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Abstract 

Semi-intensive aquaculture has been recognised as an “environmentally friendly” option. 

However, the low profitability and competitiveness of these systems compromise their economic 

viability. The optimization of production is thereby crucial for the sustainability of semi-

intensive pond aquaculture, and implies that fish yields are maximized with minimum impacts 

on the environment. Understanding the physical, chemical and biological processes occurring in 

fishponds is of outmost importance for defining farming strategies that optimize fish production. 

This knowledge is even more relevant when dealing with newly cultivated species, as the white 

seabream (Diplodus sargus). Due to the lack of information on the performance of this species in 

earth ponds, one of the main objectives of the present work was to study the physical, chemical 

and biological processes in white seabream ponds, over a production cycle. The most relevant 

results of this experimental work were that: i) the impacts of fish activity on bottom sediments 

are only noticeable above a fish biomass of 0.5 kg m-3 and a feeding rate of 5 kg d-1; ii) pond 

sediment and water quality was comparable to that of natural systems, suggesting that the 

assayed farming conditions ensure a good pond environment; and iii) pond water quality was 

strongly dependent on inflowing water and on benthic nutrient fluxes, emphasizing the relevance 

of optimum water exchange rates and sediment treatment to an efficient pond management. The 

other main objective of this work was to develop an ecological model to be used as a tool for 

managing semi-intensive systems, to improve their economic and environmental performance. 

The added value of a modeling approach is that, due to their ability to integrate the complexity of 

fishpond processes, models can be used to simulate the effect of different management scenarios 

on the pond environment and on the adjacent coastal systems. The model was implemented and 

tested with the white seabream as a case study, using data collected over the experimental work, 

together with literature data. Model construction was done in 3 steps: i) implementation of a 

biogeochemical model; ii) implementation of a fish Dynamic Energy Budget (DEB) model and 

iii) coupling of the two models. The biogeochemical model developed in this study is a 
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mechanistic model that reproduces the dynamics of organic and inorganic nutrient (nitrogen and 

phosphorus) forms as well as of oxygen, in the pelagic and benthic compartments of an earth 

pond. This model not only helped understanding the interactions between pond variables and 

processes but also how pond structural features and operational parameters affect the water and 

sediment quality of pond systems. The fish DEB model was able to reproduce the growth of 

white seabream as well as of gilthead seabream (Sparus aurata), a traditionally cultivated 

species in semi-intensive ponds. This model was used to investigate which biological processes 

are more likely to influence fish performance and to explain inter-species growth variability. A 

comparison between the DEB model parameters of the two Sparidae revealed that white 

seabream lower growth rates are presumably linked to a higher energy demand for body 

maintenance and a lower feed absorption efficiency. The coupled model was able to reproduce 

fish pond dynamics, and was further used to simulate different management scenarios, related to 

stocking densities, water exchange rates and feeding strategies. Scenarios and standard farming 

conditions were compared in terms of their effects on pond water and sediment quality, as well 

as on final fish yields and nutrient discharges into the environment. Using the Analytical 

Hierarchical Process (AHP) methodology, scenarios were ranked in order to evaluate the best 

management options for optimizing white seabream production. Results revealed that doubling 

the standard stocking density and improving feed absorption efficiency, may enhance the 

performance of semi-intensive white seabream production systems. Aside from providing a tool 

for managing aquaculture systems, this work contains valuable information for defining 

guidelines on environmental standards (e.g. Maximum Recommended Values) for marine fish 

farming. 

 

Keywords: Biogeochemical model; Fish Dynamic Energy Budget model; Pond management; 

Semi-intensive aquaculture; Economic and environmental sustainability; Diplodus sargus.  
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Resumo 

No atual contexto de declínio dos recursos marinhos, a aquacultura poderá desempenhar um 

papel determinante como fonte de proteína alternativa, para responder à crescente procura de 

produtos alimentares de origem marinha e reduzir a pressão da atividade piscatória. Como 

consequência da intensificação da produção à escala global, os impactes ambientais da 

aquacultura têm vindo a aumentar. Neste trabalho foi feita uma extensa revisão bibliográfica 

sobre os principais impactes ambientais desta atividade e possíveis medidas de mitigação destes 

impactes. A importância do conceito de capacidade de carga para a sustentabilidade da 

aquacultura foi também abordada neste trabalho de revisão, e são apresentadas algumas 

metodologias e ferramentas que podem ser utilizadas para a redução ou antecipação dos impactes 

da aquacultura, como é o caso dos modelos matemáticos e dos Sistemas de Apoio à Decisão.      

 

Se a piscicultura intensiva é por vezes associada a uma degradação ambiental, aquela que é 

tipicamente realizada em regime semi-intensivo nos países mediterrânicos, tem sido reconhecida 

como uma opção “amiga” do ambiente. O menor grau de artificialidade (ou seja, as densidades 

de carga mais baixas, os caudais reduzidos e a menor quantidade de alimento fornecido) destes 

sistemas comparativamente com os sistemas intensivos reduzem substancialmente a sua pegada 

ecológica. Devido à crescente preocupação dos consumidores com a segurança alimentar e o 

bem-estar das espécies cultivadas, a procura de produtos provenientes da aquacultura semi-

intensiva tem vindo a aumentar nos últimos anos. Apesar deste aumento da procura, estes 

sistemas são muitas vezes caracterizados por uma baixa rentabilidade, que resulta principalmente 

de uma baixa produtividade associada a elevados custos de produção. Para além da reduzida 

rentabilidade, a baixa competitividade da piscicultura semi-intensiva face aos baixos preços dos 

produtos de origem intensiva, compromete fortemente a sua viabilidade económica. Para 

assegurar o futuro deste tipo de aquacultura, é necessário desenvolver protocolos que permitam 
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otimizar a produção, ou seja maximizar a produção, mantendo produtos de alta qualidade e 

minimizando os impactes ambientais desta atividade.  

 

Uma vez que o conhecimento dos processos físicos, químicos e biológicos em tanques de 

piscicultura é de primordial importância para a definição de estratégias de cultivo que permitam 

otimizar a produção nestes sistemas, um dos principais objectivos deste estudo foi estudar estes 

processos ao longo de um ciclo de produção de sargo (Diplodus sargus). Os modelos 

matemáticos, por serem capazes de integrar a dinâmica dos processos que ocorrem nos tanques 

de cultivo, podem ser utilizados para a simulação de diferentes cenários de gestão bem como 

para a previsão do impacte desta atividade no meio recetor, constituindo por isso uma ferramenta 

valiosa para a sustentabilidade da piscicultura semi-intensiva. Neste sentido, o outro grande 

objetivo deste trabalho consistia no desenvolvimento de um modelo ecológico para tanques de 

terra de cultivo semi-intensivo de peixes, de modo a maximizar a eficiência económica e a 

eficiência ambiental destes sistemas. Este modelo foi depois aplicado ao caso concreto do cultivo 

de sargo (Diplodus sargus), para avaliar a viabilidade do cultivo desta espécie em regime semi-

intensivo. Uma vez que a diversificação de espécies tem sido referida como uma das estratégias 

para aumentar a rentabilidade e a competitividade da piscicultura semi-intensiva, o sargo, sendo 

uma espécie autóctone e de elevado valor comercial nos países mediterrânicos, é considerado 

como um potencial candidato à aquacultura semi-intensiva em tanques de terra.  

 

O ensaio experimental destinado a estudar os processos físicos, químicos e biológicos em 

tanques de piscicultura, teve a duração de aproximadamente dois anos, e foi realizado nos 

tanques de terra da Estação Piloto de Piscicultura do IPIMAR, localizada no Parque Natural da 

Ria Formosa, em Olhão. Durante o ensaio, foram recolhidas amostras de material particulado, 

sedimento e água num tanque de produção de sargo e num tanque controle (sem peixes). A 

condição do sargo foi também avaliada ao longo do ensaio, tendo-se realizado amostragens 
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biológicas regulares. No que diz respeito ao material orgânico particulado, os resultados 

revelaram que a taxa de deposição das partículas aumentou linearmente com o tempo no tanque 

de cultivo. A contínua deposição de material particulado, proveniente da água de entrada, do 

alimento não digerido, da excreção fecal e do fitoplâncton senescente, conduziu a um 

enriquecimento orgânico dos sedimentos, sobretudo a partir do segundo ano de produção. Como 

consequência da mineralização da matéria orgânica acumulada nos sedimentos, houve um 

aumento das concentrações de nutrientes na água intersticial, principalmente durante os períodos 

de temperatura mais elevada, que estimulou a produção microfitobentónica no tanque de 

produção. Apesar dos impactes da atividade piscícola nos sedimentos de fundo só se tornarem 

evidentes a partir de uma biomassa de 0.5 kg m-3 e de uma quantidade diária de alimento 

fornecido superior a 5 kg, a qualidade dos sedimentos no tanque de cultivo foi comparável à 

laguna adjacente (Ria Formosa). Dado que a taxa de sobrevivência dos sargos no final do ensaio 

foi bastante elevada (94%), os resultados sugerem que as condições de cultivo experimentadas 

não causam constrangimentos nos tanques de produção, podendo servir como base para o setor 

produtivo. Outro indício da sustentabilidade do protocolo de cultivo seguido neste trabalho é a 

boa qualidade da água no tanque de cultivo, pois a sua composição química foi semelhante à da 

água de entrada e à do tanque de controle. Uma vez que a qualidade da água nos sistemas de 

cultivo semi-intensivo é frequentemente determinada pela qualidade dos sedimentos e da água de 

abastecimento, este trabalho experimental tinha também como propósito, estimar o contributo 

destas fontes de nutrientes para a disponibilidade de azoto e fósforo na água de um tanque de 

produção de sargo. O transporte sedimento-água de nutrientes, foi estimado de acordo com duas 

metodologias diferentes. Enquanto os fluxos difusivos foram calculados de acordo com a 1ª Lei 

de Fick, através dos gradientes de concentração entre a água intersticial e a água sobrenadante 

medidos no campo, os fluxos biológicos foram determinados em experiências de incubação, 

realizadas em laboratório. Os resultados mostraram que os fluxos difusivos de amónia e fosfato 

foram mais elevados no segundo ano do ciclo de produção, como consequência do 
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enriquecimento orgânico dos sedimentos do tanque de cultivo. A atividade da macrofauna 

bentónica contribuiu de forma substancial para o transporte sedimento-água de nutrientes, uma 

vez que os fluxos biológicos foram cerca de uma ordem de magnitude superior aos fluxos 

difusivos. Com base na informação disponível sobre as principais fontes e sumidouros de 

nutrientes num tanque de cultivo de peixes, foi feito um balanço de massas, para avaliar o 

contributo relativo dos sedimentos e da água de entrada para a disponibilidade de nutrientes 

dissolvidos na coluna de água. De acordo com os resultados deste balanço, os “inputs” diários de 

azoto de fósforo devido à água de entrada, foram notoriamente superiores aos dos sedimentos. 

Por outro lado, grande parte dos nutrientes dissolvidos é perdida através dos efluentes. Estes 

resultados evidenciam portanto a relevância da otimização das taxas de renovação de água e do 

tratamento dos sedimentos para uma eficiente gestão dos tanques. 

 

Após a recolha da informação relativa aos processos físicos, químicos e biológicos num tanque 

de cultivo de sargo, iniciou-se o desenvolvimento do modelo matemático. A construção do 

modelo foi feita em três etapas: i) desenvolvimento de um modelo biogeoquímico; ii) 

desenvolvimento de um modelo de crescimento dos peixes; e iii) acoplamento dos 2 modelos. O 

modelo biogeoquímico desenvolvido neste estudo foi capaz de reproduzir a dinâmica dos 

elementos com maior probabilidade de afetar a produção piscícola e de causar impactes 

ambientais indesejáveis no meio recetor, como é o caso do azoto, do fósforo e do oxigénio. Uma 

das particularidades deste modelo, relativamente aos modelos existentes para tanques de terra, é 

a sua capacidade de simular não só as concentrações das formas inorgânicas de nutrientes, mas 

também as formas orgânicas, as quais têm sido referidas como de extrema relevância para a 

dinâmica dos nutrientes em ecossistemas aquáticos. Neste modelo, o compartimento pelágico foi 

acoplado ao compartimento bentónico, devido à importância das trocas entre o sedimento e a 

coluna de água em tanques de piscicultura pouco profundos (1.5 m). O modelo biogeoquímico 

foi calibrado usando as séries de dados recolhidas no tanque controle durante o ensaio 
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experimental em tanques de terra, uma vez que nesta fase do trabalho não foram contempladas as 

interações entre os peixes e o ambiente. Esta estratégia permitiu reduzir a complexidade do 

modelo e assim identificar mais facilmente as interações entre as diferentes variáveis e processos 

na coluna de água e no sedimento, de modo a facilitar a calibração do modelo acoplado. A 

variabilidade dos compostos na coluna de água e na água intersticial deste tanque foi 

razoavelmente bem prevista pelo modelo. Nos sedimentos, os compostos orgânicos de fósforo 

foram simulados com grande exatidão, mas os conteúdos em carbono e azoto orgânicos foram 

mais imprecisos. A análise de sensibilidade realizada ao modelo permitiu compreender as 

interações entre as diferentes variáveis e os processos de um tanque de terra. Por exemplo, as 

formas inorgânicas de azoto e fósforo na água intersticial, foram particularmente sensíveis aos 

parâmetros do modelo relacionados com os processos aeróbios, o que explica a inter-

variabilidade entre estes compostos e o oxigénio dissolvido na água intersticial. Os efeitos das 

características estruturais dos tanques e de alguns parâmetros operacionais (como por exemplo, a 

taxa de renovação da água), ao nível da qualidade da água e do sedimento, foram também 

testados no modelo, tendo-se recolhido informação importante para o dimensionamento de novas 

unidades de piscicultura e para a gestão das que estão em actividade. Para além de constituir uma 

base de conhecimento da biogeoquímica de tanques de terra, o presente trabalho permitiu 

identificar os processos que necessitam de um estudo mais aprofundado, como é o caso da 

ressuspensão do sedimento, da produtividade primária e da bioturbação, de forma a melhorar o 

desempenho do modelo e a assegurar a sua aplicação a outros sistemas aquáticos.  

 

Um modelo biológico capaz de reproduzir o crescimento das espécies cultivadas constitui uma 

ferramenta útil para a gestão de tanques de piscicultura, uma vez que permite estudar a influência 

das condições de cultivo e de diversos parâmetros ambientais e fisiológicos, na produção 

piscícola. Neste trabalho foi desenvolvido um modelo de crescimento de peixes baseado na 

teoria DEB (“Dynamic Energy Budget”), por esta assentar em princípios fisiológicos comuns a 
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todas as espécies e pelo facto da diversidade inter-específica ser traduzida através de um número 

relativamente reduzido de parâmetros, o que facilita a aplicação do modelo a outros sistemas de 

monocultivo, mas também a sistemas de policultivo. Outra das vantagens deste modelo de 

crescimento, reside no facto de este puder ser facilmente calibrado, o que é particularmente 

relevante quando existe pouca informação para estimar os parâmetros da espécie em estudo. 

Correndo o modelo para uma população de n peixes, cada um com um conjunto específico de 

parâmetros atribuído aleatoriamente, é possível selecionar o conjunto de parâmetros que permite 

o melhor ajuste entre os valores de peso e comprimento previstos e observados, e depois correr o 

modelo para simular um peixe médio. Esta estratégia de modelação foi adotada por a fisiologia 

do sargo estar relativamente pouco estudada, e por isso existirem algumas incertezas 

relativamente aos parâmetros desta espécie. Neste trabalho, para além do crescimento do sargo, o 

modelo foi utilizado para simular o crescimento da dourada (Sparus aurata), uma espécie 

tradicionalmente cultivada nos países mediterrânicos. Uma vez que o modelo conseguiu simular 

bastante bem o crescimento destas duas espécies de Sparídeos, foi possível averiguar quais os 

processos biológicos mais prováveis de afetar o crescimento piscícola. De acordo com os 

resultados do modelo, o crescimento é sobretudo determinado pela ingestão e pela eficiência de 

absorção do alimento, bem como pela fração de energia alocada para o metabolismo e para o 

crescimento do indivíduo. Uma vez que o sargo tem sido referido como uma espécie de 

crescimento lento comparativamente à dourada, o modelo foi utilizado para investigar as 

diferenças entre o crescimento destas duas espécies. A comparação entre os parâmetros 

específicos de cada espécie, revelou que o crescimento mais lento do sargo resulta de um maior 

gasto energético no metabolismo basal e de uma menor eficiência na absorção do alimento. De 

facto, um incremento de apenas 12% na eficiência de absorção do alimento resultou num 

aumento de cerca de 120g no peso do peixe no final do ciclo de produção, o que poderá ser 

suficiente para garantir a viabilidade do cultivo de sargo em sistemas semi-intensivos. 

Considerando que esta espécie omnívora, é presentemente alimentada com uma ração otimizada 
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para a dourada, uma espécie tipicamente carnívora, os resultados do modelo sugerem que o 

desenvolvimento de rações específicas para o sargo pode contribuir para uma maximização da 

produção.   

  

Após calibração do modelo biogeoquímico e do modelo biológico, estes foram acoplados. O 

acoplamento consistiu basicamente em utilizar os “outputs” do modelo biológico como “inputs” 

para o modelo biogeoquímico e vice-versa. No geral, o modelo acoplado conseguiu reproduzir a 

variabilidade dos compostos na coluna de água e nos sedimentos de um tanque de piscicultura, 

assim como o crescimento do sargo ao longo de um ciclo de produção. O balanço de massas 

construído com base nos resultados do modelo permitiu avaliar a eficiência da alimentação dos 

peixes. De acordo com os resultados deste balanço, mais de metade do alimento fornecido não é 

ingerido pelos peixes, o que justifica a baixa taxa de conversão alimentar (3.7) obtida para esta 

espécie. Este tipo de balanços permite também quantificar as fontes e sumidouros de nutrientes 

dissolvidos e sob a forma particulada, podendo ser utilizado para definir formas práticas de 

melhorar a qualidade da água e dos sedimentos dos tanques de cultivo, ao longo do ciclo 

produtivo. Devido à capacidade do modelo de reproduzir a dinâmica dos tanques de piscicultura, 

este foi utilizado para testar diferentes cenários de gestão: i) aumento da densidade de carga; ii) 

aumento/diminuição das taxas de renovação da água; iii) aumento/diminuição da quantidade de 

ração fornecida; iv) diminuição do conteúdo em fósforo da ração; v) aumento da eficiência de 

absorção do alimento vi) diminuição da velocidade de decaimento da ração. Os diferentes 

cenários e a simulação padrão foram comparados relativamente aos seus efeitos na qualidade da 

água e do sedimento no tanque de cultivo, na produção final de peixe e nas descargas de 

nutrientes para o meio recetor. Utilizando o método de Avaliação Multicritério (AHP – 

“Analytical Hierarchical Process”), foi atribuída uma pontuação a cada cenário por forma a 

identificar as medidas de gestão que permitem otimizar o cultivo de sargo. Os resultados no 

presente estudo revelaram que a duplicação da densidade piscícola e um aumento na eficiência 
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de absorção do alimento poderão melhorar o desempenho dos sistemas semi-intensivos de 

produção de sargo e assegurar a viabilidade do cultivo desta espécie. Para além do modelo 

constituir uma importante ferramenta de gestão para tanques de aquacultura, este trabalho 

contém ainda informação relevante para a definição de parâmetros de qualidade ambiental (como 

por exemplo, Valores Máximos Recomendados) para a piscicultura marinha realizada em 

tanques de terra. 

 

Palavras-Chave: Modelo biogeoquímico; Modelo de crescimento de peixes; Gestão de tanques 

de piscicultura; Aquacultura semi-intensiva; Sustentabilidade económica e ambiental; Diplodus 

sargus.  
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1 Aquaculture 

 
1.1 Basic concepts 

A simple definition for aquaculture is “the farming of aquatic species, either plants or animals, in 

all types of water environments (fresh, brackish and marine environments), including natural or 

manmade systems” (Pillay and Kutty 2005; FAO 2010; NOAA 2010). According to the degree 

of artificiality, aquaculture systems are commonly referred as extensive, semi-intensive and 

intensive systems (Funge-Smith and Philips 2001). As the different levels of intensification 

represent a continuum, no specific definition can be given for each system (Funge-Smith and 

Philips 2001). Extensive systems deeply resemble natural systems, whereas intensive systems are 

highly artificial (Funge-Smith and Philips 2001). Aquaculture units may also cultivate one or 

more species, being classified respectively as, monoculture or polyculture systems. More 

recently, traditional polyculture systems have evolved into integrated systems, which may be 

differentiated into integrated multi-trophic aquaculture systems (IMTA), also known as 

‘partioned aquaculture’ or ‘aquaponics’, that combine species from different trophic levels 

(Krom et al. 1995; Buschmann et al. 1996; Brummet 1999; Alongi et al. 2000; Choo 2001; 

Funge-Smith and Philips 2001; Neori et al. 2004; Primavera 2006; Abreu et al. 2009; Troell et al. 

2009; Bosma and Verdegem 2011), and into systems combining aquaculture with other 

productive activity, such as agriculture or livestock (Funge-Smith and Philips 2001; Jamu and 

Piedrahita 2001; Neori et al. 2004; World Bank 2006; Bosma and Verdegem 2011). 

  

1.2 Global Production 

As a consequence of the continuous decrease in marine biodiversity, caused by anthropogenic 

activities such as environmental pollution, habitat destruction, fishing, and by global climate 

change (Lotze et al. 2006; Halpern et al. 2008; FAO 2010; Merino et al. 2010), a collapse of 
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currently fished taxa is expected to happen by 2048 (Worm et al. 2006), if trends are not 

reversed. In this context of declining marine resources, aquaculture can have a major role in 

providing alternative protein sources to meet the increasing worldwide demand for seafood and 

to ease fishing pressure on marine stocks (FAO 2010; Bosma and Verdegem 2011; Grigorakis 

and Rigos 2011).  

 

According to FAO estimates (FAO 2011a), aquaculture and capture fisheries supplied the world 

with 144 million tonnes of animal products, in 2009 (Figure 1.1), from which 118 million tonnes 

(82%) were used for human consumption (Figure 1.1). Assuming that most of aquaculture 

production (55 million tonnes in 2009) is directly used as human food, one may estimate that 

aquaculture provides almost half (47%) of the aquatic animal products that are eaten today. If 

trends from the last decade are maintained, i.e. aquaculture growing at ≈6% per year and 

fisheries decreasing ≈1% per year (Figure 1.1), the former industry will overcome fisheries 

production in a decade. The majority of cultivated animal species belong to the lower end of the 

food chain, e.g. shellfish, herbivorous and omnivorous fish (Figure 1.2). However, production of 

species higher in the food chain, such as shrimp, salmon, and marine finfish, is now growing 

(Figure 1.2) in response to the increasing market demand in developed countries (FAO 2007, 

2010). Although animal species dominate aquaculture production (76%), aquatic plants have an 

important contribution (24%) to the global industry (Figure 1.2). 

 

The commercialisation of seafood products, is estimated to have yielded 105.3 thousands of 

millions of US$, in 2009, and an additional 4.8 thousands of millions of US$ were generated 

from aquatic plants trade (FAO 2011a). Nevertheless, the revenues from the entire sector are 

expected to be significantly higher, because the value of aquaculture hatchery and nursery 
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TROPHIC LEVEL

Million tonnes %

Carnivorous

Omnivorous/herbivorous

Filter-feeders

Aquatic plants

(fish and crustacean)

(molluscs)

(photosynthetic)
24.1

19.1

46.6

10.2

17.3

13.7

33.5

7.4

production and that of the breeding of ornamental is not usually included in the estimations 

(FAO 2010). 

Figure 1.1 – Total aquaculture (except aquatic plants) and capture fisheries production versus 

human consumption, from 2000 to 2009. Source: FAO (2011a). 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 – Global aquaculture production by trophic level, in 2009 (Adapted from Primavera 

(2006)). 
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1.3 Environmental impacts  

Although responsible aquaculture can provide significant socio-economic benefits, such as: 

development of the economies of low profit-food deficit countries, increase of rural 

development, alleviation of poverty and hunger, and promotion of gender opportunities (Black 

2001; World Bank 2006; FAO 2010), uncontrolled and irresponsible aquaculture operations can 

cause a wide range of negative impacts. Some of these impacts are related to: i) organic and 

nutrient pollution (Wu 1995; Kelly et al. 1996; Deb 1998; Naylor et al. 2000; Tovar et al. 2000a, 

b; Pearson and Black 2001; Páez-Osuna 2001a, b; Read and Fernandes 2003; Gyllenhammar and 

Håkanson 2005; Bosma and Verdegem 2011; Grigorakis and Rigos 2011); ii) chemical 

contamination (Choo 2001; Read and Fernandes 2003; Islam et al. 2004; Grigorakis and Rigos 

2011); iii) spread of parasites and diseases (Naylor et al. 2000; Nash 2005); iv) habitat 

destruction and modification (Wu 1995; Deb 1998; Naylor et al. 2000; Black 2001; Páez-Osuna 

2001b; Ruiz et al. 2001; Pérez et al. 2008); v) introduction of exotic species and new genetic 

varieties (Black 2001; Naylor et al. 2005; Grigorakis and Rigos 2011) and vi) depletion of wild 

stocks as feeds or seed to aquaculture operations (Deb 1998; Choo 2001; Kaiser 2001; Páez-

Osuna 2001b; Grigorakis and Rigos 2011). Aside from damages to aquatic environments, social 

conflicts and economic breakdowns may also occur when the ecosystem functioning is radically 

altered and the resources that support other human activities are affected (Boyd and Clay 1998; 

FAO 2007; Allsopp et al. 2008; Grigorakis and Rigos 2011).  

 

1.4 Semi-intensive pond aquaculture 

 

1.4.1 Advantages and disadvantages 

Aquaculture is carried out in a wide variety of systems, and ponds are the most common 

production systems on a worldwide basis (Culberson and Piedrahita 1996). Due to their 
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manageability in terms of waste, nutrient recycling and feed conversion, land-based aquaculture 

systems are more promising for the sustainability of marine aquaculture than open-water systems 

(Neori et al. 2004). Semi-intensive pond systems traditionally used in Mediterranean countries, 

have been particularly recognized as an environmentally-friendly option (Boyd and Tucker 1998; 

SEACASE 2009). The lower degree of artificiality (i.e. lower stocking densities, water use and 

feed inputs) of these systems comparatively to intensive systems, substantially reduces their 

ecological footprint (Troell 1997; Boyd and Tucker 1998; Kautsky et al. 2000; Banas et al. 2008; 

Bosma and Verdegem 2011), i.e. the quantity of environmental goods and services consumed 

(e.g. food, space, water) in the generation of goods and processing of associated wastes (e.g. 

feces, ammonia excretion) (Rees and Wackernagel 1994). Aside from ecological benefits, semi-

intensive aquaculture systems promote the development of rural and coastal areas and create 

employment opportunities (WorldBank 2006; FAO 2007; SEACASE 2009; Bosma and 

Verdegem 2011; Grigorakis and Rigos 2011). 

 

Despite its environmental and socio-economical advantages, semi-intensive fish farms are 

usually characterized by a low profitability, as a consequence of high production costs (high 

labour and land costs) and low productivity (SEACASE 2009; Bosma and Verdegem 2011). A 

low profitability associated with the increasing market competition with low-price products from 

intensive aquaculture, strongly limits the economic viability of this activity (SEACASE 2009). 

Thus, to make this environmentally-friendly aquaculture more competitive it is necessary to 

increase revenues.  

 

1.4.2 Economical and environmental sustainability 

One of the strategies that have been proposed to increase the competitiveness of semi-intensive 

aquaculture is the association of its products with certification or ecolabelling schemes that trace 
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the origin, quality, safety, and the environmental conditions prevailing during the production 

cycle (Boyd 2003; SEACASE 2009; Allsopp et al. 2008; FAO 2010; Bosma and Verdegem 

2011). The increasing consumer awareness on animal health/welfare and 

environmental/biodiversity protection (FAO 2007; Verbeke et al. 2007; Allsopp et al. 2008; 

Bosma and Verdegem 2011), will most likely increase the demand for semi-intensive 

aquaculture products (SEACASE 2009; Bosma and Verdegem 2011), and the sector would 

largely benefit from certification.  

 

Other strategy that can increase both the profitability and competitiveness of semi-intensive fish 

farms is species diversification (SEACASE 2009). Autochthones species with high market value 

and high flesh quality, like the sole (Solea senegalensis), the sharpsnout seabream (Diplodus 

puntazzo) and the white seabream (Diplodus sargus), are already being tested to be cultivated in 

Mediterranean semi-intensive earth pond systems (Sá et al. 2006, 2007; SEACASE 2009; 

Ferreira et al. 2010; Grigorakis and Rigos 2011), since the traditionally-cultivated species, e.g. 

gilthead seabream (Sparus aurata) and seabass (Dicentrarchus labrax), can no longer compete 

with prices of intensive aquaculture products (SEACASE 2009; Barazi-Yeroulanos 2010).  

 

Some authors have also suggested an increase in stocking densities as a way to increase the 

productivity of semi-intensive fish farms (SEACASE 2009), however higher biomasses often 

lead to a deterioration of the pond environment (Lin and Yi 2003; Viadero Jr. 2005) and an 

increase in waste emissions (Bergheim and Brinker 2003; Lin and Yi 2003; Viadero Jr. 2005). 

To make this a viable option, it must be ensured that the assimilative capacity of the fishpond 

(Boyd 2003) as well as of the receiving environment, are not exceeded (Wu 1995; Naylor et al. 

2000; Gyllenhammar and Håkanson 2005; Gatlin et al. 2007). In fact, for semi-intensive fish 

farming to be sustainable there should be an improvement in its environmental efficiency as well 
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as on the economic efficiency (Boyd 2003; SEACASE 2009; Chávez-Crooker and Obreque-

Contreras 2010).  

 

As one of the major environmental constraints of semi-intensive fish farming is related to 

organic and nutrient loadings to coastal waters (Boyd and Tucker 1998; Boyd 2003; Jegatheesan 

et al. 2007), mainly resulting from feed waste products; the sustainability of these systems, as for 

aquaculture in general, strongly depends on feed management (Black 2001; Choo 2001; World 

Bank 2006; Bosma and Verdegem 2011; Grigorakis and Rigos 2011). Optimization of feeding 

rates (i.e. the amount of daily feed supplied as a function of fish biomass) is essential to avoid 

situations of over or under-feeding that may compromise the viability of farming units, and to 

reduce effluent discharges (Boyd 2003). Improvements in feed pellet technology, namely the 

development of species-specific feeds and the increase in pellet stability or reduction of its 

sinking rates, may improve feed conversion rates (FCRs) for cultivated species (i.e. the amount, 

in kg, of fish biomass produced per kg of feed supplied), by maximizing the amount of feed 

ingested and minimising organic/nutrient loadings (Choo 2001; World Bank 2006). Another 

feed-related environmentally friendly option is the replacement of fish meal and oils of 

formulated feeds by vegetable protein sources such as soybean, corn meal and rice bran (Black 

2001; Kaushik et al. 2004; World Bank 2006; Allsopp et al. 2008; Dias 2009; FAO 2010). For 

some herbivorous and omnivorous fish it has been possible to completely replace animal protein 

by vegetable one without impacts on fish growth and yields (Tacon et al. 2006). However, for 

carnivorous species, ecofeeds are still to be perfect according to fish requirements (Tacon et al. 

2006; Drakeford and Pascoe 2008; Dias et al. 2009; FAO 2010). Aside from reducing 

aquaculture dependence on fisheries resources (Black 2001; Kaushik et al. 2004; World Bank 

2006), ecofeeds of vegetable-origin may reduce nutrient loadings (Ferreira et al. 2010), 

contributing for the minimization of the ecological footprint of semi-intensive fish farming. 
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Nevertheless, in order for this type of ecofeeds to be viable they have to be produced through 

sustainable agriculture (Allsopp et al. 2008; FAO 2010). 

 

Biological methods, such as polyculture (SEACASE 2009; Bosma and Verdegem 2011) or 

integrated multi-trophic aquaculture (IMTA) systems (Neori et al. 2004; Primavera 2006; World 

Bank 2006; FAO 2007; Chávez-Crooker and Obreque-Contreras 2010; Nobre et al. 2010), may 

also be a sustainable option for reducing the environmental impacts of semi-intensive fish 

farming while increasing its economic efficiency (Brummet 1999; Whitmarsh et al. 2006; 

Allsopp et al. 2008; Bunting and Shpigel 2009; Troell et al. 2009; Nobre et al. 2010). IMTA 

systems are particularly environmentally benign because organic waste products from fed fish 

are recycled by the extractive species cultivated in the same units. Seaweed and shellfish based-

integrated systems are particularly promising due to the high market demand for these products 

(Neori et al. 2000; Neori et al. 2004; Zhou et al. 2006; Abreu et al. 2009).   

 

In semi-intensive fishponds, sustainability is also dependent on an efficient water management. 

If, by on one hand, water exchange rates define pond water quality, which is crucial for fish 

welfare and growth, on the other it determines the amount of effluents discharged into the 

environment (Hopkins et al. 1993; Brambilla et al. 2007; d’Orbcastel et al. 2008). The reduction 

of water exchange rates is often referred as a best management practice (BMP) for semi-

intensive farms, because it minimizes the risk for sudden changes in water quality parameters 

and minimizes the adverse effects of effluents discharge (Páez-Osuna 2001a, b; Boyd 2003; 

Primavera 2006). However, the quality of pond and outlet waters depends on the quality of inlet 

water (Bosma and Verdegem 2011). For instance, for aquaculture units located on coastal 

eutrophic systems, water exchange can increase the risk for eutrophication within fishponds 
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(Boyd and Tucker 1998; Deb 1998; Páez Osuna 2001b; Boyd 2003). On the other hand, in 

oligotrophic systems, this risk decreases due to the lower nutrient concentrations in source water 

(Maldonado et al. 2005). In fact, in the latter systems, water exchange may be an effective 

strategy for reducing the concentrations of potentially toxic compounds like ammonia and 

nitrites, allowing substantially higher stocking densities (Burford and Lorenzen 2004). 

 

 
2 Physical, chemical and biological processes in fishponds 

The ecology of semi-intensive fishponds consists of a variety of interdependent physical, 

chemical and biological processes (Boyd and Tucker 1998). The knowledge of these processes is 

of outmost importance for defining farming strategies (protocols, monitoring systems and 

techniques) that optimize fish production, i.e. maximize production while minimizing 

environmental impacts (Boyd and Tucker 1998; Hargreaves 1998; Hargreaves and Tucker 2003). 

Although processes occurring in semi-intensive fishponds are similar to other aquatic marine 

systems (Boyd and Tucker 1998; Hargreaves 1998; Alongi et al. 1999; Burford et al. 2003; Boyd 

et al. 2006; Nhan et al. 2006; Serpa et al. 2007a, b; Rodriguez-Gallego et al. 2008), the 

shallowness of fishponds and the high inputs of allochtonous material, induce changes in natural 

processes (Culberson and Piedrahita 1996; Rise and Roos 1997; Boyd and Tucker 1998; 

Hargreaves 1998; Jamu and Piedrahita 2001; Mischke and Zimba 2004; Torres-Beristain et al. 

2006; Serpa et al. 2007b; Yokoyama et al. 2009; Bosma and Verdegem 2011; Joyni et al. 2011). 

The spatial and temporal variability of the physical, chemical and biological processes occurring 

in fishponds strongly depends on i) farming conditions, such as stocking densities (Rowland et 

al. 1995; Tovar et al. 2000a; Ingram 2008; van de Nieuwegiessen et al. 2009) and feeding 

practices (Tovar et al. 2000a; Paspatis et al. 2000; Başçınar et al. 2007; Booth et al. 2008; 

Piedcausa et al. 2010; Bosma and Verdegem 2011), ii) cultivated species biology and feeding 
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behaviour (Chakrabarty and Das 2007; Piedcausa et al. 2010; Bosma and Verdegem 2011) and; 

iii) site-specific environmental parameters, e.g. climate and sediment characteristics (Culberson 

and Piedrahita 1996; Hargreaves 1998; Serpa et al. 2007b; Bosma and Verdegem 2011). 

Therefore, the investigation of fishpond dynamics in a specific aquaculture system is crucial for 

the optimization of semi-intensive fish farming (Bosma and Verdegem 2011).  

 
3 Ecological modelling  

Even though an adaptive approach, i.e. the monitoring of variables and processes over time, 

should be followed to avoid the deterioration of pond environment and to minimize the impacts 

of effluent discharges on receiving waters (Crawford 2003; Gibbs 2009), a modelling approach 

has been widely used in pond management (Piedrahita et al., 1984; Culberson and Piedrahita 

1996; Montoya et al. 2000; Lefebvre et al. 2001; Li and Yakupitiyage 2003; Jiménez-

Montealegre et al. 2002a; Burford and Lorenzen 2004), since models are able to integrate the 

dynamics of physical, chemical and biological processes occurring in these systems (Piedrahita 

et al. 1984; Silvert and Cromey 2001). By being able to predict pond dynamics, models have 

been used for designing or improving monitoring strategies (Crawford 2003) as well as to 

simulate the effect of different management scenarios (e.g. stocking densities, water exchange 

and feeding rates) on the pond environment and on coastal systems (Piedrahita 1991; Burford 

and Lorenzen 2004). An ecological model is also a valuable tool for preventing episodic events 

of fish mortality by improving our understanding of the complex feedbacks between cultivated 

species and environmental variables, such as temperature (Via et al. 1998; Das et al. 2005; Del 

Toro-Silva et al. 2008; Dalvi et al. 2009), ammonia concentrations (Biswas et al. 2006; Remen et 

al. 2008) and oxygen availability (Del Toro-Silva et al. 2008; Remen et al. 2008; Bosma and 

Verdegem 2011). Moreover, models can be used to predict the impact of fish farming in the 
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surrounding environment (Silvert and Cromey 2001; Rodriguez-Gallego et al. 2008; Piedcausa et 

al. 2010; Tsagaraki et al. 2010).  

 

Despite its numerous advantages, models have limitations (Gibbs 2009) that restrict their ability 

to reproduce the overall variability of real systems. For this reason, even in the presence of 

validated models for fishpond systems an adaptive approach should be followed (Gibbs 2009). 

The confrontation of model results and observations allows model improvements over time, as 

more knowledge is accumulated about the ecosystem under study (Serpa and Duarte 2008). In 

addition, uncertainties associated with model parameters and results may help define sampling 

strategies and experiments to fill the gaps (Serpa and Duarte 2008). 

 

Ecological models developed for fishpond systems may include different components, like 

transport, thermodynamic, biogeochemical and biological sub-models. Transport sub-models are 

used for simulating the interactions between pond hydrodynamics and sediment 

transport/resuspension (Peterson et al. 2000), whereas thermodynamic sub-models are used for 

temperature calculations (Culberson and Piedrahita 1996; Lamoreaux et al. 2005). The 

biogeochemical sub-model reproduces the cycles of elements that are most likely to affect 

biological activity, such as nitrogen (Kochba et al. 1994; Hargreaves 1997; Lefebvre et al. 2001; 

Jiménez-Montealegre et al. 2002a; Burford and Lorenzen 2004), phosphorus (Montoya et al. 

2000; Lefebvre et al. 2001) and oxygen (Meyer and Brune 1982; Culberson and Piedrahita 

1996), and often include a pelagic and a benthic compartment to reproduce water-sediment 

interactions. The biological sub-model simulates the growth (Cuenco et al. 1985a; Yi 1998; 

Hernández et al. 2003; Zhou et al. 2005; Libralato and Solidoro 2008; Moss et al. 2009; 

Pecquerie et al. 2011), as well as the production and biological interactions between individuals 

(Cuenco et al. 1985b, c) or cultivated species (Gazi et al. 2009). This module also predicts the 
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effects of environmental (e.g. temperature), physiological (e.g. assimilation and excretion rates) 

and husbandry factors (e.g. stocking rates, feeding rates) on fish performance (Cuenco et al. 

1985b, c), allowing fish farmers to adjust management strategies that maximize the growth rates 

of cultivated fish (Alunno-Bruscia et al. 2009; van der Veer et al. 2009). Biological sub-models 

are usually coupled to a biogeochemical sub-model to reproduce the feedbacks between 

cultivated species and the environment (Piedrahita et al. 1984; Jiménez-Montealegre et al. 

2002a; Li and Yakupitiyage 2003; Piedcausa et al. 2010). 

 

So far, fishpond models have been specifically used for researching nitrogen (Kochba et al. 

1994; Hargreaves 1997; Jiménez-Montealegre et al. 2002a; Burford and Lorenzen 2004) 

phosphorus (Montoya et al. 2000) or oxygen dynamics (Meyer and Brune 1982; Culberson and 

Piedrahita 1996), while less effort has been made to develop more complete predictive models of 

pond dynamics (Piedrahita et al. 1984; Lefebvre et al. 2001; Li and Yakupitiyage 2003; 

Mukherjee et al. 2008). 

 

4 Thesis aims and structure 

The low profitability and competitiveness of semi-intensive fishpond aquaculture in Mediterranean 

countries strongly compromises the economic viability of production systems. The key for the 

sustainability of these systems seems to rely on the development of new methodologies and 

approaches that improve their economic as well as environmental efficiency. The challenge is to 

find the best solutions for each system, because there are many variables involved. For example, as 

these systems strongly rely on natural resources, the quality of source water or the assimilative 

capacity of receiving waters may prevent the application of a specific approach to one fish farm but 

not to another. 
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One of the main objectives of the present work was to study the physical, chemical and biological 

processes in semi-intensive fishponds, in order to understand the functioning of these systems. The 

other main objective was to develop an ecological model to be used as a tool for managing semi-

intensive systems, to improve their economic and environmental performance. In order to 

accomplish the main objectives of this work, specific objectives were defined: 

i) Monitoring water quality, sediment quality and species growth over a production cycle in 

semi-intensive ponds. 

ii)  Develop a comprehensive model to reproduce the biogeochemical cycles that are more 

likely to affect biological activity and cause negative environmental impacts, namely those 

of nitrogen, phosphorus and oxygen. 

iii)   Develop a biological model to simulate the growth of finfish in a dynamic environment, 

using the Dynamic Energy Budget (DEB) Theory.  

iv)  Couple the previous models to reproduce the interactions between cultivated species and 

the environment.  

The fish species used both as an object of study and as a case study to implement and test the above 

mentioned model, was the white seabream (Diplodus sargus) - a new species in semi-intensive 

Mediterranean aquaculture (Cejas et al. 2004; Sá et al. 2006, 2007). As there was no other available 

information regarding the production of this species in earth ponds, the results obtained in the 

experimental work designed to study fishpond processes, together with literature data were used to 

implement the above mentioned models. After model calibration/validation, different management 

scenarios (e.g. stocking densities, water exchange rates, feeding rates) were tested for their effects 

on the pond environment, final fish production and nutrient discharges, in order to define the best 

management options for optimizing white seabream production in semi-intensive systems, i.e. to 

maximize production while minimizing environmental impacts. 
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This thesis is composed by 7 Chapters, which correspond to papers that have been published in 

peer-reviewed journals, or that are either submitted or in preparation. The content of each 

chapter is briefly described in the next paragraphs: 

 

Chapter 1 – General Introduction  

 

Chapter 2 – Impacts of Aquaculture and Mitigation Measures 

In this chapter, an extensive review on the environmental impacts of aquaculture and on possible 

mitigation measures, approaches and tools to reduce or anticipate these impacts was carried out 

for a global perspective on how to manage aquaculture towards sustainability. 

 

Chapter 3 – Physical, chemical and biological processes in semi-intensive fishponds  

As adaptive approaches as well as modelling approaches are required for an efficient pond 

management, particularly when a new species is being cultivated, a case study was developed to 

study the physical, chemical and biological processes over a white seabream production cycle. 

The first part of this chapter deals with the effects of fish farming on bottom sediments, whereas 

processes affecting pond water are addressed in its second part. Data collected over this 

experimental work were used for model parameterization and calibration. 

 

Chapter 4 – Modelling biogeochemical processes in semi-intensive fish earth ponds: model 

development and calibration  

This chapter describes the development of a biogeochemical model – one of the specific 

objectives of the present thesis – integrating physical, chemical and biological processes in earth 

pond systems. This model was first implemented for a pond without fish and later coupled with 

the fish growth model (Chapters 5 and 6).  
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Chapter 5 – Modelling the growth of white seabream (Diplodus sargus) and gilthead seabream 

(Sparus aurata) in semi-intensive earth ponds using the Dynamic Energy Budget approach 

In this chapter, a Dynamic Energy Budget (DEB) growth model was implemented for two 

species: the newly cultivated white seabream; and a traditionally cultivated species - the gilthead 

seabream. The model was used to investigate which factors (environmental, physiological or 

husbandry factors) are more likely to affect fish growth performance, and to explain the growth 

differences between these two species, towards a better understanding of the factors that should 

be manipulated to improve white seabream growth in culture, since low growth rates have been 

reported for this species (Cejas et al. 2004; Sá et al. 2006). 

 

Chapter 6 – Mathematical modelling as a tool for managing semi-intensive production systems 

This chapter describes the coupling of the biogeochemical and fish growth models developed in 

Chapters 4 and 5, respectively. Different management scenarios were tested with this model and 

then scored using the Analytic Hierarchical Process (AHP) methodology, to evaluate the best 

management options for white seabream production in semi-intensive systems.  

 

Chapter 7 – General Conclusions and Future Perspectives  

The major results and conclusions from the previous chapters are synthesized in this chapter. 

Ideas for future improvements and applications of the model developed in this thesis are 

presented.
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Abstract 

The role of aquaculture in world food production is increasing very fast, contributing with more 

than 40% for the total production of aquatic organisms. The general approach in modern 

aquaculture resembles much that of industrial agriculture and husbandry, with large energy 

subsidies and the usage of many chemicals in, predominantly, monoculture systems, with a large 

ecological footprint. Despite the large body of regulation available worldwide, there are 

important ecologic, economic and social impacts in many countries as a result of aquaculture. In 

some cases, the anticipation of these impacts by local populations represents a negative feedback 

for aquaculture development. In the present work, a review of those impacts is presented, 

followed by a discussion of the carrying capacity concept, then by presenting some approaches 

and methods that may help planning aquaculture developments including the Drives Pressures 

States Impacts Responses framework, modelling and Decision Support Systems. The analysis of 

a large number of works suggests that aquaculture management should be participated by local 

stakeholders and viewed within the context of other management approaches, such as Integrated 

Coastal Zone Management. This may allow for a better ecosystemic integration of aquaculture 

with other activities in line with Ecological Engineering concepts. Likely, there should be more 

investment in low-trophic level species to reduce aquaculture ecological footprint. 

 

1 Introduction 

The contribution of aquaculture to global production of aquatic organisms increased from ca. 

32%, in 2000, to 42%, in 2006, according to the FAO Fishery Statistical Collections (FAO 

2008). Following the same source, total aquaculture production increased over 18 times for the 

period 1997–2006, from 3,584,160 to 66,728,941 tonnes. Considering the mentioned growth and 

that intensive aquaculture developed over the last years (Muir 2005), it is expected that its 

environmental impacts have also increased. These impacts as well as the sustainability of 
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aquaculture were discussed in previous works (e.g. GESAMP 2001; SECRU 2002; Read and 

Fernandes 2003; GESAMP 2008). However, there are still several issues to clarify about how to 

guarantee aquaculture sustainability, giving the vagueness of the concept and the lack of a 

general paradigm to handle this problem that, together with social awareness, creates some 

negative-feedbacks to aquaculture development in regions where perceived costs outweigh the 

perceived benefits by local stakeholders (Gibbs 2009). Therefore, the main purpose of this work 

is to synthesize information and concepts that may be useful in defining a paradigm towards 

aquaculture sustainability.  

 

This work is structured as follows: Much of what is known about environmental impacts of 

aquaculture is synthesised in section 2. In the following section, the carrying capacity concept 

and its application to aquaculture are discussed, together with methods for its quantification. In a 

section about aquaculture and environmental management, some approaches and tools that may 

help to manage aquaculture towards sustainability are presented. Finally, some general 

conclusions are attempted. 

 

Aquaculture industry seems to be following the same steps as agriculture: from traditional 

polyculture systems with low energy subsidies, to intensive monocultures with high energy 

inputs and biotechnological innovation. These high energy inputs are in the form of trophic 

energy, such as sun light and fish food, and auxiliary energy, such as renewable and non-

renewable energy sources, to maintain production operations. In many countries, there is a strong 

investment in the production of carnivore species that comprise more than 30% of world 

aquaculture production in monetary terms (Primavera 2006), implying a relatively small 

efficiency in the conversion of primary production, though several steps of the food web, and a 
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large ecological footprint. Furthermore, high intensive aquaculture systems require more 

pharmaceuticals and other chemicals to protect organisms from disease.  

 

Perhaps one of the main problems in aquaculture, as well as in other human activities, is the 

apparent difficulty of people to think holistically, especially in industrialized societies, where 

compartmentalization is frequently equated with efficiency. Due to this limitation, local 

developments are planned without much consideration about integration with other activities, 

leading to the production of wastes that may represent an environmental problem when, if 

otherwise planned, could serve as raw materials for another activity. If some sort of integrated 

management is applied, such as Integrated Coastal Zone Management, with considerations about 

the spatial distribution of different activities, to guarantee proper access to resources by all 

stakeholders but, without consideration of material and energy fluxes related to different 

activities, there may still be sustainability problems. Therefore, traditional Chinese aquaculture-

agriculture-husbandry-waste treatment systems may serve as a good example of empirical yet, 

holistic approaches, to be incorporated in modern developments but in tight interaction with 

scientific methods, well in line with the principles of Ecological Engineering (e.g. Yan and Ma, 

1991; Mitsch 1997). 

 

Aquaculture may be important to alleviate poverty by generating food, employment and wealth 

if a more equitable distribution of its benefits is assumed. Its environmental impacts should be 

assessed at a larger scale than the farm scale, due to the cumulative effects of several farm 

operations in the same area and their combination with other human activities (GESAMP 2001). 

However, if aquaculture development is planned in isolation from other activities, if it implies 

changes in resource ownership, preventing local people from having access to resources, and it 
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leads to concentration of wealth in a few people, its environment, economic and social effects are 

unsustainable.  

 

2 Aquaculture Environmental Impacts 

Aquaculture units can generate considerable amounts of wastes/effluents containing a variety of 

substances such as, particulate material (mainly resulting from uneaten feed and fecal material), 

dissolved metabolites (from excretion via gills and kidneys), and various forms of chemicals 

(e.g. therapeutants, fertilizers, heavy metals), with undesirable environmental consequences (Wu 

1995; Kelly et al. 1996; Deb 1998; Tovar et al. 2000a, 2000b; Pearson and Black 2001; Páez-

Osuna 2001a, 2001b; Read and Fernandes 2003). The environmental impact resulting from 

particulate and dissolved organic and inorganic material (Table 2.1) is particularly important 

because these compounds are directly discharged into the environment affecting both the water 

column and the sediment compartment (Dalsgaard and Krause-Jensen 2006; Holmer et al. 2007). 

The magnitude of these impacts depends mainly on farm location, species, culture type, stocking 

densities, food digestibility, and on other husbandry factors such as feeding practices and disease 

status (Wu 1995).  

 

The meteorological (e.g. wind patterns), hydrographical (e.g. bathymetry, currents, tidal regime, 

wave action, sedimentation rates) and geomorphological characteristics of aquaculture sites 

(Kempf et al. 2002; Nordvarg and Håkanson 2002; Kalantzi and Karakassis 2006; Rodriguez-

Gallego et al. 2008), strongly influence the fate of any type of waste released into the water 

column. For instance, high-energy environments, well swept by bottom currents, are usually less 

affected by the impacts of waste material than low-energy environments, most likely due to the 

contribution of hydrodynamics to the dissipation and dispersion of exogenous material 

(Klaoudatos et al. 2006). Furthermore, re-suspension periodically re-exposes superficial 
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sediments and waste products to oxygen, enhancing organic matter decomposition (Burdige 

2006). Conversely, in shallow waters or in restricted exchange environments (e.g. semi-enclosed 

estuaries, bays or fjords) with weak bottom currents, there is a higher risk of particulate organic 

matter and nutrients to increase locally (Wallin and Håkanson 1991), causing not only the 

degradation of water quality but also severe negative impacts on benthic assemblages. 

 

Effluents from intensive production systems, with a large feed input, typically have greater 

negative impacts than effluents from semi-intensive or extensive systems with little or no feed 

addition (Kautsky et al. 2000; Páez-Osuna 2001a; Banas et al. 2008). However, the economic 

viability of these systems, relying mostly on natural food, is usually compromised by their 

limited capacity to control environmental and husbandry factors (e.g. nutrition, predators and 

disease agents), and by their low productivity. To turn aquaculture into a more productive 

activity with improved profit margins, farmers worldwide have been intensifying production 

(World Bank 2006). As stocking densities increase, the systems increasingly require higher 

water volumes, use of feeds and chemicals, which substantially increase organic and inorganic 

loadings. For example, the ecological footprint of semi-intensive tilapia production systems is 

relatively low (approximately equal to the farm area) compared to intensive systems that require 

an area up to 10000 times higher than the farm area (Folke et al. 1998). The higher the degree of 

artificiality, more likely is the occurrence of environmental damages because recycling processes 

and their respective feedback mechanisms vaguely resemble natural systems (Kautsky et al. 

2000; Banas et al. 2008). 
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Table 2.1 – Amounts (kg per ton of product) of Total Suspended Solids (TSS), Biochemical Oxygen Demand (BOD), Particulate Organic Matter 

(POM), Nitrogen (N) and Phosphorus (P) discharged from different aquaculture units.  

 
Species Culture method TSS BOD POM N P Reference 

  kg per ton of product  

Finfish Marine cage farming    61- 132 2.2 - 95 
Enell and Ackefors (1991), 

 Islam (2005) 

Seabreams Marine cage farming 7038 - 9105 235 843 - 1009 190 28 

Jambrina (1995),  

Barbato et al. (1996),  

Tovar et al. (2000b) 

Octopus Marine cage farming    111 37 Mazón et al. (2007) 

Salmonids 
Freshwater cage 

farming 
474 - 4015 285 - 990  71 11 

Beveridge et al. (1991), Kelly 

et al. (1996)  

Catfish Freshwater systems    9.2 0.57 Schwartz and Boyd (1994) 

Rainbow trout Freshwater systems  640 129 - 551   22 
Holby and Hall (1991), 

Boaventura et al. (1997) 

Shrimp  
Semi-intensive earth 

ponds 
715 - 9105 235 257 - 918 29 – 48 2.6 - 4.6 

Páez-Osuna et al. (1997), 

Biao and Kaijin (2007), 

Casillas-Hérnandez et al. 

(2007) 
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Species cultured in intensive systems, usually high-trophic level species, have a higher 

ecological footprint than those producing low-trophic level species, as omnivorous or 

herbivorous fish (e.g. catfish, tilapia) (Table 2.1). Carnivore species require high-proteic 

manufactured feeds, releasing substantial amounts of wastes that are not easily assimilated by the 

environment (Karakassis et al. 2000; Choo 2001; Páez-Osuna 2001a; Pearson and Black 2001; 

King and Pushchak 2008). For instance, a study carried out by Folke et al. (1998) revealed that 

Atlantic salmon marine cage farming requires an ecosystem area 40000 to 50000 times higher 

than the farm area. However, as feed technology improves and higher feed conversion rates 

(FCR) are attained, the footprint of intensive carnivore production is likely to decrease (Black 

2001). An additional factor contributing to the high ecological footprint of carnivorous 

aquaculture is the use of the so-called “trash fish” (i.e. fish unfit to human consumption) for the 

production of pelleted diets, which consumes a large quantity of natural resources (Black 2001).  

 

The most environmentally benign production systems are probably those cultivating species 

from the base of the food web, like seaweeds or filter-feeders (Crawford et al. 2003). However, 

even these systems may have a relevant ecological footprint, depending on the location, farm 

dimension and stocking densities (Folke et al. 1998; Black 2001; World Bank 2006). For 

instance, large amounts of biodeposits (e.g. bivalves’ feces and pseudo-feces) may induce 

changes on benthic processes and benthic communities (Buschmann et al. 1996; Kaiser 2001; 

SECRU 2002; Watson-Capps and Mann 2005), with consequences for the entire ecosystem. 

 

Aquaculture systems combining species from different trophic levels (e.g. fish-shellfish or fish-

seaweeds polyculture) or integrated with other activities like agriculture or waste treatment may 
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significantly lower the environmental impacts of aquaculture because nutrients and organic 

matter are recycled within the system (Buschmann et al. 1996; World Bank 2006). 

 

2.1 Organic matter enrichment 

The immediate effects of particulate organic matter released from aquaculture operations include 

the stimulation of phytoplankton and bacterial development, which reduces the penetration of 

light into the water column, subsequently affecting benthic flora (Páez-Osuna 2001a; Ruiz et al. 

2001; Watson-Capps and Mann 2005; Pérez et al. 2008). However, in oligotrophic systems such 

as the Mediterranean Sea, aquaculture impacts on the water column are minimal, presenting only 

localized or no effects on most water quality parameters (Maldonado et al. 2005). These findings 

are generally attributed to fast dilution (Pitta et al. 2006) and high nutrient recycling rates within 

the food web (Machias et al. 2004). Particulate organic loading also contributes to long term 

changes in the benthic environment (Gowen and Bradbury 1987; Wu 1995; Karakassis et al. 

1998; Holmer et al. 2005; Klaoudatos et al. 2006). 

 

On reaching the bottom, biodeposits may be incorporated into the sediment or re-suspended by 

bottom currents (Jones et al. 2001) that disperse them further away from the discharge point. 

With the continuous deposition of organic matter, microbial activity is enhanced and sediments 

become reduced due to an increase in oxygen consumption (Giles et al. 2006; Belias et al. 2007; 

Holmer and Frederiksen 2007). When the oxygen demand caused by the input of organic matter 

exceeds the oxygen mixing rate from overlying waters, sediments become anoxic and anaerobic 

processes dominate (SECRU 2002; Holmer and Frederiksen 2007). Microbiological processes 

such as denitrification, nitrate, manganese, iron and sulphate reductions, and methanogenesis 

prevail (Pearson and Black 2001), whilst aerobic respiration and nitrification processes are 

inhibited by sulphide (Deb 1998). The outcome of these reactions is the production of toxic 
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gases (e.g. ammonia, methane and hydrogen sulphide) and the development of hypoxia in the 

water column (SECRU 2002). 

 

Changes in the physical and chemical characteristics of sediments generally have strong adverse 

impacts on the structure of benthic communities (Naylor et al. 2000; Pearson and Black 2001; 

Kelly and Elberizon 2001; Páez-Osuna 2001a; Nordvarg and Håkanson 2002; Edgar et al. 2005; 

Watson-Capps and Mann 2005; Klaoudatos et al. 2006; Rodriguez-Gallego et al. 2008).  

Although initially the diversity and biomass of benthic fauna increases, mostly due to the 

expansion of opportunistic species (e.g. small annelid and nematode worms) and the immigration 

of other species, the continuous organic matter input will promote anoxia of the deeper sediment 

layers leading to the elimination of larger and deeper burrowing long-lived forms and 

subsequently to a decrease in biodiversity (Kelly and Elberizon 2001; Pearson and Black 2001; 

Edgar et al. 2005; Felsing et al. 2005; Klaoudatos et al. 2006). The increasing sediment oxygen 

demand will eventually bring anoxia into the lower levels of the water column, originating the 

appearance of an azoic zone (Tovar et al. 2000b; Ruiz et al. 2001; Kelly and Elberizon 2001; 

Pearson and Black 2001; Read and Fernandes 2003; Edgar et al. 2005; Gyllenhammar and 

Håkanson 2005; Watson-Capps and Mann 2005). 

 

The impacts of aquaculture on benthic primary producers, particularly on seagrass communities, 

have been widely reported (Ruiz et al. 2001; Pérez et al. 2008). The combined effects of light 

attenuation, mainly due to the shade effect of aquaculture structures and high concentrations of 

suspended solids, with the accumulation of organic wastes on bottom sediments, significantly 

reduces the density of seagrass meadows, such as Posidonia oceanica (Cancemi et al. 2003; 

Pérez et al. 2008). Bottom sediment enrichment may also increase epiphytic growth and 

herbivore pressure, limiting the seagrasses photosynthetic activity (Ruiz et al. 2001). Moreover, 
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the decomposition of organic matter increases porewater nutrient availability and sulphide 

concentrations in the root zone, which negatively affects seagrasses health and survival (Pérez et 

al. 2008). 

 

Changes on the benthic compartment may affect trophic relations and energy transfer along the 

aquatic food webs (Wu 1995; Deb 1998; Karakassis et al. 2000; Tovar et al. 2000b; Kelly and 

Elberizon 2001; Pearson and Black 2001; Read and Fernandes 2003; Felsing et al. 2005; 

Gyllenhammar and Håkanson 2005; King and Pushchak 2008). For instance, studies carried out 

in marine cage farms revealed that the organic wastes released from aquaculture operations 

constitute an additional food source for wild fish living in the vicinity of the culture site, making 

fish to congregate locally (Pearson and Black 2001; Machias et al. 2004; Gyllenhammar and 

Håkanson 2005). The reduction of the fishing pressure and the refuge/protection provided by 

aquaculture structures (Pearson and Black 2001; Machias et al. 2004) may additionally 

contribute for wild fish assemblages. Although the magnitude of these bottom environmental 

impacts depends on several factors such as, culture type, stocking densities and cultivated 

species (Wu 1995; Kempf et al. 2002; Kalantzi and Karakassis 2006), in general, the major 

negative effects are found in the farm area and in its immediate vicinity, decreasing with greater 

distance from farming operations (Karakassis et al. 1998; Pearson and Black 2001; Kaiser 2001; 

Cromey et al. 2002; Felsing et al. 2005). 

 

2.2  Nutrient enrichment 

Inputs of inorganic compounds (e.g. ammonia, nitrates, nitrites and phosphates) through organic 

matter breakdown, animal excretion and pond fertilization may also have potentially hazardous 

effects on the surrounding environment (Wu 1995; Buschmann et al. 1996; Deb 1998; Tovar et 

al. 2000b, 2000b; Páez-Osuna 2001a; Pearson and Black 2001; Read and Fernandes 2003; Biao 
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and Kaijin 2007; Pérez et al. 2008; Rodriguez-Gallego et al. 2008). Most of the undesirable 

ecological consequences related to the excessive nutrient availability from aquaculture 

discharges (Table 2.1) are related to eutrophication, and include, for example, hypernutrification 

and the depletion of dissolved oxygen that cause the deterioration of water quality (Tovar et al. 

2000b; Read and Fernandes 2003). Nutrient loadings also contribute to the pool of plant nutrients 

in aquatic systems, stimulating the growth of primary producers (Read and Fernandes 2003; Biao 

and Kaijin 2007) and even changing the structure and composition of these key communities 

(SECRU 2002).  

 

Should nutrient enrichment coincide with certain physical conditions, and other, poorly 

understood factors, there may be a growth of toxic phytoplankton species, leading to the 

formation of Harmful Algal Blooms, HAB (Biao and Kaijin 2007; King and Pushchak 2008). 

For example, reports of HAB of Chattonella marina, presumably, caused by effluent discharges 

from shrimp farms were documented alongshore the north of the Yellow Sea in 1993 and 1995 

(Biao and Kaijin 2007). Toxic phytoplankton blooms may produce different types of toxins (e.g. 

DSP - diarrheic shellfish poisoning, PSP - paralytic shellfish poisoning, and ASD - amnesiac 

shellfish disease) that often cause shellfish poisoning and the mortality of benthic fauna and 

wild/farmed fish, thereby threatening the economic viability of aquaculture activities (Pearson 

and Black 2001; Read and Fernandes 2003; Gyllenhammar and Håkanson 2005). 

 

Although the potential for eutrophication appears unlikely to marine cage farming due to the 

dilution effect of seawater (Wu 1995; Pearson and Black 2001), the possibility of localized 

eutrophication in areas of poor flushing cannot be excluded (Wu 1995; Pearson and Black 2001).  

In terms of restricted exchange areas, such as coastal lagoons and estuaries, excessive nutrient 
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availability may affect the ecosystem productivity (OAERRE 2001) and in some cases, 

negatively affect the aquaculture activity itself (Deb 1998; Páez-Osuna 2001b). 

 

2.3 Chemical contamination 

The overuse and misuse of chemicals in aquaculture operations is also a reason for apprehension 

due to the pollution and contamination effects that it may have on the aquatic environment. 

Chemicals used in aquaculture operations may be categorised as: 1) feed additives (e.g. vitamins, 

pigments, minerals, and hormones), 2) disinfectants (e.g. bleach, malachite green) and pesticides 

(e.g. molluscicides and piscicides), 3) liming materials, 4) metals (e.g. antifoulants) and 5) 

veterinary medicines, including antibiotics, anaesthetics, parasiticides, and vaccines (Read and 

Fernandes 2003) used to control external and internal parasites or microbial infections (Costello 

et al. 2001). Other biological products, such as, organic matter decomposers (e.g. bacteria and 

enzyme preparations) are also used (Gräslund and Bengtsson 2001). 

 

The application of these chemicals is mainly dependent on the culture system. For instance, 

while semi-intensive shrimp farms require a minimal use of chemicals, mostly fertilizers and 

liming materials (Boyd and Massaut 1999; Choo 2001; Gräslund and Bengtsson 2001), as 

shrimp production is intensified, management becomes more problematic, and the number and 

diversity of chemical compounds largely increases (Gräslund and Bengtsson 2001). Intensive 

pond culture also requires a higher diversity of chemicals when compared to cage systems, 

which mostly use disinfectants, antifoulants and veterinary medicines (Kelly and Elberizon 

2001; Read and Fernandes 2003). 

 

The main environmental risks associated with the use of chemical compounds relate to: i) 

deterioration of water quality, ii) interference on biogeochemical processes, iii) direct toxicity to 
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wild fauna and flora, iv) development of resistance by pathogenic organisms, and v) reduction of 

the prophylactic efficiency of therapeutants (Costello et al. 2001). The improper use of chemical 

compounds may also affect the safety of aquaculture products, constituting a threat to human 

health (Choo 2001, Islam et al. 2004). 

 

Since many of the chemicals used in aquaculture were not originally developed for this industry, 

their effects on the aquatic environment are not fully known.  

 

2.4 Spread of parasites and diseases 

The dissemination of parasites and diseases from farmed species to wild stocks, principally 

through water, escapees or diseased seed (Nash 2005), constitutes an important constraint to the 

sustainability of the aquaculture industry, not only from the ecological point of view but also 

from the economical perspective because it affects the investors’ confidence, the 

commercialization of aquatic products and profit margins (Choo 2001; Kaiser 2001; Pearson and 

Black 2001; Subasinghe and Phillips 2002). Even though this was usually considered a localized 

problem in the past, with the expansion and globalization of the aquaculture industry, pathogens 

and parasites restricted to one region are now rapidly spreading over the world. For instance, the 

introduction of post larvae and broodstock from areas affected by the White Spot Syndrome 

Virus and Taura Syndrome Virus caused mass mortalities in a wide range of shrimp species in 

Asia and Latin America countries (Choo 2001). Wild salmon and sea trout cultivated in marine 

cage farms are also thought to be at risk due to the spread infective larval sea lice from salmon 

farms (SECRU 2002). The level of risk for disease or parasites transfer is usually difficult to 

quantify not only because hosts may carry pathogenic organisms without showing any symptoms 

but also because a wide range of parasitic worms, pathogenic bacteria (Salmonella, Escherichia, 

Vibrio, and others) and viruses are already present in natural waters, being common to both wild 
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and cultured species. Many of these pathogenic organisms may also be introduced by other 

human activities besides aquaculture, like livestock, human waste and aquatic products 

transportation (SECRU 2002). Besides the environmental risks, the propagation of parasites and 

diseases also constitutes a risk to human health although it can be minimized or even completely 

eliminated, through the implementation of strict sanitary and food safety regulations (e.g. 

HACCP) to commercial aquaculture (World Bank 2006). 

 

2.5 Habitat destruction and modification 

The loss or degradation of habitats, in particular of coastal habitats such as mangrove systems 

and other wetlands (seagrass meadows, saltmarshes, coastal lagoons, estuaries) is one of major 

adverse impacts of aquaculture (Wu 1995; Deb 1998; Naylor et al. 2000; Black 2001; Páez-

Osuna 2001b; Ruiz et al. 2001; Pérez et al. 2008). Studies carried out in marine cage farms on 

the Mediterranean coastline reported the destruction/degradation of Posidonia oceanica 

meadows, as a consequence of the high organic and nutrient loading from fish farming activities. 

Conversion of mangrove forests into shrimp farms (Deb 1998; Choo 2001; Páez-Osuna 2001b) 

has mainly caused the loss of feeding, nursery, shelter and spawning grounds for a wide variety 

of marine and terrestrial animals (Ruiz et al. 2001; Pérez et al. 2008), and the loss of natural 

protection against floods, storms and hurricanes (Deb 1998; Choo 2001; Páez-Osuna 2001b). 

Coastal lowlands, such as mangroves and saltmarshes, play a significant role in shore protection 

by deflecting and reducing the energy of water masses, and by being important routes of water 

discharge (Deb 1998; Choo 2001; Páez-Osuna 2001b). The construction of channels and dikes 

for inland aquaculture has also irreversibly altered the hydrological conditions (e.g. water 

discharge rates and sediment loads) of many coastal systems and the shore geomorphology (Deb 

1998; Primavera 2006). Habitat modification caused by bivalve farming during harvesting or the 

preparation of cultivation grounds (usually by addition of gravel, sand and protecting nets), may 
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additionally change the sedimentary processes and the biogeochemistry of farming sites. This 

disruption of bottom communities (e.g. benthic fauna or seagrasses) may have negative 

consequences for the higher trophic levels, for example, by affecting the feeding behaviour of 

wadding birds and of marine mammals (Kaiser 2001; Watson-Capps and Mann 2005). Other 

potentially adverse impacts on marine mammals include for example, the death or injury through 

entanglement in gear, habitat displacement, and disruption of migration pathways, especially for 

large cetaceans (Watson-Capps and Mann 2005). 

 

2.6 Introduction of new species and new genetic varieties 

The deliberate or inadvertent introduction of new species or genetic varieties should be a key 

aspect when assessing the environmental impacts of aquaculture. The main impacts of 

introductions fall into two categories: i) ecological, including biological and genetic effects, and 

ii) socio-economic (cf. – Section 2.8), that can be interrelated. Despite providing significant 

social and economic benefits (e.g. supply of animal protein and disease control), the use of 

exotic species may also seriously affect ecosystem functioning. The main negative ecological 

impacts resulting from the introduction of new species and genetic varieties include: i) loss of 

biodiversity, due to direct biological interactions such as predation and competition; ii) loss of 

genetic diversity in wild populations, mainly due to breeding of alien organisms with local 

strains or species; iii) transmission or spread of diseases to which indigenous species are more 

vulnerable; iv) and habitat modification (Black 2001). A case reporting the hazards of species 

introductions is that of the Nile perch in Lake Victoria, which became the dominant species of 

the lake’s fauna. Even though the introduction of Nile perch generally provided relevant 

economic benefits for some entrepreneurs (may be not so for the population depending directly 

on lake biodiversity), the arrival of the invasive water hyacinth blocked waterways and the 

access to riparian villages and fishing grounds, causing major economic losses (World Bank 
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2006). Whirling disease, a virus infection that affects rainbow trout, was introduced in North 

America through the importation of European brown trout that was immune to the virus (World 

Bank 2006). Other vectors for species introduction include for example the ships ballast water or 

the feces and digestive tracks of commercialised bivalves, which may transport the resting cysts 

of toxic phytoplanktonic species and of seaweeds species (Kaiser 2001). 

 

The release of cultivated organisms to the natural environment, either by accident or natural 

catastrophes, not only poses a risk for the structure of wild populations but also to the regional 

economies (Youngson et al. 2001; Read and Fernandes 2003). Most of the negative ecological 

impacts resulting from the interaction between cultivated and wild species result from the genetic 

interaction of wild organisms with their aquaculture conspecifics. The genetic impacts of escapes 

on wild populations are a complex subject, but the fundamental problem rests on the genetic 

differences between wild and farmed species (Kapuscinski and Brister 2001). As part of the 

evolutionary strategy, wild species possess higher genetic diversity both within and between 

populations (SECRU 2002). Escapees that survive and spread to spawning grounds can 

interbreed with wild organisms (Kapuscinski and Brister 2001; SECRU 2002; Naylor et al. 

2005), posing two types of hazards: firstly, outbreeding depression (i.e. loss of fitness in the 

offspring) that mainly reduce the survival fitness and efficiency of wild organisms and secondly, 

the homogenization of genetic differences which increases the vulnerability of individuals to 

environmental changes, and compromise the sustainability of wild populations (Kapuscinski and 

Brister 2001). Even though domesticated species, such as the farmed Atlantic salmon, are 

generally less fit for survival and breeding (mainly due to a lower ability to participate in 

breeding and to a poorer quality and quantity of gametes), when a substantial proportion of 

escapees secure mating with wild fish, outbreeding depression may cause the decline of wild 

populations (Kapuscinski and Brister 2001; SECRU 2002; Naylor et al. 2005) due to the loss of 
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environmental adaptive genotypes which determine the species success. These risks are greater 

for small populations that are already threatened and, whenever genetic modified organisms 

(GMOs) are used. The growing development of GMOs to increase the quantity and quality of 

aquatic products may seriously jeopardize the genetic integrity of wild stocks and ecosystems 

functioning (Spreij 2004). 

 

2.7 Harvest of wild stocks as feed or seed/broodstock to aquaculture operations 

The depletion of wild resources and biodiversity to produce animal feeds or to supply 

seed/broodstock to aquaculture can cause significant damages to aquatic ecosystems (Deb 1998; 

Choo 2001; Kaiser 2001; Páez-Osuna 2001b). Fish species of low commercial value (e.g. 

Japanese anchovy and chub mackerel) are mainly targeted to be processed into feeds for 

carnivorous fish, or as supplements for other species, like for example, shrimp, tilapia and 

milkfish (Black 2001). The use of this so-called “trash fish” puts even more pressure on the 

already overexploited wild fish stocks. The broad collection of wild seed (e.g. of eel, grouper, 

yellowtail, and tuna aquaculture) and broodstock for aquaculture purposes also contributes to the 

decline of natural populations. The collection of wild shrimp and shellfish seed is particularly 

environmentally-damaging because not only it threatens the wild stocks of target species (e.g. by 

affecting species recruitment) but also affects the stocks of other living resources (other shrimp 

species, macrozooplankton, finfish and shellfish juveniles and larvae) that are indiscriminately 

killed. This reduces the food availability for other organisms such as aquatic birds, reptiles and 

mammals linked through the trophic web, and may subsequently increase their mortality at the 

same time that it reduces their breeding success (Choo 2001). Harvest of wild species may also 

cause genetic degradation of native populations and the destruction and modification of natural 

habitats, causing further disturbances on the aquatic food web (Deb 1998, Primavera 1998, Islam 

et al. 2004, World Bank 2006). This activity is particularly dangerous for heavily fished species 
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and for species with low reproductive capacities (World Bank 2006), but probably as long as the 

production of broodstock in captivity remains costly, the purchase of wild spawners will 

continue, causing environmental damages in ecosystems around the world (Nash 2005; World 

Bank 2006). 

 

2.8 Socio-economic impacts 

Despite the negative impacts that it might have on the environment, aquaculture may also 

provide important socio-economic benefits. For instance, aquaculture is foreseen to become the 

major source of animal protein (Naylor et al. 2000; Sugiura et al. 2006; World Bank 2006). 

 

The commercialisation of aquaculture products is also an important source of incomes (Biao et 

al. 2004; Primavera 2006) and largely contributes to the country’s economic development (Table 

2.2). For instance, since 1970, the aquaculture sector has increased at an average annual rate of 

10.4% in developing countries (World Bank 2006) while in developed countries it grew on 

average 4% per year. The trade of aquaculture products is particularly important for developing 

countries and to low profit-food deficit countries (e.g. Bangladesh, Indonesia, Vietnam) because 

it considerably increases their revenues. Besides contributing to the development of national 

economies, aquaculture has also allowed the stabilization and strengthen of populations from 

remote regions or marginalised social groups (mainly in Asia and Africa), by increasing rural 

development and reducing poverty and hunger (Black 2001; World Bank 2006). Aquaculture 

production may also contribute to the reduction of fish prices, at the same time that it increases 

the access to fish products by poor households. An example of pro-poor aquaculture has been 

implemented in Asia, where it was developed under two models: one in which commercial 

opportunities have been opened for enterprises, and the other consisting in using public support 

to generate enough critical mass for smallholders. The enterprise model not only generated 
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growth and employment in poor regions where alternative employment is scarce as also 

increased the stability of local communities (Black 2001). For example, this sector employs more 

than 12 million people in China, Indonesia, and Bangladesh alone (FAO 2007). Many of these 

people are rural dwellers and some, such as wild shrimp seed collectors, are among the poorest 

and most marginalized (Deb 1998). On the other hand, public support extended profit 

opportunities to smallholders in China, Vietnam, and Bangladesh mainly by combining a 

supportive policy (e.g. microcredit) with the dissemination of knowledge on proven technologies 

(e.g. polyculture). This strategy has also proven to be an effective mean of targeting the landless 

poor (e.g. rice farmers) mainly by improving their livelihoods (World Bank 2006; FAO 2007). A 

surplus in households may turn into a social benefit because it improves the nutritional state of 

poor populations and provides an opportunity to invest in education. 

 

Table 2.2 – Top ten aquaculture producer countries in 2006 and its respective aquaculture 

revenues.  

Country million tons % US$ billions % 

China 34.4 67.7 38.4 48.8 

India 3.12 6.05 3.43 4.36 

Vietnam 1.66 3.20 3.32 4.21 

Thailand 1.39 2.68 2.22 2.81 

Indonesia 1.29 2.50 2.25 2.86 

Bangladesh 0.892 1.73 1.36 1.73 

Chile 0.802 1.55 4.43 5.62 

Japan 0.734 1.42 3.10 3.93 

Norway 0.708 1.37 2.72 3.45 

Philippines 0.623 1.21 0.981 1.25 

                     Source: FAO Fishstat, ftp://ftp.fao.org/fi/stat/summary/default.htm 
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Other social benefits provided by aquaculture include for example, women empowerment. In 

Bangladesh and Vietnam, more than 50 percent of workers in seed collection, fish markets and 

processing plants are women, and although salaries of these workers are still quite low ($1–$3 

per day), they are significantly higher than salaries earned in agricultural activities (World Bank 

2006). In the Mekong delta aquaculture has also contributed to a decrease in urban migration by 

young women and prevented women from being forced into prostitution, reducing the risks of 

spreading sexual diseases (FAO 2007). 

 

Although responsible aquaculture can provide significant economic benefits, uncontrolled and 

irresponsible aquaculture operations can cause a wide range of negative socio-economical 

impacts, particularly when the ecosystem functioning is radically altered and the resources that 

support other human activities are affected. For instance, pandemics outbreaks have devastated 

shrimp farming in many producing countries (Deb 1998). Other adverse effects result from the 

introduction of new species. For example, the introduction of the golden apple snail into Asian 

countries, mainly with the purpose of developing an export industry, resulted in high damages to 

rice farmers, since this snail consumed large quantities of paddy-rice (World Bank 2006). The 

import of crayfish and oysters from North America also destroyed the European crayfish and 

oyster industries mainly due to the introduction of pathogens hosted on the imported organisms 

(World Bank 2006). Conversely, in Chile, the introduction of the Pacific and Atlantic salmon in 

the 1970s turned into an economic benefit, since the country is now the world’s leader in salmon 

production. Tilapia, a group of species originating in Africa, is also cultured worldwide and 

provides income and high-quality protein to many rural areas, especially in developing countries. 

 

The inexistence of an ecosystemic approach for the management of the aquaculture industry, 

often lead to conflicts over common resources such as land and water. For instance, the 
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conversion of mangrove forests into commercial shrimp farms led to the loss of forest products 

and fisheries (Primavera 2006), affecting principally the poor populations. The conversion of 

residential, agriculture (rice and pastures) and common lands in Asian countries (Thailand, 

Bangladesh and Philippines) has also raised serious conflicts between agriculture and shrimp 

farmers (Deb 1998; Choo 2001; Primavera 2006). Conflicts over water use are particularly 

frequent because aquaculture effluents may contaminate the water used by other aquaculture 

units downstream (Deb 1998; Gräslund and Bengtsson 2001). On the other hand, aquaculture 

itself may be subjected to water contamination due to urban waste and agricultural pollution. 

Saltwater intrusion caused by aquaculture activities, either from the percolation of water 

discharged from brackish/marine cultivation ponds or from active pumping of groundwater, has 

also several negative socio-economic repercussions, including, for example, the loss of 

agricultural crops, land subsidence, decrease in fish production or the occurrence of freshwater 

crisis that cause gastrointestinal diseases (Deb 1998; Choo 2001; Páez-Osuna 2001b). Other 

negative impacts resulting from the massive introduction of aquaculture structures (ponds, cages, 

or rafts) include the blocked access to coastal resources, navigational hazards, privatisation of 

public lands and waterways, and fisheries decline (Primavera 2006). Conflicts over common 

resources generally lead to serious social problems and even in some cases, to human rights 

abuse (World Bank 2006). 

 

An ecosystem approach to the management of the aquaculture industry is therefore crucial for its 

sustainability. Letting aquaculture development proceed irresponsibly or taking only partial 

approaches to its management incurs a risk that the negative impacts may counteract any benefits 

from aquaculture or that it will not produce the expected benefits. 
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3 The concept of carrying capacity in aquaculture 

In a broad sense, carrying capacity (CC) may be defined as the capacity of a natural or man-

made system to hold a certain pressure without driving its structure and function above Limits of 

Acceptable Change (LAC) (Duarte 2003). Whilst this general and simple definition may be 

appropriate as a first approach, it is important to apply the concept to some specific areas and to 

develop more precise definitions. CC may be defined within the scope of any activity implying 

some sort of environmental, social or economical impact. The LAC concept has long been used 

in tourism management (e.g. Wearing and Neil 1999). The goal is to be able to use natural and 

man-made ecosystems without compromising their capacity to continue providing the goods and 

services that people need. The definition of LACs is not straightforward, because though some of 

these limits may be defined on a quantitative way, others are rather subjective and depend on 

people’s perception about the environment. For example, water quality parameters may be used 

to establish quantitative limits on aquaculture outflows to prevent ecosystem degradation. 

However, it may be more arguable to establish limits in relation to scenic or habitat quality 

(GESAMP 2001). 

 

The concept of CC is a central theme in aquaculture and it may be related to the amount of 

natural resources available for aquaculture operations, such as food and space, the services 

provided by natural ecosystems, such as organic matter mineralization and nutrient cycling, or 

the economic yield of aquaculture and its economic and social effects. When CC is exceed, 

negative-feedbacks affect aquaculture operations and may result in yield losses. 

 

Policy makers must take management decisions that may affect the sustainability of natural 

resources. Having at hand the relevant CC indicators, is the way to prevent them from taking 

decisions that will jeopardize options for future usages. Whenever possible, these indicators 
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should be quantitative, such as the area that may be allocated for aquaculture, the standing stock 

of fish that may be kept in a fish culture area, etc. 

 

Given the multiple exploitation possibilities of aquatic ecosystems and their synergic effects, it is 

clear that CC must be accessed for different activities taking into account their interactions. For 

example, if a coastal zone is used for sewage dispersal, it’s CC for aquaculture may be limited, 

because not all areas will have the necessary water quality for aquaculture and also because the 

impact of the sewage outfall may limit ecosystems resilience to assimilate organic loads from 

aquaculture leases. These complex set of interactions between different uses and the ambiguities 

of resource ownership leads to the idea of including aquaculture within the framework of 

Integrated Coastal Zone Management (GESAMP 2001). Concerning inland aquaculture, similar 

integrated approaches are needed integrating other activities such as agriculture, tourism, nature 

conservation, etc. 

 

3.1 CC categories and definitions 

The CC definition and classification defined by Inglis et al. (2000), adopted by McKindsey et al. 

(2006) and adapted by Gibbs (2009), regarding coastal aquaculture development, was followed 

in the present work for aquaculture in general: 

(i) physical CC – the total area of farms that can be accommodated in the available 

physical space; 

(ii)  production CC – the stocking density of cultured organisms at which harvests are 

maximized;  

(iii)  ecological CC – the stocking or farm density which causes unacceptable ecological 

impacts; 

(iv) economic CC – the biomass that investors are willing to establish and maintain; 
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(v) social CC – the level of farm development that causes unacceptable social impacts or 

that community is willing to allow. 

 

Some of the above categories are defined differently by different authors. For example, 

according to Jiang and Gibbs (2005), production CC is the theoretical maximum culture that 

could be supported in an embayment. Alternatively, production CC was defined as the maximum 

sustainable yield of culture that can be produced within a region, whereas ecological CC was 

defined as the level of culture that can be supported without leading to significant changes to 

ecological processes, species, populations or communities in the growing environment (Gibbs 

2007). Therefore, in defining production CC, most authors choose to express it as a stock 

measure (e.g. Carver and Mallet 1990; Bacher et al. 1998; Inglis et al. 2000; Jiang and Gibbs 

2005), whereas others define it as a yield measure (e.g. Gibbs 2007). Therefore, it is important to 

agree on some common measurements for the sake of comparability within and across different 

aquaculture areas. Since stock and yield are related, although differently in different aquaculture 

areas, and since stock is easier to regulate, perhaps it is the most straightforward way to quantify 

CC. 

 

3.2 CC and limiting factors 

The CC categories above reflect some of the most common limiting factors for aquaculture 

development. However, it must be emphasised that, in most instances, these categories are 

interlinked. In the case of physical CC, space may be limiting due to the lack of sheltered areas 

and to other competing uses such as sewage dispersal, harbour activities, fisheries, tourism, 

nature conservation and water availability (in the case of inland aquaculture). For example, the 

Southeast Asia’s seas are under several threatens – 11% of coral reefs collapsed, whilst 80% face 

risks, mangroves – one of the most threatened tropical environments (Valiela et al. 2001) – have 
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lost 70% of their cover, seagrass beds’ loss ranged from 20 to 60%, urbanization is predicted to 

increase and there are tens of pollution hot spots (PEMSEA 2003). Whilst urbanization and 

resulting pollution may limit geographically aquaculture development, aquaculture itself has 

been one of the reasons for mangrove destruction in most tropical countries (Primavera 2006) – 

in relation to ecological CC. In the case of Thailand, a ban on mangrove destruction in the early 

1990s was followed by a shift from salt water to low-salinity inland shrimp farming, leading to 

competition for soil resources between rice and shrimp farmers and to soil salinization 

(GESAMP 2008). Competition between farmers may be a result of overcoming social CC. 

 

Regarding production CC, limiting factors depend mostly on the culture type. In the case of 

extensive and semi-intensive cultures, stocks may be limited by food availability and water 

quality. A typical example of extensive systems, fully dependent on natural food (phytoplankton 

and organic detritus) is the cultivation of bivalve suspension-feeders. Both the quantity and the 

quality of these food items are important for bivalve growth (Bayne 1993; Hawkins et al. 1998). 

Production CC for bivalve cultivation depends on the renewal rate of available food. Suspension 

feeders have a remarkable capacity to filter the water column such that they are food limited at 

higher culture density. Therefore, water residence times and phytoplankton doubling times may 

limit CC (Dame and Prins 1998). 

 

The relationship between bivalve production and bivalve standing stock is parabolic (Figure 2.1), 

as demonstrated by the theoretical model described in Bacher et al. (1998) and the results of 

Ferreira et al. (1998) and Duarte et al. (2003). There is an initial increase in production, but as 

available space becomes filled up with stock, individual bivalve growth rate is depressed and 

mortality increases due to several factors associated with overcrowding. The overall result of 

these effects is a strong reduction of harvest yields above a certain stock threshold. 
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Figure 2.1 – The parabolic relationship between stock and yield in bivalve culture. Carrying 

capacity increases with stock up to a point above which individual growth is severely 

compromised due to food limitation (see text). 

 

In semi-intensive and intensive systems, production CC may be limited by water quality, 

namely, by dissolved oxygen (DO) in some fish farms (Shin and Wu 2003). On the other hand, 

release of feces, uneaten food and excreta may increase biochemical oxygen demand (BOD) and 

nutrient concentrations that may overtake limits defined for ecological CC. According to Sarà 

(2007), available literature data on the effects of aquaculture leases on water quality present a 

convincing evidence for increases in ammonium, nitrite and nitrate and, to a lesser degree, 

dissolved phosphorus, in comparison to non-aquaculture sites. These “aquaculture effects” are 

most noticeable in sheltered water bodies with high residence times. 

 

Another important limitation for bivalve production in coastal areas is Harmful Algal Blooms 

(HAB) that may cause bivalve contamination and mortality by harmful toxins (Hágaret et al. 
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2007) (cf. – Section 2.2). In most areas of the world bivalves are monitored for the occurrence of 

several toxins to prevent their commercialization. 

 

In a recent paper, Gibbs (2009) discusses the role of social barriers to the establishment of 

aquaculture activities in suitable areas. According to this author, local stakeholders tend to be 

more environmentally conscious and demanding strong evidence about the environmental and 

economic sustainability of aquaculture development. This attitude is related to their perception 

that aquaculture benefits are diffused among the community and state, while costs are 

internalized locally, especially in coastal regions where recreational and amenity values are high. 

 

3.3 Methods for determining CC 

Physical CC may be analysed and estimated from physical, chemical and biological data, with 

the help of a Geographical Information System (GIS). These data may include geographic 

descriptors, sediment and vegetation types, depth, meteorology, hydrography, water quality, land 

use, etc. The interception of layers with this data types helps selecting areas that may potentially 

be used for different aquaculture types. For example, sensitive habitats may be excluded, as well 

as contaminated or other areas, where land use, management plans or political boundaries are not 

compatible with aquaculture development. 

 

GIS may also be used to help assessing economic and social CC, if it contains information on 

relevant descriptors. For example, areas that are used for some other economic activities or 

where local stakeholders have a strong opposition to aquaculture developments may be excluded, 

reducing social conflicts. 
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Production and ecological CC may be approached at several spatial scales, such as the scale of 

the cultivation unit (farms, rafts, etc.) and the ecosystem scale. The former is directly relevant to 

farmers, whereas the latter is relevant for ecosystem management (Duarte 2003). In accordance 

to this, aquaculture leases produce “near-field” and “far-field” effects – the latter result from the 

cumulative effects of the former at the ecosystem scale. This scale may be easy to define in the 

case of estuaries, bays and fjords but more difficult for open coastal areas (Anderson et al. 2006). 

 

Following the last authors, if the scale of the farm is large in comparison with the ecosystem 

scale, more important impacts are expected than in the opposite situation. Therefore, the 

definition of ecosystem boundaries is critical in evaluating aquaculture impacts. One possible 

approach is the analysis of impacts from the farmer scale to progressively larger scales, until 

they are no longer relevant. Such an approach is hardly achieved without a mathematical model. 

 

One important point here is that whatever method is used to estimate aquaculture impacts or CC, 

it should allow resolving scales smaller than the ecosystem scale. The rationale beyond this 

statement is discussed in Duarte et al. (2005) in relation to bivalve culture, but concepts may be 

extended to other culture types. The general idea is that if CC is evaluated at a scale larger than 

the farm scale, “farm effects” are diluted over a relatively larger area. For example, in the case of 

bivalve suspension-feeders, food limitation may be underestimated, since local food depletion is 

ignored, with the result of overestimating production CC. Ecological CC may also be 

overestimated, since excreta from cultivated organisms are “diluted” over a larger area. 

 

Ideally, the smaller scale resolved should be small enough for water residence time to be lower 

than the time needed for significant changes to occur in any chemical or biological factors 

related with CC. When this condition holds, water properties do not change much across the 
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scale considered. Current speed measurements or a hydrodynamic model may be used to 

determine the mentioned smaller scale. 

 

In Figure 2.2, a practical example of the above concepts is presented (for details see Duarte et al. 

2003, 2005) regarding Sungo bay (People’s Republic of China). This bay is extensively used for 

kelp and bivalve culture. If a whole system bivalve production CC is estimated from water 

residence time, phytoplankton doubling time and bivalve clearance time (the time it takes for the 

bivalves to filter the water in the bay), as described by Dame and Prins (1998), the obtained 

result suggests that bivalve density may be doubled within the ecosystem (from ca. 44000 to ca. 

88000 tonnes). In fact, Nunes et al. (2003), using a zero dimensional bay ecosystem model 

obtained even larger production CC estimates. On the other hand, Duarte et al. (2003), using a 

two dimensional hydrodynamic-biogeochemical model, with a finite-difference grid of 500 m 

resolution (Figure 2.2) – in line with considerations above on the need to resolve scales smaller 

than the ecosystem scale - obtained much lower CC estimates. Given average current velocities 

in Sungo Bay, water residence time within the 500 X 500 m grid cells depicted in Figure 2.2, is 

smaller than the time bivalves need to filtrate the water within the cells, considering their large 

densities within cultivated areas (Duarte et al. 2005).  

 

Considering the complex feedbacks between cultivated species and environmental variables, the 

cumulative effects of many aquaculture activities and the various dimensions of CC, an 

ecosystem model is necessary for a description of the problem.  However, any model is just a 

pale description of the real system with many limitations, as discussed by Gibbs (2009). 

Whenever there are no available data and models for a reliable estimate of CC, an adaptive 

approach should be used by being conservative, according to the precautionary principle, 

monitoring relevant variables and processes over time and being able to make any adjustments to 
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avoid permanent damage to natural and man-made systems. In fact, this adaptive approach 

should be followed even in the presence of detailed data and validated models, due to the 

limitations mentioned above (Gibbs 2009). The confrontation of model results and observations 

allows model improvements over time, as more knowledge is accumulated about the ecosystem 

under study. Furthermore, uncertainties associated with model parameters and results may help 

defining sampling strategies and experiments to fill the gaps. 

 

 

Figure 2.2 – Areas cultivated in Sungo Bay since 1999 with kelps (Laminaria japonica), oysters 

(Crassostrea gigas) and scallops (Chlamys farreri), including part of a two dimensional model 

grid (upper left corner), for which the spatial step is 500 m (refer text). 

 

A model capable of predicting production and ecological CC should include a transport and a 

biogeochemical sub-model. Ideally, it should also include a thermodynamic sub-model, for water 
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temperature calculations, and biological sub-models for relevant species or species groups. The 

transport sub-model should be able to predict current speeds and water mixing (or simply to read 

and return current speed time series measured or obtained with another model) and calculate the 

transport of dissolved substances and particles. It may be forced by wind, river flows, tidal 

height variability at sea boundaries, etc. The biogeochemical sub-model should reproduce 

biogeochemical cycles of elements that are most likely to become limiting, such as phosphorus 

and nitrogen, that may limit primary production of phytoplankton and cultivated plants, oxygen, 

that may limit fish survival, etc. This sub-model should include a pelagic and a benthic 

compartment, especially when water-sediment interactions are more important, as in shallow 

water ecosystems. The biological sub-models should simulate growth, production and biological 

interactions of most relevant species or species groups. It should also simulate nutrient 

production/consumption and link these with the biogeochemical sub-model. The spatial 

resolution of the model should follow considerations above. For some examples see Duarte et al. 

(2003, 2007), Ferreira et al. (2007), Grant et al. (2007), and Shin and Wu (2003). For a review of 

recent CC models see McKindsey et al. (2006). 

 

The above sub-models should be forced with time series obtained at their boundaries (e.g. river 

or sea boundaries) for the simulated water column variables. It is also important to have time 

series of meteorological data on: solar radiation, air temperature, wind speed, and relative 

humidity. For very large areas, it may be necessary to nest more detailed models within the grid 

of larger scale models, with the latter providing boundary conditions for the former. 

 

Having a model to estimate production and ecological CC it is then necessary to simulate several 

aquaculture scenarios regarding density of organisms, their geographical distribution and 

different rearing techniques, for example. The analysis of obtained results concerning predicted 
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production and water quality variables may then be used to evaluate the different scenarios. 

Typically, an increase in production leads to changes in water quality variables and deciding 

whether these are acceptable or not, depends on the availability of some criteria. For example, 

Duarte et al. (2007) simulated water and sediment quality as a function of bivalve density in Ria 

Formosa (Portugal) and compared scenarios on the basis of bivalve production and water quality 

using the IFREMER water and sediment classification scheme (e.g. Austoni et al. 2004). 

 

Ideally, a Decision Support System (DSS) should be used, integrating also economic and social 

descriptors (for an example see Pereira et al. 2007). It is important to involve local stakeholders 

in the decision process. At this point, economic and social CC may be revised by stakeholders, 

since obtained results may change their initial perspectives (Figure 2.3). It may also be necessary 

to try other scenarios and iteratively reach a good solution. 

 

4 Aquaculture and environmental management towards sustainable development 

In the next paragraphs, some possible mitigation measures and methodological approaches are 

suggested to reduce and anticipate, respectively, aquaculture impacts. Management aspects that 

may help reducing the direct ecological impacts of aquaculture leases are discussed in section 

4.1. The advantages of Ecological Aquaculture are discussed in section 4.2. Remaining sections 

present methodological approaches do help stakeholders and decision makers defining potential 

problems of aquaculture developments and deciding on alternative scenarios. 
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Figure 2.3 – Diagram showing the interactions and feedbacks among different carrying capacity 

categories towards an accepted aquaculture scenario, and the tools used for physical, production 

and ecologic CC and for the scenario selection. Continuous lines show direct influences of CC 

over the accepted scenario or other CC category. Physical CC limits production CC. Dashed 

lines showing feedbacks from production and ecological CC to economic and social CC (see 

text). 

 

4.1 Mitigation measures 

The sustainable development of the aquaculture industry depends largely on the preservation of 

natural resources and on ecosystem CC (Read et al. 2001). The adoption of an ecosystem 

approach to aquaculture (EEA) is probably the way to overcome the problems related to its 

increasing growth and intensification, in particular those associated with the use and allocation 
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of common resources. The implementation of an EAA requires a partnership among aquaculture 

organizations (e.g. producers associations), governmental agencies (e.g. fisheries administration, 

rural, urban and industrial development organizations) and the public sector (e.g. NGO’s), for the 

development of appropriate regulatory frameworks and efficient enforcement mechanisms. As an 

alternative to legal frameworks, the aquaculture industry has developed self-regulation 

instruments, such as Codes of Conduct (e.g. the FAO Code of Conduct for Aquaculture Practices 

and the International Aquatic Animal Health Code) and Codes of Practice, to ensure the 

sustainable development of the activity. Compliance to the norms and principles defined in these 

codes may also contribute for the minimisation of the negative impacts of aquaculture. At the 

farm and at the ecosystem levels, an efficient use of Environmental Impact Assessment (EIA) or 

other decision-making tools (e.g. Decision Support Systems during the planning phase of 

aquaculture operations together with the implementation of mitigation measures (e.g. 

environmental monitoring) for activities that already exist, may also contribute to a more 

environmentally-friendly activity. Some of the important decisions that can be made are mainly 

related to site selection, species selection (exotic versus native), definition of stocking densities 

and proper farming systems or technologies and, on the socio-economic relevance of aquaculture 

projects (Read and Fernandes 2003). During the operational phase of aquaculture units, specific 

proactive measures may also be adopted to safeguard the ecosystems integrity. Some of these 

mitigation measures are presented in the following paragraphs. 

 

4.1.1 Interference in biogeochemical processes 

Given that the impacts on bottom sediments are the most obvious form of pollution resulting 

from aquaculture activities, the reduction of the amount of wastes and effluents released into the 

environment is crucial for avoiding that the ecological CC is exceeded (Giles et al. 2006). The 

effects of organic and inorganic waste discharges can be significantly reduced by careful site 



 
Chapter 2 

 
 

52 
 

selection. The specific hydrographic conditions (hydrodynamics, water residence time, and tidal 

regime), topography, geography and the ecological CC of the receiving body (Buschmann et al. 

1996; Pearson and Black 2001; Choo 2001; Gräslund and Bengtsson 2001; Primavera 2006), 

strongly influence the behaviour of all type of wastes released into the water column. For 

instance, the impacts of wastes discharges from marine cage farming may be minimized by 

avoiding regions of restricted water exchange, such as enclosed bays or fjords (Pearson and 

Black 2001). Site rotation allows the seabed to return to normal conditions. Site selection is also 

crucial for managing the environmental impacts of shrimp farming since aquaculture units are 

usually established in mangrove areas and tidal wetlands, which in addition to their high 

ecological value are also characterised by acidic soils and high organic loadings, that may 

contribute to the deterioration of water quality and to disease outbreaks (Kongkeo 1997; Boyd 

and Clay 1998). 

 

Organic sediment enrichment can also cause severe environmental impacts if the scale of the 

farm operation is not suitable for the aquaculture site, i.e., if organic and nutrient loadings are 

above the ecological CC of the water body. Hence, the limitation of stocking densities may 

contribute to a significant reduction in the amount of wastes released into the environment, 

particularly in sensitive habitats, such as mangrove systems and salt marshes (Buschmann et al. 

1996; Kautsky et al. 2000; Gräslund and Bengtsson 2001; Páez-Osuna 2001a; Primavera 2006). 

 

Improving of feeding husbandry techniques (e.g. meal timing or methods for feed supply) and of 

feed formulation may also be an effective strategy for reducing organic loadings and to prevent 

the hypernutrification of aquatic systems (Buschmann et al. 1996; Páez-Osuna et al. 1998; Páez-

Osuna 2001a; Pearson and Black 2001). In marine cage farms or pens, the installation of feeding 

devices with hydrosensors that detect the reduction of fish activity or the use of acoustic feed 
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detectors to reduce the loss of feed pellets, may prevent overfeeding and excessive waste 

production (Pearson and Black 2001). Other mitigation measures for open systems include for 

example, the use of settling devices for collection of fecal pellets and food wastes under the 

cages and the use of pumps for the dispersion of solid elements (Gowen and Bradbury 1987; 

Buschmann et al. 1996). Improvement of feed pellet technology, either by increasing the stability 

of feeds or reducing its sinking rates may also be a way to maximise the amount of feed ingested, 

and thereby to minimize waste production (Choo 2001; World Bank 2006). The development of 

appropriate feeds (with optimal protein/energy ratio) for each species and respective 

developmental stages further reduces the organic and inorganic loadings to the environment. 

Since energy requirements can generally be satisfied by lipids and carbohydrates, diets with a 

higher content of these compounds, increase protein retention and improve feed conversion rates 

(World Bank 2006). Feeds with high FCRs, like the ones currently used by the Atlantic salmon 

industry (FCR = 1:1.1, i.e., 1 kg aquatic product per kg of feed), not only reduce the amount of 

nutrients (nitrogen and phosphorus) released into the environment as also minimize the costs 

with feeds, since protein is mainly used for body tissue construction (Black 2001; Choo 2001; 

World Bank 2006). The use of formulated artificial feed instead of “trash fish” (i.e. fish unfit to 

human consumption), in shrimp and carnivorous finfish culture, is also desirable not only in 

terms of its nutritional value and supply but also in terms of waste loadings (World Bank 2006). 

Furthermore, aquacultures activities depending on these resources are particularly vulnerable to 

collapse since a reduction in fisheries, will most likely increase feed prices and consequently 

cause a loss of profits (Black 2001; World Bank 2006). 

 

4.1.2 Interference with the life cycles of wild species 

Water-related best management practices (BMPs) may also minimize the risks associated with 

the introduction and dissemination of viruses and other pathogens (Kongkeo 1997). 
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Recirculation Aquaculture Systems (RAS) systems in particular, not only reduce the possibility 

of pathogen introduction in freshwater systems as may be an alternative method for the 

production of healthy seed for marine aquaculture systems (Gutierrez-Wing and Malone 2006). 

The compliance to other BMPs related to environmental control, as for example careful species 

selection, limitation of stocking densities and use of proper feeds to avoid deterioration of water 

quality, or to disease prevention and/or control BMPs like the use of effective vaccines or other 

prophylactic agents (e.g. probiotics), use of approved medicines and development of disease free 

strains by selective breeding (Dunham et al. 2001; Primavera 2006; World Bank 2006), may also 

mitigate the negative environmental impacts of aquaculture. Diseases spread through trade and 

transboundary movements can also be managed by veterinary control or strict regulations for the 

movement of living aquatic organisms (either eggs, seeds, juveniles or adults) and by the use of 

certified disease-free organisms (Argue et al. 2002; SEACASE 2009). Other measures such as 

the implementation of environmental programmes, e.g. the Hazard Analysis and Critical Control 

Point (HACCP) method may also minimize the deleterious effects of disease transmission, and 

ensure the safety of aquatic products. The reduction of disease incidence is a key aspect for the 

environmental sustainability of aquaculture because not only it reduces the use of chemicals (e.g. 

antibiotics) and the requirements for land and water, as also improves the efficiency and viability 

of the farming activity (Hulata 2001; Argue et al. 2002). 

 

As intensification progresses and new species are cultured, seed-based aquaculture is likely to 

expand, and thereby every effort should be made to reduce the dependence on wild seed. 

Control/regulation of wild seed by-catch through the establishment of suitable sites, periods, 

catch efforts, and the production of commercial hatchery post-larvae (Páez-Osuna 2001b; World 

Bank 2006), may minimize the interference of seed/broodstock harvest in the life cycle of wild 

species and potential adverse effects on the ecosystems food-webs. These measures should be 
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accompanied by alternatives to minimize the social-economic effects of the reduction of wild 

seed collection in traditional aquaculture systems and in particular to low livelihood farmers. 

 

4.1.3 Impacts of introduction of new species or genetic varieties 

Some of the negative environmental impacts associated with the introduction of new species and 

new genetic varieties, including the loss of ecosystem integrity and genetic diversity, may be 

avoided or substantially mitigated through the effective implementation of the existing Codes of 

Practice and guidelines on this issue. Risk assessment and the application of preventive measures 

to species introductions (World Bank 2006), namely quarantine systems and cooperation 

between neighbouring countries before introducing non-native species into transboundary 

aquatic ecosystems, may also contribute to a responsible use of these species for aquaculture 

purposes (World Bank 2006). These limitations may easily be overcome by the use of RAS 

because farmed species are physically contained in these systems, eliminating the risk of escapes 

(Black 2001; Gutierrez-Wing and Malone 2006). 

 

4.1.4 Degradation of genetic diversity 

Another option to minimize the potential loss of genetic diversity due to the interaction of 

farmed and wild species is to ensure that escapees cannot breed. This is done successfully with 

rainbow trout by sterilising the females through the induction of a chromosomal abnormality 

called triploidy (SECRU 2002). Additional preventive measures proposed for cage aquaculture 

include the improvement of cage design, anchoring, net management, regulation of near-farm 

operations, deployment of fish cages at a safe distance from wild populations and the 

development of contingency plans in case of escapes, including for example the capture of 

escapees identified by genetic markers or tags (Pearson and Black 2001; SECRU 2002). Current 

methods to reduce Atlantic salmon escapes from cage farms also include the reduction of net 
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damage from predators by using acoustic deterrents (SECRU 2002), however these method may 

negatively affect and even exclude marine species with high sensitivity to underwater acoustic 

noise, such as whales and dolphins (SECRU 2002). In restocking programmes to rebuild 

endangered species or depleted stocks, the utilisation of juveniles with minimal genetic 

divergence from their wild counterparts may minimize the loss of the species genetic pool 

(World Bank 2006). This can be achieved for example by using of a large number of breeders 

and genetic markers (World Bank 2006). 

 

4.1.5 Modification and/or destruction of habitats 

The problem of the destruction and/or modification of ecosystem structure, function and services 

by aquaculture activities may be generally solved by effective EIA. In the case of existing 

aquacultures, specific mitigation measures including the creation of buffer zones may also 

prevent or minimize the impacts of aquaculture operations on natural habitats (Choo 2001; Páez-

Osuna 2001b). For shrimp aquaculture it has been also suggested that the use of abandoned 

ponds to restore mangrove systems and halophyte crop, or the conversion of shrimp ponds into 

salt ponds or for cultivation of other species (e.g. shellfish and crabs) (Páez-Osuna 2001b; 

Primavera 2006), may not only turn into an ecological benefit but also into an economic benefit. 

 

4.2 Ecoaquaculture 

Integrated aquaculture systems, either polyculture (e.g. fish and mussels, fish and seaweeds) or 

integrated aquaculture-agriculture systems (e.g. rice – fish farming), has also been considered an 

efficient and environmentally sound strategy for recycling aquaculture wastes (Buschmann et al. 

1996; Pearson and Black 2001; Choo 2001; Gräslund and Bengtsson 2001; Páez-Osuna 2001a; 

Primavera 2006). Examples of the efficiency of these systems can be found worldwide. For 

instance, filter-feeders (e.g. oysters, mussels) and economically important seaweeds (e.g. 
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Gracilaria, kelp) cultured in the immediacy of finfish cages were proven to remove a significant 

part of the suspended organic matter and dissolved nutrients generated by cage aquaculture, 

alleviating waste loadings at the same time that it increase the farm productivity (Pearson and 

Black 2001). Polyculture with shellfish is particularly viable in eutrophic systems because these 

organisms can significantly reduce algal densities and nutrients loadings (Pearson and Black 

2001), in a way that minimize the risks of eutrophication (cf. – Section 2.2). Coupling shrimp 

culture with bivalve molluscs and fish has also been considered (Sandifer and Hopkins 1996) a 

promising methodology to reduce the negative environmental effects resulting from the 

intensification of shrimp farming (Gräslund and Bengtsson 2001; Páez-Osuna 2001a; Biao et al. 

2004; Primavera 2006). Another example of polyculture is the combined culture of the Chinese 

and Indian major carps in China, which has the added value that aquaculture wastes can be 

converted into agricultural wastes (World Bank 2006). Integrated aquaculture-agriculture 

practices are considered as an ecotechnology, particularly for inland aquaculture. For example, in 

Vietnam, the use of effluents from hybrid catfish aquaculture on rice farming was able to reduce 

32% of total nitrogen and 24% of total P loadings (Lin and Yi 2003). Low-salinity effluents from 

inland shrimp farming were also used to irrigate melon crops in Brazil, and proved to be an 

efficient method for minimising the impacts of effluent discharges (Miranda et al. 2008). 

Integrated aquaculture-agriculture may also be used to remove nutrients from pond sediments 

(Lin and Yi 2003). According to these authors the use of rooted aquatic plants, such as lotus 

(Nelumbo mucifera) in semi-intensive cultures of tilapia (Nile tilapia) may remove up to 300 kg 

N and 43 kg P/ha/year. Besides its widely proven efficiency in removing aquaculture wastes, 

integrated aquaculture systems, may also reduce the risks of chemical contamination (Gifford et 

al. 2004; Primavera 2006). For instance, as aquaculture effluents naturally improve the 

fertilization of agriculture fields they reduce the use of environmentally damaging agriculture 

chemicals (e.g. pesticides, fertilizers), helping farmers to improve protein production and to 
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ensure the economic viability of the activity (Lin and Yi 2003). Polyculture done with bivalves, 

that filter large volumes of water, may significantly lower the quantity of toxic contaminants 

released into the environment, acting as bioremediators of stressed coastal environments (Gifford 

et al. 2004). However, if human-consumed bivalves are involved carefully should be taken to 

avoid chemical and bacterial contamination (Gifford et al. 2004). 

 

Another alternative to limit the impacts of effluents from pond aquaculture is the improvement 

of pond design. For example, ponds that are too shallow might be invaded by macrophytes, 

whereas in deeper ponds, the water may stratify, causing severe water quality problems, such as 

oxygen depletion (Boyd 1995a). The creation of buffer ponds (e.g. constructed wetlands) has 

also been proposed as a remediation measure for shrimp farming since it promotes the 

sedimentation of organic matter and the removal of other pollutants associated with suspended 

solids before the water is released into the surrounding environment (Boyd and Clay 1998; 

Kautsky et al. 2000; Páez-Osuna 2001a; Primavera 2006). An example from the Red Sea, 

considered as the third-generation of shrimp farms, consists of circular ponds with central 

drainage, in which more than 50% of the water surface (including upstream buffer ponds and 

wastewater treatment ponds) is dedicated to water quality control (Páez-Osuna 2001b). 

Reduction or elimination of water exchange rates between shrimp ponds and the adjacent water 

bodies has also been proposed to minimize the adverse effects of effluents discharge (Kongkeo 

1997; Boyd and Clay 1998; Páez-Osuna 2001a; Primavera 2006). Restricted water exchange 

rates will not only lower the risk for sudden changes in water quality parameters, as may 

minimize the risks of water contamination by saltwater intrusion because it reduces the needs for 

groundwater. Other measures to reduce or even avoid saltwater intrusion include the utilisation 

of pond liners and of pond effluents to grow terrestrial halophytes in conjunction with natural 

filters such as mangroves (Páez-Osuna 2001a; Primavera 2006). 
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Recirculating Aquaculture Systems (RAS) may also be considered as an ecotechnology. The use 

of these systems has proven to reduce the amount of effluents by a factor of 500-1000 (Chen et 

al. 1997; Timmons et al. 2001), mainly because more than 90% of the water is recycled within 

the system (Black 2001). Even though the use of RAS does not always result in the overall 

reduction of discharges but rather on a relocation of wastes (Piedrahita 2003), these systems may 

facilitate effluent treatment, and thereby minimize potential negative impacts on the 

environment. Besides requiring fewer water resources, RAS allow a better control over waste 

discharges and diseases and may prevent the loss of genetic biodiversity (Black 2001; Piedrahita 

2003; Gutierrez-Wing and Malone 2006). Because there is no possibility of interactions with 

wild stocks, this technology also allows the diversification and domestication of farmed species 

(Black 2001; SECRU 2002; Gutierrez-Wing and Malone 2006) and the intensification of 

aquaculture operations without seriously damaging the environment, and may contribute to an 

increase in the productivity and profitability of the aquaculture industry (Black 2001). On the 

other hand, the use of this technology may have significant economic drawbacks mainly related 

to the high capital expenditure and running costs (e.g. energy and maintenance) that it involves 

and due to the increased risk of failure if the systems are not adapted (in terms of biological and 

engineering concepts) to the species requirements (Black 2001). 

 

As aquaculture grows, it extends its demands on environmental resources, making it urgent to 

develop new regulations that ensure the transition of the sector to more responsible and 

environmentally friendly practices. Sound policies, regulatory frameworks, codes of practice and 

BMPs, including EIAs, physical planning, and economic instruments (World Bank 2006), are 

among the tools that can be used to reduce the ecological footprint of aquaculture operations and 

to ensure the sustainability of this activity. Since a substantial component in this footprint is 
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related to wastes production and to the use of fish meal/oils for the production of pelleted diets, 

the improvement of diet formulations is fundamental for the minimisation of the aquaculture 

environmental impacts. The development of ecofeeds rely largely on a vast understanding of the 

nutritional physiology and biochemistry of the different cultivated species (World Bank 2006), 

from which results a selection of very digestible ingredients that facilitate nutrient assimilation 

and promote the increase of FCRs. High FCRs have been shown to maximise protein retention 

and minimize the amount of solid wastes and nutrient loadings resulting from undigested, un-

utilized and uneaten feeds (Black 2001; World Bank 2006). One of the current lines of 

investigations on ecofeeds consists for example, in the substitution of fishmeal protein from 

“trash fish” by a vegetable protein source (e.g. soya), in order to reduce the pressure on natural 

fisheries resources (Kaushik et al. 2004). However, vegetable substitutes often lack essential 

amino acids and fatty acids, which may constitute an impediment for the economic viability of 

aquaculture systems. Another constraint is the increasing consumer pressure so that these 

vegetable ingredients are GMO-free, i.e., not produced from genetically modified organisms 

(SEACASE 2009). 

 

Given the necessity to ensure the safety of aquaculture products and the increasing consumers 

demand on food safety and welfare, the adoption of the environmentally friendly practices 

mentioned above becomes fundamental. The development of certification and ecolabeling 

schemes, attesting the character of the production processes and the quality of the products, may 

be an easy and efficient way to achieve the consumer perception and a mean to fulfil the market 

requirements and of adding value to aquaculture products (WorldBank 2006; SEACASE 2009). 
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4.3 Drivers, pressures, states, impacts and responses (DPSIR) 

DPSIR is a causal framework for integrated environmental assessment, describing the 

interactions between society and the environment (UNEP/RIVM 1994, RIVM 1995). According 

to this framework, there is a chain of causal links with the following components: Driving forces, 

Pressures, States, Impacts and Responses. A Driving force results from a need, leading to 

activities that cause Pressures, affecting the state of the environment, causing Impacts that 

demand Responses from the society. 

 

Table 2.3 is a possible example of an application of DPSIR to aquaculture development. It is 

important to have indicators to quantify each of the five DPSIR components, whenever possible. 

These indicators may be spatially resolved and integrated in a GIS. Suggested indicators for the 

example given in Table 2.3 could be: Driver - area allocated for fish farms; Pressure – Fluxes of 

nutrients, organic matter and xenobiotics, and differences in drag related to the presence of 

aquaculture leases; State – Concentrations in the water and in the organisms (regarding 

xenobiotics); Impact – changes in described rates; Response – seaweed production, area of 

sediments where pumping takes place, proportion of leases reallocated and changes in fish 

density within the farms, respectively.  

 

Implementing the DPSIR framework may be useful to synthesize those indicators that should be 

included in a GIS for physical CC assessment, as well as those aspects that should be accounted 

for in CC models, including scenarios to be analyzed (cf. – Section 3.3). This framework may be 

used in more complex situations, when there are more drivers besides aquaculture. 
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Table 2.3 – Drivers, Pressures, States, Impacts and Responses for a hypothetical aquaculture 

development.  

 
Driver Pressure State Impact Response 

 

 

 

 

 

 

 

 

Fish farming  

 

Increased nutrient 

fluxes  

Increased nutrient 

and organic 

matter 

concentrations 

Increased 

phytoplankton 

biomass/ 

eutrophication 

Seaweeds 

production to 

remove excess 

nutrients   

 

Increased organic 

matter fluxes and 

oxygen  

Decreased 

oxygen levels 

 

Higher mortality 

of benthic 

organisms/ 

decreased benthic 

diversity 

Bottom aeration 

Accumulation of 

organic matter in 

the sediments 

Increased drag 

forces 

 

Reduced flow-

through and 

increased 

residence time  

Increased 

sediment 

deposition 

Reallocation to 

areas of more 

intense 

hydrodynamics 

Release of 

xenobiotics 

Bioconcentration Increased 

mortality of non-

target species 

Less intensive 

farming to reduce 

disease 

propagation  

 
 

4.4 Decision support systems 

A DSS is an information system that may bring together databases, models and other information 

sources to help the decision-making process. Considering the multiple interactions between 

aquaculture systems and other uses of natural resources, an important point about any DSS is to 

define for whom it is intended. Different actors and stakeholders are important in the decision 

process. This is well in line with the Integrated Water Resource Management (IWRM) concept, 

where a balance is to be found between economic and environmental objectives, and where 

public participation is a key issue (Agnetis et al. 2006). 
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A DSS should allow stakeholders and decision makers to analyse different aquaculture scenarios 

using geographic and socio-economic data, and model results. These data should reflect best 

knowledge about several aspects of CC, discussed before (cf. – Section 3.1). The DSS should 

include a methodology to evaluate those scenarios on some quantitative way towards an 

informed final decision (Agnetis et al. 2006; Pereira et al. 2007). 

 

For example, let’s assume that several scenarios were purposed regarding increasing the number 

of fish cages in a particular ecosystem. After conducting a DPSIR analysis - Drivers, pressures, 

states, impacts and responses (DPSIR) with stakeholders, decision-makers and scientists, 

potential shortcomings could be identified and used to define the responses needed from scenario 

analysis. Afterwards, an ecological model of the system under study could predict that increasing 

fish cages would increase fish production by a certain amount and decrease water quality (for 

example, though increases in ammonia concentrations and decreases in oxygen levels). An 

economic assessment of yields could reveal that the aquaculture income was not linearly related 

to fish production if market prices were not elastic. Therefore, at the end of the simulation 

process, several results regarding water quality, fish production and economic gains would have 

to be somehow weighted and compared. This could be done using the Analytic Hierarchical 

Process (AHP) methodology (Saaty 1980) as suggested in Agnetis et al. (2006) and obtaining a 

score for each scenario. This methodology allows for some subjectivity to be incorporated in the 

decision process, as a result of different sensitivities of stakeholders to environmental, economic 

and social aspects. For some examples see Agnetis et al. (2006), where this general approach 

was applied to several management scenarios (including aquaculture) for five coastal lagoons 

across southern Europe. 
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5 Concluding Remarks 

Considering all the aspects discussed in the previous sections, some conclusions may be 

synthesized as follows: 

(i) Aquaculture management should be participated by relevant stakeholders and viewed 

within the context of management plans, including other activities with which it may 

have positive and negative synergies; 

(ii)  Ideally, an ecosystemic approach in line with Ecological Engineering should be 

developed towards an “ecological aquaculture” to prevent going through the same 

mistakes as industrial agriculture and husbandry; 

(iii)  Low trophic level species should be preferred for a higher energy efficiency and low 

ecological footprint; 

(iv) The Carrying Capacity concept is central to aquaculture sustainability in all its 

environmental, economic and social dimensions; 

(v) There are several tools that may and should be used in aquaculture management and 

that have already widely been tested, such as GIS, the DPSIR framework, 

mathematical models and DSS. 
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Abstract  

The knowledge of geochemical processes in fishponds is important in defining farming strategies 

and the carrying capacity of these systems, and therefore essential for the management and 

sustainability of semi-intensive aquaculture in earth ponds. The main purpose of the present 

work, developed in the Aquaculture Research Station located in Ria Formosa, was to study the 

geochemical changes in semi-intensive earth ponds of white seabream Diplodus sargus L. during 

a production cycle, and relate it to farming conditions (fish biomass and feeding rate). Settled 

material and sediment samples were collected in a fish production pond and in a non-fish 

production pond during two years. Results obtained showed that particle-settling rates (S, g m-2 

d-1) increased linearly with time (t, days): S = 0.7 t – 34, in the fishpond. Increasing deposition of 

particulate material increased the organic matter content of bottom sediments, particularly during 

the second production year. Organic matter mineralization, during periods of high temperatures, 

led to high nutrient concentrations in porewater (NH4
+ – 965 µM; NO3

- - 40 µM; HPO4
2- - 39 

µM) and subsequently to an increase in benthic primary production in the fishpond. The 

geochemical similarities between fishpond sediments and shallow coastal system’s sediments, 

along with the high fish survival rate (94%), suggests that for the assayed farming conditions 

there were no environmental constraints within the pond. However, some impact on bottom 

sediments namely, increase of settled material, organic matter deposition, nutrients in porewater 

and microphytobenthos production, was evident above a fish biomass of 500 g m-3 and a feeding 

rate of 150 kg month-1, indicating that pond environmental conditions should be carefully 

monitored from this point on.  
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1 Introduction 

In Portugal and all around southern Europe, marine fish farming is traditionally semi-intensive 

and carried out in earth ponds. Due to the increasing demand of consumers on food safety and 

welfare of cultivated species, semi-intensive culture products are coming back in the front scene. 

Nevertheless, the production costs of this type of aquaculture are often too high to maintain a 

sustainable economic activity due to the low productivity of these systems, which rely largely on 

traditional practices and are often managed on an intuitive basis (Giovannini and Piedrahita 

1994). A better understanding of the earth pond environment is necessary to develop 

management practices that optimise the use of aquatic resources (Piedrahita 1988; Culberson and 

Piedrahita 1996).  

 

Aquaculture ponds are complex systems. Survival and growth of fishes in ponds are determined 

by the physical and chemical characteristics of water (Piedrahita 1988). Water quality, in turn, is 

affected by external inputs, by the organisms present and by biogeochemical processes occurring 

in ponds. Studies on ponds geochemistry are emerging as an important area for fishpond 

management as sediments play an important role both as a source of various dissolved 

compounds and a sink for particulate material (Lefebvre et al. 2001).  

 

Organic sediment enrichment caused mainly by settlement of plankton, uneaten food and fish 

waste products, induces changes on the biological and chemical environment of fishponds (Krom 

et al. 1985a; Hargreaves 1998; Jamu and Piedrahita 2001; Boyd et al. 2002). From a 

management perspective, accumulation of organic matter is undesirable, as it may accumulate to 

levels that can affect water quality and consequently fish yields, due to the release of toxic 
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substances such as hydrogen sulphides, free ammonia and nitrites, which are toxic to fish even at 

low concentrations (Meade 1985).  High organic matter deposition may also cause a high oxygen 

demand and lead to oxygen depletion (Boyd 1995b), which in turn affects fish production.  

 
Since geochemical processes in earth ponds, depend mostly on fish biomass, food and feeding 

strategies, water temperature variations, water circulation and water depth, studies on this subject 

should be planned with a view toward the development of practical management procedures that 

enhance fish growth and production (Hargreaves 1998). The purpose of the present work was to 

study the geochemical changes in semi-intensive earth ponds of white seabream (Diplodus 

sargus L.) during a production cycle, in order to relate the environmental changes in fishponds 

bottom with farming conditions (fish biomass and feeding rate). This information may be useful 

for defining farming strategies and protocols to improve management of semi-intensive white 

seabream earth ponds, which are often managed intuitively, and consequently to optimise the 

production of this species that has been considered a potential candidate for Mediterranean 

aquaculture in terms of market preferences, economic value and flesh quality (Ozorio et al. 

2006).  

 

2 Material and Methods 

2.1 Experimental system 

The present study was developed in the Aquaculture Research Station (ARS), located in the Ria 

Formosa Natural Park, Southeast of Portugal (Figure 3.1.1). The experiment was carried out in 

two rectangular earth ponds, with an average surface area of 475 m2 and a volume of 700 m3. 

Experimental ponds were supplied with seawater pumped from a reservoir that fills up according 

to the lagoon tidal cycle. In May 2003, one of the ponds (Pf) was stocked with 3000 juveniles of 
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white seabream while the other was left without fish (Pnf). The water flow rate varied from 25 to 

100 m3 h-1 in Pf; whereas in Pnf, water flow rates were lower (4 to 10 m3 h-1). The fishpond was 

equipped with aerators (FORCE-7; 1.5 hp) to control dissolved oxygen levels that varied 

between 6.3 and 9.6 mg L-1. Fish were fed a commercial food pellet (DOURASOJA®, 

manufactured by Sorgal) containing 51% of total protein, 29% fat and 1.2% total P, by a 

combination of automatic and manual feeding. Monthly ration varied throughout the experiment 

(Figure 3.1.2), according to fish biomass and feeding response.  

 

 

 

 

 

Figure 3.1.1 – Location of the Aquaculture Research Station (ARS). 

 

2.2 Field sampling 

Sampling was carried out in Pf and Pnf in June, July, August and November 2003; March, June 

and October 2004 and March 2005. 
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Figure 3.1.2 – Monthly ration (kg) supplied to white seabream during the production cycle. 

 

2.2.1 Sediment-traps settled particles 

A sediment-trap with 6 PVC tubes (5 cm diameter and 50 cm length) was placed in both ponds. 

The tubes containing particulate suspended material remained two weeks under water at each 

sampling period. The traps were allowed to settle and dripped out slowly, and then transported to 

the laboratory with minimal disturbance. Each tube was placed to dry in a stove at 70ºC.   

 

2.2.2 Sediment cores 

In each sampling, nine sediment cores were randomly collected by a diver in Pf and Pnf. Cores 

(15 cm length and 5 cm diameter) were collected by gently pushing the open-ended PVC tube 

into the sediment, to preserve sediment layers. Samples were transported to the laboratory under 

refrigerated conditions, to be sliced in 2 cm layers for porewater and solid fraction analysis.  

 

2.3 Analytical methodology 
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2.3.1 Porewater samples 

Sediment samples were centrifuged for 10 minutes at 3000 r.p.m. (1600 g) to separate porewater 

from the solid fraction and filtered with 0.45 µm Macherey-Nagel filters. Porewater samples 

were analysed for ammonium (NH4
+), nitrate (NO3

-), nitrite (NO2
-), silicon (Si(OH)4) and 

phosphate (HPO4
2-) using a “Skalar” autoanalyser according to the following methodology: 

NH4
+ was determined by indophenol’s blue colour at 630 nm (detection limit - 0.2 µM); NO3

- 

was reduced to NO2
-, by passing the sample through a cadmium column and afterwards by 

detection of the coloured complex formed with the ethylenediamine at 550 nm (detection limit - 

0.1 µM). Silicon was determined using ascorbic acid as the reducer (detection limit - 0.5 µM), 

and HPO4
2- with a blue antimony complex (detection limit - 0.08 µM). Dissolved organic 

nitrogen (DON) and dissolved organic phosphorus (DOP) were oxidized by potassium 

peroxodisulphate (K2S2O8) in autoclave (1.5 bar; 120º C) as described in Grasshoff (1983) and 

determined in the autoanalyser (detection limits - 0.1 µM and 0.08 µM, respectively). 

Chlorophyll a and phaeopigments (Phaeop) were extracted with acetone (90 %) and determined 

by fluorimetry according to Parsons et al. (1984). 

 

2.3.2 Solid fraction 

Particles collected in the sediment-trap and upper sediment layer (0-2 cm) were dried at 80ºC 

until a constant weight and ground to a fine powder for determining total organic carbon (TOC) 

and nitrogen (TON). Total and inorganic carbon and nitrogen were determined using a CNH 

analyser “NC 2500 CE instruments” with acetanilide as reference material (Byers et al. 1978), 

and organic carbon and nitrogen determined by difference between total and inorganic fractions. 

Total phosphorus was determined by digestion of dry sediment samples with HCl (1 N) during 
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20 minutes at 200ºC according to Andersen (1976). Phosphorus sorbed to litogenic particles was 

sequentially extracted: phosphorus weakly bound (wb-P), 1 hour stirring with NH4Cl (1 N); 

phosphorus bound to calcium (Ca-bound P), 1 hour stirring with HCl (0.5 N) and phosphorus 

bound to iron (Fe-bound P), 17 hours stirring with NaOH (0.1 N) according to the methodologies 

of Chang and Jackson (1957) and, Hosomi and Sudo (1982). Organic phosphorus was 

determined by difference between the total and inorganic fraction. Chlorophyll a (Chl a) and 

phaeopigments (Phaeop) were extracted with acetone (90%) from the upper sediment layer and 

determined by fluorimetry according to Parsons et al. (1984).  

 

2.4 Fish sampling 

To evaluate white seabream condition, in each sampling, approximately 200 specimens were 

caught with a beach seine net to be measured and weighted under light anaesthesia (0.15 ml L-1 

de 2-phenoxyethanol). 

 

2.5 Data analysis 

The variability of Pf and Pnf porewater samples was evaluated through a multivariate 

Correspondence Analysis (CA) using BRODGAR “Software for Univariate & Multivariate 

Analysis and Multivariate Time Series, Version 2.4.1”. Non-parametric Wilcoxon-Mann and 

Whitney tests were performed to the data in order to determine significant differences between 

Pf and Pnf (Zar 1999). 

 

 



 
                                                                                                                                        Chapter 3.1 

 
 
 

75 

3 Results 

3.1 Particulate material 

Particles-settling rates were clearly higher in Pf than in Pnf, increasing from 26 ± 13 g m-2 d-1 in 

the first two weeks to 399 ± 14 g m-2 d-1 at the end of the production cycle (Figure 3.1.3). A 

significant linear relationship was found between particle-settling rates (S, g m-2 d-1) and time (t, 

days): S = 0.7t – 34 (R2 = 0.88; n = 46; P<0.01), whereas in Pnf, settling rates remained constant 

over time. 

 

Figure 3.1.3 – Particle-settling rates (g m-2 d-1) in Pf (♦) and Pnf (Ο), during the sampling 

period. 

 

Based on the amount of particles deposited in sediment traps was estimated that about 90 kg d-1 

of particulate matter is settled in the entire pond by the end of the first production year, doubling 

at the end of the production cycle, when the overall fish biomass reached 1 kg m-3 and feeding 

rate 275 kg month-1. 

 

0

100

200

300

400

500

0 100 200 300 400 500 600 700

P
a

rt
ic

le
-s

et
tli

ng
 r

a
te

 (g
 m

-2
d-

1 )

days



 
                                                                                                                                        Chapter 3.1 

 
 

76 
 

Particle settling rates and organic content allowed the calculation of particulate organic carbon 

(POC), nitrogen (PON) and phosphorus (POP) deposition rates in Pf and Pnf (Table 3.1.1). 

Organic compounds settling rates were significantly higher in the fishpond (Wilcoxon Mann-

Whitney test, P<0.01), increasing one order of magnitude after the first production year and two 

orders of magnitude at the end of the second year. In Pf, POC deposition rates ranged from 500 

to 10500 mg m-2 d-1 during the production cycle, whereas PON and POP varied respectively 

between 40 to 2300 mg m-2 d-1 and 5 to 205 mg m-2 d-1, corresponding to C: N and N: P ratios 

close to the Redfield ratio. 

 
Table 3.1.1 - Deposition rates of particulate organic carbon (POC), particulate organic nitrogen 

(PON) and particulate organic phosphorus (POP) in the fish production pond (Pf) and in the non-

fish production pond (Pnf), during the experiment. 

 

Days 
POC (mg m-2 d-1) PON (mg m-2 d-1) POP (mg m-2 d-1) 

Pf Pnf Pf Pnf Pf Pnf 

19 608 350 39 17 6.2 0.19 

48 601 232 56 29 5.2 0.12 

89 525 226 56 6.0 0.06 0.62 

101 729 295 62 9.6 0.11 0.37 

177 961 84 74 7.3 1.9 0.80 

241 1519 128 148 9.4 19 0.26 

276 2413 192 189 16 39 1.3 

368 8421 273 861 42 99 1.5 

486 9368 230 1646 20 185 2.4 

639 10500 256 2320 35 205 4.2 
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3.2 Sediment  

Figure 3.1.4 illustrates the TOC, TOP, Fe-bound P and Chl a contents in superficial sediments of 

Pf and Pnf, during the experiment. Total organic carbon was clearly higher in the production 

pond throughout the experiment, whereas for TOP and Fe-bound P differences between ponds 

became more evident one year after the beginning of the experiment, reaching values 2 to 4 

times higher than in Pnf. During the production cycle, sediments organic nitrogen content 

remained below the detection limit. Chlorophyll a concentrations were similar in both ponds 

during the first year. However after this period microphytobenthos production increased 2 to 9 

times in Pf, being highly correlated to sediment organic carbon content (R2 = 0.62; n = 27; 

P<0.05). 

 

A Correspondence Analysis applied to physical (Temp), chemical (NH4
+, NO3

-, NO2
-, HPO4

2-, 

Si(OH)4, DON, DOP) and biological (Chl a and Phaeop) data from porewater and superficial 

sediments of Pf and Pnf is represented in a two-dimensional space, defined by two ordination 

axis (Axis 1, Axis 2). Axis inertia was about 84% indicating that almost all data variability is 

explained by the analysis (Figure 3.1.5). Pf samples are well represented in the positive and 

negative Axis 1. The cluster close to the negative Axis 1 corresponds to parameters with strong 

affinity to higher temperatures (NH4
+, NO3

-, HPO4
2-, Chl a and Phaeop) conversely, DON and 

DOP were well represented in the positive Axis 1 showing higher affinity to the months of lower 

temperatures. Pnf points (in positive Axis 2), showed high similarity and weak affinity for the 

analysed parameters whose concentrations were 1 to 2 orders of magnitude lower than in Pf. 

Besides the evident contrast between Pf and Pnf data points, the analysis also revealed a well-

defined seasonal variability for Pf samples.  
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Figure 3.1.4 – Total organic carbon (TOC), total organic phosphorus (TOP), phosphorus bound-

Fe (P-Fe) and chlorophyll a (Chl a) concentrations in superficial sediments (0-2 cm) of Pf (♦) 

and Pnf (Ο), during the sampling period. 

 

3.3 Fish data 

White seabream grew from 6.9 ± 1.2 to 24.9 ± 1.7 cm during the production cycle (Table 3.1.2). 

To this increase in length (Lt), corresponded an increase in body weight (W) according to the 

following equation: W = 0.031*Lt
2.86. The fish condition factor (k), determined according to the 

Ozorio et al. (2006) equation:  

k = W*100/Lt
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where W is the fish body weight (g) and Lt is the total fish length (cm), registered high values all 

over the production cycle (≥ 1.9) indicating the well being of cultivated fishes. During the 

experiment, white seabream mortality was less than 6%. 

 

Figure 3.1.5 – Correspondence analysis ordination plot of physical (Temp – temperature, in ºC), 

chemical (NH4
+ - ammonium; NO3

- - nitrates; NO2
- - nitrites; Si(OH)4 – silicates; HPO4

2- - 

phosphates; DON – dissolved organic nitrogen; DOP – dissolved organic phosphorus, in µM) 

and biological (Chl a – chlorophyll a; Phaeop – phaeopigments, in µg g-1) parameters in 

porewater and superficial sediments of Pf (♦) and Pnf (Ο) during the sampling period. 

Parameters annual range in Pf.  

 

DON [244 - 2537] 

DOP [6.1 - 104] 

Chl a [0.18 - 31] 

Phaeop [0.80 - 66] 

Temp [15 – 27] 

 

NH4
+ [27 - 965] 

NO3
- [0.13 - 43] 

NO2
- [0.08 – 8.6] 

Si(OH)4 [5.8 - 69] 

HPO4
2- [0.05 - 39] 
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Table 3.1.2 – Total length (cm), body weight (g) and condition factor (k) of white seabream 

throughout the production cycle.  

 

Days 
Total length Body weight  Condition factor  

(cm) (g) (k) 

1 6.9 ± 1.2 7.6 ± 1.3 2.3 ± 0.1 

121 11.6 ± 2.1 60.0 ± 6.1 3.8 ± 0.2 

211 16.5 ± 1.0 112.3 ± 16.2 2.4 ± 0.2 

451 21.5 ± 1.5 179.6 ± 26.0 1.9 ± 0.1 

651 24.9 ± 1.7 263.4 ± 51.0 1.7 ± 0.2 

 

4 Discussion 

In aquaculture systems where temperature favours fish growth throughout the year, organic 

matter loading is continuous (Steeby et al. 2004). Increasing fish size and feed input might 

explain increasing particle settling rates in fishponds (Hargreaves 1998; Avimelech 1999), as 

observed by the exponential relation of particle settling rates with fish biomass (S = 

18*exp0.003*biomass; R2 = 0.94; P<0.01), and feeding rate (S = 17*exp0.01*feeding; R2 = 0.74; 

P<0.05), particularly above 500 g m-3 of fish biomass and 150 kg month-1 of food. The settled 

material contributed largely to the organic enrichment of Pf sediments during the experiment, 

especially in biogenic material, since the C:N and N:P ratios of settled particles were close to the 

Redfield ratio.  

 

In aquatic systems, organic matter in sediments is the difference between the rate of in situ 

production plus allochtonous material that reaches the bottom and the rate of organic matter 
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mineralization in the sediment (Haas et al. 2002, Jiménez-Montealegre et al. 2002b). The 

increasing organic loading mainly in the form of fish wastes, uneaten feed and senescent 

phytoplankton (Hargreaves 1998) determined changes in organic carbon, nitrogen and 

phosphorus content of bottom sediments. While fine particles were incorporated in the upper 

sediment layers during the production cycle, organic carbon increased exponentially (TOC = 

0.23 exp 0.38* day; R2 = 0.85; n = 27; P < 0.05) whereas organic nitrogen bound in form of proteins 

and other compounds in plants and animal bodies was practically irrelevant in Pf, probably 

because these materials are degraded faster than carbon and phosphorus (Ryther and Dunstan 

1971; Nixon and Pilson 1983; Dale and Prego 2002). The extremely low values of total organic 

phosphorus observed during the first experimental year may be explained by the release of P 

from organic material and its retention in sediment due to an early diagenetic “sink-switching” to 

lithogenic forms (Slomp 1997), mainly Fe-bound P. In the second year, the exponential increase 

of organic phosphorus in the white seabream pond was likely related to deposition rates greater 

than losses from decomposition (Steeby et al. 2004). Organically richer sediment may favour 

benthic remineralization and consequently enhance microphytobenthos production in top-layer 

sediment (Brotas 1990; Gutiérrez et al. 2000), which explains the significant relationship 

between organic carbon and chlorophyll a in Pf (TOC = -0.98 Chl a2 + 60 Chl a + 284; R2 = 

0.83; n = 27; P < 0.05). The disparity between high concentrations of NH4
+, NO3

-, NO2
-, HPO4

2- 

and Si(OH)4 and low concentrations of organic compounds in Pf porewater during periods of 

high temperature, suggests seasonality in mineralization processes probably due to an increase in 

microbial metabolism which contributes for intense nutrient production to porewater (Nowicki 

and Nixon 1985; van Raaphorst et al. 1992; Kristensen 1993; Asmus et al. 2000).  
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The geochemical similarities between fishpond sediments and Ria Formosa intertidal sediments 

(Falcão and Vale 1998; Falcão et al. 2006), associated with high fish survival and high fish 

condition factor values, suggests that for these experimental farming conditions there were no 

environmental constraints within the pond. However when fish biomass and feeding rate 

exceeded 500 g m-3 and 150 kg month-1 respectively, impacts on bottom sediments became 

evident, as settled material, organic matter deposition, nutrients in porewater and 

microphytobenthos production increased substantially, hence bottom sediments and fish quality 

should be watchfully monitored from this point on. This study, which quantifies geochemical 

changes in white seabream ponds and relates it to farming conditions, may be a starting point to 

define acceptable ranges for bottom sediment parameters and, to optimise feeding rates and pond 

carrying capacity for a species whose production in aquaculture may be important due to its high 

commercial value (Ozorio et al. 2006). 
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Abstract 

Water quality is critical for pond management not only because it strongly influences fish 

welfare and growth, but also because it defines the quality of effluent waters discharged back 

into the environment. In semi-intensive production systems, water quality is often dependent on 

the state of the sediments as well on the quality of source water. The main objective of the 

present study was to assess the contribution of benthic mineralization and inflowing water to the 

nutrient availability in a white seabream (Diplodus sargus) production pond. Experiments were 

carried out in a fishpond and in a control pond (without fish), from June 2003 to March 2005. 

Benthic fluxes (diffusive and biologically-mediated fluxes) of inorganic and organic nitrogen 

and phosphorus compounds were estimated. Diffusive fluxes were calculated according to Fick’s 

1st Law, using concentration gradients between porewater and overlying water measured in the 

field, whereas biologically-mediated fluxes were determined in laboratory incubation 

experiments. Estimates of inflowing water’s nitrogen and phosphorus inputs to the system were 

based on the concentration of nutrients in the source water and on water exchange rates. Results 

showed that the input of labile organic matter (e.g. fish feces and feed wastes) over the 2-year 

production cycle led to maximum ammonium and phosphate diffusive fluxes (respectively, 150 ± 

60 and 1.4 ± 0.5 nmol cm-2 d-1) at the end of the trial. Benthic fauna considerably enhanced 

solute transport, since biologically-mediated fluxes were one order of magnitude higher than 

diffusive fluxes. Using data on benthic fluxes, inflowing water composition and other nutrient 

sources and sinks, a nutrient budget was constructed for the fishpond. The budget revealed that 

inflowing water was the major source of nutrients to the pond, accounting for 52% of the 

nitrogen supplied and 70% of the available phosphorus, while sediments accounted for 

respectively, 46% and 29% of the daily nitrogen and phosphorus inputs. This study provided 
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clear evidence that an efficient pond management strongly rely on sediment treatment between 

production cycles and on the optimization of water exchange rates. 

 

1 Introduction 

The rain of organic particles, resulting from uneaten feed, plankton sedimentation and fish 

metabolic wastes influence early diagenesis in earth ponds (Krom et al. 1995; Hargreaves 1998; 

Holmer et al. 2002). Settled organic matter is mineralised, generating nutrients (Hall et al. 1992; 

Mesnage et al. 2007) that are mobilized to the water column or downward to the deeper sediment 

layers (Lerat et al. 1990; Falcão and Vale 1998; Rao and Jahnke 2004; Serpa et al. 2007a).  

 

The dominating transport mechanisms contributing to solute exchange between sediment and 

water column are diffusion and bioturbation (Berner 1980; Helder and Andersen 1987; Rao and 

Jahnke 2004; Nizzoli et al. 2007; Holmer and Heilskov 2008). Diffusive fluxes depend mainly 

on concentration gradients between porewater and overlying water, sediment characteristics and 

microbial activity (Berner 1980; Anschutz et al. 2000; Graca et al. 2006; Valdemarsen et al. 

2009), whereas biologically-mediated fluxes are related to distinct and specific activity patterns 

of benthic organisms (Sandnes et al. 2000; Holmer and Heilskov 2008). As a consequence of 

sediment reworking by benthic fauna an intense mineralization of dissolved and particulate 

compounds is usually found (Aller and Aller 1992; Nizzoli et al. 2007) with enhanced benthic 

nutrient fluxes (Aller and Aller 1992; Sandnes et al. 2000; Falcão and Vale 2003; Holmer and 

Heilskov 2008). 

 

Aside from sediment quality, water column nutrient concentrations in land-based aquaculture 

systems are substantially influenced by the characteristics of source water (Krom et al. 1985a; 



 
Chapter 3.2 

 
 

86 
 

Neori et al. 1989; Krom et al. 1995; Brambilla et al. 2007). In semi-intensive earth ponds, the 

water quality status is maintained by frequent water exchange, which varies as a function of 

stocking densities and water temperature. Thus, inflowing water plays a major role on the quality 

of fishpond water (Hopkins et al. 1993). Moreover, pond water is often discharged back into the 

source environment with little or no treatment, having negative consequences for the adjacent 

aquatic systems (Hopkins et al. 1993; Brambilla et al. 2007). 

 

Quantifying the contribution of the major sources and sinks of nutrients to the water composition 

of semi-intensive systems is extremely important for pond management, because it helps to 

define strategies that ensure optimal water quality within the production ponds and reduce 

environmental impacts (Alongi et al. 2000; Papathyphon et al. 2005; Casillas-Hernández et al. 

2006). The purpose of the present work was to estimate the contribution of benthic nutrient 

mineralization and inflowing water to dissolved nitrogen and phosphorus availability in a white 

seabream (Diplodus sargus) production pond. Being a new species in Mediterranean aquaculture 

(Golomazou et al. 2006; Pérez et al. 2007; Sá et al. 2007, 2008; Serpa et al. 2007b), additional 

research is needed for the optimization of white seabream production in semi-intensive ponds, 

namely on nutrient management. In order to achieve our goal, field and laboratory experiments 

were performed to estimate benthic fluxes (diffusive and biologically-mediated fluxes) and 

source water nutrient inputs. Diffusive fluxes were estimated according to the Fick’s 1st Law 

(Anschutz 2000; Graca et al. 2006), from porewater and overlying water nutrient data collected 

during the 2-year production cycle of white seabream; biologically-mediated fluxes were 

determined in laboratory incubation experiments; and source water inputs were calculated based 

on the chemical composition of inflowing water and on water exchange rates. Additionally, a 

nutrient budget was built up for assessing the relative contribution of benthic mineralization, 

source water and other nutrient sources and sinks, for the N and P availability in fishpond water.  
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2 Material and Methods 

2.1 Description of the system 

The present study was developed at the IPIMAR’s Aquaculture Research Center, located in a 

coastal lagoon (Ria Formosa), at Southeast Portugal (Figure 3.2.1). Experiments were carried out 

in two rectangular earth ponds, with an average surface area of 475 m2 and a volume of 700 m3. 

In May 2003, one of the ponds (Pf) was stocked with 8 g juveniles of white seabream at 6.7 fish 

per m2, while the other (Pnf) was left without fish. Seawater was supplied to the fishpond (Pf) at 

rates varying from 25 to 100 m3 h-1, which corresponds to a 90 to 300% daily water exchange, 

whereas in the control pond (Pnf) water exchange rates were lower, varying from 4 to 10 m3 h-1. 

The fishpond was equipped with aerators (FORCE-7; 1.5 hp) in order to maintain dissolved 

oxygen above critical levels for fish survival (range: 6.3 to 9.6 mg L-1). Fish were fed daily with 

a commercial feed pellet containing 51% of total protein, 29% fat and 1.2% total P, at 1.2% body 

wet weight per day in the first production year, and 0.8% in the second year. Monthly ration 

varied throughout the experiment, between 25 and 350 kg month-1, according to fish biomass and 

feeding response (Serpa et al. 2007b). The input of allochthonous organic matter promoted the 

establishment of significantly different macrobenthic assemblages in the two ponds (Carvalho et 

al. 2007; Carvalho et al. 2009). Polychaetes, and in particular the species Capitella spp. and 

Pseudopolydora paucibranchiata, accounted for more than 90% of benthic organisms abundance 

in Pf, whereas insects (Chironomidae) and bivalves (Cerastoderma spp.) were visibly dominant 

in Pnf (Carvalho et al. 2009).  

 

2.2 Field sampling 
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Sampling was performed in Pf and Pnf during the 2-year period of white seabream production. 

In the first trimester of the experiment, sampling was intensified (June, July and August 2003) 

due to the recent pond construction (May 2003), but from then on, was carried out seasonally, in 

November 2003; March, June, October 2004 and March 2005. In each sampling period, 9 

sediment cores (PVC tubes of 15 cm height and 5 cm diameter) and overlying water samples 

were collected in each pond to measure the concentration gradients between porewater and 

overlying water, and further determine diffusive fluxes under field conditions. Sediment 

sampling was carried out by carefully pushing the open-ended PVC tube into the sediment to 

minimize disturbance of sediment layers, and overlying water was collected 2 cm above the 

sediment surface with pre-cleaned syringes. In addition to earth pond sampling, inflowing water 

samples were collected to determine nutrient concentrations. Immediately after collection, 

samples were refrigerated and transported to the laboratory. 

 

 

 

 

 

 

 

 

Figure 3.2.1 – Location of the Aquaculture Research Center. 
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2.3 Laboratory experiments 

In June and November 2004, additional sediment samples were collected in Pf and Pnf, and 

immediately brought to the laboratory to perform incubation experiments, for evaluating 

biologically-mediated fluxes. The 3 cm upper sediment layer was sectioned and carefully 

transferred to 6 glass cubic (15 cm × 15 cm × 15 cm) incubation chambers (3 replicates per 

pond), to minimize disturbance of physical and chemical gradients as well as biological 

communities. Experiments were carried out at in situ temperatures (June-04: 21º C and 

November-04: 15ºC) to test the influence of biological activity on solute transport. In each 

experiment, sediments were submerged in pond water up to ~10 cm height. All chambers were 

kept at constant temperature and aerated continuously to maintain in situ oxygen levels (> 6 mg 

L-1), because these variables strongly influence sediment-water fluxes (Berner 1980; van der 

Loeff et al. 1984; Helder and Andersen 1987). After a stabilization period (4 h), overlying water 

samples were collected with a pre-cleaned syringe at regular time intervals (30 minutes during 

day time and 1 hour at night), for a 24 hour-period. Concomitantly, porewater samples were 

collected in the upper 2 cm sediment layer by a system of taps on the chambers.  

 

2.4 Analytical procedures 

Sediment samples collected during the production cycle were sliced into 2-cm layers and 

centrifuged for 10 minutes at 3000 r.p.m. (1600 g), to separate porewater. Prior to analysis, 

porewater and overlying water samples from both field and laboratory experiments were filtered 

with 0.45 µm polycarbonate filters. Samples were analysed for ammonium (NH4
+), nitrate (NO3

-) 

, nitrite (NO2
-) and phosphate (HPO4

2-) using a “Skalar” autoanalyser according to the following 

methodology: NH4
+ was determined by indophenol’s blue colour at 630 nm (detection limit - 0.2 
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µM); NO3
- was reduced to NO2

-, by passing the sample through a cadmium column and detection 

of the coloured complex formed with ethylenediamine at 550 nm (detection limit - 0.1 µM); and 

phosphate was determined with a blue antimony complex (detection limit - 0.08 µM). Dissolved 

organic nitrogen (DON) and dissolved organic phosphorus (DOP) were oxidized by potassium 

peroxodisulphate (K2S2O8) in autoclave (1.5 bar; 120º C) as described in Grasshoff (1983) and 

determined in the autoanalyser. Porosity was calculated from sediment weight loss after drying it 

at 105º C (Holmer et al. 2002).  

 

2.5 Calculations 

2.5.1 Diffusive fluxes  

Earth pond sediments were mainly characterized by highly permeable sands (94%). As a result 

of easy water percolation, oxygen penetrated deeper into the sediments, allowing the use of a 

thicker depth resolution (2 cm) for the calculation of diffusive fluxes, in opposition to the 

narrower resolutions (mm) commonly used in fine grained-muddy sediments (Aller and Aller 

1992; Falcão and Vale 1998; Serpa et al. 2007a). The diffusive fluxes (Js) of each solute were 

calculated by applying the Fick’s 1st Law of diffusion adapted to sediment conditions (Berner 

1980; Burdige et al. 1992):  

xCCDJ poss ∆−××−= /)(φ                                                                                                        (1)                                                                                             

where φ is sediment porosity (dimensionless), (Co-Cp) is the concentration gradient (µM) 

between overlying water (Co) and porewater (Cp), ∆x is the distance across the interface where 

concentrations were measured (2 cm), and Ds is the whole sediment diffusion coefficient for each 

solute (cm-2 s-1) corrected for tortuosity (eq. 2): 

( )2ln1/ φ−= os DD                                                                                                                        (2) 
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 in which Do  is the solute diffusion coefficient in seawater (Boudreau 1997). Do values of 

inorganic compounds at different temperatures were extracted from Schulz (2000), whereas 

those of organic compounds (DON and DOP) were calculated from an empirical relation 

between molecular weight and Do given by Burdige et al. (1992) and adjusted to in situ 

temperatures using the Stokes-Einstein equation (Li and Gregory 1974). According to eq. 1, 

positive diffusive fluxes indicate that nutrients are transferred from sediments to the overlying 

water while negative fluxes mean that nutrients diffuse into the sediments.  

 

2.5.2 Biologically-mediated fluxes  

Total nutrient fluxes to overlying water (Ftotal) were determined according to the following 

equation: 

htCF owtotal ×∆∆= /                                                                                                                     (3)                                            

where ∆Cow is the variation of overlying water nutrient concentrations (µM) over the time of the 

experiment (t, in minutes), and h is the height of the water column in the incubation chambers 

(10 cm). This flux reflects both the contribution of diffusion and bioturbation processes. 

Biologically-mediated fluxes (Fbio) were calculated from the difference between Ftotal and the 

diffusive fluxes (Js) determined in the same chamber, using the methodology described above: 

stotalbio JFF −=                                                                                                                             (4) 

 

2.5.3 Nutrient inflow rates 

Daily inputs of dissolved nitrogen (NH4
+, NO2

-, NO3
- and DON) and phosphorus (HPO4

2- and DOP) 

compounds via inflowing water (Nut_inflow; µM d-1) were calculated as follows: 

Nut_inflow
[ ]

inWater
V

inNut
_×=                                                                                                  (5) 
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where Nut corresponds to a specific dissolved compound (NH4
+, NO2

-, NO3
-, DON, HPO4

2- and 

DOP), [Nut]in to the concentrations of dissolved compounds in inflowing water (µM), V is the 

pond volume (m3) and Water_in is the water inflow rate (m3 d-1). 

 

2.6 Data analysis 

Correlation analyses were performed to evaluate relationships between porewater nutrient 

concentrations and temperature (Zar 1999). Similarities between experimental ponds were 

evaluated by non-parametric Wilcoxon tests (Zar 1999).  

 

3 Results 

3.1 Field experiments 

3.1.1 Overlying and inflowing water 

Overlying water NH4
+ (1.2 – 13 µM) and NO3

- (0.05 – 3.6 µM) concentrations were significantly 

higher in the fishpond (Wilcoxon test, n=8, P<0.05), unlike NO2
- (0.05 – 0.7 µM) and DON 

concentrations (0.6 – 16 µM) that showed no significant differences between ponds (Wilcoxon 

test, n=8, P>0.4). Similar HPO4
2- (<0.5 µM) and DOP (<1.6 µM) levels were found in the 

overlying waters of Pf and Pnf (Figure 3.2.2). For both overlying and inflowing water, no 

seasonal variation was observed. Nevertheless, inorganic nutrient concentrations in inflowing 

water followed a similar variation pattern than in Pf and Pnf (Figure 3.2.2).  

 

3.1.2 Porewater  

The low nutrient levels found in the water column of Pf and Pnf, contrasted with concentrations 

measured in porewater, which were up to three orders of magnitude higher (Table 3.2.1).  
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Figure 3.2.2 – Overlying water ammonium (NH4
+), nitrite (NO2

-), nitrate (NO3
-), phosphate 

(HPO4
2-), dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) 

concentrations (µM) in the fishpond (Pf, ♦), control pond (Pnf, ) and inflowing water (Iw, ∗), 

throughout the trial. 

 

♦ Pf     Pnf    ∗ Iw 
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Differences between ponds were evident for NH4
+ and DON (Wilcoxon test, n=8, P<0.05) but 

less significant for the other compounds (Wilcoxon test, n=8, 0.07<P<0.5). During the 

production cycle, no clear seasonal variation pattern was found for most porewater compounds 

in Pf, with the exception of NO2
- and NO3

- that presented a significantly negative relationship 

with temperature (r = -0.57; n=8, P<0.05). Porewater NH4
+ and HPO4

2- concentrations increased 

sharply (≈ 60% to 80%) in Pf during the second year of the experiment, while DON and DOP 

decreased, 12% and 23%, respectively. 

 

Table 3.2.1 – Porewater ammonium (NH4
+), nitrate (NO3

-), nitrite (NO2
-), phosphate (HPO4

2-), 

dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) concentrations 

(mean ± standard deviation) in the upper sediment layers (2 cm) of the fishpond (Pf) and control 

pond (Pnf), during the experiment.  

Year Temp Porosity 
NH4

+ NO3
- NO2

- HPO4
2- DON DOP 

  (ºC) µM 

Pf         

03 

Jun 21 0.35 128 ± 52 0.05 ± 0.01 0.63 ± 0.19 5.2 ± 2.3 398± 1 10 ± 5 

Jul 26 0.50 161 ± 61 3.2 ± 0.1 0.10 ± 0.02 0.05 ± 0.01 420 ± 153 32 ± 10 

Aug 27 0.40 88 ± 27 7.7 ± 2.7 1.6 ± 0.1 0.08 ± 0.01 1767 ± 753 63 ± 31 

Nov 16 0.42 124 ± 24 37 ± 5 4.9 ± 1.5 1.2 ± 0.4 1528 ± 440 89 ± 17 

04 

Mar 19 0.42 48 ± 22 0.05 ± 0.01 2.7 ± 0.6 0.19 ± 0.01 1189 ± 576 46 ± 18 

Jun 27 0.54 775 ± 93 1.7 ± 0.3 2.0 ± 0.2 17 ± 4 1311 ± 330 23 ± 7 

Oct 20 0.49 318 ± 28 24 ± 1 8.1 ± 1.3 26 ± 11 480 ± 52 61 ± 24 

05 Mar 15 0.57 186 ± 59 15 ± 4 4.7 ± 1.4 19 ± 4 624 ± 275 20 ± 8 

Pnf  

03 

Jun 20  0.37 152 ± 22 0.05 ± 0.01 0.53 ± 0.24 2.7 ± 0.6 150 ± 1 4.6 ± 1.6 

Jul 26 0.40 80 ± 30 3.7 ± 1.7 0.23 ± 0.05 0.05 ± 0.01 163 ± 71 38 ± 6 

Aug 26 0.36 61 ± 12 7.3 ± 3.5 2.0 ± 0.3 0.08 ± 0.02 355 ± 147 38 ± 4 

Nov 16 0.39 73 ± 31 4.1 ± 0.8 4.4 ± 0.8 4.2 ± 2.1 786 ± 258 88 ± 28 

04 

Mar 19 0.40 7.5 ± 0.1 0.05 ± 0.01 4.0 ± 0.8 0.17 ± 0.02 752 ± 208 43 ± 4 

Jun 26 0.40 115 ± 7 3.9 ± 0.9 3.3 ± 0.7 7.1 ± 1.0 750 ± 220 32 ± 14 

Oct 20 0.44 76 ± 34 20 ± 5 12 ± 2 13 ± 3 964 ± 271 39 ± 14 

05 Mar 15 0.48 67 ± 24 6.1 ± 1.2 5.3 ± 1.6 13 ± 2 365 ± 138 8.5 ± 2.1 
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3.1.3 Diffusive fluxes  

Throughout the production cycle, NH4
+ fluxes were particularly higher in the fishpond 

(Wilcoxon test, n=8, P<0.05) during the second year of the experiment (Figure 3.2.3), reaching a 

maximum in June-04 (150 nmol cm-2 d-1). For oxidized nitrogen forms, diffusion was directly 

related to temperature, as would be expected from porewater concentrations (Table 3.2.1). 

Diffusive fluxes of NO3
- were lower and even negative (-33 nmol cm-2 d-1) during 

spring/summer, increasing to maximum values during autumn/winter periods (5.1 nmol cm-2 d-1). 

On the other hand, DON fluxes were highest in warmer months (29 nmol cm-2 d-1) and always 

directed out of the sediments (Figure 3.2.4). The transport of HPO4
2- to the water column was 

almost negligible in the first year of the experiment, but then increased sharply, up to 2 orders of 

magnitude, after June 2004 (Figures 3.2.3 and 3.2.4). Minor variations of DOP fluxes were 

found during the 2 years of the experiment (0.54<DOP<1.7 nmol cm-2 d-1).   

 

3.2 Laboratory experiments 

 
3.2.1 Biologically-mediated fluxes 

Biologically-mediated fluxes seemed closely coupled with temperature, since the sediment-water 

transport of most compounds was enhanced, up to 3 fold, at higher temperatures (Table 3.2.2). 

Nevertheless, the effect of bioturbation was more evident in the fishpond. Ammonium (4908 

nmol cm-2 d-1) and DON fluxes (1570 nmol cm-2 d-1) were one order of magnitude higher in Pf 

than in the control pond (Wilcoxon test, n = 12, P<0.05). For HPO4
2-, differences between ponds 

were only found at higher temperatures. In both ponds, biologically-mediated transport was one 

to two orders of magnitude higher than the diffusive fluxes evaluated in the incubation chambers 

(Table 3.2.2).  
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Figure 3.2.3 – Ammonium (NH4
+), nitrate (NO3

-), nitrite (NO2
-) and phosphate (HPO4

2-) 

molecular diffusive fluxes (mean ± standard deviation, nmol cm-2 d-1) in the control pond (Pnf, 

a) and in the fishpond (Pf, b), throughout the trial.  
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Figure 3.2.4 – Dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) 

molecular diffusive fluxes (mean ± standard deviation, nmol cm-2 d-1) in the control pond (Pnf, 

a) and fishpond (Pf, b), throughout the trial. 

 
 
Table 3.2.2 – Ammonium (NH4

+), nitrate (NO3
-), nitrite (NO2

-), phosphate (HPO4
2-), dissolved 

organic nitrogen (DON) and dissolved organic phosphorus (DOP) biologically-mediated fluxes 

(Fbio) and diffusive fluxes (Js) for the fishpond (Pf) and control pond (Pnf) sediments (mean ± 

standard deviation) in incubation chambers at two different temperatures (T). 

 

 

 

 

 

 

 

 

 
 
 

 

Fbio Js 
Porosity 

φ 
nmol cm-2 d-1 nmol cm-2 d-1 

T = 15 ºC T = 21º C T = 15 ºC T = 21º C 

Pf 

NH4
+ 1993 ± 855 4908 ± 908 145 ± 45 233 ± 17 

0.59 ± 0.03 

NO3
- -68 ± 29 23 ± 7 -0.11 ± 0.01 0.25 ± 0.09 

NO2
- 15 ± 5 31 ± 13 -0.15 ± 0.04 0.28 ± 0.09 

HPO4
2- 11 ± 4 64 ± 22 5.2 ± 2.5 1.0 ± 0.5 

DON 600 ± 255 1570 ± 623 8.6 ± 3.9 13 ± 2 

DOP 35 ± 7 102 ± 23 1.7 ± 0.1  3.5 ± 0.1 

Pnf 

NH4
+ 495 ± 187 478 ± 198 14 ± 4 44 ± 20 

0.45 ± 0.04 

NO3
- -31 ± 4 14 ± 5 -0.07 ± 0.03 0.29 ± 0.04 

NO2
- 5.0 ± 1.3 15 ± 7 -0.11 ± 0.01 0.24 ± 0.07 

HPO4
2- 11 ± 2 6.6 ± 2.0 2.6 ± 0.9 0.56 ± 0.24 

DON 245 ± 66 308 ± 96 1.9 ± 0.8 7.4 ± 1.3 

DOP 6.2 ± 2.3 70 ± 20 1.0 ± 0.1 2.3 ± 0.1 
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4 Discussion 

The increasing organic loading throughout the production cycle due to increasing fish biomass 

and feed inputs, contributed largely to bottom sediment enrichment, particularly in the second 

year of the experiment when fish biomass reached 500 g m-3 and the feeding rate was about 150 

kg per month (Serpa et al. 2007b). The addition of labile organic material (e.g. fish feces and 

feed wastes), intensified organic matter breakdown (Lerat et al. 1990; Holmer and Kristensen 

1996; Mesnage et al. 2007; Valdemarsen et al. 2009), leading to higher porewater nutrient 

concentrations in Pf. The decomposition of nitrogen rich labile substrates in fishpond sediments 

(Holmer and Kristensen 1996; Holmer et al. 2003) coupled with the low nitrification rates 

resulting from lower oxygen availability in organically richer sediments (Holmer et al. 2003) 

were most likely the causes for higher porewater NH4
+ concentrations in the second year of the 

experiment. Reducing sediment conditions resulting from organic matter accumulation (Serpa et 

al. 2007b) promoted phosphorus desorption, leading to a sharp increase (80%) in porewater 

concentrations over the second production year (van Raaphorst and Kloosterhuis 1994; Slomp et 

al. 1998). The reverse process, phosphorus retention, occurred during the first year presumably 

due to the generation of fresh iron oxides under oxidized sediment conditions (Slomp 1997; 

Falcão et al. 2006; Serpa et al. 2007a). Following the increase of NH4
+ and HPO4

2- 

concentrations in porewater, the decrease of DON and DOP during the second year of the 

experiment suggests the decomposition of more refractory organic matter (Belias et al. 2007). 

 

 
Concentration gradients between sediments and overlying water drive to a great extent the 

exchanges across the interface (Hall et al. 1992; Holmer et al. 2002; Wilson and Brennan 2004; 

Belias et al. 2007; Mesnage et al. 2007). In the present study, the increase in NH4
+ and HPO4

2- 
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porewater concentrations observed in the second production year (Table 3.2.1) was coupled to an 

increase in the diffusive fluxes of these compounds (Figure 3.2.3). Likewise, NO2
- and NO3

- 

fluxes (Figure 3.2.3) were inversely related with temperature, as would be expected from 

porewater concentrations (Table 3.2.1). The highest NO2
- and NO3

- fluxes were observed during 

colder periods (NO2
-: 1.2 nmol cm-2 d-1; NO3

-: 5.1 nmol cm-2 d-1) probably because nitrification 

processes are driven by high oxygen availability (Hall et al. 1996; Hargreaves 1998; Asmus et al. 

2000). Conversely, higher temperatures promoted organic matter mineralization, leading to 

higher DON fluxes (≈30 nmol cm-2 d-1) in warmer periods (Burdige and Zheng 1998; Wilson and 

Brennan 2004). For both inorganic and organic compounds, the estimated diffusive fluxes in the 

white seabream pond were lower than the ones measured in intensive fishponds and marine cage 

farms but similar to those reported for coastal ecosystems (Table 3.2.3). Lower stocking 

densities (≈1.5 kg m-3 at the end of the production cycle) and feed inputs (25 to 350 kg month-1) 

in this semi-intensive fishpond system probably accounted for these results, confirming the 

environmental sustainability of farming conditions (Serpa et al. 2007b). 

 

The presence of benthic fauna in fishpond sediments strongly induces the transport of solutes 

from porewater to overlying water (van der Loeff et al. 1984; Aller and Aller 1992; Nizzoli et al. 

2007; Holmer and Heilskov 2008). As a result, biologically-mediated fluxes were up to one 

order of magnitude higher than diffusive fluxes (Table 3.2.2). Biological activities, such as 

burrowing, particle-reworking, ventilation and irrigation, promote solute transfer across the 

sediment-water interface (Nizzoli et al. 2007; Holmer and Heilskov 2008), either by increasing 

sediment diffusion coefficients (Berner 1980) and changing sediment porosity or, by porewater 

flushing through animal burrows (Nizzoli et al. 2007). The magnitude of these effects depends 

mostly on faunal abundance and functional traits, i.e. life habits, mobility, feeding type (Aller 

and Aller 1992), which is consistent with the results presented herein since biogeochemical 
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dissimilarities (higher porewater concentrations and benthic fluxes) were found among 

experimental ponds with significantly different biological assemblages (Carvalho et al. 2007; 

Carvalho et al. 2009). In fact, the highly abundant polychaetes in fishpond sediments have been 

reported to enhance upward NH4
+ and DON fluxes (Burdige and Zheng 1998; Nizzoli et al. 

2007), by stimulating aerobic reactions such as organic matter oxidation and other early 

diagenetic reactions like nitrification/denitrification (Aller and Aller 1992; Nizzoli et al. 2007; 

Holmer and Heilskov 2008). On the other hand, the higher HPO4
2- fluxes in Pf during summer 

months were most likely related to adsorption/desorption processes rather than to differences in 

macrofauna assemblages. Low oxygen availability during periods of higher temperatures has 

been referred to promote P release from organically-richer sediments in the Ria Formosa lagoon 

(Falcão et al. 2006; Serpa et al. 2007a). In both ponds, the effect of bioturbation was magnified 

at higher temperatures as a result of increased animal activity (van der Loeff et al. 1984; Aller 

and Aller 1992), which promoted nutrient fluxes between sediments and overlying water. 
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Table 3.2.3 – Brief review of diffusive fluxes (nmol cm-2 d-1) in different types of ecosystems. 

Nutrient Ecosystem Value Reference 

NH4
+ 

Marine fishpond 63 – 84 Blackburn et al. (1988) 

Bay of Cadiz (Spain) 3660 Forja et al. (1994) 

Skagerrak Sea (N-E North Sea) -6.1 –  4.5 Hall et al. (1996) 

Intensive fishpond (France)  523 – 7650 Lefebvre et al. (2001) 

Gazi Bay (Kenya) -648 – 355 Mwashote and Jumba (2002) 

Mussel farm (New Zealand) 192 – 765 Giles et al. (2006) 

Baltic Sea 60 – 120 Graca et al. (2006) 

Thau lagoon (France) 20 – 1000 Mesnage et al. (2007) 

Ria Formosa lagoon (Portugal) 10 – 104 Serpa et al. (2007a) 

NO2
- 

Skagerrak Sea (N-E North Sea) -2.1 – 0.47 Hall et al. (1996) 

Gazi Bay (Kenya) -140 – 144 Mwashote and Jumba (2002) 

 NO3
- 

Fourleague Bay (USA) 1680 (mean) Teague et al. (1988) 

Skagerrak Sea (N-E North Sea) -14 – 30 Hall et al. (1996) 

Gazi Bay (Kenya) -190 – 100 Mwashote and Jumba (2002) 

Mussel farm (New Zealand) 7.4 – 52 Giles et al. (2006) 

HPO4
2- 

Fourleague Bay (USA) 708 (mean) Teague et al. (1988) 

Marine cage farm(Sweden) 16 – 675 Holby and Hall (1991) 

Skagerrak Sea (N-E North Sea) -1.5 – 10 Hall et al. (1996) 

Intensive fishpond (France) 24 – 1392 Lefebvre et al. (2001) 

Gazi Bay (Kenya) -190 – 180 Mwashote and Jumba (2002) 

Baltic Sea 7 – 14 Graca et al. (2006) 

Thau lagoon (France) 2 – 96 Mesnage et al. (2007) 

Ria Formosa lagoon (Portugal) 0.2 – 8 Serpa et al. (2007a) 

DON Chesapeake Bay (USA) 4 – 42 Burdige and Zheng (1998) 

 

 

4.1 Nutrient budgets 

Besides benthic fluxes, the other main sources of dissolved N and P to semi-intensive fishpond 

systems include, source water, fish excretion and dissolution of uneaten feed (Krom et al. 1985b; 
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Neori et al. 1989; Krom 1995; Hargreaves 1998; Brambilla et al. 2007). Conversely, nutrients 

are rapidly consumed by phytoplankton and microphytobenthos (Jordan et al. 1991; Hargreaves 

1998) and a substantial fraction is lost from the system by outflowing water, especially in ponds 

with continuous water exchange (Lefebvre et al. 2001). 

 

Nutrient budgets are helpful tools for understanding the relative contribution of the former 

nutrient sources and sinks to the water composition of fish production ponds (Krom et al. 1985b; 

Holby and Hall 1991; Hall et al. 1992). Since the impact of fish biomass on the pond 

environment, particularly on bottom sediments, was more relevant in the second production year, 

the daily contributions of the different nutrient sources and sinks were calculated on a yearly 

basis, in order to understand how sources and sinks interact with each other (Table 3.2.4 and 

Figure 3.2.5 - top). Benthic fluxes represented, on average, 46% of the daily N inputs in the first 

and second production years (i.e. 16.14 and 24.49 µM d-1, respectively), which is indicative that 

sediments play a significant role in pond nutrient dynamics, and are thereby crucial for the 

quality of pond water (Helder and Andersen 1987; Blackburn et al. 1988; Sandnes et al. 2000; 

Nizzoli et al. 2007). The contribution of sediments to P availability was very similar between the 

two production years (respectively, 0.56 and 0.60 µM d-1), most likely due to the high retention 

of this element in pond sediments (Slomp 1997; Slomp et al. 1998). The major source of 

dissolved nutrients to the system was inflowing water, which supplied on average 52% (19 to 27 

µM d-1) of dissolved N in pond water and most (65% in first year and 76% in the second 

production year) of the available P. The higher contribution of inflowing water in the second 

production year was probably related to higher water exchange rates as a consequence of higher 

fish biomass and feed inputs in this period (Serpa et al. 2007b). Fish excretion and dissolution of 

uneaten feed represented a small fraction (respectively 1.6% and 1.1%) of total N and P inputs to 

the system most likely as a result of the low stocking densities in the fishpond (ca. 1.5 kg m-3 at 
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the end of the production cycle). Nitrogen (75-89%) and phosphorus (82-93%) losses occurred 

principally via outflowing water, however 2.74 to 8.7 µM d-1 (7-18%) of dissolved N and 0.11 to 

0.27 µM d-1 (11-22%) of dissolved P, was consumed by primary producers. When comparing the 

results of the fishpond budget with the one constructed for the pond without fish (Table 3.2.4 and 

Figure 3.2.5-bottom), it becomes evident that the contribution of the different nutrient sources 

and sinks was higher in the fishpond, as would be expected from the higher water exchange rates 

and higher amount of organic matter resulting from fish activity (Serpa et al. 2007b).  

 

As the water quality of semi-intensive fishpond systems seems dependent on the sediment redox 

status and on water exchange rates, pond management should consider these aspects to avoid 

poor water quality that may compromise commercial fish production. The treatment of bottom 

sediments (e.g. drying) between production cycles is particularly important to promote the 

decomposition of organic matter accumulated as a result of fish activity, helping to prevent water 

quality problems in the next cycle. The fact that the water composition profile within the 

production pond was similar to that of the control pond and of inflowing water, confirms the 

inexistence of limiting fish growth conditions as referred by Serpa et al. (2007b), suggesting that 

the present farming conditions (i.e. water exchange rates, feeding rates, stocking density) may be 

used as guidelines for the optimization of white seabream production in semi-intensive systems. 

As these systems are often managed intuitively, this information may be important to the 

aquaculture sector in order to ensure the sustainability of semi-intensive fish farms. 
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Table 3.2.4 – Description of the main sources and sinks of dissolved N and P in the fishpond: source data (annual averages) and brief 

explanation of the calculations. Values for the control pond are given between brackets. 

Sources Description 
N P 

Unit Reference data 
Year 1 Year 2 Year 1 Year 2 

Diffusive fluxes 

Estimated from daily diffusive fluxes calculated in the field 
experiment, and extrapolated for the entire pond by assuming 
constant fluxes in space. 

27 

(9.9) 

93 

(21) 

1.0 

(0.5) 

2.3 

(1.2) 
nmol cm-2 d-1 Present study 

Biologically-mediated fluxes 
Estimated from nutrient fluxes measured in the laboratory 
experiments and extrapolated for the entire pond area. 

 

3093 

(356)  

4536 

(1202) 

117 

(9)  

113 

(20) 
nmol cm-2 d-1 Present study 

Inflowing water 

Estimated by multiplying the daily average water inflow rates 
(dm3 d-1) by the nutrients concentrations (µM) in source water .  

 

19 

(1.2)  

27 

(1.6) 

1.0 

 (0.08) 

2.1 

(0.13) 
µM d-1  Present study 

Fish excretion (urinary + gill) 
and dissolution of uneaten feed 

Microcosm experiments were carried out in order to estimate 
white sea bream excretion and feed dissolution rates on an hourly 
basis. The results of these experiments were then extrapolated for 
the entire system by taking into account the number of daily 
meals (3) and stocking density in the production pond. 

0.4  0.8 0.01  0.02 µM d-1 fish-1 
PROMAR (2006) 

– EU Project  

Sinks        

Phytoplankton uptake 

Data obtained from in situ productivity incubation experiments 
using the oxygen method. Hourly oxygen production rates were 
converted to N and P uptake rates by the Redfield ratio, and 
extrapolated for one day by assuming a photoperiod of 12 hours.   

1.8  

(0.57) 

7.0 

(1.4) 

0.05 

(0.02)  

0.17 
 

(0.06) 
µM d-1 PROMAR (2006) 

– EU Project 

Microphytobenthos uptake 

Data obtained from in situ productivity incubation experiments 
(oxygen method) in the Ria Formosa lagoon. Since chlorophyll a 
concentrations were similar to those found in Pf and Pnf 
sediments (6-15 µg Chl a g-1), similar uptake rates were assumed 
and extrapolated for one day (by assuming an average 
photoperiod of 8 hours d-1) and for the entire pond surface.   

3.0  

(1.4) 

5.4 

(2.9) 

0.19 

(0.09)  

0.32 
 

(0.16) 
µM m-2 h-1 

OARRE (2001) – 
EU Project  

Outflowing water Estimated by multiplying the daily average water outflow rates 
(m3 d-1) by the nutrients concentrations (µM) in Pf and Pnf. Water 
outflow rates were assumed equal to inflow rates because pond 
water level changes slightly. 

23 

(1.4) 

26 

(1.5) 

 1.3 

(0.09) 

1.5 
 

(0.08) 
µM d-1 Present study 
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Figure 3.2.5 – Average daily contributions (µM d-1) of different nutrient sources (benthic fluxes, 

inflowing water, fish excretion and dissolution of uneaten food) and sinks (phytoplankton 

uptake, microphytobenthos uptake and outflowing water), for dissolved nitrogen (N) and 

phosphorus (P) availability in pond water, Pf (top) and Pnf (bottom), during the first//second year 

of the trial.  
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5 Conclusions 

This study clearly provided evidence of the importance of bottom sediments and water exchange 

rates to the water quality of semi-intensive fish production systems. Therefore, monitoring 

sediment quality and optimizing water exchange rates are possible approaches toward efficient 

pond management. The budget is a starting point for the development of a mathematical model 

to predict water and sediment quality in fishponds under different farming conditions. Such an 

ecological model may be a useful tool for defining practical management strategies to maintain a 

healthy pond environment and minimize the environmental impacts of inshore aquaculture.  
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Abstract 

The biogeochemistry of fish earth ponds is a complex subject due to the interactions between 

several water column and sediment compounds, particularly nutrient species. Models can 

improve our ability to understand such complexity. This paper combines existing knowledge on 

biogeochemical processes in earth ponds into a model that calculates the concentrations of the 

compounds that are more likely to negatively affect fish production and cause undesirable 

environmental impacts, such as nitrogen, phosphorus, and oxygen. Aside from inorganic nutrient 

forms, organic compounds were included in the model due to their relevance for the nutrient 

cycles in aquatic systems. The model couples the pelagic and benthic compartments, due to the 

importance of sediment-water interactions in shallow earth ponds. In this first approach in 

modelling the fishpond environment, the feedbacks between cultivated species and the 

environment were not accounted for in the model, to reduce its complexity and easily identify 

the interactions between water column and sediment variables and processes. The model was 

calibrated for an earth pond without fish, using data sets collected during a 2-year trial. The 

variability of water column compounds was generally well predicted (p<0.01), however the 

model could not fully reproduce ammonium and dissolved organic phosphorus concentrations. In 

sediments, organic phosphorus was accurately simulated (p<0.05) while nitrogen and carbon 

pools were occasionally over or under-estimated. Model limitations regarding sediment variables 

are most likely related to the effects of benthic primary producers and macrofauna activity in 

earth ponds biogeochemistry. Future applications of the model developed herein include its 

coupling to a fish Dynamic Energy Budget (DEB) model to be used as a predictive tool for 

fishpond management. 
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1 Introduction 

The biogeochemical processes occurring in earth ponds are essentially the same as in other 

aquatic systems (Chapelle 1995; Wang et al. 2003; Burford and Lorenzen 2004; Kittiwanich et 

al. 2007; Serpa et al. 2007a, b). However, in shallow earth ponds, the interactions between 

pelagic and benthic systems are more intense because most autochthonous particulate organic 

matter is rapidly settled, being mineralized in the top sediment layer (Hargreaves 1998; Serpa et 

al. 2007b). Organic matter decomposition generates a pool of organic and inorganic nutrients 

(Kittiwanich et al. 2007; Worsfold et al. 2008), which are intensely transported to the water 

column, becoming available for the biota (Kittiwanich et al. 2007; Worsfold et al. 2008).  

 

Although several studies on earth pond biogeochemistry have been produced (Hargreaves 1998; 

Alongi et al. 1999; Montoya et al. 2000; Lefebvre et al. 2001; Burford et al. 2003; Burford and 

Lorenzen 2004; Boyd et al. 2006; Muendo 2006; Xinglong and Boyd 2006; Mukherjee et al. 

2008), linkage between early diagenetic processes and the interactions between compounds are 

complex and poorly understood. Furthermore, biogeochemical processes are affected by abiotic 

(e.g. dissolved oxygen, temperature, pH and light intensity) and biotic parameters (e.g. structure 

of microbial and benthic macrofauna communities) that interact in a complex way (Moriarty 

1997; Hargreaves 1998; Peng et al. 2007), making it difficult to predict the variability of the 

different compounds.  

 

Mathematical models can improve our ability to understand the complexity of such systems by 

integrating physical, chemical and biological processes occurring in earth ponds. Models are also 

powerful tools to predict the effects of management strategies on pond biogeochemistry 

(Montoya et al. 2000; Li and Yakupitiyage 2003; Burford and Lorenzen 2004; Piedcausa et al. 
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2010), providing useful information on how to improve water quality and to reduce the 

environmental impacts of fish farms. Several mathematical models have been developed for 

aquaculture ponds (Piedrahita et al., 1984; Kochba et al. 1994; Culberson and Piedrahita 1996; 

Montoya et al. 2000; Lefebvre et al. 2001; Li and Yakupitiyage 2003; Jiménez-Montealegre et 

al. 2002a; Burford and Lorenzen 2004; Mukherjee et al 2008). Some of these models were 

specifically used for analysing nitrogen (Kochba et al. 1994; Hargreaves 1997; Jiménez-

Montealegre et al. 2002a; Burford and Lorenzen 2004) and phosphorus dynamics (Montoya et al. 

2000), while less effort has been made to develop more comprehensive predictive models 

(Piedrahita et al., 1984; Lefebvre et al. 2001; Li and Yakupitiyage 2003; Mukherjee et al. 2008).  

 

The general objective of this work was to develop a mathematical model for the main 

biogeochemical processes in fish earth ponds, namely for the elements that are more likely to 

negatively affect fish production and cause undesirable environmental impacts due to their 

excess, such as nitrogen (N) and phosphorus (P), or deficit, such as oxygen (DO) (Serpa and 

Duarte 2008). Given the importance of sedimentation and diffusion processes in shallow aquatic 

systems, the model developed herein couples the pelagic and benthic compartments to simulate 

the interactions between them. However, feedbacks between fish and the environment were not 

considered in this work because this would substantially increase model complexity, making it 

difficult to calibrate the model and evaluate its performance regarding the simulation of other 

biogeochemical processes. The specific objectives of this study were to: 

(1) evaluate model sensitivity to changes in individual processes;  

(2) identify the main sources and sinks of nutrients in the system;  

(3) identify those processes needing further study, 
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The model described herein is the first step towards a complete fish pond model after its 

coupling with a Dynamic Energy Budget (DEB) model. 

 

2 Methodology 

 
2.1 Description of the system 

Data for model calibration was collected during a 2-year white seabream growth trial (Chapter 

3), carried out in the earth ponds of the IPIMAR Aquaculture Research Center (ARC), located in 

the Ria Formosa lagoon (Southeast Portugal). In this trial, a rectangular earth pond with a surface 

area of 495 m2 (33 m × 15 m) and 1.5 m depth (height of the water column) was used as a 

control pond (without fish). The model developed herein was calibrated against water column 

and sediment data from this pond. The water flow rate to the pond varied from 1 to 3 L s-1, 

depending on the lagoon tidal cycles and water temperature.  

 

2.2 Model description 

Given the small dimensions and the absence of stratification in the pond, a zero dimensional 

(0D) model was developed, assuming water column and sediments as two homogeneous boxes. 

The biogeochemical model consists of a pelagic and a benthic module describing the main 

processes occurring in the water column and sediments of earth ponds.  

  

2.2.1 Pelagic module 

In the pelagic system there were five state variables for particulate matter: Total Particulate 

Matter (TPM), Particulate Organic Matter (POM) and its carbon, nitrogen and phosphorus 

components (POC, PON and POP, respectively); three variables for dissolved organic forms: 

Dissolved Organic Carbon, Nitrogen and Phosphorus (DOC, DON and DOP, respectively); and 
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four variables for inorganic nutrients: Ammonium (NH4
+), Oxidized Nitrogen forms (NOx), 

Phosphate (HPO4
2-) and Dissolved Oxygen (DO).  

 

The main source of particulate matter for the system was inflowing water. A fraction of the total 

particulate matter (TPM) entering the system, is organic. Although in shallow systems, most part 

of particulate organic matter (POM) is settled to the bottom (Hargreaves 1998), the model 

considers that a fraction of POC, PON and POP may be either mineralized or dissolved in the 

water column.  

 

A conceptual model for the main N and P forms and processes in the water column is shown in 

Figure 4.1. Unlike in other studies, DON was included in the present model because it represents 

a large fraction (60–69%) of total dissolved N in aquatic systems (Kittiwanich et al. 2007; 

Worsfold et al. 2008), particularly on fishponds, due to the addition of formulated feeds (Burford 

and Lorenzen 2004). Part of DON is mineralized by proteolitic, heterotrophic bacteria to NH4
+ 

(Hargreaves 1998), which undergoes a series of transformations. In well oxygenated pond 

waters, nitrification is dominant over denitrification, whereas the latter process becomes more 

significant under anoxic conditions (Chapelle 1995). Because only 40% of oxidized nitrogen 

forms (NOx) has been reported to be reduced to NH4
+ (Chapelle 1995), the model also considers 

denitrification into gaseous forms such as, dinitrogen (N2) and nitrous oxide gas (N2O). 

 

In what concerns P compounds, besides POP and phosphate (HPO4
2-), which is usually the most 

abundant form of dissolved P in aquatic systems (Worsfold et al. 2008), DOP was also included 

in the pelagic module not only because this P-form can be at least as abundant as inorganic P 

(Worsfold et al. 2008), but also because it can be further mineralized into HPO4
2- (Kittiwanich et 

al. 2007).  
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Since most of the biogeochemical processes occurring in the water column (e.g. organic matter 

mineralization, nitrification and denitrification) are not only temperature-dependent but also 

oxygen-dependent (Chapelle et al. 1995), the model also simulates the concentrations of 

dissolved oxygen (DO) in the water column. 

 

 

 

Figure 4.1 – Conceptual model for nitrogen (N) and phosphorus (P) transformations in the water 

column and sediments of fish earth ponds. POP: particulate organic phosphorus; DOP: dissolved 

organic phosphorus; HPO4
2-: phosphate; Pads: inorganic phosphorus adsorbed to sediments; 

PON: particulate organic nitrogen; DON: dissolved organic nitrogen; NH4
+: ammonium; NOx: 

oxidized nitrogen forms. Adapted from Worsfold et al. (2008). 

 

2.2.2 Benthic module 

Most of the variables and processes described for the pelagic module were common to the 

benthic system (Figure 4.1). However, there are some specificities in this module. For instance, 



 
Chapter 4 

 
 

114 
 

the fraction of POC, PON and POP that is not mineralized or dissolved is now buried into the 

sediments. Moreover, as P reacts with a wide variety of compounds, being taken up and released 

from biogenic and abiogenic particles (van Raaphorst and Kloosterhuis 1994), there is a new 

state variable for P in this module to account for the fraction of inorganic phosphorus that is 

sorbed onto sediment particles (Pads) (Chapelle 1995, Serpa et al. 2007a). Phosphorus 

sorption/desorption processes are not only controlled by temperature and oxygen availability 

(Chapelle 1995, Slomp et al. 1998; Falcão et al. 2006; Serpa et al. 2007a), but also by sediment 

composition, particularly in what concerns to iron contents (Slomp et al. 1998; Falcão et al. 

2006; Serpa et al. 2007a, b). 

 

Depending on the concentration gradients between pond sediments and overlying water, 

dissolved compounds are subjected to diffusion processes according to the Fick’s First Law, 

being transferred to the water column or into the sediments (Lefebvre et al. 2001).  

 

Hereafter, chemical species include the subscript “w” or “s” with respect to water column and 

sediments (including porewater), respectively.   

 

2.3 Model equations 

Appendixes A and B show the symbols, units and differential equations for every state variable 

in the pelagic and benthic modules, respectively. Rate equations and parameters used to describe 

biogeochemical processes in the model are presented in Appendixes C and D, respectively.   

 

2.4 Model implementation 
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The 0D model developed in this work was implemented with EcoDynamo (Pereira et al. 2006), a 

software that uses object-oriented programming (OOP). Each object simulates several state 

variables (Table 4.1) and processes, and interacts with the other objects by means of a shell or 

server (Pereira et al. 2006). The shell interface allows the user to define the model setups – time 

steps, output formats (file, graphic and tables), objects to be used and variables to be visualized 

(Pereira et al. 2006). As input data, the model required complete data sets on average daily water 

temperature and wind speed (Figure 4.2), water inflow and outflow rates (assumed constant over 

time = 0.001 m3 s-1), and particulate matter and nutrient concentrations in inflowing water (cf. 

Chapters 3.1 and 3.2). Whenever there were incomplete data sets for forcing functions, 

interpolations were carried out using the available information. After definition of initial and 

boundary conditions and input of model parameters, state variables were simulated over time 

(time step = 6 minutes) using the Euler integration method. Simulations were run for a period of 

651 days, which corresponds to the trial’s duration (cf. Section 2.1).  

 

2.5 Model calibration  

The present model was calibrated with water column and sediment data collected in an earth 

pond without fish (cf. – Section 2.1). Environmental parameters measured during the former trial 

were used as forcing functions for the present model (cf. – Section 2.4) and state variables values 

at the beginning of the experiment were used as initial values for the simulations. Calibration 

was based on parameter values determined experimentally or taken from the literature (Appendix 

D), adjusted until achieving the best fit between simulated and observed data.  

 

2.6 Sensitivity analysis 

In order to evaluate which model parameters and initial conditions are more likely to affect each 
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variable, a sensitivity analysis was performed to the model. This analysis consisted in changing 

one parameter at a time by ± 20%, comparing the results with a standard simulation using the 

calibrated parameters set (Appendix D) and expressing the difference in percentage variation 

with respect to the standard simulation.  

 

Table 4.1 – EcoDynamo objects implemented for earth ponds and respective state variables. 

Object type Object name Object outputs 

Forcing 

functions 

Wind object Wind speed 

 Water temperature 

object 

Water temperature 

State variables Suspended matter 

object 

Total particulate matter (TPMw), particulate 

organic matter (POMw), particulate organic 

carbon (POCw), particulate organic nitrogen 

(PONw) and particulate organic phosphorus 

(POPw) 

 Dissolved substances 

object 

Dissolved inorganic (NH4
+

w, NOx w) and organic 

nitrogen (DONw), phosphate (HPO4
2-

w), organic 

phosphorus (DOPw) and oxygen (DOw) 

 Sediment 

biogeochemistry object 

Porewater dissolved inorganic (NH4
+

s, NOxs) 

and organic nitrogen (DONs), phosphate 

(HPO4
2-

s), organic phosphorus (DOPs) and 

oxygen (DOs) 

Sediment organic carbon (POCs), nitrogen 

(PONs) and phosphorus (POPs), and inorganic 

phosphorus adsorbed to sediments (Pads) 



                                                                                                                             
Chapter 4 

 
 

117 
 

0

5

10

15

20

25

30

35
W

a
te

r 
te

m
pe

ra
tu

re
 (º

C
)

0

2

4

6

8

10

12

14

16

18

20

1
8-

0
6-

2
0

0
3

1
8-

0
7-

2
0

0
3

1
8-

0
8-

2
0

0
3

1
8

-0
9

-2
0

0
3

1
8

-1
0

-2
0

0
3

1
8

-1
1

-2
0

0
3

1
8

-1
2

-2
0

0
3

1
8-

0
1-

2
0

0
4

1
8-

0
2-

2
0

0
4

1
8-

0
3-

2
0

0
4

1
8-

0
4-

2
0

0
4

1
8-

0
5-

2
0

0
4

1
8-

0
6-

2
0

0
4

1
8-

0
7-

2
0

0
4

1
8

-0
8

-2
0

0
4

1
8

-0
9

-2
0

0
4

1
8

-1
0

-2
0

0
4

1
8-

1
1-

2
0

0
4

1
8

-1
2

-2
0

0
4

1
8-

0
1-

2
0

0
5

1
8-

0
2-

2
0

0
5

1
8

-0
3

-2
0

0
5

W
in

d 
sp

ee
d 

(m
 s-1

)
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 – Average daily water temperature (ºC) and wind speed (m s-1) in an earth pond 

without fish, from June 2003 to March 2005. 

 

2.7 Statistical analysis 

Model performance was evaluated by model II regressions between predicted and observed 

values of state variables, as described by Laws and Archie (1981). According to these authors, a 

good model fit (p<0.05), implies that the slope of the regressions is not different from one and 

the y-intercept is not different from zero. A slope that significantly differs from one indicates a 
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difference between observed and simulated values which is proportional to the observed values. 

If the slope is not significantly different from one but the y-intercept significantly differs from 

zero there is a systematic difference between observations and simulations.  

 

3 Results 

 
3.1 Model calibration 

 
3.1.1 Water column variables 

The comparison between model simulations and observations for water column variables is 

presented in Figures 4.3 and 4.4. Model II regressions between predicted and measured values 

(Table 4.2) suggest that the model was able to accurately predict (p<0.01) the variability of 

POMw and HPO4
2-

w in pond water. Nevertheless, a systematic overestimation was found for 

these variables (Figures 4.3 and 4.4), since the slope of the regressions was not significantly 

different from one but the y-intercept significantly differs from zero. A significant (p<0.01) part 

of TPMw, NOxw, DONw and DOw variability was also explained by the model (Table 4.2), even 

though it could under or over estimate the concentrations of these compounds (Figure 4.3 and 

4.4). Water column NH4
+ and DOP were poorly simulated (p>0.05), despite the model could 

reproduce the majority (5 out of 8) of data points (Figure 4.4). 
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Figure 4.3 – Predicted (line) and observed (diamonds) values of total particulate matter (TPM, 

mg L-1) and particulate organic matter (POM, mg L-1) in the water column of an earth pond 

without fish.  

 
 
3.1.2 Porewater variables 

Figures 4.5 and 4.6 compare predicted and measured values of porewater N and P compounds. 

According to the regression analysis, the model presented reduced accuracy (p>0.05) for most 

porewater variables (Table 4.3). Nevertheless, it was able to explain most of NH4
+ and HPO4

2- 

variability (p<0.05). This exercise was not carried out for porewater oxygen because this variable 

was not measured in field experiments. 

 

3.1.3 Sediment variables 

The results of the regression analysis for sediment variables are presented in Table 4.4. The 

model explained a significant part of sediment organic phosphorus (POPs) variability (p<0.05), 

but could not fully predict (p>0.05) sediment organic nitrogen (PONs) and carbon (POCs) 

concentrations (Figure 4.7).  

          Model          Observed 
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Figure 4.4 – Predicted (blue line) and observed (red diamonds and line) ammonium (NH4
+

w), 

oxidized nitrogen forms (NOxw), dissolved organic nitrogen (DONw), phosphate (HPO4
2-

w), 

dissolved organic phosphorus (DOPw) and dissolved oxygen (DOw) concentrations in the water 

column of an earth pond without fish.  

          Model        /            Observed 
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         Table 4.2 – Results of model II regressions for water column variables.  

 
 TPMw POMw NH4

+
w NOXw HPO4

2-
w DONw DOPw DOw 

 mg L-1 mg L-1 µM µM µM µM µM mg L-1 

slope 

Value 0.76 1.00 0.97 0.20 1.10 0.47 2.86 0.44 

Upper 95% limit 0.98 1.22 -0.56 0.33 3.79 0.70 -0.20 0.49 

Lower 95% limit 0.59 0.83 -1.92 0.07 0.37 0.27 -0.51 0.39 

y-intercept 

Value 5.19 0.22 0.56 0.43 0.11 3.19 -0.90 4.17 

Upper 95% limit 12.28 0.81 8.56 0.57 0.25 5.49 1.04 4.54 

Lower 95% limit -3.35 -0.48 4.81 0.29 -0.41 0.49 0.86 3.79 

p  Value <0.01 <0.01 0.29 0.01 0.04 <0.01 0.48 <0.01 
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Figure 4.5 – Predicted (line) and observed ± standard deviation (diamonds) ammonium (NH4
+

s), 

oxidized nitrogen forms (NOxs) and dissolved organic nitrogen (DONs) porewater concentrations 

in an earth pond without fish.  
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Figure 4.6 – Predicted (line) and observed ± standard deviation (diamonds) phosphate (HPO4
2-

s) 

and dissolved organic phosphorus (DOPs) porewater concentrations in an earth pond without 

fish.  

 

Table 4.3 – Results of model II regressions for porewater variables. 

 
 NH4

+
s 

µM 

NOXs 

µM 

HPO4
2-

s 

µM 

DONs 

µM 

DOPs 

µM 

slope 

Value 0.64 -0.05 0.72 0.60 0.34 

Upper 95% limit 1.26 0.24 1.26 1.62 1.93 

Lower 95% limit 0.02 -0.35 0.37 0.06 -0.47 

y-intercept 

Value 21.76 4.47 3.86 281.04 24.62 

Upper 95% limit 76.74 7.33 5.56 588.43 54.08 

Lower 95% limit -33.22 1.69 1.16 -26.35 -33.27 

p  Value 0.04 0.67 <0.01 0.06 0.33 
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Table 4.4 – Results of model II regressions for sediment variables. 

 
 POCs 

µg g-1 dw 

PONs 

µg g-1 dw 

POPs 

µg g-1 dw 

slope 

Value 0.09 0.05 0.75 

Upper 95% limit 0.22 0.12 1.10 

Lower 95% limit -0.04 -0.03 0.39 

y-intercept 

Value 3320.27 31.25 0.13 

Upper 95% limit 3727.93 36.29 38.0 

Lower 95% limit 2903.14 26.18 -37.8 

p Value 0.15 0.20 <0.01 

 

 

3.2 Sensitivity analysis 

A summary of the sensitivity analysis performed to the model for water column, porewater and 

sediment variables is presented in Tables 4.5, 4.6 and 4.7, respectively. Model parameters, initial 

conditions and forcing functions producing a variation lower than 4% were omitted. This 

analysis has one particularity in what concerns water inflow (Water_in) and outflow (Water_out) 

rates. Instead of individually testing the sensitivity of model variables to these rates, their 

combined effect was evaluated  (i.e. Water exchange) because as the water level in the earth 

ponds is constant over time, if the water inflow rate increases so does the outflow rate.     
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Figure 4.7 – Predicted (line) and observed ± standard deviation (diamonds) organic carbon 

(POCs), nitrogen (PONs) and phosphorus (POPs) content in the sediments of an earth pond 

without fish.  

 

3.2.1 Water column variables 

A 20% variation (increment and decrement) in model parameters had practically no effect on 

TPMw concentrations, but POMw was positively affected by water exchange rate (Water 

exchange) and negatively affected by its sinking velocity (ν’), which produced on average a 5% 

          Model         Observed 
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variation on this variable. Water column NH4
+ concentrations were negatively influenced by 

pond volume (V) and water exchange rate. A 20% increase in pond volume resulted in a 10% 

decrease in NH4
+

w levels (Table 4.5), while a similar variation in the water exchange rate 

resulted in a 9% variation in the concentrations of this solute. Oxidized nitrogen forms, on the 

other hand, were mainly affected by parameters related to nitrification-denitrification processes, 

such as knitw, kdenitw and kdenitO2w (Appendix D). A 20% increase in denitrification-related 

parameters (kdenitw and kdenitO2w) led to a 5 to 6.4% decrease in NOx levels, whereas knitw 

produced the inverse effect (Table 4.5). Other water column variables were only slightly affected 

by model parameters. 

 

Table 4.5 – Sensitivity analysis for water column state variables. Results are expressed as the % 

of variation relative to the average value in the standard simulation.  

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2 Porewater variables 

Parameter  NH4
+

w NOxw 

V 
+20% -9.7 -3.0 

-20% 11 4.8 

Water exchange 
+20% -9.2 2.8 

-20% 14 -1.9 

knitw 

+20% -1.7 4.6 

-20% 1.8 -4.8 

kdenitw 
+20% 1.9 -6.4 

-20% -2.2 7.4 

kdenitO2w 
+20% 1.5 -5.0 

-20% -1.8 6.0 
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Table 4.6 summarizes the sensitivity of each porewater variable to selected model parameters. 

Porewater organic N and P compounds were substantially affected by POM sinking velocity (ν’ ) 

and dissolution (αdiss). A 20% increase in the latter parameter, led to a 14 to 19% increase on 

porewater DON and DOP, while inorganic N and P forms were practically insensitive to this 

parameter (< 1% variation). POM sinking velocity (ν’ ), on the other hand, affected almost all 

porewater compounds, with the exception of NH4
+

s and HPO4
2-

s. Sediment characteristics, in 

particular sediment density (Sed_density) and sediment-water ratio (SedWaterRatio) had a strong 

effect on porewater variables, except for NH4
+

s that was mainly affected by porosity (φ). 

Porewater NH4
+ was also sensitive to diffusion processes, since a 20% increase on the oxygen 

diffusion coefficient (DsDO) increased NH4
+

s concentrations by 16%, while a 20% decrease in 

the ammonium diffusion coefficient (DsNH4
+) increased its concentrations by 5%. Porewater 

oxidised nitrogen forms (NOxs) were strongly affected by nitrification-denitrification related-

parameters (knits, kdenits and kdenitO2s), but temperature can be equally determinant for these 

compounds since a 20% variation on water temperature produced a 23 to 33% change in NOx 

porewater concentrations. Temperature also had a significant impact on dissolved oxygen 

availability (DOs) in porewater (maximum variation of 36%). In fact, these two variables seemed 

closely related since they were generally affected by the same model parameters. For instance, 

the sediment oxygen diffusion coefficient (DsDO) affected both NOx and DO porewater 

concentrations; however, the impact of this parameter was higher on NOxs levels (average 34% 

variation) than on DOs (20% variation). Both variables were also substantially influenced by 

DON mineralization-related parameters, such as MinNd and kminO2d. A 20% increase in MinNd 

led to a 15% decrease on average NOxs and DOs levels, whereas kminO2d produced the reverse 

effect. With regards to HPO4
2-

s, concentrations were mostly affected by adsorption/desorption 

processes, since a 20% variation on k’a (adsorption rate in anoxic conditions), kd (desorption rate) 

and Pmax (maximum P adsorption capacity) and on the initial concentrations of Pads produced, 

on average, a 20% variation on this variable.  
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Table 4.6 – Sensitivity analysis for porewater state variables. Results are expressed as the % of 

variation relative to the average value in the standard simulation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter  NH4
+

s NOxs DONs HPO4
2-

s DOPs DOs 

Pond_depth 
+20% -1.0 -17 7.4 -2.6 2.4 -16 

-20% 1.0 26 -9.9 3.8 -3.6 25 

V 
+20% -0.4 7.0 -4.4 -0.1 -5.9 7.3 

-20% 0.4 -6.4 4.4 0.1 5.9 -6.6 

Sed_density 
+20% -1.0 15 -15 -1.0 -12 13 

-20% 1.0 -16 23 1.0 18 -14 

Water exchange 
+20% 1.0 -5.4 5.0 0 5.1 -5.5 

-20% -1.0 7.9 -6.6 0 -6.9 8.2 

φ 
+20% 10 18 12 0.4 8.9 9.6 

-20% -11 -21 -9.0 -0.4 -6.3 -13 

SedWaterRatio 
+20% -1.0 -16 21 20 22 -16 

-20% 1.1 25 -21 -20 -22 24 

kT 
+20% 0.1 -4.0 2.7 0 3.4 -4.0 

-20% -0.1 4.1 -2.5 0 -3.3 4.2 

k’a 
+20% 0 0 0 -17 0 0 

-20% 0 0 0 25 0 0 

Pmax 
+20% 0 0 0 -17 0 0 

-20% 0 0 0 26 0 0 

kd 
+20% 0 0 0 20 0 0 

-20% 0 0 0 -20 0 0 

DsNH4
+ 

+20% -4.5 -3.3 0 0 0 0 

-20% 4.8 3.6 0 0 0 0 

DsDO 
+20% 16 37 -1.7 0.3 0 21 

-20% -16 -30 1.7 -0.3 0 -20 
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Table 4.6 – (continued)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter  NH4
+

s NOxs DONs HPO4
2-

s DOPs DOs 

knits 
+20% -0.1 19 0 0 0 -0.3 

-20% 0.1 -19 0 0 0 0.3 

kdenits 

+20% 0 -16 0 0 0 0 

-20% 0 25 0 0 0 0 

knitO2s 
+20% 0.1 23 0 0 0 0.2 

-20% -0.2 -16 0 0 0 -0.3 

minNd 
+20% 0.1 -15 0 0 0 -15 

-20% -0.2 23 0 0 0 22 

kminO2d 
+20% -0.1 18 0 0.3 0 17 

-20% 0.2 -18 0 -0.3 0 -17 

ν’ 
+20% 0.1 -11 15 0 12 -9.5 

-20% -0.2 16 -16 0 -13 13 

αdiss 
+20% 0 -1 14 0 19 -1 

-20% 0 1 -14 0 -19 1 

Initial conditions         

NH4
+

s 
+20% 4.1 5.7 0 0 0 -0.2 

-20% -4.1 -5.7 0 0 0 0.2 

Pads 
+20% 0 0 0 21 0 0 

-20% 0 0 0 -20 0 0 

PONs 
+20% 0 -4.0 0 0 0 -5.4 

-20% 0 4.5 0 0 0 6.5 

Forcing functions        

Water temperature 
+20% -1.1 -23 -1.2 0 -1.2 -24 

-20% 1.0 33 1.0 0 1.0 36 
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3.2.3 Sediment variables 

The organic C, N and P contents in earth pond sediments were mostly sensitive to POM sinking 

velocity and water temperature (Table 4.7). A 20% increase in ν’  increased POCs, PONs and 

POPs in 5 to 16%, whereas a similar variation on water temperature negatively affected sediment 

variables, on average by 24%. Sediment characteristics influenced organic C, N and P 

concentrations in different ways. For instance, a 20% increase in sediment density tends to 

decrease the organic C, N and P content of pond sediments, while porosity (φ) positively affected 

these variables. Other model parameters also influenced PONs, POPs and POCs but at a lower 

extent (< 8%) than the parameters referred above.  

 

Table 4.7 – Sensitivity analysis for sediment state variables. Results are expressed as the % of 

variation relative to the average value in the standard simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter  POCs PONs POPs 

V 
+20% -2.1 -6.7 -5.7 

-20% 2.1 7.1 5.8 

Sed_density 
+20% -5.1 -16 -14 

-20% 7.6 23 21 

Water exchange 
+20% 1.8 5.9 4.8 

-20% -2.4 -7.7 -6.5 

φ 
+20% 4.6 14 13 

-20% -3.5 -11 -9.8 

v' 
+20% 5.1 16 14 

-20% -5.4 -17 -15 

Forcing functions     

Water temperature 
+20% -25 -23 -23 

-20% 36 30 31 
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4 Discussion 

Like other mathematical models that have successfully predicted water quality in earth ponds 

(Piedrahita et al. 1984; Hargreaves 1997; Jiménez-Montealegre et al. 2002a; Burford and 

Lorenzen 2004), the model developed herein was able to reproduce the variability of most water 

column variables, with the exception of NH4
+

w
 and DOPw (Figure 4.4 and Table 4.2). As the 

variation pattern predicted by the model was principally determined by the concentrations of 

these compounds in inflowing water (cf. Chapter 3.2), the results suggest that the influence of 

biogeochemical processes on NH4
+

w and DOPw concentrations, may superimpose the 

contribution of inflowing water, to water quality.  

 

The intensification of upward NH4
+ fluxes (up to 50%) as a result of increased biological activity 

at the pond bottom during warmer periods (Riise and Roos 1997; Hargreaves 1998), might 

explain the model inability to predict the NH4
+

w summer peaks since diffusion-related 

parameters (φ and DsNH4
+) were constant over time. To test this hypothesis the previous 

parameters were increased to values reported in the literature (Aller 1992; Chapelle 1995), but no 

substantial improvement (< 3% increase) was observed on model results. Besides increasing 

solute exchange, sediment reworking by benthic fauna also promotes organic matter 

mineralization at the sediment-water interface, which often induce an increase of water column 

NH4
+ concentrations, during summer months (Hargreaves 1998). However, this process does not 

seem to explain the model inability to reproduce NH4
+

w at warmer periods because after 

increasing benthic N mineralization rates (MinNs and MinNds), no substantial increase (< 2%) 

was observed in NH4
+

w. Likewise, neither water column mineralization or any other 

biogeochemical process considered in the pelagic module (i.e. nitrification and denitrification), 
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could have been responsible for the lower NH4
+

w predictions in summer months, because when 

increasing MinRate and kdenitw or decreasing knitw, the model remained unable to predict NH4
+

w 

concentrations. Thus, the alternative explanation for these findings is sediment resuspension. 

Wind-driven water turbulence in shallow earth ponds or benthic fauna activity may increase 

NH4
+ concentrations in the water column by promoting its desorption from sediment particles 

(Riise and Roos 1997; Hargreaves 1998). Although in the present study, sediment resuspension 

was not calculated due to the lack of data on bottom currents, this process can be easily included 

in future studies because it is already implemented in the EcoDynamo software (Duarte et al. 

2007). One hypothesis for the model overestimation of NH4
+

w concentrations in November 2003 

and March 2004 (Figure 4.4) would be primary producers consumption, however the low 

chlorophyll a concentrations in pond water (<3.3 µg L-1) (Serpa, unpublished results), exclude 

phytoplankton uptake. Green macroalgae (Enteromorpha spp.), on the other hand, could have 

been responsible for NH4
+

w uptake because their biomass increases in the Ria Formosa lagoon 

during the autumn and spring seasons (Aníbal 1998). Moreover, macroalgal photosynthetic 

activity might explain the discrepancy between measured and predicted DOw concentrations in 

March 2004. The higher oxygen availability in field conditions presumably promoted 

nitrification processes (Hargreaves 1997, 1998; Burford and Lorezen 2004), leading to a NOxw 

peak that was underestimated by the model. In March 2004, the model also inadequately 

predicted a maximum in DOPw concentrations, reducing the accuracy of the simulations. This 

high value traduces a peak in inflowing water DOP concentrations (cf. Chapter 3.2), which was 

probably consumed by the biota since DOP can be used as a source of P via enzymatic 

hydrolysis and/or bacterial decomposition (Sañudo-Whilhemy 2006). 

 

Particulate organic matter (POMw) was simulated with high accuracy (p<0.01; Table 4.2), which 

is extremely pertinent because settled organic material is the most important source of porewater 
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nutrients in earth ponds (Hargreaves 1998). This idea was also supported by the results of the 

sensitivity analysis since most porewater variables were strongly affected by POM sinking 

velocity (ν’ ). Dissolved organic compounds (DONs and DOPs) were particularly sensitive to 

POM dissolution (Table 4.6), in agreement with what has been described by Hargreaves (1998) 

and Worsfold et al. (2008). According to these authors, the hydrolysis of POM, including settled 

phytoplankton cells, is the main source of porewater dissolved organic N and P compounds in 

aquatic systems. Although this process was accounted for the model, the variability of DONs and 

DOPs concentrations was not well reproduced (Figures 4.5 and 4.6), increasing as organic N and 

P accumulated in sediments (Figure 4.7). A possible explanation for these results is the absence 

of bioturbation effects in the model, because the activity of benthic organisms may promote the 

decrease in DONs and DOPs concentrations through the intensification of mineralization and 

diffusion processes (Burdige and Zheng 1998), or act as source of these compounds as a result of 

animal excretion (Burdige and Zheng 1998).   

 

In opposition, the variability of NH4
+

s concentrations was predicted with reasonable accuracy, 

except in March and June 2004 (Figure 4.5) when these values were, respectively, over and 

underestimated by the model. Ammonium adsorption to negatively charged sediment colloids 

(Berner 1980; Hargreaves 1998) and bottom seepage (Boyd 1990) have been referred as sinks 

for porewater NH4
+, and might explain the extreme low value measured in March 2004. 

However, as seepage is reduced over time (Boyd 1990), the last hypothesis might be set aside 

because as ponds had been recently constructed (May 2003), its effects should have been 

particularly noticeable at the beginning of the experiment. On the other hand, the higher NH4
+

s
 

concentrations measured in June 2004 could have been related to increased benthic fauna activity 

in warmer periods (cf. Chapter 3.2), since bioturbation is known to stimulate organic matter 

mineralization (Aller and Aller 1992; Nizzoli et al. 2007; Holmer and Heilskov 2008). However, 
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as porewater NH4
+ was weakly affected by parameters related to mineralization (Table 4.6), the 

model could not reproduce the effects of bioturbation on this process. What seems to dictate 

NH4
+

s concentrations in the model is sediment-water oxygen diffusion (Table 4.6). An increase in 

the sediment oxygen diffusion coefficient (DsDO), increases DOs concentrations (Table 4.6), 

which in turn promotes mineralization processes (Appendix A), leading to an increase in NH4
+

s. 

As DO diffusion across the sediment-water interface strongly depends on benthic fauna activities 

such as ventilation and irrigation (Aller and Aller 1992; Nizzoli et al. 2007), the constant value 

assumed for DsDO presumably prevented the model to simulate the NH4
+

s peak in June 2004. In 

earth ponds, maximum NH4
+

s
 concentrations during periods of higher temperatures are usually 

related to low porewater oxygen solubility since anaerobic conditions promote denitrification 

processes (Hargreaves 1997, 1998). From the denitrification equation used in the model 

(Appendix C, eq. 43-44) it would be expected that low DOs concentrations (Figure 4.8) would 

lead to increased NH4
+

s concentrations at higher temperatures. However, the low porewater NOx 

concentrations predicted by the model must have limited denitrification. Low oxygen predictions 

(<0.1 mg L-1, Figure 4.8) after June 2004 prevented the model to accurately reproduce NOxs 

concentrations, since oxygen availability also restricts nitrification rates (Appendix C, eq. 45-

46). The inexistence of an extra source of oxygen in the model, either from benthic fauna (cf. 

Chapter 3.2) or microphytobenthos photosynthetic activity (Serpa et al. 2007b), is an hypothesis 

for low oxygen predictions (Figure 4.8). The relationship between porewater NOx and DO 

concentrations is supported by the results of the sensitivity analysis, since several parameters 

related to oxygen-dependent processes (e.g. nitrification, DO diffusion and DON mineralization) 

substantially affected both variables (Table 4.6).  
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Figure 4.8 – Predicted dissolved oxygen porewater (DOs) concentrations in an earth pond 

without fish.  

 

According to the model results, oxygen availability also influenced porewater HPO4
2- 

concentrations. In the sensitivity analysis (Table 4.6), HPO4
2-

s was deeply affected by parameters 

related to adsorption/desorption processes (e.g. k’a, Pmax and kd). The fact that the adsorption 

coefficient for anoxic conditions (k’a) produced a more pronounced effect on HPO4
2-

s
 

concentrations than the one for oxic conditions (ka), suggests that DOs concentrations (Figure 

4.8) were below the oxygen threshold value for P adsorption under anoxic conditions (< 0.1 mg 

L-1), after June 2004. The overestimation of HPO4
2-

s concentrations during the first year of the 

experiment, suggests that the adsorption rates in field conditions were higher than those 

calculated by the model, probably because higher oxygen availability in bottom sediments 

promotes the formation of iron oxides, trapping P into sediments (van Raaphorst and 

Kloosterhuis 1994; Slomp et al. 1998; Serpa et al. 2007b).  

 

A better model fit was found for organic P in bottom sediments than for carbon and nitrogen 

(Figure 4.7; Table 4.4). The continuous accumulation of POCs and PONs (Figure 4.7) suggests a 
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positive balance between their sources (organic matter deposition) and sinks (mineralization and 

dissolution). Conversely, in field conditions, PONs was extremely low during most of the 

experiment, pointing to a faster degradation kinetics than in the model (Dale and Prego 2002). 

Another possible explanation is that sediment organic nitrogen might have incorporated in the 

biota (Jiménez-Montealegre et al. 2002a). In March 2005, the sedimentation of N compounds 

exceeded decomposition processes, presumably as a result of lower microbial efficiency in 

poorly oxygenated organically richer sediments (Moriarty 1977; Avnimelech et al. 1992, 

Avnimelech 1999), which led to a PONs peak that was not predicted by the model. The 

discrepancy between predicted and measured POCs may be associated to microphytobenthos 

activity. This hypothesis is in line with the findings of other authors that found a close link 

between the organic C content of aquatic sediments and benthic primary production (Gutiérrez et 

al. 2000; Serpa et al. 2007b). Bioturbation may also introduce POCs variations since benthic 

fauna play an important role in the supply as well as in the mineralization of organic matter in 

bottom sediments (Heilskov and Holmer 2001; Holmer and Heilskov 2008). Considering the 

potential effects of benthic primary producers and benthic fauna activity on pond 

biogeochemistry further combined experimental and modelling studies on these processes are 

required to improve model performance.  

 

Using the average daily predicted N and P fluxes for the 2-year simulation period, a model-based 

nutrient-budget approach was followed to identify the main sources and sinks of nutrients in the 

system (Figure 4.9 and 4.10). Most (>50%) dissolved N compounds available in pond water 

were supplied by inflowing water, unlike what was previously estimated in a nutrient budget 

constructed for the same pond (cf. Chapter 3.2), in which sediment-water transport was the main 

source of dissolved N to the system. The differences between the results of the two approaches 

may be related to an overestimation of biologically-mediated fluxes in the previous study since 
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these fluxes were extrapolated from a laboratory experiment carried out at two different 

temperatures, or to the fact that no chemical transformations were considered in the former 

budget. For dissolved P compounds (Figure 4.10), the model predicted that the major source of P 

to the system was inflowing water, similarly to what was estimated in the budget presented in 

Chapter 3.2, but the relative contributions differed between studies. In both approaches, the 

major pathway of N and P removal from the system was effluent water, even though other sinks, 

namely phytoplankton and microphytobenthos nutrient uptake, were considered in the budget 

presented in Chapter 3.2. 

 

 

Figure 4.9 – Average daily nitrogen fluxes (µM N d-1), for the 2-year simulation period, in an 

earth pond without fish. 
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Figure 4.10 – Average daily phosphorus fluxes (µM P d-1), for the 2-year simulation period, in 

an earth pond without fish. 
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NH4
+

s production, unlike what was reported for other aquatic systems (Chapelle 1995; 

Kittiwanich et al. 2007). The low oxygen availability predicted by the model might account for 

these differences (Figure 4.8), since it promotes denitrification over nitrification (Appendix C, 

eq. 43-46). Adsorption/desorption processes was a pathway of inorganic P removal, since 

average daily adsorption fluxes (472.2 µM P d-1) were higher than desorption fluxes (471.8 µM 

P d-1), as described by Chapelle (1995) in a Mediterranean coastal lagoon. 

 

Besides biogeochemical processes, the water and sediment quality in earth ponds, might also be 

affected by the pond structural features (e.g. height of the water column and volume) and by 

operational parameters such as, water exchange rate (Hargreaves 1998; Burford and Lorenzen 

2004). The effects of these parameters on water and sediment variables were tested with the 

sensitivity analysis (Tables 4.5, 4.6 and 4.7). Increasing pond volume and water exchange rates 

by 20% promoted the reduction of NH4
+

w, on average by 10%, mainly due to a dilution effect, 

whereas pond depth had little influence on water column variables. In what concerns the 

sediments, a 20% increase in pond depth was found to negatively affect NOxs and DOs 

concentrations by 25%, whereas pond volume and water exchange rates affected mainly the 

organic C, N and P contents of bottom sediments, although in a divergent way. While, a 20% 

increase in pond volume reduced the organic C, N and P contents of bottom sediments by 2%, 

7% and 6%, respectively, an identical variation in water exchange rate led to an increase in 

sedimentary compounds because increasing the water flow promotes the increase of organic 

suspended matter that is “trapped” by deposition within the pond. Information on pond design 

and management is particularly relevant for Environmental Impact Assessment (EIA) studies for 

the implementation of new aquaculture units, to ensure the maximization of fish production and 

minimization of environmental impacts.   
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In summary, the approach followed in this work resulted in a better understanding of earth pond 

dynamics, and was crucial for identifying some of the processes (e.g. primary productivity, 

sediment resuspension and bioturbation) that should be further investigated to overcome model 

limitations and to ensure its future application to other systems.  

 

5 Conclusions 

The model developed herein simulated fairly well the water and sediment quality in an earth 

pond without fish, constituting a basis for understanding the biogeochemistry of fish earth ponds. 

During calibration it became clear that, in general, changes in model parameters would not 

substantially improve model performance, which suggests that further studies are needed on the 

effects of unaccounted processes such as sediment resuspension as well as primary producers 

and benthic fauna activity, on nutrient dynamics. Future applications of the present model 

include its linkage to a fish Dynamic Energy Budget (DEB) model, for which this work will be 

particularly helpful, since the results of the sensitivity analysis will facilitate model calibration. 

The similarities between an earth pond without fish and a wastewater treatment pond (Peng 

2007) also make this model eligible to be used in this type of systems, to help increasing the 

removal efficiencies of particulate matter and dissolved N and P compounds. 
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Appendix A – General differential equations for the state variables in the pelagic module. The 

subscript w stands for water column variables and processes. 

 
Total particulate matter  – TPM w (mg L-1) 

 

TPMoutPOMTPMdepTPMin
dt

dTPM
w

w −−−= min                                                                        (1) 

 

TPMin  

 

Total particulate matter inflow rate 
 

mg L-1 time-1 
 

 

TPMdep Total particulate matter deposition rate 

POMw min Water column particulate organic matter mineralization  

TPMout Total particulate matter outflow rate 

Particulate organic matter  – POMw (mg L-1) 

 

POMoutPOMPOMdisPOMdepPOMin
dt

dPOM
ww

w −−−−= min                                               (2) 

 

POMin  

POMdep 

 

Particulate organic matter inflow rate  

Particulate organic matter deposition rate 

 

 

 

POMwdis 

POMwmin 

Water column particulate organic matter dissolution 

Water column particulate organic matter mineralization 

mg L-1 time-1 

POMout Particulate organic matter outflow rate  

Water column particulate organic carbon  – POCw (mg L-1) 

 

POCoutPOCdisPOCPOCdepPOCin
dt

dPOC
ww

w −−−−= min                                                     (3)

                                   

POCin  Particulate organic carbon inflow rate   

 POCdep  Particulate organic carbon deposition rate 

POCwdis 

POCwmin 

POCout  

Water column particulate organic carbon dissolution 

Water column particulate organic carbon mineralization  

Particulate organic carbon outflow rate 

mg L-1 time-1 
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Appendix A – (continued) 

Water column dissolved organic carbon – DOCw (µM) 

 

DOCoutDOCrDifDOCSedWate
Cmass

disPOC
DOCin

dt

dDOC
w

ww −−±+= min                                (4)

                                  

DOCin  

POCwdis 

Dissolved organic carbon inflow rate  

Water column particulate organic carbon dissolution 

µM time-1 

µM time-1 

g mol-1 

µM time-1 

Cmass  

DOCSedWaterDif 

Carbon  molar mass 

Dissolved organic carbon sediment-water diffusion 

DOCwmin  

DOCout  

Water column dissolved organic carbon mineralization   

Dissolved organic carbon outflow rate 

µM time-1 

µM time-1 

Water column particulate organic nitrogen  – PONw (mg L-1) 

 

PONoutPONdisPONPONdepPONin
dt

dPON
ww

w −−−−= min                                                    (5)

                                  

PONin  Particulate organic nitrogen inflow rate   

 PONdep  Particulate organic nitrogen deposition rate 

PONwdis 

PONwmin 

PONout  

Water column particulate organic nitrogen dissolution 

Water column particulate organic nitrogen mineralization 

Particulate organic nitrogen outflow rate 

mg L-1 time-1 

 

Water column dissolved organic nitrogen  – DONw (µM) 

 

DONoutDONrDifDONSedWate
Nmass

disPON
DONin

dt

dDON
w

ww −−±+= min                               (6)

                                  

DONin  

PONwdis 

Dissolved organic nitrogen inflow rate  

Water column particulate organic nitrogen dissolution 

µM time-1 

µM time-1 

g mol-1 

µM time-1 

Nmass  

DONSedWaterDif 

Nitrogen  molar mass 

Dissolved organic nitrogen sediment-water diffusion 

DONwmin  

DONout  

Water column dissolved organic nitrogen mineralization   

Dissolved organic nitrogen outflow rate 

µM time-1 

µM time-1 

 

 



 
Chapter 4                                                                                                      

 
 

143 
 

Appendix A – (continued) 

Water column ammonium – NH4
+

w (µM) 

 

outNHNitriffSedWaterDiNHDenitDON
Nmass

PON
inNH

dt

dNH
www

ww +++
+

−−±+++= 444
4 min

min

     
(7)                                  

 

NH4
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Ammonium inflow rate 

Water column particulate organic nitrogen mineralization  

 

µM time-1 

µM time-1 

g mol-1 

µM time-1 

µM time-1 

Nmass 

DONwmin 

Denitw 

Nitrogen  molar mass 

Water column dissolved organic nitrogen mineralization  

Water column denitrification 

NH4
+SedWaterDif  

Nitrif w  

NH4
+out 

Ammonium sediment-water diffusion  

Water column nitrification 

Ammonium outflow rate 

µM time-1 

µM time-1 

µM time-1 

Water column nitrogen oxidized forms – NOxw (µM) 

 

outNONredDenitfSedWaterDiNONitrifinNO
dt

dNO
xwwxwx

wx −−−±+=                                                           

(8)                                   

NOxin  

Nitrif w  

Oxidized nitrogen forms inflow rate  

Water column nitrification 

 

 

µM time-1 NOxSedWaterDif Oxidized nitrogen forms sediment-water diffusion 

Denitw  

Nredw 

NOx out 

Water column nitrate reduction to ammonium 

Water column nitrate reduction to gaseous forms 

 Oxidized nitrogen forms outflow rate 

 

 

Water column particulate organic phosphorus  – POPw (mg L-1) 

 

POPoutPOPdisPOPPOPdepPOPin
dt

dPOP
ww

w −−−−= min                                                                       (9)                                  

 

POPin   

 

Particulate organic phosphorus inflow rate 

 

 

 POPdep Particulate organic phosphorus deposition rate 

POPwdis 

POPwmin 

POPout  

Water column particulate organic phosphorus dissolution 

Water column particulate organic phosphorus mineralization 

Particulate organic phosphorus outflow rate 

mg L-1 time-1 

 

 



 
Chapter 4                                                                                                                    

 
 

144 
 

Appendix A – (continued) 

Water column dissolved organic phosphorus  – DOPw (µM) 

 

DOPoutDOPrdifDOPSedWate
Pmass

disPOP
DOPin

dt

dDOP
w

ww −−±+= min                                  (10)

                                   

DOPin   

POPwdis 

Pmass 

DOPSedWaterDif 

DOPwmin 

DOPout  

Dissolved organic phosphorus inflow rate  

Water column particulate organic phosphorus dissolution 

Phosphorus molar mass 

Dissolved organic phosphorus sediment-water diffusion 

Water column dissolved organic phosphorus mineralization 

Dissolved organic phosphorus outflow rate 

µM time-1 

µM time-1 

g mol-1 

µM time-1 

µM time-1 

µM time-1 

Water column phosphate – HPO4
2-

w (µM) 

 

outHPOfSedWaterDiHPODOP
Pmass
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w
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2
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HPO4
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HPO4
2-SedWaterDif 

HPO4
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Phosphate inflow rate  

Water column particulate organic phosphorus mineralization   

Water column dissolved organic phosphorus mineralization 

Phosphate sediment-water diffusion  

Phosphate outflow rate 

 

 

µM time-1 

 

 

Water column dissolved oxygen – DOw (mg L-1) 

 

DOoutConsNitrifConsMinDifDOSedWaterDifDOAirWaterDOin
dt

dDO
ww
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DOin  
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Dissolved oxygen inflow rate 

Dissolved oxygen air-water diffusion 

Dissolved oxygen sediment-water diffusion 
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Dissolved oxygen outflow rate 

 

 

mg L-1 time-1 
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Appendix B – General differential equations for the state variables in the benthic module. The 

subscript s stands for sediment variables and processes. 

  Organic carbon in sediments – POCs (µg g-1 dw) 

 

disPOCPOC
depthSeddensitySed

depthPond
POCdep

dt

dPOC
ss

s −−
×

×= min
__

_
                                   (13) 

 

POCdep  

Pond_depth  

Sed_density 

Sed_depth    

POCsmin 

POCsdis 

 

Particulate organic carbon deposition rate  

Height of the water column 

Sediment density 

Sediment layer depth 

Sediment organic carbon mineralization  

Sediment organic carbon dissolution  

 

mg L-1 time-1 

dm 

g dm-3 

dm 

µg g-1 time-1 

µg g-1 time-1 

  Porewater dissolved organic carbon – DOCs (µM) 

 

minss
s DOCrDifDOCSedWate

Cmass

tioSedWaterRa
disPOC

dt

dDOC
−±×=                                   (14) 

 

POCsdis 

SedWaterRatio 

Cmass 

DOCSedWaterDif 

DOCsmin 

 

Sediment organic carbon dissolution  

Ratio between sediment mass and porewater volume  

Carbon molar mass 

Dissolved organic carbon sediment-water diffusion  

Sediment dissolved organic carbon mineralization  

 

µg g-1 time-1 

g L-1  

g mol-1 

µM time-1 

µM time-1 

  Organic nitrogen in sediments – PONs (µg g-1 dw) 

 

disPONPON
depthSeddensitySed

depthPond
PONdep

dt

dPON
ss

s −−
×

×= min
__

_
                                 (15) 
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Sed_density 
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PONsdis 

 

Particulate organic nitrogen deposition rate  

Height of the water column 

Sediment density 

Sediment layer depth 

Sediment organic nitrogen mineralization  

Sediment organic nitrogen dissolution  

 

mg L-1 time-1 

dm 

g dm-3 

dm 

µg g-1 time-1 

µg g-1 time-1 
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Appendix B – (continued) 

  Porewater dissolved organic nitrogen – DONs (µM) 

 

minss
s DONrDifDONSedWate

Nmass

tioSedWaterRa
disPON

dt

dDON
−±×=                                   (16) 

 

PONsdis 

SedWaterRatio 

Nmass 

DONSedWaterDif 

DONsmin 

 

Sediment organic nitrogen dissolution  

Ratio between sediment mass and porewater volume  

Nitrogen molar mass 

Dissolved organic nitrogen sediment-water diffusion  

Sediment dissolved organic nitrogen mineralization  

 

µg g-1 time-1 

g L-1  

g mol-1 

µM time-1 

µM time-1 

  Porewater ammonium – NH4
+

s (µM) 

 

ssss
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Sediment denitrification 

Ammonium sediment-water diffusion  

Sediment nitrification 

 

µg g-1 time-1 
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µM time-1 

µM time-1 

µM time-1 

  Porewater oxidized nitrogen forms – NOx
 
s (µM) 

 

ssxs
sx NredDenitfSedWaterDiNONitrif

dt

dNO
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Nitrif s  

NOxSedWaterDif  

Denits  

Nreds 

 

Sediment nitrification  

Oxidized nitrogen forms sediment-water diffusion  

Sediment nitrate reduction to ammonium 

Sediment nitrate reduction to gaseous forms 

 

 

µM time-1 
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Appendix B – (continued) 

  Organic phosphorus in sediments – POPs (µg g-1 dw) 

 

disPOPPOP
depthSeddensitySed

depthPond
POPdep

dt

dPOP
ss

s −−
×

×= min
__

_
                                      (19)                                             
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Sediment organic phosphorus mineralization  
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mg L-1 time-1 

dm 

g dm-3 
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  Porewater dissolved organic phosphorus – DOPs (µM) 

 

minss
s DOPrDifDOPSedWate

Pmass

tioSedWaterRa
disPOP

dt

dDOP
−±×=                                        (20) 

 

POPsdis 

SedWaterRatio 

Pmass 

DOPSedWaterDif 
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Sediment organic phosphorus dissolution  

Ratio between sediment mass and porewater volume  

Phosphorus molar mass 

Dissolved organic phosphorus sediment-water diffusion  

Sediment dissolved organic phosphorus mineralization  

 

µg g-1 time-1 

g L-1  

g mol-1 

µM time-1 

µM time-1 

  Porewater phosphate – HPO4
2-

s (µM) 

 

PadsorpfSedWaterDiHPOPdesorpDOP
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dt
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2-SedWaterDif  
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Sediment organic phosphorus mineralization  

Ratio between sediment mass and porewater volume  

Phosphorus molar mass 

Sediment dissolved organic phosphorus mineralization  

Phosphate desorption  

Phosphate sediment-water diffusion  

Phosphate adsorption  

 

µg g-1 time-1 
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µM time-1 

µM time-1 

µM time-1 

µM time-1 
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Appendix B – (continued) 

  Phosphate adsorbed to sediment particles – Pads (µg g-1 dw) 

 

Pdesorp
tioSedWaterRa

Pmass
Padsorp

dt

dPads −×=                                                                                       (22) 

 

Padsorp 

Pdesorp  

Pmass 

SedWaterRatio 

 

Phosphate adsorption  

Phosphate desorption  

Phosphorus molar mass 

Ratio between sediment mass and porewater volume  

 

µM time-1 

µg g-1 time-1 

g mol-1 

g L-1 

  Porewater dissolved oxygen – DOs (mg L-1) 

 

ConsNitrifConsMinDifDOSedWater
dt

dDO
ss
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DOSedWaterDif 

MinsCons  

Nitrif sCons 

Dissolved oxygen sediment-water diffusion 

Sediment oxygen consumption in mineralization processes  

Sediment oxygen consumption in nitrification processes  

 

mg L-1 time-1 
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Appendix C – Equations for rate processes in the model. 

Particulate matter and dissolved compounds inflow rates 

 

inWater
V

inSolute
inSolute _

_)(
)( ×=                                                                                                (24) 

(Solute) 

 

TPM, POM, POC, DOC, PON, DON, NH4
+, NOX, POP, DOP, 

HPO4
2- and DO  

(Solute)_in Particulate matter (mg L-1) and dissolved compounds concentrations 

(µM) in inflowing water 

V Pond volume (m3) 

Water_in Water inflow rate (m3 s-1) 

TPM deposition rate (TPMdep) 

 

wTPM
depthPond

v
TPMdep ×=

_
                                                                                                        (25) 

  

v Particulate matter sinking velocity (m d-1) 

Pond_depth Height of the water column (m) 

POM mineralization (POMwmin) 

 

ww
Tk

w OfPOMeMinRatePOM wT )(min 2×××= ×
                                                                           (26) 

 

MinRate Particulate organic matter mineralization rate (d-1) 

kTw Temperature increasing rate in the water column (ºC-1) 

T Water temperature (ºC) 

ww

w
w OkDO

DO
Of

2
2 min
)(

+
=  (27) 

kminO2w 

 

 

Half-saturation coefficient for O2 limitation of mineralization in the 

water column (mg L-1) 

 

Adapted from Kittiwanich et al. (2007) 

 

 



 
Chapter 4                                                                                                                    

 
 

150 
 

Appendix C – (continued) 

Particulate matter and dissolved compounds outflow rates 

 

outWater
V

outSolute
outSolute _

_)(
)( ×=                                                                                          (28) 

 

(Solute) TPM, POM, POC, DOC, PON, DON, NH4
+, NOX, POP, DOP, 

HPO4
2- and DO 

(Solute)_out Particulate matter (mg L-1) and dissolved compounds concentrations 

(µM) in outflowing water         

POM deposition rate (POMdep)  

 

wPOM
depthPond

v
POMdep ×=

_

'
                                                                                                      (29) 

 

v' 

 

Particulate organic matter sinking velocity (m d-1) 

POM dissolution (POMwdis) 

 

w
Tk

w POMedisPOMdis wT ××= ×α                                                                                                        (30) 

 

αdisw 

 

Fraction of particulate organic matter that dissolves in the water 

column (d-1) 

From Kittiwanich et al. (2007) 

POC deposition rate (POCdep) 

 

wPOC
depthPond

v
POCdep ×=

_

'
                                                                                                       (31) 

 

From Chapelle (1995) 
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Appendix C – (continued) 

POC dissolution (POCdis) 

 

sw
Tk

swsw POCedisdisPOC sTw

,,,
, ××= ×α                                                                                                (32) 

 

             αdisw,s                Fraction of particulate organic matter that is dissolved in the water column (w) and  

                                  in sediments (s) 

              kTw,s                     Temperature increasing rate in the water column (w) and in sediments (s) (ºC
-1) 

POC mineralization  (POCmin) 

 

swsw

Tk

swsw OfPOCeMinCPOC swT

,2,,, )(min , ×××= ×
                                                                       (33)  

                                                                            

MinCw,s Water column (w) and benthic (s) mineralization rate of organic C at 

0ºC (d-1) 

sww

w
sw OkDO

DO
Of

,2
,2 min

)(
+

=                                                                                                            (34) 

kminO2w,s 

 

Half-saturation coefficient for O2 limitation of mineralization in the 

water column (w) and in sediments (s) (mg L-1) 

 

Adapted from Chapelle (1995) 

Dissolved compounds sediment-water diffusion  

 

( )[ ]
xdepthSed

SoluteSoluteSoluteDs
fSedWaterDiSolute ws

∆×
×−×

=
_

)()()(
)(

φ
                                                (35) 

 

(Solute) DOC, DON, NH4
+, NOx, DOP, HPO4

2-, DO 

Ds(Solute) Dissolved compounds diffusion coefficients in sediments (cm2 d-1) 

(Solute)s Dissolved compounds concentration in porewater (µM) 

(Solute)w Dissolved compounds concentration in the water column (µM) 

φ Porosity 

Sed_depth Sediment layer depth (cm) 

             
2

_

2

_ depthSeddepthPond
x +=∆ (cm)                                                                                  (36) 

Adapted from Berner (1980) 
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Appendix C – (continued) 

DOC mineralization (DOCmin) 

 

swsw

Tk

swsw OgDOCeMinCdDOC swT

,2,,, )(min , ×××= ×
                                                                   (37) 

 

MinCdw,s Water column (w) and benthic (s) mineralization rate of DOC (d-1) 

swsw

sw
sw dOkDO

DO
Og

,2,

,
,2 min

)(
+

=                                                                                                          (38) 

kminO2dw,s 

 

Half-saturation coefficient for O2 limitation of dissolved 

compounds mineralization in the water column (w) and in 

sediments (s) (mg L-1) 

 

From Kittiwanich et al. (2007) 

PON deposition rate (PONdep) 

 

wPON
depthPond

v
PONdep ×=

_

'
                                                                                                       (39) 

 

From Chapelle (1995) 

PON dissolution (PONdis) 

 

sw
Tk

swsw PONedisdisPON sTw

,,,
, ××= ×α                                                                                                 (40) 

PON mineralization (PONmin) 

 

swswsw

Tk

swsw oNHneralizedtFractionMiOfPONeMinNPON swT
,4,2,,, )(min , +× ××××=               (41)                                                                            

     

MinNw,s 
Water column (w) and benthic (s) mineralization rate of organic N at 

0ºC (d-1) 

FractionMineralizedtoNH4
+

w,s   

 

Fraction of PON mineralized to NH4
+ in the water (w) and in 

sediments (s) 

 

Adapted from Chapelle (1995) 
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Appendix C – (continued) 

DON mineralization (DONmin) 

 

swsw

Tk

swsw OgDONeMinNdDON swT

,2,,, )(min , ×××= ×
                                                                   (42) 

 

MinNdw,s Water column (w) and benthic (s) mineralization rate of DON (d-1) 

 

From Kittiwanich et al. (2007) 

Nitrate reduction to ammonium (Denit) 

 

sw

Tk

swxswsw OheNOkdenitDenit swT

,2,,, )(, ×××= ×
                                                                                (43)                                                                       

 

kdenitw,s Water column (w) and benthic (s) denitrification rate at 0ºC (d-1) 

swsw

sw
sw kdenitODO

DO
Oh

,2,

,
,2 1)(

+
−=  

                                                                                                                         

(44) 

 

kdenitO2w,s  

 

       

Half-saturation coefficient for O2 limitation of denitrification in the 

water column (w) and in sediments (s) (mg L-1) 

 

From Chapelle (1995) 

Nitrification (Nitrif ) 

 

sw

Tk
swswsw OjeNHknitNitrif swT

,2,4,, )(, ×××= ×+                                                                                 (45) 

 

knitw,s Water column (w) and benthic (s) nitrification rate at 0ºC (d-1) 

swsw

sw
sw knitODO

DO
Oj

,2,

,
,2)(

+
=    (46) 

knitO2w,s 

 

Half-saturation coefficient for O2 limitation of nitrification in the  

water column (w) and in sediments (s) (mg L-1) 

 

From Chapelle (1995) 
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Appendix C – (continued) 

Nitrate reduction to gaseous forms (Nred) 

 

swswsw denitDenitNred ,,, α×=                                                                                                               (47) 

 

αdenitw,s 

 

% of N denitrified to N2 in the water column (w) and in 

 sediments (s) 

 

From Chapelle (1995) 

POP deposition rate (POPdep) 

 

wPOP
depthPond

v
POPdep ×=

_

'
                                                                                                        (48) 

POP dissolution (POPdis) 

 

sw
Tk

swsw POPedisdisPOP sTw

,,,
, ××= ×α                                                                                                    (49) 

 

Adapted from Kittiwanich et al. (2007) 

POP mineralization (POPmin) 

 

swswsw

Tk

swsw oHPOneralizedtFractionMiOfPOPeMinPPOP swT
,

2
4,2,,, )(min , −× ××××=               (50)      

  

MinPw,s 
Water column (w) and benthic (s) mineralization rate of 

organic P at 0ºC (d-1) 

FractionMineralizedtoHPO4
2-

w,s   

 

    

Fraction of POP mineralized to HPO4
2- in the water column 

(w) and in sediments (s) 

 

Adapted from Chapelle (1995) 
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Appendix C – (continued) 

DOP  mineralization (DOPmin) 

 

swsw
Tk

swsw OgDOPeMinPdDOP sTw

,2,,, )(min , ×××= ×

                                                                       (51) 

 

MinPdw,s Water column (w) and benthic (s) mineralization rate of DOP (d-1) 

 

From Kittiwanich et al. (2007) 

DO air-water diffusion (DOAirWaterDif) 

 

)( war DOSatDOkDifDOAirWater −×=                                                                                           (52) 

 

SatDO Saturation deficit (mg L-1) 

 

From Burns (2000) 

Oxygen consumption in mineralization processes (MinCons) 

 

minmin
min

2toNODON
Nmass

PON
ConsMin w

w
w ×







 +=                                                                      (53) 

 

minminmin 2toNODON
Nmass

tioSedWaterRa
PONConsMin sss ×







 +×=                                          (54) 

                        

O2toNmin 

 

Ratio of O2 consumed per N mineralised (mg O2 per µmol N) 

 

Adapted from Chapelle (1995) 

Oxygen consumption in nitrification processes (NitrifCons) 

 

 toNnitrifONitrifConsNitrif swsw 2,, ×=                                                                                               (55)              

                        

O2toNnitrif 

 

Ratio of O2 consumed per N nitrified (mg O2 per µmol N) 

 

From Chapelle (1995) 
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Appendix C – (continued) 

Phosphate desorption (Pdesorp) 

 

maxP

Pads
kPdesorp d ×=                                                                                                                           (56) 

 

kd 

 

Desorption rate (µg g-1 d-1) 

 

From Chapelle (1995) 

Phosphate adsorption (Padsorp) 

 

If DOs > O2thr then 

sa HPO
P

Pads
kPadsorp −×







 −×= 2
4max

1                                                                                               (57) 

 

If DOs < O2thr then 

sa HPO
P

Pads
kPadsorp −×







 −×= 2
4max

1'                                                                                                 (58) 

O2thr Oxygen threshold value for anoxic conditions (mg L-1) 

ka Adsorption rate in oxic conditions (d-1) 

Pmax Maximum P adsorption capacity for sediments (µg g-1 dw) 

ka’  

 

Adsorption rate in anoxic conditions (d-1) 

 

From Chapelle (1995) 
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Appendix D – Model parameters and conversion factors. 

Parameter Definition Units 
Calibrated 

Value 

Literature 

Value 
Reference 

Pond_depth Height of the water column m 1.5   

Sed_density Sediment density g cm-3 2.3  Field measurements 

Sed_depth Sediment layer depth cm 2   

SedWaterRatio Ratio between sediment mass and porewater volume  g L-1 1700  Field measurements 

V Pond volume m3 742   

Water_in Water inflow rate m3 s-1 0.001  Field measurements 

v Particulate matter sinking velocity m d-1 0.02  Field measurements 

MinRate POM mineralization rate d-1 0.001 0.05 Jørgensen et al. (1991) 

kTw Temperature increasing rate in the water column ºC –1 0.07 0.07 Ruardji and van Raaphorst (1995) 

kminO2w Half-saturation coefficient for O2 limitation of 

mineralization in the water column 

mg  L-1 0.5 0.5 Henriksen and Kemp (1988) 

Water_out Water outflow rate m3 s-1 0.001  Field measurements 

v' Particulate organic matter sinking velocity m d-1 0.06  Field measurements 

αdisw Fraction of POM that is dissolved in the water column d-1 0 0.02 Kawamiya et al. (1995) 

kTs Temperature increasing rate in sediments ºC –1 0.01 0.07 Ruardji and van Raaphorst (1995) 

MinCw Water column mineralization of organic C at 0ºC d-1 0.001   

MinCs Benthic mineralization of organic C at 0ºC d-1 0.001   

kminO2s Half-saturation coefficient for O2 limitation of 

mineralization in sediments 

mg L-1 0.5  0.5  Henriksen and Kemp (1988) 
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Appendix D – (continued) 

Parameter Definition  Units Calibrated 

Value 

Literature 

Value 

   Reference 

DsDON Diffusion coefficient for dissolved organic 

nitrogen in sediments 

cm-2 d-1 0.00864 0.00864 

0.8 

Burdige et al. (1992) 

Kittiwanich et al. (2007) 

DsNH4
+ Diffusion coefficient for ammonium in 

sediments 

cm-2 d-1 5.788 5.788 

0.847 

Laboratory experiments 

Kittiwanich et al. (2007) 

DsNOx Diffusion coefficient for nitrate in sediments cm-2 d-1 0.432 4.32 

1.642 

 

0.845 

Chapelle (1995) 

Jiménez-Montealegre et al. 

(2002a) 

Kittiwanich et al. (2007) 

DsDOP Diffusion coefficient for dissolved organic 

phosphorus in sediments 

cm-2 d-1 0.00864 0.00864 

0.7 

Burdige et al. (1992) 

Kittiwanich et al. (2007) 

DsHPO4
2- Diffusion coefficient for phosphate in 

sediments 

cm-2 d-1 0.1728 4.32 

0.5 

Chapelle (1995) 

Kittiwanich et al. (2007) 

DsDO Diffusion coefficient for oxygen in sediments cm-2 d-1 17.28 21.6 

0.2 

Chapelle (1995) 

Kittiwanich et al. (2007) 

φ Porosity  0.4  Field measurements 

MinCdw              Water column mineralization rate of DOC d-1 0  Calibrated 

MinCds    Benthic (s) mineralization rate of DOC d-1 0.005  Calibrated 

kminO2dw Half-saturation coefficient for O2 limitation of 

dissolved compounds mineralization in the 

water column 

mg L-1 0.5 0.5 Chapelle et al. (2000) 
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Appendix D – (continued) 

Parameter Definition  Units Calibrated 

Value 

Literature 

Value 

Reference 

kminO2ds Half-saturation coefficient for O2 limitation of 

dissolved compounds mineralization in 

sediments 

mg L-1 0.5 0.5 Chapelle et al. (2000) 

MinNw Water column mineralization of organic N at 

0ºC 

d-1 0.005 0.01 Kawamiya et al. (1995) 

MinNs Benthic mineralization of organic N at 0ºC d-1 0.001 0.005 

0.003 - 0.05 

Billen and Lancelot (1988) 

Jamu and Piedrahita (2002) 

FractionMineralizedtoNH4
+

w Fraction of PON mineralized to NH4
+ in the 

water column 

 1   

FractionMineralizedtoNH4
+

s Fraction of PON mineralized to NH4
+ in 

sediments 
 0.6   

αdiss Fraction of POM that is dissolved in sediments d-1 0.0001 0.07 Kittiwanich et al. (2007) 

MinNdw             Water column mineralization rate of DON d-1 0 0.01 Kawamiya et al. (1995) 

MinNds              Benthic mineralization rate of DON d-1 0.005 0.9 Kittiwanich et al. (2007) 

kdenitw Water column denitrification rate at 0ºC d-1 0.2 0.08 Kittiwanich et al. (2007) 

kdenits Benthic denitrification rate at 0ºC d-1 0.2 0.3 

0.05-10 

9.0 

Billen and Lancelot (1988) 

Jamu and Piedrahita (2002) 

Kittiwanich et al. (2007) 

kdenitO2w Water column  half-saturation coefficient for 

O2 limitation of denitrification 

mg L-1 2 2 Kittiwanich et al. (2007) 
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Appendix D – (continued) 

Parameter Definition  Units Calibrated 

Value 

Literature 

Value 

Reference 

kdenitO2s Sediment  half-saturation coefficient for O2 

limitation of denitrification 

mg L-1 2 2 Chapelle (1995) 

knitw Water column nitrification rate at 0ºC d-1 0.01 0.01 

0.08 

Jiménez-Montealegre et al. (2002a) 

Kittiwanich et al. (2007) 

knits Benthic nitrification rate at 0ºC d-1 0.5 0.2 

0.05-0.1 

0.24 

7 

Henriksen and Kemp (1988) 

Jamu and Piedrahita (2002) 

Jiménez-Montealegre et al. (2002a) 

Kittiwanich et al. (2007) 

knitO2w Half-saturation coefficient for O2 limitation of 

nitrification in the water column 

mg L-1 4 2 Kittiwanich et al. (2007) 

knitO2s Half-saturation coefficient for O2 limitation of 

nitrification in sediments 

mg L-1 4 4 Chapelle (1995) 

αdenitw % of N denitrified into N2 in the water column  0 0.01 Kittiwanich et al. (2007) 

αdenits % of N denitrified into N2 in sediments  0.4 0.6 Billen and Lancelot (1988) 

MinPw Water column mineralization of organic P at 

0ºC 

d-1 0 0.02 Kawamiya et al. (1995) 

MinPs Benthic mineralization of organic P at 0ºC d-1 0.001 0.005 van der Molen (1991) 

FractionMineralizedtoHPO4
2-

w Fraction of PON mineralized to HPO4
2- in the 

water column 

 1   
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Appendix D – (continued) 

 

 

Parameter Definition  Units Calibrated 

Value 

Literature 

Value 

Reference 

FractionMineralizedtoHPO4
2-

s Fraction of PON mineralized to HPO4
2- in 

sediments 

 1   

MinPdw              Water column mineralization rate of DOP  d-1 0 0.02 Kawamiya et al. (1995) 

MinPds    Benthic mineralization rate of DOP  d-1 0.005 0.7 Kawamiya et al. (1995) 

kar   Raeration coefficient d-1 0   

SatDO Saturation deficit mg L-1    

O2toNmin Ratio of O2 consumed per N mineralised mg O2 per µmol N 0.212 0.212 Chapelle (1995) 

O2toNnitrif Ratio of O2 consumed per N nitrified mg O2 per µmol N 0.064 0.064 Chapelle (1995) 

kd Desorption rate µg g-1 dw  d-1 80 80 Furumai et al. (1989)  

O2thr Oxygen threshold value for anoxic conditions mg L-1 0.08 0.2 Chapelle (1995) 

ka Adsorption rate in oxic conditions d-1 100 200 Furumai et al. (1989)  

Pmax Maximum P adsorption capacity for sediments µg g-1 dw 300 685 

500 

Furumai et al. (1989) 

Serpa et al. (2007a) 

ka’  Adsorption rate in anoxic conditions d-1 40 40 van Raaphorst et al. (1992) 
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Chapter 5 

Modelling the growth of white seabream (Diplodus sargus) and 

gilthead seabream (Sparus aurata) in semi-intensive earth ponds 

using the Dynamic Energy Budget approach 
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growth of white seabream (Diplodus sargus) and gilthead seabream (Sparus aurata) in semi-intensive 

fishponds using the Dynamic Energy Budget approach. Submitted to Journal of Sea Research.
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Abstract 

Fish growth models may help understanding the influence of environmental, physiological and 

husbandry factors on fish production, providing crucial information to maximize the growth rates 

of cultivated species. The main objectives of this work were to: i) develop and implement an 

Individual Based Model using a Dynamic Energy Budget (IBM-DEB) approach to simulate the 

growth of two commercially important Sparidae species in semi-intensive earth ponds, the white 

seabream (Diplodus sargus) which is considered as a potential candidate for Mediterranean 

aquaculture and the gilthead seabream (Sparus aurata) that has been cultivated since the early 

80’s; ii) evaluate which model parameters are more likely to affect fish performance, and iii) 

investigate which parameters might account for the growth differences between the two 

Sparidae. The model may be run in two modes: the “state variable” mode, in which an average 

fish is simulated with a particular parameter set and the “Individual Based Model” (IBM) mode 

that simulates a population of n fishes, each with its specific parameter set assigned randomly. 

The IBM mode has the advantage of allowing a quick model calibration and an evaluation of the 

parameter sets that produce the best fit between predicted and observed fish growth. 

Observations on the variation of white seabream and gilthead seabream length and weight during 

a production cycle were obtained from growth trials carried out in earth ponds. Results revealed 

that the model reproduces reasonably well the growth of the two species. Fish performance was 

mainly affected by parameters related to reserves utilization and feed ingestion/absorption, 

suggesting that special attention should be taken in the estimation of these parameters, 

particularly when applying this model to other species. Comparing the DEB parameters for the 

two seabreams, it seems that the white seabream low growth rates are a reflection of higher 

maintenance costs and a lower feed absorption efficiency. Hence, the development of new feed 

formulations may determine the success of white seabream production in semi-intensive earth 

ponds.  
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1 Introduction 

During the last decade, Mediterranean semi-intensive fish farming has been struggling with 

economic difficulties as a consequence of the overproduction and saturation of the market with 

traditionally cultivated fish species, like the gilthead seabream (Sparus aurata) and the seabass 

(Dicentrarchus labrax) (SEACASE 2009; Barazi-Yeroulanos 2010). This situation has led to a 

sharp decrease in market prices for these species, to a point that revenues hardly compensate for 

the production costs (Barazi-Yeroulanos 2010). Some of the solutions that have been proposed 

by researchers and commercial groups to overcome these problems include the optimisation of 

production for traditionally cultivated species (e.g. by investing in higher market sizes) and 

product diversification (SEACASE 2009; Barazi-Yeroulanos 2010). 

 

By predicting the effects of environmental (e.g. temperature), physiological (e.g. assimilation 

and excretion rates) and husbandry factors (e.g. feeding rates) on fish performance, growth 

models may be of considerable help for the aquaculture industry, to maximize the growth rates 

and efficiencies of cultivated fish (Alunno-Bruscia et al. 2009; van der Veer et al. 2009). Several 

bioenergetic models have been developed to simulate fish growth. Most of these models (Yi 

1998; Hernández et al. 2003; Zhou et al. 2005; Libralato and Solidoro 2008; Moss et al. 2009) 

are Static Energy Budgets (SEB) consisting of a set of allometric functions that describe the 

relationships between the physiological rates (e.g. food consumption, growth) and size of a 

particular species as a function of abiotic factors (e.g. temperature, salinity) (van der Veer et al. 

2009). Despite being widely applied in the aquaculture context, SEB models lack generality as 

they are not based on physiological principles (van der Veer et al., 2009). 
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Dynamic Energy Budget (DEB) models, on the other hand, are mechanistic models that rely on 

simple physiological principles common to all species (Alunno-Bruscia et al. 2009), so that they 

are able to predict the development, growth and reproduction of an organism in a dynamic 

environment (Pecquerie et al. 2011). Another advantage of DEB models is that the diversity 

between species can be captured in differences in a small number of parameters (Kooijman 

2000). Given its non-species specificity and mechanistic rules, the DEB theory has been widely 

applied and successfully tested for a large number of fish species and for various research 

purposes. Some of the applications of this approach include the simulation of growth and 

reproduction for flatfish (van der Veer et al. 2003, 2009) and anchovy (Pecquerie et al. 2009) 

within variable environmental conditions, the forecasting of the metabolic effects of radionuclids 

(uranium) on individual zebrafish and the consequences at the population level (Augustine et al. 

2011), the description of biological factors influencing persistent organic pollutants (PCBs) 

bioaccumulation in European hake (Bodiguel et al. 2009) and common sole (Eichinger et al. 

2010) through fish ontogeny and, the description of the full lifecycle of ecologically and 

economically important migratory fish species such as, the Pacific salmon (Pecquerie et al. 2011) 

and the Pacific bluefin tuna (Jusup et al. 2011).  

 

To build a DEB model it is necessary to define parameters related to physiological processes 

such as feeding, assimilation, storage, maintenance and growth (Kooijman 2000, 2010), which 

can be inferred from experimental as well as literature data (van der Veer et al. 2001; Bodiguel et 

al. 2009; Eichinger et al. 2010). However, for some species there is a lack of information to 

estimate all parameters. To surpass this problem, Duarte et al. (2010) proposed the use of an 

Individual Based Model (IBM) as a practical calibration procedure, mostly because when an 

IBM is run for a large number of individuals, each with its own parameter set, it is possible to 

select the parameter sets that produce the best fit between predicted and observed fish data. 
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Besides facilitating model calibration, when the proper parameter set is selected, the IBM may 

be run for a single individual that will represent the average fish in a population, making them 

suitable to be used in a more complex ecosystem model (Duarte et al. 2010).  

   

In the present work, an IBM using the DEB framework was implemented to simulate the growth 

of two commercially important Sparidae: the white seabream (Diplodus sargus) and the gilthead 

seabream. While the latter species is the most important fish in Mediterranean aquaculture 

(Barazi-Yeroulanos 2010; FAO 2011b), with a well developed production technology and 

maximized growth rates, the white seabream is still a candidate species since only small scale 

production has been achieved so far (Sá et al. 2006; Golomazou et al. 2006). When cultivating a 

new species, the lack of knowledge on its optimal physical conditions and nutritional 

requirements often compromises its growth in captivity (Cejas et al. 2004; Golomazou et al. 

2006). Nevertheless, the white seabream is still able to captivate fish farmer’s interest due to its 

high market value and highly appreciated flesh (Cejas et al. 2004; Sá et al. 2006). The main 

purpose in building the present model was to provide information on how to optimize fish 

production in semi-intensive systems, by using the fully validated model to: i) evaluate which of 

the DEB parameters are more likely to affect fish performance and to ii) investigate which 

parameters might account for the growth differences between the two Sparidae species.   

 

2 Species information 

The white seabream and the gilthead seabream are two members of the Sparidae family that may 

be found along the Mediterranean Sea and the eastern Atlantic Ocean (FishBase 2010). These 

sparids are demersal fishes living in a variety of costal habitats, from rocky shores to sandy 

bottoms (Bargelloni et al. 2005). Feeding strategies differ between the two species; while the 

white seabream is an omnivorous species, feeding on benthic invertebrates (mainly small 
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crustaceans, molluscs and sea urchins) and on algae (Figueiredo et al. 2005; Leitão et al. 2007), 

the gilthead seabream is mainly carnivorous feeding on molluscs, crustaceans and fish (Aksnes 

et al. 1997). In its natural environment, the gilthead seabream may reach a maximum total length 

and weight of respectively, 70 cm and 17.2 kg (FishBase 2010), whereas the white seabream is 

more of a slow grower since the maximum total length and weight ever recorded for this species 

in the wild was 49 cm and 1.87 kg (FishBase 2010).  

 

3 Methodology 

The fish growth model consists of an Individual Based Model (IBM) based on the standard DEB 

theory (Kooijman 2000; 2010). The model may be run in two modes: i) the IBM mode that 

simulates a population of n fishes, each with its specific parameter set assigned randomly and ii) 

the “state variable” mode, in which an average fish is simulated with a particular parameter set 

(Duarte et al. 2010). The strategy in this work was to use the IBM mode for model calibration, 

and then to select the parameter sets that produced the best fit between predicted and observed 

fish growth to calibrate the “state variable” model. 

 

3.1 The DEB theory 

The DEB theory (Kooijman 2000, 2010) describes the rates at which organisms utilize and 

assimilate energy from food for maintenance, growth, development and reproduction (Figure 

5.1). These rates depend on the state of the organism (size, sex and maturity status) and vary as a 

function of food availability and temperature (Kooijman 2000). In a standard DEB model, food 

ingestion depends on food availability and is proportional to the organisms’ structural area. Part 

of the energy in the ingested food is lost through feces while the remainder is assimilated and 

stored in the reserves compartment. A fixed fraction κ of mobilised reserves is allocated for 

growth and somatic maintenance, with a priority for maintenance. The remaining energy fraction 
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Reserves

Feed Gut Faeces
1 2

3

4

κκκκ 1-κκκκ5

6

7

8

Biovolume
Reproduction 

buffer

Somatic 

maintenance
Maturity

maintenance

1 Ingestion

2 Defecation

3 Assimilation

4 Reserve utilisation

5 Somatic maintenance

6 Growth

7 Maturity maintenance

8 Maturation and reproduction

(1−κ) is spent on maturity maintenance plus maturation in embryos and juveniles or, 

reproduction (gamete production and spawning), in adults. The flux of reserves that is allocated 

to maturation and reproduction is temporally stored in a buffer (reproductive tissue), which is 

emptied during spawning. In the DEB theory, the embryos correspond to the life stage in which 

individuals neither feed nor reproduce; the juveniles feed but do not reproduce and adults, both 

feed and reproduce. At each life stage, it is assumed that an individual can be characterized by 

two main body fractions: structural biovolume (somatic tissue) and reserves. The chemical 

composition of each fraction is assumed to remain constant according to the “strong 

homeostasis” concept (Kooijman 2010). In the DEB theory, the chemical composition of the 

individual, as a whole, is also maintained constant as long as substrate availability in the 

environment remains constant, a concept that is known as “weak homeostasis” (Kooijman  

2010).  

 

 

 

 

 

 

 

 

 

Figure 5.1 – Energy flow through an organism in a standard DEB model. Arrows indicate rates 

and squares are state variables.  

 

3.2 Model development 
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The model developed herein simulates fish growth during its grow-out phase in semi-intensive 

earth ponds. In this phase, fishponds are stocked with juveniles (≈7 g) of white seabream and 

gilthead seabream, which are fattened until they reach the commercial size (350 - 400g). As 

sexual maturity, for both species, is attained at the end of the production cycle (FishBase 2010), 

reproduction was not included in the model.  

 

3.2.1 Model equations 

The notation and symbols presented in the next sections follow that of Kooijman (2000). 

Variables are expressed per unit of structural volume with square brackets [ ], or per unit of 

surface area with braces { }. All rates have dots, indicating the dimension per time.  

 

3.2.1.1 Ingestion 

The ingestion rate, XP& (J d-1), is proportional to the surface area of the structural body volume 

(V
2

3� , in cm2) and depends upon food density in the environment and on temperature Kooijman 

2000):  

)T(kVf}P{P 3
2

XmX ×××= &&
                                                                                                     (1) 

where { XmP& } is the maximum surface area-specific ingestion rate (J cm-2 d-1); f is the scaled 

functional response (dimensionless) that varies between 0 (starvation) and 1 (optimal feeding 

conditions) and k(T) is the Arrhenius temperature limitation as described below (cf. - Section 

3.2.1.5).  

 

In the standard DEB theory, the scaled functional response (f) is defined by a Holling-type II 

equation: 
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KXX

X
f

+
=1                                                                                                                                 (2) 

where X represents food density and XK is the half-saturation constant, i.e. the food density at 

which ingestion rate is half its maximum value. However, in fishponds, the amount of food 

supplied does not necessarily represent the one that is available for fish because of pellets 

sedimentation and decay. Unless cultivated species can feed at the bottom, pellets become 

unavailable for fish as they reach the sediments. This is particularly relevant for rations with high 

sinking rates (0.035 ± 0.030 m s-1) and for low-depth ponds (1.5 m), as is the case of the present 

study, because feeding is restricted to short time periods. Due to the difficulty to determine food 

density, the scaled functional response (f) was estimated using two different approaches. One of 

these approaches consisted in assuming a constant food density and then changing XK until the 

average scaled functional response (f1) that best described the growth of the two species was 

found (Cardoso et al. 2006; Freitas et al. 2009; Zimmer et al. 2011). In the second approach, it 

was assumed that pellets concentration decrease according to a first order process as a function 

of food sedimentation rate. Therefore, f2 was calculated as follows:  

K
teFoodSedRat

teFoodSedRat

XX

X
f

+
= ×−

×−

)(
0

)(
0

2 exp

exp
                                                                                                      (3)      

The time integrated f2 is: 
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With the following solution:  
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(5) 

where X0 is the food density (mg L-1) at the beginning of each time step (t0, seconds), 

FoodSedRate is the pellets sedimentation rate (0.035 m s-1), XK is the food density at which 

ingestion rate is half its maximum (Tables 5.1 and 5.2), t1 is the time corresponding to the end of 
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each time step (seconds), and ∆t is the time step in the simulations (1 hour). For this approach, 

the model requires hourly time series of food concentrations, in which a value exists for the 

specific hours that food is supplied.  

 

Model simulations using f1 and f2 will be referred ahead as Simulations1 and 2, respectively.  

 

3.2.1.2 Assimilation 

The assimilation rate, Ap& (J d-1), i.e. the rate at which food is converted into reserves, depends on 

food availability and on the organisms’ structural surface area, being calculated as follows: 

)(}{ 3
2

TkVfpp AmA ×××= &&                                                                                                          (6) 

where { Amp& } is the maximum surface area-specific assimilation rate (J cm-2 d-1). Since the ratio 

{ Amp& }/{ XmP& } gives the absorption efficiency (κ�), the assimilation rate may be expressed as:

Ap& = κ� × { XmP& } × f × 3
2

V  × k(T)                                                                                                (7) 

 

3.2.1.3 Reserves utilization 

Assimilated energy is integrated in a reserve pool, E, whose dynamics is given by the equation: 

=
dt

dE
CA pp && −                                                                                                                               (8)                                                                                                                          

where Cp&  (J d−1) denotes the energy mobilisation rate. The rate, at which energy is mobilized 

from the reserves and is allocated to somatic maintenance and growth (κ fraction) and to 

development or reproduction (1−κ), may be calculated according to the following equation 

(Kooijman 2000): 
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where[ ]E  stands for reserve density ([ ]E = E/V, J cm−3), [ ]GE  is the volume-specific costs for 

structural growth (J cm−3), κ is the fraction of energy spent on soma (i.e. somatic maintenance 

plus growth), [ ]mE  is the maximum energy density in the reserve compartment (J cm−3), [ Mp& ] is 

the volume-specific costs for maintenance (J cm−3 d−1) and V is the structural body volume 

(cm3).  

 

3.2.1.4 Growth 

Growth is the conversion of reserves into structure (Kooijman 2000, 2010). This process ceases 

whenever maintenance costs cannot be covered by reserves since maintenance has priority over 

growth. From the DEB energy allocation rule (κ-rule), the growth of structural biovolume is 

given by: 

[ ]
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2
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                                                                                        (10) 

 

For an organism that does not change in shape during growth, i.e. an isomorphic organism 

(Kooijman 2010), total length (L, cm) may be related to structural volume using the shape 

coefficient (δm, dimensionless): 

m

3
1

V
L

δ
=                                                                                                                                       (11) 

In a standard DEB model, it is assumed that δm is species-specific and is constant for isomorphs, 

however the DEB theory also allows for changes in shape (Kooijman 2010). 

Fish wet weight, W (g), was obtained by summing the 2 compartments, the reserves, E (J), and 

structural volume, V (cm3), after conversion into mass:  









+= 2

E
1

E
VW ρ

α
ρ                                                                                                                    (12) 



 
Chapter 5 

                                                                                                                                                     
 

174 
 

where ρ1 is the specific density (1 g cm−3) of the somatic tissue (van der Veer et al. 2001), ρ2 is 

the density assumed for the reserves tissue (1 g cm−3) and αE is the reserves energetic value per 

unit of volume, which was assumed to be equal to the [EG] value. 

 

3.2.1.5 Temperature limitation 

Since temperature influences all physiological rates, the Arrhenius limitation was used to 

simulate the temperature effect (van der Veer et al. 2001): 









−=
T

T

T

T
TkTk AA

1
1 exp)()( &                                                                                                         (13)                                                                               

where 1k&  is a physiological rate (i.e ingestion, assimilation and maintenance rates), T is ambient 

temperature (K), T1 is a chosen reference temperature (K) and TA is a species-specific coefficient, 

the so-called Arrhenius temperature (K). 

 

3.2.2 Parameter estimation 

In order to run the model on the IBM mode, it was necessary to define ranges for each of the 

DEB parameters (Tables 5.1 and 5.2). In the present work, these ranges were defined primarily 

from experimental data as described in the following sections, but literature data was also used. 

 

3.2.2.1 Maximum surface area-specific ingestion rate ({ XmP& })  

The maximum surface area-specific ingestion rate of white seabream was estimated from 

microcosm experiments, using daily food intake data as a function of the volumetric length 

(V
2

3� ) of white seabreams fed ad libitum at constant temperatures, from 17ºC to 25ºC. A similar 

approach was used for gilthead seabream, using the data of Lupatsch et al. (2003). 
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                       Table 5.1 – DEB parameters for white seabream. 

Parameter Description Value or Range Units Source 

{ XmP& }  Maximum surface-area specific ingestion rate 
930 – 1504(a) 

1200 – 1600(b)  
J cm-2 d-1 

Experimental data 

Calibrated 

XK Half-saturation coefficient 
0.5– 7.5(a) 

0.1 – 0.6(b) 
mg L-1 Calibrated 

κ� Absorption efficiency 0.70 – 0.80    Experimental data 

{ Amp& } Maximum surface-area specific assimilation rate 651 – 1203  J cm-2 d-1 Experimental data 

κ Fraction of reserves allocated to soma 0.58 – 0.85  
Bodiguel et al. (2009) 

van  der Veer et al. (2001, 2009) 

[ ]GE  Volume-specific costs for growth 5600 – 7563 J cm-3 
Bodiguel et al. (2009) 

van  der Veer et al. (2009) 

[ ]mE  Maximum energy storage density 1505 – 2903 J cm-3 
Bodiguel et al. (2009) 

Eichinger et al. (2010) 

[ Mp& ] Volume-specific costs for maintenance 52 – 60 J cm-3 d-1 Experimental data 

δm Shape coefficient 0.255 – 0.264 Dimensionless Field data 

TA Arrhenius temperature 7674 – 10914 K Experimental data 

T1 Reference temperature 293.15 K Fixed 
                               a Range used in Simulations1; b Range used in Simulations2 
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                      Table 5.2 – DEB parameters for gilthead seabream. 

Parameter Description Value or Range Units Source 

{ XmP& }  Maximum surface-area specific ingestion rate 
892 – 1066(a) 

1000 – 1500(b) 
J cm-2 d-1 

Lupatsch (2003) 

Calibrated 

XK Half-saturation coefficient 
0.5 – 10(a) 

0.6 – 0.9(b) 
mg L-1 Calibrated 

κ� Absorption efficiency 0.80 - 0.84  Experimental data 

{ Amp& } Maximum surface-area specific assimilation rate 714 - 895 J cm-2 d-1 Experimental data 

κ Fraction of reserve allocated for soma 0.58 – 0.85  
Bodiguel et al. (2009) 

van  der Veer et al. (2001, 2009) 

[ ]GE  Volume-specific costs for growth 5600 - 7563 J cm-3 
Bodiguel et al. (2009) 

van  der Veer et al. (2009) 

[ ]mE  Maximum energy storage density 1505 - 2903 J cm-3 
Bodiguel et al. (2009) 

Eichinger et al. (2010) 

[ Mp& ] Volume-specific costs for maintenance 33 - 37 J cm-3 d-1 Guinea and Fernandez (1997) 

δm Shape coefficient 0.242 – 0.255 Dimensionless Field data 

TA Arrhenius temperature 7032 - 8206 K Experimental data 

T1 Reference temperature 293.15 K Fixed 
                               a Range used in Simulations1; b Range used in Simulations2 
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Conversion from feed weight (g) into energy (J) was made according to the manufacturer´s 

information on the ration energy content, using a value of 23800 J g-1 dry weight of feed (Sorgal 

2011). The { XmP& } values of both species at the reference temperature, were obtained by a linear 

regression between the ingestion rate (J d-1) and volumetric length ( 3

2

V ), calculated from body 

volume data (Figure 5.2). The estimated {XmP& } value for white seabream, 1450 J cm-2 d-1 (n = 6; 

R2 = 0.99) was higher than the value found for gilthead seabream, 965 J cm-2 d-1 (n = 6; R2 = 

1.00). For both species, maximum and minimum {XmP& } values in Figure 5.2, were used to 

define the ranges used in the IBM (Tables 5.1 and 5.2). 

 

 

 

Figure 5.2 – Ingestion rate (J d-1) - volumetric length (cm2) relationships for white seabream 

(Diplodus sargus) and gilthead seabream (Sparus aurata) at the reference temperature (20ºC = 

293.15 K). The slope of the linear regression between these two variables corresponds to 

maximum surface area-specific ingestion rate {XmP& } for these species.  

 

3.2.2.2 Absorption efficiency (κ�) 

 

Diplodus sargus Sparus aurata 
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In the present study, κX was calculated as:
IngestedMassOfFeed

MassFishFaeces−1 , however this is a rough 

estimate because such an approach only provides an upper limit for this parameter (Kooijman 

2010). The average κ� value (± standard deviation) for white seabream, estimated in the same 

laboratory experiments used to determine {XmP& } (cf. Section 3.2.2.1), was 0.75 ± 0.05 whereas 

for gilthead seabream, the absorption efficiency was slightly higher, 0.82 ± 0.02 (Dias et al. 

2009). For both species, the {AmP& } values range used in the IBM (Tables 5.1 and 5.2) was 

calculated from κ� and { XmP& } ranges, according to eq. 7. 

 

3.2.2.3 Fraction of reserves allocated for soma (κ), volume-specific costs for growth ([ ]GE ) 

and maximum energy storage density ([ ]mE ) 

The ranges for some DEB parameters that are not directly measurable such as, κ, [ ]mE  and[ ]GE

were defined according to literature values for other fish species (Tables 5.1 and 5.2). 

 

3.2.2.4 Volume-specific costs for maintenance ([ Mp& ])  

In the present study, [Mp& ] values were estimated based on the oxygen consumption rates of non 

feeding, immature white seabream individuals at constant temperatures in sealed aquariums 

(Table 5.3), as described by Eichinger et al. (2010). For gilthead seabream, the resting oxygen 

consumption rates measured by Guinea and Fernandez (1997) were used (Table 5.4), since it is 

commonly agreed that it reflects the energy spent on maintenance activities (Guinea and 

Fernandez 1997; Eichinger et al. 2010). For both species, oxygen consumption rates (mg O2 g
−1 

d−1) were converted into energy values (J cm−3 d−1) using a conversion factor of 13.84 mg O2 J
-1 

(Brafield and Llewellyn 1982) and a fish density of 1 g cm3. At the reference temperature (20 ºC 
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= 293.15 K), the average ± standard deviation [Mp& ] value for white seabream was higher (56 ± 4 

J cm-3 d-1) than the value found for gilthead seabream (35 ± 2 J cm-3 d-1). 

 

Table 5.3 – White seabream oxygen consumption rates (mg O2 g
-1 d-1, mean ± sd) at different 

temperatures (17 to 25 ºC) and corresponding volume-specific costs for maintenance ([Mp& ], J 

cm-3 d-1). 

 

Temperature Oxygen consumption rate [ Mp& ] 

(ºC) (mg O2 g
-1 d-1) (J cm-3 d-1) 

17 2.39 ± 0.48 33.0 ± 6.8 

18 3.77 ± 0.60 52.0 ± 8.1 

19 4.44 ± 0.37 61.4 ± 5.1 

20 4.14 ± 0.37 55.9 ± 3.5 

21 7.27 ± 0.15 100 ± 2 

22 8.97 ± 0.63 124 ± 9 

25 5.93 ± 0.63 82.1 ± 8.9 

 

Table 5.4 – Resting oxygen consumption rates (mg O2 g
-1 d-1, mean ± sd) for gilthead seabream 

(Guinea and Fernandéz 1997) and corresponding volume-specific costs for maintenance ([Mp& ], J 

cm-3 d-1). 

 

Temperature Oxygen consumption rate [ MP& ] 

(ºC) (mg O2 g
-1 d-1) (J cm-3 d-1) 

16 0.070 ± 0.002 24.0 ± 1.2 

21 0.110 ± 0.005 34.9 ± 2.3 

23.5 0.115 ± 0.002 37.7 ± 0.7 

26 0.125 ± 0.030 34.1 ± 10.6 
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3.2.2.5 Shape coefficient (mδ ) 

The shape of an individual determines how a specific length measure relates to structural body 

mass. The shape coefficient of juvenile and adult white seabream as well as gilthead seabream 

were obtained by fitting a volume-length relationship to the available biometric data for these 

species (Figure 5.3). The slope of the linear regression between these two variables corresponds 

to the shape coefficient (mδ ) at the different life stages. The estimated mδ value for juvenile 

white seabream (0.255) was lower than for adults (0.264). Likewise, slight differences were 

found between juvenile (δm = 0.242) and adult gilthead seabream (δm = 0.255). The δm values at 

the different life stages define the range of values for each species (Tables 5.1 and 5.2).  

 

 

Figure 5.3 – Structural volume ( 3
1

V , cm) – total length (L, cm) relationships for juvenile (green 

dots) and adult (red dots) white seabream (Diplodus sargus) and gilthead seabream (Sparus 

aurata) individuals. The slope of the linear regression between these two variables corresponds 

to the shape coefficient (mδ ) at the different life stages.  

 

3.2.2.6 Arrhenius temperature (TA)  

Diplodus sargus Sparus aurata 
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The slope of the linear regression between the logarithm (ln) of fish oxygen consumption rate 

(��� ) and T-1 (T = absolute temperature) (Figure 5.4) gives the Arrhenius temperature - TA (van 

der Veer et al. 2006). For the white seabream, this parameter was estimated from the data 

presented in Table 5.3, whereas for gilthead seabream, the TA range was estimated from the 

oxygen consumption data in Requena et al. (1997). The estimated TA ± standard error values for 

white seabream, 9294 ± 1620 ºK (n = 30; R2 = 0.54) and gilthead seabream, 7619 ± 587 ºK (n = 

10; R2 = 0.95) defined the ranges used in the IBM.  

 

 

 

 

Figure 5.4 – Arrhenius plot (ln rate versus T-1) for the oxygen consumption data of white 

seabream (Diplodus sargus) and gilthead seabream (Sparus aurata). The slope of the linear 

regression corresponds to the Arrhenius temperature (TA). 

 

3.2.3 Model forcing and calibration 

The main environmental factors taken into account by the DEB theory are, temperature and food 

availability, which act as forcing variables for the model (van der Veer et al. 2006). The IBM-

DEB model was run using daily data sets of water temperature and food inputs (Figures 5.5) 

registered over the production cycles of white seabream (18th June 2003 to 31th March 2005) and 

Diplodus sargus Sparus aurata 
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gilthead seabream (2nd May 2005 to 22nd March 2007) at the IPIMAR’s Aquaculture Research 

Center (Figure 5.6), in the Southeast of Portugal. Daily food input varied as a function of water 

temperature and fish biomass, being supplied 3 to 5 times a day, from 7 a.m. to 8 p.m. During the 

trials, seabream growth was also monitored by individual biometric measurements of total length 

(L, cm) and wet weight (W, g) at regular intervals. Fish data was later used for model calibration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 – Daily time series of food input (kg d-1) and water temperature (ºC) registered during 

the white seabream (top graph) production cycle (from 18th June 2006 to 31th March 2005) and 

the gilthead seabream (bottom graph) production cycle (2nd May 2005 to 22nd March 2007). 
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Figure 5.6 – Aquaculture Research Center. 

 

3.2.4 Model implementation 

The IBM-DEB model developed in this work was implemented with EcoDynamo (Pereira et al. 

2006), which uses object-oriented programming (OOP) written in C++. In the EcoDynamo, each 

object simulates several state variables and processes, and interacts with the other objects by 

means of a shell or server (Pereira et al. 2006). The shell interface allows the user to define the 

model setups – time steps, output formats (file, graphic and tables), objects to be used and 

variables to be visualized (Pereira et al. 2006). After definition of initial and boundary conditions 

and input of model parameters, variables were computed over time (time step = 1 hour) using the 

Euler integration method. 

 

3.2.5 Sensitivity Analysis 

 

3.2.5.1 IBM model 
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Based on the outputs of the IBM model, which include a file with fish parameter sets and growth 

variables, a Principal Component Analysis (PCA) was performed using the final total length and 

wet weight of the 10000 fish as variables, and individuals as observations. Since to each 

individual corresponds a specific parameter set, this analysis may be used to assess the relative 

contribution of each parameter to growth differences among the fish population and to evaluate 

the relative contribution of each parameter to fish growth performance. By including the mean 

square deviation (MSD) between observed and predicted growth data in the analysis, it was also 

possible to evaluate which data sets produced the best and worst fits.  

 

3.2.5.2  “State variable” model 

A simple sensitivity analysis was carried out with the “state variable” model in order to test 

which of the DEB parameters were more likely to affect fish performance (total length and wet 

weight). The analysis consisted in changing one parameter at a time by ± 25% and comparing the 

results with a standard simulation using the parameter sets calibrated with the IBM model.  

 

4 Results 

Figures 5.7 and 5.8 show the results of Simulations1 for a virtual population of 10000 white 

seabream and gilthead seabream, each with its specific parameter set. Besides the predicted 

values (blue diamonds) of total length and wet weight for the 10000 individuals, these figures 

present the measured values (red dots) and the average ±1 standard deviations of predicted 

values (green line and whiskers). The fish growth variability predicted by the IBM model was 

clearly higher than the observed variability, suggesting that some parameter combinations were 

biologically unrealistic. Despite this high growth variability, the average predicted values of total 

length and wet weight for white seabream were in general very close to measured values (Figure 

5.7), suggesting that the DEB parameter ranges defined in Table 5.1 lead to a good estimation of 

white seabream growth. On the other hand, for gilthead seabream there was a slight deviation 
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between the average predict values and observed data (Figure 5.8), indicating that parameter 

ranges depicted in Table 5.2 lead to some underestimation of its growth.  

 

Results from Simulations2 (Figures 5.9 and 5.10) were similar to those from Simulations1 in the 

sense that fish growth ranges were much wider than that expected from observed data. However, 

in these simulations, the predicted ranges for fish length and wet weight for both species were 

much narrower than those obtained with Simulations1. Even though measured values were 

between the average and standard deviation of predicted values for both species, in this 

approach, the parameter ranges depicted in Tables 5.1 and 5.2 seem to underestimate fish growth 

in certain stages of the production cycle and to overestimate it in other stages. 

 

In order to understand which DEB parameters might explain the growth differences amongst the 

virtual fish population, a Principal Component Analysis (PCA) was performed with the IBM 

results of Simulations1 (Figure 5.11) and Simulations2 (Figure 5.12). The white seabream’s PCA 

from Simulations1 (Figure 5.11 – top graph), showed that fish length and weight along with the 

MSD between predicted and observed fish growth, gave the largest contributions for the negative 

part of factor 1, the factor explaining most part (23 to 29%) of the analysis. The DEB parameters 

contributing mostly to the negative part of this factor were κ, { Amp& } and κ�, which indicates 

that fish reaching larger sizes were the ones allocating a higher fraction of reserves to soma, 

assimilating higher amounts of food per unit of surface area and that are able to absorb food 

more efficiently. The gilthead seabream’s PCA from Simulations1 (Figure 5.11 – bottom graph) 

was very similar to that of white seabream except for the fact that the MSD between predicted 

and observed fish growth appeared on the positive semi-axis of factor 1. 
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Figure 5.7 – Predicted (blue diamonds) total length and wet weight values for 10000 white 

seabreams (Diplodus sargus) from Simulations1. The green line and whiskers represent the 

average predicted values ± 1 sd while red dots and whiskers correspond to average measured 

values ± sd. 
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Figure 5.8 – Predicted (blue diamonds) total length and wet weight values for 10000 gilthead 

seabreams (Sparus aurata) from Simulations1. The green line and whiskers represent the 

average predicted values ± 1 sd while red dots and whiskers correspond to average measured 

values ± sd. 
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Figure 5.9 – Predicted (blue diamonds) total length and wet weight values for 10000 white 

seabreams (Diplodus sargus) from Simulations2. The green line and whiskers represent the 

average predicted values ± 1 sd while red dots and whiskers correspond to average measured 

values ± sd. 
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Figure 5.10 – Predicted (blue diamonds) total length and wet weight values for 10000 gilthead 

seabreams (Sparus aurata) from Simulations2. The green line and whiskers represent the 

average predicted values ± 1 sd while red dots and whiskers correspond to average measured 

values ± sd. 
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Figure 5.11 – Principal Component Analysis (PCA) showing the contribution of DEB 

parameters to white seabream (top graph) and gilthead seabream (bottom graph) growth in 

Simulations1. 
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Figure 5.12 – Principal Component Analysis (PCA) showing the contribution of DEB 

parameters to white seabream (top graph) and gilthead seabream (bottom graph) growth in 

Simulations2.  
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Similarly to the white seabream’s PCA for Simulations1, the PCA results for Simulations2 

(Figure 5.12) showed that growth variables (total length and wet weight) and the MSD between 

predicted and observed fish growth contributed mostly to the negative part of factor 1. Once 

again, the parameter giving the largest contribution to the negative part of this factor was κ, 

indicating that bigger fishes had higher κ values. Some other parameters such as {XmP& } and κ� 

might have also contributed to extreme fish sizes due to their contributions to the same semi-

axis. Conversely, natural occurring fish sizes seem to be explained by higher values of [Mp& ],

[ ]GE and [ ]mE  since these parameters were on the opposite semi-axis of growth variables and 

MSD. 

 

Using the parameter sets that produced the best fits to observed data (Tables 5.5 and 5.6), the 

growth of white seabream and gilthead seabream was simulated by running the model on the 

“state variable” mode. Figure 5.13 represents the observed and predicted total length and wet 

weight values for respectively, a white seabream and a gilthead seabream from Simulations1. 

Both observed and predicted data show that the gilthead seabream gained twice as much weight 

(∆ = 620g, in 689 days) as the white seabream in almost the same period of time (∆ = 260g, in 

651 days). A linear regression between predicted and observed data revealed a good model fit for 

both species. Nevertheless, white seabream weight (R2 = 0.96, n=8) was simulated more 

accurately than length (R2 = 0.92; n=8), whereas for gilthead seabream, length (R2 = 0.98; n=7) 

was more accurately predicted than weight (R2 = 0.94; n=7). Results from Simulations2 (Figure 

5.14) were very similar to those from Simulations1 in terms of predicted growth ranges. 

However, model fits appeared to be slightly better with the second approach, for both white 

seabream (0.94<R2 <0.96; n=7) and gilthead seabream (0.95<R2 <0.98; n=7).  
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Figure 5.13 – Average ± sd measured (diamonds) and predicted values (lines) of wet weight (g) 

and total length (cm) for white seabream (top graph) and gilthead seabream (bottom graph) in 

Simulations1. 
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Figure 5.14 – Average ± sd measured (diamonds) and predicted values (lines) of wet weight (g) 

and total length (cm) for white seabream (top graph) and gilthead seabream (bottom graph) in 

Simulations2.  

 

A sensitivity analysis carried out with the calibrated model parameters from Simulations1 (Table 

5.5) revealed that fish wet weight is more likely to be affected by parameters such as κ, { Amp& } 

and κ�, in agreement to the results of the PCA analysis (Figure 5.11). A +25% change in the 

former parameters resulted in an increase of ca. 62% in mean wet weight. To a lesser extent the 

model also seemed to be sensitive to [ ]GE and [ Mp& ] since a 25% variation in these parameters 
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caused a variation of respectively, 24 % and 43% in mean wet weight. In what concerns fish 

length it seems that this variable was mostly affected by the shape coefficient (mδ ) as a 25% 

decrease in this parameter resulted in a 33% increase in mean total length. Nevertheless, other 

parameters like, κ, { Amp& } and κ� may also strongly influence fish length, as observed in the 

PCA analysis (Figure 5.11), since a 25% increase in these parameters yielded a ca. 17% increase 

in this variable. Regarding Simulations 2, the results of the sensitivity analysis performed with 

the calibrated model parameters (Table 5.6) were very similar to those from Simulations1, except 

for the fact that the maximum-specific ingestion rate ({ XmP& }) was much more relevant to fish 

growth than the assimilation rate ({Amp& }), in agreement to the PCA results (Figure 5.12). Apart 

from that the relative contribution of the other DEB parameters was very similar in the two 

approaches.  

 

Table 5.5 – Calibrated DEB parameters for white seabream (Diplodus sargus) and gilthead 

seabream (Sparus aurata) in Simulations1. Sensitivity analysis results as % of variation in white 

seabream mean total length and wet weight after changing each parameter by ±25%.  

Parameter 
Diplodus  Sparus  Total length Wet weight 

sargus aurata -25% +25% -25% +25% 

{ XmP& }  1073 998 0 0 0 0 

XK 0.0002 0.0004 +1 -2 +3 -6 

κ X 0.75 0.83 -18 +17 -48 +62 

{ Amp& }  808 870 -18 +17 -48 +62 

κ 0.60 0.68 -18 +17 -48 +62 

[ ]GE  7203 6098 +8 -7 +24 -18 

[ ]mE  2251 1547 +2 -1 +4 -3 

[ Mp& ] 54 
 

33 +11 -9 +43 -28 

mδ  0.257 
 

0.252 +33 -20 0 0 

TA 7807 
 

7425 -2 +3 -6 +7 
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Table 5.6 – Calibrated DEB parameters for white seabream (Diplodus sargus) and gilthead 

seabream (Sparus aurata) in Simulations2. Sensitivity analysis results as % of variation in white 

seabream mean total length and wet weight after changing each parameter by ±25%. 

Parameter 
Diplodus Sparus Total length Wet weight 

sargus aurata -25% +25% -25% +25% 

{ XmP& }  1300 1336 -19 +19 -50 +75 

XK 0.13 0.66 +3 -2 +8 -7 

κ X 0.71 0.83 -19 +19 -50 +75 

{ Amp& }  922 809 -1 +1 -4 +2 

κ 0.72 0.61 -20 +21 -50 +75 

[ ]GE  7296 5613 +9 -7 +27 -19 

[ ]mE  1815 1506 +1 -1 +3 -3 

[ Mp& ] 59 34 +13 -11 +53 -32 

mδ  0.258 0.254 +33 -20 0 0 

TA 7925 7637 -3 +3 -6 +8 

 
 
5 Discussion 

The simple mechanistic principles and generality of DEB models (Kooijman 2010) make them 

ideal to forecast fish growth in aquaculture systems because the same model can be applied to 

different species and different production cycles. To implement these models a suitable 

parameter set must be selected for the cultivated species. In the present study, despite a lot of 

effort was invested in parameter estimation, particularly for white seabream which is a poorly 

studied species from the physiological point of view, there were still uncertainties regarding 

some of the DEB parameters. One of the main concerns was related with food density (X) 

because even though there were registers of the amount of food supplied to the system there was 

no easy way to convert this into the amount of food available for fish, due to pellets 

sedimentation. Immeasurable DEB parameters such as κ, [ ]mE and[ ]GE , that were taken from the 

literature, were also a matter of concern. Therefore, instead of developing a simple DEB model, 
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an IBM based approach was used to allow a fast assessment of the parameter sets producing the 

best fit between predicted and observed fish growth (Duarte et al. 2010). As a result of the 

stochastically assignments of DEB parameters to each individual in the IBM, not every 

parameter combination gave completely reliable predictions and, as a result, fish growth fell 

outside the ranges observed in nature for both Simulations (Figures 5.7, 5.8, 5.9 and 5.10). 

Nevertheless, this simple methodology has proven to be effective, as in Duarte et al. (2010), 

since it was possible to select several parameter sets for each approach that predicted white 

seabream and gilthead seabream growth with reasonable accuracy (Figures 5.13 and 5.14).  

 

The similar results obtained with the two f formulations (cf. Section 3.2.1.1) suggest that both 

may be used to simulate seabream’s growth. One of the advantages of the approach used in 

Simulations1 is that it enables the evaluation of food conditions over a fish production cycle, 

which is a crucial information for semi-intensive systems since they are often managed 

intuitively (Giovannini and Piedrahita 1994; SEACASE 2009). The average f describing the 

growth of white seabream was 0.85, which is indicative that food conditions were not maximal 

(Kooijman 2000). Nevertheless, lower f values were reported for hake (0.72) in its natural 

environment (Bodiguel et al. 2009) and for juvenile sole (0.68) reared in tanks (Eichinger et al. 

2010). Since at some stages of the production cycle, weight predictions were below (November 

2004 to April 2004) and above (September 2004 to December 2004) observations (Figure 5.13), 

this indicates that f values might be respectively, below and above the average value in these 

periods. Moreover, the lack of agreement in the discrepancies between predicted and observed 

weight and total length values for white seabream, suggests that food conditions were not 

responsible for the length mismatches observed at the beginning of the production cycle. Instead, 

these results may be explained by the higher shape coefficient value (0.260) used in the model 

(Table 5.5) comparatively to the estimated δm value (0.255) for juvenile white seabream (Figure 
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5.3). In fact, Loy et al. (2001) have referred that during their juvenile life, specimens of white 

seabream undergo important shape changes, which are consistent with habitat transition. For the 

gilthead seabream, the average f estimated by the model, 0.70, was similar to the values reported 

for other fish species (Bodiguel et al. 2009; Eichinger et al. 2010), but lower than the value 

estimated for white seabream. As described for the latter species, at a certain point (December 

2005 to July 2006), the gilthead seabream’s weight and length predictions were also below the 

observed growth data (Figure 5.14), suggesting that f was below the estimated average value. 

The fact that f values were on average lower than 1 for both species, may be indicative of 

inefficient feeding strategies (e.g. meal timing and frequency or feed supply methods) (Black 

2001) or/and of substantial amounts of wasted feed as a result of pellets decay (Choo 2001; 

World Bank 2006). This last hypothesis is partially corroborated by more accurate growth 

predictions in Simulations 2 (cf. – Section 3.2.1.1) than in Simulations 1. The other advantage of 

using f2 is that, if the model would be coupled to a biogeochemical model it would be possible to 

directly estimate the contribution of uneaten feed to the organic matter enrichment of earth pond 

sediments (Serpa et al. 2007b).  

 

Regardless the approach, the IBM-DEB model may be used to investigate the reasons behind 

growth variability among fish. The PCAs from each simulation revealed that a relatively small 

number of parameters explained a large fraction of this variability. These were basically the 

parameters governing reserves allocation (κ), food ingestion ({ XmP& }) and assimilation ({ Amp& } 

and κ�). An interesting result was that the contribution of these parameters depended on the 

approach used to estimate the scaled functional response. In the PCAs from Simulations 1, the 

main parameters explaining growth variability were, by order of  importance, κ, { Amp& } and κ� 

whereas in Simulations2 the {Amp& } was replaced by { XmP& }, probably because as food pellets 

settle very rapidly, the amount of food that an individual is able to ingest in a small amount of 
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time becomes crucial for its success. In fact, according to Kooijman (2009), the mechanism 

behind size differences among fish in supply systems, is the way of feeding since the whole 

brood is usually fed few times a day. As a consequence of restricted food availability, the social 

interactions during feeding are intensified and size differences which initially are very small are 

amplified over time, as was the case for the present study (Figures 5.13 and 5.14), because 

largest animals take priority over smaller ones (Kooijman 2009). The consistency between the 

PCA (Figures 5.11 and 5.12) and the sensitivity analysis results (Tables 5.5 and 5.6), suggests 

that as potentially important parameters for fish growth, there should be an investment in the 

estimation of κ, { XmP& },{ Amp& }and κ�	when applying the present model to other fish species.  

 

Even though fish performance is more likely to be affected by DEB parameters governing food 

consumption and energy partioning, as found by other authors (van der Veer et al. 2003; 

Bodiguel et al. 2009), fish weight was also sensitive to parameters like [Mp& ] and[ ]GE , and fish 

length was particularly affected by δm (Tables 5.5 and 5.6). According to Bodiguel et al. (2009), 

the reason for having volume-depending parameters [Mp& ] and [ ]GE  affecting fish weight in a 

negative way is related to the fact that higher energetic costs for maintenance and growth imply a 

slower increase of body volume. Fish length, on the other hand, was mostly affected by the shape 

coefficient, as expected from eq. 11.  

 

Taking into account the results of Simulations2 (higher accuracy in growth simulations), the 

values of DEB parameters substantially affecting white seabream and gilthead seabream growth 

were compared (Table 5.6), to assess which of these parameters would explain more of the 

interspecies growth variability. From the differences between the DEB parameter values of these 

two Sparidae and the results of the sensitivity analysis, it appears that the parameter explaining 

the white seabream low growth rates is [Mp& ]. Since the [ Mp& ] value for white seabream was 42% 
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higher than that of the gilthead seabream, if the value of the latter species was used in the white 

seabream model, its final weight would more than duplicate, as shown in the sensitivity analysis 

(Table 5.6). Unlike in other studies in which interspecies variability was reflected in energy 

partioning (van der Veer et al. 2001), in the present work the fraction of reserves allocated for 

growth (κ) could not account for the growth differences between the two species because this 

value was higher for the white seabream. A possible explanation for these results is that the 

impact of [ Mp& ] in white seabream growth was much larger than the variation in κ, so that the 

extra energy invested in soma could not compensate for the higher maintenance costs. Regarding 

the ingestion rates ({XmP& }), as the difference between the values of the two species was of only 

3%, this parameter could not be have been responsible for interspecific variability, as found for 

flatfish species (van der Veer et al. 2001). Conversely, the food absorption efficiency (κ�) was 

able to explain part (≈33%) of the growth differences between these two seabreams, since a 12% 

variation in this parameter yielded a 117g increase in final fish weight.  

  

This last finding might be important for the aquaculture sector because it suggests that if feed 

absorption efficiency is increased, it would be possible for white seabream to attain its 

commercial size (350-400g) in less than 2 years. Being a newly cultivated species, the white 

seabream has been fed with rations that were optimised for gilthead seabream (Cejas et al. 2004; 

Sá et al. 2006), so the development of new feed formulations is crucial for white seabream 

production. Even though the physiological characteristics of the former species seem to prevent 

it from reaching the growth rates of gilthead seabream, if the white seabream would attain the 

market size in a shorter time period this might be sufficient to ensure the economic viability of 

its production in semi-intensive systems because this species reaches market prices substantially 

higher (5-6 €/kg, for 350 g size fish) (FAO 2011c) than the fast growing gilthead seabream (3-4 

€/kg, for 350 g size fish) (Barazi-Yeroulanos 2010). 
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6 Conclusions 

In the present work, an IBM-DEB model was developed and implemented to simulate the growth 

of two seabream species, the white seabream and the gilthead seabream, during a production 

cycle in semi-intensive fishponds. The model uses two different approaches to estimate the 

scaled functional response (f), in trying to account for uncertainties in food availability. Running 

the IBM model with a large number of individuals, each with its own parameter set was found to 

be a practical and easy way to calibrate the model, and to find the parameter sets that best 

described the growth of the two species. Model simulations globally matched the total length and 

wet weight observations of white seabream and gilthead seabream over a production cycle. 

However, more data sets are needed to test its applicability in different farming conditions. 

Comparing the DEB parameter values for these two sparids, it seems that the most likely reason 

for white seabream’s low growth is a higher energy demand for maintenance. However, a lower 

feed absorption efficiency might also explain part of the growth differences between these 

species. As the white seabream is currently being fed with rations optimised for gilthead 

seabream, an improvement in white seabream feeds might not only increase its production but 

also minimize the aquaculture environmental impacts by reducing the amount of waste. Future 

applications of the IBM-DEB model include its coupling to a biogeochemical model to 

reproduce the pond environment, and thereby create an efficient tool for pond management.  
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Abstract 

The sustainability of semi-intensive aquaculture relies on management practices that 

simultaneously improve production efficiency and minimize the environmental impacts of this 

activity. The purpose of the present work was to develop a mathematical model that reproduced 

the dynamics of a fish earth pond, to simulate different management scenarios for optimizing 

fish production in semi-intensive systems. The modelling approach consisted of coupling a 

biogeochemical model that simulated the dynamics of the elements that are more likely to affect 

fish production and cause undesirable environmental impacts (namely nitrogen, phosphorus and 

oxygen), to a fish growth model based on the Dynamic Energy Budget approach. The 

biogeochemical sub-model successfully simulated most water column and sediment variables. A 

good model fit was also found between predicted and observed white seabream (Diplodus 

sargus) growth data over a production cycle. Model outputs were used to construct nutrient 

budgets for evaluating the efficiency of food utilization and quantifying daily nutrient discharges 

for standard farming conditions. Budgets revealed that almost 50% of food supplied is not eaten 

by fish. The fraction of nutrients that is effectively retained by fish represented only 24.5% and 

27.3% of ingested N and P, which suggests low feed conversion efficiency for the cultivated 

species. In terms of effluent discharges, a 43.1 µM d-1 of N and 2.9 µM d-1 of P were estimated to 

be discharged into the Ria Formosa lagoon. In order to optimize fish production, different 

management scenarios were analysed with the model (e.g. increase stocking densities, 

decrease/increase water exchange rates, decrease/increase feeding rates, decrease phosphorus 

content in fish feeds, increase feed absorption efficiency and decrease pellets sinking velocity) to 

test their effects on the pond environment as well as on fish yields and effluent nutrient 

discharges. Scenarios were quantitatively evaluated and compared using the Analytical 

Hierarchical Process (AHP) methodology, which returns a score for each scenario. The best 
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management options for maximizing production while maintaining a good pond environment 

and minimizing the impacts on the adjacent coastal system were to double standard stocking 

densities and improve feed absorption efficiency.  

 

1 Introduction 

To turn aquaculture into a more productive activity with improved profit margins, fish farmers 

worldwide have been intensifying production (World Bank 2006). Intensification implies that 

fish are cultivated at high densities and using formulated feeds, which increases the ecological 

footprint of this activity (Folke et al. 1998). The lower environmental risks of semi-intensive 

aquaculture (Kautsky et al. 2000; Banas et al. 2008), together with the increasing demand of 

consumers on food safety and on cultivated species welfare, have brought semi-intensive 

aquaculture products back into the front scene (SEACASE 2009). Nevertheless, this industry has 

been struggling with economic difficulties as a result of high production costs (e.g. labour, 

energy and land costs) and low productivity. A low profitability together with the increasing 

market competition with low-price intensive aquaculture products (SEACASE 2009), may 

seriously compromise the economic viability of this activity.  

 

Among the solutions that have been proposed to increase the competitiveness of semi-intensive 

aquaculture is the optimisation of fish production (SEACASE 2009). The latter proposal implies 

that not only production is maximized but also that sound environmental conditions are 

maintained within fishponds and in the receiving coastal waters. But how can this be achieved?  

 

One of the possible approaches would be to optimize fish stocking densities. For instance,  

Ferreira et al. (2010) reported that doubling the standard stocking density of semi-intensive 
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gilthead seabream (Sparus aurata) farms, from 1.5 kg m-3 to 3 kg m-3, had no major 

environmental impacts in the adjacent coastal waters, which suggests the feasibility for 

productivity enhancement under sound environmental conditions. Nevertheless, optimum 

stocking densities strongly depend on several factors, such as the spatial and behavioural needs 

of fish species (Ashley 2007), pond water quality (Shin and Wu 2003) and the assimilative 

capacity of the surrounding aquatic environment (Sarà 2007), which are known for limiting the 

carrying capacity of production systems.  

 

Water management is also an important issue for the sustainability of semi-intensive aquaculture 

because water quality in these systems, which is crucial for fish welfare, is often determined by 

water exchange rates (Hopkins et al. 1993; Brambilla et al. 2007). While some authors have 

suggested the reduction of water exchange rates as a way to lower the risk for sudden changes in 

water quality parameters and to minimize the adverse effects of effluents discharge (Páez-Osuna 

2001a, b; Primavera 2006), others recommended the increase of water exchange as an effective 

strategy for reducing the concentrations of potentially toxic compounds, suggesting that such 

action may also allow substantially higher stocking densities (Burford and Lorenzen 2004). 

 

Aquaculture feeds are determinant for the success of fish culture since they play a major role in 

fish growth and in the environmental impacts of farm effluents (Tacon and Forster 2003; 

Nwanna 2003; Bascinar et al. 2007; Booth et al. 2008). As feeding requirements by fish depend 

on a number of factors such as size, health status and the quality of the holding environment, the 

definition of optimal feeding rates (i.e. the amount of daily feed supplied as a function of fish 

biomass) is essential to avoid situations of over- or underfeeding (Wing-Keong et al. 2000; 

Nwanna 2003), which might not only compromise fish production, but in the case of overfeeding 
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affect the environmental sustainability of this activity. The development of food formulations 

based on the nutritional requirements and bioenergetics of cultivated species, may also be an 

effective strategy for improving food assimilation efficiency and consequently food conversion 

rates (FCRs) as well as to minimize the amount of solid wastes and nutrient loadings resulting 

from undigested, un-utilized and uneaten feeds (Black 2001; Islam 2005; World Bank 2006; 

SEACASE 2009). Other authors (Kaushik et al. 2004; SEACASE 2009; Ferreira et al. 2010) 

have suggested the replacement of fishmeal protein and fat sources of commercial fish feeds by 

others of vegetable origin (e.g. soya), as a way to produce more “environmentally friendly” feeds 

(i.e. ecofeeds). Such diet formulations will not only reduce the dependence of aquaculture on 

fisheries products (Kaushik et al. 2004) but also minimize nutrients concentration in effluent 

waters due to the elimination of additional protein provided by fish oils (Kaushik et al. 2004) and 

lower content of soluble nutrients, like phosphorus (SEACASE 2009; Ferreira et al. 2010), 

thereby contributing for the reduction of semi-intensive aquaculture’s ecological footprint. Other 

key issue in food management is the improvement of food pellet technology, either by increasing 

the stability of pellets or reducing its sinking rates (Vassalo et al. 2006; Piedecausa et al. 2009), 

since it may simultaneously maximise the amount of food ingested and minimize waste 

production (Choo 2001; Nwanna 2003; World Bank 2006). 

 

Testing the effects of these management options under field conditions is extremely time 

consuming and often unfeasible from the logistic point of view. Ecological models are a 

powerful tool to assist in this task because they are able to reproduce fishpond dynamics. 

Furthermore, models may be used to accurately determine organic matter and nutrient wastes 

resulting from fish activity, an information that is crucial for dimensioning Integrated Multi-

Trophic Aquaculture (IMTA) systems, which have been widely referred as a sustainable option 

for reducing the environmental impacts of fish farming while increasing its economic efficiency 
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(Whitmarsh et al. 2006; Bunting and Shpigel 2009; Gazi et al. 2009; Troell et al. 2009; Nobre et 

al. 2010).  

 

The purpose of this work was to develop a mathematical model that was capable of reproducing 

fishpond dynamics in order to simulate different management scenarios: i) increase of stocking 

densities; ii) decrease/increase of water exchange rates; iii) decrease/increase of fish feeding 

rates, iv) decrease of phosphorus content in fish rations; v) increase of food absorption efficiency 

and vi) decrease of food pellets sinking velocity. The final goal of this study was to evaluate 

which scenarios would lead to maximum fish production with minimum impacts for the 

environment.  

 

2 Methodology 

 
2.1 Description of the system 

Data for model calibration was collected during a 2-year white seabream growth trial, carried out 

in the earth ponds of the IPIMAR Aquaculture Research Center (ARC), located in the Ria 

Formosa lagoon (Southeast Portugal). A rectangular earth pond with a surface area of 450 m2 

and an approximate volume of 650 m3 was stocked with 3000 juveniles of white seabream 

(Diplodus sargus). Seawater was supplied to the fishpond at rates varying from 25 to 100 m3 h-1. 

The pond was equipped with aerators (FORCE-7; 1.5 hp) in order to maintain dissolved oxygen 

above critical levels for fish survival. Fish were fed daily with a commercial food pellet 

containing 51% of total protein, 29% fat and 1.2% total P at 1.2% body wet weight per day in the 

first production year, and 0.8% in the second year. Monthly ration varied throughout the 

experiment, between 0.83 and 11.7 kg d-1, according to fish biomass and feeding response (Serpa 

et al. 2007b). 
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2.2 Model development 

The first step for the development of the model presented herein was to build a biogeochemical 

model (cf. Chapter 4) that reproduced the cycles of the elements that are more likely to 

negatively affect fish production and cause undesirable environmental impacts due to their 

excess (e.g. nitrogen and phosphorus), or deficit (e.g. oxygen). The second step was to build a 

Dynamic Energy Budget (DEB model) to simulate white seabream growth as a function of the 

amount of food supplied and water temperature (cf. Chapter 5). The final step for creating a 

suitable tool to simulate the fishpond system was to couple the two models to account for the 

interactions between fish and the environment. As the biogeochemical and DEB models were 

extensively described in the previous chapters (cf. Chapters 4 and 5), the next paragraphs will be 

devoted to clarify models coupling.   

 

Coupling consists in using the outputs of the DEB model as inputs for the biogeochemical 

model, and vice-versa (Figure 6.1). In the biological model, not all the food supplied was 

available to fish due to pellets sedimentation and decay (cf. Chapter 5). Uneaten food is assumed 

to be an extra source of particulate organic matter (POM) to pond sediments, settling at 

velocities of 0.035 ± 0.030 m s-1. When reaching the bottom, uneaten food is directly integrated 

in the benthic organic carbon (POCs), nitrogen (PONs) and phosphorus (POPs) pools according 

to the C:N:P ratio in fish feeds (Table 6.1), which provides the substrate for the diagenetic 

processes simulated by the benthic module of the biogeochemical model (cf. Chapter 4).  
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Figure 6.1 – Coupling of the biogeochemical and DEB models. POMw – Particulate Organic 

Matter in the water column; PONs and POPs – Particulate Organic Nitrogen and Phosphorus in 

sediments; DONs and DOPs – Dissolved Organic Nitrogen and Phosphorus in porewater; DINs 

and DIPs – Dissolved Inorganic Nitrogen and Phosphorus in porewater; DOw and DOs – 

Dissolved Oxygen in the water column and in porewater; TDNw and TDPw – Total Dissolved 

Nitrogen and Phosphorus in the water column.  

 

Fish activity also influences the environment through respiration and excretion (urinary and 

fecal) processes. According to the DEB theory (Kooijman 2000, 2010), oxygen consumption is 

proportional to the energy mobilization rate ([Cp& ]). In the model, [ Cp& ] values (J cm−3 d−1) are 

converted to DO values (mg) using a conversion factor of 13.84 J mg-1 O2 (Brafield and 

Llewellyn 1982), so that the oxygen consumption for a single individual (Resp; mg O2 d
-1 per 

fish) could be estimated as:  
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Resp 
[ ]

V
J_mgOConversion

p

2

C ×=
&

                                                                                     (1)   

where ConversionJ_mgO2 is the conversion factor from Joules to oxygen units and V 

corresponds to the fish structural body volume (cm3). Individual results are then extrapolated for 

the whole pond in order to determine the feedbacks of fish respiration on water column dissolved 

oxygen (DOw) concentrations. Global fish respiration (TotalResp, in mg DO L-1 d-1) is calculated 

as follows: 

TotalResp
1000PondVolume

nr_FishspRe

×
×=                                                                                                  (2)   

where Fish_nr is the number of fish in the pond (3000) and PondVolume, the volume of the 

fishpond (650 m3). During the respiration process, carbon dioxide (CO2) is released to the water 

column. The amount of carbon released during respiration can be estimated using the respiration 

quotient (RQ), i.e. the ratio between carbon dioxide production and oxygen consumption. In the 

DEB theory, the RQ depends on the organism’s composition in terms of proteins, lipids and 

polysaccharides (Kooijman 2000). Due to the lack of this information, in the present study it was 

assumed that the composition of organic matter metabolized by an organism is similar to fish 

food (Table 6.1), to guarantee that the organism’s stoichiometry is not changed by food 

absorption. Therefore, the RQ value used in the model (0.82) is a weighted average of the RQs 

of food proteins, lipids and polysaccharides (Kooijman 2000): 

rContentPolysacchantLipidConteotContentPr

rContentPolysaccha*rRQPolysacchantLipidConte*LipidRQotContentPr*otRQPr
RQ

++
++=

 (3) 

where ProteinsRQ is the respiration quotient for proteins (0.84), ProteinsContent is the protein 

content in feeds (51%), LipidsRQ is the respiration quotient for lipids (0.67), LipidsContent is the 

lipids content in feeds (29%), PolysaccharidesRQ is the respiration quotient for polysaccharides 

(1) and PolysaccharidesContent is the polysaccharides content in feeds (20%).  The carbon loss 
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by respiration for a single individual (Cresp, in mgC d-1 per fish) is calculated according to the 

following equation: 

tcularWeighOxygenMole

icWeightCarbonAtomRQspRe
Cresp

××=                                                                      (4)   

where Resp is the oxygen consumption for a single individual and RQ, the respiration quotient 

(0.82). Extrapolation for the whole pond was done by multiplying Cresp by the number of fish in 

the pond (3000). 

   

Table 6.1 – Diet composition, relatively to food dry weight. 

 Food  

(Sorgal® Balance5) 

Organic composition (%)  

Proteins 51 

Lipids  29 

Polysaccharides 20 

Elemental composition (%)  

Carbon 41.3 ± 1.2  

Nitrogen 6.6 ± 0.6  

Phosphorus 1.2 ± 0.3  

                                 Source: www.sorgal.pt 
 

The contribution of urinary excretion to the nitrogen (N) and phosphorus (P) pools in pond water 

is calculated according to the weak homeostasis concept defined in the DEB theory (Kooijman 

2000, 2010). In agreement with this concept, carbon and nutrients loss must be directly 

proportional to feed C, N and P inputs to ensure that the organism’s C:N:P ratio is maintained 
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(Table 6.2). Therefore, nitrogen (Nexcr, in mg N d-1 per fish) and phosphorus excretion (Pexcr, in 

mg P d-1 per fish) is calculated as follows:  

food

resp
excr

N

C

C
N









=                                                                                                           (5)   

food

resp
excr

P

C

C
P









=                                                                                                            (6)   

where 
foodN

C







 and 
foodP

C







  correspond to the C:N and C:P ratios in fish food (Table 6.1). The 

calculated Nexcr and Pexcr values for a single individual were multiplied by the number of fish in 

the pond (3000), for extrapolations to the whole pond.  

 

Table 6.2 – Juvenile and adult white seabream (Diplodus sargus) elemental composition, 

relatively to fish dry weight. 

Elemental composition (%) Juvenile Adult 

Carbon 41.1 ± 2.3  43.9 ± 3.0  

Nitrogen 7.11 ± 0.64  7.03 ± 0.56  

Phosphorus 1.13 ± 0.05  1.20 ± 0.08 

 

Fecal excretion (or egestion) is assumed to be a source of particulate organic matter to the water, 

being integrated in POCw, PONw and POPw pools. Since in the DEB model, the egestion rate 

(Egestion_rate) is calculated by the difference between ingestion and assimilation rates 

(Kooijman 2000, 2010), the Egestion_rate had to be converted into mass units to be an input for 

the biogeochemical model. In the coupled model, egestion (Egestion; mg L-1 d-1) is calculated 

according to eq. 7:  
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1000PondVolumeContentFoodEnergy

rate_Egestion
Egestion

××
=                                                      (7)   

where FoodEnergyContent is the energy content of fish feeds (23.8 J mg-1 of dry food) and   

PondVolume, the volume of the fishpond (650 m3). The C, N and P inputs (in mg L-1 d-1) from 

fish feces (respectively, Cegest, Negest, Pegest) to the suspended particulate organic C, N and P 

pools, were calculated as follows:  

foodEgest CEgestionC ×=                                                                                                (8)   

foodEgest NEgestionN ×=                                                                                               (9)   

foodEgest PEgestionP ×=                                                                                               (10)   

where Cfood, Nfood, Pfood, are respectively the C, N and P contents in fish feeds (Table 6.1). 

 

2.3 Model forcing and calibration 

As input data the model requires complete data sets on average daily water temperature (cf. 

Chapter 4), wind speed (cf. Chapter 4), water inflow and outflow rates (varying from 0.007 to 

0.027 m3 s-1), particulate matter and nutrient concentrations in inflowing water (cf. Chapter 3.2) 

and food input (cf. Chapter 5). Since both the biogeochemical and DEB models have been 

previously calibrated (cf. Chapters 4 and 5), only a few parameters were adjusted after models 

coupling to achieve the best fit between simulated and measured water and sediment quality 

data. Model parameters needing adjustment were related to water column processes such as, 

denitrification (kdenitw = 0.1 d-1) and particulate matter sedimentation (ν = 0.1 m d-1; ν’ = 0.24 m 

d-1), and to benthic processes like nitrification (knits = 0.7 d-1) and diffusion (DsDO = 250 cm2 d-

1; DsNH4
+ = 15 cm2 d-1). For the pelagic compartment, the need for parameters adjustment is 

explained by fish activity, since the biogeochemical model had been previously calibrated for a 

pond without fish (cf. Chapter 4). Fish respiration affects dissolved oxygen availability in the 
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water column, which in turn influences denitrification processes (Hargreaves 1998; Burford and 

Lorenzen 2004), thereby justifying the need for an adjustment in kdenitw. On the other hand, the 

higher amount of particulate matter in the fishpond, as a result of uneaten food and fish feces as 

well as higher water exchange rates, justifies the increase in total and particulate matter settling 

velocities (cf. Chapter 4). Bottom sediment enrichment implies a decrease in oxygen availability, 

which restricted nitrification processes (Serpa et al. 2007b). Therefore, to ensure a good model 

fit between predicted and observed porewater NOx
 concentrations a change in knits was required. 

The increase in DO and NH4
+ diffusion coefficients was mostly necessary to account for the 

effects of bioturbation, either from benthic fauna activity (cf. Chapter 3.2) or the foraging 

activity of fish (Riise and Roos 1997; Hargreaves 1998).  

 

2.4 Model implementation 

The coupled biogeochemical – fish DEB model was implemented with EcoDynamo (Pereira et 

al. 2006), and state variables were computed over time using the Euler integration method with a 

time step of 10 minutes. 

 

2.5 Model performance 

Model performance was evaluated by model II regressions between predicted and observed 

values of state variables, as described by Laws and Archie (1981). According to these authors, a 

good model fit (p<0.05) implies that the slope of the regressions is not different from one and the 

y-intercept is not different from zero. A slope that significantly differs from one indicates a 

difference between observed and simulated values which is proportional to the observed values. 

If the slope is not significantly different from one but the y-intercept significantly differs from 

zero there is a systematic difference between observations and simulations.  
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2.6 Scenario analysis 

After calibration of the fishpond model, several management scenarios (Table 6.3) were 

simulated with the purpose of optimizing white seabream production in semi-intensive earth 

ponds. These scenarios were defined based on the management options proposed by several 

authors (cf. Section 1) for maximizing fish production while minimizing aquaculture 

environmental impacts. The effects of each scenario on pond water and sediment quality were 

evaluated by comparing scenario simulations with the standard simulation (after model 

calibration). These comparisons were made on the basis of average values for several model 

variables, integrated over the second year of the production cycle. The evaluation of pond water 

and sediment quality for the different scenarios was based on the IFREMER classification 

schemes (Austoni et al. 2004). However, for water quality, this scheme had to be modified 

because model outputs did not include turbidity. Instead, total particulate matter (TPM) were 

used as a water quality parameter, using as reference values for this variable, the Ria Formosa 

lagoon values measured in areas under different levels of anthropogenic pressure (Falcão 1997). 

Besides the quality of pond environment, each scenario was evaluated for its effects on final fish 

biomass and for impacts on the adjacent water body, to comply with the objectives of the present 

study. Environmental impacts were evaluated by total N and P discharges during a white 

seabream production cycle, which were obtained by multiplying total dissolved nitrogen (TN) 

and phosphorus (TP) concentrations in pond water by daily water outflow rates. 
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Table 6.3 – Scenarios and management options for semi-intensive pond aquaculture. Current 

rearing conditions (standard simulation): Stocking density = 1.2 kg m-3; Water exchange rate = 

25 to 100 m3 h-1; Feeding rate = 0.8 to 1.2% of fish body weight; Phosphorus content in feeds = 

1.2%; Food absorption efficiency = 72%; Pellets sinking velocity = 0.035 m s-1.      

Scenario Management options 

Change stocking density Increase stocking density to 3 kg m-3 (Scenario1) 

Change water exchange rate Decrease water exchange rate by 25% (Scenario2) 

Increase water exchange rate by 25% (Scenario3) 

Change feeding rate Decrease feeding rate to 0.4 to 0.6% of fish body weight per 

day (Scenario4) 

Increase feeding rate  to 1.6 to 2.4% of fish body weight per 

day (Scenario5) 

Change diet formulations Decrease phosphorus content in feeds to 1.0% (Scenario6) 

Change food absorption efficiency Increase food absorption efficiency to 83% (Scenario7) 

Change pellets sinking velocity Decrease pellets sinking velocity to 0.018 m s-1(Scenario8) 

 

2.6.1 Scenario classification 

The selection of best and worst scenarios was based on the Analytical Hierarchical Process 

(Saaty 1980), a mathematical technique for multicriteria decision making. In the present work, 

the decision elements or objectives, were: i) quality of the pond environment, ii) environmental 

impacts and iii) fish production. The quality of the pond environment was evaluated based on 

water column and sediment variables (cf. Section 2.6), combined into a single indicator by 

applying an AHP, in which each variable is a decision element with equal relevance for the pond 

environment. A similar procedure was followed for the second decision element, but in this case, 

total N and P discharges during a white seabream production cycle were the only variables 
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defining the indicator. Fish production was exclusively evaluated based on the final fish biomass 

predicted by the model. 

The Analytical Hierarchical Process (AHP) was conducted in several steps:  

1. Performance of pairwise comparisons – comparison of the relative importance (i.e. 

weight) of each decision element according to the following scale: 1 – equally important; 2 – 

moderately more important and 3 – strongly more important. In one situation it was assumed that 

the 3 decision elements were equally important (A1); whereas in the other, the most important 

decision element was considered to be fish production (A2) for economic reasons. The different 

pairwised combinations for each situation formed two different reciprocal matrices (3 × 3), 

respectively A1 and A2 (see below), to ensure the consistency of the results.  

  

 

 

 

 

2. Matrix normalization – matrices A1 and A2 were normalized with eq. 13:                                                                                             

�������� = ���∑ ������� 	                                                                                                                (13) 

where m is the number of lines in the matrix. 

  

3. Computation of the relative weights – the “average” weight for each decision 

element/indicator was calculated by eq. 14: 

�	� = ∑ ��� !��"                                                                                                   (14) 
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4. Standardization – the matrix containing the values of the different indicators for each 

scenario (I) was standardized to allow the comparison between indicators. Standardization was 

done according to the equations of Agnetis et al. (2006), as follows: 

 

• When the indicator value was directly proportional to quality and I i,j > I h,j, eq. 15 was 

used: 

#$%� = 8 '(�)	*+�'�,�-./'�,�( + 1                                                                                                   (15) 

If I i,j <= I h,j, then bih = 1/bhi 

 

• When the indicator was inversely proportional to quality and Ii,j < I h,j, eq. 16 was applied: 

#$%� = 8 '+()	*(�'�,�-./'�,�( + 1                                                                                                   (16) 

If I i,j >= I h,j, then bih = 1/bhi 

 

The outcome of the standardization exercise was a matrix (9 × 9) for each indicator. Each of 

these matrices was further normalized using eq. 13, generating 3 vectors that constituted an S 

matrix (9 × 3), in which columns correspond to indicators and lines to scenarios.  

 

5. Calculation of global scores - the score (v) of each scenario was obtained by multiplying 

the S matrix by the W matrix (3 × 1), as follows: 

v = S.W                                                                                                                            (17) 

 

3 Results 
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The first part of this section (Model performance) synthesizes some comparisons between 

observed and simulated data (from the standard simulation). The second part deals with scenario 

analysis, where results obtained with the different scenarios (Table 6.3) are compared to those of 

the standard one. 

 

3.1 Model performance 

Comparisons between predicted and observed values for the water column, porewater, sediment 

and fish variables are shown in Figures 6.2 – 6.8.  

 

3.1.1 Water column variables 

The results of model II regressions between predicted and measured values of water column 

variables (Table 6.4), show that the model could not fully predict (p>0.05) the variability of 

particulate matter (TPMw and POMw) concentrations over the white seabream production cycle 

(Figure 6.2). A poor model fit (p>0.05) was found for ammonium (NH4
+

w) in pond water (Table 

6.4), even though the model was able to predict the majority (5 out of 8) of data points (Figure 

6.3). In opposition, a significant part (p<0.04) of oxidized nitrogen forms (NOxw) and phosphate 

(HPO4
2-

w) variability was explained by the model (Table 6.4), despite some discrepancies 

between model predictions and observations (Figure 6.3). Differences between dissolved organic 

compounds (DONw and DOPw) predicted and measured values (Figure 6.3), prevented the model 

from accurately simulating these variables (p>0.05). A significant part of DOw variability was 

explained by the model (p<0.01 - Table 6.4), despite some underestimation of DO values during 

spring and summer months (Figure 6.3). 
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                    Table 6.4 – Results of model II regressions for water column variables.  

 
 TPMw 

mg L-1 

POMw 

mg L-1 

NH4
+

w 

µM 

NOxw 

µM 

HPO4
2-

w 

µM 

DONw 

µM 

DOPw 

µM 

DOw 

mg L-1 

slope 

Value 0.53 0.72 0.02 0.56 1.38 1.71 0.30 0.38 

Upper 95% limit 3.04 -8.95 0.64 0.79 4.94 0.30 1.35 0.43 

Lower 95% limit -0.29 -0.47 -0.60 0.37 0.57 -4.42 -0.54 0.34 

y-intercept 

Value 19.49 2.07 4.20 0.18 0.04 -4.36 0.51 4.30 

Upper 95% limit 50.62 39.70 7.70 0.42 0.21 41.30.1 1.06 4.64 

Lower 95% limit -76.28 6.69 0.63 -0.10 -0.69 6.15 -0.51 3.95 

p Value 0.20 0.23 0.94 <0.01 0.03 0.17 0.98 <0.01 
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Figure 6.2 – Predicted (line) and observed (diamonds) values of total particulate matter (TPMw, 

mg L-1) and particulate organic matter (POMw, mg L-1) in the water column of a white seabream 

production pond.  

 

3.1.2 Porewater variables 

In general, the model could not fully predict (p>0.05) the variation pattern of porewater variables 

(Figures 6.4 – 6.5; Table 6.5), however for some variables like DONs and NOxs, predicted values 

were very close to measured data (Figure 6.4). In fact, for the latter variable, small discrepancies 

were found between model predictions and observations, except in October 2004, when the 

model was unable to simulate a peak in NOxs concentrations. On the other hand, the model was 

able to explain a significant part (p<0.01) of porewater HPO4
2-

s variability (Table 6.5), despite 

some over- or underestimation of its concentrations (Figure 6.5).  
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Figure 6.3 – Predicted (blue line) and observed (red diamonds and line) ammonium (NH4
+

w), 

oxidized nitrogen forms (NOxw), dissolved organic nitrogen (DONw), phosphate (HPO4
2-

w), 

dissolved organic phosphorus (DOPw) and dissolved oxygen (DOw) concentrations in the water 

column of a white seabream production pond. 

          Model        /            Observed 
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Figure 6.4 – Predicted (line) and observed ± standard deviation (diamonds) ammonium (NH4
+

s), 

oxidized nitrogen forms (NOxs) and dissolved organic nitrogen (DONs) porewater concentrations 

in a white seabream production pond. 
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Figure 6.5 – Predicted (line) and observed ± standard deviation (diamonds) phosphate (HPO4
2-

s) 

and dissolved organic phosphorus (DOPs) porewater concentrations in a white seabream 

production pond. 

 

Table 6.5 – Results of model II regressions for porewater variables.  

 
 NH4

+
s 

µM 

NOxs 

µM 

HPO4
2-

s 

µM 

DONs 

µM 

DOPs 

µM 

slope Value 0.09 0.30 0.56 -1.03 -9.33 

 Upper 95% limit 0.49 -2.28 0.79 3.54 2.46 

 Lower 95% limit -0.29 -5.97 0.37 0.25 -1.46 

y-intercept Value 249.54 8.59 4.62 1753.53 448.04 

 Upper 95% limit 333.07 96.72 6.29 518.21 109.91 

 Lower 95% limit 159.98 44.80 2.64 -2658.80 -57.80 

p Value 0.57 0.52 <0.01 0.36 0.60 

 

3.1.3 Sediment variables 

Figure 6.6 presents the comparison between predicted and observed values of sediment 

variables, POCs, PONs and POPs. From this figure it becomes evident that there was little 

           Model          Observed 



 
Chapter 6 

 

 
226 
 

0

500

1000

1500

2000

2500

3000

P
O

N
s
(µ

g
 g

-1
 d

w
)

0

3000

6000

9000

12000

15000

18000

21000
P

O
C

s
(µ

g
 g

-1
 d

w
)

0

100

200

300

400

500

600

700

800

900

Ju
n-

0
3

A
u

g-
0

3

O
ct

-0
3

D
e

c-
0

3

F
e

b-
0

4

A
p

r-
0

4

Ju
n

-0
4

A
u

g-
0

4

O
ct

-0
4

D
e

c-
0

4

F
e

b
-0

5

P
O

P s
(µ

g
 g

-1
 d

w
)

discrepancy between model simulations and measured data, which is indicative of a good model 

fit (p<0.01) as confirmed by the results of the regression analysis (Table 6.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 – Predicted (line) and observed ± standard deviation (diamonds) organic carbon 

(POCs), nitrogen (PONs) and phosphorus (POPs) content in the sediments of a white seabream 

production pond. 
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Table 6.6 – Results of model II regressions for sediment variables. 

 
 POCs 

µg g-1 dw 

PONs 

µg g-1 dw 

POPs 

µg g-1 dw 

slope Value 0.97 0.85 0.85 

 Upper 95% limit 1.97 1.21 1.04 

 Lower 95% limit 0.47 0.58 0.70 

y-intercept Value 549.91 203.02 -0.94 

 Upper 95% limit 4038.73 316.42 21.98 

 Lower 95% limit -6426.57 49.13 -28.04 

p Value <0.01 <0.01 <0.01 

 

 

3.1.4 Biological variables 

Model II regressions between predicted and measured values of fish wet weight and total length 

(Table 6.7), revealed that the model was able to explain a significant part (p<0.01) of growth 

data variability. Nevertheless, a systematic overestimation of fish weight was found (Table 6.7), 

whereas for total length the model could over-or underestimate (Figure 6.7) this variable 

depending on its value. 

 

 

 

 

 

 

 



 
Chapter 6 

 

 
228 
 

0

5

10

15

20

25

30

0

50

100

150

200

250

300

350

1
8-

0
6-

2
0

0
3

1
8-

0
8-

2
0

0
3

1
8

-1
0

-2
0

0
3

1
8

-1
2

-2
0

0
3

1
8-

0
2-

2
0

0
4

1
8

-0
4

-2
0

0
4

1
8

-0
6

-2
0

0
4

1
8

-0
8

-2
0

0
4

1
8

-1
0

-2
0

0
4

1
8

-1
2

-2
0

0
4

1
8-

0
2-

2
0

0
5

To
ta

l l
en

gt
h 

(c
m

)

W
et

 w
ei

gh
t (

g) Predicted weight

Observed weight

Predicted length

Observed length

Table 6.7 – Results of model II regressions for fish growth variables. 

 
 Fish weight 

g 

Total length 

cm 

slope Value 1.02 0.77 

 Upper 95% limit 1.20 0.87 

 Lower 95% limit 0.86 0.69 

y-intercept Value -20.99 3.14 

 Upper 95% limit -1.25 4.53 

 Lower 95% limit -44.41 1.61 

p Value <0.01 <0.01 

 

 

 

 

 

 

 

 

 

Figure 6.7 – Average ± standard deviation measured and predicted values of white seabream wet 

weight (respectively, diamonds and solid line) and total length (respectively, circles and dashed 

line) over a production cycle. 

 

3.2 Scenario analysis 
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3.2.1 Water quality 

In the standard simulation and in each of the scenarios analysed in the present work, most water 

quality variables fell into the category “High” and “Good”, except for TPMw that was in the 

“Moderate” category in all situations (Table 6.8). Despite the fact that there were no water 

quality constraints regarding the scenarios simulated with the present model, the results suggest 

that some management options such as, increase of fish stocking densities (Scenario1) and 

decrease of water exchange rates (Scenario2), negatively affect pond water quality. In Scenario1, 

NH4
+

w and HPO4
2-

w concentrations increased 32 and 20%, respectively, compared to the standard 

simulation, whereas in Scenario2 these compounds increased 18 and 25%, respectively. The 

management option that is more likely to improve water quality is the decrease of feeding rates 

(Scenario4), since NH4
+

w and HPO4
2-

w concentrations decreased 16% and 9%; respectively, 

whereas the opposite scenario, i.e. the increase of fish feeding rates (Scenario5), not only 

increased the availability of NH4
+

w and HPO4
2-

w by 11 and 14%, respectively, as also produced a 

4% decrease in DOw. For the remaining scenarios, water column variables were very similar to 

the standard simulation. 
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Table 6.8 – Water quality assessment for the standard simulation and for each of the  

management scenarios considered in the present work. Quality status: BLUE – High; GREEN – 

Good; YELLOW – Moderate; ORANGE – Poor; and RED – Bad. Adapted from: Austoni et al. 

(2004). 

 Variables Units           

Standard 

Simulation 

TPM mg L-1 0  20  40 40.61 60  80  

DO % 100 93.46 80  70  60  50  

NH4
+ µM 0 4.01 7  10  20  30  

NO2
-+ NO3

- µM 0 0.68 7.5  11  25  40  

HPO4
2- µM 0  0.3 0.56 1  1.5  4  

TN µM 0 14.84 50  75  100  120  

TP µM 0 0.78 1  2  5  8  

Scenario1 

TPM mg L-1 0  20  40 40.97 60  80  

DO % 100 87.37 80  70  60  50  

NH4
+ µM 0 5.31 7  10  20  30  

NO2
-+ NO3

- µM 0 0.69 7.5  11  25  40  

HPO4
2- µM 0  0.3 0.67 1  1.5  4  

TN µM 0 16.15 50  75  100  120  

TP µM 0 0.89 1  2  5  8  

Scenario2 

TPM mg L-1 0  20  40 40.73 60  80  

DO % 100 91.09 80  70  60  50  

NH4
+ µM 0 4.71 7  10  20  30  

NO2
-+ NO3

- µM 0 0.69 7.5  11  25  40  

HPO4
2- µM 0  0.3 0.62 1  1.5  4  

TN µM 0 15.55 50  75  100  120  

TP µM 0 0.84 1  2  5  8  
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 Table 6.8 – (continued) 

 Variables Units           

Scenario3 

TPM mg L-1 0  20  40 40.56 60  80  

DO % 100 94.86 80  70  60  50  

NH4
+ µM 0 3.60 7  10  20  30  

NO2
-+ NO3

- µM 0 0.68 7.5  11  25  40  

HPO4
2- µM 0  0.3 0.53 1  1.5  4  

TN µM 0 14.43 50  75  100  120  

TP µM 0 0.75 1  2  5  8  

Scenario4 

TPM mg L-1 0  20  40 40.40 60  80  

DO % 100 95.90 80  70  60  50  

NH4
+ µM 0 3.66 7  10  20  30  

NO2
-+ NO3

- µM 0 0.68 7.5  11  25  40  

HPO4
2- µM 0  0.3 0.51 1  1.5  4  

TN µM 0 14.49 50  75  100  120  

TP µM 0 0.73 1  2  5  8  

Scenario5 

TPM mg L-1 0  20  40 41.15 60  80  

DO % 100 89.68 80  70  60  50  

NH4
+ µM 0 5.02 7  10  20  30  

NO2
-+ NO3

- µM 0 0.68 7.5  11  25  40  

HPO4
2- µM 0  0.3 0.64 1  1.5  4  

TN µM 0 15.85 50  75  100  120  

TP µM 0 0.86 1  2  5  8  
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 Table 6.8 – (continued) 

 Variables Units           

Scenario6 

TPM mg L-1 0  20  40 40.62 60  80  

DO % 100 83.45 80  70  60  50  

NH4
+ µM 0 4.01 7  10  20  30  

NO2
-+ NO3

- µM 0 0.68 7.5  11  25  40  

HPO4
2- µM 0  0.3 0.51 1  1.5  4  

TN µM 0 14.84 50  75  100  120  

TP µM 0 0.73 1  2  5  8  

Scenario7 

TPM mg L-1 0  20  40 40.46 60  80  

DO % 100 92.12 80  70  60  50  

NH4
+ µM 0 4.27 7  10  20  30  

NO2
-+ NO3

- µM 0 0.68 7.5  11  25  40  

HPO4
2- µM 0  0.3 0.58 1  1.5  4  

TN µM 0 15.10 50  75  100  120  

TP µM 0 0.80 1  2  5  8  

Scenario8 

TPM mg L-1 0  20  40 40.64 60  80  

DO % 100 93.36 80  70  60  50  

NH4
+ µM 0 4.03 7  10  20  30  

NO2
-+ NO3

- µM 0 0.68 7.5  11  25  40  

HPO4
2- µM 0  0.3 0.56 1  1.5  4  

TN µM 0 14.86 50  75  100  120  

TP µM 0 0.78 1  2  5  8  
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3.2.2 Sediment quality 

Regarding sediment quality, model outputs suggest an upgrade in the case of Scenario4 (i.e. 

decrease of feeding rates), with all variables falling into the categories “High” (Table 6.9). 

Quantitatively, this improvement was the result of a decrease, of respectively 15, 23 and 13%, in 

the organic matter (OM), total nitrogen (TN) and total phosphorus (TP) sediment contents 

relatively to the standard simulation. Conversely, sediment quality appears to worsen under 

Scenario5 (i.e. increase of feeding rates) since TP fell into the category “Poor” instead of “High” 

as in the standard simulation (Table 6.9). Besides leading to a 30% increase in TP, doubling 

feeding rates produced a substantial increase in the organic matter and total nitrogen contents of 

pond sediments, which increased 34 and 55%, respectively, compared to the standard simulation. 

Similarly to Scenario4, increasing the floatability of food pellets (Scenario8) upgraded TN to the 

category “High”. These results reflect a substantial decrease, respectively of 12, 20 and 10% in 

organic matter, total nitrogen and total phosphorus contents in bottom sediments. In all the other 

scenarios, OM, TN and TP varied slightly compared to the standard simulation (Table 6.9). 
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Table 6.9 – Sediment quality assessment (Austoni et al. 2004) for the standard simulation and for each of the management scenarios considered in 

the present work. Quality status: BLUE – High; GREEN – Good; YELLOW – Moderate; ORANGE – Poor; and RED – Bad. 

 Variables Units           

Standard 

Simulation 

OM % 0 3.15 3.5  5.0  7.5  10  

TN g kg-1 dw 0  1.0 1.07 2.0  3.0  4.0  

TP mg kg-1 dw 0 362 400  500  600  700  

Scenario1 

OM % 0  3.5 3.81 5.0  7.5  10  

TN g kg-1 dw 0  1.0 1.43 2.0  3.0  4.0  

TP mg kg-1 dw 0  400 428 500  600  700  

Scenario2 

OM % 0 3.26 3.5  5.0  7.5  10  

TN g kg-1 dw 0  1.0 1.13 2.0  3.0  4.0  

TP mg kg-1 dw 0 372 400  500  600  700  

Scenario3 

OM % 0 3.07 3.5  5.0  7.5  10  

TN g kg-1 dw 0  1.0 1.02 2.0  3.0  4.0  

TP mg kg-1 dw 0 354 400  500  600  700  
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Table 6.9 – (continued) 

 Variables Units           

Scenario4 

OM % 0 2.69 3.5  5.0  7.5  10  

TN g kg-1 dw 0 0.82 1.0  2.0  3.0  4.0  

TP mg kg-1 dw 0 316 400  500  600  700  

Scenario5 

OM % 0  3.5 4.22 5.0  7.5  10  

TN g kg-1 dw 0  1.0 1.66 2.0  3.0  4.0  

TP mg kg-1 dw 0  400 470 500  600  700  

Scenario6 

OM % 0 3.15 3.5  5.0  7.5  10  

TN g kg-1 dw 0  1.0 1.07 2.0  3.0  4.0  

TP mg kg-1 dw 0 340 400  500  600  700  

Scenario7 

OM % 0 3.05 3.5  5.0  7.5  10  

TN g kg-1 dw 0  1.0 1.01 2.0  3.0  4.0  

TP mg kg-1 dw 0 351 400  500  600  700  

Scenario8 

OM % 0 2.78 3.5  5.0  7.5  10  

TN g kg-1 dw 0 0.86 1.0  2.0  3.0  4.0  

TP mg kg-1 dw 0 325 400  500  600  700  
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3.2.3 Fish biomass 

Figure 6.8 presents the results of final fish biomass for the standard simulation and for each 

scenario analysed with the model. Comparing to the standard simulation, final fish biomass more 

than doubled in Scenario1, whereas in Scenario2 there was a small increase, ca. 10%, in fish 

production. On the contrary, increasing water exchange rates by 25% (Scenario3) had a negative 

impact on final fish production, since this variable decreased 8% relatively to the standard 

simulation. A similar result was observed when reducing feeding rates (Scenario4) since fish 

production decreased 45%, whereas the opposite scenario (Scenario5) yielded a considerable 

increase (≈ 66%) in the amount of fish produced. A substantial increment (≈ 234 kg) in final fish 

biomass was also observed when increasing food absorption efficiency (Scenario7), while for 

Scenario8, fish production increased slightly, ca. 2%, when compared to the standard simulation. 

The only scenario that did not affect fish biomass, neither positively or negatively was 

Scenario6, i.e. the decrease of P content in feeds (Figure 6.8).   

 

 

 

 

 

 

 

 

 

Figure 6.8 – Final fish biomass (kg) in a white seabream production pond, for the standard 

simulation and for each of the management scenarios analysed in the present work. 
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3.2.4 Environmental impacts 

The total amount of N and P discharged over a white seabream production cycle (651 days), for 

the different scenarios evaluated in this study, is presented in Table 6.10. The highest nutrient 

discharges (ca. 249 kg of N and 37 kg of P) were recorded for Scenario1 (i.e. increase stocking 

density). Opposite scenarios, such as Scenario2 (i.e. decrease water exchange rate) and 

Scenario3 (i.e. increase water exchange rate), had opposite effects on nutrient discharges. For 

instance, while Scenario2 yielded a 3% increase in N and P discharges in comparison to the 

standard simulation, Scenario3 produced a 2% and 7% decrease respectively, in the amount of N 

and P released into the environment (Table 6.10). A similar situation was observed for Scenario4 

and Scenario5. Decreasing feeding rates resulted in a decrease of N and P discharges relatively 

to the standard simulation, respectively of 6 and 1 kg of N and P, whereas increasing the amount 

of food supplied (Scenario5) increased nutrient loads to the environment. As would be expected, 

Scenario6 (i.e. decrease of P content in feeds) resulted in the lowest P discharges, however this 

represented only a 4% decrease in comparison with the standard simulation. On the other hand, 

increasing the absorption efficiency of fish food led to the lowest values for N discharges (ca. 

224 kg). As regards Scenario8, results were similar to the standard simulation - ca. 237 and 35 

kg of respectively, N and P, discharged from the white seabream pond during the production 

cycle. 

 

3.2.5 Scenario classification 

The results of the Analytical Hierarchical Process (AHP) used to identify the management 

options that maximize fish production while improving the quality of the pond environment and 

minimizing the environmental impacts of semi-intensive aquaculture, are presented in Table 

6.11. The outcome of the AHP strongly depended on the criteria used (A1 or A2). When 

assuming that the three decision elements are equally important for fish farming, the best 
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management option is the decrease of feeding rates (Scenario4), even though final fish biomass 

decreased 45% compared to the standard simulation (Figure 6.8). Scenario1 (i.e. increase 

stocking density) and Scenario3 (i.e. increase water exchange rate) ranked respectively, in 

second and third place according to criteria A1. On the other hand, if A2 is applied, i.e. if fish 

production is the most important indicator, the highest score is that of Scenario1, since it 

substantially increased (by 906 kg) final fish production (Figure 6.8). Ranking on second and 

third place, in this case, were respectively, Scenario4 and Scenario7 (i.e. increase food 

absorption efficiency). Independently from the criteria used, the worst management option was 

the decrease of water exchange rates (Scenario2). 

 

Table 6.10 – Total nitrogen (TN) and phosphorus (TP) discharges (kg) during a white seabream 

production cycle. Values in bold correspond to the best scenarios. 

 TN TP 

 kg kg 

Standard Simulation 236.2 34.7 

Scenario1 249.2 37.1 

Scenario2 243.2 35.9 

Scenario3 232.2 34.0 

Scenario4 229.9 33.6 

Scenario5 245.9 36.5 

Scenario6 236.2 33.4 

Scenario7 224.2 34.2 

Scenario8 236.5 34.8 
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Table 6.11 – Analytical Hierarchical Approach for each scenario analysed in the present work, 

considering equal weights (A1) and different weights (A2 – higher weight for the production 

indicator) for the indicators. Values in bold correspond to the best scenarios. 

 A1 A2 

Standard simulation 0.061 0.057 

Scenario1 0.143 0.217 

Scenario2 0.043 0.051 

Scenario3 0.123 0.096 

Scenario4 0.233 0.165 

Scenario5 0.084 0.122 

Scenario6 0.115 0.102 

Scenario7 0.120 0.125 

Scenario8 0.077 0.066 

 

4 Discussion  

 
4.1 Model performance 

The coupling between the biogeochemical model and the white seabream DEB model developed 

in the previous chapters recreated reasonably well the dynamics of fishponds. Nevertheless, 

some water column variables were occasionally over- or underestimated. For example, 

particulate matter (TPMw and POMw) was typically overestimated during autumn periods (Figure 

6.2). One possible explanation for these results is that, conversely to the model that assumed 

constant settling velocities for these compounds, under field conditions, TPMw and POMw 

sedimentation rates probably changed over time, as a result of specific gravities for the different 

types of biogenic material (e.g. fish waste or senescent algae) in the pond (Avnimelech and 

Kochba 1999; Jiménez-Montealegre et al. 2002b; Magill et al. 2006).  
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The model also underestimated the NH4
+

w
 summer peaks (Figure 6.3) as described for the pond 

without fish (cf. Chapter 4). These findings are presumably related to sediment resuspension, 

which was not calculated by the model. Besides wind-driven water turbulence and benthic fauna 

activity, the disturbance of bottom sediments due to fish foraging activity or mechanical aeration, 

has been reported to promote NH4
+ desorption from sediment particles, subsequently leading to 

an increase in water column NH4
+ concentrations (Riise and Roos 1997; Hargreaves 1998; 

Chakrabarty and Das 2007). This process may be particularly relevant during summer months as 

a result of intense biological activity and the recurrent use of aeration to overcome low oxygen 

availability in fishponds (Riise and Roos 1997; Hargreaves 1998; Chakrabarty and Das 2007). 

Another hypothesis for lower NH4
+

w predictions during summer months is the decline of primary 

producers (Hargreaves 1998; Hargreaves 2006). As macroalgae were not common in the 

production pond, as opposed to the control pond (Serpa, unpublished results), the crash of 

phytoplankton communities as a result of photoinhibition during periods of higher temperatures, 

could explain the increase of NH4
+

w
 availability in the water column (Krom and Neori 1989; 

Hargreaves 1998; Hargreaves 2006). However, as chlorophyll a concentrations registered the 

highest values (3.5 to 6.4 µg L-1) during summer months (Serpa, unpublished results) this 

hypothesis may be disregarded. 

 

Discrepancies between predicted and measured DONw and DOPw values were observed over the 

production cycle, but the majority of data points were well reproduced by the model (Figure 6.3). 

Some unaccounted sources or sinks might explain these results. When developing the 

biogeochemical model (cf. Chapter 4) it was assumed that, supply water and POM hydrolysis 

were the main sources of dissolved organic N and P compounds to the system whereas most 
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losses occurred via mineralization processes and outflowing water. However, in aquatic systems, 

DONw and DOPw may be released from phytoplankton, algae and protists (Berman and Bronk 

2003; Sañudo-Whilhemy 2006) and exploited by the biota, either directly via enzymatic 

hydrolysis or after bacterial degradation (Berman and Bronk 2003; Sañudo-Whilhemy 2006). 

The omission of biotic interactions with DONw and DOPw pools is likely to have compromised 

the model ability to simulate the dynamics of dissolved organic N and P compounds in the 

fishpond.  

 

The underestimation of dissolved oxygen (DOw) values during spring and summer months 

(Figure 6.3), suggests the existence of an additional source of DO in fishponds. According to 

different authors (Culberson and Piedrahita 1996; Hargreaves 1998; Mwegoha et al. 2010), a 

combination of natural processes like, phytoplankton photosynthetic activity and water 

reaeration due to turbulent atmospheric conditions, as well as artificial processes like, 

mechanical aeration and oxygenation, might explain DOw fluctuations over time. As organic 

matter biodegradation is one of the most important sinks of DOw in fishponds (Holmer et al. 

2002; Mwegoha et al. 2010), one might conjecture that mineralization rates in field conditions 

were lower than those predicted by the model. However, as in the sensitivity analysis performed 

to the biogeochemical model (cf. Chapter 4), water column DO concentrations were practically 

unaffected by parameters related to mineralization processes, it is unlikely that this process 

might have accounted for model DOw underestimation during spring and summer months.  

 

As regards sediment variables, model performance was fairly good for the solid fraction (Figures 

6.6; Table 6.6), however, porewater variables were not so well simulated (Figures 6.4 – 6.5; 

Table 6.5). When comparing model results for the white seabream and the control pond (cf. 

Chapter 4), it becomes evident that there are common limitations regarding porewater 
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compounds, which may indicate that relevant biogeochemical processes were not included in the 

model or were not well reproduced. Unlike in the control pond (cf. Chapter 4), the model 

consistently overestimated porewater ammonium (NH4
+

s) in the fishpond, except in June 2004 

(Figure 6.4), when this variable was underestimated in both ponds (cf. Chapter 4). The 

overestimation of NH4
+

s concentrations could be related to benthic oxygen diffusion because in 

the present model the DO diffusion coefficient (DsDO), which substantially increases NH4
+

s 

production (cf. Chapter 4), was increased to account for the effects of bioturbation in fishpond 

sediments (cf. Section 2.2). Despite these results, the calibrated value was the one that ensured 

the best model fit to observed NH4
+

s and NOxs concentrations, since both variables are strongly 

affected by DsDO as a result of coupled nitrification-denitrification process (cf. Chapter 4). 

Therefore, further research on modelling bioturbation processes is highly desirable to improve 

model performance.    

 

Inconsistencies between modelled and measured NOxs concentrations after June 2004 (Figure 

6.4) were found in the white seabream pond as well as in the pond without fish (cf. Chapter 4). A 

hypothesized in Chapter 4, the low oxygen predictions (<0.1 mg L-1; Figure 6.9), resulting from 

macrofauna exclusion from benthic DO dynamics, might have restricted nitrification processes 

(cf. Chapter 4). Other possibility, proposed by Kittiwanich et al. (2007), is that nitrification could 

have occurred in anoxic conditions, using oxidizing agents such as manganese and iron oxides 

by heterotrophic bacteria.  

 

The predicted variation pattern of porewater phosphate in the white seabream pond (Figure 6.5) 

was also comparable to the pond without fish (cf. Chapter 4), which suggests a common cause in 

the overestimation of HPO4
2-

s concentrations during the first year of the experiment. Similar to 
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what has been reported for the Ria Formosa lagoon (Falcão et al. 2006; Serpa et al. 2007a), 

oxidized sediment conditions under low fish biomasses (Serpa et al. 2007b) most likely 

promoted P retention onto iron oxides (van Raaphorst and Kloosterhuis 1994; Slomp et al. 1998; 

Falcão et al. 2006; Serpa et al. 2007a, b), whereas the model underestimated adsorption rates as a 

result of low oxygen availability (Figure 6.9).  

 

 

 

 

 

 

 

Figure 6.9 – Predicted dissolved oxygen (DOs) porewater concentrations in a white seabream 

production pond. 

 

Model limitations regarding porewater DONs and DOPs concentrations (Figures 6.4 and 6.5), are 

indicative that further combined experimental and modelling studies are needed to guarantee 

accurate predictions in fishponds. Mineralization processes, in particular, should be investigated 

at shorter time scales to clearly identify the effects of abiotic (e.g. temperature and DO 

availability) and biotic (e.g. benthic activity) factors on DONs and DOPs dynamics. Studies 

focusing on bioturbation processes would also be extremely relevant, since benthic fauna activity 

has been reported to affect DONs and DOPs pools, either by interfering in mineralization and 

diffusion processes (Burdige and Zheng 1998) or due to animal excretion (Burdige and Zheng 

1998).   
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4.2 Nutrient budgets 

Based on model outputs, nutrient budgets (Figures 6.10 and 6.11) were constructed in order to i) 

evaluate the efficiency of food utilization, ii) define practical ways to improve pond water and 

sediment quality and, iii) quantify nutrient loss to the environment. This information can enhance 

the understanding and awareness of fish farmers regarding nutrient management (Papatryphon et 

al. 2005), and may improve farmers skills to effectively reduce the environmental impacts of 

farming activity (Briggs and Funge-Smith 1994; Gross et al. 2000).  

 

 

 

 

 

 

 

 

 

Figure 6.10 – Average nitrogen fluxes (µM d-1) in a semi-intensive white seabream production 

pond. Abbreviattions: PONiw - particulate organic nitrogen in inflowing water; TDNiw - total 

dissolved nitrogen in inflowing water; PONow - particulate organic nitrogen in outflowing water; 

TDNow - total dissolved nitrogen in outflowing water; Min. - mineralization; Nitrif. – nitrification 

and Denit. - denitrification. 
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Figure 6.11 – Average phosphorus fluxes (µM d-1) for a semi-intensive white seabream 

production pond. Abbreviattions: POPiw - particulate organic phosphorus in inflowing water; 

TDPiw - total dissolved phosphorus in inflowing water; POPow - particulate organic phosphorus in 

outflowing water; TDPow - total dissolved phosphorus in outflowing water; Min. - 

mineralization; Ads. - adsorption and Desorp. - desorption. 

 

According to the budgets, most of the N (61.1 µM N d-1 = 63.2%) and P (8.9 µM P d-1 = 75.2%) 

entering the production pond was supplied by inflowing water, possibly as a result of the high 

water exchange rates in the system (0.007 to 0.027 m3 s-1). Even though information on nutrient 

budgets for semi-intensive ponds is scarce, estimates on the amount of N and P supplied by inlet 

water (Figures 6.10 and 6.11) were considerably higher than those reported for other semi-

intensive fish (Krom et al. 1985b) and shrimp ponds (Casillas-Hernández et al. 2006) with lower 

(1.5 to 13 times) water exchange rates. According to the aforementioned authors, feeds 

constituted the major input of N (72 to 92%) and P (53 to 91%) to production ponds, unlike in 
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the present study in which it represented only 36.8% (35.6 µM N d-1) and 24.8% (2.93 µM P d-1) 

of respectively, N and P external inputs. In fact, feeds contribution to pond nutrient availability 

seems closely linked to the type of production system since in extensive shrimp ponds (i.e. with 

no food addition), water exchange was the major pathway for N inputs to the system (Alongi et 

al. 2000), whereas in intensive systems, food N and P inputs superimpose nutrient inputs via 

inlet water (Krom and Neori 1989; Briggs and Funge-Smith 1994; Funge-Smith and Briggs 

1998; Jackson et al. 2003; Thakur and Lin 2003). 

 

Of the total amount of food supplied, only 43.7% (15.6 µM N d-1 and 1.28 µM P d-1) was 

effectively ingested by white seabream (Figures 6.10 and 6.11), whereas the remaining was 

integrated in water column PONw and POPw pools. From the fraction of food eaten, 28.8% (4.48 

µM N d-1 and 0.37 µM P d-1) ended up as feces and 45.4% (7.28 µM N d-1 and 0.56 µM P d-1) 

was voided as soluble N and P compounds. As a result of high metabolic wastes, only 24.5% and 

27.3% of ingested N and P, respectively, was retained by fish, similarly to what was referred by 

other authors (Krom et al. 1985b; Krom and Neori 1989; Islam 2005) for aquaculture systems 

cultivating another Sparidae - the gilthead seabream. Low food assimilation rates together with 

high food wastes most likely accounted for the extremely high food conversion rate (i.e. the 

amount in kg, of fish biomass produced per kg of food supplied value) in the production pond 

(3.73), limiting the productivity of semi-intensive ponds. Enhanced food formulas are therefore 

highly desirable in order to ensure the economic viability of white seabream production in these 

systems.   

 

Particulate organic matter resulting from fish activity (i.e. fish feces and uneaten food) or 

entering the system via inlet water, played a significant role in nutrient budgets (Figures 6.10 and 
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6.11), has pointed out by several authors (Hargreaves 1998; Holmer et al. 2002; Islam 2005). 

Particulate organic nitrogen (PONs) and phosphorus (POPs) accumulated in pond bottom were 

recycled (12.2 µM N d-1 and 1.54 µM P d-1) as a result of physical, chemical and biological 

processes occurring in the benthic compartment (Hargreaves 1998; Thakur and Lin 2003). From 

regenerated N compounds, 0.15 µM N d-1 was transported to the water column by diffusion, 

whereas the remaining was mostly retained as a result of coupled nitrification/denitrification 

processes (on average, 7.36 µM N d-1). The contribution of benthic fluxes for water column P 

was extremely low (0.001 µM P d-1), suggesting that most P was retained in sediments for 

example because of coupled adsorption/desorption processes in organically-richer sediments 

(Falcão et al. 2006; Serpa et al. 2007a, b). Other studies have also reported sediments as a major 

sink of nutrients in pond systems (Briggs and Funge-Smith 1994; Funge-Smith and Briggs 1998; 

Thakur and Lin 2003; Casillas-Hernández et al. 2006), which reinforces the importance of proper 

sediment treatment between production cycles.  

 

As a result of the low sediment contribution for total dissolved nitrogen (TDNw) and phosphorus 

(TDPw) concentrations most dissolved N (37.3 µM N d-1) and P (2.44 µM P d-1) compounds in 

fishpond water were supplied by inflowing water (Figure 6.10 and 6.11), in agreement with what 

was estimated in a previous study (cf. Chapter 3.2). Similarly, the major output of TDNw and 

TDPw (43.1 µM N d-1 and 2.85 µM P d-1) occurred via outflowing water (Figures 6.10 and 6.11). 

If in semi-open systems with high water exchange rates, outlet water is the most important sink 

for water column nutrients (Krom et al. 1985b; Alongi et al. 2000; Thakur and Lin 2003; 

d’Orbcastel et al. 2008), in culture systems with low water exchange, losses through the 

sediment are more important than by pond effluents due to the fast organic matter accumulation 

in bottom sediments (Briggs and Funge-Smith 1994). Therefore, the optimization of water 

exchange rates seems crucial for reducing the environmental impacts of this activity while 
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maintaining a good pond environment. Taking into account that fish excretion has an important 

impact on TDNw and TDPw concentrations, since it accounts for 16% (7.28 µM N d-1) and 19% 

(0.56 µM P d-1) of respectively, TDNw and TDPw inputs to the pond (Figures 6.10 and 6.11), 

water exchange rates should be defined as a function of fish biomass. In fact, the effects of fish 

excretion on pond water quality seems to superimpose those of of water column processes (e.g. 

organic matter mineralization) on nutrient dynamics since the contribution of these processes for 

TDNw and TDPw availability in pond water was practically irrelevant (< 1%), whereas in a pond 

without fish (cf. Chapter 4), organic matter mineralization represented 27% and 6% of 

respectively, N and P inputs to the system. 

 

4.3 Scenario analysis  

Finding management options that maximize fish production without deteriorating the pond 

environment is a complex task because higher fish biomasses usually aggravate water column 

and sediment conditions, as a result of the higher amounts of uneaten food and fish wastes in the 

production ponds (Lin and Yi 2003; Viadero Jr. 2005). Ultimately, this will increase the 

environmental impacts on the surrounding environment (Bergheim and Brinker 2003), 

compromising the sustainability of aquaculture operations.  

 

Even though the water quality parameters for the different scenarios (Table 6.8) were within the 

range of standard values reported for coastal aquaculture systems worldwide (Boyd 2003; 

Hussenot 2003; Sumagaysay-Chavoso et al. 2004; Viadero Jr. 2005; Ferreira et al. 2010; 

Lefrançois et al. 2010), global nutrient discharges (Table 6.10) were considerably higher than the 

values referred for other fish farms, particularly in what concerns TN and TP loadings per tonne 

of fish produced (Tovar et al. 2000a; Bergheim and Brinker 2003; Boyd et al. 2007; d’Orbcastel 
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et al. 2008). These results are most likely related to the longer duration of the white seabream 

production cycle (651 days) and the higher water exchange rates in the ponds.     

 

Different priority criteria (Saaty 1980) were defined to identify best and worst scenarios for 

white seabream production in semi-intensive systems (cf. Section 2.6.1). From the economic 

point of view, i.e. from the fish farmer’s perspective, the priority goal is usually to maximize fish 

production (A2) in order to maximize profits. In this situation, the best option seems to be the 

increase of standard stocking densities (Table 6.11), because the increase in N and P loadings 

was small when compared to the increase in fish yields (Table 6.10 and Figure 6.8). Proving the 

environmental viability of this management option is the fact that when attributing the same 

“weight” to the three decision criteria in the AHP approach (cf. Section 2.6.1 - A1), this scenario 

ranked in second place (Table 6.11). On the other hand, higher stocking densities imply an 

increase in food inputs, which will lead to a considerable increase in production costs (Rana et 

al. 2009) because feeds represent 25 to 45% of the overall costs of semi-intensive Mediterranean 

aquaculture (Stirling Institute of Aquaculture 2004).  

 

Another option for optimizing white seabream production would be the decrease of feeding rates 

(Table 6.11), since there was an improvement in the ecological status of pond water and 

sediment (Tables 6.8 and 6.9) and a reduction of total N and P discharges (Table 6.10). Being 

one of the best scenarios from the ecological viewpoint clearly influenced the score of this 

scenario in the AHP approach, since it ranked in first and second places in respectively, the A1 

and A2 criteria (Table 6.11). Nevertheless, decreasing feeding rates presents some drawbacks 

because total fish biomass decreased 45% compared to the standard simulation (Figure 6.8). On 

the other hand, other authors have suggested the reduction of feeding rates as a best management 

practice, due to the faster growth and better food conversion ratios of cultivated species as well 
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as the improvement in pond water quality and less amount of wastes produced (Boyd 2003; 

Yokoyama et al. 2009).  

 

Among the potential solutions for an effective pond management, one that seems highly viable is 

the improvement of food absorption efficiency (Scenario7). As a newly cultivated species, the 

white seabream is usually fed with rations optimised for gilthead seabream (Cejas et al. 2004; Sá 

et al. 2006), which compromises its growth and subsequently, final fish production. Besides 

increasing white seabream production by 234 kg relatively to the standard simulation (Figure 

6.8), the improvement of food absorption efficiency ensured sound environmental conditions in 

the fishpond (Tables 6.8 and 6.9), while contributing to a 5% decrease in total N discharges 

(Table 6.10). According to Gross et al. (2000), improved food digestibility also increases the 

proportion of nutrient recovered in fish and reduces losses through excretion, fulfilling the 

objectives of this work. On the other hand, high quality feeds may imply an increase in prices 

(Sorgal 2011), which would most certainly be compensated by the improvement in the FCRs 

(Gross et al. 2000; Boyd 2003; Islam 2005).     

 

The other scenarios evaluated in the present work, Scenario3, 5, 6 and 8, all ranked above the 

standard simulation (Table 6.11), suggesting that these management options might also improve 

semi-intensive fish farming, whether from an economic, an environmental perspective or both. In 

the case of an increase in water exchange rates (Scenario3), there was a positive effect on the 

quality of the pond environment (Tables 6.8 and 6.9) and on effluent discharges (Table 6.10), but 

a negative impact on fish production (Figure 6.8), which translates into a reduction in profits. 

Similar results were reported by Avnimelech et al. (1994) in ponds operated with high water 

exchange rate, because a large fraction of the food and other particulate organic matter is drained 
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out of the system. Other authors have also recommended the increase of water exchange as an 

effective strategy for reducing the concentrations of potentially toxic compounds like ammonia 

and nitrites in the production ponds (Burford and Lorenzen 2004) and for maximizing fish 

production since it will allow higher stocking densities in the production ponds (Burford and 

Lorenzen 2004). However, the increase in costs related to water pumping, i.e. electricity and 

maintenance costs, which represent 15 to 20% of overall production costs (SEACASE 2009), 

might compromise this alternative. The reverse situation occurred when feeding rates were 

doubled (Scenario5). Despite producing a substantial increase (66%) in final fish biomass 

(Figure 6.8), this was the worst scenario for pond water and sediment quality (Tables 6.8 and 

6.9) and also for effluent quality (Table 6.10), which suggests that this is not be a good option for 

white seabream production. In fact, in other studies it has been pointed out that feeds should be 

applied conservatively to avoid overfeeding and to ensure that as much food is consumed as 

possible (Boyd 2003). The decrease of P content in feeds (Scenario6) did not substantially 

lowered P discharges into the environment (Table 6.10), as described by other authors (Ferreira 

et al. 2010) and had no effect on fish biomass (Figure 6.8), which lead us to conclude that this 

option does not substantially improve production practices. Likewise, the results of increasing 

food pellets floatability (Scenario8) were very similar to the standard simulation from both the 

ecological and the economic point of view. Nevertheless, a slight improvement in the pond 

environmental status was observed (Tables 6.8 and 6.9). From the management options analysed 

in the present work, the only one that was worse than the standard simulation was the decrease of 

water exchange rates, probably because the increase in fish yields did not compensated for the 

impoverishment of pond water and sediment quality and the increase in nutrient discharges. 

These results contradict the suggestion of other authors that water exchange reduction may be a 

best management practice because it minimizes effluent discharges (Boyd 2003; Boyd et al. 

2007). 
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As production costs (e.g. food, labour, maintenance costs, etc.) were not included in the AHP, 

according to the decision criteria used in this study, the best options for optimizing white 

seabream production in semi-intensive systems are, to duplicate the standard stocking density 

(from 1.2 kg m-3 to 2.5 kg m-3, of final fish biomass) and to develop specific feeds for this 

species, in order to guarantee a higher absorption efficiency (≈ 80%) than the current rations, 

which were optimized for gilthead seabream. The information provided herein may provide 

some guidelines to the aquaculture sector, for developing an Environmentally-Friendly-

Allowing-Maximum Production protocol for semi-intensive systems. 

 

 
5 Conclusions 

The ecological model developed in this work reproduced fishpond dynamics reasonably well. 

Nevertheless, model performance would benefit from improvements on the biogeochemical 

model, namely As regards the simulation of benthic primary producers and of macrofauna 

bioturbation effects on nutrient dynamics, as well as from the linkage of the fish model with 

Fry´s classification of limiting and lethal environmental factors (van der Veer et al. 2009). A 

model-based nutrient budget revealed that most nutrients available in pond water were supplied 

by inflowing water whereas major losses occurred via outlet water, which suggests that an 

efficient pond management relies on optimized water exchange rates. As almost half of the food 

supplied was not eaten by fish, low food conversion rates were observed for white seabream. The 

scenarios analysed by the model and classified according to the Analytical Hierarchical Process 

(a decision support methodology), pointed out that white seabream production may be 

significantly improved by doubling standard stocking densities and increasing food assimilation 
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efficiency.With slight modifications, the model developed herein can be applied to other semi-

intensive monoculture systems as well as to polyculture and Integrated Multi-Trophic 

Aquaculture (IMTA) systems, constituting a valuable tool for the sustainable management of 

pond aquaculture.  
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1 General Conclusions 

The future of aquaculture seems to rely on balancing its social and economic benefits with its 

environmental impacts (Grigorakis and Rigos 2011). From the review work presented in Chapter 

2, it became evident that an ecosystemic approach should be developed towards sustainable 

aquaculture. This requires that the relevant stakeholders (e.g. decision makers, ecosystem 

managers and farmers) have sufficient quantitative information to take informed decisions 

(Nobre et al. 2010). Likewise, at the farm level, management requires a wide range of skills and 

knowledge, particularly in what concerns the culture environment itself (Culberson and 

Piedrahita 1996). This knowledge may be obtained by an adaptative as well as by a modelling 

approach (Crawford 2003). In the present work, the combination of both approaches provided 

crucial information for managing the production of white seabream (Diplodus sargus) – a new 

species in Mediterranean aquaculture – in semi-intensive earth ponds. 

 

The study of the physical, chemical and biological processes in white seabream ponds over a 

production cycle (cf. Chapter 3), revealed that despite the strong correlation between fish activity 

and bottom sediment enrichment, impacts on the benthic environment (e.g. higher nutrient 

availability in porewater and intense microphytobenthos production) were only noticeable when 

fish biomass was above 0.5 kg m-3 and the feeding rate was higher than 5 kg d-1 (cf. Chapter 3.1). 

These results indicate that environmental parameters should be carefully monitored from this 

point on to avoid deterioration of the pond quality status. This experimental work also provided 

some guidelines for the optimization of white seabream production in semi-intensive systems. 

Given that the quality of fishpond sediments was comparable to that of the adjacent coastal 

lagoon and fish survival rate was high (94%), one may conclude that the assayed farming 

conditions caused no environmental constraints within production ponds (cf. Chapter 3.1). 

Another proof of the sustainability of assayed farming conditions is the composition profile of 
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pond water, which was similar to inflowing water and to the water from a pond without fish (cf. 

Chapter 3.2). According to the results of this study, the optimization of water exchange rates is 

crucial to ensure good water quality within the production ponds, since inflowing and effluent 

waters were respectively, the main source and sink of dissolved nitrogen and phosphorus in the 

water column (cf. Chapter 3.2). Sediments also played an important role on pond water quality. 

As organic matter accumulated in bottom sediments, the benthic fluxes, particularly biologically-

mediated fluxes, became a major source of nutrients to the water (Chapter 3.2), which 

emphasizes the importance of sediment treatment between production cycles, to avoid the 

deterioration of fishpond environment (Hargreaves 1998). 

 

Further insight into fishpond dynamics was gained by using an ecological model that integrates 

the physical, chemical and biological processes in these systems. The modelling strategy 

followed in this work, which consisted in separately developing and calibrating a 

biogeochemical and a biological model before its coupling, was particularly helpful to 

investigate the dynamics of pond variables and processes as well as their interactions (cf. 

Chapter 4). For example, in the sensitivity analysis carried out to the biogeochemical model, it 

was possible to identify the effects of oxygen-dependent processes on porewater inorganic 

nutrient variables, and clearly understand how oxygen availability determines inorganic nutrient 

concentrations in pond sediments (cf. Chapter 4). This analysis also revealed how pond structural 

features (e.g. pond depth and volume) and operational parameters (e.g. water exchange rates) 

affect the water and sediment quality of semi-intensive production systems, which is key 

information for dimensioning new aquaculture units and managing the existing ones. The 

biogeochemical model developed herein was calibrated for an earth pond without fish, and can 

be applied to other aquatic systems, such as coastal lagoons and wastewater treatment ponds (cf. 

Chapter 4).  
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The validation of the fish Dynamic Energy Budget (DEB) model for white seabream and 

gilthead seabream (Sparus aurata) – a traditionally cultivated species in Mediterranean 

aquaculture – demonstrates its suitability for simulating finfish growth in a dynamic environment 

(cf. Chapter 5). One of the advantages of the biological model developed in this study is that it 

can be used even when there is lack of information for estimating all model parameters. Running 

the model on its “Individual Based Model” (IBM) mode, in which a population of n fishes is 

simulated each with its specific parameter set assigned randomly, allows a quick model 

calibration and the selection of the best parameters set describing fish growth. On the other hand, 

the “state variable” mode is more suitable in a complex ecosystem model, since an average fish 

is simulated with a particular parameter set, reducing the computational overhead. As the DEB 

theory is based on physiological principles (Kooijman 2000), this modelling tool can be used to 

investigate how biological processes (e.g. food ingestion and absorption) affect fish performance 

and to explain growth differences between species, which is valuable information for 

maximizing the growth of cultivated fish and thereby the performance of production systems. In 

this study, a comparison of species-specific model parameters for the two Sparidae species, 

revealed that the white seabream lower growth rates are presumably linked to a higher energy 

demand for body maintenance. The lower food absorption efficiency might also explain part of 

the interspecies growth variability. Taking into account that these seabreams, with different 

feeding strategies, are currently being fed with the same diet, these findings point out that an 

improvement in white seabream food formulations is required to increase its production. 

 

The coupled model developed in this study was able to successfully simulate the majority of 

water column and sediment variables in the fish pond as well as white seabream growth over a 

production cycle, which makes it a suitable tool for pond management (cf. Chapter 6). The 
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model-based nutrient budget constructed in this study was particularly useful for improving the 

knowledge on the culture environment, since it provided valuable information on nutrient 

dynamics (Papatryphon et al. 2005). Noteworthy, is the fact that almost half of the food supplied 

is not eaten by fish, which justifies the low food conversion rates (3.7) for this species. Possible 

management options to increase the efficiency of food utilization include the reduction of water 

exchange rates or the improvement of pellets stability since food is mainly loss through 

outflowing water or as a result of pellets sedimentation. By providing information on the 

dynamics of particulate and dissolved nutrient forms in fishponds, this type of budgets may be 

also used to define practical ways to improve pond water and sediment quality. For instance, the 

quantification of nutrient fluxes through inflowing and effluent waters may be used for 

optimizing water exchange rates. As the biogeochemistry of earth ponds is substantially 

influenced by fish activity when compared to a pond without fish (cf. Chapter 4), estimates on 

fish contribution to dissolved (through excretion) and particulate (through egestion and uneaten 

food) nutrient availability, may help defining optimum stocking densities for semi-intensive 

production systems.  

 

Aside from insights on pond nutrient dynamics, the coupled biogeochemical-biological model 

presented herein is a valuable tool for optimizing fish production, since it can be used to test the 

effects of different management scenarios on the quality of the pond environment as well as on 

fish yields and effluent discharges (cf. Chapter 6). The combination of a modelling approach 

with a decision support system (Analytical Hierarchical Process) is an efficient methodology for 

identifying the best management options for semi-intensive fish farming. Based on the indicators 

used in this study, the best solutions for maximizing white seabream production while 

maintaining a good pond environment and minimizing the impacts on the adjacent coastal 

system are to double standard stocking densities and improve food absorption efficiency. Despite 
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its longer production cycle, if there is an investment in the development of white seabream feeds, 

the cultivation of this species in semi-intensive systems seems not only viable but also promising 

due to its high market value and highly appreciated flesh (Cejas et al. 2004; Sá et al. 2006, 

2007). 

  

2 Future Perspectives 

In spite of the general good model fit to observed data, further experimental and modelling work 

is needed to improve model performance. Future work, include model coupling to a 

hydrodynamic model, to simulate the effects of sediment resuspension (Peterson et al. 2000), 

caused by bottom currents, aerators or bioturbation, on pond biogeochemistry. Further studies on 

the interactions between the biota, namely benthic primary producers and macrofauna, and 

organic matter and nutrient cycles, could also improve model performance. Likewise, the linkage 

of the fish model with Fry´s classification of limiting and lethal environmental factors (van der 

Veer et al. 2009), would help predict critical situations for fish survival, turning the model into a 

more powerful tool for pond management. It would also be interesting to apply the coupled 

model to production systems with different functioning, such as polyculture systems or other 

monoculture systems with different farming conditions and fish species, to test for its 

applicability.  

 

By being able to estimate the composition and quantity of fish farm wastes, the model developed 

in this work may be used for defining waste reduction measures or treatment methods for pond 

aquaculture (Bergheim and Brinker 2003; d’Orbcastel et al. 2008). As an example, the model 

may be used for dimensioning Integrated Multi-Trophic Aquaculture (IMTA) systems, a 

biological method for recycling farm wastes within the system itself that has been widely 

referred as a sustainable option for the development of pond aquaculture, due to its 
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environmental and socio-economic benefits (Neori et al. 2004; Buschmann et al., 2009; Troell et 

al., 2009). Future possible model applications may include its combination with a Decision 

Support System (DSS) that includes economic descriptors related to production costs, e.g. food, 

labour and maintenance costs, or costs related to waste discharges and water use, to effectively 

assess the costs and benefits of different management scenarios on aquaculture production (Ernst 

et al. 2000; Pereira et al. 2006). 

 

Aside from the model potential, this work also provides valuable information for defining 

guidelines on environmental standards (e.g. Average Recommended Values) for coastal and 

brackish waters used for fish farming, similarly to what is already defined in the Portuguese 

legislation for shellfish waters and for freshwaters used for Salmonidae culture (Decreto-Lei nº 

236/98). As the quality of fishpond water determines the quality of farm effluents, this may be an 

indirect way of regulating this activity within the scope of the Water Framework Directive 

(Bergheim and Brinker 2003; d’Orbcastel et al. 2008; Moran and Dann 2008), since regulations 

on effluent standards are unlikely to be applied to semi-intensive fish farm units as is done for 

intensive farms in many European countries (Bergheim and Brinker 2003; d’Orbcastel et al. 

2008).  
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