 45

Figure 20: LFSR Scan ... 47

Figure 21: LFSR Scan Counter ... 49

Figure 22: MISR Block Diagram .. 51

Figure 23: Comparator Block .. 52

Figure 24: Insertion of a Scan Chain into a CUT .. 54

Figure 25: BIST Specific State Machine ... 56

Figure 26: BIST Controller Block Diagram .. 57

Figure 27: Application Flowchart ... 62

xviii LIST OF FIGURES

Figure 28: Database Components Architecture ... 64

Figure 29: Comparator block for LFSR PI Patterns .. 66

Figure 30 : LFSR Stop Limit and Rotation ... 67

Figure 31: Global File Structure .. 69

Figure 32: Set of signatures of the XTRAN circuit for two different samples (Monte

Carlo analysis), as a function of VDD (1.8 ; 3.3) V [76]. ... 74

Figure 33: Top diagram of the multi-VDD self-test scheme. .. 75

Figure 34: VHDL Simulation Steps .. 80

Figure 35: Verilog, AgingCalc and HSpice simulation steps. 80

Figure 36: CUT_example circuit schematic. ... 82

Figure 37: VHDL CUT Signature through ModelSim .. 90

Figure 38: Verilog CUT Signature through HSpice (CosmosScope) 90

Figure 39: CUT_example’s BIST signatures for VDD and aging variations (VSC

evolution with aging). .. 93

Figure 40: B01’s BIST signatures for VDD and aging variations (VSC evolution with

aging). .. 94

Figure 41: B06’s BIST signatures for VDD and aging variations (VSC evolution with

aging). .. 95

xix

LIST OF TABLES

Table 1: Linear LFSR System of Equations .. 15

Table 2: Modular LFSR System of Equations .. 17

Table 3: Five bits Modular LFSR Circuit Response ... 20

Table 4: LFSR Polynomial Division Result .. 21

Table 5: Linear MISR System of Equations ... 23

Table 6: Modular MISR System of Equations .. 24

Table 7: Modular MISR System of Equations with 3 Input bits 24

Table 8: Mux code slice in Verilog ... 44

Table 9: Mux code slice in VHDL .. 44

Table 10: LFSR PI Linear and Modular code slice in Verilog 46

Table 11: LFSR PI Linear and Modular code slice in VHDL..................................... 46

Table 12: LFSR Scan Linear and Modular code slice in Verilog 48

Table 13: LFSR Scan Linear and Modular code slice in VHDL 48

Table 14: LFSR Scan Counter Linear and Modular code slice in Verilog 50

Table 15: LFSR Scan Counter Linear and Modular code slice in VHDL 50

Table 16: MISR Linear code slice in Verilog ... 51

Table 17: MISR Linear code slice in VHDL .. 52

Table 18: LFSR Comparators code slice in Verilog ... 53

Table 19: LFSR Comparators code slice in VHDL .. 53

Table 20: VHDL CUT before and after Scan insertion... 55

Table 21: Verilog Controller code in Launch-on-Shift ... 58

Table 22: VHDL Controller code in Lunch-on-Shift .. 61

Table 23: Linear type Verilog LFSR PI File ... 65

Table 24: Comparator Block Code for LFSR PI Patterns ... 67

Table 25: LFSR Scan Counter Stop Counting Process ... 68

Table 26: VHDL vs Verilog Entity ... 70

Table 27: Inputs and Outputs different Names ... 71

Table 28: Generic CUT Hardware Description either VHDL or Verilog 83

Table 29: Config features for VHDL and Verilog CUT File 83

xx LIST OF TABLES

Table 30: Main module from VHDL LOS based BIST Aggregate File 85

Table 31: Verilog LOS based BIST File ... 89

Table 32: Config features for Verilog BIST B01 File ... 91

Table 33: Config features for Verilog BIST B06 File ... 91

Table 34: Config features for Verilog BIST Pipeline Multiplier 4-2 File 91

xxi

ACRONYMS

ASIC Application Specific Integrated Circuit

ATE Automatic Test Equipment

BIST Built-In Self-Test

CAD Computer Aided Design

CHC Channel Hot Carrier

CRC Cyclic Redundancy Check

CUT Circuit Under Test

DFT Design for Testability

DVS Dynamic Voltage Scaling

EDA Electronic Design Automation

FSM Finite State Machine

HDL Hardware Description Language

HTOL High Temperature Operating Life

ICs Integrated Circuits

JTAG Joint Test Action Group

LFSR Linear Feedback Shift Register

MISR Multiple Input Signature Register

NBTI Negative Bias Temperature Instability

ORA Output Response Analysis

RM Response Monitor

RTL Register Transfer Level

SIV Stress Induced Voiding

SoC System on Chip

SRAM Static Random Access Memory

STF Slow to Fall

STR Slow to Rise

TDDB Time Dependent Dielectric Breakdown

TF Transition Fault

TG Test Generator

xxii ACRONYMS

VHDL Very high speed integrated circuits (VHSIC) Hardware Description

Language

VHSIC Very High Speed Integrated Circuits

VLSI Very Large Scale Integration

VSC Voltage Signature Collection

xxiii

LIST OF DEFINITIONS

[Aliasing] – During circuit response compaction, because of the information loss, it is

possible that a signature of a bad circuit may match the good circuit signature, which

is called aliasing. In such cases, a failing circuit will pass the testing process.

[Compaction] – A method of drastically reducing the number of bits in the original

circuit response during testing in which some information is lost.

[Compression] – A method of reducing the number of bits in the original circuit

response during testing in which no information is lost, so the original output

sequence can be fully regenerated from the compressed sequence.

[Delay Fault] – A delay-fault is a fault that causes the combinational delay of a circuit

to exceed the clock period.

[Negative Bias Temperature Instability] – Translate an increase in the absolute threshold

voltage causing a degradation of the mobility, drain current and transconductance of

P-channel MOSFETs. It is almost universally attributed to the creation of interface

traps and oxide charge by a negative gate bias at elevated temperature.

[Path Delay Fault] – A delay defect in a circuit is assumed to cause the cumulative

delay of a combinational path to exceed some specified duration. The combinational

path begins at a primary input or a clocked flip-flop, contains a connected chain of

gates, and ends at a primary output or a clocked flip-flop. The specified time duration

can be the duration of the clock period (or phase), or the vector period. The

propagation delay is the time that a signal event (transition) takes to traverse the path.

Both switching delays of devices and transport delays of interconnects on the path,

contribute to the propagation delay.

xxiv LIST OF DEFINITIONS

[Signature] – A statistical property of a circuit, usually a number computed for a circuit

from its responses during testing, with the property that faults in the circuit usually

cause the signature to deviate from the signature of the non-faulty circuit.

[Signature Analysis] – A method of circuit response compaction during testing, whereby

the entire good circuit response is compacted into a good circuit signature. The actual

circuit signature is generated during the testing process on the CUT, and then

compared with the good machine signature to determine whether the CUT is faulty.

[Transition Delay Fault Model] – “It is assumed that in the fault-free circuit all gates

have some nominal delay and the delay of a single gate has changed. The gate-delay,

usually an increase over the nominal value, is assumed to be large enough to prevent a

passing transition from reaching any output within the clock period, even when the

transition propagates through the shortest path. Possible transition faults of a gate are

slow to-rise and slow-to-fall types and hence the total number of transition faults is

twice the number of gates. Transition faults model spot defects and are also called

gross-delay-faults” (excerpted from [27]).

1

1. INTRODUCTION

Electronic systems have increased its complexity in the last years in nano

technologies, which leads to a growth of system functionalities integrated in a single

chip. High performance applications with Integrated Circuits (IC) are commonly

found in the networking, banking, aerospace/defence, automotive, computer,

telecommunications and healthcare industries, and have greatly increased in usability

and complexity. Such, evolution requires additional fault control in the test

environment, as testing of IC has a crucial importance to ensure a high level of quality

in product functionality. Due to the increased complexity in modern ICs, the impact of

testing affects both IC design and manufacturing. Moreover, given this range of

design involvement, a major concern is, definitely, how to achieve a high level of

confidence in IC operation and this desire to attain high quality levels, conflicts with

the demand for reduced costs and shorten time involved in the development process.

These two design considerations are at constant odds.

The traditional solution to achieve a high level of confidence is ruled by

advanced testers denominated Automated Test Equipment (ATE). Traditionally

ATE’s cost is only measured using a simple digital cost pin approach which leads to a

lack of considerations making the cost per-test in many ways disproportionate. In the

last years other calculations have been made and proposed [1] to improve the

traditional test cost measurement, considering also base system costs associated with

equipment infrastructure, central instruments and the beneficial scaling that occurs

with increasing pin count. As an example, Figure 1 shows the test cost evolution vs.

manufacturing cost in the last 30 years.

Therefore, it became essential to find/implement alternative test methods to

reduce financial costs. Among these methods is Built-In Self-Test (BIST), and has

become a major design consideration in Design for Testability (DFT) methods. BIST

has many advantages. This technique can drastically reduce the external test

equipment dependency. If external test equipment is a part of the enterprise legacy,

BIST will reduce the global cost and test time even more, making possible to re-direct

the test equipment towards other devices in the current design, if necessary.

2 CHAPTER 1: INTRODUCTION

Figure 1: Test Cost vs Manufacturing Cost (From Semiconductor Industry Association [2])

Moreover, new technology products need high speed testers, not always available, as

ATE is usually a few years behind the latest technology products. Considering that

testing represents a key cost factor in the production process (up to 70% of total

product cost is reported in [3] [4] [5]), an optimal test strategy can be a substantial

competitive advantage in a market comprising billions of electronic components and

systems. It is therefore not a surprise that the International Technology Roadmap for

Semiconductors (ITRS), in its last report (2012) has placed the design for self-test on

the future opportunities in the “Test and Test Equipment” group report [6].

Another important advantage is that BIST allows not only circuit tests during

production, but also to test the circuits during their entire lifetime, which is an

important feature when long-term degradation effects start to limit circuits expected

life-cycle for nanotechnology ICs. This opens a new concept and a new era in system

quality and testing. In addition, BIST can overcome pin limitations due to packaging,

make efficient use of available extra chip area, and provide more detailed information

about the faults present.

The main disadvantages for BIST usability are, commonly, the increased die size

and design complexity. However, the addition of BIST features to IC design

nowadays doesn't significantly increase a product's size, cost, and production time, as

was the case in the past. All the benefits are plentiful motivations for BIST technique

to become an important DFT technique in the future.

 The present work deals with the automatic generation of BIST structures and

studies its behaviour during circuit’s expected lifetime, using statistical predictions for

aging degradations. The accelerated aging effects observed in new technologies ICs

are also a motivation to develop new techniques to enhance circuit’s reliability. In

fact, aging effects caused by phenomena like Negative Bias Temperature Instability

CHAPTER 1: INTRODUCTION 3

(NBTI) (the dominant long-term effect in nanometer CMOS technologies [72]), Hot

Carrier Injection (HCI), or Time Dependent Dielectric Breakdown (TDDB), among

others, are gaining increase relevance in new nanometer technologies and degrade

circuit performance over time [73]. These aging effects are cumulative and cause

circuit’s safety margins (time slack) to be shrinked, reducing the expected circuit’s

life time. Therefore, new technology products have a smaller expected lifetime than

previous technology’s products, imposing the need for auto-test during on-field

operation (and not only in the production stage), along circuit’s lifecycle.

1.1 OBJECTIVES

With the previous motivations in mind, this work tries to put a milestone in the

development of ICs with BIST capability. The goal is to develop automatic BIST

structures for generic sequential ICs, aiming the detection of delay-faults, and re-use

on-chip variable power supply voltage source to implement an aging aware test

strategy to detect long-term degradations during circuit’s lifetime.

 The objectives for this work are, mainly, twofold:

1. Implement a software tool to generate BIST structures automatically in a

circuit under test (CUT), aiming the detection of delay-faults;

2. Show that a set of auto-tests using a variable VDD power-supply voltage source

(a set of BIST runs, each run using a different power-supply voltage value)

can be used as an aging and performance sensor for long-term degradations

(during circuits’ lifespan).

 The first main objective is a pre-requisite to the second one. It is important to have

a tool to insert in a general sequential CMOS circuit BIST structures to allow the

auto-test of the circuit. Starting from a HDL (Hardware Description Language) netlist

(or behavioural description), the tool must generate automatically a new HDL netlists

(or behavioural description) of the new circuit with BIST structures and functionality.

To accomplish this first objective, the BIST structures have to be defined, using

VHDL (Very high speed integrated circuits Hardware Description Language) and

4 CHAPTER 1: INTRODUCTION

Verilog languages, and defining the structures in a behavioural and netlist

representation, using a CMOS generic standard cell library designed in a previous

M.Sc. thesis in ISE-UAlg). The BIST controller defined should also implement LOS

and LOC based BIST approaches, aiming the detection of delay-faults.

 The second main objective will use as a test vehicle the BIST structures defined

with the proposed software tool (from the first objective), already inserted in a Circuit

Under Test (CUT), and the purpose is to show by simulation (SPICE simulations) that

using by reusing a variable power-supply already present in the IC, it is possible to

identified a set of BIST signatures (known as Voltage Signatures Collection, VSC),

from a set of BIST sessions performed each one at a different power-supply voltage.

This VSC is unique for each sample circuit, and as aging degradations start to occur

during circuit’s lifetime, this unique VSC will differ, allowing to detect not only gross

delay-faults but also to define an aging sensor methodology for BIST circuits.

1.2 CONTEXT

This research work was conducted at the Instituto Superior de Engenharia (ISE),

University of Algarve (UAlg), in close collaboration with INESC-ID Lisbon and with

the industrial partner Silicongate in Lisbon. The work team formed in the Portuguese

institutions are working in collaboration with other foreigner R&D institutes and

universities, namely University of Vigo in Spain, the INAOE institute in Mexico and

PUCRS University in Brazil. The team has been developing in the last 5 years some

research work on aging sensors, both for ASIC (Application Specific Integrated

Circuit) and for emulated circuits in FPGAs (Field-Programmable Gate Array).

Moreover, in this context, 2 M.Sc. thesis were already finished, and another one is

currently being developed, in ISE-UAlg, and furthermore M.Sc. and Ph.D. thesis were

finished and are currently being developed in partner institutions.

CHAPTER 1: INTRODUCTION 5

1.3 OUTLINE

This thesis is organized as follows:

 Chapter 2 reviews basic concepts on Fault Modelling, conventional

BIST methodology and its architecture. Emphasis is placed on scan

design for delay-fault detection, namely Launch on Capture and Launch

on Shift techniques.

 Chapter 3 outlines the main phenomena and effects that contribute to the

aging of digital CMOS integrated circuits like NBTI phenomenon.

 The fourth chapter describes the new proposed dynamic BIST

methodology. It gives the details about the new methodology, the

proposed BIST architecture and the characteristics of all their structural

components.

 Chapter 5 explains the BISTGen Application Software, its composition

and hierarchy levels.

 Chapter 6 presents the test results.

 Chapter 7 concludes the work with a summary of the proposed

methodology, its achievements and limitations. It also outlines directions

for future work.

7

2. DESIGN FOR TESTABILITY

The design of a feasible system solution for a given problem is only half of the

task. Considering that the production stage in the IC design process involves very

complex procedures, it is very important to be able to test the system to a degree

which ensures a high confidence level that it is fully functional and this is generally

not a straight forward task. In very small digital systems scale, it is possible to test it

exhaustively, and the system can exercise over its full range of operating conditions.

However, in a larger scale system, it is no longer possible to do this procedure and

therefore other strategies has to be found to ensure that the system will properly be

tested.

When testing a digital logic device, stimulus are applied to its inputs and check

its response at the outputs to identify if it is performing correctly. The set of input

stimulus is referred as a test pattern. In general, the response of the device is observed

at its normal output pins. However, it is possible that the device is specially

configured during the test, to allow observing some internal nodes, which generally

would not be accessible to the user. The response of the device is evaluated by

comparing it to an expected response, which may be obtained by saving the response

of a known good device, or using simulation on a computer. If the CUT passes the

test, isn’t possible to say categorically that it is a good device. The only possible

conclusion is that the device does not contain any of the faults for which it was tested.

It is important to grasp this point; a device may contain a huge number of potential

faults, some of which may even mask each other under specified operating conditions.

The designer can only be sure that the device is 100% good if it has been 100% tested,

this is rarely possible in real life systems.

2.1 DELAY FAULTS

Physical failures and fabrication defects cannot be easily modeled

mathematically. As a result, these failures and defects are modeled as logical faults.

Structural faults relate to the structural model of a system and affect

8 CHAPTER 2: DESIGN FOR TESTABILITY

interconnections among components of a design. Functional faults relate to a

functional model, for example an RTL/HDL (Register Transfer Level / Hardware

Description Language) model, and these affect the nature of components operation in

a design. Testing for functional faults validates the correct operation of a system,

while testing of structural faults targets manufacturing defects.

The faults can be static, if represent a defect that is always present and is

independent of circuit operation and performance, and dynamic, if the fault only

manifests itself in pre-determined circuit operating conditions and, therefore, it is not

always present. Delay faults are dynamic faults related with the delay of paths. In

other words, if a given timing response is not met, due to a dynamic defect or even

due to an excessive clock frequency operation, an error is captured by a memory cell

(usually a flip-flop or latch), and is conclusive that a delay-fault occurred.

Two popular structural fault models are prevalent in the industries today which

are the stuck-at fault model and the transition fault model. Stuck-at faults affect the

logical behaviour of the system and are a representation of static faults. However,

transition faults affect the timing/temporal behaviour of the system and are a

representation of dynamic faults. An additional fault model being used is the path

delay-fault model, which is also based on the timing behaviour of the system, but

cumulative delays along paths are considered, instead of delays at each net as in the

transition fault model. This previous fault model is also a representation of dynamic

faults. Therefore, transition and path delay-fault models are commonly mention as

two delay-fault models.

2.1.1 TRANSITION FAULTS

The transition fault model is similar to the stuck-at fault model in many ways.

The effect of a transition fault at any P point in a circuit is that any transition at P will

not reach a scan flip-flop or a primary output within the stipulated clock period of the

circuit. According to the transition fault model [28], there are two types of possible

faults on all lines (nodes) in the circuit: a slow-to-rise fault (STR) and a slow-to-fall

fault (STF). A slow-to rise fault at a node means that any transition from ‘0’ to ‘1’ on

the node does not produce the correct result when the device is operating at its

CHAPTER 2: DESIGN FOR TESTABILITY 9

maximum operating frequency. Similarly, a slow-to fall fault means that a transition

from ‘1’ to ‘0’ on a node does not produce the correct result at full operating

frequency. In any circuit, the time slack can be defined as the difference between the

clock period and the propagation delay of the path under consideration (i.e. the

remaining and unused time of the clock period, in signal propagation). For a gate level

delay-fault to cause an incorrect value to be latched at a circuit output, the size of the

delay-fault must be such that it exceeds the slack of at least one path from the site of

the fault to the site of an output pin or flip-flop. If the propagation delays of all paths

passing through the fault site exceed the clock period, such a fault is referred to as a

gross delay-fault [29].

Any test pattern that successfully detects a transition fault comprises of a pair

of vectors {V1, V2}, where V1 is the initial vector that sets a target node to the initial

value, and V2 is the next vector that not only launches the transition at the

corresponding node, but also propagates the effect of the transition to a primary

output or a scan flip-flop [30]. In other words, a set of test vectors that test for a delay-

fault at the output or input of a gate are such that:

 A desired transition is launched at the site of the fault

 If the fault is a slow-to rise fault, the final pattern is a test for a corresponding

stuck-at-0 fault, and if the fault is a slow-to fall fault, the final pattern is a test

for a corresponding stuck-at-1 fault.

When compared with tests for stuck-at faults, it can be seen that the only

additional requirement to test for transition faults is the presence of a pattern that

initializes a node to the required value, just before the application of a stuck-at fault

pattern. One might expect that the fault coverage attained by testing transition fault

patterns will be close to that attained by testing stuck-at fault patterns. However,

should be remembered that the fault coverage obtained for transition fault patterns

represent only gross delay-faults. More detailed analysis will be necessary to evaluate

for smaller delay-faults [31].

10 CHAPTER 2: DESIGN FOR TESTABILITY

2.1.2 PATH DELAY FAULTS

The path delay-fault model [34] takes the sum of all delays along a path into

effect, while the transition fault model accounts for localized faults (delays) at the

inputs and outputs of each gate. There may be cases where the gate delays of

individual faults are within specified limits, but the cumulative effect of all faults on a

path may cause an incorrect value to be latched at the primary outputs, if the total

delay exceeds the functional clock period. The transition fault model cannot account

for such defects, but the path delay-fault model can. However, in a design containing

n lines, there can be a maximum on n2 transition faults (a slow-to rise and slow-to

fall fault on each line), but there can potentially be n2 path delay-faults (considering

all possible paths) [29]. Since all the paths cannot be tested, the path delay model

requires identification and analysis of critical paths in the design. This makes it more

complicated to use on large designs and hence, the transition fault model has been

accepted as a good method to test for delay-faults in the industry [35] [36].

2.2 DFT TECHNIQUES FOR STATIC FAULTS

DfT techniques have been used in digital ICs to achieve, fault detection, test

circuit insertion, fault coverage analysis and test pattern generation, among other

things related to test. Digital circuits are usually tested using the stuck-at fault model,

which considers all faults in a digital IC as either tied up to logic ‘1’ or down to logic

‘0’. All digital faults can be categorized into either stuck-at-0 or stuck-at-1 faults and

can assume that every node can have either one of these two possible faults. For any

given combinational circuit, a truth-table can be generated by simulation of all

possible inputs. For a certain single-fault existing in the circuit-under-test (CUT), it is

called a detectable fault if a different truth table is generated by the simulation of all

possible inputs. For a test sequence, the ratio of detectable faults to all possible faults

of a digital circuit is called fault coverage. The input values that can detect at least one

fault are considered test patterns. Thus, test patterns are generated to detect faults in a

digital device and the testability of the given device can be measured by fault

CHAPTER 2: DESIGN FOR TESTABILITY 11

coverage. A path sensitization technique [7] is used to find proper test patterns for any

given detectable fault. Finally, fault collapsing techniques [8] are used to remove

many stuck-at faults and to reduce the total number of test patterns. Over the years,

two major methods have been widely adopted by integrated circuit (IC) industry to

address the digital testing issues: Scan Path and BIST.

2.2.1 SCAN PATH

Since the inception of IC design in the mid-1960s, IC test has been an integral

part of the manufacturing process. Initially, tests were either randomly generated or

created from verification suites. But as chips got larger, this process required a more

targeted approach, one that needed to be easily replicated from one design to another.

This led to the invention of scan, which made designs combinational and simplified

the test generation process.

Scan path is a method to set and observe every flip-flop inside a digital IC chip

by replacing all regular flip-flops (FF) with scan FFs and two additional input pins,

test enable (TE) and test input (TI). All SFFs are in a chain which is connected

through TI pin and SCANOUT pin, as shown in Figure 2.

Figure 2: A Scan design schematic.

When TE pin is enabled which means shift mode, the scan chain can be

accessed by standard JTAG I/O [9] pins to read and set all SFFs. After all SFFs are

12 CHAPTER 2: DESIGN FOR TESTABILITY

settled into a desired state, TE pin is disabled (capture mode) and output of

combinational logic can be captured in SFFs. Then TE pin is enabled again to shift

out the Q pin of SFFs, bit by bit through the scan chain to SCANOUT, and at the

same time, a new pattern is shifted in to set all SFFs to the next desired state (through

TI). Scan chain makes it possible to assign an arbitrary internal state to a digital IC

and thus may achieve higher test coverage with fewer test patterns.

In the modern System-on-Chip (SoC) design, many cores are integrated into a

single chip. Some of them are embedded, and cannot be accessed directly from the

outside of the chip. Such SoC designs make the test of these embedded cores become

a great challenge.

2.2.2 BIST

BIST is one of most popular test solutions to test embedded cores [10]. As the

digital circuit technology is moving to high densities of integration, BIST has become

a primary issue in the realm of VLSI (Very Large Scale Integration) circuit design.

Techniques for design for testability and BIST consider the testing problem during the

design stage of digital devices and have been found to be extremely effective. The

central idea behind BIST is to have the chip to test itself. This technique generates test

patterns and evaluates output responses inside the chip [11] [12] [13]. Built-in Self-

test is gaining popularity as a means to address test issues at the different packaging

levels of digital systems. One of the benefits of BIST is the fact that no patterns need

to be stored in the test equipment, which is simply required to provide a clock and a

few control signals. This is especially important when high performance systems are

being tested. BIST also makes the chip/board/system more independent of the specific

test resources available at each manufacturing stage. BIST is also a convenient way of

applying more test patterns, to compensate for the weaknesses of the stuck-at fault

model [14]. BIST can significantly improve the testability of VLSI chips and save

testing time as well [15]. BIST is a DFT technique that places the testing functions

physically with the CUT, as illustrated in the Figure 3.

CHAPTER 2: DESIGN FOR TESTABILITY 13

Figure 3: Basic BIST Architecture

In normal operating mode, the CUT receives its inputs X from other modules

and performs the function for which it was designed. In test mode a test generator

(TG) through a Linear Feedback Shift Register (LFSR) applies a sequence of test

patterns to the CUT, and the response monitor (RM or Output Register Analyser

(ORA)) using a multiple input signature register (MISR) for the effect compact test

responses received from primary output. The response signatures are compared with

reference signatures generated or stored on-chip, and the error signal indicates any

discrepancies detected. The basic blocks that forms the BIST are: TG (LFSR), CUT,

RM (SISR/MISR, Single/Multiple Input Signature Register), BIST controller and

signature analyzer. BIST techniques make testing of a digital IC chip easier, faster,

more efficient and less costly. At the cost of approximate by 20% – 30% overhead in

the chip area and a small penalty in performance due to additional BIST hardware

[16], the IC chip can now perform testing through internal scan chains without an

external automatic testing equipment (ATE).

2.2.2.1 TEST PATTERN GENERATION

 BIST is a DFT technique which allows the circuit to test itself without any external

equipment [23]. BIST implementation requires primarily two components: a pseudo-

random test pattern generator (for test vector generation) and a data compactor (for

output response analysis) [24]. There are several types of test patterns that can be used

14 CHAPTER 2: DESIGN FOR TESTABILITY

in BIST: deterministic, algorithmic, exhaustive, pseudo-exhaustive, or even random.

However, due to hardware costs, the most commonly used are the pseudo-random test

patterns. These components are mostly implemented using LFSRs and Cellular

Automata (CA).

 LFSR is constructed using flip-flops connected as a shift register with feedback

paths that are linearly related using XOR gates. An LFSR can be used for generation

of pseudo-random patterns, polynomial division, and response compaction. The CA is

very similar to the LFSRs except that the registers in CA have a logical relationship

with their neighbours only. This leads more randomness in the pattern generated.

LFSR is more popular for implementation of both TPG and ORA due to its compact

and simple structure. However, CA is gaining popularity in many cases because of

their characteristics and ease of modification.

 Linear Feedback Shift Register or LFSR is a shift register whose output is the

result of XOR of some of its inputs [22]. There are two ways to implement LFSRs:

internal feedback and external feedback. These techniques differ in the way feedback

is applied. All the flip-flops that feed a XOR gate are known as taps. These taps

decide the pattern generated by the LFSR and hence define the characteristic

polynomial of an LFSR, where n is the degree of the polynomial which is defined by

the number of bits/nodes of the LFSR. Notice that the terms ‘ 0x ’ and ‘ 1nx ’ are

always present and the remaining terms indicate the location of the taps in the circuit.

The degree of the polynomial n is equal to the number of bits in an n-bit LFSR

pattern. An all zeroes state is invalid for an LFSR with XOR gates (the same for all

‘1’ bits for an LFSR with XNOR gates), as the state would never change if all the bits

are ‘0’ or ’1’. Therefore, the maximum number of unique patterns an n-bit LFSR can

generate is 12 n
, where n is the number of bits. Special LFSRs can be constructed to

generate the all zeroes (ones) state also, but they have a larger area overhead

associated with them, as described in [25]. In case of an external feedback LFSR, the

XOR gates are in the feedback path and the input to the shift register is the XOR of all

the taps.

CHAPTER 2: DESIGN FOR TESTABILITY 15

Figure 4: Linear LFSR External

 But let’s take a close look with a mathematical model support and start with the

standard type (Linear LFSR or external). In the Figure 4 each tap of the coefficient iC

indicates the presence or absence of feedback from that particular flip-flop position

into flip-flop position 1nX . This is indicated by setting)10( niCi to ‘1’ if the

feedback exists, and to ‘0’ if there is no feedback in that particular position. In the

actual hardware, if iC is ‘0’, then there is no XOR gate in the feedback network for

that bit position; otherwise, the XOR gate is included. Multiplication by x is

equivalent to a right shift in the LFSR register by one bit, and the addition operation is

the XOR () operator. Therefore, addition is equivalent to XOR subtraction,

so 011 ,101 ,110 ,000  . This is because there are no carries or borrows

in XORing arithmetic. The following matrix describes the system of equations:

)(

)(

)(

)(

)(

C- C - C- C - 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

)1(

)1(

)1(

)1(

)1(

1

2

3

1

0

1-n2-n211

2

3

1

0







































































































tX

tX

tX

tX

tX

tX

tX

tX

tX

tX

n

n

n

n

n

n

















Table 1: Linear LFSR System of Equations

This system is written as:

 X(t))1(TstX 

The first column of Ts is ‘0’, except for the last row, to indicate that the flip-flops shift

right. The 2
nd

 through thn columns and 1
st
 through stn 1 rows are the identity matrix,

16 CHAPTER 2: DESIGN FOR TESTABILITY

to indicate that 0X receives input from 1X , and so one. Finally, the thn element in the

first column is ‘1’ to indicate that 0X always feeds back into 1nX through the XOR

feedback network. The remaining elements in the thn row are the feedback

coefficients iC , which indicate whether the remaining flip-flops feed back into 1nX

or not. We also see why this LFSR cannot be initialized to all zeros. If that were done,

the feedback network and the right shifts of the flip-flops would always produce all

zeros, and the LFSR would hang in the all-zero state. Note that the + operator implied

in this matrix system is actually the XOR () operator. If X is the LFSR initial state,

the LFSR will progress through the states: , , , , 32 XTsXTsXTsX The matrix period

is the smallest integer k such that:

ITsk 

Where I is the identity matrix, k is the LFSR cycle length (k = 0 for X = 0), and Ts is

known as the companion matrix. Recall that multiplication by x is equivalent to

shifting a bit through the D flip-flop register of this LFSR. Therefore, we view 0X as

the constant 1 and ., ... ,. ,. 1

2

1201

n

nn xXxXxXxXxXxX  
.This

hardware system can be described by the characteristic polynomial:










 
n

i

i

i

nn

n

n

ns xcxxcxcxcxcXITxP
0

1

1

2

2

2

21 ...1 .)(

 The modular, internal exclusive-OR, or Type 2 LFSR is described by a companion

matrix T
SM TT  , which is the transpose of ST . It is called an internal XOR LFSR

because the feedback XOR gates are located between adjacent flip-flops. The modular

LFSR can run somewhat faster than the standard LFSR because it has at most one

XOR gate delay between adjacent flip-flops. However, this is not a serious

consideration in testing because actual circuits always have more logic gates between

flip-flops than there are XOR gates in the feedback network of the external XOR

LFSR. Moreover, for practical tests the test patterns generated by LFSRs are not

more than 22-25 bits wide, so bigger circuits are partitioned into small sub-circuits of

CHAPTER 2: DESIGN FOR TESTABILITY 17

less than 25 primary inputs [26]. The Figure 5 shows the modular LFSR circuit

implementation.

Figure 5: Modular LFSR Internal

The mathematical respective system of equations is presented in the next matrix.

)(

)(

)(

)(

)(

)(

C- 1 0 0 0 0

C - 0 1 0 0 0

C- 0 0 0 0 0

 C- 0 0 0 1 0

 C- 0 0 0 0 1

1 0 0 0 0 0

)1(

)1(

)1(

)1(

)1(

)1(

1

2

3

2

1

0

1-n

2-n

3-n

2

1

1

2

3

2

1

0















































































































tX

tX

tX

tX

tX

tX

tX

tX

tX

tX

tX

tX

n

n

n

n

n

n



















Table 2: Modular LFSR System of Equations

This system is written as:

 X(t))1(MTtX 

This hardware system can be described by the characteristic polynomial:










 
n

i

i

i

nn

n

n

nM xcxxcxcxcxcXITxP
0

1

1

2

2

2

21 ...1 .)(

In the LFSR of the Figure 5, a right shift is equivalent to multiplying the register

contents by x , and then dividing its value by the characteristic polynomial and storing

the remainder.

18 CHAPTER 2: DESIGN FOR TESTABILITY

 Every LFSR can be realized either in standard or modular form. Both use m XOR

(or XNOR) gates, where m is the number of non-zero iC feedback coefficients in the

LFSR.

2.2.2.2 OUTPUT RESPONSE ANALYSIS

 During BIST, it is necessary to reduce the enormous number of circuit responses to

a manageable size that can be stored on the chip. For example, consider a circuit with

a hardware pattern generator that computes 5 million test patterns during testing, and

where there are 300 SPO . The total number of resulting responses will be:

000 000 500 1 300 000 000 5  bits!

This huge amount of information cannot be economically stored, so the circuit

responses must be compacted.

 In this matter, we must distinguish between compression and compaction. Circuit

response compression is lossless, because the original output sequence (9105.1  bits

in the previous example) can be completely regenerated from the compressed

sequence. Compaction, however, results in information loss, so regenerating the

original circuit response information is not possible. Compression schemes, at present,

are impractical for BIST response analysis, because they inadequately reduce the huge

volume of data, so only compaction schemes are used. In mathematical words,

compression functions are invertible, but compaction functions are not.

 Signature analysis is the process of compact the circuit responses into a very small

bit length number, representing a statistical circuit property, for economical on-chip

comparison of the behaviour of a possibly defective chip with a good one. Frohwerk

[81] invented signature analysis in 1977 at Hewlett-Packard. Also, the signature must

preserve as much as possible of the fault information contained in the circuit output

response before compaction, and the circuitry used to implement the compacter

should be small [31]. All compaction techniques require that the fault-free circuit

signature be known.

CHAPTER 2: DESIGN FOR TESTABILITY 19

 Some schemes for response compaction are; (i) Parity checking, where parity is

formed across all circuit responses; (ii) Ones counting, where the number of ones is

counted in the output responses from the circuit. Savir [82] pioneered syndrome

testing, in which pattern generation must be exhaustive, and ones counting is used for

response compaction.

 Aliasing occurs when the compacted response of the bad circuit matches the

compacted response of the good circuit, and there is always a problem with

compaction because information is lost. In parity checking, aliasing frequently

happens. Also, with ones counting, it is possible to permute the placement of ones in

the circuit’s Karnaugh map, and still obtain a correct ones count, so it is also very

prone to aliasing and also requires significant arithmetic hardware.

 Hayes [83] described transition count testing. The transition count, C(R), is the

number of times signals in the circuit response R change during BIST. Transition

count test aliases less than ones counting, because it not only checks for the correct

number of ones and zeros in the circuit output response, but also partially test for the

correct ordering of the ones and zeros in the response.

2.2.2.2.1 LFSR FOR RESPONSE COMPACTION

 Frohwerk [81] introduced the LFSR for response compaction by signature analysis.

The signature is any statistical property of the circuit that is used for checking its

correct operation. He used the data compaction method of the Cyclic Redundancy

Check (CRC) code generator, which requires an LFSR hardware device. In this

method, the circuit output data stream is treated as a descending order coefficient

polynomial. The output response compacter LFSR performs polynomial division of

this data stream polynomial by the characteristic polynomial of the LFSR. The Figure

6 shows a specific modular LFSR as a response compacter. The Table 3 presents the

response of the circuit as the bits (01010001) are shifted into the LFSR through the

XOR gate and the respective mathematical support for remainder generation.

20 CHAPTER 2: DESIGN FOR TESTABILITY

Figure 6: Modular LFSR as Response Compacter

Inputs 0X 1X 2X 3X 4X

Initial State 0 0 0 0 0

[1º] 1 1 0 0 0 0

[2º] 0 0 1 0 0 0

[3º] 0 0 0 1 0 0

[4º] 0 0 0 0 1 0

[5º] 1 1 0 0 0 1

[6º] 0 1 0 0 1 0

[7º] 1 1 1 0 0 1

[8º] 0 1 0 1 1 0

Table 3: Five bits Modular LFSR Circuit Response

Data stream polynomial = (0 1 0 1 0 0 0 1) 

Data stream polynomial = 76543210 .1.0.0.0.1.0.1.0 xxxxxxxx 

Data stream polynomial = 73 xxx 

Remainder = (1 0 1 1 0) 

Remainder = 43210 .0.1.1.0.1 xxxxx 

Remainder = 321 xx 

CHAPTER 2: DESIGN FOR TESTABILITY 21

 7x 3 x x

135  xxx

 7x 5 x 3 x 2x 12 x

 5x 2x x

 5 x 3 x x 1

 3 x 2 x 1  Remainder

Table 4: LFSR Polynomial Division Result

 The final state of the modular LFSR is the polynomial remainder of the division.

The final state of the standard LFSR is not always the polynomial remainder of this

division, but is related to the true remainder through a different state assignment. The

error diction hypothesis is that a faulty data stream changes the output data stream,

and hence the remainder of this polynomial division, which is used as signature in the

compaction method. The LFSR must be initialized to the seed value, and after data

compaction, the signature must be observed and compared with the known good

circuit signature [31]. The signature analyzer circuit is also easily testable.

 The Figure 6 shows a modular LFSR that has an extra XOR gate at the input to the

flip-flop driving the least significant bit 0X . This XOR gate XORs the circuit output

response stream, (01010001) in this case, into the least significant bit of the modular

LFSR. Here, (01010001) is interpreted as:

7376543210 .1.0.0.0.1.0.1.0 xxxxxxxxxxx 

 Reading the LFSR tap coefficients from left to right in Figure 6, we see that the

characteristic polynomial of this modular LFSR is 531 xxx  . The Table 3

shows how eight clock periods are simulated after the LFSR is initialized do (00000).

It also shows in Table 4 the long division of the reversed data stream polynomial by

the reversed characteristic polynomial of the LFSR. The remainder of the division,

321 xx  , also matches the remainder left after eight clock periods in the LFSR,

because only 0X , 2X and 3X are ones. Thus we have agreement between the

22 CHAPTER 2: DESIGN FOR TESTABILITY

signature predicted by polynomial division and the signature produced by logic

simulation.

2.2.2.2.2 MULTIPLE INPUT SIGNATURE REGISTER

 In the example of the Figure 6, [84] one primary circuit output requires an LFSR

for signature analysis with 5 flip-flops and 3 XOR gates. However, consider the case

where the circuit of Figure 6 has 300 outputs. Then, we would need 300 x 5 =1500

flip-flops and more than 300 x 3 = 900 XOR gates. This is a serious hardware

overhead. Fortunately, we can exploit the fact that the hardware pattern generation

and response compaction system using LFSRs is a linear system, obeying the

equation X(t))1(STtX  . Therefore, because of its linearity, this system also obeys

the superposition principle. If we superimpose all the responses of the 300 circuit

outputs in the same LFSR for response compaction, then the final remainder will be

the sum (under XOR logic arithmetic) of the remainders due to all of the circuit

outputs. This is highly advantageous, as it reduces the flip-flop count from 1500 to

300 and the XOR gate count from more than 900 to approximately 3+300. The 300

added XOR gates are needed to XOR all of the circuits outputs into different bits of

the LFSR, where there must be one bit for each circuit PO, called id . This new

response compacter is known as Multiple Input Signature Register (MISR), and an

example is shown in the Figure 7 with a linear type 1, and Figure 8 with a modular

type 2.

Figure 7: Linear Multiple Input Signature Register

CHAPTER 2: DESIGN FOR TESTABILITY 23

Figure 8: Modular Multiple Input Signature Register

 The alternative to use the MISR structure is to provide only one simple LFSR for

one circuit output, but multiplex it among the 300 different outputs. This then requires

300 different testing epochs, where for each epoch the LFSR compacts the response

from a different circuit output. It is much more attractive to use the MISR, because it

eliminates a 300 to 1 MUX, and also because the response compaction time with the

MISR is 300 times less than the time with a multiplexed LFSR. The generic linear

MISR can be represented by the following system of equations (Table 5):









































































































































)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

C-C- C - C- 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

)1(

)1(

)1(

)1(

)1(

1

2

3

1

0

1

2

3

1

0

1-n2-n211

2

3

1

0

td

td

td

td

td

tX

tX

tX

tX

tX

tX

tX

tX

tX

tX

n

n

n

n

n

n

n

n

n

















Table 5: Linear MISR System of Equations

The vector of)(td i values represents the circuit outputs at time iP O .

 The modular MISR can be translated by the following system of equations (Table

6):

24 CHAPTER 2: DESIGN FOR TESTABILITY



















































































































































)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

C - 1 0 0 0 0

C- 0 1 0 0 0

C- 0 0 0 0 0

 C- 0 0 0 1 0

 C- 0 0 0 0 1

1 0 0 0 0 0

)1(

)1(

)1(

)1(

)1(

)1(

1

2

3

2

1

0

1

2

3

2

1

0

1-n

2-n

3-n

2

1

1

2

3

2

1

0

td

td

td

td

td

td

tX

tX

tX

tX

tX

tX

tX

tX

tX

tX

tX

tX

n

n

n

n

n

n

n

n

n



















Table 6: Modular MISR System of Equations

The next example in the Figure 9 shows a modular LFSR converted into a

MISR, by XORing a different circuit output into each flip-flop position.

Figure 9: Modular Multiple Input Signature Register with 3 bit Input Pattern

The resulting signature, since this system is linear, is the XORing of the three

different signatures due to the polynomial division from each of the three sPO . It

implements the following equation system presented in Table 7:

)(

)(

)(

)(

)(

)(

0 1 0

1- 0 1

1 0 0

)1(

)1(

)1(

2

1

0

2

1

0

2

1

0











































































td

td

td

tX

tX

tX

tX

tX

tX

Table 7: Modular MISR System of Equations with 3 Input bits

CHAPTER 2: DESIGN FOR TESTABILITY 25

2.3 DELAY FAULT TESTING USING TRANSITION FAULT MODEL

 There are three main methods that can be used to generate and apply transition

fault tests. The first method, termed Broad-side delay test, is also referred to as

functional justification or the launch-from-capture technique, or even launch-on-

capture (LOC). In this technique, the first vector of the pair is scanned into the chain

and the second vector is derived as the combinational circuit’s response to the first

vector [32].

 The second method, termed Skewed load transition testing, is also referred to as

the launch-from-shift technique, or even launch-on-shift (LOS). In this method, both

the first and second vectors of the pair are delivered through the scan cells themselves

[32]. If the scan-chain is n bits long, an n-bit vector is loaded by scanning in the first

(n-1) bits. The last shift clock is used to launch the transition, followed by a quick

capture.

 In the third method, termed Enhanced-scan transition testing, the two vectors

(V1, V2) are stored in the tester memory. Vector V1 is first applied and this initializes

the circuit. Vector V2 is then scanned in, followed by applying it to the circuit under

test and capturing its response. The important point is that it is assumed the

initialization provided by V1 is not lost while loading V2. Therefore, this type of test

assumes a hold-scan design [33]. For inclusion of hold-scan cells, an area overhead is

evident and there is an additional routing requirement for the control signal. As a

result, such hold-scan cells are not used in the ASIC industry and thus, enhanced

scan-design is not always useful in a practical environment.

2.3.1 LAUNCH ON CAPTURE

This technique is also known as the broad-side or functional justification

technique. As we know, transition fault tests require a pair of vectors, one, to set a

target node to an initial value, and the next, to launch the transition and propagate the

effect to a primary output or scan cell [6] [19]. In this technique, the first vector of the

26 CHAPTER 2: DESIGN FOR TESTABILITY

pair is scanned into the chain and the second vector is derived as the combinational

circuit’s response to the first vector [15].

In a scan-based design, if the scan chain contains n cells, a vector pair is

obtained by applying the following steps:

 Shift the data into the scan-chain n times.

 Toggle the scan-enable signal and allow the circuit to settle (new PI values

may be applied if required).

 Pulse the clock twice. The first pulse will launch the transition and the

second pulse will capture the response from the combinational portion of the

circuit.

 If required, primary input (PI) or primary output (PO) changes could be

made with the application of the first clock pulse.

 If the tester hardware does not support at-speed PI changes, the PI values

across launch and capture cycles will have to be held constant. If at-speed

output strobing is not supported, the effects of all faults have to be observed

only at flip-flops on the scan chain.

The timing diagram for this method is shown in next picture.

Figure 10: Launch on Capture

The important point to note here is that the launch and capture are performed

with the scan-enable signal set to functional mode. The scan-shift frequency is much

slower than the functional operation frequency in most industrial designs. The scan-

shift speed may also be limited by the maximum frequency supported by the tester

hardware being used. As a result, two different waveforms (or timesets), one to enable

CHAPTER 2: DESIGN FOR TESTABILITY 27

scan-shift and the other to perform the at-speed capture, may need to be applied to the

same clock pin, while the device is being tested.

2.3.2 LAUNCH ON SHIFT

 This technique is also known as the Skewed-Load or Transition Shifting

technique. Here, both the first and second vectors of the pair are delivered through the

scan cells themselves [15]. In a scan chain containing n cells, this approach consists of

the following steps:

 Shift the scan-chain (n-1) times to obtain the first vector in the pair.

 Simultaneously, apply the first of the two sets of PI values to the non-scan

pins.

 Most designs consist of a muxed data scan cell, where a mux is used to choose

between the value from the combinational logic and the value from the scan-

chain. The scan-enable signal is used to control this mux. In such designs,

setting the scan enable signal to scan mode and shifting the scan chain once

more generates the second of the two vectors.

 Toggle the scan-enable pin

 Change the PI values as required.

 Pulse the clock to capture the response data into the scan flip-flops.

 If the tester hardware supports at speed output strobing, the PO pins are

strobed during this cycle to detect transition faults propagating to the POs.

The timing diagram for this method is shown in the Figure 11.

28 CHAPTER 2: DESIGN FOR TESTABILITY

Figure 11: Launch on Shift

The most important difference between the two techniques described above

with respect to muxed data scan designs is the need for at-speed scan-enable operation

in the launch-on-shift technique. Further, the launch-on-capture technique requires a

sequential ATPG algorithm, while launch from-shift patterns can be generated with a

purely combinational ATPG algorithm.

29

3. AGING EFFECTS IN CMOS NANO TECHNOLOGIES

 With relentless scaling of CMOS technology, circuit timing uncertainty due to

temporal degradation and static process variations poses a dramatic challenge to IC

design [74][85]. The deterioration of circuit performance over time, i.e., aging, is

usually caused by several physical mechanisms such as channel-hot-carrier (CHC),

negative-bias-temperature-instability (NBTI), and time-dependent-dielectric-

breakdown (TDDB) [86][87][88][44][89]. Among these effects, NBTI is the leading

mechanism that is responsible for the majority part of circuit aging [90][88] in [88],

the authors show that for 65nm technology, CHC degradation is much smaller than

NBTI degradation, almost one order lower in the degradation magnitude). NBTI

primarily increases the threshold voltage (Vth) of PMOS devices and it significantly

affects circuit lifetime and performance (e.g., power, speed and failure rate). In the

worst case condition, it may even result in a complete parametric failure of a system

[92][88][44][93][17][42].

To cope with this threat and guarantee circuit lifetime, it is critical to include

NBTI into circuit analysis and adaptively develop design techniques to effectively

mitigate its negative impact on performance. For a VLSI design, an accurate

prediction of circuit performance degradation under NBTI remains as a tremendous

challenge. As shown in [88], NBTI has a strong dependence on dynamic operation

conditions, such as supply voltage (VDD), temperature (T) and input signal probability

(αs). Usually these parameters are not spatially or temporally uniform, but vary

significantly from gate to gate and from time to time. Similar to the burning process,

we may use high voltage and high temperature to guardband the worst case condition.

However, the search for the worst case αs is computationally inhibitive due to the

extremely large space of signal probabilities for each input node.

 The expected lifetime of a circuit is, then, limited by these long-therm and

cumulative degradations, that we call aging. Although NBTI is the dominant

phenomena, as mentioned, it is the effect of simultaneous causes that could easily

make a circuit to fail. And, considering other effects that could also cause a delay-

30 CHAPTER 3: AGING PREDICTION IN CMOS NANO TECHNOLOGIES

fault, in literature one can identify static and dynamic effects like Process, power-

supply Voltage and Temperature variations (PVT), just to mention the most important

ones. These parametric variations, operation dependent or not, along with cumulative

degradations (PVT and Aging, PVTA), can seriously impose a high variation in a

critical path delay, causing the circuit to fail.

 In this section we are focusing on aging effects, and a description of the most

important phenomena will be presented in the following.

3.1 NEGATIVE BIAS TEMPERATURE INSTABILITY

Negative bias temperature instability has been known since 1966 [37].

However, only in the last few years it has become a reliability issue in silicon

integrated circuits, because the gate electric fields have increased as a result of

scaling, increased chip operating temperature, surface p-channel MOSFETs have

replaced buried channel devices, and nitrogen is routinely added to thermally grown

SiO2. In 2003 for example, it was poorly understood that the time between NBTI

stress and measuring the effect after terminating the stress was important, because the

NBTI recovery was just beginning to be understood. Now it is understood that the

sooner a degraded device is measured after stress, i.e., within mili-seconds (ms) or

sooner, the more relevant are the data.

In the recent years, NBTI has been identified as a major and critical reliability

issue for PMOS devices in nano-scale designs, and with the continuous decrease of

the transistor dimensions, it will continue to be one of the biggest effects (if not the

higher effect). It manifests as a negative threshold voltage shift, thereby degrading the

performance of the PMOS devices over the lifetime of a circuit, and the degradation

worsens at high temperatures, causing a larger shift in the threshold voltage. As a

result, considering degradations in a long period of time, the threshold voltage shift

can potentially cause a significant increase in delay of the p-MOSFET devices ([17],

[20]) and, ultimately, a delay-fault may occur.

A vast number of studies have already been conducted to investigate the effect

of NBTI on digital circuits [43] [38] [42] [40] [41]. Moreover, many studies have also

developed several design-time and run-time techniques to cope with the NBTI

CHAPTER 3: AGING PREDICTION IN CMOS NANO TECHNOLOGIES 31

degradation, like [39][45][40][44]. These studies include the use of CAD tools for

managing transistor degradation mechanism [39], the use of dynamic voltage scaling

(DVS) [45], the use of data flipping to recover the static noise margin of the static

random access memory (SRAM) [45], and the use of device parameter tuning (VDD,

Vth and gate-size) in digital circuits [44].

For more information on NBTI, on the degradation process caused by the

generation of traps, and the partial recovery associated with the reduction in traps,

please refer to [17][18][19].

3.2 TIME DEPENDENT DIELECTRIC BREAKDOWN

Time Dependent Dielectric Breakdown (TDDB) is a phenomenon where the

oxide underneath the gate degrades. As the name implies, it is the breakdown of a

dielectric over time. There are other ways a dielectric can breakdown but in a digital

system, the only variables are: operating frequency, voltage supply, MOSFET

characteristics (such as gate area or dielectric material), temperature, and time. As the

gate-oxide is scaled down, breakdown of the oxide and oxide reliability becomes

more of a concern. Higher fields in the oxide increase the tunneling of carriers from

the channel into the oxide and these carriers slowly degrade the quality of the oxide

and, over time, leads to failure of the oxide [46].

Once a dielectric breaks down, current is able to flow more easily through the

gate into the drain/source of a P/NMOSFET, completely destroying functionality.

Evidence of TDDB are changes in the threshold voltages and the drain currents, as

well as a great increase in current through the dielectric [47] and, ultimately, the gate

breakdown, as shown in the Figure 12.

32 CHAPTER 3: AGING PREDICTION IN CMOS NANO TECHNOLOGIES

Figure 12: Relationship between TDDB and Leakage Current [49].

There are many hypotheses for why TDDB occurs. Many models describe what

occurs in the dielectric material over time, and each model, consequently, has a

mathematical model that can predict the expected failure of a device. There has been

much speculation for the last 50 years as to which model correctly predicts the failure

time. However, there is general consensus that the electric field through the dielectric

material is the direct cause of TDDB. This relationship is shown in Figure 13.

Figure 13: Relationship between TDDB and the Electric Field [49].

The simple explanation is that the electric field breaks down the oxide, but

electric fields could be the cause of more specific phenomena, such as band-to-band

impact ionization, hole trapping near the injecting interface, and electron trapping

[47]. Nevertheless, it is accepted that it is caused by charge that remains in the oxide

[48]. Ideally, the charge should not pass through the oxide, but thinner oxides and

stronger electric fields make it possible.

CHAPTER 3: AGING PREDICTION IN CMOS NANO TECHNOLOGIES 33

3.3 HOT CARRIER INJECTION

Hot carrier damage has been one of the important degradation mechanisms in

MOSFETs [50]. The major source of the hot carriers is the electric field inside the

channel of a transistor. The energetic carriers themselves, or the carriers generated

through impact ionization, can cause the parametric degradation, i.e., shifts in device

characteristics or catastrophic failure such as oxide breakdown. Significant effort has

been focused on understanding the hot carrier phenomena and its implications for

circuits.

One of the early pioneering works was done in 1980s, and involved the

calculation of HCI lifetime, based on experimental device characteristics during hot

carrier stressing [51]. In that work, it was assumed that the carriers heated by the

channel electric field can lead to impact ionization. For an NMOSFET, the holes

generated by ionization flow out of the substrate contact, giving rise to substrate

current (Isub), whereas the electrons contribute to the drain current (and if they are

injected into the oxide, constitute the gate current, IG).

Figure 14: Substract and Gate Currents in a NMOSFET at Low VG

In the Figure 14 it is possible to see the holes (open circles) generated by

impact ionization, flow out of the substrate. Some fraction can be injected into the

gate oxide, since the vertical electric field favours holes at low VG. The Figure 15

shows that at high VG, the vertical electric field attracts electrons (filled circles) into

the gate oxide and the electrons form the gate current. The substrate current is still due

to holes.

34 CHAPTER 3: AGING PREDICTION IN CMOS NANO TECHNOLOGIES

Figure 15: Substract and Gate Currents in a NMOSFET at High VG

The hot carrier damage is also attributed to the energetic electrons. The Isub was

conventionally taken as a monitor for the hot carrier damage, because it reflects the

energy of the hot electrons.

3.4 ELECTROMIGRATION

 When a sufficiently strong electric current is passed through a metal interconnect, a

diffusive motion of impurities and/or vacancies takes place in a direction along or

opposite to the current flow. This phenomenon is called electromigration (EM). The

technological interest in EM arises from its manifestation as a cause of failure in

integrated circuits.

 The phenomenon of electromigration has been known for over 100 years. The

earliest observation can be traced back to 1861, when Gerardin observed EM in lead

[52]. Following, was the work of Sakupy in 1907 [53], who studied mass transport of

impurities in molten metals. Sakupy was also the first to use the term ‘‘electron

wind’’.

 More recently, the technological interest for EM started in 1966, when IBM,

Fairchild, Motorola, and Texas Instruments independently observed failures in

integrated circuits, which could not be explained. At the time, the metal interconnects

in ICs were still about 10 micrometers wide and EM surprised, and briefly threatened

the existence of the integrated circuit industry [54]. Currently, interconnects are only

hundreds to tens of nanometers in width, making research in electromigration

increasingly important.

CHAPTER 3: AGING PREDICTION IN CMOS NANO TECHNOLOGIES 35

 In general, EM decreases the reliability of chips. It can cause the eventual loss of

connections or failure of a circuit. Since reliability is critically important for space

travel, military purposes, anti-lock braking system, medical equipment (like

Automated External Defibrillators) and is also important for personal computers or

home entertainment systems, the reliability of chips (ICs) is a major focus of research

efforts. Due to difficulty of testing under real conditions, Black’s equation [55] is used

to predict the life span of integrated circuits. To use Black’s equation, the component

is put through High Temperature Operating Life (HTOL) testing. The component's

expected life span under real conditions is extrapolated from data gathered during the

testing [55].

 Athough EM damage ultimately results in failure of the affected IC, the first

symptoms are intermittent glitches, and are quite challenging to diagnose. As some

interconnects fail before others, the circuit exhibits seemingly random errors, which

may be indistinguishable from other failure mechanisms.

 With increasing miniaturization the probability of failure due to electromigration

increases in circuits, because both power density and current density increase. In

advanced semiconductor manufacturing processes, copper has replaced aluminium as

the interconnect material of choice. Despite its greater fragility in the fabrication

process, copper is preferred for its superior conductivity. It is also intrinsically less

susceptible to electromigration. However, EM continues to be an ever present

challenge to device fabrication and, therefore, the EM research for copper

interconnects is ongoing (though a relatively new field).

 In modern consumer electronic devices, ICs rarely fail due to electromigration

effects. This is because proper semiconductor design practices incorporate the effects

of electromigration into the IC's layout. Nearly all IC design houses use Electronic

Design Automation (EDA) tools to check and correct electromigration problems at the

transistor layout-level. When operated within the manufacturer's specified

temperature and voltage range, a properly designed IC device is more likely to fail

from other (environmental) causes, such as cumulative damage from gamma-ray

bombardment.

 Nevertheless, there are documented cases of product failures due to

electromigration. In the late 1980s, one line of Western Digital (WD) desktop drives

suffered widespread, predictable failure 12–18 months after field usage. Using

forensic analysis of the returned bad units, engineers identified improper design-rules

36 CHAPTER 3: AGING PREDICTION IN CMOS NANO TECHNOLOGIES

in a third-party supplier's IC controller. By replacing the bad component with another

one from a different supplier, WD was able to correct the flaw, but not before

significant damage to the company's reputation.

 EM can also be a cause of degradation in some power semiconductor devices, such

as low voltage power MOSFETs, in which the lateral current through the source

contact metalization (often aluminium) can reach the critical current densities during

overload conditions. The degradation of the aluminium layer causes an increase in on-

state resistance, and can eventually lead to complete failure.

3.5 STRESS INDUCED VOIDS

The phenomenon of stress induced voiding is generally understood as a result of

stress mismatch in materials [56] and structures [57] in copper interconnect. As

mentioned in the previous section, in the last years copper has replaced aluminium as

the interconnect metal of choice in microchip fabrication. The main advantage of

copper is its low electrical resistivity and high resistance to electro-migration and

stress-migration, (in comparison with aluminium). Lower resistance means that

smaller and more tightly packed metal lines can carry the same amount of current.

This leads to fewer levels of metal, faster speed, and lower production costs. The main

drawback to copper is its high diffusivity. To prevent copper from diffusing into

transistors, it must be encapsulated in a barrier film, usually a derivative of tantalum

or titanium. In addition, to reduce the extra parasitic capacitance in denser circuits,

dielectrics with lower dielectric constants must be used. The spin-on-coat process of

low-k dielectric material requires furnace annealing to cure the film. During this

thermal processing, however, the copper is mechanically confined in the bulk layer by

the barrier metal and in the vias/trenches by sidewalls. As the copper and dielectric

materials are heated and cooled, their different thermal coefficients of expansion lead

to a mismatch in the residual stress of the copper in the bulk layer and trenches. The

mismatch leads to stress migration and to stress induced voiding (SIV) in the copper

during chip operation. Voids increase the resistance and lead to chip failure.

Obviously, this causes a severe problem in chip reliability.

CHAPTER 3: AGING PREDICTION IN CMOS NANO TECHNOLOGIES 37

Microstructural analysis of copper thin film is increasingly important for

understanding stress-induced voiding kinetics. Microstructure dependence of stress

induced voiding in copper thin films mainly comes from its effects on vacancy

diffusion and void nucleation [58][59][60][61]. The grain boundaries themselves are

full of vacancies, and the free volume released by grain growth as the result of grain

boundary elimination creates sizeable voids. Also, the grain boundary is one of the

fast diffusion paths in copper interconnect, and the diffusivities are influenced by the

misorientation angle of grain boundaries [59][60]. Moreover, twin boundaries have

been found to be nucleation sites for stress induced voiding due to thermal stress

concentration at their interfaces [61]. So, copper films with larger grains (fewer grain

boundaries) that also maintain strong crystallographic orientation and minimum twin

formation are preferred for stress induced voiding resistance in copper interconnects.

Many methods have been suggested to suppress stress voiding in copper

interconnects. Most of these, involve either altering the geometry of the line/via

structure, changing the dielectric materials to improve passivation, or optimizing the

thermal cycling process in an attempt to make it more robust [58]. In addition, it has

been theorized that the inclusion of a small amount of a second metal in copper thin

films during electroplating, and its subsequent segregation at grain boundaries by

thermal treatment suppresses the copper grain boundary diffusivity. Also, in addition

to possibly creating interstitial defects in the copper crystallite lattice, the alloyed co-

element may fill the vacancies inherent at grain boundaries. The co-element thereby

affects both the grain size distribution and thermalmechanical properties (i.e. flow

stress) of the copper thin films by particle pinning of grain boundaries.

3.6 TOTAL IONIZING DOSE

The need to follow, as much as possible, Moore’s law, pushes the commercial

manufacturer to increase the device density of modern Integrated Circuits (ICs) down

to the feasibility limit [62][63]. At the time, Intel’s 22nm microprocessors are

available on commercial market, though, looking at the next step, down to 14 nm.

This scaling trend impacts the ionizing radiation response, as well as introducing new

challenges, while removing some historical issues. The main degradation mechanism

38 CHAPTER 3: AGING PREDICTION IN CMOS NANO TECHNOLOGIES

that occurs in a MOS device subjected to ionizing radiation is the oxide charge

trapping [64][65] and [66]. A schematic band diagram for a NMOS device is reported

in Figure 16.

Figure 16: Schematic Representation of the Damage Induced by Radiation in a MOS Structure [64].

Immediately after electron-hole pair generation, induced by radiation, the

electrons and holes that survive the initial recombination are split by the electric field

and drift toward the Si/SiO2 interface (holes) and gate (electrons). As the holes arrive

at the interface, some fractions are trapped in pre-existing localized defects, leading to

a net positive charge otN . The positively charged hydrogen can be released as well

from the gate/oxide interface and drift to the Si/SiO2 interface, where it can react,

forming interface traps, itN [67]. Both interface traps, which can be negatively or

positively charged and trapped charges, influence the electrostatics of CMOS

transistors, affecting the main parameters, such as threshold voltage, drain current,

transconductance, and carrier mobility [66]. The thinning of the gate oxide below 5

nm has significantly mitigated the Total Ionizing Dose (TID) effects, reducing the

charge trapping phenomena that plagued the older technologies built with thicker

oxides, when employed in radiation environments [68].

In contrast, the very thick lateral oxide has become the Achilles heel of modern

CMOS transistors exposed to ionizing radiation. In fact, the large amount of charge

that can be trapped at the edges of the device influence the electrostatics of the

transistor, leading to large shifts of the characteristics parameters [69]. As a

consequence, the lateral isolation engineering will be one of the key points to have

commercial electronics with a good resilience to total ionizing dose effects [70].

CHAPTER 3: AGING PREDICTION IN CMOS NANO TECHNOLOGIES 39

However, despite the increased STI sensitivity, the total dose hardness of commercial

CMOS devices increased during the last ten years, featuring for the 130 nm and 90

nm technology nodes a TID tolerance of about 200 krad(SiO2) [71], doses of interest

for space applications.

41

4. BIST FOR DELAY-FAULTS

The purpose of this chapter is to present and generate the BIST architecture and

structures necessary to implement a self-test that aims the detection of delay-faults.

The goal is to reuse BIST functionality and base structures, and combine it with

standard DfT techniques for delay-faults, namely: LOC and LOS. The idea of

combining these two DfT techniques, BIST and LOC/LOS, was previously published

in [75] [76]. However, only the concept and a limited set o test circuits were

implemented. In fact, the controller functionality was defined for scan based BIST for

sequential circuits, but it was never simulated with all BIST infrastructure and CUT.

In the present work, the BIST strategy used to detect delay-faults is the same as

described in [75] [76]. However, the new contributions in this matter are:

1. Redesign the BIST controller, to allow full auto-test with simulation of the

complete BIST infrastructure and CUT;

2. Implement and simulate the behavioural description of the BIST

infrastructure’s RTL level in VHDL;

3. Implement the structural description of the BIST infrastructure’s gate level in

Verilog;

4. Implement and simulate the SPICE netlist for BIST infrastructure and CUT,

from the gate level description, using the generic CMOS library described in

[77];

5. Study the aging degradation (expected) of BIST infrastructure and CUT;

6. Implement a software tool to automatically insert BIST structures in a CUT,

both in behavioural RTL level VHDL format, and in structural gate level

Verilog format.

In the first section the BIST structures and BIST functionality are presented, and

the second section is dedicated to the BISTGen software tool, developed to

automatically generate the BIST structures of first section.

42 CHAPTER 4: BIST FOR DELAY-FAULTS

 It is also important to mention that all the BIST structures and circuitry was

developed and described in VHDL format, using a behavioural RTL level description

of the blocks. After the VHDL description of each block and circuitry was validated

through logic simulation in ModelSim environment, it was synthesized with

Synopsys software environment, at INESC-ID in Lisbon, to generate the Verilog

structured gate level description. Therefore, each circuitry has two identical behaviour

implementations, although different in the format. Moreover, the library used to

synthesize the structure of each gate level netlist was the AMS (Austria Micro

Systems) 350nm CMOS technology library, that was also previously been translated

to a generic SPICE netlist in a previous M.Sc. thesis at UAlg (please refer to [77]).

4.1 SCAN BASED BIST FOR DELAY-FAULTS

 The main idea of the scan based BIST for delay-faults is to implement a traditional

scan based BIST approach that implements the delay-fault techniques used

traditionally with scan: LOS and LOC. In fact, it implements 3 possible test methods,

the mentioned LOS, LOC and a combined test with LOS and LOC used together in

the same test set.

 The test methodology is defined by the architecture shown in Figure 17. It’s an

enhanced approach from the traditional scan based BIST architecture. Taking a closer

look, the block diagram is a bit more complex than the traditional one, special in the

number and type of modules used, and in their interconnections. As shown, the

architecture have in its composition a MUX, three LFSR chains, two triangular blocks

representing each one a comparator circuit of n and m inputs for one output, a BIST

Controller, which is the main core of the entire circuit, the CUT (pre-reconfigured

with scan flip-flops), a MISR which is a modified LFSR to operate as an n input data

register and a six input ‘and’ gate to one output.

CHAPTER 4: BIST FOR DELAY-FAULTS 43

Figure 17 : Parent BIST Block Structure

All the referred blocks will be detailed and explained in the next sections.

4.1.1 MUX BLOCK

 In order to switch between the primary inputs in normal circuit operation and the

test inputs, which in test mode are the outputs of the pseudo-random Linear Feedback

Shift Register (LFSR), a switch was designed for the effect. The switch have in its

structure an array of n 2x1 Multiplexers, where n is the number of inputs to select

from.

Figure 18: Switch Multi MUX

 The Table 8 shows an example in Verilog format where the global input is

composed of two entries.

44 CHAPTER 4: BIST FOR DELAY-FAULTS

 wire SeLMuXCuT;
 wire [1:0] InAMuXCuT;
 wire [1:0] InBMuXCuT;
 wire [1:0] DataOutMuXCuT;

 MUX21 U1MuXCuT (.A(InAMuXCuT[0]), .B(InBMuXCuT[0]), .S(SeLMuXCuT), .Q(DataOutMuXCuT[0]));
 MUX21 U2MuXCuT (.A(InAMuXCuT[1]), .B(InBMuXCuT[1]), .S(SeLMuXCuT), .Q(DataOutMuXCuT[1]));

Table 8: Mux code slice in Verilog

 One of the best correlations between two languages to describe circuits is when

both describe the same behaviour. From now one, it will be presented for the

generality of the examples also its equivalent in VHDL. Table 9 presents the same

two inputs for the Mux entries but now in VHDL description code.

entity MuXCuT is
 port(SeL : in std_logic;
 InA, InB : in std_logic_vector(1 downto 0);
 DataOut : out std_logic_vector(1 downto 0));
end MuXCuT;

architecture comportamento of MuXCuT is

begin

 process(Sel, InA, InB)
 begin
 if Sel='0' then
 DataOut <= InA;
 else
 DataOut <= InB;
 end if;
 end process;

end comportamento;

Table 9: Mux code slice in VHDL

4.1.2 LFSR PI BLOCK

 This LFSR PI stands for Linear Feedback Shift Register for Primary Inputs, and

it’s basically the LFSR block that will generate the inputs in test mode for CUT’s

primary inputs. When the controller receives the information for switching the circuit

from normal operation mode to test mode, it places the reset line that connects this

block to logic value ‘0’, setting the initial seed in the LFSR. This initial seed will

CHAPTER 4: BIST FOR DELAY-FAULTS 45

define the flip-flop composition of the LFSR, as when a specific bit should be ‘0’, the

flip-flop should have a RESET input connected to the reset signal of the LFSR,

whereas when a bit should be ‘1’ in the initial seed, the flip-flop should have its SET

input connected to the reset signal.

 The LFSR will also have an enable signal to pause the operation of the LFSR, if

necessary, and a clock signal. The output consists of a bus where the number of lines

can be equal or bigger than the number of primary inputs in the CUT. The question

that may arise is: why not the same number of bits than CUT’s primary inputs? The

answer lies in the randomness and test length that we want to achieve with the flip-

flop chain that constitute the LFSR. It is generally known that a bigger LFSR will

have a more arbitrary sequence than a smaller one, even if both are used with an equal

test length. Moreover, the internal feedback connection in the LFSR can also define

two possibilities: a linear feedback and a modular feedback structure. The linear type

is usually a smaller structure; however, the modular type usually leads to better test

results, due to a higher randomness in test vectors.

 The maximum number of different test vectors generated by an LFSR is

established by the formula 12 n
. As the initial seed is always the same, defined by

LFSR structure, if the test length is constant, we guarantee a test with always the same

test vectors applied to the CUT. Thus, this LFSR’s outputs will also be used to define

the test length, by identifying a final LFSR output and indicating the controller to stop

the BIST section.

 The Figure 19 presents the LFSR PI block diagram of the test pattern generator.

Figure 19: LFSR PI

 The block when requested is capable to generate two different types of LFSRs. The

Table 10 shows two examples, the first, a linear one and the second a modular type.

The default value to start, known as the seed is ‘10110’ in binary format representing

an m of five outputs.

 Also an analogue example but this time in VHDL is provided in the Table 11.

46 CHAPTER 4: BIST FOR DELAY-FAULTS

 wire resetLfsrPICuT;
 wire enableLfsrPICuT;
 wire [4:0] DataOutLfsrPICuT ;

 wire [4:0] QoutLfsrPICuT ;
 wire y1LfsrPICuT;

 DFEC1 U0LfsrPICuT (.D(QoutLfsrPICuT[1]), .E(enableLfsrPICuT), .C(clock), .RN(resetLfsrPICuT), .Q(QoutLfsrPICuT[0]));
 DFEP1 U1LfsrPICuT (.D(QoutLfsrPICuT[2]), .E(enableLfsrPICuT), .C(clock), .SN(resetLfsrPICuT), .Q(QoutLfsrPICuT[1]));
 DFEP1 U2LfsrPICuT (.D(QoutLfsrPICuT[3]), .E(enableLfsrPICuT), .C(clock), .SN(resetLfsrPICuT), .Q(QoutLfsrPICuT[2]));
 DFEC1 U3LfsrPICuT (.D(QoutLfsrPICuT[4]), .E(enableLfsrPICuT), .C(clock), .RN(resetLfsrPICuT), .Q(QoutLfsrPICuT[3]));
 DFEP1 U4LfsrPICuT (.D(y1LfsrPICuT), .E(enableLfsrPICuT), .C(clock), .SN(resetLfsrPICuT), .Q(QoutLfsrPICuT[4]));
 XOR20 U5LfsrPICuT (.A(QoutLfsrPICuT[0]), .B(QoutLfsrPICuT[2]), .Q(y1LfsrPICuT);
 assign DataOutLfsrPICuT = QoutLfsrPICuT;

L
I
N
E
A
R

T
Y
P
E

 wire resetLfsrPICuT;
 wire enableLfsrPICuT;
 wire [4:0] DataOutLfsrPICuT ;

 wire [4:0] QoutLfsrPICuT ;
 wire y1LfsrPICuT;

 DFEC1 U0LfsrPICuT (.D(QoutLfsrPICuT[4]), .E(enableLfsrPICuT), .C(clock), .RN(resetLfsrPICuT), .Q(QoutLfsrPICuT[0]));
 DFEP1 U1LfsrPICuT (.D(QoutLfsrPICuT[0]), .E(enableLfsrPICuT), .C(clock), .SN(resetLfsrPICuT), .Q(QoutLfsrPICuT[1]));
 DFEP1 U2LfsrPICuT (.D(y1LfsrPICuT), .E(enableLfsrPICuT), .C(clock), .SN(resetLfsrPICuT), .Q(QoutLfsrPICuT[2]));
 XOR20 U5LfsrPICuT (.A(QoutLfsrPICuT[1]), .B(QoutLfsrPICuT[4]), .Q(y1LfsrPICuT));
 DFEC1 U3LfsrPICuT (.D(QoutLfsrPICuT[2]), .E(enableLfsrPICuT), .C(clock), .RN(resetLfsrPICuT), .Q(QoutLfsrPICuT[3]));
 DFEP1 U4LfsrPICuT (.D(QoutLfsrPICuT[3]), .E(enableLfsrPICuT), .C(clock), .SN(resetLfsrPICuT), .Q(QoutLfsrPICuT[4]));
 assign DataOutLfsrPICuT = QoutLfsrPICuT;

M
O
D
U
L
A
R

T
Y
P
E

Table 10: LFSR PI Linear and Modular code slice in Verilog

LINEAR TYPE MODULAR TYPE

entity LfsrPICuT is
port(clock, reset, enable: in std_logic;
 DataOut: out std_logic_vector(4 downto 0));
end LfsrPICuT;

architecture comportamento of LfsrPICuT is
 signal Qin, Qout: std_logic_vector (4 downto 0);
begin

 comb_LfsrVhdlLinear: process(Qout,enable)
 begin
 if enable = '0' then
 Qin <= Qout;
 else
 Qin(0)<=Qout(1);
 Qin(1)<=Qout(2);
 Qin(2)<=Qout(3);
 Qin(3)<=Qout(4);
 Qin(4)<=Qout(0) xor Qout(2);
 end if;
end process;

sinc_LfsrVhdlLinear: process(clock,reset)
begin
 if reset = '0' then
 Qout <= "10110";
 elsif clock'event and clock = '1' then
 Qout <= Qin;
 end if;
end process;

 DataOut <= Qout;

end comportamento;

entity LfsrPICuT is
port(clock, reset, enable: in std_logic;
 DataOut: out std_logic_vector(4 downto 0));
end LfsrPICuT;

architecture comportamento of LfsrPICuT is
 signal Qin, Qout: std_logic_vector (4 downto 0);
begin

 comb_VhdlLFSRModular: process(Qout,enable)
 begin
 if enable = '0' then
 Qin <= Qout;
 else
 Qin(0)<=Qout(4);
 Qin(1)<=Qout(0);
 Qin(2)<=Qout(1) xor Qout(4);
 Qin(3)<=Qout(2);
 Qin(4)<=Qout(3);
 end if;
end process;

sinc_VhdlLFSRModular: process(clock,reset)
begin
 if reset = '0' then
 Qout <= "10110";
 elsif clock'event and clock = '1' then
 Qout <= Qin;
 end if;
end process;

 DataOut <= Qout;

end comportamento;

Table 11: LFSR PI Linear and Modular code slice in VHDL

CHAPTER 4: BIST FOR DELAY-FAULTS 47

4.1.3 LFSR SCAN

 The LFSR Scan block is similar to LFSR PI. The differences rely on the fact that

this LFSR will generate the test vectors for the CUT’s scan chain. This fact implies

that only one output will be used, and the vectors are serialized to CUT’s scan chain.

It is possible to use a unique LFSR module to generate simultaneously the CUT’s

primary input test vectors and the scan chain test vectors. However, as it is shown in

[75], two separate LFSR blocks will lead to better test results, achieving higher test

coverage results.

 When this block is sending data, the Test_SE line (Controller to CUT) has to be

enabled in order to switch all the internal flip-flops to scan mode. The objective is to

load it with known values contained in the LFSR structure. The number of clock

pulses when in scan mode is the same as the number of the flip-flops contained in the

sequential part of the CUT in order to shift all.

Figure 20: LFSR Scan

 The block when requested is also capable to generate two different types of LFSRs.

The Table 12 shows two examples, the first, a linear one and the second a modular

type. The seed is also ‘10110’ in binary format. This is five bits LFSR like the

previous one and its task is to load in serial the flip-flop chain of the CUT.

 Also an analogue example but this time in VHDL format is provided in the Table

13.

48 CHAPTER 4: BIST FOR DELAY-FAULTS

 wire resetLfsrSCANCuT;
 wire enableLfsrSCANCuT;
 wire DataOutLfsrSCANCuT ;

 wire [4:0] QoutLfsrSCANCuT ;
 wire y1LfsrSCANCuT;

 DFEC1 U0LfsrSCANCuT (.D(QoutLfsrSCANCuT[1]), .E(enableLfsrSCANCuT), .C(clock), .RN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[0]));
 DFEP1 U1LfsrSCANCuT (.D(QoutLfsrSCANCuT[2]), .E(enableLfsrSCANCuT), .C(clock), .SN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[1]));
 DFEP1 U2LfsrSCANCuT (.D(QoutLfsrSCANCuT[3]), .E(enableLfsrSCANCuT), .C(clock), .SN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[2]));
 DFEC1 U3LfsrSCANCuT (.D(QoutLfsrSCANCuT[4]), .E(enableLfsrSCANCuT), .C(clock), .RN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[3]));
 DFEP1 U4LfsrSCANCuT (.D(y1LfsrSCANCuT), .E(enableLfsrSCANCuT), .C(clock), .SN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[4]));

 XOR20 U5LfsrSCANCuT (.A(QoutLfsrSCANCuT[0]), .B(QoutLfsrSCANCuT[2]), .Q(y1LfsrSCANCuT);

 assign DataOutLfsrSCANCuT = QoutLfsrSCANCuT[0];

L
I
N
E
A
R

T
Y
P
E

 wire resetLfsrSCANCuT;
 wire enableLfsrSCANCuT;
 wire DataOutLfsrSCANCuT ;

 wire [4:0] QoutLfsrSCANCuT ;
 wire y1LfsrSCANCuT;

 DFEC1 U0LfsrSCANCuT (.D(QoutLfsrSCANCuT[4]), .E(enableLfsrSCANCuT), .C(clock), .RN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[0]));
 DFEP1 U1LfsrSCANCuT (.D(QoutLfsrSCANCuT[0]), .E(enableLfsrSCANCuT), .C(clock), .SN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[1]));
 DFEP1 U2LfsrSCANCuT (.D(y1LfsrSCANCuT), .E(enableLfsrSCANCuT), .C(clock), .SN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[2]));
 XOR20 U5LfsrSCANCuT (.A(QoutLfsrSCANCuT[1]), .B(QoutLfsrSCANCuT[4]), .Q(y1LfsrSCANCuT));
 DFEC1 U3LfsrSCANCuT (.D(QoutLfsrSCANCuT[2]), .E(enableLfsrSCANCuT), .C(clock), .RN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[3]));
 DFEP1 U4LfsrSCANCuT (.D(QoutLfsrSCANCuT[3]), .E(enableLfsrSCANCuT), .C(clock), .SN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[4]));

 assign DataOutLfsrSCANCuT = QoutLfsrSCANCuT[4];

M
O
D
U
L
A
R

T
Y
P
E

Table 12: LFSR Scan Linear and Modular code slice in Verilog

LINEAR TYPE MODULAR TYPE

entity LfsrSCANCuT is
port(clock: in std_logic;
 reset: in std_logic;
 enable: in std_logic;
 DataOut: out std_logic);
end LfsrSCANCuT;

architecture comportamento of LfsrSCANCuT is
 signal Qin: std_logic_vector (4 downto 0);
 signal Qout: std_logic_vector (4 downto 0);
begin

 comb_LfsrVhdlLinear: process(Qout,enable)
 begin
 if enable = '0' then
 Qin <= Qout;
 else
 Qin(0)<=Qout(1);
 Qin(1)<=Qout(2);
 Qin(2)<=Qout(3);
 Qin(3)<=Qout(4);
 Qin(4)<=Qout(0) xor Qout(2);
 end if;
end process;

sinc_LfsrVhdlLinear: process(clock,reset)
begin
 if reset = '0' then
 Qout <= "10110";
 elsif clock'event and clock = '1' then
 Qout <= Qin;
 end if;
end process;

 DataOut <= Qout(0);

end comportamento;

entity LfsrSCANCuT is
port(clock: in std_logic;
 reset: in std_logic;
 enable: in std_logic;
 DataOut: out std_logic);
end LfsrSCANCuT;

architecture comportamento of LfsrSCANCuT is
 signal Qin: std_logic_vector (4 downto 0);
 signal Qout: std_logic_vector (4 downto 0);
begin

 comb_VhdlLFSRModular: process(Qout,enable)
 begin
 if enable = '0' then
 Qin <= Qout;
 else
 Qin(0)<=Qout(4);
 Qin(1)<=Qout(0);
 Qin(2)<=Qout(1) xor Qout(4);
 Qin(3)<=Qout(2);
 Qin(4)<=Qout(3);
 end if;
end process;

sinc_VhdlLFSRModular: process(clock,reset)
begin
 if reset = '0' then
 Qout <= "10110";
 elsif clock'event and clock = '1' then
 Qout <= Qin;
 end if;
end process;

 DataOut <= Qout(4);

end comportamento;

Table 13: LFSR Scan Linear and Modular code slice in VHDL

CHAPTER 4: BIST FOR DELAY-FAULTS 49

4.1.4 LFSR SCAN COUNTER

 The LFSR Scan Counter structure is related with the number of flip-flops

comprising the CUT’s chain, since its function is to count the number of clocks to

scan in to CUT’s flip-flops the test vectors generated in LFSR Scan block. Therefore,

the flip-flops number in LFSR Scan Counter block should be the round up next

integer from  k2log where k is the flip-flops number in the CUT’s scan chain. The

block starts its count and, when it reaches the end, receives information to suspend the

process for some time. When the block receive a new instruction to continue, the

LFSR returns to the starting position and begin all the process again. This can be

repeated several times depending on the number of the LFSR PI test patterns.

Figure 21: LFSR Scan Counter

 Two different types of LFSRs can be generated with the LFSR Scan Counter. The

Table 14 shows the differences with the first, a linear one and the second a modular

type. The seed for the Verilog example is ‘01’ and is two bits LFSR because the

number of the CUT flip-flops is two.

 The VHDL analogue example is provided in the Table 15. The seed value this time

is ‘11’ because a random process is present to select the seed for the block.

50 CHAPTER 4: BIST FOR DELAY-FAULTS

 wire resetLfsrSCountCuT;
 wire enableLfsrSCountCuT;
 wire [1:0] DataOutLfsrSCountCuT ;

 wire [1:0] QoutLfsrSCountCuT ;
 wire y1LfsrSCountCuT;

 DFEP1 U0LfsrSCountCuT (.D(QoutLfsrSCountCuT[1]), .E(enableLfsrSCountCuT), .C(clock), .SN(resetLfsrSCountCuT), .Q(QoutLfsrSCountCuT[0]));
 DFEC1 U1LfsrSCounterCuT (.D(y1LfsrSCounterCuT), .E(enableLfsrSCounterCuT), .C(clock), .RN(resetLfsrSCounterCuT), .Q(QoutLfsrSCountCuT[1]));

 XOR20 U2LfsrSCountCuT (.A(QoutLfsrSCountCuT[0]), .B(QoutLfsrSCountCuT[1]), .Q(y1LfsrSCountCuT);

 assign DataOutLfsrSCountCuT = QoutLfsrSCountCuT;

L
I
N
E
A
R

T
Y
P
E

 wire resetLfsrSCountCuT;
 wire enableLfsrSCountCuT;
 wire [1:0] DataOutLfsrSCountCuT ;

 wire [1:0] QoutLfsrSCountCuT ;
 wire y1LfsrSCountCuT;

 DFEP1 U0LfsrSCountCuT (.D(QoutLfsrSCountCuT[1]), .E(enableLfsrSCountCuT), .C(clock), .SN(resetLfsrSCountCuT), .Q(QoutLfsrSCountCuT[0]));
 DFEC1 U1LfsrSCountCuT (.D(y1LfsrSCountCuT), .C(clock), .RN(resetLfsrSCountCuT), .Q(QoutLfsrSCountCuT[1]));
 XOR20 U2LfsrSCountCuT (.A(QoutLfsrSCountCuT[0]), .B(QoutLfsrSCountCuT[1]), .Q(y1LfsrSCountCuT));

 assign DataOutLfsrSCountCuT = QoutLfsrSCountCuT;

M
O
D
U
L
A
R

T
Y
P
E

Table 14: LFSR Scan Counter Linear and Modular code slice in Verilog

LINEAR TYPE MODULAR TYPE

entity LfsrScanCounterCuT is
port(clock: in std_logic;
 reset: in std_logic;
 enable: in std_logic;
 DataOut: out std_logic_vector(1 downto 0));
end LfsrScanCounterCuT;

architecture comportamento of LfsrScanCounterCuT is
 signal Qin: std_logic_vector (1 downto 0);
 signal Qout: std_logic_vector (1 downto 0);
begin

 comb_LfsrVhdlLinear: process(Qout,enable)
 begin
 if enable = '0' then
 Qin <= Qout;
 else
 Qin(0)<=Qout(1);
 Qin(1)<=Qout(0) xor Qout(1);
 end if;
end process;

sinc_LfsrVhdlLinear: process(clock,reset)
begin
 if reset = '0' then
 Qout <= "11";
 elsif clock'event and clock = '1' then
 Qout <= Qin;
 end if;
end process;

 DataOut <= Qout;

end comportamento;

entity LfsrScanCounterCuT is
port(clock: in std_logic;
 reset: in std_logic;
 enable: in std_logic;
 DataOut: out std_logic_vector(1 downto 0));
end LfsrScanCounterCuT;

architecture comportamento of LfsrScanCounterCuT is
 signal Qin: std_logic_vector (1 downto 0);
 signal Qout: std_logic_vector (1 downto 0);
begin

 comb_VhdlLFSRModular: process(Qout,enable)
 begin
 if enable = '0' then
 Qin <= Qout;
 else
 Qin(0)<=Qout(1);
 Qin(1)<=Qout(0) xor Qout(1);
 end if;
end process;

sinc_VhdlLFSRModular: process(clock,reset)
begin
 if reset = '0' then
 Qout <= "11";
 elsif clock'event and clock = '1' then
 Qout <= Qin;
 end if;
end process;

 DataOut <= Qout;

end comportamento;

Table 15: LFSR Scan Counter Linear and Modular code slice in VHDL

CHAPTER 4: BIST FOR DELAY-FAULTS 51

4.1.5 MISR BLOCK

 The MISR (Multiple Input Signature Register) block is based on the LFSR’s model

but with multiple input bits connected to the flip-flops of the MISR by XOR gates.

The number of inputs should be fewer than the number of flip-flops in the MISR and

these inputs are actually the primary outputs of the CUT and the output of its scan

chain. To avoid aliasing in a test sequence, the MISR should be as high as possible,

considering that as the higher as the length is, the higher area overhead we will have

in the circuit, but the slowest possibility of having aliasing. The block is presented in

Figure 22 and it’s composed by the following signals; reset, enable, clock, input bus

lines presented as n variable, and the MISR_out.

Figure 22: MISR Block Diagram

 The inputs of the MISR will provide connection to CUT’s outputs through a bus

which also connects to the outputs of the overall block. In the following is presented

an example in Verilog and VHDL format of a MISR specific case with five flip-flops.

Seed example - 01100

module LfsrMisrCuT (InputSLfsrMisrCuT, clock, resetLfsrMisrCuT, enableLfsrMisrCuT, DataOutLfsrMisrCuT);
 input clock, resetLfsrMisrCuT, enableLfsrMisrCuT;
 input [1:0] InPutSLfsrMisrCuT ;
 output DataOutLfsrMisrCuT;

 wire [4:0] QoutLfsrMisrCuT ;
 wire y1LfsrMisrCuT, x1LfsrMisrCuT, x2LfsrMisrCuT;

 DFEC1 U0LfsrMisrCuT (.D(x1LfsrMisrCuT), .E(enableLfsrMisrCuT), .C(clock), .RN(resetLfsrMisrCuT), .Q(QoutLfsrMisrCuT[0]));
 XOR20 U6LfsrMisrCuT (.A(QoutLfsrMisrCuT[1]), .B(InputSLfsrMisrCuT[0]), .Q(x1LfsrMisrCuT));
 DFEC1 U1LfsrMisrCuT (.D(x2LfsrMisrCuT), .E(enableLfsrMisrCuT), .C(clock), .RN(resetLfsrMisrCuT), .Q(QoutLfsrMisrCuT[1]));
 XOR20 U7LfsrMisrCuT (.A(QoutLfsrMisrCuT[2]), .B(InputSLfsrMisrCuT[1]), .Q(x2LfsrMisrCuT));
 DFEP1 U2LfsrMisrCuT (.D(QoutLfsrMisrCuT[3]), .E(enableLfsrMisrCuT), .C(clock), .SN(resetLfsrMisrCuT), .Q(QoutLfsrMisrCuT[2]));
 DFEP1 U3LfsrMisrCuT (.D(QoutLfsrMisrCuT[4]), .E(enableLfsrMisrCuT), .C(clock), .SN(resetLfsrMisrCuT), .Q(QoutLfsrMisrCuT[3]));
 DFEC1 U4LfsrMisrCuT (.D(y1LfsrMisrCuT), .E(enableLfsrMisrCuT), .C(clock), .RN(resetLfsrMisrCuT), .Q(QoutLfsrMisrCuT[4]));
 XOR20 U5LfsrMisrCuT (.A(QoutLfsrMisrCuT[0]), .B(QoutLfsrMisrCuT[2]), .Q(y1LfsrMisrCuT));
 assign DataOutLfsrMisrCuT = QoutLfsrMisrCuT[0];

endmodule

Table 16: MISR Linear code slice in Verilog

52 CHAPTER 4: BIST FOR DELAY-FAULTS

Seed example - 01100

entity LfsrMisrCuT is
port(DataIn: in std_logic_vector(1 downto 0);
 clock: in std_logic;
 reset: in std_logic;
 enable: in std_logic;
 DataOut: out std_logic);
end LfsrMisrCuT;

architecture comportamento of LfsrMisrCuT is
 signal Qin: std_logic_vector (4 downto 0);
 signal Qout: std_logic_vector (4 downto 0);

begin

 comb_VhdlMISRLinear: process(DataIn,Qout,enable)
 begin
 if enable = '0' then
 Qin <= Qout;
 else
 Qin(0)<=Qout(1) xor DataIn(0);
 Qin(1)<=Qout(2) xor DataIn(1);
 Qin(2)<=Qout(3);
 Qin(3)<=Qout(4);
 Qin(4)<=Qout(0) xor Qout(2);
 end if;
end process;

sinc_VhdlMISRLinear: process(clock,reset)
begin
 if reset = '0' then
 Qout <= "01100";
 elsif clock'event and clock = '1' then
 Qout <= Qin;
 end if;
 end process;

 DataOut <= Qout(0);

end Comportamento;

Table 17: MISR Linear code slice in VHDL

4.1.6 COMPARATORS

 The comparators have the function to integrate comparison logic for a known

vector that in a certain moment may arise at the input of this block. Once this vector

arrives, the logic that is purely combinatorial, will present at the output a logical ‘1’.

For any other combination that can be presented at the input, the logic value is always

opposite. It is thus possible in this way to establish a specific point to stop the iterative

process of the LFSRs (for the scan counter block and for test length count).

Figure 23: Comparator Blocks (LFSR PI at right / LFSR Scan Counter at left)

CHAPTER 4: BIST FOR DELAY-FAULTS 53

 The Table 18 and Table 19 show code slices in Verilog and VHDL respectively.

Both tables describe two blocks (the LFSR PI and the LFSR Scan Counter). The

comparators process will be detailed hereafter in the LFSR’s configuration.

LFSR PI Comparator Code Seed Vector - 10110 Trigger Vector - 00101

 wire WireConnectLpO;
 wire [4:0] LpOInvOutNandIn0;

 assign LpOInvOutNandIn0[0] = LfsrPiOut[0];
 INV0 LpO00 (.A(LfsrPiOut[1]), .Q(LpOInvOutNandIn0[1]));
 assign LpOInvOutNandIn0[2] = LfsrPiOut[2];
 INV0 LpO01 (.A(LfsrPiOut[3]), .Q(LpOInvOutNandIn0[3]));
 INV0 LpO02 (.A(LfsrPiOut[4]), .Q(LpOInvOutNandIn0[4]));
 wire [1:0] LpONandOutInvIn0;
 wire [1:0] LpOInvOutNandIn1;
 NAND20 NLpO10 (.A(LpOInvOutNandIn0[0]), .B(LpOInvOutNandIn0[1], .Q(LpONandOutInvIn0[0]));
 INV0 LpO10 (.A(LpONandOutInvIn0[0]), .Q(LpOInvOutNandIn1[0]));
 NAND20 NLpO11 (.A(LpOInvOutNandIn0[2]), .B(LpOInvOutNandIn0[3], .Q(LpONandOutInvIn0[1]));
 INV0 LpO11 (.A(LpONandOutInvIn0[1]), .Q(LpOInvOutNandIn1[1]));
 wire LpONandOutInvIn1;
 wire LpOInvOutNandIn2;
 NAND20 NLpO20 (.A(LpOInvOutNandIn1[0]), .B(LpOInvOutNandIn1[1]), .Q(LpONandOutInvIn1));
 INV0 LpO20 (.A(LpONandOutInvIn1), .Q(LpOInvOutNandIn2));
 wire LpONandOutInvIn2;
 wire LpOInvOutNandIn3;
 NAND20 NLpO30 (.A(LpOInvOutNandIn2), .B(LpOInvOutNandIn0[4]), .Q(LpONandOutInvIn2));
 INV0 LpO30 (.A(LpONandOutInvIn2), .Q(LpOInvOutNandIn3));

 assign WireConnectLpO = LpOInvOutNandIn3;

LFSR Scan Counter Comparator Code Seed Vector - 01 Trigger Vector - 10

 wire WireConnectLscO;
 wire [1:0] LscOInvOutNandIn0;

 INV0 LscO00 (.A(LfsrScanCounterOut[0]), .Q(LscOInvOutNandIn0[0]));
 assign LscOInvOutNandIn0[1] = LfsrScanCounterOut[1];

 wire LscONandOutInvIn0;
 wire LscOInvOutNandIn1;

 NAND20 NLscO10 (.A(LscOInvOutNandIn0[0]), .B(LscOInvOutNandIn0[1], .Q(LscONandOutInvIn0));
 INV0 LscO10 (.A(LscONandOutInvIn0), .Q(LscOInvOutNandIn1));

 assign WireConnectLscO = LscOInvOutNandIn1;

Table 18: LFSR Comparators code slice in Verilog

LFSR PI comparator Code LFSR Scan Counter comparator Code

BistCountEnd: process(LfsrPiOut)
begin
 if LfsrPiOut = "00101" then
 BistCountFinishedOut <= '1';
 else
 BistCountFinishedOut <= '0';
 end if;
end process;

ScanCountEnd: process(LfsrScanCounterOut)
begin
 if LfsrScanCounterOut = "10" then
 ScanCountFinishedOut <= '1';
 else
 ScanCountFinishedOut <= '0';
 end if;
end process;

Table 19: LFSR Comparators code slice in VHDL

54 CHAPTER 4: BIST FOR DELAY-FAULTS

4.1.7 CUT

 Most integrated circuits incorporate combinational and sequential logic. When a

particular company designs a circuit for a specific application and want to add a scan

based test, the circuit has to be changed for such purpose. It is necessary to

reconfigure circuit’s description, by introducing a scan path, signals and functionality.

 Basically, for a full-scan methodology, all flip-flops in the CUT are replaced

by scan flip-flops, that are able to choose between two inputs: the normal input and a

scan input. After all flip-flops have been replaced and when Test_SE signal is in scan

mode, the output is connected to the scan input of another flip-flop forming a chain

connecting all flip-flops, as shown in Figure 24.

Figure 24: Insertion of a Scan Chain into a CUT

 The Table 20 describes a simple circuit with only two inputs and one output in

order to clarify the scan insertion method in VHDL environment. Only two flip-flops

has two be replaced.

CUT VHDL without scan CUT VHDL with scan

entity CuT is
 port(a, b, clock, reset : in std_logic;
 z: out std_logic);
end CuT;

architecture Comportamento of CuT is

signal Qout, Qin: std_logic_vector(1 downto 0);
begin

 sinc: process(clock,reset)
 begin
 if reset = '0' then
 Qout <= "00";
 elsif clock'event and clock = '1' then
 Qout <= Qin;
 end if;
 end process;

entity CuT is
 port(a, b, teste_se, teste_si, clock, reset : in std_logic;
 z, scan_out : out std_logic);
end CuT;

architecture Comportamento of CuT is

signal Qout, Qin, Qin_data, Qin_test: std_logic_vector(1 downto 0);
begin
 sinc: process(clock,reset)
 begin
 if reset = '0' then
 Qout <= "00";
 elsif clock'event and clock = '1' then
 Qout <= Qin;
 end if;
 end process;
Qin_data(0) <= b;

CHAPTER 4: BIST FOR DELAY-FAULTS 55

Qin(0) <= b;
Qin(1) <= Qout(0);

 comb: process(clock,Qout,Qin,a,b)
 begin
 Qin(1) <= not(Qout(0) and a);
 z <= not(not(Qin(1)) and Qout(1));
 end process;

end comportamento;

Qin_test(0) <= teste_si;
Qin_test(1) <= Qout(0);
scan_out <= Qout(1);
 comb_mux: process(clock,teste_se,Qin_data,Qin_test,Qout,Qin,a,b)
 begin
 Qin_data(1) <= not(Qout(0) and a);
 z <= not(not(Qin_data(1)) and Qout(1));
 if teste_se = '0' then
 Qin <= Qin_data;
 else
 Qin <= Qin_test;
 end if;
 end process;

end comportamento;

Table 20: VHDL CUT before and after Scan insertion.

4.1.8 BIST CONTROLLER

 The BIST controller is certainly the most important block of the whole BIST

structure. It’s the core unit responsible for controlling the instructions that are given to

the various blocks, in order to rule the entire self-test functionality. It is also

responsible for switching between the normal and test mode. The signal responsible

for initialize the self-test is the START pin. Once this line receives a logic ‘1’, the

circuit enters in test mode and the finite state machine will change its state. It will

leave the idle state and it will go to the reset state and initiate the test.

 The purpose of the reset state is to prepare the five blocks, LFSR PI, LFSR Scan,

LFSR Scan Counter, CUT and MISR, so that in the next clock pulse these blocks are

ready to begin the test sequence. The same analogy has to be applied to the ENABLE

line of each block that integrates it, except that this signal will also be used during test

to enable or disable specific blocks (e.g., the LFSR PI have to remain disabled when

controller is at scan state). It is also important in the reset state to de-activate the

BIST_done pin and enable (logic ‘1’) the Test_SE signal of the CUT, in order to

switch all the internal flip-flops to scan mode. The MUX_Sel signal should also

disable primary inputs and connect the LFSR’s signals to CUT’s inputs. This state

lasts only one clock cycle.

 In scan mode, starts the loading process of the CUT’s scan chain. The data is

received serially through the LFSR scan output line and when the load is complete,

the LFSR Scan Counter informs the controller that the scan chain is reloaded with a

new test pattern.

56 CHAPTER 4: BIST FOR DELAY-FAULTS

 As soon as the controller receives the command, it will jump to launch state and

will suspend (logic ‘0’) the enable line of the SCAN Counter block. At the same time

the enable LFSR PI line will be activated, supplying a valid and known vector in the

respective bus where the CUT primary inputs connect. There is a particular signal in

the interconnection between the two blocks of the entire circuit that is very important,

and the way it’s treated defines the fault coverage as well as the cost to implement the

application, which is, the Test_SE line. Two methods can and were used to define the

test strategy: LOS and/or LOC.

Figure 25: BIST Specific State Machine

 In LOC the Test_SE line become logic ‘0’ in the beginning of the launch state,

making each individual scan flip-flops inside the CUT to switch to normal operation

mode and waiting for capture. But this in not true for the LOS method that will drag

the off state of this line until the beginning of capture mode arrives, and is also more

complex to implement it in a standard scan test environment (due to the fast clock

between Launch and Capture).

 Capture mode has finally arrived and is now possible to obtain the first output

vector, generated by the first one applied to CUT. Because the MISR block has its

inputs connected to the CUT outputs, the output vector is present in the MISR inputs.

It is also here that the LFSR Scan and LFSR Scan Counter enable signals will be

prepared to be activated again in the next state, and the LFSR PI enable signal has to

be disabled at this moment also.

CHAPTER 4: BIST FOR DELAY-FAULTS 57

 The next state is again the scan, and here all the previous process is repeated until

the last vector that was defined in the LFSR PI block. As the CUT flip-flops chain is

loaded again with the new values, the old ones will be putted clock by clock, one by

one, in the MISR Scan_out input, allowing to test not only the combinational logical

but also all the flip-flops in the CUT and their interconnection when in scan mode.

The BIST Controller block is presented in the Figure 26.

Figure 26: BIST Controller Block Diagram

The Table 21 and the Table 22 show the code that instructs the controller for

desired operation. The first table contains the code in Verilog language and the second

table in VHDL description.

Controller based on Launch-on-Shift (Verilog)

 wire BistStart;
 wire Clock;
 wire ResetController;
 wire LfsrPiCountFinished;
 wire LfsrScanCountFinished;
 wire ResetLfsrPi;
 wire ResetLfsrScan;
 wire ResetLfsrScanCounter;
 wire ResetCut;
 wire ResetMisr;
 wire EnableLfsrPi;
 wire EnableLfsrScan;
 wire EnableLfsrScanCounter;
 wire EnableMisr;
 wire TestSE;
 wire MuxSelect;
 wire BistDone;

// -- L . O . S

 wire LonSn1;
 wire LonSn3;
 wire LonSn4;
 wire LonSn5;
 wire LonSn6;
 wire LonSn7;
 wire LonSn8;
 wire LonSn9;
 wire LonSn11;
 wire LonSn12;
 wire LonSn13;
 wire LonSn14;

58 CHAPTER 4: BIST FOR DELAY-FAULTS

 wire LonSn15;
 wire LonSn16;
 wire LonSn17;
 wire LonSn18;
 wire LonSn19;
 wire LonSn20;

 wire [2:0] estado;
 wire [2:0] estado_seguinte;

 assign ResetLfsrPi = ResetMisr;
 assign ResetLfsrScan = ResetMisr;
 assign EnableLfsrScan = TestSE;
 assign EnableLfsrPi = estado_seguinte[2];

 DFC3 \estado_reg[0] (.D(estado_seguinte[0]), .C(Clock), .RN(ResetController), .Q(estado[0]));
 DFC1 \estado_reg[1] (.D(estado_seguinte[1]), .C(Clock), .RN(ResetController), .Q(estado[1]), .QN(LonSn1));
 DFC3 \estado_reg[2] (.D(estado_seguinte[2]), .C(Clock), .RN(ResetController), .Q(estado[2]));
 INV3 U3ControlleR (.A(LonSn13), .Q(EnableMisr));

 CLKIN0 U4ControlleR (.A(LonSn3), .Q(ResetMisr));
 NOR20 U5ControlleR (.A(estado_seguinte[2]), .B(ResetLfsrScanCounter), .Q(LonSn3));
 AOI2110 U6ControlleR (.A(LonSn1), .B(LonSn4), .C(LonSn5), .D(LonSn6), .Q(ResetLfsrScanCounter));
 CLKIN0 U7ControlleR (.A(LonSn7), .Q(LonSn5));
 OAI210 U8ControlleR (.A(estado[0]), .B(estado[1]), .C(estado[2]), .Q(LonSn7));
 CLKIN0 U9ControlleR (.A(LonSn8), .Q(ResetCut));
 NOR40 U10ControlleR (.A(LonSn9), .B(LonSn6), .C(TestSE), .D(estado[2]), .Q(LonSn8));
 CLKIN0 U11ControlleR (.A(LonSn11), .Q(LonSn6));
 NOR20 U12ControlleR (.A(estado_seguinte[0]), .B(estado[1]), .Q(LonSn9));
 CLKIN0 U13ControlleR (.A(LonSn12), .Q(MuxSelect));
 NOR20 U14ControlleR (.A(EnableMisr), .B(estado_seguinte[0]), .Q(LonSn12));
 NOR20 U15ControlleR (.A(TestSE), .B(estado_seguinte[2]), .Q(LonSn13));

 OAI210 U16ControlleR (.A(BistDone), .B(LonSn14), .C(LonSn15), .Q(TestSE));
 OAI310 U17ControlleR (.A(LonSn14), .B(estado_seguinte[0]), .C(BistDone), .D(LonSn15), .Q(EnableLfsrScanCounter));
 NOR30 U18ControlleR (.A(estado_seguinte[1]), .B(estado_seguinte[2]), .C(estado_seguinte[0]), .Q(BistDone));
 OAI310 U19ControlleR (.A(LonSn14), .B(LfsrPiCountFinished), .C(LonSn16), .D(LonSn17), .Q(estado_seguinte[0]));
 NAND30 U20ControlleR (.A(LonSn4), .B(LonSn1), .C(BistStart), .Q(LonSn17));
 NOR20 U21ControlleR (.A(LonSn11), .B(estado[2]), .Q(estado_seguinte[2]));
 NAND20 U22ControlleR (.A(estado[1]), .B(estado[0]), .Q(LonSn11));
 OAI210 U23ControlleR (.A(LonSn18), .B(LonSn14), .C(LonSn15), .Q(estado_seguinte[1]));
 CLKIN0 U24ControlleR (.A(LonSn19), .Q(LonSn15));
 AOI2110 U25ControlleR (.A(estado[0]), .B(estado[2]), .C(LonSn4), .D(estado[1]), .Q(LonSn19));
 NAND20 U26ControlleR (.A(LonSn4), .B(estado[1]), .Q(LonSn14));
 NOR20 U27ControlleR (.A(estado[0]), .B(estado[2]), .Q(LonSn4));
 NOR20 U28ControlleR (.A(LonSn20), .B(LonSn16), .Q(LonSn18));
 CLKIN0 U29ControlleR (.A(LfsrScanCountFinished), .Q(LonSn16));
 CLKIN0 U30ControlleR (.A(LfsrPiCountFinished), .Q(LonSn20));

Table 21: Verilog Controller code in Launch-on-Shift

Controller based on Launch-on-Shift (VHDL)

entity BistControllerCuT is
port(BistStart : in std_logic;
 Clock : in std_logic;
 ResetController : in std_logic;
 ResetLfsrPi : out std_logic;
 ResetLfsrScan : out std_logic;
 ResetLfsrScanCounter : out std_logic;
 ResetCut : out std_logic;
 ResetMisr : out std_logic;
 LfsrPiCountFinished : in std_logic;
 LfsrScanCountFinished : in std_logic;
 EnableLfsrPi : out std_logic;
 EnableLfsrScan : out std_logic;
 EnableLfsrScanCounter : out std_logic;
 EnableMisr : out std_logic;
 TestSE : out std_logic;
 MuxSelect : out std_logic;
 BistDone : out std_logic);
end BistControllerCuT;

CHAPTER 4: BIST FOR DELAY-FAULTS 59

architecture comportamento of BistControllerCuT is

type estados is (IDLE,RESET,SCAN,LAUNCH,CAPTURE);
signal estado,estado_seguinte:estados;

begin

saidas_comb:process(estado,estado_seguinte)

 begin
 case estado is
 when IDLE =>

 ResetLfsrPi <= '0';
 ResetLfsrScan <= '0';
 ResetLfsrScanCounter <= '0';
 ResetCut <= '1';
 ResetMisr <= '0';
 EnableLfsrScan <= '0';
 EnableLfsrPi <= '0';
 EnableLfsrScanCounter <= '0';

 EnableMisr <= '0';
 TestSE <= '0';
 MuxSelect <= '0';
 BistDone <= '1';

 if estado_seguinte=RESET then
 ResetCut <= '0';
 MuxSelect <= '1';
 BistDone <= '0';
 end if;

 when RESET =>

 ResetLfsrPi <= '1';
 ResetLfsrScan <= '1';

 ResetLfsrScanCounter <= '1';
 ResetCut <= '1';
 ResetMisr <= '1';
 EnableLfsrScan <= '1';
 EnableLfsrPi <= '0';
 EnableLfsrScanCounter <= '1';
 EnableMisr <= '1';
 TestSE <= '1';
 MuxSelect <= '1';
 BistDone <= '0';

 when SCAN =>

 ResetLfsrPi <= '1';
 ResetLfsrScan <= '1';
 ResetLfsrScanCounter <= '1';
 ResetCut <= '1';
 ResetMisr <= '1';
 EnableLfsrScan <= '1';
 EnableLfsrPi <= '0';
 EnableLfsrScanCounter <= '1';
 EnableMisr <= '1';
 TestSE <= '1';
 MuxSelect <= '1';
 BistDone <= '0';

 if estado_seguinte=LAUNCH then

 EnableLfsrScan <= '1';
 EnableLfsrPi <= '0';
 EnableLfsrScanCounter <= '0';
 EnableMisr <= '1';
 TestSE <= '1';

 elsif estado_seguinte=IDLE then

 ResetCut <= '0';
 EnableLfsrScan <= '0';
 EnableLfsrPi <= '0';
 EnableLfsrScanCounter <= '0';
 EnableMisr <= '0';
 TestSE <= '0';
 MuxSelect<='0';
 BistDone<='1';

60 CHAPTER 4: BIST FOR DELAY-FAULTS

 end if;

 when LAUNCH =>

 ResetLfsrPi <= '1';
 ResetLfsrScan <= '1';
 ResetLfsrScanCounter <= '0';
 ResetCut <= '1';
 ResetMisr <= '1';
 EnableLfsrScan <= '0';
 EnableLfsrPi <= '1';
 EnableLfsrScanCounter <= '0';
 EnableMisr <= '1';
 TestSE <= '0';
 MuxSelect <= '1';
 BistDone <= '0';

 when CAPTURE =>

 ResetLfsrPi <= '1';

 ResetLfsrScan <= '1';
 ResetLfsrScanCounter <= '1';
 ResetCut <= '1';
 ResetMisr <= '1';
 EnableLfsrScan <= '1';
 EnableLfsrPi <= '0';
 EnableLfsrScanCounter <= '1';
 EnableMisr <= '1';
 TestSE <= '1';
 MuxSelect <= '1';
 BistDone <= '0';

 when others =>

 ResetLfsrPi <= '0';
 ResetLfsrScan <= '0';
 ResetLfsrScanCounter <= '0';
 ResetCut <= '1';
 ResetMisr <= '0';
 EnableLfsrScan <= '0';
 EnableLfsrPi <= '0';
 EnableLfsrScanCounter <= '0';
 EnableMisr <= '0';
 TestSE <= '0';
 MuxSelect <= '0';
 BistDone <= '1';

 end case;
 end process;

 CTRL_comb:process(estado,BistStart,LfsrPiCountFinished,LfsrScanCountFinished)

 begin
 case estado is
 when IDLE=>
 if BistStart='1' then
 estado_seguinte<=RESET;
 else
 estado_seguinte<=IDLE;
 end if;
 when RESET=>
 estado_seguinte<=SCAN;
 when SCAN=>
 if LfsrScanCountFinished='1' and LfsrPiCountFinished='0' then
 estado_seguinte<=LAUNCH;
 elsif LfsrScanCountFinished='1' and LfsrPiCountFinished='1' then
 estado_seguinte<=IDLE;
 else
 estado_seguinte<=SCAN;
 end if;
 when LAUNCH=>
 estado_seguinte<=CAPTURE;
 when CAPTURE=>
 estado_seguinte<=SCAN;
 when others=>
 estado_seguinte<=IDLE;
 end case;
 end process;

CHAPTER 4: BIST FOR DELAY-FAULTS 61

 CTRL_seq:process(Clock,ResetController)
 begin
 if ResetController='0' then
 estado<=IDLE;
 elsif Clock'event and Clock='1' then
 estado<=estado_seguinte;
 end if;
 end process;

end comportamento;

Table 22: VHDL Controller code in Lunch-on-Shift

4.2 BISTGEN SOFTWARE

 In order to automate the whole methodology of the testing process for digital

CMOS integrated circuits, a software tool called BISTGen was developed, which

integrates and automates all the procedures described in section 4.1. This present

section describes it, explaining in detail the most important functions and procedures.

 The BISTGen software application was developed with the use of Object Pascal

(Pascal version of object-oriented programming), using the compiler Embarcadero ®

Delphi ® 2010. It is a tool to be used on Windows XP ® operating system, or all their

latest versions (for example, Windows 7 ®).

 The main purpose of the tool is to automate a file generation process with BIST

functionality inside, preparing circuits for test. Starting from a specific input file

containing a circuit’s description with scan method already implemented, it will be

possible to generate a new circuit description that integrates the BIST mechanism for

automatic test that will allow simulating the entire circuit during its period of

operation whenever desired.

4.2.1 DATA ENTRY

 Data entry is made in the program through a Verilog structural file (.v) or a VHDL

behavioural file (.vhdl). Whatever the file that is present, it must include the scan path

method and the respective control pins must be present.

62 CHAPTER 4: BIST FOR DELAY-FAULTS

4.2.2 APPLICATION FLOWCHART

 Once the application is invoked, it must be chosen from two files that may be

either Verilog or VHDL. As mentioned, the file should have integrated the scan

method, because when loaded, it will be prompted to register the names of the control

lines of the CUT including the new associated lines resulting from the method

addition.

Figure 27: Application Flowchart

CHAPTER 4: BIST FOR DELAY-FAULTS 63

 During program execution, the user will be guided through each block

specification and generation until the all new circuitry (including CUT) is generated.

In this work we call it the Aggregate circuit.

4.2.3 DATABASE ARCHITECTURE AND COMPOSITION

The system database chosen was the Paradox. Paradox is a relational database

management system currently published by Corel Corporation. It was originally

released for DOS by Ansa Software, and then by Borland after it bought the company

[21]. A Windows version was released by Borland in 1992. At first glance, the

Paradox tables do not show many differences from InterBase tables and the following

similarities are evident.

 Access can be done through an alias;

 The types of possible fields are similar, although they have different names;

 Tables can be created with the DataBase Desktop;

 Are used the same components TTable and TQuery to access;

In reality, the BDE (Borland DataBase Engine) creates an illusion that InterBase

and Paradox tables behave the same way. For some developers, however this illusion

ends soon. The first disappointment comes in database using the Desktop for

manipulating tables InterBase. While the Database Desktop is the ideal tool for

creating and restructuring tables, Paradox is deficient with respect to InterBase, where

the restructuring and the use of more advanced features can only be achieved by

mounting scripts that will run on InterBase Windows. Searches and indexes in

InterBase are case sensitive, while in Paradox differentiation is configurable. Still in

InterBase defining primary and foreign keys is performed easily, but changing these

keys is not so trivial. Some operations using InterBase are slower than in Paradox. It

quickly becomes clear that the InterBase is not automatically better than Paradox. The

two products have significant differences and the choice of which to use is fully

dependent on the conditions and objectives of the final application.

http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Corel_Corporation
http://en.wikipedia.org/wiki/DOS
http://en.wikipedia.org/wiki/Borland

64 CHAPTER 4: BIST FOR DELAY-FAULTS

 The Figure 28 shows the database components architecture and a brief

description of its internal behavior will also be given.

Figure 28: Database Components Architecture

 Every dataset that supplies a data control component must have at least one

TDataSource Component. TDataSource acts as a bridge between one TTable and one

or more data control components that provide a visible user interface to data. TTable

can establish connections to a database through the BDE, but cannot display database

information on a Form. Data Control components as TDBGrid and TDBNavigator

provide the visible user interface and manipulation to data, but are unaware of the

structure of the table from which they receive (and to which they send) data.

 The application uses two database tables to store data information. In one stores the

names of the inputs and outputs of the CUT for further manipulation, and in the other,

stores the values of the feedback loops that are associated with the size of the LFSRs.

4.2.4 LFSR’S CONFIGURATION

 The user chooses the number of counts in binary format. For example if the

software receives the (10110) binary value (the seed), it will count 31 times (52 1).

Due to the features of the LFSR, the (00000) value can’t be used (n2 1), otherwise

the LFSR would stay in this value indefinitely, because of the XOR properties in the

feedback loops.

CHAPTER 4: BIST FOR DELAY-FAULTS 65

 In the previous section, it was mentioned that the controller receives information

when some LFSRs can reach the score limit or the score limit imposed, depending on

the case. Whenever the user defines the binary LFSR seed, it also sets the counting

number limit, in the case of the LFSR PI. The software, after receiving the first vector,

will in background generate all the patterns (process explained hereafter with the

LFSR Scan Counter) until repeat the first value. What is important to retain is, at the

end, the first and the last values are known. The Table 23 shows the correlation

between the binary seed and the type of flip-flops chosen. When a ‘0’ is present the

DFEC1 flip-flop is used, which mean a ‘D’ flip-flop with ‘enable’ and ‘clear’, but

when a ‘1’ is present the used flip-flop is a ‘D’ type with ‘enable’ and ‘preset’

(DFEP1), which defines the initial state based on the LFSR’s seed.

Verilog LFSR PI file with 10011 seed value (First value) 10011 - first generated value

00110 - last generated value

module LfsrPICuT (clock, resetLfsrPICuT,enableLfsrPICuT, DataOutLfsrPICuT);
 input clock, resetLfsrPICuT,enableLfsrPICuT;

 output [4:0] DataOutLfsrPICuT ;

 wire [4:0] QoutLfsrPICuT ;
 wire y1LfsrPICuT;

 DFEP1 U0LfsrPICuT (.D(QoutLfsrPICuT[1]), .E(enableLfsrPICuT), .C(clock), .SN(resetLfsrPICuT), .Q(QoutLfsrPICuT[0]));
 DFEP1 U1LfsrPICuT (.D(QoutLfsrPICuT[2]), .E(enableLfsrPICuT), .C(clock), .SN(resetLfsrPICuT), .Q(QoutLfsrPICuT[1]));

 DFEC1 U2LfsrPICuT (.D(QoutLfsrPICuT[3]), .E(enableLfsrPICuT), .C(clock), .RN(resetLfsrPICuT), .Q(QoutLfsrPICuT[2]));
 DFEC1 U3LfsrPICuT (.D(QoutLfsrPICuT[4]), .E(enableLfsrPICuT), .C(clock), .RN(resetLfsrPICuT), .Q(QoutLfsrPICuT[3]));
 DFEP1 U4LfsrPICuT (.D(y1LfsrPICuT), .E(enableLfsrPICuT), .C(clock), .SN(resetLfsrPICuT), .Q(QoutLfsrPICuT[4]));

 XOR20 U5LfsrPICuT (.A(QoutLfsrPICuT[0]), .B(QoutLfsrPICuT[2]), .Q(y1LfsrPICuT);

 assign DataOutLfsrPICuT = QoutLfsrPICuT;

endmodule

Table 23: Linear type Verilog LFSR PI File

 The stop value (00110) is the output trigger in the comparator block. The hardware

description to create it in Verilog format is more complex than in VHDL. In VHDL

the code describes a behavioural and then a synthesizer process it; however in Verilog

is completely different because the code description is structural and it must be

defined at gate level. The Figure 29 shows the dynamic gate design for this case.

66 CHAPTER 4: BIST FOR DELAY-FAULTS

Figure 29: Comparator block for LFSR PI Patterns

 This is the internal circuit of the comparator block with 5 inputs coming from the

LFSR PI, for the specific pattern (00110). Other pattern or different inputs number

lead to another circuit. The goal is when a specific pattern arises, the internal logic

give a binary ‘1’ in its output, exclusively. The software after receive the pattern will

decide the internal logic to achieve the result. This is a dynamic process where the

components are chosen, as the wires to connect it in the right way. The names in the

Figure 29 give a more clear idea to understand the code in the Table 24 of the

comparator block.

CHAPTER 4: BIST FOR DELAY-FAULTS 67

01100 - last generated value (the stop condition)

 .
 .
 .

 wire WireConnectLpO;
 wire [4:0] LpOInvOutNandIn0;
 INV0 LpO00 (.A(LfsrPiOut[0]), .Q(LpOInvOutNandIn0[0]));
 INV0 LpO01 (.A(LfsrPiOut[1]), .Q(LpOInvOutNandIn0[1]));
 assign LpOInvOutNandIn0[2] = LfsrPiOut[2];
 assign LpOInvOutNandIn0[3] = LfsrPiOut[3];
 INV0 LpO02 (.A(LfsrPiOut[4]), .Q(LpOInvOutNandIn0[4]));
 wire [1:0] LpONandOutInvIn0;
 wire [1:0] LpOInvOutNandIn1;
 NAND20 NLpO10 (.A(LpOInvOutNandIn0[0]), .B(LpOInvOutNandIn0[1], .Q(LpONandOutInvIn0[0]));
 INV0 LpO10 (.A(LpONandOutInvIn0[0]), .Q(LpOInvOutNandIn1[0]));
 NAND20 NLpO11 (.A(LpOInvOutNandIn0[2]), .B(LpOInvOutNandIn0[3], .Q(LpONandOutInvIn0[1]));
 INV0 LpO11 (.A(LpONandOutInvIn0[1]), .Q(LpOInvOutNandIn1[1]));
 wire LpONandOutInvIn1;
 wire LpOInvOutNandIn2;
 NAND20 NLpO20 (.A(LpOInvOutNandIn1[0]), .B(LpOInvOutNandIn1[1]), .Q(LpONandOutInvIn1));
 INV0 LpO20 (.A(LpONandOutInvIn1), .Q(LpOInvOutNandIn2));
 wire LpONandOutInvIn2;
 wire LpOInvOutNandIn3;
 NAND20 NLpO30 (.A(LpOInvOutNandIn2), .B(LpOInvOutNandIn0[4]), .Q(LpONandOutInvIn2));
 INV0 LpO30 (.A(LpONandOutInvIn2), .Q(LpOInvOutNandIn3));
 assign WireConnectLpO = LpOInvOutNandIn3;
 .
 .
 .

Table 24: Comparator Block Code for LFSR PI Patterns

 With the LFSR Scan Counter is different. When the user chooses the integer

number of counts, the software translates this number in binary format using a 2log

mathematical conversion to achieve the purpose. For example with five counts the

software converts the integer number in binary format (010 seed), the converted

number may be any in the range of possible values that are 7. The question that arises

is why it can be any of the 7 values? The answer is because the software uses a

random function. If the integer count number is five it must be represented in 3 bits at

least, but with 3 bits it is possible to make 7 counts (32 1). Not all the range is used

in this particular case but the software ‘knows’ when to stop as well as the binary

number that must be collected.

Figure 30 : LFSR Stop Limit and Rotation

 Taking the example of the Figure 30, for the first value (010), the next generated

six values until repeat the process, will always be the same every cycle. The last one

68 CHAPTER 4: BIST FOR DELAY-FAULTS

is (100), index 7, but the software will stop at (001) to establish 5 counts. The stop

index is 6 and not 5 because of the design and the software implementation

requirements (number of counts plus one (controller issue)). Since we have the exit

value, it is possible to establish it as a stop vector in hardware description file. Let’s

take a look in the Table 25 based this time in VHDL files.

LFSR Scan Counter BIST File (LFSR stop condition code slice) Vectors

library IEEE;
use IEEE.std_logic_1164.all;

entity LfsrScanCounterCuT is
port(clock: in std_logic;
 reset: in std_logic;
 enable: in std_logic;
 DataOut: out std_logic_vector(2 downto 0));
end LfsrScanCounterCuT;

architecture comportamento of LfsrScanCounterCuT
is
 signal Qin: std_logic_vector (2 downto 0);
 signal Qout: std_logic_vector (2 downto 0);
begin

 comb_LfsrVhdlLinear: process(Qout,enable)
 begin
 if enable = '0' then
 Qin <= Qout;
 else
 Qin(0)<=Qout(1);
 Qin(1)<=Qout(2);
 Qin(2)<=Qout(0) xor Qout(1);
 end if;
end process;

sinc_LfsrVhdlLinear:process(clock,reset)
begin
 if reset = '0' then
 Qout <= "011";
 elsif clock'event and clock = '1' then
 Qout <= Qin;
 end if;
end process;

.
.
.

ScanCountEnd:
process(LfsrScanCounterOut)
begin
 if LfsrScanCounterOut = “110” then
 ScanCountFinishedOut <= ‘1’;
 else
 ScanCountFinishedOut <= ‘0’;
 end if;
end process;
.

.

.

011
001
100
010
101
110

Table 25: LFSR Scan Counter Stop Counting Process

 The first column shows the VHDL hardware description of the LFSR. The ‘Qout

<=”011” ’ row shows the first value obtained through the input random process and is

the seed. The stop condition is present not in the generated LFSR Scan Counter file

but in the global BIST file obtained in the end, in a particular slice of code (the

comparator block) where the ‘ if LfsrScanCounterOut = “110” then ‘ row is the stop

condition.

CHAPTER 4: BIST FOR DELAY-FAULTS 69

 The description uses VHDL and Verilog as examples. The concept is the same, but

in a global BIST file production, only one type of language can be used at a time.

4.2.5 APPLICATION FORMS FUNCTION AND HIERARCHY

 For the final file, first we will need to set up all the necessary parameters required

in each window. The hierarchy and the sequence of the integral parts of the

application can be seen generally in Figure 31. The setting begins in the main window

and prompts to choose the file that contains the test circuit.

Figure 31: Global File Structure

70 CHAPTER 4: BIST FOR DELAY-FAULTS

 In the next step, the names contained in the input file will be identified. For this

purpose the application provides a window into a second hierarchical level (the

leftmost) where the objective is to request the name of the four control signals which

by convention are assigned in the program with the names; clock, reset, test_se,

test_si. All files submitted to the test must already have these names, but may

nevertheless have different ones.

 Now that the software ‘knows’ the names, the next step is to configure the LFSRs

and the MISR which are the PI, Scan and Counter windows and previously explained

in section 4.1. The MISR configuration is similar to the PI configuration since the

number of entries is not defined here.

 The last window, the rightmost, is intended to configure the controller, to choose

which type of method to use: Scan based BIST, LOC, LOS or both LOC and LOS.

 After the last window in the second level, the next step is to build the file.

Although the program can generate a file in Verilog or VHDL, there are also two

possibilities for the file in Verilog. It has to be chosen at the beginning if the final file

should integrate modules or not. If the file does not have modules in Verilog, means

that the circuit is suited for the AgingCalc software tool, to compute aging and

generate SPICE netlists.

 The ParentBistBlock was the name chosen for the global block entity or module

depending on the case. The Table 26 shows both entity and module for VHDL and

Verilog files respectively with two inputs (a, b) and two outputs (z, scan_out) as

example.

VHDL Type Verilog Type

entity ParentBistBlockCuT is
 port(a : in std_logic;
 b : in std_logic;
 clock : in std_logic;
 reset : in std_logic;
 z : out std_logic;
 scan_out : out std_logic;
 BistStart : in std_logic;
 BistDone : out std_logic;
 MisrOut : out std_logic);
end ParentBistBlockCuT;
.

.

.

module ParentBistBlockCuT (
 aPBisTB,
 bPBisTB,
 clock,
 resetPBisTB,
 zPBisTB,
 scan_outPBisTB,
 BistStart,
 BistDone,
 MisrOut);

.

.

.

Table 26: VHDL vs Verilog Entity

CHAPTER 4: BIST FOR DELAY-FAULTS 71

 The main difference between the CUT and the generated ParentBistBlock entities

is that there are tree new lines; BistStart, BistDone, MisrOut. These new control lines

are essential to the process of BIST based on scan. The BistStart is the line to start the

test process, the MisrOut line receives serially the derived signatures from the test

patterns and when BistDone became logic ‘1’ the test is completed.

 If the file is VHDL type, it integrates components and therefore it is possible to

maintain the same names, due to the hierarchy. However, the Verilog type that

doesn’t use components, must redefine new names for the new circuit primary

inputs/outputs. The Table 27, in the left side shows a slice of code where it’s

presented a CUT component, the respective port map (block connection code) and a

signal connection (also part of the connection block), but it can be observed in the

right side of the table that there is no CUT component and if the connection code

invoke ‘z’ and ‘scan_out’ outputs instead of ‘zPBistB’ and ‘scan_outPBistB’ to

connect with the ‘CutOutMisrIn’ signal through an assign command, the established

connection would be made between the vector signal and the CUT, leading to a

undesired connection. This is the reason for different input and output names for

VHDL and Verilog files.

VHDL Verilog

.

signal CutOutMisrIn : std_logic_vector(1 downto 0);

component CuTRelogio
port(a : in std_logic;
 b : in std_logic;
 teste_semm : in std_logic;
 teste_simm : in std_logic;
 relogio : in std_logic;
 reiniciar : in std_logic;
 z : out std_logic;
 scan_out : out std_logic);
end component;
.
.
.

U4 : CuTRelogio
port map (a => MuxOutCutIn(0),
 b => MuxOutCutIn(1),
 teste_semm => TestSelectEnable,
 teste_simm => TestSerialInput,
 relogio => clock,
 reiniciar => ResetCutInControllerOut,
 z => CutOutMisrIn(0),
 scan_out => CutOutMisrIn(1));
.
.
.

z <= CutOutMisrIn(0);
scan_out <= CutOutMisrIn(1);
.

.

.

.

 wire [1:0] CutOutMisrIn;
.
.
.

CuTRelogio U4 (
 .a(MuxOutCutIn[0]),
 .b(MuxOutCutIn[1]),
 .teste_semm(TestSelectEnable),
 .teste_simm(TestSerialInput),
 .relogio(clock),
 .reiniciar(ResetCutInControllerOut),
 .z(CutOutMisrIn[0]),
 .scan_out(CutOutMisrIn[1]));

 assign CutOutMisrIn = {zPBistB, scan_outPBistB};
.
.
.

Table 27: Inputs and Outputs different Names

73

5. AGING SENSOR METHODOLOGY

This chapter will present the aging sensor methodology for circuits with BIST.

The methodology is based on reusing on-chip variable power-supply voltages to

perform a discrete set of BIST sessions, each using a different power-supply voltage

value, to define a set of BIST signatures, which include the correct BIST signature

and incorrect ones. However, these set of BIST signatures, called in this work as

Voltage Signature Collection (VSC), provide a footprint for circuit’s timing behaviour

and its analysis can give us information on how the circuit is aging.

5.1 BACKGROUND AND PREVIOUS WORK

 The idea of using a variable VDD to allow performing a set of BIST sections, each

one with a different VDD value, to detect delay-faults was firstly introduced in [78].

The purpose of the research work was to define a new methodology to detect delay-

faults not only in production but also during on-field operation. It was shown, in a

limited way and for small circuits, that some delay-faults could be detected with a

discrete set of BIST sessions using different power-supply voltage values in the DVS

structure. The purpose was to show that not only the gross delay defects could be

detected, but also some small delay defects.

 However, this work lacked in two aspects: (1) the circuits under test were very

small and simple; and (2) Monte Carlo simulations were not performed, to study

circuit behaviour and methodology applicability under process variations. In fact, in

[76] a more thorough study was performed and it was shown that in bigger circuits

with BIST, and considering process variations and using Monte Carlo simulations,

some results obtained in the previous work could not be reproduced, i.e., the

methodology is suited to detect gross delay defects, but small delay defects can not be

identified for each sample. In this work, the VSC was defined and generated for a

discrete set of BIST sessions, each one at a different VDD [76]. It was also shown that

the presence of a resistive open alters the sequence of BIST signatures in the VSC, for

74 CHAPTER 5: AGING SENSOR METHODOLOGY

a single sample. However, each sample has a unique VSC and process variations

alters the VSC, namely the BIST signatures when VDD is reduced, i.e., the faulty BIST

signatures of the VSC [76].

 In Figure 32 it is shown the simulation result, as described in [76], for two samples

of the XTRAN circuit (a fleet management system from Tecmic [79]) implemented

with BIST structures to allow self-test. In this result we can see that just for these two

samples, a different VSC (composed by a BIST signature for each discrete VDD) is

obtained in each sample. Only the BIST signatures obtained at higher VDD values (the

fault-free signatures) match, for few specific samples / VDD values, and when VDD is

reduced the signatures differ [76].

Set of VDD Signatures for Different XTRAN Samples (Monte Carlo)

0

500

1000

1500

2000

2500

1,71,92,12,32,52,72,93,13,3

Vdd

S
ig

n
a
tu

re
 (

d
e
c
im

a
l)

Figure 32: Set of signatures of the XTRAN circuit for two different samples (Monte Carlo analysis), as

a function of VDD (1.8 ; 3.3) V [76].

 As explained in [76], this indicates that, for this circuit, it is not possible to define a

unique set of faulty signatures for all the copies of the design, i.e., a single VSC

(Voltage Signature Collection). In fact, it is predictable that only a very low

complexity circuit or a very specific circuit topology may allow the use of a unique

set of faulty signatures to detect non-critical delay-faults, for all the copies of the

design [76]. Nevertheless, the BIST signatures for the fault-free operation are the

same in all samples. This means that gross-delay defects are still possible to detect

with this method and that small delay defects (delay-faults in non-critical paths) are

not possible to detect during production stage, as a unique VSC is not possible to

obtain for all samples (as mentioned).

CHAPTER 5: AGING SENSOR METHODOLOGY 75

 Nevertheless, if lifetime test is crucial (e.g., safety-critical applications), or if aging

effects need to be evaluated during circuit’s lifetime (the objective of the present

M.Sc. thesis), the unique set of faulty signatures of each copy may be used to identify

delay defects and characterize the aging process of each unique sample. This

assumption opens new perspectives and reveals that a thorough analysis for this aging

characterization process may be performed. The purpose of the present work is to

prove this assumption and, by collecting the VSC during circuit aging degradation, to

identify the impact of such degradation in the circuit operation.

5.2 AGING SENSOR METHODOLOGY FOR SCAN-BASED BIST CIRCUITS

 For sequential CUTs, the top-level diagram of the proposed multi-VDD self-test

scheme is shown in Figure 33. The underlying idea is to perform a discrete set of

BIST sessions for a corresponding discrete set of VDD values, using the BIST

methodology described in chapter 4, and using always the nominal clock frequency,

fclk=fmax (at-speed testing). We assume a DVS operation can be performed, without

clock frequency scaling.

Figure 33: Top diagram of the multi-VDD self-test scheme.

76 CHAPTER 5: AGING SENSOR METHODOLOGY

Power supply variations (like temperature variations) modify the time response of

the CUT, of the clock distribution network and of the BIST infrastructure [76].

Basically, the following effects can be observed. First, what we refer as the accordion

effect, i.e., the time response stretching of the combinational logic. If this stretching

exceeds the time slack, a performance error occurs, and a faulty signature is captured

in the MISR. Hence, a de-synchronization effect occurs [76]. In fact, the logic values

(output response of the CUT) are captured too early, prior to the time instant in which

the complete switching of the CUT network occurs. Finally, note that the BIST

infrastructure is also powered by VDD. Hence, it may also fail, as far as performing its

functionality at lower power supply voltage levels. This last effect will also lead to

corrupted signatures, eventually with a fault-free CUT.

 For a given technology, design, temperature and set of BIST sessions, each sample

of a fault-free device will generate a set of Si characteristic digital signatures (one for

each VDD value), compacted by the MISR as the result of applying nT test vectors to

the CUT, producing the golden VSC (Voltage Signature Collection). In general, VSC

is a set of (VDDi, Si) pairs of values. Temperature variations can shift these digital

words along VDD values [76]. Typically, higher temperature shifts the signatures

towards lower VDD values [76]. In the presence of aging degradations, some paths will

modify their timing response and, as different paths may age differently, the result is a

modification in the timing response of the CUT, and the VSC is also modified,

allowing the detection of aging degradations in the CUT. This underlying principle of

the proposed methodology has been verified by simulation. Results are presented in

chapter 6. As stated, we assume that pseudo-random test patterns, generated by the

LFSR (Linear Feedback Shift Register), with a sufficiently large number of nT  (2
n
-1)

test vectors, are able to uncover the delay-faults caused by aging, which is not

necessarily so. But the use of BIST procedures targeting delay-faults, as the one

described in chapter 4, increases the delay-fault coverage.

 Power consumption is another critical issue. During the at-speed self-test session, it

can be much higher than in the normal operation [76]. This is an important issue, as in

traditional scan path focusing delay-faults (LOC and LOS), much of the test process

operates at low speed, and the test vectors sequences, generated to uncover delay-

faults, are applied at-speed [76]. In our proposed solution, as the scan-based BIST for

CHAPTER 5: AGING SENSOR METHODOLOGY 77

delay-faults is operating at-speed, we expect the power consumption to increase. Test

power can be limited by reducing the test units within test sessions or reducing the

clock frequency [75]. However, in this case clock frequency reduction is not an

option, because we want to perform all tests at nominal clock frequency, to uncover

delay-faults. Nevertheless, in the proposed multi-VDD dynamic BIST methodology,

power consumption is reduced when running BIST at depleted VDD values [76].

Moreover, as this is a test-per-scan architecture, the energy and power consumption

may be reduced by toggle suppression, as proposed in [80].

5.3 AGING ANALYSIS AND CIRCUIT’S DEGRADATION WITH AGING

 In order to validate the Aging Sensor Methodology proposed in previous section

5.2, an aging analysis must be made to predict how circuit will age and to implement

in circuit’s SPICE netlist the necessary modifications to allow simulation of the aged

circuit. This task is performed with the AgingCalc software tool.

 AgingCalc was designed to analyze and predict digital circuit’s aging induced by

NBTI. Agingcalc development started in 2010 at University of Algarve as part of

Jackson Pachito’s M.Sc thesis [77], with the support of Prof. Jorge Semião, was

released in 2011 and is currently under continuum development by the former.

 This program evaluate how individual transistors threshold voltages are affected

with time, based on the operation probability of each individual PMOS transistor,

calculates circuit’s path delays, and find which FFs are critical memory elements (i.e.,

those where combinational critical paths end), and generates SPICE netlists for

different aging moments in time. This is a key procedure to obtain a set of VSC, one

for each aging year of degradation considered.

 As it will be shown in chapter 6, the simulation results will produce a three

dimension graph, calculating BIST signatures for different VDD and aging variations.

Moreover, the evolution of the VSC with aging allows to determine not only aging

variations in the CUT, but also in the BIST circuitry. However, the information that

can be gathered from the set of VSC will differ from one circuit to another, depending

on circuit architecture and functionality, as will be shown.

79

6. RESULTS

In this chapter, the simulation results will be presented, to verify: (1) the

correctness of the BIST infrastructure developed and the BISTGen software tool

operation; (2) the effectiveness of the Aging Sensor Methodology for BIST circuits.

To allow these two analysis, simulations and implementations have been carried out

in HSpice, CosmosScope and AgingCalc environments, for using SPICE and Verilog

circuit netlists, and in ModelSim and WaveEditor environment for VHDL behavioural

file descriptions.

The first section will present the test procedures and environments used. The

second section will present the results for the BIST infrastructure and BISTGen

software tool, whereas the third section will present the results for the Aging Sensor

Methodology for BIST circuits.

6.1 SIMULATION ENVIRONMENT AND TEST PROCEDURES

6.1.1 VHDL SIMULATION PROCEDURE

 VHDL simulation process is explained in the following. First, the new BIST

circuitry is inserted in a given circuit (CUT), which is achieved by the BISTGen

software, and this is done in VHDL by opening a VHDL type for VHDL CUT files.

Next, the ModelSim software, developed by Altera Corporation, performs the VHDL

file’s simulation and allows also the graphic view (through the ModelSim Wave

editor) of all digital waveforms related with buses and nodes in the circuit. Figure 34

shows the steps of a VHDL simulation file.

80 CHAPTER 6: RESULTS

Figure 34: VHDL Simulation Steps

 The possibility of Verilog and VHDL simulations also clarifies the reliability

process of the BISTGen implementation, supplying two ways of simulation for the

same circuit (CUT) that must be described in both languages for the effect.

6.1.2 VERILOG, AGINGCALC, AND SPICE SIMULATION PROCEDURE

The simulations carried out in Verilog files require a set of stages and

configurations necessary to obtain graphical results for analyzing aging over the years

from a given circuit. Figure 35 shows the necessary steps.

Figure 35: Verilog, AgingCalc and HSpice simulation steps.

 First, the new BIST technology is inserted for a given circuit (CUT) which is

achieved by the BISTGen software. After that, the AgingCalc tool has the capability

of converting a Verilog hardware description file (.v) in its equivalent SPICE netlist

for HSpice (.sp type file) simulation, after adding additional aging calculations for a

CHAPTER 6: RESULTS 81

specific number of years supplied by the user. In fact, AgingCalc instantiates HSPICE

to allow automatic transistor level simulations of SPICE netlists, automatically

created by the software. These simulations may give a first analysis on circuit’s path

delays.

 In a final stage, AgingCalc exports to a SPICE netlist the circuit at transistor level,

mapped to a generic CMOS library. This netlist includes the aging analysis previously

performed on AgingCalc, introducing on each PMOS transistor the aging degradation

through Vth modulation.

 The obtained netlist can then be simulated in HSpice, a software tool developed by

Synopsys. The simulation results, which include one set of simulations for each year

of aging degradation considered, can be observed with the CosmosScope software, a

Synopsys tool also.

 Moreover, using delay measurements available in the HSPICE SPICE distribution,

it is possible to obtain the final BIST signatures for each BIST session (simulation).

With the aid of a graphic suit, like Excel from Microsoft, it is possible to plot the set

of VSCs for the period of aging analysis in a 3-D graph, so that the BIST signatures

analysis can be straight forward procedure, just by simple inspection.

 It is important to mention, that for all SPICE simulations a 65nm CMOS

technology is used, with a nominal VDD of 1.1V.

6.2 RESULTS FOR BIST CIRCUITRY AND BISTGEN TOOL

 This section will present results for the BISTGen tool, by generating automatically

the BIST structures for four test circuits. For all the CUTs the Verilog and VHDL

type descriptions will be presented.

 The validation of the BIST circuitry will be done in this section by logical

simulation of the VHDL type files. However, only for CUT_example circuit the

VHDL behavioural description with scan path is available, so only for this CUT will

be performed the logic simulation using ModelSim environment. For the remainig

CUTs, only the structural gate level Verilog description is available, and their

82 CHAPTER 6: RESULTS

simulation will be done in HSPICE environment and it will be presented in section

6.3.

6.2.1 CUT_EXAMPLE CIRCUIT

 The CUT_example circuit is a simple sequential circuit used to demonstrate and

validate the BIST circuitry functionality. It’s a 5 gate circuit, with 2 FFs and 3

combinational logic gates (see Figure 36).

Figure 36: CUT_example circuit schematic.

 The referred circuit is presented through its hardware description code for VHDL

and Verilog environments, in the Table 28.

CUT VHDL CUT Verilog

use IEEE.std_logic_1164.all;
entity CuT is
 port(a, b, teste_se, teste_si, clock, reset : in std_logic;
 z, scan_out : out std_logic);
end CuT;
architecture Comportamento of CuT is
signal Qout, Qin, Qin_data, Qin_test: std_logic_vector(1 downto 0);
begin
 sinc: process(clock,reset)
 begin
 if reset = '0' then
 Qout <= "00";
 elsif clock'event and clock = '1' then
 Qout <= Qin;
 end if;
 end process;
Qin_data(0) <= b;
Qin_test(0) <= teste_si;
Qin_test(1) <= Qout(0);
scan_out <= Qout(1);
 comb_mux:
process(clock,teste_se,Qin_data,Qin_test,Qout,Qin,a,b)
 begin
 Qin_data(1) <= not(Qout(0) and a);
 z <= not(not(Qin_data(1)) and Qout(1));

module CuT (a, b, teste_se, teste_si, clock, reset, z, scan_out);
 input a, b, teste_se, teste_si, clock, reset;
 output z, scan_out;
 wire q0, q1, n1, n2;

 DFSC1 Q0ScanFlipFlop (.D(b), .SD(teste_si), .SE(teste_se), .C(clock),
.RN(reset), .Q(q0));
 DFSC1 Q1ScanFlipFlop (.D(n1), .SD(q0), .SE(teste_se), .C(clock), .RN(reset),
.Q(q1));
 NAND20 N0NanDScan (.A(a), .B(q0), .Q(n1));
 NAND20 N1NanDScan (.A(n2), .B(q1), .Q(z));
 INV0 N2InVScan (.A(n1), .Q(n2));

 assign scan_out = q1;

endmodule

CHAPTER 6: RESULTS 83

 if teste_se = '0' then
 Qin <= Qin_data;
 else
 Qin <= Qin_test;
 end if;
 end process;
end comportamento;

Table 28: Generic CUT Hardware Description either VHDL or Verilog

 Using BISTGen software tool, the BIST circuitry and functionality was inserted

and the LFSR seeds presented in Table 29 were used. In the following, circuit

descriptions are presented in Table 29, for VHDL and Verilog LOS based BIST, and

they were generated automatically through BISTGen as presented in Table 30 and

Table 31, respectively. For simplicity, only the ParentBistBlock is presented, which is

the main block that connects the CUT with the BIST blocks.

Block LFSR type Seed

LFSR PI Linear 0110

LFSR Scan Modular 0110

LFSR Scan Counter Linear 01

MISR Linear 0110

Table 29: Config features for VHDL and Verilog CUT File

Aggregate BIST file generated by BISTGen [VHDL]

--
-- -- -- PARENTBISTBLOCK
--

library IEEE;
use IEEE.std_logic_1164.all;

entity ParentBistBlockCuT is
 port(a : in std_logic;
 b : in std_logic;
 clock : in std_logic;
 reset : in std_logic;
 z : out std_logic;
 scan_out : out std_logic;
 BistStart : in std_logic;
 BistDone : out std_logic;
 MisrOut : out std_logic);
end ParentBistBlockCuT;

architecture SYN_SYN_BEHAV of ParentBistBlockCuT is

component LfsrPiCuT
port(clock : in std_logic;
 reset : in std_logic;
 enable : in std_logic;
 DataOut : out std_logic_vector(3 downto 0));
end component;

component LfsrSCANCuT
port(clock : in std_logic;
 reset : in std_logic;
 enable : in std_logic;
 DataOut : out std_logic);
end component;

84 CHAPTER 6: RESULTS

component LfsrScanCounterCuT
port(clock : in std_logic;
 reset : in std_logic;
 enable : in std_logic;
 DataOut : out std_logic_vector(1 downto 0));
end component;

component CuT
port(a : in std_logic;
 b : in std_logic;
 teste_se : in std_logic;
 teste_si : in std_logic;
 clock : in std_logic;
 reset : in std_logic;
 z : out std_logic;
 scan_out : out std_logic);
end component;

component LfsrMisrCuT
port(DataIn : in std_logic_vector(1 downto 0);
 clock : in std_logic;
 reset : in std_logic;
 enable : in std_logic;
 DataOut : out std_logic);
end component;

component MuXCuT
port(SeL : in std_logic;
 InA : in std_logic_vector(1 downto 0);
 InB : in std_logic_vector(1 downto 0);
 DataOut : out std_logic_vector(1 downto 0));
end component;

component BistControllerCuT
port (BistStart : in std_logic;
 Clock : in std_logic;
 ResetController : in std_logic;
 ResetLfsrPi : out std_logic;
 ResetLfsrScan : out std_logic;
 ResetLfsrScanCounter : out std_logic;
 ResetCut : out std_logic;
 ResetMisr : out std_logic;
 LfsrPiCountFinished : in std_logic;
 LfsrScanCountFinished : in std_logic;
 EnableLfsrPi : out std_logic;
 EnableLfsrScan : out std_logic;
 EnableLfsrScanCounter : out std_logic;
 EnableMisr : out std_logic;
 TestSE : out std_logic;
 MuxSelect : out std_logic;
 BistDone : out std_logic);
end component;

signal MuxOutCutIn : std_logic_vector(1 downto 0);
signal MuxInParentBistBlockIn : std_logic_vector(1 downto 0);
signal MuxSelectInControllerOut : std_logic;
signal CutOutMisrIn : std_logic_vector(1 downto 0);
signal LfsrPiOut : std_logic_vector(3 downto 0);
signal LfsrScanCounterOut : std_logic_vector(1 downto 0);
signal ResetCutInControllerOut : std_logic;
signal ResetLfsrPiInControllerOut : std_logic;
signal ResetLfsrScanInControllerOut : std_logic;
signal ResetLfsrScanCounterInControllerOut : std_logic;
signal ResetMisrInControllerOut : std_logic;
signal AndInControllerOutPiReset : std_logic;
signal AndInControllerOutScanReset : std_logic;
signal AndInControllerOutScanCounterReset : std_logic;
signal AndInControllerOutCutReset : std_logic;
signal AndInControllerOutMisrReset : std_logic;
signal BistCountFinishedOut : std_logic;
signal ScanCountFinishedOut : std_logic;
signal EnableLfsrPiInControllerOut : std_logic;
signal EnableLfsrScanInControllerOut : std_logic;
signal EnableLfsrScanCounterInControllerOut : std_logic;
signal EnableMisrInControllerOut : std_logic;
signal TestSerialInput : std_logic;
signal TestSelectEnable : std_logic;

begin

ResetAll: process(reset, AndInControllerOutPiReset, AndInControllerOutScanReset, AndInControllerOutScanCounterReset, AndInControllerOutCutReset,
AndInControllerOutMisrReset)
begin
 ResetLfsrPiInControllerOut <= reset and AndInControllerOutPiReset;
 ResetLfsrScanInControllerOut <= reset and AndInControllerOutScanReset;
 ResetLfsrScanCounterInControllerOut <= reset and AndInControllerOutScanCounterReset;
 ResetCutInControllerOut <= reset and AndInControllerOutCutReset;
 ResetMisrInControllerOut <= reset and AndInControllerOutMisrReset;
end process;

CHAPTER 6: RESULTS 85

BistCountEnd: process(LfsrPiOut)
begin
 if LfsrPiOut = "0110" then
 BistCountFinishedOut <= '1';
 else
 BistCountFinishedOut <= '0';
 end if;
end process;

ScanCountEnd: process(LfsrScanCounterOut)
begin
 if LfsrScanCounterOut = "10" then
 ScanCountFinishedOut <= '1';
 else
 ScanCountFinishedOut <= '0';
 end if;
end process;

MuxInParentBistBlockIn(0) <= a;
MuxInParentBistBlockIn(1) <= b;

z <= CutOutMisrIn(0);
scan_out <= CutOutMisrIn(1);

U1 : LfsrPiCuT
port map (clock =>
 reset =>
 enable =>
 DataOut =>

U2 : LfsrSCANCuT
port map (clock => clock,
 reset => ResetLfsrScanInControllerOut,
 enable => EnableLfsrScanInControllerOut,
 DataOut => TestSerialInput);

U3 : LfsrScanCounterCuT
port map (clock => clock,
 reset => ResetLfsrScanCounterInControllerOut,
 enable => EnableLfsrScanCounterInControllerOut,
 DataOut => LfsrScanCounterOut);

U4 : CuT
port map (a => MuxOutCutIn(0),
 b => MuxOutCutIn(1),
 teste_se => TestSelectEnable,
 teste_si => TestSerialInput,
 clock => clock,
 reset => ResetCutInControllerOut,
 z => CutOutMisrIn(0),
 scan_out => CutOutMisrIn(1));

U5 : LfsrMisrCuT
port map (DataIn => CutOutMisrIn,
 clock => clock,
 reset => ResetMisrInControllerOut,
 enable => EnableMisrInControllerOut,
 DataOut => MisrOut);

U6 : MuXCuT
port map (SeL => MuxSelectInControllerOut,
 InA => MuxInParentBistBlockIn,
 InB => LfsrPiOut(1 downto 0),
 DataOut => MuxOutCutIn);

U7 : BistControllerCuT
port map (BistStart => BistStart,
 Clock => clock,
 ResetController => reset,
 ResetLfsrPi => AndInControllerOutPiReset,
 ResetLfsrScan => AndInControllerOutScanReset,
 ResetLfsrScanCounter => AndInControllerOutScanCounterReset,
 ResetCut => AndInControllerOutCutReset,
 ResetMisr => AndInControllerOutMisrReset,
 LfsrPiCountFinished => BistCountFinishedOut,
 LfsrScanCountFinished => ScanCountFinishedOut,
 EnableLfsrPi => EnableLfsrPiInControllerOut,
 EnableLfsrScan => EnableLfsrScanInControllerOut,
 EnableLfsrScanCounter => EnableLfsrScanCounterInControllerOut,
 EnableMisr => EnableMisrInControllerOut,
 TestSE => TestSelectEnable,
 MuxSelect => MuxSelectInControllerOut,
 BistDone => BistDone);

end SYN_SYN_BEHAV;

Table 30: Main module from VHDL LOS based BIST Aggregate File

86 CHAPTER 6: RESULTS

Aggregate BIST file generated by BISTGen [Verilog]

module ParentBistBlockCuT (
 aPBisTB,
 bPBisTB,
 clockPBisTB,
 resetPBisTB,
 zPBisTB,
 scan_outPBisTB,
 BistStart,
 BistDone,
 MisrOut);

 input aPBisTB;
 input bPBisTB;
 input clockPBisTB;
 input resetPBisTB;
 output zPBisTB;
 output scan_outPBisTB;
 input BistStart;
 output BistDone;
 output MisrOut;

// --
// -- -- -- PI
// --

 wire resetLfsrPICuT;
 wire enableLfsrPICuT;
 wire [3:0] DataOutLfsrPICuT ;

 wire [3:0] QoutLfsrPICuT ;
 wire y1LfsrPICuT;

 DFEC1 U0LfsrPICuT (.D(QoutLfsrPICuT[1]), .E(enableLfsrPICuT), .C(clock), .RN(resetLfsrPICuT), .Q(QoutLfsrPICuT[0]));
 DFEP1 U1LfsrPICuT (.D(QoutLfsrPICuT[2]), .E(enableLfsrPICuT), .C(clock), .SN(resetLfsrPICuT), .Q(QoutLfsrPICuT[1]));
 DFEP1 U2LfsrPICuT (.D(QoutLfsrPICuT[3]), .E(enableLfsrPICuT), .C(clock), .SN(resetLfsrPICuT), .Q(QoutLfsrPICuT[2]));
 DFEC1 U3LfsrPICuT (.D(y1LfsrPICuT), .E(enableLfsrPICuT), .C(clock), .RN(resetLfsrPICuT), .Q(QoutLfsrPICuT[3]));

 XOR20 U4LfsrPICuT (.A(QoutLfsrPICuT[0]), .B(QoutLfsrPICuT[1]), .Q(y1LfsrPICuT);

 assign DataOutLfsrPICuT = QoutLfsrPICuT;

// --
// -- -- -- SCAN
// --

 wire resetLfsrSCANCuT;
 wire enableLfsrSCANCuT;
 wire DataOutLfsrSCANCuT ;

 wire [3:0] QoutLfsrSCANCuT ;
 wire y1LfsrSCANCuT;

 DFEC1 U0LfsrSCANCuT (.D(QoutLfsrSCANCuT[3]), .E(enableLfsrSCANCuT), .C(clock), .RN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[0]));
 DFEP1 U1LfsrSCANCuT (.D(y1LfsrSCANCuT), .E(enableLfsrSCANCuT), .C(clock), .SN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[1]));
 XOR20 U4LfsrSCANCuT (.A(QoutLfsrSCANCuT[0]), .B(QoutLfsrSCANCuT[3]), .Q(y1LfsrSCANCuT));
 DFEP1 U2LfsrSCANCuT (.D(QoutLfsrSCANCuT[1]), .E(enableLfsrSCANCuT), .C(clock), .SN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[2]));
 DFEC1 U3LfsrSCANCuT (.D(QoutLfsrSCANCuT[2]), .E(enableLfsrSCANCuT), .C(clock), .RN(resetLfsrSCANCuT), .Q(QoutLfsrSCANCuT[3]));

 assign DataOutLfsrSCANCuT = QoutLfsrSCANCuT[3];

// --
// -- -- -- SCANCOUNTER
// --

 wire resetLfsrScanCounterCuT;
 wire enableLfsrScanCounterCuT;
 wire [1:0] DataOutLfsrScanCounterCuT ;

 wire [1:0] QoutLfsrScanCounterCuT ;
 wire y1LfsrScanCounterCuT;

 DFEP1 U0LfsrScanCounterCuT (.D(QoutLfsrScanCounterCuT[1]), .E(enableLfsrScanCounterCuT), .C(clock), .SN(resetLfsrScanCounterCuT),
.Q(QoutLfsrScanCounterCuT[0]));
 DFEP1 U1LfsrScanCounterCuT (.D(y1LfsrScanCounterCuT), .E(enableLfsrScanCounterCuT), .C(clock), .SN(resetLfsrScanCounterCuT),
.Q(QoutLfsrScanCounterCuT[1]));

 XOR20 U2LfsrScanCounterCuT (.A(QoutLfsrScanCounterCuT[0]), .B(QoutLfsrScanCounterCuT[1]), .Q(y1LfsrScanCounterCuT);

 assign DataOutLfsrScanCounterCuT = QoutLfsrScanCounterCuT;

// --
// -- -- -- CUT
// --

 wire a;
 wire b;
 wire teste_se;
 wire teste_si;
 wire clock;
 wire reset;
 wire z;
 wire scan_out;

CHAPTER 6: RESULTS 87

 wire q0, q1, n1, n2;

 DFSC1 Q0_inst (.D(b), .SD(teste_si), .SE(teste_se), .C(clock), .RN(reset), .Q(q0));
 DFSC1 Q1_inst (.D(n1), .SD(q0), .SE(teste_se), .C(clock), .RN(reset), .Q(q1));
 NAND20 N0_inst (.A(a), .B(q0), .Q(n1));
 NAND20 N1_inst (.A(n2), .B(q1), .Q(z));
 INV0 N2_inst (.A(n1), .Q(n2));

 assign scan_out = q1;

// --
// -- -- -- MISR
// --

 wire resetLfsrMisrCuT;
 wire enableLfsrMisrCuT;
 wire [1:0] InputSLfsrMisrCuT ;
 wire DataOutLfsrMisrCuT;

 wire [3:0] QoutLfsrMisrCuT ;
 wire y1LfsrMisrCuT, x1LfsrMisrCuT, x2LfsrMisrCuT;

 DFEC1 U0LfsrMisrCuT (.D(x1LfsrMisrCuT), .E(enableLfsrMisrCuT), .C(clock), .RN(resetLfsrMisrCuT), .Q(QoutLfsrMisrCuT[0]));
 XOR20 U5LfsrMisrCuT (.A(QoutLfsrMisrCuT[1]), .B(InputSLfsrMisrCuT[0]), .Q(x1LfsrMisrCuT));
 DFEP1 U1LfsrMisrCuT (.D(x2LfsrMisrCuT), .E(enableLfsrMisrCuT), .C(clock), .SN(resetLfsrMisrCuT), .Q(QoutLfsrMisrCuT[1]));
 XOR20 U6LfsrMisrCuT (.A(QoutLfsrMisrCuT[2]), .B(InputSLfsrMisrCuT[1]), .Q(x2LfsrMisrCuT));
 DFEP1 U2LfsrMisrCuT (.D(QoutLfsrMisrCuT[3]), .E(enableLfsrMisrCuT), .C(clock), .SN(resetLfsrMisrCuT), .Q(QoutLfsrMisrCuT[2]));
 DFEC1 U3LfsrMisrCuT (.D(y1LfsrMisrCuT), .E(enableLfsrMisrCuT), .C(clock), .RN(resetLfsrMisrCuT), .Q(QoutLfsrMisrCuT[3]));

 XOR20 U4LfsrMisrCuT (.A(QoutLfsrMisrCuT[0]), .B(QoutLfsrMisrCuT[1]), .Q(y1LfsrMisrCuT));

 assign DataOutLfsrMisrCuT = QoutLfsrMisrCuT[0];

// --
// -- -- -- MUX
// --

 wire SeLMuXCuT;
 wire [1:0] InAMuXCuT;
 wire [1:0] InBMuXCuT;
 wire [1:0] DataOutMuXCuT;

 MUX21 U1MuXCuT (.A(InAMuXCuT[0]), .B(InBMuXCuT[0]), .S(SeLMuXCuT), .Q(DataOutMuXCuT[0]));
 MUX21 U2MuXCuT (.A(InAMuXCuT[1]), .B(InBMuXCuT[1]), .S(SeLMuXCuT), .Q(DataOutMuXCuT[1]));

// --
// -- -- -- CONTROLLER
// --

 wire BistStart;
 wire Clock;
 wire ResetController;
 wire LfsrPiCountFinished;
 wire LfsrScanCountFinished;
 wire ResetLfsrPi;
 wire ResetLfsrScan;
 wire ResetLfsrScanCounter;
 wire ResetCut;
 wire ResetMisr;
 wire EnableLfsrPi;
 wire EnableLfsrScan;
 wire EnableLfsrScanCounter;
 wire EnableMisr;
 wire TestSE;
 wire MuxSelect;
 wire BistDone;

// -- L . O . S

 wire LonSn1;
 wire LonSn3;
 wire LonSn4;
 wire LonSn5;
 wire LonSn6;
 wire LonSn7;
 wire LonSn8;
 wire LonSn9;
 wire LonSn11;
 wire LonSn12;
 wire LonSn13;
 wire LonSn14;
 wire LonSn15;
 wire LonSn16;
 wire LonSn17;
 wire LonSn18;
 wire LonSn19;
 wire LonSn20;

 wire [2:0] estado;
 wire [2:0] estado_seguinte;

 assign ResetLfsrPi = ResetMisr;

88 CHAPTER 6: RESULTS

 assign ResetLfsrScan = ResetMisr;
 assign EnableLfsrScan = TestSE;
 assign EnableLfsrPi = estado_seguinte[2];

 DFC3 \estado_reg[0] (.D(estado_seguinte[0]), .C(Clock), .RN(ResetController), .Q(estado[0]));
 DFC1 \estado_reg[1] (.D(estado_seguinte[1]), .C(Clock), .RN(ResetController), .Q(estado[1]), .QN(LonSn1));
 DFC3 \estado_reg[2] (.D(estado_seguinte[2]), .C(Clock), .RN(ResetController), .Q(estado[2]));
 INV3 U3ControlleR (.A(LonSn13), .Q(EnableMisr));
 CLKIN0 U4ControlleR (.A(LonSn3), .Q(ResetMisr));
 NOR20 U5ControlleR (.A(estado_seguinte[2]), .B(ResetLfsrScanCounter), .Q(LonSn3));
 AOI2110 U6ControlleR (.A(LonSn1), .B(LonSn4), .C(LonSn5), .D(LonSn6), .Q(ResetLfsrScanCounter));
 CLKIN0 U7ControlleR (.A(LonSn7), .Q(LonSn5));
 OAI210 U8ControlleR (.A(estado[0]), .B(estado[1]), .C(estado[2]), .Q(LonSn7));
 CLKIN0 U9ControlleR (.A(LonSn8), .Q(ResetCut));
 NOR40 U10ControlleR (.A(LonSn9), .B(LonSn6), .C(TestSE), .D(estado[2]), .Q(LonSn8));
 CLKIN0 U11ControlleR (.A(LonSn11), .Q(LonSn6));
 NOR20 U12ControlleR (.A(estado_seguinte[0]), .B(estado[1]), .Q(LonSn9));
 CLKIN0 U13ControlleR (.A(LonSn12), .Q(MuxSelect));
 NOR20 U14ControlleR (.A(EnableMisr), .B(estado_seguinte[0]), .Q(LonSn12));
 NOR20 U15ControlleR (.A(TestSE), .B(estado_seguinte[2]), .Q(LonSn13));
 OAI210 U16ControlleR (.A(BistDone), .B(LonSn14), .C(LonSn15), .Q(TestSE));
 OAI310 U17ControlleR (.A(LonSn14), .B(estado_seguinte[0]), .C(BistDone), .D(LonSn15), .Q(EnableLfsrScanCounter));
 NOR30 U18ControlleR (.A(estado_seguinte[1]), .B(estado_seguinte[2]), .C(estado_seguinte[0]), .Q(BistDone));
 OAI310 U19ControlleR (.A(LonSn14), .B(LfsrPiCountFinished), .C(LonSn16), .D(LonSn17), .Q(estado_seguinte[0]));
 NAND30 U20ControlleR (.A(LonSn4), .B(LonSn1), .C(BistStart), .Q(LonSn17));
 NOR20 U21ControlleR (.A(LonSn11), .B(estado[2]), .Q(estado_seguinte[2]));
 NAND20 U22ControlleR (.A(estado[1]), .B(estado[0]), .Q(LonSn11));
 OAI210 U23ControlleR (.A(LonSn18), .B(LonSn14), .C(LonSn15), .Q(estado_seguinte[1]));
 CLKIN0 U24ControlleR (.A(LonSn19), .Q(LonSn15));
 AOI2110 U25ControlleR (.A(estado[0]), .B(estado[2]), .C(LonSn4), .D(estado[1]), .Q(LonSn19));
 NAND20 U26ControlleR (.A(LonSn4), .B(estado[1]), .Q(LonSn14));
 NOR20 U27ControlleR (.A(estado[0]), .B(estado[2]), .Q(LonSn4));
 NOR20 U28ControlleR (.A(LonSn20), .B(LonSn16), .Q(LonSn18));
 CLKIN0 U29ControlleR (.A(LfsrScanCountFinished), .Q(LonSn16));
 CLKIN0 U30ControlleR (.A(LfsrPiCountFinished), .Q(LonSn20));

// --
// -- -- -- PARENTBISTBLOCK
// --

 wire [1:0] MuxOutCutIn;
 wire MuxSelectInControllerOut;
 wire [1:0] CutOutMisrIn;
 wire [3:0] LfsrPiOut;
 wire [1:0] LfsrScanCounterOut;
 wire ResetLfsrPiInControllerOut;
 wire ResetLfsrScanInControllerOut;
 wire ResetLfsrScanCounterInControllerOut;
 wire ResetCutInControllerOut;
 wire ResetMisrInControllerOut;
 wire EnableLfsrPiInControllerOut;
 wire EnableLfsrScanInControllerOut;
 wire EnableLfsrScanCounterInControllerOut;
 wire EnableMisrInControllerOut;
 wire TestSerialInput;
 wire TestSelectEnable;
 wire clock;

 wire [1:0] NoTLpO;
 wire [2:0] NandOutInvInLpO;
 wire [2:0] InvOutNandInLpO;

 INV0 LpO0 (.A(LfsrPiOut[0]), .Q(NoTLpO[0]));
 INV0 LpO1 (.A(LfsrPiOut[1]), .Q(NoTLpO[1]));

 INV0 NanDnaNLpO0 (.A(NandOutInvInLpO[0]), .Q(InvOutNandInLpO[0]));
 INV0 NanDnaNLpO1 (.A(NandOutInvInLpO[1]), .Q(InvOutNandInLpO[1]));
 INV0 NanDnaNLpO2 (.A(NandOutInvInLpO[2]), .Q(InvOutNandInLpO[2]));

 NAND20 NLpO0 (.A(NoTLpO[0]), .B(NoTLpO[1]), .Q(NandOutInvInLpO[0]));
 NAND20 NLpO1 (.A(InvOutNandInLpO[0]), .B(LfsrPiOut[2]), .Q(NandOutInvInLpO[1]));
 NAND20 NLpO2 (.A(InvOutNandInLpO[1]), .B(LfsrPiOut[3]), .Q(NandOutInvInLpO[2]));

 wire NoTLscO;
 wire [0:0] NandOutInvInLscO;
 wire [0:0] InvOutNandInLscO;

 INV0 LscO0 (.A(LfsrScanCounterOut[0]), .Q(NoTLscO));

 INV0 NanDnaNLscO0 (.A(NandOutInvInLscO[0]), .Q(InvOutNandInLscO[0]));

 NAND20 NLscO0 (.A(NoTLscO), .B(LfsrScanCounterOut[1]), .Q(NandOutInvInLscO[0]));

 wire [4:0] NandOutInvInResetS;
 wire [4:0] NandInControllerOutResetS;

 INV0 INVRST1 (.A(NandOutInvInResetS[0]), .Q(ResetLfsrPiInControllerOut));
 INV0 INVRST2 (.A(NandOutInvInResetS[1]), .Q(ResetLfsrScanInControllerOut));
 INV0 INVRST3 (.A(NandOutInvInResetS[2]), .Q(ResetLfsrScanCounterInControllerOut));
 INV0 INVRST4 (.A(NandOutInvInResetS[3]), .Q(ResetCutInControllerOut));
 INV0 INVRST5 (.A(NandOutInvInResetS[4]), .Q(ResetMisrInControllerOut));

CHAPTER 6: RESULTS 89

 NAND20 NDRST1 (.A(resetPBisTB), .B(NandInControllerOutResetS[0]), .Q(NandOutInvInResetS[0]));
 NAND20 NDRST2 (.A(resetPBisTB), .B(NandInControllerOutResetS[1]), .Q(NandOutInvInResetS[1]));
 NAND20 NDRST3 (.A(resetPBisTB), .B(NandInControllerOutResetS[2]), .Q(NandOutInvInResetS[2]));
 NAND20 NDRST4 (.A(resetPBisTB), .B(NandInControllerOutResetS[3]), .Q(NandOutInvInResetS[3]));
 NAND20 NDRST5 (.A(resetPBisTB), .B(NandInControllerOutResetS[4]), .Q(NandOutInvInResetS[4]));

 assign resetLfsrPICuT = ResetLfsrPiInControllerOut;
 assign enableLfsrPICuT = EnableLfsrPiInControllerOut;
 assign DataOutLfsrPICuT = LfsrPiOut;

 assign resetLfsrSCANCuT = ResetLfsrScanInControllerOut;
 assign enableLfsrSCANCuT = EnableLfsrScanInControllerOut;
 assign DataOutLfsrSCANCuT = TestSerialInput;

 assign resetLfsrScanCounterCuT = ResetLfsrScanCounterInControllerOut;
 assign enableLfsrScanCounterCuT = EnableLfsrScanCounterInControllerOut;
 assign DataOutLfsrScanCounterCuT = LfsrScanCounterOut;

 assign a = MuxOutCutIn[0];
 assign b = MuxOutCutIn[1];
 assign teste_se = TestSelectEnable;
 assign teste_si = TestSerialInput;
 assign clock = clockPBisTB;
 assign reset = ResetCutInControllerOut;
 assign z = CutOutMisrIn[0];
 assign scan_out = CutOutMisrIn[1];

 assign CutOutMisrIn = {scan_outPBisTB, zPBisTB};

 assign InputSLfsrMisrCuT = CutOutMisrIn;
 assign resetLfsrMisrCuT = ResetMisrInControllerOut;
 assign enableLfsrMisrCuT = EnableMisrInControllerOut;
 assign DataOutLfsrMisrCuT = MisrOut;

 assign SeLMuXCuT = MuxSelectInControllerOut;
 assign InAMuXCuT = {aPBisTB, bPBisTB};
 assign InBMuXCuT = LfsrPiOut[1:0];
 assign DataOutMuXCuT = MuxOutCutIn;

 assign Clock = clockPBisTB;
 assign ResetController = resetPBisTB;
 assign ResetLfsrPi = NandInControllerOutResetS[0];
 assign ResetLfsrScan = NandInControllerOutResetS[1];
 assign ResetLfsrScanCounter = NandInControllerOutResetS[2];
 assign ResetCut = NandInControllerOutResetS[3];
 assign ResetMisr = NandInControllerOutResetS[4];
 assign LfsrPiCountFinished = InvOutNandInLpO[2];
 assign LfsrScanCountFinished = InvOutNandInLscO[0];
 assign EnableLfsrPi = EnableLfsrPiInControllerOut;
 assign EnableLfsrScan = EnableLfsrScanInControllerOut;
 assign EnableLfsrScanCounter = EnableLfsrScanCounterInControllerOut;
 assign EnableMisr = EnableMisrInControllerOut;
 assign TestSE = TestSelectEnable;
 assign MuxSelect = MuxSelectInControllerOut;

endmodule

Table 31: Verilog LOS based BIST File

 To validate the generated circuit, the VHDL type representation was simulated at

logic level, using ModelSim environment. The logic level simulation is necessary, not

only to validate BIST circuitry, but also to obtain the MISR final signature, known as

the good signature. Such signature will allow us to identify the failing and fault-free

circuits. Figure 37 presents the signals and buses obtained by logic simulation for the

circuit in VHDL.

90 CHAPTER 6: RESULTS

Figure 37: VHDL CUT Signature through ModelSim

 The MISR correct signature is the final output of the MISR, obtained at the end of

simulation. To allow an easy identification of the BIST signatures, all signatures will

be represented in unsigned decimal value, and the correct signature for this circuit is

number 10.

 As this CUT is available in both representations, structural in Verilog and

behavioural in VHDL, the BIST circuitry was also generated for the Verilog file type.

After AgingCalc convert it to a SPICE netlist, the circuit was also simulated at

transistor level in HSPICE environment. In this case, as the circuit and functionality is

the same, if the implementation is correct, the simulation in the SPICE netlist should

return the same BIST signature value, at the end of simulation.

 As it can be seen in Figure 38, the MISR final signature in the SPICE simulation is

also the decimal number 10. Both simulations show the same value near the 120 ns of

simulation time.

Figure 38: Verilog CUT Signature through HSpice (CosmosScope)

CHAPTER 6: RESULTS 91

6.2.2 B01, B06 AND PIPELINE MULTIPLIER CIRCUITS

 The following example circuits are additional test vehicles for the BISTGen

software tool validation. B01 and B06 are two ITC’99 benchmark circuits and

Pipeline Multiplier, as the name mentions, a 4 bit multiplier circuit with two pipeline

stages. In more detail, B01 is a Finite State Machine (FSM) that compares serial flow,

has 49 logic gates, 2 Primary Inputs (PI), 2 Primary Outputs (PO) and 5 FFs. B06 is

an interrupt handler with 56 logic gates, 2 PI, 6 PO and 9 FFs. Finally, the Pipeline

Multiplier has 4 bits input, with 2 pipeline stages, and multiplies the two 4 bit inputs

and places the result at the 8-bit output. It has 52 logic gates, 10 PI, 8 PO and 36 FFs.

Table 32, Table 33 and Table 34 present the LFSRs seeds used respectively in B01,

B06 and Pipeline Multiplier circuits, when the BISTGen software was used to insert

the BIST structures and functionality in these circuits.

Block LFSR type Seed

LFSR PI Linear 0110110

LFSR Scan Modular 0110101

LFSR Scan Counter Linear 101

MISR Linear 011010

Table 32: Config features for Verilog BIST B01 File

Block LFSR type Seed

LFSR PI Linear 0100111

LFSR Scan Modular 0011100

LFSR Scan Counter Linear 0111

MISR Linear 101010

Table 33: Config features for Verilog BIST B06 File

Block LFSR type Seed

LFSR PI Linear 01101010101010

LFSR Scan Modular 0110101010

LFSR Scan Counter Linear 001001

MISR Linear 01101010101

Table 34: Config features for Verilog BIST Pipeline Multiplier 4-2 File

92 CHAPTER 6: RESULTS

 To avoid reproducing here all the VHDL and Verilog codes for the generated

circuits, the BISTGen results for these CUTs are available in the Compact Disc (CD)

that accompanies this M.Sc. dissertation.

6.3 RESULTS FOR THE AGING SENSOR METHODOLOGY

 This section presents the results for the Aging Sensor Methodology. Using the

Verilog type netlists obtained with BISTGen tool (previously introduced in section

6.2 and before) with the inserted BIST functionality in the CUTs, the AgingCalc tool

was used to performed the aging analysis from 0 to 20 years of lifespan, with an

interval of 5 years from one analysis to another. Moreover, the SPICE netlists, with

one netlist for each degradation year, were simulated in HSPICE environment. The

purpose is to perform a set of 17 simulations of BIST sessions, one for each variable

VDD value, and one set for each aging year to evaluate (0, 5, 10, 15 and 20 years

considered, with an overall of 85 simulations/BIST runs per circuit). The VDD will be

depleted by 40%, from a nominal value of 1.1V and a maximum depleted value of

0.66V (a step of 0.0275V will be used in each new depleted VDD value). The result of

all simulations, with VDD and aging variations, will be observed in a graph, to allow

easier delay-fault identification (as we will see in the present section). As mentioned

previously, the BIST signatures will be represented in unsigned decimal values, for

easier depiction.

6.3.1 CUT_EXAMPLE CIRCUIT

 For the CUT_example circuit, the HSPICE simulations resulted in the following

set of VSCs, which are represented in Figure 39. In the graph we can easily identify 2

aging degradations in the simulations. The left-most is the first aging degradation

spotted during circuit lifetime and is a small-delay defect. This degradation does not

limit circuit’s reliability, as it is degradation in a small path, or a change in path-delay

reordering occurred in small-paths, and therefore the safety-margin of the circuit,

CHAPTER 6: RESULTS 93

known as time-slack, is not changed. However, the right-most degradation spotted is a

gross-delay defect and it reduces the circuit’s safety margin to accommodate delay

variations. To maintain the original circuit’s time-slack for all the expected lifetime,

one of two actions must be taken for 20 years of operation: (1) reduce clock frequency

or (2) increase power-supply voltage, to recover the circuit’s initial safety margin.

0

5

10

15

20

0

2

4

6

8

10

12

14

0,66
0,715

0,77
0,825

0,88
0,935

0,99
1,045

1,1

BIST result

CUT_example circuit

Figure 39: CUT_example’s BIST signatures for VDD and aging variations (VSC evolution with aging).

6.3.2 B01 CIRCUIT SIMULATION RESULTS

 The aging degradation results for the B01 circuit are represented in Figure 40. This

circuit is a more complex circuit, when compared with the previous example, and

therefore it is expected that higher number aging degradations should be spotted. In

fact, just for 5 years of lifetime it is possible to spot the two left-most aging variations,

signalized in the picture. This are variations in small-delay paths and do not reduce

circuit’s time-slack. For 10 and 15 years of lifetime there are also aging variations

detected, but in this graph they are unseen. However, a simple inspection on graph’s

data allows us to detect them. Finally, for 20 years of life-time, a gross-delay variation

alters circuit’s time-slack (the right-most variation spotted), making the circuit more

vulnerable and reducing its reliability.

Aging

Degradation

Aging

Degradation

94 CHAPTER 6: RESULTS

0

5

10

15

20

0

2

4

6

8

10

12

0,66
0,715

0,77
0,825

0,88
0,935

0,99
1,045

1,1

BIST result

B01 circuit

Figure 40: B01’s BIST signatures for VDD and aging variations (VSC evolution with aging).

6.3.3 B06 CIRCUIT SIMULATION RESULTS

 The last example circuit is B06 and the simulation results are presented in Figure

41. The result is interesting as only 2 BIST signatures were obtained in each VSC

(393 and 213). The reason is that this is a particular circuit where several critical paths

were obtained in the BIST circuitry and not on the CUT. For that reason, it creates a

specific condition that makes CUT’s CPs to be masked by the BIST circuitry’s CPs,

and therefore the BIST signatures are limited in a VSC. Nevertheless, it is possible to

identify aging degradations, as can be seen, and in this case circuit’s time-slack is

reduced just for 5 years of life-time.

 The interesting aspect in this circuit example is that, not only CUT’s aging

degradation can reduce circuit’s reliability. The BIST circuitry is also subject to aging

variations during circuit lifetime and their CPs may also impose a limit for circuit’s

performance. However, this aging sensor methodology can identify gross-delay

Aging

Degradation

Aging

Degradation

CHAPTER 6: RESULTS 95

defects that may limit circuit operation, but also small delay defects that give

information on how the circuit is aging (in terms of path-delay variations), regardless

of their origin.

0

5

10

15

20

0

50

100

150

200

250

300

350

400

0,66
0,715

0,77
0,825

0,88
0,935

0,99
1,045

1,1

BIST result

B06 circuit

Figure 41: B06’s BIST signatures for VDD and aging variations (VSC evolution with aging).

Aging

Degradation

97

7. CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

 A large amount of investigations has been done in the past to conceive efficient test

processes for transition faults and path delay-faults. Delay test still remains one of the

greatest challenges in the field of testing. Due to the new 65nm technologies and

below, delay testing is becoming more and more important. Hundred of million gates

are operating now in the GHz range and new processing materials and manufacturing

processes were conceived. Consequently, new methods are required to test small

delay-faults along with the usual transition faults. The great difficulty is how to derive

a cost-effective test process with the increasing complexity, performance, power

consumption and low pin count of today’s SoC.

7.1.1 CONCLUSIONS ON SCAN-BASED BIST AND BISTGEN TOOL

 BIST is an attractive technique for digital system test. Scan BIST merges BIST and

Scan Design techniques, with their associated costs and benefits.

 For external test, scan design is widely used, and has been extended to cope with

delay testing. Launch-on-Capture (LOC) and Launch-on-Shift (LOS) are the two most

common transition fault pattern generation methods, differing on the way of applying

the second vector. Launch-on-Capture is easier to implement but leads to low

transition fault coverage. On the other hand, Launch-on-Shift leads to higher

transition fault coverage; however, due to the at-speed change of the Scan_Enable

signal, it is much difficult to implement with traditional ATE (Automatic Test

Equipment).

 Adapting Scan BIST to uncover delay-faults, which is mandatory for digital SoC

implemented in nano-CMOS, is the first main objective of this work. In this

Dissertation a new methodology for dynamic scan BIST addition has been proposed,

98 CHAPTER 6: RESULTS

implemented and automated with the new BISTGen tool. The underlying principle is

to apply LOS and LOC techniques to scan BIST. The proposed methodology uses

linear and modular implementation which is dual architecture permission. However,

using the same architecture, the system implements three new Scan BIST solutions to

cover fault pattern generation. They are referred as scan BIST based on LOC, scan

BIST based on LOS and scan BIST based on LOS and LOC (which merges the other

two techniques in the same BIST test). The new architecture is composed also by the

addition of new modules, and the BIST controller as Finite State Machine (FSM) has

one additional state as compared to the traditional scan BIST controller. In scan BIST

based on LOC approach, the BIST controller act in a way that the ‘Teste_SE’ signal

goes low during LAUNCH and CAPTURE states. In scan BIST based on LOS, it only

goes low in CAPTURE state. The third proposed solution allows the two TF detection

techniques, by switching only one input signal. If the ‘BistStart’ control signal is at

high level, LOS is performed. If it is at low level, the LOC approach is performed. All

three solutions have approximately the same total transistor count (and the same

silicon area) and pin count, although the hardware changes. Performance degradation

in the CUT by BIST insertion is similar to the one of classic scan BIST and the

additional propagation delays associated with the input MUX and with the

replacement of the CUT’s flip-flops by scan flip-flops don’t change substantially.

 The generation and insertion in the CUT of this new scan-based BIST approach for

delay-faults was automated, and a new software tool, BISTGen, was developed to

allow this automated procedure.

 In section 6.2, it was demonstrated that BISTGen tool can effectively generate and

insert BIST circuitry, aiming delay-fault detection, into a CUT. The BISTGen works

with both behavioural descriptions and structural descriptions for the BIST circuitry,

and with both VHDL and Verilog type of HDL circuit representations. Its use, allows

easier BIST application to a CUT, and reduces design time and effort to include DfT

techniques. As a drawback, the fact that BIST sections performed at-speed should

increase VDD variations and power consumption, leading to additional delay-faults,

not present in normal operation. For these fact, a more thorough analysis on this

problematic is mandatory for future work, as it is out of the scope of this work.

CHAPTER 6: RESULTS 99

7.1.2 CONCLUSIONS ON AGING SENSOR METHODOLOGY

 In respect to the second main objective of this M.Sc. thesis, assuming that on-chip

power management may be available (to allow applying to a BIST structure a set of

static VDD values), an Aging Sensor Methodology was proposed, using dynamic BIST

and multi-VDD self test. The output of the multi-VDD self test is a set of digital

signatures (one for each VDD value), producing what we refer as the VSC (Voltage

Signature Collection). The VSC is a set of (VDDi, Si) pairs of values. For a circuit with

no aging degradations, a specific VSC result will be obtained, and referred as the

golden VSC. In the presence of cumulative aging degradations and the consequently

path-delay variations and, eventually, path reordering, the VSC is modified, allowing

the detection of these aging degradations (in CUT’s small paths or in CUT’s CPs).

 Simulations demonstrating this aging degradations detection were presented in

section 6.3. From the simulation results it is possible to show that the Aging Sensor

Methodology for circuits with BIST can effectively be used to detect aging

degradations during circuit’s lifetime. In the presence of Temperature variations, it

causes a shift on the BIST signatures in respect to VDD values. However, in the

presence of aging degradations it causes the BIST signatures to be changed, allowing

the identification of an aging degradation. Moreover, this aging degradation can affect

circuit’s non-critical paths, and no change is made in the circuits’ time-slack, which

does not affect performance (yet). But, if the aging degradation occurs in CPs, a time-

slack reduction is obtained and the circuit is more vulnerable to delay-faults,

regardless of their origin. In this last case, to maintain the original slack margin,

performance should be reduced by reducing clock frequency, or power dissipation

should be increased by increasing power-supply voltage, in order to recover the lost

slack margin.

 These results may lead us to conclude that, if only gross-delay defects limit

circuit’s performance, the VDD reduction needed to implement effectively this aging

monitoring methodology in real circuits is less demanding than what it was here used

in simulations. This is important because reduces complexity in the power

management module that allows DVS and in fact allows an easy implementation in

real circuits. Moreover, if only gross delay defects are analysed in the performance

100 CHAPTER 6: RESULTS

degradation monitoring, we may also conclude that circuit complexity does not affect

methodology implementation for bigger circuits, and scalability is assured. The

correct BIST signature obtained for higher VDD values is the same for all circuit

samples, and methodology will monitor the VDD margin for which this correct BIST

signature is valid (considering only the analysis of gross-delay aging defects).

 In respect to smaller delay defects caused by aging variations, the degradation

monitoring of the non-critical paths, accomplished with the BIST sessions performed

with lower VDD values, may be important to spot some defects that are not critical but

that could become critical in the near future. However, these conclusions can not be

drawn from the present work and further research on this topic should be made in the

future. The presence of operation induced variations, like power-supply disturbances

or temperature hot-spots, may change VSC for the lower VDD signatures, which may

limit the diagnosis and identification of these non-critical delay-faults. Moreover, this

problem increases with circuit complexity and therefore further investigation is

needed to evaluate the impact of operation induced variations on the VSC.

7.2 FUTURE WORK

 The work described in this dissertation, as every research & development work, is

not a task completed. Some improvements were already identified as future work

possibilities and it also opens new perspectives for undone research. This section

summarizes these future work possibilities.

 Regarding BIST structures and BISTGen software, several topics may be identified

as future works:

 BIST circuitry should be optimized, specially the controller block, to optimize

the gate level netlist structure in order to reduce the CP of the BIST circuitry.

In fact, it is highly recommended that the CPs be located in the CUT and not

in the BIST circuitry, so that the modified circuit with BIST functionality

maintains its original performance;

CHAPTER 6: RESULTS 101

 A structural VHDL description and a Verilog behavioural description for the

BIST circuitry should also be available and implemented in BISTGen, to

improve BISTGen flexibility regarding input and output files and formats;

 Implement on BISTGen the possibility of multiple scan-chains and also the

possibility of partial-scan tests.

 Regarding the developed Aging Sensor Methodology, the topics identified for

future work perspectives are the following:

 A thorough analysis on effective power consumption in test-mode and on the

increased variability obtained in test-mode, namely on VDD variations, is

necessary, due to the fact that BIST sessions are performed at-speed;

 A real silicon validation of this methodology is required, being necessary to

design a test-chip using more complex industry circuits as test vehicles.

 An investigation is needed to evaluate the impact of operation induced

variations (like temperature hot-spots and power noise) on the VSC, and to

identify procedures to limit these influences (like the use multiple scan-chains

and multiple MISR).

103

REFERENCES

[1] http://www.bitsonchips.com/references/ref36.pdf

[2] Semiconductor Industry Association, The National Technology Roadmap for

Semiconductors, 1997, http://www.semichips.org

[3] R. Bennetts, Design of Testable Logic Circuits, Addison-Wesley, Reading, MA,

1984.

[4] R. Williams, IBM perspectives on the electrical design automation industry, in:

Keywords to IEEE Design Automation Conference, 1986.

[5] B. Könemann, Creature from the Deep Submicron Lagoon, in: Keywords to the

10th ITG Workshop on Testmethoden und Zuverl• assigkeit von Schaltungen,

Herrenberg, Germany, March 1998.

[6] Roger Barth, Test and Test Equipment December 2012 Hsin-Chu, Taiwan,

ITRS 2012 Winter Report, www.itrs.net/Links/2012Winter/1205%20Presen

tation/Test_12052012.pdf.

[7] http://www.cs.colostate.edu/~cs530/digital_testing.pdf

[8] http://www.ece.ucdavis.edu/~halasaad/Data/vlsi02.pdf

[9] “IEEE Standard for Reduced-Pin and Enhanced-Functionality Test Access Port

and Boundary-Scan Architecture IEEE Std 1149.7-2009.”

[10] Charles E. Stroud, "A Designer's Guide to Built-in Self-Test", Kluwer

Academic Publishers, 2002.

[11] Das, S. R. (Oct. 1991). "Built-in self-testing of VLSI circuits", IEEE Potentials,

10, pp. 23-26.

[12] McCluskey, E. J. (April 1985). "Built-in self-test techniques", IEEE Design and

Test of Computers,2, pp. 21- 28.

[13] Savir, J. and Bar,dell, P. H. (March 1993). "Built-in self-test: milestones and

challenges", VLSI Design, 1, pp. 23-44.

[14] Pancholy A, Rajski J., McNaughton L. J. "Empirical Failure Analysis and

Validation of Fault Models in CMOS VLSI", International Test Conference '90,

Washington D.C., 10-12. September 1990, pp.938- 947.

[15] SUNIL R. DAS, NITA GOEL, WEN B. JONE and AMIYA R. NAYAK.

"Syndrome Signature in Output Compaction for VLSI Built-in Self-Test", VLSI

DESIGN, Vol. 7, No. 2, pp. 191-201, 1998.

http://www.bitsonchips.com/references/ref36.pdf
http://www.semichips.org/
http://www.itrs.net/Links/2012Winter/1205%20Presen%0btation/Test_12052012.pdf
http://www.itrs.net/Links/2012Winter/1205%20Presen%0btation/Test_12052012.pdf
http://www.cs.colostate.edu/~cs530/digital_testing.pdf
http://www.ece.ucdavis.edu/~halasaad/Data/vlsi02.pdf

104 REFERENCES

[16] N. Nicolici, B. M. Al-Hashimi, A. D. Brown, and A. Williams, “BIST

Hardware Synthesis for RTL Data Paths Based on Test Compatibility Classes,”

IEEE Trans.Computer-Aided Design of Integrated Circuits and Systems, vol.

19, no. 11, pp. 1375–1385, Nov. 2001.

[17] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar. An analytical model for negative

bias temperature instability. In ICCAD ’06: Proc. of the 2006 IEEE/ACM

International Conference on Computer-Aided Design, pages 493–496, New

York, 2006.

[18] S. Mahapatra, M. A. Alam, P. B. Kumar, T. R. Dalei, D. Varghese, and D. Saha.

Negative bias temperature instability in CMOS devices. Microelectron. Eng.,

80(1):114–121, 2005.

[19] L. Tsetseris, X. J. Zhou, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides.

Physical mechanisms of negativebias temperature instability. Applied Physics

Letters, 86(14):142103, 2005.

[20] B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken, and M.

Goodwin. Temperature dependence of the negative bias temperature instability

in the framework of dispersive transport. Applied Physics Letters,

86(14):143506, 2005.

[21] http://en.wikipedia.org/wiki/Paradox_(database) [17-05-2013]

[22] “Linear Feedback Shift Register,” en.Wikipedia.org [22-03-2013]

[23] C. Stroud, A Designer’s Guide to Built-In Self-Test, Kluwer Academic

Publishers, Bos-ton MA, 2002

[24] S. Zhang, R. Byrne, J.C. Muzio, D.M. Miller, “Why cellular automata are better

than LFSRs as built-in self test generators for sequential-type faults”, IEEE

International Symposium on Circuits and Systems, Vol. 1,1994

[25] L. Wang and E. McCluskey, “Complete Feedback Shift Register Design for

Built-In Self-Test,” Proc. IEEE International Conference on Computer-Aided

Design, pp. 56-59, 1986

[26] C. Stroud, A Designer’s Guide to Built-In Self-Test, Kluwer Academic

Publishers, Bos-ton MA, 2002

[27] Michael L. Bushnell and Vishwani D. Agrawal. Essentials of electronic testing

for digital, memory, and mixed signal VLSI circuits elektronisk ressurs.

Frontiers in electronic testing. Kluwer Academic, New York, 2002.

[28] J.A. Waicukauski, E.Lindbloom, B. Rosen and V.Iyengar, “Transition Fault

Simulation by Parallel Single Fault Propagation”, in Proceedings of IEEE

International Test Conference, Sept 1986, pp. 542-549.

http://en.wikipedia.org/wiki/Paradox_(database

REFERENCES 105

[29] J.Savir and S. Patil, “Scan-based Transition Test”, IEEE Transactions on

Computer Aided Design of Integrated Circuits and Systems, Vol. 12, No. 8,

Aug 1993.

[30] M. L.Bushnell and V. D. Agrawal, “Essentials of Electronic Testing for Digital,

Memory, and Mixed-Signal VLSI Circuits”, Kluwer Academic Publishers,

Boston, 2000.

[31] V.S. Iyengar, B.K. Rosen and J.A. Waicukauski, “On Computing the Sizes of

Detected Delay Faults”, IEEE Transactions on Computer Aided Design, Vol.

CAD-9, pp.299-312, March 1990.

[32] J.Savir and S.Patil, “On Broad-Side Delay Test”, VLSI Test Symposium, Sept

1994, pp 284-290.

[33] B. Dervisoglu and G.Stong, “Design for Testability: Using Scan-path

Techniques for Path-delay Test and Measurement”, Proceedings of IEEE

International Test Conference, 1991, pp. 365-374.

[34] G.L. Smith, “Model for Delay Faults Based Upon Path”, in Proceedings of

IEEE International Test Conference, Nov 1985, pp. 342-349.

[35] N. Tendolkar, R. Raina, R. Woltenberg, X.Lin, B. Swanson and G.

Aldrich,“Novel Techniques for Achieving High At-speed Transition Fault Test

Coveragefor Motorola’s Microprocessors Based on PowerPCTM Instruction Set

Architecture”, in Proceedings of IEEE VLSI Test Symposium., Apr-May 2002,

pp. 3-8.

[36] T. L. McLaurin and F. Frederick, “The Testability Features of the MCF5407

Containing the 4th Generation Coldfire Microprocessor Core”, in Proceedings

of IEEE International Test Conference, Oct. 2000, pp.151-159.

[37] Miura Y, Matukura Y. Investigation of silicon–silicon dioxide interface using

MOS structure. Jpn J Appl Phys 1966;5:180; Goetzberger A, Nigh HE. Surface

charge after annealing of Al–SiO2–Si structures under bias. Proc IEEE 1966;

54:1454.

[38] G.Chen, K.Y.Chuah, M.F.Li, D. Chan, C.H.Ang, J.Z.Zheng, Y.Jin, and

D.L.Kwong. Dynamic NBTI of PMOS transistors and its impact on device

lifetime. In RPSP ’03: Proc. of the 41st annual symposium on Reliability

Physics, pages 196–202, Dallas, Texas, 2003.

[39] A. S. Goda and G. Kapila. Design for degradation: Cad tools for managing

transistor degradation mechanisms. In ISQED ’05: Proc. of the 6th International

Symposium on Quality of Electronic Design, pages 416–420, Washington, DC,

2005.

[40] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar. Impact of NBTI on SRAM read

stability and design for reliability. In ISQED ’06: Proc. of the 7th International

106 REFERENCES

Symposium on Quality Electronic Design, pages 210–218, Washington, DC,

2006.

[41] N.K.Jha, P.S.Reddy, D.K.Sharma, and V.R.Rao. NBTI degradation and its

impact for analog circuit reliability. IEEE Trans. on Electron Devices,

52(12):2609–2615, 2005.

[42] B. C. Paul, K. Kang, H. Kufluoglu, M. A. Alam, and K. Roy. Temporal

performance degradation under NBTI: Estimation and design for improved

reliability of nanoscale circuits. In DATE ’06: Proc. of the Conference on

Design, Automation and Test in Europe, pages 780–785, Leuven, Belgium,

2006.

[43] V. Reddy, J. Carulli, A. Krishnan, W. Bosch, and B. Burgess. Impact of

negative bias temperature instability on product parametric drift. In ITC ’04:

Proc. of the International Test Conference, pages 148–155, Washington, DC,

2004.

[44] R. Vattikonda, W. Wang, and Y. Cao. Modeling and minimization of PMOS

NBTI effect for robust nanometer design. In DAC ’06: Proc. of the 43rd Annual

Conference on Design Automation, pages 1047–1052, New York, 2006.

[45] X. Yang, E. F. Weglarz, and K. K. Saluja. On NBTI degradation process in

digital logic circuits. In International Conference on VLSI Design, pages 723–

730, Bangalore, India, 2007.

[46] Zeghbroeck, B. Van. "Chapter 7: MOS Field-Effect-Transistors." Principles of

Semiconductor Devices. 2004.

<http://ecewww.colorado.edu/~bart/book/book/Chapter7/ch7_7.htm>.

[47] Subramoniam, R. A Statistical Model of Oxide Breakdown Based on a Physical

Description of Wearout. Proceedings of IEEE International Electron Devices

Meeting, 13 Dec. 1992, Electron Devices Soc.IEEE.

[48] Lee, J.c., Chen Ih-Chin, and Hu Chenming. "Modeling and Characterization of

GateOxide Reliability." IEEE Transactions on Electron Devices 35 (1998).

[49] Noguchi, Junji. "Dominant Factors in TDDB Degradation of Cu

Interconnects."IEEE Trransactions on Electron Devices, 52 (2005): 1743-1750.

[50] T. H. Ning et al.,”1 μm MOSFET VLSI Technology: Part IV-Hot

electrondesign constraints,” IEEE Trans. Electron Devices, vol.26, pp.346-353,

1979.

[51] C. Hu, S.C. Tam, F. Hsu, P. Ko, T. Chan, K. W. Terrill, ”Hot Electron Induced

MOSFET Degradation-Model, Monitor and Improvement,” J. Solid State

Circuits, vol.20(1), pp.295-305, 1985.

REFERENCES 107

[52] K.J. Puttlitz, K.A. Statler, Handbook of Lead-Free Solder Technology for

Microelectronic

[53] J.R. Lloyd, Appl. Phys. Lett. 79 (7) (2000) 1061–1062.

[54] J.R. Lloyd, Microelectron. Eng. 49 (1999) 51–64.

[55] J.R. Black, IEEE Trans. Elec. Dev. 16 (4) (1969) 338–347.

[56] K. Musaka, B. Zheng, H. Wang, K. Wijekoon, L. Chen, J. Lin, K. Watanabe, K.

Ohira, T. Hosoda, K. Miyata, T. Hasegawa, G. Dixit, R. Chueng, M. Yamada

and S. Kadomura, Proceedings of the International Interconnect Technology

Conference (IEEE, New York, 2001), p.83.

[57] T. Suzuki, S. Ohtsuka, A. Yamanoue, T. Hosoda, T. Khono, Y. Matsuoka, K.

Yanai, H. Matsuyama, H. Mori, N. Shimizu, T. Nakamura, S. Sugatani, K.

Shono and H. Yagi, Proceedings of the International Interconnect Technology

Conference (IEEE, New York, 2002), p. 229.

[58] J. A. Nucci, Y. Shacham-Diamond and J. E. Sanchez, Jr., Appl. Phys. Lett. 66

(26), 3585 (1995).

[59] J. A. Nucci, R. R. Keller, J. E. Sanchez, Jr. and Y. Shacham-Diamond, Appl.

Phys. Lett. 69 (26), 4017 (1996).

[60] J. A. Nucci, R. R. Keller, D. P. Field and Y. Shacham-Diamond, Appl. Phys.

Lett. 70 (10), 1242 (1997).

[61] A. Sekiguchi, J. Koike, S. Kamiya, M. Saka and K. Murayama, Appl. Phys.

Lett. 79 (9), 1264 (2001).

[62] A. Veloso, T. Hoffmann, A. Lauwers, H. Yu, S. Severi, E. Augendre, S.

Kubicek, P. Verheyen, N. Collaert, P.Absil, M. Jurczak, S. Biesemans,

“Advanced CMOS device technologies for 45nm node and below”, Science and

Technology of Advanced Materials, vol.8, pp. 214–218, 2007.

[63] R. H. Dennard, J. Cai, and A. Kumar, “A perspective on today’s scaling

challenges and possible future directions”, Solid-State Electronics, 51 (2007),

518–525.

[64] J. Schwank, IEEE NSREC Short Course, 2002.

[65] T. R. Oldham and F. B. McLean, “Total ionizing dose effects in MOS oxides

and devices”, IEEE Trans. Nucl. Sci., vol. 50, no. 3, pp. 483-499, June 2003.

[66] H. J. Barnaby “Total-ionizing-dose effects in modern CMOS technologies”,

IEEE Trans. Nucl. Sci., vol. 53, no. 6, pp. 3103-3121, December 2006.

[67] S. T. Pantelides, L. Tsetseris, S. N. Rashkeev, X. J. Zhou, D. M. Fleetwood, and

R. D. Schrimpf, “Hydrogen in MOSFETs – A primary agent of reliability

issues”, Microelectron. Rel., vol. 47, pp. 903-911, 2007.

108 REFERENCES

[68] N. S. Saks, M. G. Ancona, and J. A. Modolo, “Radiation effects inmost

capacitors with very thin oxides at 80 K”, IEEE Trans

[69] F. Faccio and G. Cervelli “Radiation-induced edge effects in deep submicron

CMOS transistors”, IEEE Trans. Nucl. Sci., vol. 52, no. 6, pp. 2413-2420,

December 2005.

[70] M. R. Shaneyfelt, P. E. Dodd, B. L. Draper, and R. S. Flores, “Challenges in

hardening technologies using shallow-trench isolation”, IEEE Trans. Nucl. Sci.,

vol. 45, no. 6, pp. 2584–2592, December 1998.

[71] P. E. Dodd, M. R. Shaneyfelt, J. R. Schwank, and J.A. Felix, “Future challenges

in radiation effects”, Short course of the 10th European Conference on

Radiation Effects on Components and Systems (RADECS), September 2009.

[72] K. Kang, S. Gangwal, S. Park, And K. Roy, “NBTI Induced Performance

Degradation In Logic And Memory Circuits: How Effectively Can We

Approach A Reliability Solution?”, In Asia And South Pacific Design

Automation Conference, pp. 726–731, March 2008.

[73] C. Martins, “Adaptive Error-Prediction Aging Sensor for Synchronous Digital

Circuits”, M.Sc. Thesis, University of Algarve, October, 2012.

[74] International Technology Roadmap for Semiconductors (ITRS) web page:

www.itrs.net, accessed in August 2013.

[75] Silvia A. T. Gomes, "BIST Architectures for Dynamic Test", M.Sc. Thesis,

DEEC/IST, TUL (Technical University of Lisbon), 2007.

[76] J. Semião, "Power-Supply and Temperature Based Methodologies to Improve

Tolerance and Detection of Delay Faults in Synchronous Digital Circuits",

Ph.D. Thesis, IST, TUL, July, 2010.

[77] J. Pachito, "Aging Prediction Methodology for Digital Circuits", M.Sc. Thesis,

ISE, UAlg, January, 2012.

[78] M. Rodríguez Irago, J. J. Rodríguez Andina, F. Vargas, J. Semião, I. C.

Teixeira, J. P. Teixeira, “Dynamic Fault Detection in Digital Systems Using

Dynamic Voltage Scaling and Multi-Temperature Schemes”, IOLTS06 –

Proceedings of the 12th IEEE International On-Line Testing Symposium, Lake

of Como, Italy, July, 2006, DOI: http://dx.doi.org/10.1109/IOLTS.2006.25.

[79] Tecmic, http://www.tecmic.pt/eng/xtran/xtran_intro.html. Last visit on

1th/May/2010.

[80] Stefan Gerstendörfer, Hans-Joachim Wunderlich, “Minimized Power

Consumption for Scan-Based BIST”, Journal of Electronic Testing: Theory and

Applications, Volume 16, Issue 3, special issue on the European test workshop

http://www.itrs.net/
http://dx.doi.org/10.1109/IOLTS.2006.25
http://www.tecmic.pt/eng/xtran/xtran_intro.html

REFERENCES 109

1999, June 2000, Pages: 203 – 212, ISSN:0923-8174, Kluwer Academic

Publishers.

[81] R. A. Frohwerk, “Signature Analysis: A New Digital Field Service Method”,

Hewlett-Packard Journal, Vol. 28, Nr. 9, pp.2-8, May 1977.

[82] J. Savir, “Syndrome-Testable Design of Combinational Circuits”, IEEE Trans.

On Computers, Vol. C-69, nº 6, pp. 442-451, June 1980.

[83] J. P. Hayes, “Transition Count Testing of Combinational Logic Circuits”, IEEE

Trans. On Computers, Vol. C-25, nº 6, pp. 613-620, June 1976.

[84] R. Davis, “Signature Analysis of Multi-Output Circuits”, in Proc. of the

International Fault-Tolerant Computing Symp., pp. 366-371, June 1984.

[85] Vijay Reddy, Anand T. Krishnan, Andrew Marshall, John Rodriguez, Sreedhar

Natarajan, Tim Rost, and Srikanth Krishnan, “Impact of negative bias

temperature instability on digital circuit reliability”, Reliability Physics

Symposium Proceedings, 40th Annual, Page(s): 248 – 254, ISBN: 0-7803-7352-

9, DOI: 10.1109/RELPHY.2002.996644

[86] D. K. Schroder, J. A. Babcock, “Negative Bias Temperature Instability: Road to

Cross in Deep Submicron Silicon Semiconductor Manufacturing”, Journal of

Applied Physics, Vol. 94 Issue: 1, pp. 1-18, DOI: 10.1063/1.1567461, July,

2003.

[87] M. A. Alam, S. Mahapatra, “A Comprehensive Model of PMOS NBTI

Degradation”, Journal of Microelectronics Reliability, Vol. 45 Issue: 1, pp. 71-

81, DOI: 10.1016/j.microrel.2004.03.019, January, 2005.

[88] W. Wang, V. Reddy, A. T. Krishnan, R. Vattikonda, S. Krishnan, Y. Cao,

“Compact modeling and simulation of circuit reliability for 65nm cmos

technology”, IEEE Transactions on Device and Materials Reliability, Vol. 7,

No. 4, pp. 509–517, 2007.

[89] E. T. Ogawa, J. Kim, G. S. Haase, H. C. Mogul, J. W. McPherson, “Leakage

breakdown and tddb characteristics of porous low-k silica”, IEEE International

Reliability Physics Symposium, pp. 166–172, 2003.

[90] N. Kimizuka, T. Yamamoto, T. Mogami, K. Yamaguchi, K. Imai, T. Horiuchi,

“The impact of bias temperature instability for direct-tunneling ultra-thin gate

oxide on mosfet scaling”, VLSI Symposium on Technology, pp. 73–74, 1999

[91] S. Borkar, “Electronics beyond nano-scale CMOS”, ACM/IEEE Design

Automation Conference pp. 807–808, 2006.

[92] M. A. Alam, S. Mahapatra, “A comprehensive model of pmos nbti

degradation”, Microelectronics Reliability Vol. 45: 71–81, 2005.

110 REFERENCES

[93] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, S. Vrudhula, “Predictive

modeling of the nbti effect for reliable design”, IEEE Custom Integrated

Circuits Conference, pp. 189– 192, 2006.

	1. Introduction
	1.1 Objectives
	1.2 Context
	1.3 Outline

	2. Design for Testability
	2.1 Delay Faults
	2.1.1 Transition Faults
	2.1.2 Path Delay Faults

	2.2 DfT Techniques for Static Faults
	2.2.1 Scan Path
	2.2.2 BIST
	2.2.2.1 Test Pattern Generation
	2.2.2.2 Output Response Analysis
	2.2.2.2.1 LFSR for Response Compaction
	2.2.2.2.2 Multiple Input Signature Register

	2.3 Delay Fault Testing using Transition Fault Model
	2.3.1 Launch on Capture
	2.3.2 Launch on Shift

	3. Aging Effects in CMOS Nano Technologies
	3.1 Negative Bias Temperature Instability
	3.2 Time Dependent Dielectric Breakdown
	3.3 Hot Carrier Injection
	3.4 Electromigration
	3.5 Stress Induced Voids
	3.6 Total Ionizing Dose

	4. BIST for Delay-Faults
	4.1 Scan Based BIST for Delay-Faults
	4.1.1 Mux Block
	4.1.2 LFSR PI Block
	4.1.3 LFSR Scan
	4.1.4 LFSR Scan Counter
	4.1.5 MISR Block
	4.1.6 Comparators
	4.1.7 CUT
	4.1.8 BIST Controller

	4.2 BISTGen Software
	4.2.1 Data Entry
	4.2.2 Application Flowchart
	4.2.3 Database Architecture and Composition
	4.2.4 LFSR’s Configuration
	4.2.5 Application Forms Function and Hierarchy

	5. Aging Sensor Methodology
	5.1 Background and Previous Work
	5.2 Aging Sensor Methodology For Scan-Based BIST Circuits
	5.3 Aging Analysis and Circuit’s Degradation with Aging

	6. Results
	6.1 Simulation Environment and Test Procedures
	6.1.1 VHDL Simulation Procedure
	6.1.2 Verilog, AgingCalc, and SPICE Simulation Procedure

	6.2 Results for BIST Circuitry and BISTGen Tool
	6.2.1 CUT_example Circuit
	6.2.2 B01, B06 and Pipeline Multiplier Circuits

	6.3 Results for the Aging Sensor Methodology
	6.3.1 CUT_example Circuit
	6.3.2 B01 Circuit Simulation Results
	6.3.3 B06 Circuit Simulation Results

	7. Conclusions and Future Work
	7.1 Conclusions
	7.1.1 Conclusions on Scan-Based BIST and BISTGen Tool
	7.1.2 Conclusions on Aging Sensor Methodology

	7.2 Future Work

	References

