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Abstract. Ground-state diffuse reflectance, time resolved laser-induced luminescence, diffuse reflectance
laser flash-photolysis transient absorption and chromatographic techniques were used to elucidate the pho-
todegradation processes of pyrene adsorbed onto microcrystalline cellulose and silica. Ground-state diffuse
reflectance showed that on both substrates low concentrations display absorption of pyrene monomers. At
high concentrations spectral changes attributed to aggregate formation were observed. Laser induced fluo-
rescence showed that pyrene onto microcrystalline cellulose mainly presents fluorescence from monomers,
while for silica, excimer-like emission was observed from low surface loadings (≥ 0.5µmol g−1). Transient
absorption and photodegradation studies were performed at concentrations where mainly monomers exist.
On silica, pyrene presents transient absorption from its radical cation. On microcrystalline cellulose both
radical cation, radical anion and pyrene triplet-triplet absorption were detected. Irradiation followed by chro-
matographic analysis showed that pyrene decomposes on both substrates. For pyrene on microcrystalline
cellulose 1-hydroxypyrene was the main identified photoproduct since in the absence of oxygen further ox-
idation of 1-hydroxypyrene was very slow. For pyrene on silica photodegradation was very efficient. Almost
no 1-hydroxypyrene was detected since in the presence of oxygen it is quickly oxidized to other photooxida-
tion products. On both substrates, pyrene radical cation is the intermediate leading to photoproducts and
oxygen it is not involved in its formation.

1. INTRODUCTION

The understanding of photochemical and photophysi-
cal processes of probes included into opaque hetero-
geneous solids supports has recently greatly improved
as a consequence of the development of diffuse re-
flectance [1, 2] and time-resolved laser-induced tech-
niques [2] and also of the availability of new solid sup-
ports [2]. These techniques are now commonly used to
access photochemical and photophysics processes in
solid phases and they have been applied by us [3–8] to
study several organic compounds adsorbed or included
in different solid supports such as microcrystalline cel-
lulose [3, 4], silicas [5], silicalite [6, 7], cyclodextrins
[6, 7] and calix[n]arenes [8]. Furthermore, they are be-
ing applied in our group to study several environmental
contaminants [7, 9, 10] namely PAHs adsorbed on dif-
ferent solid supports.

Polycyclic aromatic hydrocarbons (PAHs) com-
prehend a group of neutral, non polar chemical
substances which result from the incomplete com-
bustion of fossil fuels. Due to their poor solubility in
water and high solubility in fats they easily bioacco-
mulate in living tissues. In the environment PAHs are
mainly widespread adsorbed or included in complex
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matrices. Some PAHs possess mutagenic/carcinogenic
activities and therefore are considered prioritary
pollutants for environmental monitoring [11].

The need of understanding the fate of PAHs in the
environment makes important to elucidate their photo-
chemistry in the adsorbed state [12]. In fact, photolytic
half-lives of PAHs may greatly vary from solution to the
adsorbed state, as for some of them surface adsorp-
tion decreases their susceptibility to photolytic degra-
dation [13]. Also for a given PAH adsorbed on different
surfaces enormous variations in its photolytic half-lives
can occur [14].

Pyrene is frequently used as a model PAH and de-
tails of its aqueous photochemistry have previously
been reported [15]. On water pyrene undergoes effi-
cient photooxidation by an electron transfer mecha-
nism from the excited pyrene to oxygen to form pyrene
radical cation and superoxide and/or oxygen-derived
radicals [15]. The influence of surface adsorption on its
photophysics and photochemistry has also been stud-
ied for silica and other oxide materials [16–18]. Also in
the adsorbed state pyrene radical cation is the interme-
diate leading to photoproducts [16–18].

Microcrystalline cellulose is a remarkable powdered
support that effectively protects adsorbed probes from
the oxygen action, provided the probe stays entrapped
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into the polymer chains [2–4]. Silica gel is a porous and
granular form of amorphous silica formed by a complex
net of microscopic pores from which results a very high
specific surface area. Its surface area, witch is essen-
tially the internal area of the pore walls, greatly varies
with the pore size (from 20 to 750 m2 g−1). On silica, ad-
sorbed probes experiment restricted mobility on pores
where they can be easily reached by oxygen [2, 6].

In this paper we report the potentialities of us-
ing diffuse reflectance and time resolved laser induced
techniques together with chromatographic techniques
to elucidate and compare the influence of microcrys-
talline cellulose and silica substrates on pyrene pho-
todegradation pathways.

2. EXPERIMENTAL SECTION

Materials. Pyrene (99%) and 1-Hydroxypyrene (98%)
were purchased from Aldrich in the highest purity avail-
able and were used as received. Ethanol (Merck, uva-
sol grade), methanol and acetonitrile (Merck, Lichro-
solv) were also used as received. Molecular sieves (3
and 4 Å, 4–8 mesh, Aldrich, activated by slow heat-
ing up to 250 ◦C under vacuum) were used to dry
ethanol since very well dried deposition solvent was
required for sample preparation. Water was deionized
and distilled. Microcrystalline cellulose with 50µm av-
erage particle size from Fluka (Microcrystalline cellu-
lose, Fluka DS0) and Silica from Camag (Silica gel for
TLC without binder, Camag DS-0, 60 Å pore size) were
used without further purification.
Sample preparation. Microcrystalline cellulose was
dried prior to use for at least 12 hours in an acrylic
chamber with an electrically heated shelf (Heto, Model
FD 1.0-110) with temperature control at 40 ± 1 ◦C and
at a pressure of ca. 10−3 Torr. Powdered samples of
pyrene on both substrates were prepared by addition
of aliquots of a pyrene solution in dry ethanol on previ-
ously dried microcrystalline cellulose and unactivated
silica followed by slow solvent evaporation from the
slurry in a fume cupboard as described in detail by
Vieira Ferreira et al. [3a, 6].

Air equilibrated, deoxygenated and oxygen satu-
rated samples were studied. The removal of oxygen was
achieved by purging with argon. Oxygen saturation was
achieved by the use of a flow of this gas. Samples were
kept under gas flow for at least 1 hour.

In order to remove any non-entrapped pyrene from
microcrystalline cellulose samples, those were washed
with 3 aliquots of 5 ml of dichloromethane, a solvent
that does not swell this substrate.

Methods
Diffuse Reflectance Ground State Absorption Spectra
of powdered solid samples of pyrene onto microcrys-
talline cellulose and silica were registered in the UV-
VIS regions using an OLIS 14 UV/VIS/NIR spectropho-

tometer with a diffuse reflectance attachment from 240
to 450 nm. Further experimental details and descrip-
tion of system calibration used to obtain accurate re-
flectance (R) measurements are given elsewhere ([2] and
references quoted therein).
Laser Induced Fluorescence (LIF) emission measure-
ments of the powdered pyrene samples were per-
formed, at room temperature, in a front-surface ar-
rangement. A diagram of the system is presented in
ref. [6]. The system uses the 337.1 nm pulse (suit-
able for PAHs excitation) of a N2 laser (Photon Tech-
nology Instruments, Model 2000, ca. 600 ps FWHM,
∼1.3 mJ/pulse) as excitation source, coupled to the de-
tection system described in the next paragraph for the
DRLFP system [2, 6–8].
Diffuse-Reflectance Laser Flash Photolysis (DRLFP) ex-
periments were carried out in the diffuse reflectance
mode, with the second harmonic of a YAG laser
(355 nm, ca. 6 ns FWHM, ∼30 mJ/pulse) from B. M. In-
dustries (Thomson-CSF), model Saga 12-10 [2, 8]. The
light arising from the irradiation of solid samples is de-
tected by a gated intensified charge coupled device with
nanosecond resolution (ICCD, Oriel model Instaspec
V) coupled to a fixed imaging compact spectrograph
(Oriel, model FICS 77440). A complete diagram of the
system is available from ref. [2]. Transient absorption
data are reported as percentage of absorption (% Abs.),
defined as 100∆ Jt/Jo = (1−Jt/Jo)100, where Jo and Jt
are diffuse reflected light from sample before exposure
to the exciting laser pulse and at time t after excitation,
respectively [1, 2].
Irradiation, degradation kinetics and product analysis.
Photodegradation studies were performed under lamp
and laser irradiation conditions. Lamp irradiation stud-
ies were conducted in a reactor previously used to
study the photochemistry of pesticides [19], chlorophe-
nols [7] and several ketones [8c, 8d, 8e]. The sam-
ples were irradiated at 254 nm using a 16 W low-
pressure mercury lamp (Applied Photophysics) without
filters and refrigeration. The samples were placed on
Petri dishes and irradiated at a distance of 5 cm from
the lamp housing. Laser irradiation (355 nm) was per-
formed using the system described above. The solid
powdered samples were placed in 0.5 cm quartz cells
and were mixed every 10 minutes of irradiation time.

The photodegradation products were extracted by
washing the irradiated samples with methanol. Photol-
ysis was followed by HPLC using a Merck-Hitachi 655A-
11 chromatograph equipped with detectors 655A-22
UV. A column LiChroCART 125 (RP-18, 5µm) Merck was
used and the runs were performed using mixtures wa-
ter/acetonitrile as the eluent. The extracts were also
analysed by GC-MS using a Hewlett Packard 5890 Series
II gas chromatograph with a 5971 series mass selective
detector (E.I. 70 eV). An Optima-5-MS capillary column
with 30 m length and 0.25 mm I.D. (Macherey–Nagel)
was used. The initial temperature 70 ◦C was maintained
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during 5 min and then a rate of 5 ◦C/min was used until
a final temperature of 250 ◦C is reached. Analyses were
conducted on irradiated and control samples, kept in
the dark during irradiation. Controls showed no sign
of pyrene degradation.

3. RESULTS AND DISCUSSION

3.1. Ground state diffuse reflectance absorption
spectra. Figure 1 shows the typical remission func-
tions for low and high concentrations of pyrene ad-
sorbed from ethanol onto microcrystalline cellulose
(Figure 1a) and silica (Figure 1b) from 250 nm to 400 nm.
Pyrene on microcrystalline cellulose, for concentrations
up to 1µmol g−1 (curve 1, Figure 1a), presents the ab-
sorption of monomers, i.e., the S0→S2 from 300 nm to
370 nm, with the maximum located at 340 nm and vi-
brational shoulders at 324 nm and 310 nm; the S0→S3
absorption is also observed from 250 nm to 290 nm
with maxima at 280 nm and 270 nm respectively [12,
15, 20]. The increase of pyrene concentration for load-
ing up to 25µmol g−1 (curve 2, Figure 1a) produces a net
increase in the absorption intensity of the first vibra-
tional shoulder of the S0→S2 transition together with
an overall broadening and lost of vibrational resolution
of the spectra and a 2–5 nm bathochromic shift on the
maxima of the S0→S2 absorption band. Similar spectral
changes with the increase of the concentration were ob-
served by us for other probes and attributed to ground
state aggregate formation [3, 4]. For the highest concen-
trations it is also possible to distinguish, at 378 nm, the
weak S0→S1 transition band of pyrene.

Silica samples with concentrations up to 1µmol g−1

(curve 1, Figure 1b) show the S0→S2 absorption peak-
ing at 330 nm with shoulders at 315 nm and 302 nm
and the S0→S3 one at 270 nm and 258 nm. The in-
crease of the concentration from 1 to 25µmol g−1

produced practically no changes on the spectra up
to 340 nm (curve 2, Figure 1b). Shape, resolution and
relative intensity of the S0→S3 and S0→S2 absorp-
tion bands were kept irrespective the concentration in-
crease. However, for wavelengths higher than 340 nm,
it is clear the growth of a broad band that extends up
to 400 nm. In this region and for concentrations higher
than 1µmol g−1 it is still possible to distinguish the
S0→S1 band approximately at the some position ob-
served to microcrystalline cellulose. The appearance of
similar read-shifted bands is well known for several
PAHs adsorbed on silica at surface coverages well below
monolayer and was attributed to another ground state
pair/aggregate formation [12, 16a, 17a, 17b] which ab-
sorbs predominantly at lower energies.

3.2. Time resolved laser induced fluorescence.
Figure 2 presents the time-resolved fluorescence of low
and high concentrations of pyrene on microcrystalline
cellulose. The use of a gated intensified charged cou-
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Figure 1. Remission function for a) Pyrene onto micro-

crystalline cellulose and b) Pyrene on silica normalized at

unit at the maximum of the monomer. Concentrations are

1µmol g−1 (curve 1) and 25µmol g−1 (curve 2).

pled device detector with a 2 ns time gate enabled us
to obtain time-resolved emission spectra with nanosec-
ond resolution [2, 6–9]. Figure 2a shows the fluores-
cence of a 0.5µmol g−1 pyrene sample on microcrys-
talline cellulose. At this concentration pyrene displays
a strong structured emission, peaking at 395 nm. Iden-
tical behaviour is observed for all concentrations up
to 1µmol g−1. This emission can easily be identified
as the typical emission from pyrene monomers and
its presence indicates that monomers are the predom-
inant species on this support for this range of concen-
trations [17a]. For higher loadings (≥ 25µmol g−1) of
the probe (Figure 2b) we observe the appearance of a
small broad emission band, that coexists with that of
the monomer at higher wavelengths (∼470 nm) and has
a much shorter lifetime than the latter (ca. 15 ns). This
emission is well-known for pyrene and arises from its
excimer [17].

Figure 3 shows that for pyrene deposited on silica a
much different behaviour is observed. In this case, flu-
orescence arising exclusively from pyrene monomers
could only be detected for much diluted samples
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Figure 2. Room-temperature laser induced fluorescence

spectra of Pyrene onto microcrystalline cellulose for a)

0.5µmol g−1; curves 1, 2, 3, 4, and 5 were recorded 0,

50, 150, 250, and 500 ns after laser pulse. b) 25µmol g−1;

curves 1, 2, 3, 4, 5, 6, and 7 were recorded 0, 5, 10, 50,

150, 250, and 500 ns after laser pulse. The excitation wave-

length was 337 nm.

(0.1µmol g−1, Figure 3a). For concentrations as low
as 0.5µmol g−1, monomer (peaking at 392 nm) and
excimer-like (at 472 nm) emissions already coexists
(data not shown); but monomer emission still predom-
inates; however at higher concentrations pyrene on sil-
ica exhibit almost exclusively excimer-like emission as
can be seen in Figure 5b for a 25µmol g−1 sample.
This excimer-like emission is ascribed to the strong non
structured band that appears at wavelength higher than
the monomer (∼470 nm).

Comparing the fluorescence results for both sub-
strates, we can say that on microcrystalline cellulose,
although some excimer emission is detected for the
highest concentrated samples, we can consider that
the emission of pyrene is chiefly originated from its
monomers. On the contrary, pyrene emission on silica
is dominated by excimer-like emission, i.e., that origi-
nated by their ground state pairs [17]. Very strong ex-
cimer like emission occurs for all silica samples where it
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Figure 3. Room-temperature laser induced fluorescence

spectra of Pyrene on silica for a concentration of a)

0.1µmol g−1; curves 1, 2, 3, 4, 5, 6, and 7 were recorded

5, 20, 60, 100, 200, 300, and 400 ns after laser pulse. b)

25µmol g−1; curves 1, 2, 3, 4, 5, 6, 7, 8, and 9 were recorded

0, 10, 20, 30, 40, 50, 60, 70, and 80 ns after laser pulse. The

excitation wavelength was 337 nm.

is easy to identify the presence of the red-shift ground
state absorption band attributed to ground state aggre-
gate formation. Much weaker excimer like emission co-
exists with that from the monomers starting from very
low concentrations (≥ 0.5µmol g−1), where the pres-
ence of ground state aggregates, although not so evi-
dent, can not be ruled out.

3.3. Diffuse reflectance laser flash photolysis.
Time-resolved transient absorption spectra of pyrene
on microcrystalline cellulose and silica samples were
obtained by diffuse reflectance laser flash photolysis,
technique developed in the 80’s by Wilkinson and co-
workers [1, 2]. All spectra were obtained exciting with
the 355 nm pulse of a Nd:Yag laser with an average en-
ergy of 30 mJ/pulse.

The main goal of this study is to elucidate the
photodegradation pathways of pyrene on the two
above mentioned solid supports. Aggregated species
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Figure 4. Time-resolved absorption spectra of a) Pyrene

onto microcrystalline cellulose for an air equilibrated

10µmol g−1 sample. Curves 1 and 2 were recorded respec-

tively 20µs and 1 ms after laser pulse. b) Pyrene on silica

for an argon purged 0.1µmol g−1 sample. Curves 1, 2, and

3 were recorded respectively 5µs, 100µs, and 20 ms after

laser pulse.

are know as being able to act as light sinks without in-
ducing any photochemistry and in this way, they can ef-
fectively inhibit PAH photodegradation [17a]. For both
substrates, photodegradation studies were carried out
at concentrations where mainly monomers exist (see
Section 3.4). Furthermore, low concentrations are the
most relevant from the environmental point of view
since pollutants mostly exist in these systems in trace
amounts. Accordingly, we probed pyrene transient ab-
sorption in the adsorbed state at concentrations where
monomers are the predominant species.

Figure 4a presents the transient absorption spec-
tra for an air-equilibrated 10µmol g−1 sample on mi-
crocrystalline cellulose. The spectrum shows four ab-
sorption peaks respectively at 415 nm, 450–455 nm,
490 nm and 520–530 nm. According to the reported in
the literature, for pyrene in solution [21] and other sur-
faces [16, 18], the absorption bands at 415 nm and 520–
530 nm are those from de triplet-triplet absorption of

pyrene [16b, 16c], the 450–455 nm band arises from
the absorption of the pyrene cation radical [16b, 16c]
and the 490 nm band is originated by the absorption
of the pyrene anion radical [16b, 16c]. Triplet state of
pyrene is very efficiently quenched by oxygen in ho-
mogeneous solutions [21]. In microcrystalline cellulose,
because oxygen can not penetrate between the poly-
mer chains, pyrene triplet state can easily be seen for
air equilibrated samples. In fact, this result is a clear
prove of the protective effect from oxygen quenching
provided by the inclusion onto microcrystalline cellu-
lose. Within experimental error, we obtained the same
result for argon purged, air equilibrated or oxygen sat-
urated non-washed and washed samples (results not
shown). This shows that triplets are well entrapped be-
tween the cellulosic chains and are not easily reached
by oxygen, even when the sample is purged with it.
This result it is also a good measure of how adequate
is our sample preparation method for cellulose sam-
ples: the fact that non-washed and washed samples
present the same transient absorption shows that in the
non-washed sample there are no significant amount of
pyrene outside de polymer chains which can be reached
by oxygen, therefore quenching its triplet excited state.

For a lower concentration of pyrene on micro-
crystalline cellulose (0.5µmol g−1) the obtained results
were identical (results not shown). This is in agreement
with the above observed from ground state absorption
and time resolved luminescence, i.e., the photophysics
of pyrene on cellulose for the concentration range un-
der study (up to 25µmol g−1) is essentially the same as
it arises from the monomers that are the only species
present in the all range of concentration.

Figure 4b shows the time-resolved transient absorp-
tion spectra of argon purged 0.5µmol g−1 pyrene on sil-
ica sample. Apart the higher percentage of absorption
obtained, this transient absorption spectrum is iden-
tical to the one measured for a 0.1µmol g−1 sample
(results not shown). The later is a sufficiently low con-
centration for ground state pairs/aggregates not to be
present (not detected in ground state absorption nei-
ther on fluorescence). The transient absorption spec-
trum is dominated by a sharp absorption at 445 nm that
is still there 20 ms after de laser pulse. This transient is
a clear evidence for the formation of the radical cation
of pyrene on silica, and its formation is well docu-
mented by several authors [16b, 16c]. As seen above the
absorption spectra of the pyrene cation radical peaks at
about 445 nm and lives in the millisecond time scale.

Accordingly to what was reported before for silica,
pyrene can easily be reached by oxygen that efficiently
quenches its triplet [16c]; on the other hand oxygen
does not quenches radical cation and so on this sur-
face only pyrene radical cation is usually seen [16c]. So
on silica, pyrene radical cation is the only detected tran-
sient. Nevertheless, we found that oxygen saturation of
the silica samples produced, within experimental error,
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Figure 5. Typical chromatogram (HPLC, diode array detector, λanalysis = 350 nm) of the extract of a a) non-irradiated and

b) irradiated (254 nm), sample of pyrene on microcrystalline cellulose.

no increase in the amount of radical cation (result not
shown) but argon purged silica samples showed a net
increase in the absorption of the radical cation, com-
paratively to the air equilibrated samples (result not
shown).

Argon purged samples (Figure 4b) present an over-
all spectral reinforcement and although the increase of
pyrene triplet could not be ruled out at smaller and
higher wavelengths than those of the radical cation, it
is this later one that experiments the most striking in-
crease, displaying a 445 nm strong sharp absorption.
This result indicates that the role of oxygen on radical
cation formation is a minor one on this support. This re-
sult is also supported by the transient absorption spec-
tra obtained on cellulose were molecular oxygen is not
present and radical cation is still observed.

3.4. Photodegradation studies. The photodegra-
dation studies were performed on samples where only
the pyrene monomer is present to rule out the effects
of aggregate formation. The degradation kinetics stud-
ies under lamp irradiation conditions (254 nm) indi-
cated that pyrene undergoes photodegradation on both
supports. One-hour irradiation converts 40% of the ini-
tial pyrene on cellulose while on silica a 70% conver-
sion was found (samples containing 10µmol g−1). This

result is in agreement with the time resolved lumi-
nescence and transient absorption studies, which sug-
gested that the photochemistry of pyrene is strongly
dependent on the solid support. Figure 5 presents an
HPLC chromatogram of the extract of an irradiated
sample of pyrene (254 nm) on microcrystalline cellu-
lose. The results clearly indicate that 1-hydroxypyrene
is one of the major degradation products on this
solid support. The assignment was based on analy-
sis of an authentic sample. On silica 1-hydroxypyrene
was also detected but in lower concentrations. In both
supports, the results also indicated the formation of
other degradation products having lower retention time
than that of 1-hydroxypyrene, being therefore more po-
lar. These results clearly indicate that photodegrada-
tion can play an important role in the decontamina-
tion of pyrene at the solid/gas interface in environ-
mental systems, since it can leads to the formation
of less persistent polar compounds. Figure 6 presents
chromatograms of extracts of laser-irradiated samples
(355 nm, 30 mJ/pulse) on both supports. In these ir-
radiation conditions 1-hydroxypyrene is also one of
the major degradation products on microcrystalline
cellulose and only trace amounts of it were detected
on silica. However in these irradiation conditions the
photoproducts are higher in number, indicating that
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other degradation pathways are available. This result
can be attributed to the occurrence of biphotonic pro-
cesses associated to laser irradiation of powdered sam-
ples [8e].

3.5. Mechanism of pyrene photodegradation on
microcrystalline cellulose and silica surfaces. On
silica, pyrene radical cation is the only detected tran-
sient. According to literature, radical cation can be
formed either by direct photoionization or by electron
transfer from the excited pyrene to molecular oxygen
[17a]. Nevertheless, we found that oxygen saturation
of the silica samples produced, within experimental er-
ror, no increase in the amount of radical cation (result
not shown) but argon purged silica samples showed
a net increase in the absorption of the radical cation,
comparatively to the air equilibrated samples. This re-
sult suggest that, although molecular oxygen has been
suggested to promote the radical cation formation in
pyrene on surfaces [17a] and of several other probes
in zeolites [22] its role on the radical cation formation
on silica it is clearly a minor one. This result is in fur-
ther agreement with the transient absorption spectra
obtained on microcrystalline cellulose. In fact, despite
of the protection of this support to molecular oxygen,
the radical cation is still one of the main transients.
On both substrates a different mechanism should be
involved since the radical cation can be formed, either
by monophotonic or biphotonic processes, without the
presence of oxygen. On silica, although we used an un-
activated silica, some Lewis acid sites should be present
and they are probably the ones that receive the electron

lost during radical cation formation. The increase in
the radical cation absorption observed in argon purged
samples suggests that another pathway that leads to
this species involves also the triplet state that is not
quenched in these conditions.

On microcrystalline cellulose, pyrene radical cation
can also be produced by a different mechanism that
does not involve oxygen as shown by the transient ab-
sorption experiments on this support. Effectively, al-
though the entrapment within microcrystalline cellu-
lose clearly protects the included probes from being
reached by oxygen (as unequivocally proves the detec-
tion of pyrene triplet state on this substrate) pyrene
radical cation is also present in this support together
with pyrene radical anion. The simultaneous detection
of this three species is the key for the elucidation
of pyrene photodegradation mechanism on microcrys-
talline cellulose. In fact in the absence of oxygen, pyrene
radical cation is still formed and determines the si-
multaneous formation of the radical anion. This latter
species can be form by trapping the ejected electron
(see cellulose route part I on Scheme 1).

On silica and in the presence of water, pyrene
radical cation easily leads to the formation of 1-
hidroxypyrene. This latter, in the presence of oxygen,
is further oxidized to more polar oxidation products.
All these results (see silica route on part II of Scheme 1)
are in agreement with previous reports for pyrene on
silica [17a].

On microcrystalline cellulose, 1-hidroxypyrene is
the main identified photoproduct. As in silica, the for-
mation of the pyrene radical cation on microcrystalline
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cellulose easily accounts for 1-hidroxypyrene forma-
tion (see cellulose route on part II of Scheme 1). For
1-hidroxypyrene included molecules further oxidation
was very slow since the amount of available oxygen
is very limited. Furthermore, although all the other
smaller more oxidized photoproducts could be de-
tected on both substrates they were always unequiv-
ocally much more significant on silica.

The role of molecular oxygen on the degradation of
1-hidroxypyrene was further confirmed by the compar-
ison of the photoproduct distribution on silica and cel-
lulose under laser irradiation conditions. In fact, while
on cellulose 1-hidroxypyrene is still one of the major
degradation products, in silica it was only detected in
traces amounts (see Figure 6). Based on these results we
proposed the summarized mechanism of pyrene pho-
todegradation on microcrystalline cellulose and silica
surfaces shown on Scheme 1.

4. CONCLUSION

Ground-state diffuse reflectance, time resolved laser-
induced luminescence, diffuse reflectance laser flash-
photolysis transient absorption and chromatographic

techniques used in this study proved to be complemen-
tary techniques for the study of the photodegradation
processes of pyrene adsorbed on microcrystalline cel-
lulose and silica. These allowed us to establish a more
clear picture of the degradation pathways of pyrene
on both substrates. We have shown that pyrene radical
cation is the key intermediate specie leading to pho-
toproducts on both substrates and also that oxygen
is not involved in its formation. 1-Hydroxypyrene was
the main identified photoproduct for pyrene on micro-
crystalline cellulose, since further oxidation of the en-
trapped photoproduct was very inefficient. For pyrene
on silica, photodegradation was much more efficient.
Therefore 1-hydroxypyrene in the presence of oxygen
it is rapidly further oxidized.
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