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Abstract  

 

The fact that the adult brain is able to produce new neurons or glial cells from neural 

stem cells (NSC) became one of the most interesting and challenging fields of research 

in neuroscience. Endogenous adult neurogenesis occurs in two main regions of the 

brain: the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone 

(SGZ) in the dentate gyrus.  Brain injury may be accompanied by increased 

neurogenesis, although neuroinflammation promotes the activation of microglial cells 

that can be detrimental to the neurogenic process.  Nitric oxide (NO) is one of the 

factors released by microglia that can be proneurogenic. The mechanism by which NO 

promotes the proliferation of NSCs has been intensively studied. However, little is 

known about the role of NO in migration, survival and differentiation of the newborn 

cells. The aim of this work was to investigate the role of NO from inflammatory origin in 

proliferation, migration, differentiation and survival of NSCs from the dentate gyrus in a 

mouse model of status epilepticus. We also assessed neuroinflammation in the same 

injury model. Our work showed that NO increased proliferation of the early-born cells 

after seizures, but is detrimental for their survival. NO also increased migration of 

neuroblasts. Moreover, NO was important to maintain long-term neuroinflammation. 

Taken together, these results show that NO may be a good target to promote 

proliferation and migration of NSCs following seizures, but compromises survival of 

early-born cells. 

 

Key words: neural stem cells, adult neurogenesis, hippocampus, nitric oxide, status 

epilepticus 
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Resumo  

 

A descoberta de que o cérebro adulto é capaz de produzir novas células nervosas ou 

da glia a partir de células estaminais neurais tornou-se uma das mais interessantes e 

desafiantes áreas da neurociência. A neurogénese adulta endógena ocorre em duas 

principais regiões do cérebro de mamíferos, ou nichos neurogénicos: a zona 

subventricular nos ventrículos laterais e a zona subgranular no giro dentado do 

hipocampo.  

Apesar ter sido proposto que a neurogénese ocorre como uma tentativa do cérebro em 

reparar zonas lesionadas por um insulto, nestas condições, a neuroinflamação que 

resulta do evento promove a activação das células da microglia. As células da 

microglia são consideradas as células imunitárias do sistema nervoso central e ao 

serem activadas libertam factores inflamatórios que podem prejudicar o processo 

neurogénico. 

O monóxido de azoto, ou óxido nítrico (do inglês nitric oxide, NO), é um dos factores 

libertados pela microglia activada e que apresenta um efeito dual na neurogénese, 

promovendo-a ou inibindo-a, dependendo da concentração e tempo de exposição. 

Esta molécula pleiotrópica resulta da actividade enzimática de uma das três isoformas 

da sintase do óxido nítrico: neuronal, endotelial ou indutível. O mecanismo pelo qual o 

NO participa na proliferação das células estaminais neurais tem sido intensivamente 

estudado por diversos grupos em todo o Mundo. Sabe-se que em condições 

fisiológicas o NO participa como um factor anti-neurogénico, mas, em condições que 

antecedem um insulto cerebral, o NO promove a proliferação de células estaminais em 

ambos os principais nichos neurogénicos. No entanto, pouco se sabe sobre a função 

do NO na migração, sobrevivência e diferenciação das novas células.  

O objectivo deste trabalho foi investigar o papel do NO de origem inflamatória na 

proliferação, migração, diferenciação e sobrevivência de novas células formadas no 

giro dentado na sequência de um insulto cerebral. Foi também investigado o 

envolvimento do NO na resposta neuroinflamatória no mesmo modelo. Neste trabalho 

foi usado um modelo de murganho de status epilepticus induzido por administração 

intraperitoneal de ácido caínico, uma vez que é um modelo in vivo de lesão cerebral 

capaz de mimetizar os eventos neurogénicos pós-lesão de uma forma muito robusta, 

nomeadamente ao nível do aumento da proliferação de células estaminais, migração e 

diferenciação de novas células. 



 
x 

Os nossos resultados mostram que o tratamento com ácido kaínico aumentou o 

número de células em proliferação até 14 dias após lesão. Na ausência da enzima 

iNOS o tratamento com ácido kaínico diminuiu a proliferação de novas células até 14 

dias após lesão, excepto no 7º dia, sugerindo uma regulação bifásica da proliferação 

pelo NO. Assim, é possível definir um período em que a proliferação é regulada por 

uma mecanismo dependente de NO (até 5 dias após lesão) e outro em que o NO 

parece não estar envolvido (7 dias após lesão). A migração de neuroblastos aumenta 

após lesão e é dependente de NO 14 dias após lesão. A distribuição das novas células 

ao longo do giro dentado formadas 3 dias após lesão foi alterada após crises 

epilépticas, mas o mecanismo pelo qual é regulado é independente de NO. Nas 

condições analisadas, o número de novos neurónios que resultam de células formadas 

3 dias após lesão diminui, sugerindo que o NO é importante para a sobrevivência dos 

novos neurónios. A diferenciação das novas células em astrócitos não foi alterada 

após lesão. Por fim, a astrogliose está aumentada 28 dias após lesão. 

O nosso trabalho mostra que o NO de origem inflamatória está envolvido na 

proliferação e sobrevivência dos novos neurónios formados numa fase inicial da 

proliferação após crises epilépticas. Os novos neurónios formados após lesão por 

status epilepticus parecem sobreviver melhor quando são formados numa fase mais 

tardia do processo proliferativo (7 dias após lesão), uma vez que o tratamento com 

ácido caínico não promoveu qualquer alteração no número de novos neurónios 

formados durante esta janela temporal. Além disso, o NO mostra ser importante para a 

migração de neuroblastos, uma vez que se verifica um aumento da imunoreactividade 

destas células após lesão. Verificou-se também que a neuroinflamação está presente 

28 dias após lesão, o que sugere que o NO é importante para a manutenção da 

activação de astrócitos a longo prazo, indicando uma persistência de inflamação no 

hipocampo.  

Assim, concluímos que o NO de origem inflamatória participa em diferentes fases da 

neurogénese no hipocampo, abrindo a possibilidade de explorar abordagens 

terapêuticas baseadas nos efeitos do NO em situações de lesão cerebral. 

 

Palavras-chave: células estaminais neurais, neurogénese adulta, hipocampo, 

monóxido de azoto, status epilepticus  
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1. Introduction 

Neurodegenerative diseases are receiving increasing attention and effort as their 

prevalence increases in an aging population. Replacing damaged neurons or lesioned 

areas by grafting new cells has been an active area of research. The discovery that the 

brain is able to produce new cells throughout adult life has further encouraged 

biomedical research in order to understand how this process is regulated and how to 

use it for the benefit of patients suffering from neurological disorders or brain lesions. 

The transplantation of neural stem cells (NSC) or endogenous manipulation of adult 

neurogenesis have been proposed as therapeutic strategies for the treatment of 

neurological disorders and the damaged brain. Thus it is important to understand the 

neurogenic process and how newborn cells survive in a context of brain injury. 

 

1.1 Neurogenesis and neural stem cells 

Neurogenesis is a complex multistep process by which new nerve cells are produced 

from neural stem cells (NSCs) and functional integrated into the central nervous system 

(CNS). For over 100 years it was believed that the production of new neurons was 

confined to embryonic development (Ramón y Cajal, 1928), stopping just before 

puberty and brain plasticity occurred as a result of structural changes involving 

synapses of pre-existing neurons (Alvarez-Buylla and Kirn, 1997). This concept was 

accepted and supported by the principal figures at the time, and became a central 

dogma in neuroscience. The term “neural stem cell” became popular in the last 20 

years but the terminology is not yet fully defined, once the criterion is not common 

worldwide. NSCs are self-renewing and multipotent progenitor cells with the ability to 

differentiate into neural lineages including neurons and glia cells (Götz and Huttner, 

2005). NSCs were first identified in the second half of the 19th century, with histological 

observations made by Wilhelm His of diving cells in the embryonic human brain (His,  

1904). These germinal cells were different from the similar cells in other organs and 

stopped dividing after neuronal commitment. In the first half of the 20th century, the lack 

of detection methods for cell division and differentiation made the occasional 

references to postnatal neurogenesis in mammals to be ignored. In 1944, the 

neurosurgeon Globus and the neuropathologist Kuhlenbeck analyzed post mortem 

brain tissue and described bipotencial mother cells that differentiated into unipolar or 

bipolar neuroblasts (reviewed in Curtis et al., 2011). In the mid twentieth century, 

Joseph Altman and his colleagues labeled dividing cells with [3H]-thymidine and 

revealed a constitutive production of new neurons in the adult hippocampus (Altman 
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and Das, 1965) and adult olfactory bulb (Altman, 1969). Twenty years later, the 

combination of [3H]-thymidine labeling and electron microscopy showed mitosis in the 

subventricular zone (SVZ) of adult macaque monkeys (Kaplan, 1983), and later in the 

1990’s, adult neurogenesis was demonstrated in songbirds (Alvarez-Buylla and Kirn, 

1997), validating the pioneering work of Altman. Since then, adult neurogenesis has 

been identified in many different animal species, such as crustaceans (Beltz and 

Sandeman, 2003; Schmidt, 2007), reptiles (Font et al., 2001), insects (Scotto-

Lomassese et al., 2003; Cayre et al., 2007), fish (reviewed in Kizil et al., 2011) and 

mammals, including humans (Eriksson et al., 1998; Gage et al., 1995). 

  

1.1.1 Endogenous adult neurogenesis 

In most brain regions, the generation of new nerve cells is indeed restricted to the 

embryonic development period. In the adult central nervous system (CNS), 

endogenous neurogenesis occurs due to the existence of NSC in two specific brain 

regions, called neurogenic niches: the subventricular zone (SVZ) in the lateral walls of 

the lateral ventricles (Doetsch et al., 1997; Doetsch and Scharff, 2001; Curtis et al., 

2007) (Fig. 1.1 A) and the subgranular zone (SGZ) of the dentate gyrus of the 

hippocampus (Eriksson et al., 1998; Limke and Rao, 2002) (Fig. 1.1 B). There is also 

some evidence of adult neurogenesis in mammalian brain outside this regions, namely 

in neocortex  (Gould et al., 1999; Dayer et al., 2005), amygdala (Bernier et al., 2002), 

hypothalamus (Gould et al., 2001; Xu et al., 2005; Lee and Blackshaw, 2012) and 

spinal cord (Yamamoto et al., 2001), to mention a few.  

The neurogenic niche is a microenvironmental system characterized by the presence 

of NSCs, supporting glial cells, vascular supply and local signals that regulate self-

renewal capacity, activation and fate determination of NSCs (Alvarez-Buylla and Lim, 

2004; Morrison and Spradling, 2008). The architecture and molecular signaling in the 

niche promote cell-cell and cell-extracellular matrix interactions, important to maintain 

stem cells location and characteristics (Conover and Notti, 2008; Suh et al., 2009). The 

interaction between stem cells and their somatic cells neighbors, as well as the 

extracellular matrix that surrounds the cells and confers structural organization, are 

very important to maintain NSCs within their niche and their stem cells characteristics. 

Astrocytes function as sensors of the neurogenic niche environment, contributing to 

detect alterations in neuronal and precursor number and translate signals from the 

blood vessels and other cells (Lim and Alvarez-Buylla, 1999). Despite the similarities 

between both neurogenic niches, namely the somatic cell signaling and presence of an 
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extracellular matrix and membrane basement to cell anchoring, there are structural 

differences between the SVZ and SGZ. 

 

Figure 1.1 – Neurogenic niches and cell types. SVZ pannel, Coronal schematic 

section of adult mouse brain showing the location of the subventricular zone (SVZ) 

of lateral ventricles (green). SVZ is composed of a single layer of multi-ciliated 

ependymal cells (E, white). SVZ astrocytes, or type B cell (B, light blue), are self-

renewal primary precursors, and give rise to focal clusters of rapidly dividing transit 

amplifying cells, or type C cell (C, brown). Neuroblasts, or type A cells (A, light 

green), derived from type C cells, migrate throughout rostral migratory stream to 

the olfactory bulb, where they become local interneurons. Blood vessels (BV) and 

basal lamina (BL) are in close proximity to the SVZ. SGZ pannel, Coronal 

schematic section of adult mouse brain showing the location of the subgranular 

zone (SGZ) of dentate gyrus of hippocampus. NSCs (blue) from the SGZ with self-

renewal capacity proliferate (brown) and migrate (dark blue) towards the granular 

zone (GZ) of the DG of hippocampus. After neuronal commitment and 

differentiation (dark green), cells extend axonal projections to CA3 region of 

hippocampus.   

 

The SVZ is a multicellular layer extending along the lateral wall of the lateral ventricles, 

considered the largest pool of NSCs of adult brain (Carleton et al., 2003). SVZ is 

composed by four main cell types: neuroblasts (type A cells), SVZ astrocytes (type B 
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cells), immature precursors (type C cells) and a single layer of multi-ciliated ependymal 

cells that separates the SVZ from the lateral ventricle (Fig. 1.1 A). Ependymal cells are 

very important in maintenance of the undifferentiated state of NSCs by producing 

noggin, an antagonist of bone morphogenetic proteins (BMP) signaling, and therefore 

preventing the glial differentiation of SVZ cells induced by BMPs. Under normal 

physiological conditions, the newborn cells spread along the rostral migratory stream 

(RMS) to the olfactory bulb, where they migrate radially and differentiate into functional 

granule and periglomerular neurons (Carleton et al., 2002; Doetsch, 2003), with 

functional synapses and electrophysiological activity (Carlen et al., 2002; Petreanu and 

Alvarez-Buylla, 2002; Belluzzi et al., 2003). Among these cells is also an 

oligodendrocyte precursor cell, known as O2A cell, making the SVZ a site of 

oligodendrocyte generation (Nait-Oumesmar et al., 1999). Neurogenesis in the adult 

olfactory bulb has been identified in mammals, including humans (Curtis et al., 2007), 

with important function in odor memory and discrimination (Gheusi et al., 2000; 

Rochefort et al., 2002). 

The SGZ of the dentate gyrus is described as a thin germinal layer, corresponding to 

the space between the beginning of granular layer of dentate gyrus and the hilus (Fig. 

1.1 B) (Scharfman and Gray, 2007). Hippocampal neurogenesis (Fig 1.2) occurs locally 

and involves three sequential main steps: 1) proliferation of NSCs, 2) migration and 3) 

differentiation. The first step is a mitotic phase where astrocyte-like cells (type 1 cells) 

asymmetrically divide for about 7 to 8 days into immature precursors (neuroblast or 

type 2 cells) (Seri et al., 2004). During this period, type 1 cells, similarly to type B cells 

in SVZ, have a unique radial process and ramified structure at its end. Their 

morphology and conserved expression of glial fibrillary acidic protein (GFAP), Nestin 

and Sox2 is consistent with radial glial cells that give rise to the first neurons during 

embryonic development (Suh et al., 2009). Type 2 cells, or neuroblasts, are nonradial 

cells similar to type C cells in SVZ. Both types of cells are very important in 

maintenance of neurogenesis, since its ablation results in the cessation of production 

of newborn cells in both neurogenic niches (Suh et al., 2009). After fate determination, 

the cells that survive start to migrate through granular zone of the dentate gyrus and 

during this 2 week period, cells start to extend axons and express doublecortin (DCX) 

and PSA-NCAM, a neural cell adhesion molecule. These cells give rise to functional 

granular neurons that extend axonal projection into the mossy fiber pathway to 

integrate into pre-existing circuits in CA3 pyramidal cells of hippocampus (Stanfield and 

Trice, 1988; Markakis and Gage, 1999) with identical electrophysiological properties to 

the other granule cells (van Praag et al., 2002). The last main step is differentiation of 
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the newborn cells into mature neurons or glial cells, which starts with integration of the 

new cells into the pre-existent network, where they mature, and ends with a crucial 

event of long-term survival. This last step is the longest, lasting up to 6 weeks. Mature 

neurons can be assessed at this stage with staining against neuronal nuclei (NeuN) 

cell marker.  

 

 

 

 

 

 

 

Figure 1.2 – Adult neurogenesis in the dentate gyrus. NSCs proliferate in the 

first 7 to 8 days before fate determination. Only cells that survive migrate in the 

next 2 weeks. The neurogenic process continues to differentiation of cells into 

mature neurons after integration of newborn cells into the pre-existent network, for 

about 6 weeks. Last, but very important, mature cells have to survive in a long-term 

period. 

 

Each step is regulated by intrinsic and extrinsic factors that will be described in section 

1.2.1 of this chapter. 

Hippocampal neurogenesis has a great impact in learning and memory (Shors et al., 

2006; Drapeau et al., 2008). Ablation of hippocampal neurogenesis through irradiation, 

antimitotic agents or inducible genetic methods, has been used as a tool to assess the 

importance of formation of new granule cells in learning and memory functions. Gould 

and his colleagues showed that rats trained in a hippocampal dependent-task leads to 

an increase in the number of adult granule cells (Gould et al., 1999). Moreover, this 

type of experiments showed that hippocampal adult neurogenesis is required for long-

term retention of spatial memory (Dupret et al., 2008; Jessberg et al., 2009), contextual 

fear memory (Ko et al., 2009) and impaired short-term memory by neurogenesis 

ablation (reviewed in Marín-Burgin and Schinder, 2012). Despite the extensive 

investigation in hippocampal neurogenesis and its function in adult brain, there are 
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some important questions that remain without a consensual answer. For example, 

understanding specific tasks that depend on the dentate gyrus function and, in 

particular, how newborn neurons in the adult brain can be functional integrated in both 

physiological and pathological conditions. 

Although the new nerve cells are able to functionally integrate into the pre-existent 

network (Carlen et al., 2002), there are some important differences between newly 

generated neurons and more mature ones. Recent studies have demonstrated that 

adult young granule cells have a lower threshold for induction of long-term potentiation  

and long-term depression (Mongiat et al., 2009), show hyperexcitability and form 

synaptic connections before full maturation and exhibit different membrane properties 

than the existent cells (Schmidt-Hieber et al., 2004). A more deep investigation on 

these features may be important to understand synaptic plasticity in the hippocampus.  

 

1.2 Regulation of adult neurogenesis 

1.2.1 Physiological neurogenesis 

Adult neurogenesis is very important for brain plasticity. Understand how this process 

is regulated and the interaction between newborn cells and the intervening factors may 

contribute to design and improve therapeutic approaches to neurological disorders. 

The neurogenic process is influenced by several different factors (Table 1.1), being the 

SVZ mostly regulated by internal signals and the SGZ by extrinsic factors (reviewed in 

Suh et al., 2009).  

In SVZ and SGZ, the pool of stem cells is maintained by the canonical Wnt/β-catenin 

signaling pathway (Wexler et al., 2009). Self-renewal and multipotency of NSCs are 

regulated by expression of Sox2 (Graham et al., 2003; Suh et al., 2007), since 

downregulation of Sox2 is associated with differentiation of NSCs in embryonic, 

postnatal and adult neurogenesis (reviewed in Suh et al., 2009).  

Proliferation is affected by a great range of factors, from hormones to 

neurotransmitters. Prolactin and thyroid hormones promote proliferation in the SVZ 

(Giardino et al., 2000; Shingo et al., 2003) and co-expression of Sox2 and Pax6 are 

also important pro-neurogenic factors (Favaro et al., 2009; Ehm et al., 2010). Among 

the neurotransmitters envolved in proliferation of NSCs are serotonin, γ-aminobutyric 

acid (GABA) and glutamate. Serotonin seems to be important in cell proliferation and 

maintenance of expression of PSA-NCAM in both SVZ and SGZ (Brezun and Daszuta, 

1999). GABA controls the levels of proliferation of GFAP+ NSCs of the SVZ by 
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activation of GABAA receptors in these cells, acting as a negative feedback signal (Liu 

et al., 2005). Activation of NMDARs, a type of receptor of glutamate, dramatically 

decreased proliferation in SGZ (Cameron et al., 1995). Growth factors, such epidermal 

growth factor (EGF) and basic fibroblast growth factor (bFGF), are both related with an 

increase in proliferation in the SVZ (Doetsch et al., 2002). In fact, NSCs produce the 

EGF and bFGF receptors (Doetsch et al., 2002; Frinchi et al., 2008), which reinforces 

their importance in proliferation of newborn cells. Cells isolated from the neurogenic 

regions can be cultured with EGF, bFGF, or both, supplemented medium.  Previous 

studies in our group reported that initial proliferation of NSCs following exposure to 

nitric oxide is mediated by the ERK/MAPK pathway and at later stages by the 

GC/cGMP/PKG pathway (Carreira et al., 2013). 

Both niches are in close proximity with the vascular system, sharing some transcription 

and growth factors, as vascular endothelial growth factor (VEGF). In the adult SGZ, 

overexpression of VEGF induces hippocampal neurogenesis and angiogenesis (Jin et 

al., 2002), suggesting a cross-talk between both systems. 

Neuroblast migration in the SVZ can be affected by disruption of eph/ephrins signaling 

(Conover et al., 2000). Survival of the newborn cells is greatly influenced by Prox1 

(Lavado et al., 2010) and NeuroD (Kuwabara et al., 2009), and particularly increased in 

the SGZ by estrogen (Tanapat et al., 1999). However, corticosteroids have the 

opposite effect, decreasing neurogenesis in SGZ of young rats and primates (Gould et 

al., 1998; Kippin et al., 2004). Exposure to thyroid hormone T3, showed to increase the 

number of DCX-positive cells and speed up the neuronal maturation of hippocampal 

progenitors (Kapoor et al., 2012). 

Finally, the newborn cells are challenged to integrate and mature into the pre-existent 

neuronal network. Astrocytes from hippocampus and SVZ have an active role in the 

maturation of neurons in their niches (Lim and Alvarez-Buylla, 1999), mediated by wnt3 

signaling (Lie et al., 2005). In the SGZ the maturation and integration process can also 

be modulated by CREB signaling (Magill et al., 2010). Differentiation of NSCs in the 

SGZ are influenced by the transcription factors Neurog2 and Tbr2 to become 

glutamatergic neurons in the hippocampus (Ozen et al., 2007) and overexpression of 

Ascl1 leads to differentiation into oligodendrocytes in SVZ (Kim et al., 2007, 2011a; 

Jessberger et al., 2008). Differentiation of type C cells into neuroblasts is promoted by 

GABAergic signals (Tozuka et al., 2005; Ge et al., 2006) but inhibited by EGF (Doetsch 

et al., 2002). 
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Hippocampal neurogenesis has been studied in several different models and it is now 

known that can be influenced by different factors.  More than one step of the 

neurogenic process can be affected by aging (Kuhn et al., 1996; Rothman et al., 2009), 

environmental stimulation (Kempermann et al., 1998; Scotto-Lomassese et al., 2000), 

intensive exercise, genetic background and stress (Gould et al., 1997; reviewed in 

Schoenfeld and Gould, 2013).  

Table 1.1 – Physiological regulation of adult neurogenesis.  

 
Signal 

 
Effect Reference 

 
Hormones 

 
Prolactin 

Promotes proliferation of NSCs in the SVZ Shingo et al., 2003 

 
Thyroid hormones 

Increase DCX+ cells and maturation of neuronal 
progenitors 

Giardino et al., 2000 

 
Estrogen 

Increases survival of newborn cells in SGZ Tanapat et l., 1999 

Corticosteroids 
Decrease neurogenesis in SGZ 

Gould et al., 1998; 
Kippin et al., 2004 

 
Growth Factors 

 
EGF 

Increases proliferation in SVZ Doetsch et al., 2002 

 
bFGF 

Increases proliferation in SVZ Doetsch et al., 2002 

 
BDNF 

Increases proliferation in SVZ and SGZ 
Benraiss et al., 2001; 

Scharfman et al., 2005 

 
VEGF 

Induces hippocampal neurogenesis and angiogenesis Jin et al., 2002; 

 
Transcription factors 

Sox2 
Maintenance of self-renewal and multipotency of NSCs 

Graham et al., 2003; 
Suh et al., 2007 

 
Prox1  

Increases survival of newborn cells Kuwabara et al., 2009 

 
Pax6 

Promotes neuronal differentiation in the SVZ Kohwi et al., 2005 

 
NeuroD 

Increases survival of newborn cells Lavado et al., 2010 

 
Neurog2  

Differentiation of SGZ newborn cells into glutamatergic 
neurons 

Ozen et al., 2007 

 
Tbr2 

Differentiation of SGZ newborn cells into glutamatergic 
neurons 

Ozen et al., 2007 

Ascl1 
Differentiation  of SVZ newborn cells into 
oligodendrocytes 

Kim et al., 2007, 2011a 
Jessberger et al., 2008 

 
Neurotransmitters 

Serotonin 
Cell proliferation; 
Maintenance of PSA-NCAm expression 

Brezun and Daszuta, 1999 

γ-aminobutyric acid (GABA) 

Controls levels of proliferation of GFAP+ cells in SVZ; 
Differentiation of type C cells into neuroblasts 

Liu et al., 2005 
Ge et al., 2006; 

Tozuka et al., 2005 

 
Glutamate 

Decreased proliferation in SGZ Cameron et al., 1995 
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Glial cells 

 
Astrocytes 

Maturation of neurons Lim and Alvarez-Buylla, 1999 

 
Intrinsic signal pathways 

 
Wnt/β-catenin 

Maintains pool of stem cells Wexler et al., 2009 

 
CREB 

Maturation and integration in SGZ Magill et al., 2010 

 
Shh 

Required for neuroblast migration na SVZ Balordi and Fishell, 2007 

 
BMP 

Decreases neurogenesis; promotes neuroblast survival Lim et al., 2000 

 
ERK/MAPK 

Promotes initial proliferation of NSCs following NO 
exposure 

Carreira et al., 2013 

 
GC/cGMP/PKG 

Promotes late proliferation of NSCs following NO 
exposure 

Carreira et al., 2013 

 

 

1.2.2 Neurogenesis in pathological conditions 

1.2.2.1 Neurogenic response to lesion 

Neurogenesis is highly influenced by pathological conditions, such as 

neurodegenerative disorders, ischemia, stroke, trauma and seizures. In these 

conditions there is a pro-neurogenic response from the damaged and surrounding cells 

that can be part of some of the spontaneous recovery (reviewed in Lowenstein and 

Parent, 1999). However, inadequate cell differentiation or excessive amount of new 

neurons could disturb existing neural circuits and contribute to impairment of the 

functional recovery. Extrinsic factors are released and have different effects depending 

on the type of disorder affecting the brain. 

Expression of growth factors such as EGF and bFGF are increased following ischemia 

and traumatic brain injury. In vivo experiments in an injured mice model showed that 

infusion of EGF into the lateral ventricles increased proliferation of NSCs in the SVZ 

and induced their migration (Gonzalez-Perez et al., 2009) and in rat model of ischemia 

EGF alone promotes regeneration of injured area (Kolb et al., 2007). The combination 

of EGF with bFGF has already been successful in increasing proliferation in SVZ, 

hippocampus and hypothalamus (Oya et al., 2008) and repopulation of the damaged 

CA1 hippocampal neurons (Nakatomi et al., 2002). Expression of VEGF is also related 

with increased proliferation and migration in SVZ (Wittko et al., 2009; Calvo et al., 

2011). 

Neurodegenerative diseases are chronic inflammatory diseases characterized by slow 

and progressive neuronal death. Cell proliferation is altered in both neurogenic niches. 
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Patients and mouse models of Alzheimer’s disease demonstrated high levels of 

expression of early neuronal differentiation markers (Jin et al., 2004a, b) and cell 

proliferation was induced in the dentate gyrus at early stages of the disease (Chen et 

al., 2008; Gan et al., 2008). Also, in a rat model for Huntington’s disease, the cell 

proliferation in the SGZ increased due to the increase in Sox2-positive stem cells and a 

decrease in CREB signaling (Kandasamy et al., 2010). Chronic inflammation in 

Parkinson’s disease seems to be related with enhancement of proliferation and 

differentiation of neuronal precursors to neurons (Shan et al., 2006). Overall, chronic 

brain injury promotes cell proliferation and increases neurogenesis as demonstrated by 

rodent models of Huntington’s disease (Curtis et al., 2003), Alzheimer’s disease (Yu et 

al., 2009) and Parkinson’s disease (Zhao et al., 2003). 

Acute brain disorders, such as ischemia, stroke, traumatic brain injury and epilepsy, 

are known to have a stimulating effect of proliferation of NSCs. Ischemic brain insults 

stimulate progenitor cell proliferation in both niches (Jin et al., 2001; reviewed in Kokaia 

and Lindvall, 2003; Parent, 2003), as already seen in animal models of transient global 

ischemia by an increase in BrdU-positive cells (Liu and Huang, 1998; Kee et al., 2001;  

Zhang et al., 2001; Arvidsson et al., 2002; Choi et al., 2003; Bingham et al., 2005; Tang 

et al., 2009). Although most of the proliferating cells differentiated into neurons (Kee et 

al., 2001; Arvidsson et al., 2002; Bingham et al., 2005), the long-term survival of the 

newborn neurons are not very successful (Arvidsson et al., 2002). 

 

Seizures are also pro-neurogenic lesions, stimulating proliferation of NSCs and long-

term survival of newly neurons (Bonde et al., 2006). Increased neurogenesis has been 

reported in animal models of status epilepticus (SE), both in SVZ (Parent et al., 2002) 

and in SGZ (Parent et al., 1997; Sankar et al., 2000). Many of the neurons that are 

born in the dentate gyrus after seizures migrate correctly (into the granule cell layer) 

(Parent et al., 1997) and are functionally integrated into the hippocampal circuitry 

(Scharfman et al., 2000). However, studies showed that some cells migrate into the 

hilus (Parent et al., 1997; Scharfman et al., 2000), which may contribute to abnormal 

integration of new neurons into the CA3 regions of the hippocampus (Scharfman et al., 

2000). Studies with animal model for seizures showed that proliferative progenitor 

response to seizures occurs independently of cell death (Smith, 2005). In this work we 

used the kainic acid model of status epilepticus as a model to study injury-induced 

neurogenesis. 
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1.2.2.2 Neuronal death, neuroinflammation and neurogenesis 

Whenever a brain insult takes place, whether is acute, such as traumatic brain injury, 

stroke or epileptic seizures, or chronic like Alzheimer’s disease, Huntington’s disease, 

or Parkinson’s disease, multiple mechanisms are triggered, namely excitotoxicity 

events, free radical damage and inflammation (Amor et al., 2010; Xiong et al., 2010). 

Neuroinflammation is characterized by the disruption of blood-brain barrier and 

recruitment of hematopoietic immune cells and activation of CNS resident microglial 

cells as a response of the brain to infections, diseases and injuries (Nencini et al., 

2003; Schmmidt et al., 2005). This complex biological process attempts to protect the 

brain from harmful stimuli by removing dead and damaged cells and start the healing 

process. However, several works have already demonstrated the importance of 

neuroinflammation and its severity in the pathophysiology of neurological diseases, 

since this inflammatory process creates a positive feedback loop of inflammatory 

activation that leads to the progressive death of neuronal cells, called 

neurodegeneration (Das and Basu, 2008; Whitney et al., 2009; Goldberg and Barres, 

2000).  

The relationship between neuroinflammation and neurogenesis it is not clear yet. 

However, studies to date shows a dependence on the mechanism(s) by which immune 

cells from the CNS and macrophages are activated and interact and the type of 

inflammatory factors released (Ekdahl et al., 2009). In this conditions, release of 

cytokines, interleukins, chemokines and reactive oxygen species or reactive nitrogen 

species (Whitney et al., 2009), among others, promotes the recruitment of microglial 

cells and disruption of the BBB. These factors have influence in different stages of 

neurogenesis (Monje et al., 2003; Ekdahl et al., 2003), affecting proliferation, migration 

and differentiation of the newborn cells following a brain lesion (Jakubs et al., 2008). 

Recently, it has been showed that synaptic connectivity of the new neurons may be 

influenced by the inflammatory environment (Hennberger et al., 2005). IFN-γ, for 

example, promotes neuronal differentiation (Wong et al., 2004) and the chemokine 

SDF-1α induces the migration and promotes survival of neural precursors (Krathwohl 

and Kaiser, 2004a). Reactive oxygen and nitrogen species are also very important in 

regulation of the neurogenic response following a brain lesion (Rock et al., 2004). One 

of the most studied is nitric oxide (NO), and its function on adult neurogenesis will be 

developed next (section 1.3).  

Astrocytes are the main glial cells in the CNS, with structural and several regulatory 

functions (Svendsen, 2002). Activation of astrocytes during neuroinflammation, 
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promotes the release of inflammatory and growth factors, such as neurotrophins and 

glutamate, that regulate the inflammatory response of the brain (Song et al., 2002). 

Studies in animal models of depression have reported the importance of the brain-

derived neurotrophin factor (BDNF) and their contribution to regulation of adult 

neurogenesis by the BDNF-TrkB pathway.  

 

1.3 Nitric oxide and neurogenesis 

Nitric oxide (NO) is a free radical gaseous molecule product of the oxidation of L-

arginine to L-citrulline, a biological process catalyzed by nitric oxide synthase (NOS). 

There are three known isoforms of NOS, which are products of different genes and 

therefore have different localization, regulation, biochemical and pharmacological 

properties, and inhibitor sensitivity. NOS isoforms are: neuronal NOS (nNOS), located 

at human chromosome 12 (Kisgimoto et al., 1992; Xu et al., 1993) and predominantly 

expressed in neuronal tissue; endothelial NOS (eNOS), located at chromosome 7 (Xu 

et al., 1994) with expression in vascular endothelial cells; and inducible NOS (iNOS), 

located in either side of chromosome 17 (Xu et al., 1994). nNOS and eNOS are 

considered constitutively expressed and calcium-dependent isoforms, while iNOS 

expression is calcium-independent and inducible by cytokines or bacterial components 

(Bredt and Snyder, 1994; Geller and Billar, 1998; Alderto et al., 2001).  

NO is a very interesting molecule due to its short half-life, signaling properties (Whitney 

et al., 2009) and diffusivity that can go up to 100 µm from the point of synthesis 

(Lancaster, 1997). It is involved in many physiological mechanisms, but it is mostly 

known by its role in regulation of vascular system and inflammatory responses. In the 

CNS, NO can participate in sensory motor function (Moreno-López et al., 1996) and 

control of cerebral blood flow (Estrada et al., 1993). 

The role of NO as a modulator of neurogenesis is still unclear. However, great progress 

has been done in terms of identifying the effect of NO in proliferation, differentiation 

and survival of NSCs and the signal pathways involved. Under physiological conditions, 

NO seems to inhibit proliferation of NSCs (Cheng et al., 2003; Packer et al., 2003; 

Moreno-Lopez et al., 2004; Matarredona et al., 2005; reviewed in Calabrese et al., 

2007), but promoting formation on newborn cells under pathological situations (Zhu et 

al., 2003; reviewed in Kokaia and Lindvall, 2003 and Whitney et al., 2009; Carreira et 

al., 2010). The neurogenic response mediated by NO depends on the 

pathophysiological state of the tissue, source of NO and time of exposure (Carreira et 
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al., 2010). NO from nNOS modulates synaptic activity and plasticity (Moreno-Lopez et 

al., 1996), and neuronal differentiation and survival (reviewed in Holscher, 1997). There 

are significant evidences of the role of NO in regulation of hippocampal neurogenesis. 

Also, NO has been shown as a modulator of the expression of GFAP in astrocytes 

(Covacu et al., 2006) and their morphological changes in inflammatory conditions 

(Borán and García, 2007). However, the exact mechanisms by which NO triggered this 

effects is still unknown. Additional investigation on the biological targets by which NO 

regulates neuronal proliferation and its function on differentiation and survival of NSCs 

is still needed. 

In physiological conditions, microglial cells have a typical morphology and dynamic and 

are in a “resting” state, functioning as sensors of the homeostatic environmental 

(Davalos et al., 2005, 2008). In a neuroinflammatory context, microglial cells are active 

and express iNOS, which continuously produces high amounts of NO (Murphy et al., 

1993; Murphy, 2000). In these conditions, NO from nNOS seems to have a great 

impact on regulation of NSCs function in SVZ and SGZ (Packer et al., 2003; Moreno-

López et al., 2004), since nitrogenic neurons expressing nNOS are in close proximity 

with both niches through vascular system. In fact, chronic nNOS inhibition enhances 

neurogenesis in SVZ, RMS an OB, but not in SGZ, in adult mice (Moreno-López et al., 

2004). NO expression from iNOS in SGZ has a positive effect in the ischemic-induced 

neurogenesis in mice (Zhu et al., 2003), correlated with the activation of NMDA 

receptors (Arvidsson et al., 2001). Covacu and colleagues showed that NO from iNOS 

is also involved in astrogliogenesis of NSCs by activation of the JAK/STAT-1 signal 

transduction pathway (Covacu et al., 2006). Long-term survival of newborn neurons is 

impaired after SE despite chronic inflammation and activation of microglia (Bonde et 

al., 2006). Recently it has been demonstrated that the early proliferative effect of NO in 

SVZ-derived NSCs bypasses activation of EGF receptor (Carreira et al., 2010), and 

later proliferation involves activation of the cGMP/PKG signaling pathway (Carreira et 

al., 2013). These findings show that the effect of NO in neurodegeneration seems to be 

greatly influenced by its source and concentration on the tissues, since overexpression 

of NO showed to be neurotoxic as a consequence of inhibition of the respiratory chain 

enzymes (reviewed in Carreira et al., 2012). 

The relationship between NO and the proliferation of NSCs following brain injury is a 

relatively well characterized process. However, less is known about the role of NO on 

survival of the newborn cells in an injury context. 
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1.3.1 Neurogenic targets in nitrergic pathways 

NO has the ability to interact with several intracellular targets in order to trigger a 

stimulatory or inhibitory signal pathway. Improvement of NO-based therapies implies to 

increase the knowledge about their endogenous targets, in order to minimize the side 

effects of NO in the brain. The regulation of biological effects of NO can be mediated 

by its main target, the guanylyl cyclase, which catalyzes the conversion of GTP to 

cGMP (Bredt and Snyder, 1989). cGMP can activate several downstream molecules, 

such as PKG, phosphodiasterases and ion channels (Paupardin-Tritsch et al., 1986), 

and therefore modulates the activity of several different cellular substrates. Together, 

NO and cGMP can activate downstream signaling cascades involved in enhancement 

of proliferation of NSCs (Carreira et al., 2012), survival, differentiation (Gomez-Pinedo 

et al., 2010), growth and axon guidance or migration (Tegenge et al., 2011), among 

other processes. 

NO can also interact with both, the constitutive and the inducible isoforms, of 

ciclooxygenase (Mollace et al., 2005). By activation of this enzyme, NO combined with 

NO-releasing compounds (NO-NSAID) is able to decrease inflammatory response as a 

result of blocking the synthesis of prostaglandins. However, side effets are described in 

the gastrointestinal tract, cardiovascular system and kidneys from chronic use of 

NSAID ( reviewed in Scheiman and Fendrick., 2007; Harirforoosh et al., 2009). 

The involvement of NO in promotion of cell survival and neuroprotective functions may 

be due to its interaction with CREB (Riccio et al., 2006) and Akt kinase pathways 

(reviwed in Contestabile et al., 2004). Targeting these signal pathways will be also a 

possibility to adress nitrergic therapeutic approaches. 

 

1.4. How to study adult neurogenesis in the mouse brain  

Detection of neurogenesis and cell proliferation can be achieved by different 

techniques. The most commons involves the use of analogs of nucleotides that are 

incorporated during DNA replication in mitosis. 5-bromo-2’-deoxyuridine (BrdU), 5-

ethynyl-2’-deoxyuridine (EdU), 5-iodo-2’-deoxyuridine (IdU) and 5-chloro-2'-

deoxyuridine (CldU) (Leuner et al., 2009) are examples of synthetic thymidine 

analogues that incorporate dividing cells during S-phase of DNA synthesis, and 

therefore allow evaluation of different stages of neurogenesis, depending on the time 

between their administration and cell fixation. BrdU can be used both in vitro and in 

vivo and then detected by immunohistochemistry, microplate assay or flow cytometry. 



INTRODUCTION 

17 
 

BrdU detection causes no visible toxicity (Dolbeare, 1995) and allows double- and 

triple-labeling with cell markers for mature neurons, such as MAP-2, TUJ1 and NeuN, 

for identification of new neurons (Kuhn et al., 1996). However, BrdU methodology 

requires aggressive acid treatment for DNA denaturation before detection, which can 

lead to the loss of binding sites for DNA dyes or antibodies and damage of the tissue 

(Zeng et al., 2010). BrdU and EdU can be used simultaneously, allowing investigation 

of proliferation at different time points (Morte et al., 2013). Despite the advantages of 

using BrdU method in neurogenesis detection, the amount of BrdU is diluted each time 

cells divide leading to an underestimation of the real number of dividing cells 

(Karpowicz et al., 2005). The use of endogenously-produced cell cycle markers, such 

as proliferating cell nuclear antigen (PCNA), Ki67, phospho-histone H3, and 

minichromosome marker-2, may overcome the problems of BrdU method but does not 

allow to determine the fate of the cells since are rapidly degraded as the cell cycle 

progresses. 

Retroviral labeling can also be used to assess mitotic cells in vivo, by complete 

integration of green fluorescent protein, or other live reporters, into dividing cells (van 

Praag et al., 2002; Carleton et al., 2003; Magavi et al., 2005). This approach allows 

direct visualization and morphological analysis of an entire cell population. However, it 

requires stereotaxic injection onto specific brain regions and does not exceed the 

efficiency of labeling with BrdU. 

The most recent method to study dynamic of neurogenesis and the age of neurons is 

the measurement of radioactive 14C content. 14C is a stable component in DNA tissues 

and thus can be detected and measured in post mortem tissue by using a radiomass 

spectrometer (Spalding et al., 2005; 2013). Atmospheric 14C is reflected in animals at 

all times through uptake of CO2 metabolized by autotrophic organisms (Harkness, 

1972; Libby et al., 1964; Spalding et al., 2005b). When cells divide, the correspondent 

concentration of atmospheric 14C at the time is integrated into the synthesized genomic 

DNA creating a date mark (Spalding et al., 2005a). This methodology is particularly 

useful to study the kinetics of a cell population and dynamics. 

Animal models of brain injury are also commonly used to study neurogenic process in 

vivo. One example is the rat model of temporal lobe epilepsy. Epilepsy is defined as a 

medical condition characterized by the transient and periodic occurrence of epileptic 

seizures. As a result, glutamatergic synapses are excessively activated leading to brain 

excitotoxicity and cell death. The hippocampus is very affected by these events, since it 

is very rich in glutamatergic synapses, and hippocampal damage can be mimicked in 
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rodent models by systemic injection of kainic acid (KA), an agonist of AMPA/KA 

receptors, or tetanus toxin (Jiruska et al, 2013), with pro-convulsive properties. After 

induction of SE, cell proliferation is increased in the hippocampus (Parent et al., 1997; 

Parent, 2007; Gray and Sundstrom, 1998; Jiruska et al., 2013) as well as 

neuroinflammation, leading to activation of microglial cells and expression of iNOS (De 

Simoni et al., 2000). 

 

1.5. Therapeutic approaches for brain repair 

Enhancement of endogenous neurogenesis 

One of the approaches considered for adult NSC-based therapy in the CNS is the 

stimulation of endogenous NSCs and enhancement of adult neurogenesis. Local cell 

proliferation has already been demonstrated near the lesion site (Parent et al., 2002), 

but the lack or insufficiency of the signals that are able to maintain the process makes it 

impossible to have a successful response. The self-repair capacity is thus limited to the 

lesion extension and environmental signals, and requires other regenerative strategies.  

One of the major challenges in implementing this therapeutic approach is to find a way 

to increase the migration distance of the cells from the neurogenic niche to lesion sites, 

especially in a large size brain, such is the human brain (reviewed in Marr et al., 2010). 

On the other hand, recruitment of endogenous stem cells does not raise ethical issues 

regarding the origin and immunogenicity of the cells. Nevertheless, it is important to 

expand the knowledge about signals and factors that stimulate stem cells to proliferate 

and regulate their migration, integration and differentiation in both neurogenic and non-

neurogenic regions of the brain. Especially in the aged brain, the expression of pro-

neurogenic factors is decreased and therefore is important to investigate the 

combination of factors needed and their benefit as therapeutic approach in 

neurodegenerative disorders. 

 

Transplantation therapies 

Transplantation of exogenous stem cells has also been considered as a potential 

therapy for neuronal repair in neurodegenerative diseases. However, is a much more 

invasive approach than stimulation of endogenous neurogenesis and so there is still 

some reluctance in applying this strategy.  Exogenous stem cells may be isolated from 

embryonic or tissue stem cells and expanded in vitro. Grafting adult-derived NSCs into 
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non neurogenic sites results in the absence of neuronal lineage commitment (Suhonen 

et al., 1996; Sheen et al., 1999; Shihabuddin et al., 2000) but can stimulate the local 

production of new neurons in aged neurogenic regions (Park et al., 2010). In the adult 

brain, stem cells must be grafted to a neurogenic region in order to differentiate. 

 

Direct cell reprogramming in the brain 

The first studies that demonstrated that it is possible to directly reprogram cells in the 

brain were performed in astrocytes. Several other studies have been performed from 

then on and in 2010 Werning and colleagues introduced the BAM cocktail, a mix of 3 

transduction genes – Ascl1, Brn2, and Mytl1 (BAM) –  that was sufficient to directly 

reprogram primary postnatal mouse fibroblasts into induced neurons (Vierbuchen et al., 

2010). Recent studies have showed that adult differentiated astrocytes can be 

reprogrammed into proliferative neuroblasts in the adult mouse brain by the single 

transcription of Sox2 (Niu et al., 2013).  

 

In any case, the possibility of formation of teratomas due to excessive cell proliferation 

is a major concern (Li et al., 2008) in the application of any of the strategies. 

Therapeutic approaches for brain repair also will have to take into account the effects 

of factors released in an inflammatory context on differentiation and survival of the 

newborn/transplanted cells, and use accurate in vitro and in vivo models that allows 

investigation of neurogenesis.  

 

1.6. Objective 

Despite the intensive investigation on the effect of NO on the proliferation of NSCs, 

there is a lack of information about the role of NO in migration, differentiation and 

survival on newborn cells following brain injury. 

The aim of this work was to investigate the role of NO from iNOS in the regulation of 

hippocampal neurogenesis after a brain insult. In order to do that we analyzed 

proliferation of NSCs, migration of the newborn cells, differentiation and survival using 

a mouse model of status epilepticus.  
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2.1 Materials 

Normal goat serum (NGS), parafolmaldehyde (PFA), Triton X-100 and 5-bromo-2’-

deoxyuridine (BrDU) were purchased from Sigma-Aldrich (St. Louis, Mo., USA). Mouse 

anti-NeuN and Mouse anti-GFAP were purchased from Millipore (Billerica, MA). Rat 

anti-BrdU was purchased from AbD Serotec (Oxford, UK). Alexa Fluor® 488 Goat Anti-

Rat IgG (H+L) and Alexa Fluor® 594 Goat Anti-Mouse IgG (H+L) were purchased from 

Invitrogen (Paisley, UK). DAKO fluorescence mounting medium was from 

dakoCytomation (Glostrup, Denmark). Kainic acid (KA) was from Ocean Produce 

(Canada). Sodium thiopental was from B. Braun Melsungen (Germany, DE). Hoechst 

33342 dye was from Molecular Probes (Leiden, The Netherlands). Doublecortin (C-18) 

(DCX) was obtained from Santa Cruz Biotechonology (Dallas, Texas, USA).  

 

2.2 Animals 

2-month old C57BL/6J (iNOS+/+ and iNOS wildtype) and B6.129P2-Nos2tm 1 Lau/J   

(iNOS-/- and iNOS knockout) male mice, were obtained from Charles River (Barcelona).  

iNOS-/- mice are highly susceptible to tumors as well as bacterial and viral pathogens, 

resistant to sepsis-induced hypotension (Mashimo and Goyal, 1999), and show a 

decrease in neuronal injury after stroke and in diet-induced atherosclerosis (Liu and 

Huang, 2008). The weight of the animal varied between 18 and 26 g. The animals were 

kept in animal facilities with food and water ad libitum in a 12 hours dark:light cycle. All 

experiments were performed in accordance with institutional and European guidelines 

(86/609/EEC) for the care and use of laboratory animals. 

 

2.3 Administration of kainic acid in mice 

Kainic acid was dissolved in a sterile saline solution (0.9% NaCl in water) and injected 

subcutaneously (25 mg/kg). All animals that received KA developed grade five seizures 

or higher according to 1972s Racine’s six-point scale modified for mice (Schauwecker 

and Steward, 1997). In animal injected with saline solution alone, no seizures were 

observed and animals were used as controls. At least 3 animals survived in each 

experimental group, except for iNOS-/- mice treated with BrdU 24 h after seizures. 
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2.4 5-bromo-2’-deoxyuridine incorporation 

To assess proliferation of NSCs, all animals were treated with KA or saline solution and 

treated with BrdU (intraperitoneal (i.p.) injection, 4 doses, 50 mg/kg) each 2 hours 

apart, with a total of 200 mg/kg, up to 12 hours before sacrificing at different time points 

(Fig 2.1). In order to analyze distribution of NSCs along dentate gyrus, animals were 

treated with BrdU (i.p. injections, four doses, 50 mg/kg) every 12 hours, three and 

seven days after KA or saline administration. Three weeks later mice were sacrificed 

(Fig 2.2). In both experiments mice were transcardially perfused with 0.9% NaCl 

followed by 4% PFA in 0.01 M phosphate buffer saline (PBS, 7.8 mM Na2HPO4.2H2O, 

2.7 mM NaH2PO4.H2O, 154 mM NaCl, pH 7.2), after deep anesthesia with sodium 

pentobarbital. Brains were removed and kept overnight in 4% PFA, and then 

dehydrated in 20% sucrose/0.2 M phosphate buffer (PB, 48 mM NaH2PO4.H2O, 152 

mM Na2HPO4.2H2O, pH 7.2), at 4ºC. Coronal sections from the hippocampal region 

were cryosectioned (30 μm thick, in 8-series) and stored in an antifreeze solution (0.05 

M PB, 30 % ethylene glycol, 30 % glycerol), at 4ºC.  

 

2.5 Immunohistochemistry 

Free-floating coronal hippocampal sections were processed for immunohistochemistry 

against DCX or BrdU and NeuN or BrdU and GFAP. Brain sections were treated with 

1M HCl for 20 min at 65ºC, for DNA denaturation, and then blocked for 1 h with 5% 

NGS in 0.25% Triton X-100 in 0.01 M PBS. Slices were then incubated with the primary 

antibodies, goat anti-DCX (1:400) or rat anti-BrdU (1:50) and mouse anti-NeuN (1:200) 

or mouse anti-GFAP (1:7000), 48 h at 4ºC. After rinsing once with 0.25% Triton X-100 

in PBS and twice with 2% NGS in 0.25% Triton X-100 in 0.01 M PBS, the sections 

were incubated with the correspondent secondary antibodies (1:200), in 2% block 

solution, for 2 h in the dark, at room temperature. For nuclear staining, brain sections 

were incubated with 2 μg/ml Hoechst 33342 solution prepared with 0.01 M PBS, for 10 

minutes. After rinsing once with 0.25% Triton X-100 in 0.01 M PBS and twice with 0.01 

M PBS, the sections were kept in 0.01 M PBS solution, at 4ºC, until setting in 2% 

gelatin-coated slides with DAKO fluorescence mounting medium. 
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Figure 2.1 – Experimental protocol for assessment of proliferation of NSCs in 

the dentate gyrus. Intraperitoneal injections (i.p.) of BrdU (4 doses, 50 mg/kg) 

were administrated every 2 hours, up to 12 hours before perfusion (P).  

 

 

Figure 2.2 – Experimental protocol for assessment of differentiation of NSCs 

in the dentate gyrus. A, Administration protocol of BrdU 3 days after status 

epilepticus. B, Administration protocol of BrdU 7 days after status epilepticus. 

Intraperitonial injections (i.p.) of BrdU (4 doses, 50 mg/kg) were administrated 

every 12 hours. Perfusions (P) were performed 3 weeks after BrdU treatment, 

following anesthesia. 
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2.6 DCX- and GFAP-immunoreactivity  

DCX and GFAP immunoreactive areas were analyzed using ImageJ software. Snap 

images were acquired in a Zeiss Axioimager (Zeiss, Jena, Germany, 

http://www.zeiss.com) with a 20x objective. The threshold value was set for each 

staining and the percentage of dark background area was measured, excluding more 

anterior and posterior dentate gyri.  

 

2.7 Analysis of co-localization of BrdU with NeuN or GFAP 

BrdU+ cells in dentate gyrus for each animal were counted using epifluorescence 

microscope (20x objective). Images (0.73 µm z-stacks) from 50 BrdU+ cells of each 

brain were acquired in a laser scanning microscope LSM 510 META or LSM 710 

(Zeiss, Jena, Germany, http://www.zeiss.com) with Argon/2 (488 nm) and DPSS 561-

10 (561 nm) lasers (63x oil-immersion objective). Orthogonal projections in y axis were 

performed and counted the number of BrdU+/NeuN+ or BrdU+/GFAP+ cells. The 

percentage of colocalized cells were achieved by dividing the total number of 

BrdU+/NeuN+ or BrdU+/GFAP+ cells by 50 BrdU+ cells. 

 

 

2.8 Statistical analyses 

The data are presented as means ± SEM. Statistical significance was determined using 

a two-way analysis of variance (ANOVA, Bonferroni’s post-test) in GraphPad Prism 5. 

Differences were considered significant when p<0.05. 
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3.1. NO is involved in proliferation of NSCs and migration of neuroblasts after 

seizures 

3.1.1 Proliferation of neural stem cells in the hippocampus following seizures 

comprises a NO-dependent and NO-independent phase 

To investigate the role of NO in cell proliferation, we used an in vivo KA model of status 

epilepticus. iNOS+/+ or iNOS-/- mice were treated with either saline or KA, as described 

in Materials and Methods. All animals that received KA developed grade five seizures 

or higher according to the Racine’s six-point scale modified for mice (Schauwecker and 

Steward, 1997). In animals injected with saline solution alone, no seizures were 

observed.  Proliferation of newborn cells was evaluated by the incorporation of BrdU, a 

thymidine analogue. The number of BrdU-positive cells in the dentate gyrus was 

assessed by immunohistochemistry. 

In iNOS+/+ mice, treatment with KA increased significantly the incorporation of BrdU in 

the SGZ from 3 days  after treatments up to 14 days, when compared to saline-treated 

mice (Fig 3.1 B, two-way ANOVA; treatment: 31.95, F=151.5, df=3; time: 29.71, 

F=84.57, df=5; treatment x time [interaction]: 33.70, F=31.97, df=15). The number of 

BrdU+ cells in iNOS+/+ mice treated with saline was 16.83 ± 0.92 cells/section at 24 

hours, 23.13 ± 1.31 cells/section at 2 days, 24.46 ± 1.78 cells/section at 3 days, 26.32 

± 1.13 cells/section at 5 days, 21.60 ± 0.49 cells/section at 7 days, and 21.71 ± 1.77 

cells/section at 14 days.  The number of BrdU+ cells in iNOS+/+ mice treated with KA 

was 9.39 ± 1.04 cells/section at 24 hours (p>0.05), 33.23 ± 1.86 cells/section at 2 days 

(p>0.05), 63.36 ± 1.36 cells/section at 3 days after SE (p<0.001), 82.70 ± 5.87 

cells/section at 5 days after SE (p<0.001), 82.46 ± 3.44 cells/section for 7 days after SE 

(p<0.001), and 37.48 ± 1.20 cells/section for 14 days after SE (p<0.01). In iNOS+/+ mice 

treated with saline solution, the number of BrdU+ cells did not change significantly 

during the analyzed period of time (p>0.05 for all time points). 

In iNOS-/- mice, BrdU incorporation was unchanged with KA treatment up to 5 days 

after seizures (7.73 ± 1.43 cells/section at 1 day after SE (p>0.05), 13.35 ± 3.87 

cells/section for 2 days after SE (p>0.05), 25.64 ± 0.53 cells/section for 3 days after SE 

(p>0.05), and 18.36 ± 1.99 cells/section for 5 days after SE (p>0.05)). Interestingly, the 

number of BrdU+ cells in dentate gyrus was significantly increased 7 days after SE 

(87.08 ± 8.40 cells/section, p<0.001), compared with saline-treated iNOS-/- mice (20.08 

± 0.61 cells/section). Finally, the incorporation of BrdU returned to basal levels 14 days 

after SE with KA treatment (27.33 ± 2.17 cells/section, p>0.05). In saline-treated iNOS-/- 
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mice, the incorporation of BrdU was similar for all time points (11.31 ± 2.86 

cells/section at 1 day, 12.10 ± 1.33 cells/section at 2 days, 16.71 ± 4.06 cells/section at 

3 days, 15.58 ± 0.96 cells/section at 5 days, 20.08 ± 0.61 cells/section at 7 days, and 

17.15 ± 1.39 cells/section at 14 days, p>0.05).  

 

Figure 3.1 – NO increases NSCs proliferation following treatment with KA.  

A, Representative images of BrdU+ cells (white), 3 and 7 days after KA or saline 

treatment in iNOS+/+ and iNOS-/- mice. B, Number of BrdU+ cells at different time 

points (1, 2, 3, 5, 7 and 14 days) after seizures. Data are expressed as means ± 

SEM. Two-way ANOVA (Bonferroni’s post-test), N=2 to 5, **p<0.01 and ***p<0.001 

are different from iNOS+/+ Saline; ###p<0.001 is different from iNOS-/- Saline. Scale 

bar: 50 µm. 
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3.1.2. Migration of neuroblasts following seizures is dependent of NO 

To investigate the role of NO on the migration of neuronal precursors, iNOS+/+ or iNOS-

/- mice were treated with either saline or KA, as described in Materials and Methods. 

The migration of new neuroblasts occurs around 2 weeks in the neurogenic process. 

According to this fact, we choose to analyze this event at 7 days and 14 days after 

treatments.  DCX was used as a marker of neuroblast migration (Nacher et al., 2003) 

and DCX-immunoreactive area was assessed by immunohistochemistry (Carreira et 

al., 2010).  

The DCX-immunoreactive area was increased in iNOS+/+ mice, 14 days after seizures 

compared to saline-treated mice, but not in KA-treated iNOS-/- compared to saline-

treated mice (Fig 3.2 A). At 7 days after seizures, the percentage of DCX-

immunorective area tends to increase with KA treatment in both iNOS+/+ (169.01 ± 

33.50 % of control, p>0.05) and iNOS-/- (145.64 ± 32.75 % of control, p>0.05), although 

this increase is not significant compared to saline-treated mice (100.00 ± 14.14 % of 

control in iNOS+/+ mice and 100.00 ± 10.99 % of control in iNOS-/- mice) (Fig 3.2 B, two-

way ANOVA; genotype: 0.79, F=0.1382, df=1, p>0.05; treatment: 18.90, F=3.326, df=1, 

p>0.05; genotype x treatment [interaction]: 0.78, F=0.1381, df=1, p>0.05).  

At 14 days after seizures the DCX-positive area duplicated in iNOS+/+ mice (209.32 ± 

4.07 % of control, p<0.05), when compared to saline-treated mice of the same 

genotype (100.00 ± 24.75 % of control). In iNOS-/- mice, treatment with KA did not 

change the DCX-immunoreactive area (87.57 ± 5.48 % of control, p>0.05), when 

compared with the saline-treated mice (100.00 ± 39.13). (Fig 3.2 C, two-way ANOVA; 

genotype: 23.01, F=6.420, df=1, p<0.05; treatment: 14.57, F=4.065, df=1, p>0.05; 

Genotype x treatment [interaction]: 23.01, F=6.420, df=1, p<0.05) 
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Figure 3.2 – DCX immunoreactivity is dependent of No 14 days after seizures. 

 A Representative images of DCX (white) immunoreactivity in the dentate gyrus, 7 and 14 

days after KA or saline treatment in iNOS+/+ and iNOS-/- mice. B,  DCX-immunoreactive 

area 7 days after SE. C, DCX-immunoreactive area 14 days after SE. Data are expressed 

as means ± SEM. Two-way ANOVA (Bonferroni’s post-test), N=3 to 6, *p < 0.05 is 

different from iNOS-/- saline. Scale bar: 100 μm. 
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3.2. Distribution of newborn cells in the dentate gyrus is modified by NO after 

seizures 

3.2.1. Distribution of newborn cells formed 3 days after seizures in the dentate 

gyrus is independent of NO, 21 days after treatment with BrdU. 

We next investigate the role of NO in the distribution of newborn cells along the dentate 

gyrus when proliferation is NO-dependent. iNOS+/+ or iNOS-/- mice were treated with 

either saline or KA and BrdU was injected in all animals 3 days later. The distribution of 

the new cells formed at 3 days after seizures were assessed in the SGZ, inner granular 

zone (IGZ) and outer granular zone (OGZ) of the dentate gyrus, 21 days after BrdU 

treatment.  

BrdU+ cells increased with KA treatment in iNOS+/+ and iNOS-/- mice (Fig 3.3 A). The 

total number of BrdU+ cells significantly increased with KA treatment in both iNOS+/+ 

and iNOS-/- mice (Fig 3.3 B, two-way ANOVA; genotype: 5.68, F=2.334, df=1, p>0.05; 

treatment: 49.79, F=20.47, df=1, p<0.001; genotype x treatment [interaction]: 0.76, 

F=0.3113, df=1, p>0.05). For iNOS+/+ mice, treatment with KA duplicated BrdU+ cells 

(29.24 ± 2.91 BrdU+ cells/section, p<0.05) compared to saline-treated mice (12.59 ± 

1.66 BrdU+ cells/section). For iNOS-/- mice, KA treatment also doubled the number of 

BrdU+ cells (37.99 ± 7.75 BrdU+ cells/section, p<0.01) compared to saline-treatment 

(16.66 ± 2.89 BrdU+ cells/section. In both genotypes, treatment with saline did not 

change the number of BrdU+ cells (12.59 ± 1.66 BrdU+ cells/section for iNOS+/+ mice, 

and 16.66 ± 2.89 BrdU+ cells/section for iNOS-/- mice).  

In iNOS+/+ mice, KA-treatment significantly increased BrdU+ cells in SGZ (16.68 ± 1.56 

BrdU+ cells/section, p<0.01) comparatively to saline-treated mice (9.49 ± 1.18 BrdU+ 

cells/section) (Fig 3.3 C, two-way ANOVA; treatment: 25.52, F=14.81, df=3, p<0.001; 

regions: 41.85, F=36.43, df=2, p<0.001; treatment x regions [interaction]: 1.62, 

F=0.4690, df=6, p>0.05). For these mice, BrdU+ cells also increased with KA treatment 

in IGZ (9.35 ± 1.97 BrdU+ cells/section, p<0.01), when compared with saline-treated 

mice (2.48 ± 0.47 BrdU+ cells/section). BrdU+ cells did not change significantly in OGZ 

with KA treatment (3.21 ± 0.53 BrdU-positive cells/section, p>0.05) compared to saline-

treated mice (0.62 ± 0.08 BrdU-postive cells/section).  

Similarly, in iNOS-/- mice (Fig 3.3 C), BrdU+ cells significantly increased after seizures in 

SGZ (17.98 ± 2.82 BrdU+ cells/section, p<0.05) and IGZ (12.37 ± 3.78 BrdU+ 

cells/section, p<0.05), compared with saline-treated iNOS-/- mice. Treatment with KA 
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did not change the number of BrdU+ cell in OGZ (7.64 ± 2.19 BrdU+ cells/section, 

p>0.05) compared to saline treatment (1.17 ± 0.26 BrdU+ cells/section). 

 

 

Figure 3.3 – The number of BrdU+ cells in the dentate gyrus increase following 

seizures, 21 days after BrdU treatment, by a NO-independent mechanism.  

A, Representative images of BrdU (green) and NeuN (red) positive cells in the dentate 

gyrus, 3 days after treatment with KA or saline in iNOS+/+ and iNOS-/- mice . B, Number of 

BrdU+ cells in iNOS+/+ and iNOS-/- mice. Data are expressed as means ± SEM. Two-way 

ANOVA (Bonferroni’s post-test), N=5 to 7, *p<0.05 is different from iNOS+/+ saline; ## p < 

0.01 is different from iNOS-/- saline. C, BrdU+ cells in the 3 regions of the dentate gyrus. 

Data are expressed as means ± SEM. Two-way ANOVA (Bonferroni’s post-test), N=5 to 

7, **p<0.01 is different from iNOS+/+ saline; #p<0.05 is different from iNOS-/- saline.  

Scale bar: 20 μm. 
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3.2.2. Abolishment of NO does not affect distribution of newborn cells formed 7 

days after seizures in the dentate gyrus, 21 days after treatment with BrdU 

Taking into account our initial results about proliferation, we next investigated the role 

of NO in the distribution of newborn cells along the dentate gyrus when proliferation is 

NO-independent, for example, cells that are formed 7 days after seizures. iNOS+/+ or 

iNOS-/- mice were treated with either saline or KA, BrdU was injected in all animals 7 

days later and perfusions performed 21 days after BrdU treatment.  

Cells formed 7 days after seizures, treatment with KA did not change significantly the 

number of BrdU+ cells along the dentate gyrus for neither genotype (Fig 3.4 A). The 

number of BrdU+ cells did not change with genotype (Fig 3.4 B, two-way ANOVA, 

treatment: 10.61, F=2.180, df=1, p>0.05; genotype: 15.95, F=3.278, df=1, p>0.05; 

treatment x genotype [interaction]: 0.45, F=0.09155, df=1, p>0.05). In iNOS+/+ mice, the 

number of BrdU+ cell in KA treated-mice was 19.46 ± 5.26 BrdU+ cells/section (p>0.05) 

and in saline-treated mice is 10.63 ± 0.89 BrdU+ cells/section. In iNOS-/- mice, the 

difference between saline- (21.15 ± 4.10 BrdU+ cells/section) and KA-treated mice 

(26.99 ± 6.70 BrdU+ cells/section, p>0.05) was similar. 

In iNOS+/+ mice, the number of BrdU+ cells in KA-treated mice was 10.49 ± 2.18 BrdU+ 

cells/section in SGZ (p>0.05), 6.47 ± 2.29 BrdU+ cells/section in IGZ (p>0.05), and 2.52 

± 0.93 BrdU+ cells/section in OGZ (p>0.05), and for saline-treated mice was 8.00 ± 0.43 

BrdU+ cells/section in SGZ, 2.25 ± 0.54 BrdU+ cells/section in IGZ, and 0.38 ± 0.07 

BrdU+ cells/section in OGZ (Fig 3.4 C, two-way ANOVA; treatment: 11.25, F=4.592, 

df=3, p<0.01; regions: 48.07, F=29.44, df=2, p<0.001; treatment x regions [interaction]: 

3.95, F=0.8072, df=6, p>0.05).  

In iNOS-/- mice, the number of BrdU+ cells in mice treated with KA was 13.93 ± 2.76 

BrdU+ cells/section in SGZ (p>0.05), 9.80 ± 2.40 BrdU+ cells/section in IGZ (p>0.05) 

and 3.25 ± 1.68 BrdU+ cells/section in OGZ (p>0.05) (Fig 3.4 C). Saline treated mice 

show 14.48 ± 2.64 BrdU+ cells/section in SGZ, 5.29 ± 1.04 BrdU+ cells/section in IGZ 

and 1.38 ± 0.47 BrdU+ cells/section in OGZ. 
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Figure 3.4 – The number of BrdU+ cells in the dentate gyrus born 7 days after SE is 

not affected by NO following seizures, 21 days after treatment with BrdU.  

A, Representative images of BrdU (green) and NeuN (red) positive cells in the dentate 

gyrus, 7 days after treatment with KA or saline in iNOS+/+ and iNOS-/- mice. B, Number of 

BrdU+ cells in iNOS+/+ and iNOS-/- mice. Data are expressed as means ± SEM. Two-way 

ANOVA (Bonferroni’s post-test), N=4 to 6. C, BrdU+ cells in the three regions of the 

dentate gyrus. Data are expressed as means ± SEM. Two-way ANOVA (Bonferroni’s 

post-test), N=4 to 6. Scale bar: 20 μm. 
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3.3. NO has different effects in neuronal and astrocytic differentiation 

3.3.1. Neuronal differentiation of newborn cells formed 3 days after SE is 

decreased by NO. 

To investigate the survival of newborn cells 3 and 7 days after SE, co-localization of 

BrdU+/NeuN+-cells were assessed by immunohistochemistry. NeuN is neuronal marker 

for mature neurons and co-localization with BrdU allows the investigation of new 

neurons formed at the time point of treatment with BrdU. Images of 50 BrdU+-cells of 

each animal were acquired by laser scanning microscopy and orthogonal projections in 

y axis were performed for each image (Fig 3.5 A).  

At 21 days after treatment with BrdU,  the percentage of new neurons born 3 days after 

SE, decreased in iNOS+/+ mice treated with KA (53.50 ± 7.04  % of BrdU+/NeuN+-cells, 

p<0.05), compared to saline-treated mice (72.29 ± 3.48 % of BrdU+/NeuN+-cells), but 

not in iNOS-/- mice (43.50 ± 6.95 % of BrdU+/NeuN+-cells for saline and 43.20 ± 5.68 % 

of BrdU+/NeuN+-cells for KA-treated mice, p>0.05) (Fig 3.5 B, two-way ANOVA: 

genotype: 7.79, F=2.682, df=1, p>0.05; treatment: 32.65, F=11.25, df=1, p<0.01; 

genotype x treatment [interaction]: 7.30, F=2.516, df=1, p>0.05).  

For neurons born 7 days after SE, the number of new neurons in iNOS+/+ mice was 

very similar between treatments, with 55.6 ± 7.22 % of BrdU+/NeuN+-cells (p>0.05) in 

KA-treated mice and 62.00 ± 5.03 % of BrdU+/NeuN+-cells for saline-treated mice. In 

iNOS-/- mice, treatment with KA (69.50 ± 5.85 % of BrdU+/NeuN+-cells) also did not 

change the number of new neurons, compared to saline treated mice (58.80 ± 8.31 % 

of BrdU+/NeuN+-cells) (Fig 3.5 C, two-way ANOVA; genotype: 3.15, F=0.5348, df=1, 

p>0.05; treatment: 0.53, F=0.09010, df=1, p>0.05; genotype x treatment [interaction]: 

8.07, F=1.372, df=1, p<0.05). 

A detailed analysis of the effect of treatment with KA in newborn cells 3 and 7 days 

after seizures, in both genotypes (Fig 3.5 D, two-way ANOVA; genotype: 0.40, 

F=0.09596, df=1, p>0.05; time: 17.89, F=4.320, df=1, p>0.05; genotype x time 

[interaction]: 11.31, F=2.732, df=1, p>0.05), shows that the number of new neurons, 

born 3 days after seizures, in iNOS-/- mice was 43.20 ± 5.68 % of BrdU+/NeuN+-cells 

(p>0.05) and in iNOS+/+ mice was 52.67 ± 7.51 % of BrdU+/NeuN+-cells (p>0.05). The 

number of neurons born 7 days after seizures in iNOS-/- mice was 69.50 ± 5.85 % of 

BrdU+/NeuN+-cells, (p>0.05) and in iNOS+/+ mice was 55.67 ± 7.22 % of BrdU+/NeuN+-

cells. 



RESULTS 
 

38 
 

 

 

 

Figure 3.5 – NO decreases the number of newborn neurons born 3 days after SE in 

iNOS+/+ mice.  

A, Orthogonal projections of representative images of BrdU+/NeuN+ and BrdU+/NeuN--

cells. B, Percentage of BrdU+/NeuN+--cells 3 days after SE, assessed by 

immunohistochemistry. Data are expressed as means ± SEM. Two-way ANOVA 

(Bonferroni’s post-test), N=4 to 7, *p<0.05 is different from iNOS+/+ saline. C, Percentage 

of BrdU+/NeuN+-cells 7 days after SE. Data are expressed as means ± SEM. Two-way 

ANOVA (Bonferroni’s post-test), N=4 to 6. D, Percentage of BrdU+/NeuN+-cells in KA-

treated iNOS+/+ and iNOS-/- mice, 3 and 7 days after SE. Data are expressed as means ± 

SEM. Two-way ANOVA (Bonferroni’s post-test), N=4 to 7, p>0.05. Scale bar: 20µm. 
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3.3.2. Astrogliogenesis is not affected by abolishment of NO after seizures 

Following the previous results, we were interested in understanding whether the 

proliferating cells could be differentiating into astrocytes. In order to analyze that, we 

assessed GFAP+ cells formed at 3 and 7 days after seizures by immunohistochemistry 

21 days after treatment with BrdU. GFAP is a protein expressed by astrocytes, and co-

localization with BrdU allows the identification of newborn astrocytes at the time point 

of treatment with BrdU. Images of 50 BrdU+ cells of each animal were acquired in laser 

scanning microscope and orthogonal projections in y axis were performed for each 

image (Fig 3.6 A). 

For cells born 3 days after SE in iNOS+/+ mice, seizures did not change the number of 

new astrocytes (3.50 ± 0.34 % of BrdU+/GFAP+-cells, p>0.05), compared with saline-

treated mice (2.71 ± 0.61 % of BrdU+/GFAP+-cells). In iNOS-/- mice, the number of 

BrdU+/GFAP+-cells in KA-treated mice was 6.00 ± 1.22 % of BrdU+/GFAP+-cells 

(p>0.05) and 5.25 ± 1.11 % of BrdU+/GFAP+-cells in mice treated with saline (Fig 3.6 B, 

two-way ANOVA, genotype: 36.46, F=10.30, df=1, p<0.01; treatment: 3.39, F=0.9584, 

df=1, p>0.05; genotype x treatment [interaction]: 0.00, F=0.0005183, df=1, p>0.05). 

For cell born 7 days after SE, seizures did not change the number of BrdU+/GFAP+-

cells in both genotypes (3.60 ± 0.51 % of BrdU+/GFAP+-cells in iNOS+/+ mice and 2.75 

± 1.11 % of BrdU+/GFAP+ cells in iNOS-/- mice, p>0.05). The percentage of 

BrdU+/GFAP+-cells in saline-treated mice was very similar between iNOS+/+ (2.00 ± 

0.71 % of BrdU+/GFAP+-cells) and iNOS-/- mice (1.20 ± 0.37 % of BrdU+/GFAP+-cells) 

(Fig 3.6 C, two-way ANOVA; genotype: 7.07, F=1.473, df=1, p>0.05; treatment: 25.76, 

F=5.369, df=1, p<0.05; genotype x treatment [interaction]: 0.01, F=0.001353, df=1, 

p>0.05).  

Analyzing the KA-treated mice alone (Fig 3.6 D, two-way ANOVA, genotype: 4.55, 

F=1.137, df=1, p>0.05; time: 16.60, F=4.143, df=1, p>0.05; genotype x time 

[interaction]: 18.77, F=4.686, df=1, p<0.05), the percentage of BrdU+/GFAP+-cells, for 

newborn cells 3 days after SE, in iNOS-/- mice was 6.00 ± 1.22 % of BrdU+/GFAP+-cells 

(p>0.05) and 3.50 ± 0.34 % of BrdU+/GFAP+-cells in iNOS+/+ mice. Also, the percentage 

of BrdU+/GFAP+-cells, for newborn cells 7 days after seizures, was not affected by 

treatment with KA in both genotypes (3.60 ± 0.51 % of BrdU+/GFAP+-cells in iNOS+/+ 

mice and 2.75 ± 1.11 % of BrdU+/GFAP+-cells in iNOS-/- mice, p>0.05). 
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Figure 3.6 – Differentiation of newborn cells formed 3 and 7 days after SE into 

astrocytes is not affected by NO. 

A, Orthogonal projections of representative images of BrdU+/GFAP+-cells and 

BrdU+/GFAP-cells. B, Percentage of BrdU+/GFAP+-cells born 3 days after SE. Data are 

expressed as means ± SEM. Two-way ANOVA (Bonferroni’s post-test), N=4 to 7, p>0.05. 

C, Percentage of BrdU+/GFAP+-cells born 7 days after SE. Data are expressed as means 

± SEM. Two-way ANOVA (Bonferroni’s post-test), N=4 to 5, p>0.05. D, Percentage of 

BrdU+/GFAP+-cells in KA-treated iNOS+/+ and iNOS-/- mice, 3 and 7 days after SE. Data 

are expressed as means ± SEM. Two-way ANOVA (Bonferroni’s post-test), N=4 to 7, 

p>0.05. Scale bar: 20µm. 
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3.4 NO is important for astrogliosis in iNOS+/+ mice 28 days after treatment 

We next evaluated the possibility of the involvement of NO in neuroinflammation, 28 

days after seizures. GFAP immunoreactivity was assessed by immunohistochemistry 

and because it is proportional to the intensity of GFAP staining, it can be used as a 

measure for astrogliosis. (Fig 3.7 A).  

In iNOS+/+ mice, KA treatment increased GFAP immunoreactivity (170.45 ± 15.74 % of 

control, p<0.05) when compared with saline-treated mice (100.00 ± 23.87 % of control) 

28 days after treatment. In iNOS-/- mice treatment with KA does not change GFAP 

immunoreactivity (124.76 ± 24.76 % of control, p>0.05) compared with mice treated 

with saline solution (100.00 ± 9.81 % of control) (Fig 3.7 B, two-way ANOVA, genotype: 

28.27, F=6.721, df=1, p<0.05; treatment: 6.41, F=1.527, df=1, p>0.05; genotype x 

treatment [interaction]: 6.42, F=1.527, df=1, p<0.05). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 – Astrogliosis is affect by abolishment of NO, 28 days after 

seizures. A, Representative images of GFAP (white) immunoreactivity 28 days 

after KA or saline treatment in iNOS+/+ and iNOS-/- mice. B, GFAP immunoreactivity 

28 days after SE. Data are expressed as means ± SEM. Two-way ANOVA 

(Bonferroni’s post-test), N=4 to 5, *p<0.05 is significantly different from iNOS+/+ 

saline.. Scale bar: 100 µm.  
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During the present work our main goal was to study the hippocampal neurogenesis and 

the involvement of NO from inflammatory origin in the different stages of the 

neurogenic process after seizures. In this work we show that NO is involved in 

proliferation, migration and survival of the newborn cells after seizures, as shown in Fig 

4.1. We also investigated the involvement of NO from iNOS in astrogliogenesis and 

neuroinflammation following seizures.  

 

Figure 4.1 – Involvement of nitric oxide in regulation of hippocampal 

neurogenesis. Nitric oxide is involved in different stages of the hippocampal 

neurogenic process, controlling early proliferation, migration of the newborn cells 

and the number of new neurons generated after seizures. Early proliferation of 

NSCs, migration of new neuroblasts and survival of early born cells are regulated 

by a NO-dependent mechanism, while late proliferation of NSCs seems to be 

regulated by a NO-independent mechanism. 

 

4.1. NO is involved in early proliferation of NSCs after seizures 

Adult neurogenesis starts with proliferation of NSCs in the neurogenic niches. 

Particularly in the hippocampus, proliferation of NSCs occurs in the SGZ of the dentate 

gyrus. In order to study the involvement of NO in proliferation of newborn cells after a 

brain injury,  we used a status epilepticus mouse model and counted the number of 

BrdU+ cells at different time points, as described in Chapter 2 - Material and Methods.  
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Here we show that proliferation of NSCs is highly increased up to 14 days after 

seizures, with a peak at 5 days after treatment with KA, compared to saline-treated 

iNOS+/+ mice. These results are in line with previous findings that rodent model of SE 

trigger neuroinflammation and stimulate proliferation of newborn cells in the SGZ of the 

dentate gyrus (Parent et al., 1997, 2007; Gray and Sundstrom, 1998). Cell proliferation 

is also increased in different acute injured-animal models, such as stroke (Parent et al., 

2003; Zhu et al., 2003) and traumatic brain injury (Dash et al., 2001; Rice et al., 2003). 

Production of inflammatory factors from microglia, such as NO, has already been 

reported as essential for proliferation of neuronal progenitors cells in the hippocampus 

(Yoneyama et al., 2010), functioning as second messengers in intracellular signal 

pathways. Our group previously described the mechanism by which NO triggers the 

initial proliferation in SVZ cells in vitro (Carreira et al., 2010, 2012). In these studies, we 

reported that NO is able to bypass the EGF receptor and directly activate upstream 

components of ERK 1/2/MAPK signaling pathway, resulting in increased cell 

proliferation of NSCs in early stages (Carreira et al., 2010). Moreover, late proliferation 

depends on the activation of cGMP and PKG, suggesting a biphasic mechanism of 

proliferation trigged by NO (Carreira et al., 2013). 

The removal of NO showed that proliferation of NSCs can be differentially affected by 

NO in two distinct time periods. Proliferation of NSCs is not affected by abolishment of 

NO up to 5 days and at 14 days after treatment with KA, suggesting a NO-dependent 

regulation of the early proliferation. At 7 days after seizures, the number of BrdU+ cells 

in mice lacking NO treated with KA also increased when compared to saline-treated 

mice of the same genotype. At this time point, proliferation seems to be regulated by a 

NO-independent mechanism.  

One of the signal pathways that may play an important function at this time point is the 

neurotrophin signaling mediated by BDNF/TrkB. Previous studies showed that BDNF 

increases the number and survival of newborn neurons in the SVZ and olfactory bulb 

(Kirschenbaum and Goldman, 1995; Zigova et al., 1998; Bath et al., 2008) and the 

dentate gyrus (Lee et al., 2002). Also the NO-cGMP pathway is an important mediator 

of the proliferative effects of neuropeptide Y in the hippocampus (Howell et al., 2005; 

Agasse et al., 2008; Cheung et al., 2012).  

Since NO can be cytotoxic (Boje and Arora, 1992; Bal-Price and Brown, 2001), it may 

influence BrdU uptake, increasing BrdU incorporation as a result of DNA repair or 

decreasing as a result of neurodegeneration following a brain insult, so this should be 

evaluated. Our group has analyzed that nuclear morphology of NSCs at these times 
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was not affected, which indicates that these cells were not compromised. DNA repair 

as a result of DNA fragmentation may be detected by terminal deoxynucleotidyl 

transferase dUTP nick end labeling (TUNEL) staining in cells that incorporated BrdU. 

Colocalization of BrdU and TUNEL was assessed in this model and in vitro after 

exposure to NOC-18 (10µM), a NO donor, for 24 hours, and it was not increased in 

either condition (data not shown). Together, these findings suggest that the changes in 

BrdU incorporation are due to cell proliferation and not by DNA repair. 

iNOS-/- mice show a decrease in neuronal injury after stroke (Liu and Huang, 2008) 

leading to a possible decrease in the recruitment of pro-neurogenic factors, such as 

NO, released by microglial cells in the neuroinflammatory environment. However, SE 

model and stroke model are different from each other and this phenotypic characteristic 

may not be present in the rodent epilepsy models.  

 

4.2. Involvement of NO in migration and distribution of newborn cells in the 

dentate gyrus following seizures 

4.2.1. NO increased migration of neuroblasts after seizures 

Neuronal migration is a key point in the neurogenic process. We next investigated the 

role of NO in migration of neuroblasts in the dentate gyrus following SE.  

Our results showed that DCX-immunoreactivity area does not change 7 days after 

seizures, although it tend to increase. At 14 days after SE, DCX-immunoreactivity area 

increased after seizures, by a NO-dependent mechanism.  

Previous studies have reported the important role of NO in regulation of fate of the 

newborn cells in the dentate gyrus.  Recently, it has been shown that the number of 

DCX+ neuroblasts significantly increased following treatment with L-NAME, a NOS 

inhibitor, and KA together (Cosgrave et al., 2010). Moreover, in the some studies, 

inhibition of NOS alone increased the number of BrdU+ newborn cells in the hilus, 

which suggest a role of NO in their correct migration into the granular zone of the 

dentate gyrus. Having this into account, our results showed that NO from an 

inflammatory origin it is not involved in migration of the neuroblasts, at least, at 2 weeks 

after seizures.  
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4.2.2. Distribution of early-born cells in the dentate gyrus is affected following seizures 

by a NO-independent mechanism 

Our results show that the number of newborn cells after seizures, formed early (3 days) 

after seizure, was increased in SGZ and IGZ. Also at this time, the number of newborn 

cells increased in the SGZ and IGZ in mice lacking iNOS after seizures, suggesting 

that NO does not contribute to the way the cells distribute throughout the dentate 

gyrus.  

At 7 days after seizures, the distribution along the different regions of the dentate gyrus 

was not affected by treatment with KA. 

According to our study of the proliferation of the NSCs after seizures, at 7 days after 

KA treatment the proliferation of newborn cells is regulated by a NO-independent 

mechanism. Therefore, the fact that NO did not change the distribution of the new cells 

along the dentate gyrus suggest that NO is not involved in how cells are distributed 

along the dentate gyrus after seizures.  

   

4.3. Differentiation and survival of newborn cells are limited by NO 

4.3.1. NO limits survival of the cells that proliferate early (3 days) but not later (7 days) 

after seizures 

The last stage of neurogenesis is differentiation. Survival of newborn cells may limit the 

final number of mature neurons. During this 6 week period, newborn cells undergo 

integration into the pre-existent network, maturation in neurons or glial cells and, last 

but very important, long-term survival. Neuronal differentiation can be assessed from 3 

to 4 weeks after neurogenesis starts by analysis of cellular markers, cell morphology or 

gene expression. In this study we used NeuN as a mature neuron marker, and counted 

the percentage of BrdU+ cells colocalized with NeuN+ cells. 

We show that the number of early-born cells (3 days after SE) that survive up to 21 

days after treatment with BrdU decreased (Fig 4.2), compared to late-born cells (7 days 

after SE) (Fig 4.3). These results suggest the survival of newborn cells after seizures is 

regulated by a NO-dependent mechanism, similar to proliferation of NSCs in these 

conditions.  
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Figure 4.2 – Schematic representation of hippocampal neurogenesis, in iNOS+/+ and 

iNOS-/- mice 3 days after treatment with saline or KA solution. iNOS+/+ mice treated 

with KA show an increased proliferation of NSCs  3 days after seizures. At this time point, 

the number of newborn neurons decreased compared with iNOS+/+ treated with saline 

solution. iNOS-/- mice. 

 

Figure 4.3 – Schematic representation of hippocampal neurogenesis, in iNOS+/+ and 

iNOS-/- mice treated either saline or KA solution. Proliferation of NSCs is increased in 

both iNOS+/+ or iNOS-/- mice 7 days after treatment with KA, but formation of new neurons 

is not affected. 
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These results suggest that cells that proliferate in a NO-independent phase become 

neurons that survive better than cells that proliferate up to 5 days after the onset of 

seizures. Supraphysiological levels of NO are toxic to neurons and neural apoptosis 

was evident after administration of a NO donor in a febril seizure rat model (Chen et al., 

2008). NO is also been proposed as an inhibitor of cell-cycle progression in many cell 

types, through activation of p53 or Rb signaling pathways (Ishida et al., 1997; Nakaya 

et al., 2000).  This relationship of NO and programmed cell death might have influence 

in survival rate of the newborn cells. 

 

4.3.2. Astrogliogenesis is not altered by NO following seizures 

Astrogliogenesis was also analyzed for cells formed during early or late proliferative 

periods after seizures. GFAP is an astrocyte marker and therefore, colocalization of 

BrdU/GFAP allows the investigation of newborn astrocytes at the time point of 

treatment with BrdU.  

Our results showed that differentiation into astrocytes of new cells born 3 and 7 days 

after seizures, assessed 21 days after treatment with BrdU, is not affected.  

In vitro studies reported that exposure to pathological levels of NO (0.1 mM for 24 

hours) promotes astroglial fate determination in neural stem cells over neuronal 

commitment or selectively depletes early neuronal progenitor cells (Covacu et al., 

2006). In this particular model, astrogliogeneses seems to be positively regulated by 

exposure to NO. Here we show that exposure to NO from iNOS is not involved in 

astroglial differentiation from neural stem cells after a brain injury, which did not change 

per se the number of new born GFAP+ cells. 
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4.4 Astrogliosis by NO following seizures 

Astrogliosis is defined as an abnormal increase in the number of reactive astrocytes. 

Astrocyte activation is a cellular response to injury or disorders in the CNS and may 

influence neuronal survival, as a component of the neuroinflammatory response to 

lesion. 

Here we showed that GFAP-immunoreactive area was increased 28 days after 

seizures, in a NO-dependent manner, suggesting that neuroinflammation is still present 

at this time. 

Previously, our group studied neuroinflammation 5 days after seizures, and showed an 

increase in the number of reactive astrocytes either in iNOS+/+ or iNOS-/- treated with 

KA (Carreira et al., 2010). Here we show that activation of astrocytes is maintained up 

to 28 days after seizures. However, the astrogliosis is not observed in the mice lacking 

iNOS at this time point, suggesting that late astrogliosis is NO-dependent. 

 

4.5 Regulation of physiological versus patophysiological neurogenesis by NO. 

The role of NO in regulation of neurogenesis is still unclear. Overall, NO seems to 

negatively regulate neurogenesis in physiological conditions, while in patophysiological 

situations it shows proneurogenic action (Tabela 4.1). 

Several studies reported decrease in proliferation of NSCs (Packer et al., 2003; 

Torroglosa et al., 2007; Moreno-López et al., 2004) and survival of the new born cells 

(Covacu et al., 2006). NO can also modulate differentiation of new precursors by 

increasing neuronal (Cheng et al., 2003; Moreno-López et al., 2004) or astrocytic 

differentiation (Covacu et al., 2006). 

After a brain insult, NO has been reported as pro-neurogenic factor, since increase in 

proliferation of NSCs is reported in most of the injury-induced models (Zhu et al., 2003; 

Hua et al., 2008). Although differentiation is positively regulated by NO following brain 

insults (Moreno-López et al., 2004, the survival of the new born cells seems to be 

decreased by NO (Ciani et al., 2006). 

Our results, together with previous findings, suggest that not only proliferation of NSCs 

are regulated by NO-dependent mechanisms following a lesion, but also migration and 

survival of the new born cells are somehow regulated by the presence of NO following 

seizures. The fact that NO is important to maintain neuroinflammation up to 28 days 
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after seizures may have influence in survival of new born cells, and contribute to the 

failure in new neurons efficiently surviving in such conditions. 

 

Table 4.1 – Regulation of adult neurogenesis by NO (physiological versus 

pathological conditions).  

 
 

 
Effect References 

 
Physiological conditions 

 
Proliferation 

Decrease 
Pacher et al., 2003; 

Torroglosa et al., 2007 
Moreno-López et al., 2004 

 
Differentiation 

Increase neurogenesis and astrogliogenesis 
Cheng et al., 2003; 
Covacu et al., 2006; 

Moreno-López et al., 2004 

 
Survival 

Decrease Covacu et al., 2006 

 
Patophysiological conditions 

 
Proliferation 

Increase 
Zhu et al., 2003;  
Hua et al., 2008;  

Kokaia and Lindvall, 2003 
 

Differentiation 
Increase Moreno-López et al., 2004 

 
Survival 

Decrease Ciani et al., 2006 



 

53 
 

 

 

 

 

 

 

 

Chapter 5 

Conclusions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

54 
 

 

 



CONCLUSION 

55 
 

With this work we aimed to understand the involvement of NO produced from iNOS in 

the hippocampal neurogenesis in a status epilepticus mouse model. Our results 

showed that: 

 Production of NO in an inflammatory context increased proliferation of the 

early-born NSCs following a brain insult. 

 

 Migration of neuroblasts was increased following seizures by a NO-dependent 

mechanism.  

 

 Distribution of newborn cells along the dentate gyrus was modified by 

seizures, but NO was not involved in this phenomenon. 

 

 Survival of the new neurons formed at an early stage of the proliferation (3 

days after seizures) is decreased by NO. 

 

 Astrogliogenesis was not affected by seizures. 

 

 NO showed to be important in maintenance of neuroinflammation up to 28 

days after seizures. 

 

Altogether, these findings helped us to understand the involvement of NO produced by 

iNOS in different stages of adult neurogenesis following injury and open the possibility 

to explore new NO-based therapeutic approaches to brain repair after an insult. 

However, the mechanisms by which NO can act as proliferative factor, and more 

importantly, how it modulates the survival, differentiation and integration of the newborn 

cells into the existent synapses is still unclear. There are still many unanswered 

questions about how NO can modulate neurogenesis in order to improve the proposed 

therapeutic approaches for brain repair, and more studies are still needed, using both 

in vitro and in vivo models. 
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