
TYPE Original Research

PUBLISHED 15 May 2024

DOI 10.3389/fnins.2024.1387339

OPEN ACCESS

EDITED BY

Fernando Corinto,

Polytechnic University of Turin, Italy

REVIEWED BY

Yanfeng Jiang,

Jiangnan University, China

Francesco Caravelli,

Los Alamos National Laboratory (DOE),

United States

*CORRESPONDENCE

Elena-Ioana Vatajelu

ioana.vatajelu@univ-grenoble-alpes.fr

RECEIVED 17 February 2024

ACCEPTED 22 April 2024

PUBLISHED 15 May 2024

CITATION

Daddinounou S and Vatajelu E-I (2024)

Bi-sigmoid spike-timing dependent plasticity

learning rule for magnetic tunnel

junction-based SNN.

Front. Neurosci. 18:1387339.

doi: 10.3389/fnins.2024.1387339

COPYRIGHT

© 2024 Daddinounou and Vatajelu. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Bi-sigmoid spike-timing
dependent plasticity learning rule
for magnetic tunnel
junction-based SNN

Salah Daddinounou and Elena-Ioana Vatajelu*

TIMA, Grenoble INP, Univ. Grenoble Alpes, Grenoble, France

In this study, we explore spintronic synapses composed of several Magnetic

Tunnel Junctions (MTJs), leveraging their attractive characteristics such as

endurance, nonvolatility, stochasticity, and energy e�ciency for hardware

implementation of unsupervised neuromorphic systems. Spiking Neural

Networks (SNNs) running on dedicated hardware are suitable for edge

computing and IoT devices where continuous online learning and energy

e�ciency are important characteristics. We focus in this work on synaptic

plasticity by conducting comprehensive electrical simulations to optimize the

MTJ-based synapse design and find the accurate neuronal pulses that are

responsible for the Spike Timing Dependent Plasticity (STDP) behavior. Most

proposals in the literature are based on hardware-independent algorithms that

require the network to store the spiking history to be able to update the weights

accordingly. In this work, we developed a new learning rule, the Bi-Sigmoid

STDP (B2STDP), which originates from the physical properties of MTJs. This rule

enables immediate synaptic plasticity based on neuronal activity, leveraging in-

memory computing. Finally, the integration of this learning approach within an

SNN framework leads to a 91.71% accuracy in unsupervised image classification,

demonstrating the potential of MTJ-based synapses for e�ective online learning

in hardware-implemented SNNs.

KEYWORDS

SNN, STDP, neuromorphic, MTJ, spintronics, unsupervised, online learning

1 Introduction

The current landscape of computing, dominated by traditional Von Neumann (VN)
architectures, faces significant challenges when it deals with Artificial Intelligence (AI)
applications (Ye et al., 2021; Momose et al., 2020). VN architectures which are based on the
separation between processing and memory, suffer from substantial energy consumption
and computational latency due to the data transfer overhead between the memory and
the processor unit (Ma et al., 2020; Petrenko and Petrenko, 2018). On top of that, VN
architectures are not the best candidates for IoT and edge-computing intelligent devices
because they don’t allow online and unsupervised learning Syed et al. (2024). These two
characteristics though are important for systems that are intended to learn continuously
and adapt themselves in real-time, like autonomous vehicles. In contrast to this
architecture, Neuromorphic Engineering, a concept introduced by Carver Mead (Mead,
2020) in the early nineties, has emerged as a promising alternative. This approach, inspired
by the biological brain’s structure and function, offers a distributed processing model.
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The brain’s computational model operates through a vast network
of neurons interconnected by synapses, each capable of processing
and storing information. This decentralized approach allows for
efficient parallel processing. Neurons communicate via electrical
impulses or ’spikes’. The strength of connections, or the synaptic
weight, changes in response to the patterns and timings of neuronal
activity. This dynamic adaptability, known as synaptic plasticity,
is fundamental to learning and memory in the brain. Unlike VN
architectures, the huge number of neurons and synapses where
processing and memory are colocalized leads to highly efficient
computation with minimal energy consumption. Translating the
brain’s computational principles into artificial systems has led to
the development of various systems that all aspire to reproduce
the synaptic plasticity of the brain. These systems range from
nanowires-based networks (Caravelli et al., 2023; Loeffler et al.,
2023; Milano et al., 2022) to Spiking Neural Networks (SNNs),
which are considered the third generation of Artificial Neural
Network (ANN) models (Maass, 1997; Ghosh-Dastidar and Adeli,
2009). The SNN encodes information in the timing of spikes,
and utilizes a dedicated learning rule: Spike-Timing-Dependent
Plasticity (STDP) (Caporale and Dan, 2008), that modulates
synaptic strengths, either strengthening or weakening, based on
the relative timing between spikes. While the SNN model with
STDP promises a more energy-efficient solution for AI applications
and enables online and unsupervised learning, its practical
implementation extends beyond the model and the algorithm itself.
The effectiveness and energy efficiency of SNNs largely depend
on the appropriate hardware implementation. It is this hardware,
especially when designed with in-memory computing, that unlocks
the full potential of SNNs, ensuring energy efficiency and brain-like
computation.

The state-of-the-art SNN hardware implementations can be
split into three categories: first, systems like CPUs, GPUs, and
TPUs focused on computational complexity with high accuracy
but high power use (Baji, 2017; Wang et al., 2020, 2019); second,
power-efficient CMOS-based engines such as TrueNorth (Merolla
et al., 2014) and Loihi (Davies et al., 2018), which are constrained
by memory bottlenecks; and finally, biologically plausible in-
memory computing using non-volatile technology, yet lacking
online learning capabilities (Maranhão and Guimarães, 2021; Lone
et al., 2022). These approaches struggle to balance energy efficiency
with the capability for online unsupervised learning.

Our work aims to address this challenge with an innovative
design of synapses using Magnetic Tunnel Junctions (MTJs)
Ikeda et al. (2010). These non-volatile and energy-efficient devices
have the potential for unsupervised learning through dynamic
conductance adjustments, guided by an innovative learning rule.
Although there are a few works that proposed the use of MTJs
for plasticity dynamics in SNN (Shreya et al., 2020; Jang et al.,
2021; Leonard et al., 2022), there is a need to demonstrate this
in a full network trained with a device-specific learning rule. The
key contribution of this paper focuses on the synaptic design and

a compatible learning rule. We particularly explore the use of
a compound synapse made of multiple parallel-connected MTJ
devices, these two-state devices lead to a multi-state synapse
thanks to their inherent stochasticity. We carry an extensive design
space exploration of the MTJ-based synapse to find the optimal

parameters that allow the unsupervised adjustment of the synaptic
conductance through a learning rule that is rooted in the physics
of the MTJ, we labeled it Bi-sigmoid Spike Timing Dependent
Plasticity (B2STDP). This rule gave a good accuracy (> 90%) in
an image classification task.

The remainder of this paper is structured as follows:
Section 2 reviews current SNN hardware implementations
and their training approaches. Section 3 details the MTJ-
based synapse design, and various design choices that enable
the Bi-sigmoid STDP learning rule. Section 4 presents our
results and discussions on the implemented network and its
performance. The paper concludes with a recap and perspectives
in Section 5.

2 Related works

The state of the art in SNN hardware implementations is
extensive, with various approaches and investigations underway.
Pfeiffer et al. (2018) note a significant disparity between the
potential efficiency of SNNs and their actual implementations on
existing computing hardware. This is attributed to the contrast
between the highly parallel and sparse communication nature of
SNNs on one hand, which rely on in-memory computation, and
the sequential and centralized processing capabilities of CPUs
and GPUs on the other hand (Pfeiffer and Pfeil, 2018). To
address this challenge, massively parallel digital architectures for
SNNs have been proposed. IBM’s TrueNorth, consisting of 1
million neurons connected by 256 million synapses, is primarily
used for inference after offline training (Merolla et al., 2014).
Similarly, the SpiNNaker chip demonstrates efficient performance
with 18 cores, approximately 1K neurons, and 1K synapses
per core (Furber et al., 2012). The emergence of non-volatile
memories, such as memristors (Mazumder et al., 2012), has enabled
disruptive implementations of SNNs (Zhao et al., 2020). Querlioz
et al. (2013) demonstrated a network-level architecture where
synapses utilize memristive devices based on conductive filaments,
while CMOS-based neurons with inhibition and homeostasis are
employed. The authors affirm that their architecture exhibits
resilience against parameter variability (Querlioz et al., 2013).
Zhang et al. (2016) propose an All-Spin Artificial Neural Network
(ASANN) that employs spintronic devices for both synapses and
neurons. They introduced the Compound Spintronic Synapses
(CSS) composed of stacked MTJ devices and the Compound
Spintronic Neurons (CSN) with multi-step transfer functions. The
network is trained offline, followed by weight-mapping to the
discrete resistance states of CSSs (Zhang et al., 2016). Regarding
the training approaches of SNNs, they can be categorized into
three main approaches. Firstly, a strategy that consists of training
a traditional neural network and then converting its parameters
to operate with spiking neurons, a technique validated by the
work of Rueckauer et al. (2017). This approach leverages the
capability of simpler spiking neuron models to emulate functions
such as the ReLU activation, found in traditional networks,
as illustrated by Cao et al. (2015). Secondly, backpropagation
(BP) is directly applied to SNNs for training. This method
faces the challenge of the non-differentiable nature of spiking
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neurons’ activation functions, typically modeled by a Heaviside
function. Researchers have proposed using surrogate gradients
or differentiable approximations to address this, as discussed in
studies by Lee et al. (2016), Neftci et al. (2019), and Mostafa
(2017). Although BP is a second-generation technique that departs
from the bio-inspired origins of SNNs, it offers a path to efficient
training. The third approach consists of STDP which adopts
a more biologically inspired learning mechanism, potentially
providing a more natural method for training SNNs. Diehl and
Cook (2015) presented a network for digit recognition that has
the following features: conductance-based synapses, STDP with
time-dependent weight change, lateral inhibition, and adaptive
spiking thresholds. The architecture of their network which consists
of an input layer, excitatory and inhibitory neurons layers has
inspired a lot of other works. Their unsupervised learning scheme
achieves 95% accuracy on the MNIST dataset (Diehl and Cook,
2015). While many hardware implementations of SNNs focus
on inference, online training remains a big challenge because of
the lack of implementations that can dynamically update their
weights in response to the changing environments that they
are learning. Maranhão and Guimarães (2021) proposed a toy
model with post-synaptic neuron spiking and memristive synapses
that update in one direction only. Similarly, Andreeva et al.
(2020) used different CMOS neurons for input and output with
memristive synapses. However, both implementations lack proper
time-dependent STDP. Our work addresses this gap by introducing
a hardware implementation of STDP with clear time dependence
which is suitable for SNNs. We demonstrate the careful selection
of signal shapes to emulate pre- and post-synaptic spikes, enabling
the implementation of STDP in hardware (Daddinounou and
Vatajelu, 2022). In their study, Li et al. (2014) focused on the
device level and designed voltage pulse schemes, using different
voltage shapes to achieve STDP in chalcogenide memristors,
by leveraging the gradual resistance of the synaptic memristor
in the microseconds range. They experimentally demonstrated
four different STDP curves, representing symmetric/asymmetric
Hebbian/anti-Hebbian learning rules. No full network performance
was evaluated, and the efficiency of the proposed learning
rules is still to be studied (Li et al., 2014). To simulate their
SNN, Kim et al. (2021) integrated the behavior of memristors
into an existing SNN simulator which uses rate coding and
the architecture from Diehl and Cook (2015). They concluded
that SNNs exhibited strong tolerance for weight-update non-
linearity, with network accuracy remaining relatively high under
two conditions: symmetric Long-Term Potentiation (LTP) and
Long-Term Depression (LTD) curves, or positive non-linearity
factors for both LTP and LTD (Kim et al., 2021). Finally, Garg
et al. (2022) focused on the training algorithm and suggested an
alternative to STDP; the Voltage-Dependent-Synaptic Plasticity
(VDSP) rule which uses the decaying membrane potential of the
presynaptic neuron to estimate when it has fired and updates
the synaptic weight accordingly when the postsynaptic neuron
fires, this method and the one we propose here reduce the
number of updates by half compared to classic STDP since
the update happens only at the postsynaptic firing Garg et al.
(2022).

3 Materials and methods

In this section, we aim to demonstrate the suitability of
MTJ-based synapses for enabling unsupervised on-chip learning
in SNNs. To achieve this, we first provide an overview of the
fundamental working principle of MTJs, then we highlight their
significance as building blocks for synapses. Furthermore, we
introduce an adapted STDP rule tailored specifically for this MTJ-
based design. Subsequently, through extensive SPICE simulations
we delve into the justification and discussion of various design
choices that were made.

3.1 STT-MTJ device

STT-MTJ (Spin Transfer Torque Magnetic Tunnel Junction)
is a nanoscale electronic device that utilizes the phenomenon
of spin transfer torque to control the magnetization state of
a magnetic tunnel junction (Xu et al., 2008). It consists of a
structure composed of two ferromagnetic layers separated by a
thin insulating barrier. Of these layers, one is fixed, while the
other has the freedom to rotate its magnetization direction. This
rotation can align the free layer’s magnetization either parallel
or antiparallel to the fixed layer’s magnetization. This alignment
results in two distinct resistive states: a low-resistance state when
the magnetizations are parallel (P) and a high-resistance state
when they are antiparallel (AP). A schematic of an MTJ is
depicted in Figure 1 with the two switching mechanisms of the
free layer: from anti-parallel to parallel (AP2P) and vice versa
(P2AP). The operation of STT-MTJ relies on the injection of a
spin-polarized current from the fixed layer into the free layer. Due
to the transfer of angular momentum from the current to the
magnetization, a torque is exerted on the free layer, influencing its
magnetization orientation. This torque can either assist or resist
the magnetization-switching process depending on the direction
and polarization of the current. By manipulating the magnitude,
direction and duration of the injected current, it is possible to
control the magnetization state of the free layer in the STT-MTJ.
This ability to toggle the magnetization between two stable states
(parallel and antiparallel) forms the basis for its application in
non-volatile memory. STT-MTJs offer several advantages including
low power consumption, high switching speeds, high endurance,
and scalability to small device dimensions. These properties make
STT-MTJs attractive for various spintronic applications, such as
Magnetic Random Access Memory (MRAM), magnetic sensors,
and neuromorphic computing systems. The switching process in
the MTJ is governed by two regimes. The first is known as the
precessional regime (MTJ described by the physics of Sun model),
characterized by fast and deterministic switching that necessitates
a high current. The second regime, known as the probabilistic
regime (MTJ described by the physics of the Neel-Brown model),
exhibits slower and probabilistic switching, requiring relatively
lower currents. In this regime, the reversal of magnetization in
the free layer, thus switching the state, is thermally assisted. This
behavior is captured in an accurate compact model described in
VerilogA (Zhang et al., 2015) to run electrical simulations, we
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FIGURE 1

(A) A schematic of an MTJ device composed of two ferromagnetic layers which are separated by an insulating layer. on the right is shown the

switching mechanism from parallel to anti-parallel (P2AP) and vice versa (AP2P) depending on the current polarity. (B) An SNN network composed of

the synaptic crossbar, input, and output neurons emitting their specific pulses. Each synapse is a set of multiple MTJs connected in parallel to enable

a multi-level conductance synapse.

use this model to compose the synapses and characterize the
spintronic compound.

3.2 Compound MTJ synapse

The compound synapse is composed of multiple MTJ devices
in parallel, with the MTJs used in the probabilistic regime. This
choice allows the synapse to exhibit an equivalent conductance
within a range of discreet levels, as the intrinsic stochasticity of
the MTJ devices ensures that they do not switch all simultaneously
when the writing current flows through. Figure 2 shows the result
of electrical simulations of an MTJ under the probabilistic regime
used to obtain the relationship between the required voltage to
trigger state reversal and the pulse width. A large number of
simulations are carried out to be statistically relevant. Depending
on the polarity of the current, we distinguish between two cases:
potentiation (AP2P switching) which increases the conductance,
and depression (P2AP) which decreases the conductance. The
potentiation is presented in Figure 2 with green points(positive
voltage is applied), whereas depression is plotted in yellow points
(negative voltage is applied).

Additionally, aside from the current polarity, an asymmetry
is apparent in the plot. This asymmetry arises from the relatively
less stable equilibrium state of the parallel configuration of the two
magnetic layers. As a result, the stability is readily disrupted in favor
of the anti-parallel configuration. The (pulse width (W), voltage
amplitude (V)) pairs required for state reversal are not unique
due to the thermal fluctuations that confer a stochastic nature to
the device. Hence, we characterize the MTJ device by conducting
multiple electrical simulations to obtain the distribution of (W, V)
values required for switching. For both current polarities, a valley
of points is obtained, indicating that for a fixed applied voltage,
the time required for switching is not constant. The stochasticity
manifests itself in non-deterministic pulse widths within a certain

range, which implies that the probability of switching increases
with increasing pulse width. The synapse is then implemented
using multiple MTJ devices in parallel, each MTJ presenting a
binary state, but once put together, the resulting compound synapse
becomes a multi-level conductance device, which is suitable to tune
and then hold the synaptic weight. During training, the STDP
learning rule programs the synapse to a given conductance level
among the possible levels supported by the design. Figure 1 shows
an SNN network to be implemented in hardware. The synapses
form a crossbar array, each of them is a compound ofmultipleMTJs
connected in parallel. The input neurons encode the information
into spikes, and the output neurons are Leak Integrate and Fire
(LIF) neurons (Hunsberger and Eliasmith, 2015), their design is out
of the scope of this article.

3.3 Learning rule

The STDP rule is a fundamental mechanism governing
synaptic plasticity in the brain. The rule takes into account the
relative timing between pre-synaptic and post-synaptic spikes to
determine whether the synaptic connection should be potentiated
or depressed (increase or decrease the connection strength).
Specifically, when a pre-synaptic spike occurs shortly before a post-
synaptic spike, the synapse is potentiated. On the other hand,
when the post-synaptic spike precedes the pre-synaptic spike, the
synapse is depressed. The biological STDP exhibits a decaying
exponential relationship between the relative timing of spikes and
the weight update for both potentiation and depression as it is
shown in the left side of Figure 3. To reproduce this learning
rule in neuromorphic hardware, most of the published works
introduce an additional variable for each neuron called a trace

(Diehl and Cook, 2015). The traces store the spiking history of
the neuron so that the precise timing of spiking events and the
temporal order of pre- and post-synaptic activities is used to
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FIGURE 2

Statistical simulations showing the required voltage (amplitude, duration) to switch the MTJ state for both potentiation (AP2P) and depression(P2AP).

For each voltage amplitude, we run 100 simulations to get the distribution of the required pulse width durations.

compute the corresponding synaptic update. Introducing the trace
variable means adding a memory overhead where this variable
should constantly be updated for each spike. However, proper local
learning doesn’t need to fetch either weight values or environment
variables such as spiking history elsewhere. The advantage of our
proposal is the fact that the STDP is performed locally with no
need to access external memory. This is also what have been
explored by other works (Prezioso et al., 2016)Covi et al. (2016)
interested on reproducing biological STDP in memristive devices.
Here We propose the Bi-Sigmoid STDP which is a modified version
of the classic STDP curve seen in biology. Through this new
learning rule that is directly derived from the physics of the MTJ-
based synapse, our focus is on preserving the essential functional
characteristics of STDP, rather than on an exact imitation of
the biological counterpart. The Bi-sigmoid STDP is shown on
the right side of Figure 3. It shows no negative temporal part
because the update is done on the fly with no access to the

spiking history. It simply says that, for a given pre-synaptic
spike, if the post-synaptic neuron spikes shortly after, the synaptic
weight is increased (potentiation), whereas if the post-synaptic
neuron spikes long after the pre-synaptic spike, the weight is
decreased (depression).

3.4 Design choices

3.4.1 Voltage shapes
In order to enable the implementation of the bi-sigmoid

learning rule, we developed accurate signal profiles for both pre-
and post-synaptic spikes. The signals Vpre and Vpost were designed
in such a way that the voltage drop across the synapse Vpre − Vpost

over time, starting from the rise ofVpre, makes the synapse updating
its state according to the bi-sigmoid rule, ie: potentiation at the
beginning and depression at the end of Vpre signal. Aligning with

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2024.1387339
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Daddinounou and Vatajelu 10.3389/fnins.2024.1387339

FIGURE 3

Biological STDP vs. Bi-sigmoid STDP, the weight update in the function of the time di�erence between pre- and post-synaptic pulses.

the brain’s methodology of handling cognitive tasks at frequencies
in the kHz range, our design similarly prioritizes energy efficiency
over high-speed processing. For this reason, The pre-synaptic
signalVpre lasts for a duration spanning several tens ofmilliseconds,
during which the synaptic update should take place. On the other
hand, the post-synaptic signal Vpost which lasts only for some
microseconds, is the one that triggers the update on the synapse.
The amount and direction of the update depends on when Vpost

arrives relative to Vpre. To summarize, the synaptic update happens
only when the short post-synaptic signal overlaps with a part of the
long pre-synaptic signal (see Figure 4).

Since the MTJs of the synapse are operating in the probabilistic
regime, we want to assign a high probability for switching to
the high conductance state when Vpost arrives at the beginning
of Vpre (potentiation). Likewise, we want to assign a high
probability for switching to the low conductance state when
Vpost arrives at the end of Vpre (depression). The likelihood
of MTJ switching is directly dependent on the amplitude and
pulse width of the applied voltage. While the pulse widths are
all fixed, and both positive and negative amplitudes of Vpost

are fixed as well, the only variable left is Vpre amplitude which
should take a decreasing voltage shape with a positive part at
the beginning which favors potentiation and a negative part
at the end which favors depression. Figure 4 demonstrates how
the voltage drop Vpre − Vpost should depend on the delay
between the two signals in order to obtain a bi-sigmoid weight
update on the synapse, this behavior will be explained in simple
steps. As the delay between pre- and post-synaptic spiking
increases, we observe five distinct behaviors in the following
order:

• High potentiation: When the postsynaptic neuron
spikes immediately after the presynaptic neuron, the
voltage drop Vpre − Vpost > 0 reaches its maximum
value, causing the conductance of the synapse to
increase significantly.

• Low potentiation: As the delay increases, the voltage drop
remains positive but with a smaller amplitude, resulting in a
small increase in the conductance of the synapse.

• Unchanged conductance: This is the transitional region
between potentiation and depression. The voltage drop
decreases, making it unable to produce potentiation. As
the delay continues to increase, the voltage drop becomes
negative, but it does not cause depression since it has not yet
crossed the negative threshold voltage.

• Low depression: When a significant delay occurs, the voltage
drop Vpre − Vpost crosses the threshold in the negative
direction, causing a drop in the conductance of the synapse.

• High depression: If the postsynaptic pulse arrives extremely
too late compared to the rise of the presynaptic pulse, the
negative voltage drop becomes too big in absolute value,
causing a substantial decrease in the conductance of the
synaptic connection.

The pre-synaptic input Vpre (Figure 4B) has a duration
Wpre, a maximum positive amplitude Vpre_max and a maximum
negative amplitude Vpre_min. Similarly, the post-synaptic pulse
Vpost (Figure 4C) has two rectangular parts with amplitudes
Vpost_min and Vpost_max, and pulse widthsWpost_min andWpost_max.
When only Vpre or Vpost spikes occur, the voltage drop across the
synapse (Figure 4D) is not large enough so it should not modify
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FIGURE 4

Temporal relationship between pre- and post-synaptic pulses (Vpre and Vpost), followed by the corresponding synaptic update. (A) 4MTJ synapse

subject to the voltage drop Vpre − Vpost. (B) and (C) depict Vpre and a sequence of Vpost respectively. (D) shows di�erent scenarios of the resulting

voltage drop across the synapse when Vpost arrives at di�erent delays (t1 to t7) relative to Vpre. (E) provides a normalized view of the synaptic

conductance update, highlighting periods of potentiation and depression corresponding to the timing sequences t1 to t7.

the synaptic weight (t1, t7 on Figure 4E). However, when both spikes
occur, the voltage drop across the synapse is given by Vpre − Vpost

(Figure 4D). The negative amplitude ofVpost adds up to the positive
amplitude of Vpre, and if the positive Brown threshold is exceeded
(150mV), the synapse will potentiate (t2, t3 on Figure 4E). On the
other hand, If the post-synaptic pulse arrives toward the end of the
pre-synaptic pulse, the positive part of Vpost is subtracted from the
negative part of Vpre. If the negative Brown threshold is exceeded
(-100mV), the synapse will depress (t5, t6 on Figure 4E). This way,
the potentiation and depression in the synapse is solely dependent
on the time delay between input and output neuron spikes. This
qualitative explanation of the main ingredients of our proposed
STDP has been accompanied by a thorough quantitative study of
the effect of each design parameter on the bi-sigmoid STDP curve.

This study has been then followed by an optimization process to
ensure a design with the most adequate parameters.

Figure 2 is extremely important for design choices, various
information can be extracted to help us choose the profiles of
signals (pre- and post-synaptic pulses) to be applied across the
synapse so that it produces the desired behavior of STDP. It is
important to note that the following characterization which has
been done for one single MTJ device applies also for the whole
synapse which is a compound of N number of MTJ devices in
parallel. The reason is simple: as soon as the same voltage is applied,
the current circulating in each MTJ device should be the same
according to Ohm’s law no matter the number of devices in the
synapse. The current driven by the neuron should scale with the
number of MTJ devices in the synapse though. This affirmation
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has been verified by electrical simulations. Figure 2 allowed us to
extract some design conditions that will be discussed next.

3.4.2 Minimum threshold voltages
Designing the voltage profiles for input and output neuronal

spikes starts by investigating the behavior of these voltages on the
MTJ. The characterization of the MTJ shown in Figure 2 highlights
a specific voltage range that can trigger state switching in the MTJ
under the probabilistic regime. This range is defined by a lower
threshold voltage and an upper critical voltage, depends of course
on the MTJ’s geometrical properties. There exist two minimum
thresholds, 150mV and −100mV for potentiation and depression
respectively. The Brown threshold is the minimal voltage under
which no switching should occur, independently from the pulse
width. This condition implies that any signal that is not supposed
to affect the synapse conductance, during inference for example,
should satisfy Vsignal < 150mV for potentiation and |Vsignal| <

100mV for depression. The pre-synaptic and post-synaptic pulses
are not supposed to affect the synapse’s conductance neither if they
are not synchronized (if there is no temporal overlapping). Hence,
the first design requirement can be given by:

• Vpre_max and Vpost_max both should be smaller than 150mV :
to prevent undesired potentiation when Vpre or Vpost arrives
separately.

• Vpre_min and Vpost_min both should be smaller than |100mV|:
to prevent undesired depression when Vpre or Vpost arrives
separately.

3.4.3 Maximum critical voltages
The probabilistic regime of the MTJ device is only defined

within an interval, where the MTJ behavior is described by the
Neel-Brown model. The upper limit of that interval is different
for potentiation and depression due the equilibrium stability issue
discussed earlier. Valuable information extracted from Figure 2
suggests that no individual signal nor a combination of the input-
output signal should exceed −190mV for depression nor 289mV

for potentiation. This shouldn’t happen in any stage of synapse
manipulation. If the upper limits were exceeded, the synapse enters
the deterministic regime described by the Sun model, where all
the MTJs of a single synapse will switch immediately and behave
equally, rendering the synapse a two states component, by losing
the intermediate states corresponding to the number of MTJ
devices. The second design requirement can be summarized as:

• 0 < Vpre_max − Vpost_min < 289mV : to prevent deterministic
potentiation.

• 0 > Vpre_min−Vpost_max > −190mV : to prevent deterministic
depression.

We used the following values in this work: Vpost_max = 100mV ,
Vpost_min = −100mV ,Vpre_max = 150mV andVpre_min = −90mV .

3.4.4 Pulse width constraints
We start by analyzing the pulse widths of the positive and

negative parts of the post-synaptic signal Vpost . The pulse width
of an applied voltage (within Neel-Brown limits) determines the
probability of state reversal of an MTJ. As an example, take
the valley points of potentiation (green points in Figure 2); if a
pulse width of 107ns were to be applied, all the switching points
will be inside that interval, the switching AP2P will happen at
100% for whatever voltage, rending the behavior of the synapse
deterministic. Such width should be excluded then. If, on the other
hand, the width is very small, say 10ns the majority of points are
outside that interval, the probability of switching is very small, it
even tends to zero close to the Neel-Brown threshold at 150mV .
A good choice for pulse width should allow the probability of
switching to take all possible values from 0 to 100% when varying
the amplitude of the applied voltage, ie: when Vpost arrives at
different delays compared to Vpre. To investigate what are the
possible pulse widths that could be used for the two parts of
Vpost , we show in Figures 5A, B the probability of switching of
an MTJ from parallel to anti-parallel(depression) and from anti-
parallel to parallel (potentiation) respectively. The probabilities
are shown with respect to the applied voltage, for different pulse
width values. A proper pulse width of a signal intended to induce
synaptic potentiation for example, should allow all these three
scenarios based on voltage conditions: At high voltage, achieved
when pre-synaptic voltage (Vpre) and post-synaptic voltage (Vpost)
arrive simultaneously, the synapse attains its highest conductance,
indicating optimal potentiation. In contrast, intermediate voltage
amplitudes lead to intermediate conductance states. Lastly, when
the voltage falls near the Neel-Brown threshold, around 150mV,
typically due to a significantly delayed arrival of (Vpost) compared
to (Vpre), the synapse’s likelihood to switch to a higher conductance
state is almost negligible, demonstrating minimal potentiation. The
same reasoning applies to synaptic depression. Based on the above
explanation and the analysis of the orange and gray curves of
Figures 5A, B, we set the third design requirement as follows:

• 1µs < Wpost_max < 10µs: to modulate the switching
probability from 0 to 100% in the applicable voltage
amplitudes of depression.

• 1µs < Wpost_min < 10µs: to modulate the switching
probability from 0 to 100% in the applicable voltage
amplitudes of potentiation.

We used the following values in this work: Wpost_max = 1µs and
Wpost_min = 7µs.

After discussing the post-synaptic pulse widths (Wpost_max and
Wpost_min ), we focused on the pulse width of the pre-synaptic signal
(Wpre), which is on the order of milliseconds, to achieve frequencies
within the kHz range, akin to those observed in biological STDP.
Our approach aligns with the requirements of neuromorphic
applications, which prioritize attributes such as energy efficiency
over sheer speed. Examples of such applications include sensory
data processing, decision-making under uncertainty, and learning
from sparse data sets. The brain does note need high processing
frequencies to perform these applications. Although the pulse
width of Vpre does not directly influence MTJ switching probability
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FIGURE 5

Probability of switching of an MTJ at various pulse widths, when the voltage is varied within the Neel-Brown interval. (A): Depression, (B): Potentiation.

due to being lower than the Neel-Brown threshold, it plays a
crucial role in shaping the Bi-sigmoid learning curve, because the
duration of the update interval corresponds to Wpre. Through a
series of Spice simulations, we explored various presynaptic pulses
with different Wpre values, applied on a synapse composed of
8 MTJs. First, to explore the potentiation, all the MTJs of the
synapse were initialized at a low conductance state. For each
presynaptic pulse characterized by its width Wpre, we run multiple
independent simulations where at each simulation, Vpost arrives
at a given delay relative to Vpre. Depending on the arrival time,
the conductance of the synapse may be increased by a certain
amount. This weight update is depicted in Figure 6A, where each
point corresponds to a single arrival time of Vpost , and is obtained
by averaging the conductance update of ten similar simulations
to account for the MTJs’ stochasticity. The synapse is then reset
to the lowest conductance state, Vpost arrives at a different delay,
the update in conductance of ten similar simulations are averaged,
and so on. After completing the sweep through Wpre, the same
analysis is carried out again for another presynaptic pulse with
a different Wpre. Figure 6A depicts the results for Wpre values of
30ms and 60ms, more curves for other presynaptic pulse widths
can be found in the Supplementary material. It is important
to highlight the re-initialization of the synapse to its lowest
conductance state in our analysis after each occurrence of Vpost at a
certain delay. The arrows on Figure 6A highlight the instantaneous
conductance increase at a given delay of Vpost independently from
other points. Consequently, the figure shows the clear effect of
Vpost when arriving at different delays relative to Vpre. If they
arrive simultaneously, the synapse reaches its highest conductance,

whereas the increase of conductance (potentiation) gets lower as
the delay increases, untilVpost can no longer update the synapse at a
substantial delay. Notably, the first point of each potentiation curve
indicates the arrival of Vpost before Vpre. In such a case, no synaptic
update should happen because the two signals are not overlapping,
this explains why the synapse remains at its initialized state in
this case. The same analysis was performed to study the effect of
Wpre on the depression curves shown in Figure 6B. The synapse
is initialized at the highest conductance state this time, the arrival
of Vpost at increasing delays increases the depression amplitude.
As previously, after each occurrence of Vpost , the synapse is reset
to the highest conductance state, Vpost arrives at a different delay,
the update in conductance of ten similar simulations are averaged,
and so on. After completing the sweep through Wpre, the same
analysis is carried out again for another presynaptic pulse with
a different Wpre. More curves corresponding to different widths
Wpre can be found in the Supplementary material. Similar to
potentiation curves, the last point of each depression curve, where
Vpost arrives after Vpre, show no synaptic change due to non-
overlapping signals, maintaining the synapse at its initialized state.
By making the potentiation and depression curves side by side,
one can notice the region separating potentiation and depression
where Vpost has no effect on the synapse, for instance, this region
extends from 27ms to 39ms in the case of Wpre = 60ms.
Finally, The bottom line of this analysis, when comparing the
effect of different widths (Wpre), a smoother and more gradual
transition occurs for larger widths, on both potentiation and
depression. For the remaining of this paper, a width of 60ms is used
forWpre.
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FIGURE 6

Synaptic design exploration based on electrical simulations. (A, B) Show the influence of two di�erent pre-synaptic pulse widths on potentiation and

depression curves respectively, for each Vpre, Vpost arrives at di�erent delays, and the subsequent synaptic update is observed. (C, D) Present the

e�ects of varying the number of MTJs per synapse in its conductance, for potentiation and depression respectively.

3.4.5 MTJ Count per Synapse
In our investigation of the impact of varying the number of

MTJs per synapse, a similar analysis to the previous one was
performedwhile fixing all pulse widths and amplitudes to the values
justified earlier. Like the previous analysis, we vary the arrival time
of Vpost relative to Vpre. After each occurrence of Vpost , the synapse
is reset to its initial conductance state, Vpost arrives at a different
delay, the update in conductance of 10 similar simulations are
averaged, and so on. After completing the sweep throughWpre, the
same analysis is carried out again with a synapse composed of a
different number of MTJs. This process was repeated for synapse
configurations containing 1 to 12 MTJs, and was carried out for
synapses performing potentiation and depression. Figures 6C, D

illustrate the result of this analysis for synapses composed of
4,8 and 12 MTJs. Extnesive analysis of synapses composed of
other counts of MTJs can be found in Supplementary material.
These figures display the synapse’s updated conductance at
each Vpost arrival time, for both potentiation and depression
phases, across the different MTJ counts per synapse. Notably,
A higher count of MTJs per synapse was observed to enhance
the resolution and the capacity of the synapse to hold a wider
range of weight values. Such an increase in resolution and
capacity is potentially advantageous for learning tasks that demand
higher precision and nuanced weight adjustments. Finally, all
the discussed parameters after optimization are summarized
in Table 1.
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TABLE 1 Summary of the design parameters.

Parameter Description Value

Input spike

Vpre_max Voltage at the beginning 150 mV

Vpre_min Voltage at the end -90 mV

Wpre Pulse width 60 ms

Output spike

Vpost_max Voltage at the positive part 100 mV

Wpost_max Width at the positive part 1µs

Vpost_min Voltage at the negative part -100 mV

Wpost_min Width at the negative part 7µs

Magnetic Tunnel Juncion MTJ

Thermal fluctuation dist exponential

Oxide thickness 8.5 Å

Free layer thickness 1.3 nm

total thickness of MTJ 33.55 nm

MTJ radius 16 nm

4 Results and discussion

4.1 Derivation of Bi-Sigmoid STDP

The comprehensive design space exploration shown in the
previous section led to the development of a novel learning rule
for the synapse. This rule has an STDP-like behavior, where a short
delay of Vpost relative to Vpre leads to potentiation, and a longer
delay results in depression. By analyzing the conductance changes
in response to the relative time between pre- and post-synaptic
spikes, we identified a pattern best represented by two sigmoid
functions. This behavior was captured in a rule that we labeled Bi-

sigmoid STDP (B2STDP) learning rule, formulated from electrical
simulations data.

Figure 7A presents the results of our Spice simulations, which
were conducted to determine the synaptic weight updates relative
to the timing differences between pre- and post-synaptic spikes. In
these simulations,we utilized a synapse model with 12 MTJs, with
the parameters detailed in Table 1, and initialized the synapse to an
intermediate conductance state. By varying the arrival time of Vpost

with respect to Vpre, we record the resultant changes in synaptic
conductance. After each sweeping step of Vpost , the synapse was
reset to its initial state. This process was repeated 10 times, and
the conductance updates were then averaged and normalized. The
fitting of this data to a Bi-sigmoid function, as depicted in the
figure, accurately represents the updates in synaptic conductance.
The fitting function is given by:

1w (1t) =
− A

1+e−k0(1t−t0)
− A

1+e−k1(1t−t1)
+ A

A

where 1w is the normalized synaptic update and 1t is the
delay between pre- and post-synaptic spikings, and the following
are fitting constants:

A = 7.95× 105; k0 = 0.474723045;

t0 = 20.77893753; k1 = 0.757072031; t1 = 48.93860322

The B2STDP is distinguished from classical STDP by being
intrinsically tied to the physical properties of MTJs, enabling on-
the-fly synaptic updates based on spiking activity, thus promoting
local learning with in-memory computing without the need to store
the spiking history of neurons (traces) in an external memory.More
details on the derivation of the Bi-sigmoid rule can be found in the
Supplementary material.

4.2 Integration in a functional network

To evaluate our B2STDP learning rule in an image classification
task, we integrated it into Bindsnet Hazan et al. (2018); an SNN
simulation framework (Supplementary material provides detailed
steps on integrating our learning rule in the SNN framework).
We used the SNN architecture introduced in Diehl and Cook
(2015). This network utilizes a two-layer structure: the first layer
consists of 784 input neurons, corresponding to the 28 × 28
pixels of the MNIST images (LeCun et al., 1989), and the second
layer comprises 100 excitatory and an equal number of inhibitory
neurons. The network employs leaky integrate-and-fire neuron
models and conductance-based synapses. Inputs are presented
as Poisson spike trains, with firing rates proportional to pixel
intensities, converting the intensity values of MNIST images into
spikes. The synapses between input and excitatory neurons learn
according to B2STDP, which allows not only unsupervised learning
but also neuromorphic efficiency through in-memory computing
thanks to MTJ-based synapses.

4.3 Network performance

During training, each input image is converted into spikes
proportional to the pixel intensities and shown to the network
for 250ms. For each output neuron, the network keeps track of
how many spikes it produces in response to each class of input.
After exposing the network to the complete training dataset, we
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FIGURE 7

(A) Normalized synaptic weight updates relative to the timing di�erences between pre- and post-synaptic spikes. Spice simulation data fitted with the

Bi-sigmoid function. (B) Label distribution map for each excitatory neuron after training, indicating learned representations. (C) Incremental

improvement in classification performance as a function of the number of training samples. (D) Visualization of synaptic weights between the input

layer and 100 excitatory neurons, reshaped into 28x28 matrices, each representing a learned digit from the MNIST dataset.

calculate the average firing rate for each neuron for every class.
The class that causes the highest average firing rate for a particular
neuron becomes that neuron’s assigned label. Figure 7B displays the
assigned label for each excitatory neuron after training. This label
distribution map showcases the learned representations across the
excitatory layer. Notably, the assignment of labels is based on the
predominance of neuron firing in response to specific input classes
throughout the training phase. During evaluation, the accuracy
is calculated by counting all the spikes from excitatory neurons
which were all assigned a label during training, and seeing which
class gets the most spikes for each input. Each neuron ’votes’
for its assigned class every time it fires. The class with the most
votes across all neurons is the predicted class for that input. The
network’s accuracy is measured by how often the predicted class
matches the actual class of the inputs. Figure 7C, demonstrates
the incremental improvement in classification performance as the
network processes a greater number of training samples.

Finally, Figure 7D presents a visualization of the synaptic
weights between the input layer and the excitatory neurons
in the network. Each weight vector, originally 784-dimensional
corresponding to the flattened 28×28 pixel MNIST images, is
reshaped back into a 28×28 matrix. The figure illustrates 100 such
matrices, each corresponding to a different excitatory neuron in the
network. These matrices serve as a snapshot of what each neuron
has learned to recognize, with each matrix visually resembling a
digit from the dataset. This underscores the network’s ability to
extract key features from the training data.

The results presented in Table 2 demonstrate the effectiveness
of our B2STDP learning rule within SNNs, showcasing a
competitive performance compared to other notable works. In
our experiments, we trained networks with different numbers
of output neurons - specifically 100, 400, and 1,600–over 1,
3, and 3 epochs, respectively. The networks achieved testing
accuracies of 85.15%, 90.28%, and 91.71% for each neuron count.
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TABLE 2 Comparison of classification accuracy across di�erent works

and network sizes.

Neurons 100 400 1,600

Diehl and Cook (2015) 82.9 % 87.0 % 91.9 %

Tang and Gao (2023) 75 % 83 % 88 %

This work 85.15 % 90.28 % 91.71 %

Remarkably, with 100 output neurons, our network surpasses the
classification accuracies of both Diehl and Cook (2015) and Tang
and Gao (2023) implementations. Although increasing the number
of output neurons does improve accuracy, the enhancement is
not dramatic, likely due to the need for additional epochs to
achieve convergence in accuracy. Nonetheless, our model still
outperforms (Tang and Gao, 2023) and attains comparable results
to Diehl and Cook (2015), while requiring fewer epochs. For
instance, where Tang and Gao (2023) and Diehl and Cook (2015)
employed 4 and 7 epochs to train the SNN with 1,600 neurons, our
network needed only 3 epochs to reach similar levels of accuracy.
Two adjustments may have contributed to the performance of
our network: the duration for which an image is presented to
the network, and the conversion coefficient for translating pixel
intensity into firing rates. By fine-tuning these parameters to 250ms
for image presentation and setting a maximum firing rate at 60 Hz,
our network demonstrates enhanced efficiency and accuracy.While
traditional ANNs employing backpropagation may achieve higher
accuracies, our approach, centered on an unsupervised learning
paradigm, offers significant advantages for neuromorphic hardware
implementations, particularly in terms of energy efficiency, online
and unsupervised learning which are important for IoT devices.
Central to our approach is the adoption of a novel learning
rule that is intrinsically tied to the physical properties of
spintronic synapses.

Our study primarily focused on optimizing synapse behavior
in accordance with MTJ dynamics, revealing several areas for
potential future exploration. Enhancing accuracy is an ongoing
objective, with improvements potentially arising from adjustments
in network parameters such as neuron counts, spiking thresholds,
and the balance between excitatory and inhibitory neurons. It
is crucial to note that our approach with SNNs is not about
outperforming DNNs in accuracy; rather, it emphasizes the unique
advantages of SNNs, especially empowered by unsupervised and
online learning, while being known for their energy efficiency,
making them well-suited for IoT devices. Issues like dealing
with leakage currents in the crossbar, significant in design and
optimization phases, should be further investigated to optimize
power efficiency. Reliability concerns related to MTJ variability
and defects, such as pinhole defects and dielectric breakdown,
are active research topics when MTJs are used as MRAMs.
Their use as synapses warrants further examination to understand
how these issues affect the learning rule and, subsequently,
the overall performance of the SNN. Additionally, developing
a comprehensive network that includes digital neuron designs
integrated with crossbar arraysmay facilitate an accurate evaluation
of power consumption in SNNs employing the bisigmoid learning
rule. The choice of dataset is another important aspect, where

data originally obtained in a spiking manner, like images from
event-based DVS cameras, are better suited for SNNs than
images converted to spikes. These potential refinements represent
promising avenues to elevate the capabilities of our neuromorphic
computing model, potentially achieving higher accuracies and
more efficient learning processes.

5 Conclusion

In this study, we explored the potential of MTJs to create
efficient spintronic synapses for SNNs, utilizing multiple MTJs
in parallel to form a proposed synapse. By operating the
synapse at low voltages and exploiting the stochastic nature of
MTJs, we enable the synapse to achieve multiple conductance
levels. These levels are attained through training, guided by
the novel Bi-sigmoid STDP learning rule. This rule, facilitated
by engineered linearly decaying presynaptic and bi-rectangular
postsynaptic pulses, translates the delay between the two pulses
into voltage modulation, effectively updating the synapse state.
The resultant rule operating in the proposed synapse will enable
energy-efficient neuromorphic systems capable of supporting
unsupervised and online learning, eliminating the need for
labor-intensive data labeling and enabling continuous learning
after deployment. Through detailed electrical SPICE simulations,
we optimized the MTJ-based synapse design, demonstrating
how different pulse widths and synapse configurations influence
the Bi-sigmoid rule. Finally, the integration of this rule in
an SNN led to a notable 91.71% accuracy in unsupervised
image classification. While this work has centered on synaptic
mechanisms, addressing future challenges such as leakage currents,
reliability concerns including MTJ variability and defects, and
further tuning of neuron and network parameters, alongside
exploring datasets suited for spiking data, presents promising
pathways for enhancing system performance and advancing
neuromorphic computing development.

Data availability statement

Simulation data can be made available upon reasonable request
from the authors. Bi-sigmoid rule integration in Bindsnet can
be found here: https://github.com/salah-daddi-nounou/bindsnet/
blob/my_changes/examples/mnist/salah_example.pys.

Author contributions

SD: Conceptualization, Data curation, Investigation,
Methodology, Software, Writing – original draft, Writing –
review & editing. E-IV: Conceptualization, Funding acquisition,
Project administration, Supervision, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work
was funded by the Agnece Nationale de la Recherche–France within
the EMINENT Project ANR-19-CE24-0001.

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2024.1387339
https://github.com/salah-daddi-nounou/bindsnet/blob/my_changes/examples/mnist/salah_example.pys
https://github.com/salah-daddi-nounou/bindsnet/blob/my_changes/examples/mnist/salah_example.pys
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Daddinounou and Vatajelu 10.3389/fnins.2024.1387339

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.2024.
1387339/full#supplementary-material

References

Andreeva, N., Ryndin, E., and Gerasimova, M. (2020). Memristive logic design of
multifunctional spiking neural network with unsupervised learning. Bio. Nano. Sci. 10,
824–833. doi: 10.1007/s12668-020-00778-2

Baji, T. (2017). “Gpu: the biggest key processor for ai and parallel processing,”
in Photomask Japan 2017: XXIV Symposium on Photomask and Next-Generation
Lithography Mask Technology (Bellingham, WA: SPIE), 24–29.

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural
networks for energy-efficient object recognition. Int. J. Comp. Vision 113, 54–66.
doi: 10.1007/s11263-014-0788-3

Caporale, N., and Dan, Y. (2008). Spike timing-dependent
plasticity: a hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46.
doi: 10.1146/annurev.neuro.31.060407.125639

Caravelli, F., Milano, G., Ricciardi, C., and Kuncic, Z. (2023). Mean field
theory of self-organizing memristive connectomes. Ann. Phys. 535:2300090.
doi: 10.1002/andp.202300090

Covi, E., Brivio, S., Serb, A., Prodromakis, T., Fanciulli, M., and Spiga, S. (2016).
Analog memristive synapse in spiking networks implementing unsupervised learning.
Front. Neurosci. 10:208311. doi: 10.3389/fnins.2016.00482

Daddinounou, S., and Vatajelu, E. I. (2022). “Synaptic control for hardware
implementation of spike timing dependent plasticity,” in 2022 25th International
Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)
(Prague: IEEE), 106–111.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition
using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.
doi: 10.3389/fncom.2015.00099

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S.,
et al. (2012). Overview of the spinnaker system architecture. IEEE Trans. Comp. 62,
2454–2467. doi: 10.1109/TC.2012.142

Garg, N., Balafrej, I., Stewart, T. C., Portal, J.-M., Bocquet, M., Querlioz, D., et
al. (2022). Voltage-dependent synaptic plasticity: unsupervised probabilistic Hebbian
plasticity rule based on neurons membrane potential. Front. Neurosci. 16:983950.
doi: 10.3389/fnins.2022.983950

Ghosh-Dastidar, S., and Adeli, H. (2009). “Third generation neural networks:
spiking neural networks,” in Advances in Computational Intelligence (Cham: Springer),
167–178.

Hazan, H., Saunders, D. J., Khan, H., Patel, D., Sanghavi, D. T., Siegelmann,
H. T., et al. (2018). Bindsnet: A machine learning-oriented spiking neural
networks library in python. Front. Neuroinform. 12:89. doi: 10.3389/fninf.2018.
00089

Hunsberger, E., and Eliasmith, C. (2015). Spiking deep networks with LIF neurons.
arXiv Preprint arXiv:1510.08829.

Ikeda, S., Miura, K., Yamamoto, H., Mizunuma, K., Gan, H., Endo, M., et al.
(2010). A perpendicular-anisotropy cofeb-mgo magnetic tunnel junction. Nat. Mater.
9, 721–724. doi: 10.1038/nmat2804

Jang, Y., Kang, G., Kim, T., Seo, Y., Lee, K.-J., Park, B.-G., et al. (2021). Stochastic
sot device based snn architecture for on-chip unsupervised stdp learning. IEEE Trans.
Comp. 71, 2022–2035. doi: 10.1109/TC.2021.3119180

Kim, T., Hu, S., Kim, J., Kwak, J. Y., Park, J., Lee, S., et al. (2021). Spiking neural
network (snn) with memristor synapses having non-linear weight update. Front.
Comput. Neurosci. 15:646125. doi: 10.3389/fncom.2021.646125

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., et al.
(1989). “Handwritten digit recognition with a back-propagation network,” in Advances
in Neural Information Processing Systems, 2.

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking
neural networks using backpropagation. Front. Neurosci. 10:228000.
doi: 10.3389/fnins.2016.00508

Leonard, T., Liu, S., Alamdar,M., Jin, H., Cui, C., Akinola, O. G., et al. (2022). Shape-
dependent multi-weight magnetic artificial synapses for neuromorphic computing.
Adv. Electron. Mater. 8:2200563. doi: 10.1002/aelm.202200563

Li, Y., Zhong, Y., Zhang, J., Xu, L., Wang, Q., Sun, H., et al. (2014). Activity-
dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic
systems. Sci. Rep. 4:4906. doi: 10.1038/srep04906

Loeffler, A., Diaz-Alvarez, A., Zhu, R., Ganesh, N., Shine, J. M., Nakayama, T., et
al. (2023). Neuromorphic learning, working memory, and metaplasticity in nanowire
networks. Sci. Adv. 9:eadg3289. doi: 10.1126/sciadv.adg3289

Lone, A. H., Amara, S., and Fariborzi, H. (2022). Magnetic tunnel junction based
implementation of spike time dependent plasticity learning for pattern recognition.
Neuromorph. Comp. Eng. 2:024003. doi: 10.1088/2634-4386/ac57a2

Ma, Y., Du, Y., Du, L., Lin, J., and Wang, Z. (2020). “In-memory computing:
the next-generation AI computing paradigm,” in Proceedings of the 2020 on Great
Lakes Symposium on VLSI (New York, NY: Association for Computing Machinery),
265–270.

Maass, W. (1997). Networks of spiking neurons: the third generation of neural
network models. Neural Netw. 10, 1659–1671. doi: 10.1016/S0893-6080(97)00011-7

Maranh ao, G., and Guimar aes, J. G. (2021). Low-power hybrid memristor-cmos
spiking neuromorphic stdp learning system. IET Circuits, Dev. Syst. 15, 237–250.
doi: 10.1049/cds2.12018

Mazumder, P., Kang, S.-M., and Waser, R. (2012). Memristors: devices,
models, and applications. Proc. IEEE. 100, 1911–1919. doi: 10.1109/JPROC.2012.
2190812

Mead, C. (2020). How we created neuromorphic engineering. Nat. Electron. 3,
434–435. doi: 10.1038/s41928-020-0448-2

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada,
J., Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit
with a scalable communication network and interface. Science 345, 668–673.
doi: 10.1126/science.1254642

Milano, G., Miranda, E., and Ricciardi, C. (2022). Connectome of memristive
nanowire networks through graph theory. Neural Netw. 150, 137–148.
doi: 10.1016/j.neunet.2022.02.022

Momose, H., Kaneko, T., and Asai, T. (2020). Systems and circuits for ai chips and
their trends. Jpn. J. Appl. Phys. 59, 050502. doi: 10.35848/1347-4065/ab839f

Mostafa, H. (2017). Supervised learning based on temporal coding in
spiking neural networks. IEEE trans. Neural Netw. Learn. Syst. 29, 3227–3235.
doi: 10.1109/TNNLS.2017.2726060

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in
spiking neural networks: Bringing the power of gradient-based optimization to spiking
neural networks. IEEE Signal Process. Mag. 36, 51–63. doi: 10.1109/MSP.2019.2931595

Petrenko, S., and Petrenko, S. (2018). “Limitations of von neumann architecture,” in
Big Data Technologies for Monitoring of Computer Security: A Case Study of the Russian
Federation, 115–173.

Pfeiffer, M., and Pfeil, T. (2018). Deep learning with spiking neurons: opportunities
and challenges. Front. Neurosci. 12:774. doi: 10.3389/fnins.2018.00774

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2024.1387339
https://www.frontiersin.org/articles/10.3389/fnins.2024.1387339/full#supplementary-material
https://doi.org/10.1007/s12668-020-00778-2
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1146/annurev.neuro.31.060407.125639
https://doi.org/10.1002/andp.202300090
https://doi.org/10.3389/fnins.2016.00482
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.3389/fnins.2022.983950
https://doi.org/10.3389/fninf.2018.00089
https://doi.org/10.1038/nmat2804
https://doi.org/10.1109/TC.2021.3119180
https://doi.org/10.3389/fncom.2021.646125
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1002/aelm.202200563
https://doi.org/10.1038/srep04906
https://doi.org/10.1126/sciadv.adg3289
https://doi.org/10.1088/2634-4386/ac57a2
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1049/cds2.12018
https://doi.org/10.1109/JPROC.2012.2190812
https://doi.org/10.1038/s41928-020-0448-2
https://doi.org/10.1126/science.1254642
https://doi.org/10.1016/j.neunet.2022.02.022
https://doi.org/10.35848/1347-4065/ab839f
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.3389/fnins.2018.00774
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Daddinounou and Vatajelu 10.3389/fnins.2024.1387339

Prezioso, M., Merrikh Bayat, F., Hoskins, B., Likharev, K., and Strukov, D. (2016).
Self-adaptive spike-time-dependent plasticity of metal-oxide memristors. Sci. Rep.
6:21331. doi: 10.1038/srep21331

Querlioz, D., Bichler, O., Dollfus, P., and Gamrat, C. (2013). Immunity to device
variations in a spiking neural network with memristive nanodevices. IEEE Trans.
Nanotechnol. 12:288–295. doi: 10.1109/TNANO.2013.2250995

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion
of continuous-valued deep networks to efficient event-driven networks for image
classification. Front. Neurosci. 11:294078. doi: 10.3389/fnins.2017.00682

Shreya, S., Verma, G., Piramanayagam, S., and Kaushik, B. K. (2020). Energy-
efficient all-spin bnn using voltage-controlled spin-orbit torque device for digit
recognition. IEEE Trans. Electron Dev. 68:385–392. doi: 10.1109/TED.2020.3038140

Syed, G. S., Le Gallo, M., and Sebastian, A. (2024). “Non von neumann computing
concepts,” in Phase Change Materials-Based Photonic Computing (Amsterdam:
Elsevier), 11–35.

Tang, F., and Gao, W. (2023). Snnbench: end-to-end ai-oriented spiking neural
network benchmarking. TBench 3:100108. doi: 10.1016/j.tbench.2023.100108

Wang, Y., Wang, Q., Shi, S., He, X., Tang, Z., Zhao, K., et al. (2020). “Benchmarking
the performance and energy efficiency of ai accelerators for ai training,” in 2020

20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing
(CCGRID) (Melbourne: IEEE), 744–751.

Wang, Y. E.,Wei, G.-Y., and Brooks, D. (2019). Benchmarking TPU, GPU, and CPU
platforms for deep learning. arXiv Preprint arXiv:1907.10701.

Xu, Y., Wang, S., and Xia, K. (2008). Spin-transfer torques in
antiferromagnetic metals from first principles. Phys. Rev. Lett. 100:226602.
doi: 10.1103/PhysRevLett.100.226602

Ye, L., Wang, Z., Liu, Y., Chen, P., Li, H., Zhang, H., et al. (2021). The challenges
and emerging technologies for low-power artificial intelligence iot systems. IEEE Trans.
Circuits Syst. I: Regular Papers 68, 4821–4834. doi: 10.1109/TCSI.2021.3095622

Zhang, D., Zeng, L., Cao, K., Wang, M., Peng, S., Zhang, Y., et al. (2016). All spin
artificial neural networks based on compound spintronic synapse and neuron. IEEE
Trans. Biomed. Circuits Syst. 10, 828–836. doi: 10.1109/TBCAS.2016.2533798

Zhang, Y., Yan, B., Kang, W., Cheng, Y., Klein, J.-O., Zhang, Y., et al. (2015).
Compact model of subvolume mtj and its design application at nanoscale technology
nodes. IEEE Trans. Electron Dev. 62, 2048–2055. doi: 10.1109/TED.2015.2414721

Zhao, Z., Qu, L., Wang, L., Deng, Q., Li, N., Kang, Z., et al. (2020). A memristor-
based spiking neural network with high scalability and learning efficiency. IEEE Trans.
Circ. Syst. II: Express Briefs 67, 931–935. doi: 10.1109/TCSII.2020.2980054

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2024.1387339
https://doi.org/10.1038/srep21331
https://doi.org/10.1109/TNANO.2013.2250995
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1109/TED.2020.3038140
https://doi.org/10.1016/j.tbench.2023.100108
https://doi.org/10.1103/PhysRevLett.100.226602
https://doi.org/10.1109/TCSI.2021.3095622
https://doi.org/10.1109/TBCAS.2016.2533798
https://doi.org/10.1109/TED.2015.2414721
https://doi.org/10.1109/TCSII.2020.2980054
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Bi-sigmoid spike-timing dependent plasticity learning rule for magnetic tunnel junction-based SNN
	1 Introduction
	2 Related works
	3 Materials and methods
	3.1 STT-MTJ device 
	3.2 Compound MTJ synapse
	3.3 Learning rule
	3.4 Design choices
	3.4.1 Voltage shapes
	3.4.2 Minimum threshold voltages
	3.4.3 Maximum critical voltages
	3.4.4 Pulse width constraints
	3.4.5 MTJ Count per Synapse


	4 Results and discussion
	4.1 Derivation of Bi-Sigmoid STDP
	4.2 Integration in a functional network
	4.3 Network performance

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


