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Abstract. To address the challenge of recognizing and estimating the 
position of untextured stacked parts, which are common in industrial 
environments, this study proposes an integrated approach that incorporates 
the YOLOv7 target detection algorithm and point cloud alignment 
techniques. First, the YOLOv7 algorithm is utilized to quickly identify and 
locate the 2D position of the part, followed by a mapping technique to 
transform the 2D region of interest (ROI) into the corresponding 3D point 
cloud region. In the point cloud processing stage, depth threshold 
segmentation and Euclidean clustering segmentation methods are used to 
separate the target part from the background and other interfering objects. 
The pose estimation stage uses the SAC-IA algorithm for coarse alignment, 
followed by an improved ICP algorithm that introduces an adaptive 
weighting mechanism and a global optimization strategy for fine alignment 
to obtain the final 6D pose of the part. The improved strategy significantly 
optimizes the point-pair selection and alignment process and enhances the 
robustness and accuracy of the algorithm. Through experimental validation 
on publicly available part piece datasets, the results show that the part 
identification and pose estimation method proposed in this study can 
realize fast and accurate identification and pose estimation of different 
shapes, non-textured, and scattered stacked parts, where the position error 
can reach up to 1mm and the angular error within 1°, which meets the 
requirements of practical applications. 

1 Introduction 
With the rapid development of industrial automation and intelligent manufacturing, part 

recognition and position estimation are increasingly widely used in manufacturing, 
especially in the fields of automated assembly, quality inspection, and robot vision. 
Traditional part recognition and position estimation techniques mainly rely on the texture 
features of the parts, however, in practical applications, many parts lack obvious texture 
features on the surface, or the texture features on the surface of the parts are not easy to be 
captured under specific working environments, which poses a great challenge to the 
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recognition and position estimation of weakly textured parts. Currently, with the rapid 
development of computer vision, machine learning and other technologies, it has become a 
research hotspot to solve the problem of weak texture part recognition and position 
estimation through these advanced technologies.  

2 Related work 
The main methods for object recognition and position estimation are template matching 
method, point cloud alignment method, and machine learning methods that have emerged 
in recent years. For the template matching method, Hinterstoisser of the Technical 
University of Munich [1] firstly proposed the LINE2D algorithm based on RGB images, 
and then proposed the LINEMOD algorithm supporting RGB-D data in 2012 [2, 3]. These 
algorithms still follow the idea of template matching, only the composition of the template 
is different from the traditional template. Traditional point cloud alignment algorithms such 
as ICP and its variants are widely used because of their simplicity and effectiveness. 
Iteration Closest Point (ICP, Iteration Closest Point) is a classical alignment method 
proposed by Zhang et al [4], which searches for the closest points of the target point cloud 
and the model point cloud to form a correspondence each time, and solves for the relative 
positional attitude by iterative means. In recent years, thanks to the unique advantages of 
deep learning in 2D image classification, detection and segmentation tasks, using only color 
image information, Papers [5-7] migrated excellent target detection networks, such as 
Faster R-CNN and region based fully convolutional network(R-FCN), to the pose 
estimation problem to achieve the following results The problem of estimating and grasping 
the position of a simply-placed object in a plane is difficult to adapt to the situation of 
cluttered background and multiple target objects stacked in a cluttered manner; Su H et al. 
[8] utilizes CNNs to classify the rendered 3D models by viewpoint angles, thus converting 
3D position estimation into a classification task. Despite the significant progress, part 
recognition and pose estimation still face many challenges, such as occlusion between parts, 
recognition accuracy in complex backgrounds, and stability under different lighting 
conditions. 

3 Part recognition and position estimation 

3.1 Part recognition based on YOLOv7 

YOLOv7 [9] was released in 2022 by Chienyao Wang and Alexey Bochkovskiy et al. 
Compared to previous versions of the YOLO series, YOLOv7 offers a better balance 
between detection efficiency and accuracy. The YOLO family of algorithms is also the 
most popular single-stage target detection algorithm, which is widely used because it is fast 
and suitable for real-time detection tasks. The biggest improvement of YOLOv7 is that the 
structural reparameterization method in RepVGG network is used in the model testing 
phase, which fuses the three branches of 1x1 convolution, BN (batch normalization) and 
3x3 convolution during training into a single line model, which greatly saves the memory 
overhead and improves the model speed.In addition, the improvement points of YOLOv7 
are the adoption of a more efficient positive sample allocation strategy to obtain more prior 
frames, and the introduction of the auxiliary head from coarse to fine bootstrap allocation 
strategy in the Head structure. 

Based on the above background, this paper proposes a part identification and position 
estimation model based on the YOLOv7 algorithm, and through the advantages of the deep 
learning model, we are able to effectively deal with the problems of stacking, sticking, and 
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occlusion between the parts, and improve the adaptability and flexibility of the automation 
system. 

3.2 3D point cloud mapping and point cloud segmentation of localized ROI 
regions 

The YOLOv7 target recognition and detection algorithm identifies the part and locates the 
part in the 2D image, and the detection results are marked with a bounding box sense to 
indicate the position of the part, which is the local ROI region of the part in the 2D image. 
In order to accurately estimate the 3D position of the part, it is also necessary to map the 2D 
ROI to the corresponding 3D point cloud region. This process involves the application of 
RGB-D cameras, where the RGB camera is responsible for capturing high-quality color 
images, while a pair of infrared cameras is used to generate depth information and point 
cloud data, the latter providing the necessary structural information for the 3D space. 

In order to realize the accurate mapping from the 2D image space to the 3D point cloud 
space, it is necessary to construct a transformation model between the RGB camera 
reference coordinate system and the depth camera reference coordinate system. This 
transformation relationship between coordinate systems is determined by applying the 
Zhang Zhengyou calibration method [10], as shown in figure 1.   is the RGB camera 
reference coordinate system,  is the infrared camera coordinate system, according to 
the calibration method to solve the relationship between the two camera coordinate systems 
and the calibration plate coordinate system respectively, and get the transformation 
matrices  and  . the transformation relationship between the RGB camera 
and the infrared camera reference coordinate system is: 

                              (1) 

 
Fig. 1. Schematic diagram of the calibration between the RGB camera and the reference coordinate 
system of the infrared camera. 

After aligning the detection bounding box of YOLOv7 to the depth image, the point 
cloud data of the localized ROI region can be obtained according to the conversion 
relationship introduced above, but the point cloud data contains not only the information of 
the object itself, but also the information of the environmental background and other 
interfering objects. Therefore, background point cloud segmentation becomes an 
indispensable step. The specific method is to first customize a threshold value, and 
constantly adjust to select the appropriate depth threshold, which is used to distinguish the 
background from the foreground point cloud. During the segmentation process, all points 
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with depth values less than this threshold are categorized as background points, and the 
remaining points are regarded as foreground points, i.e., parts to be processed, through 
which parts can be effectively separated from the complex background. After the successful 
application of depth thresholding based background point cloud segmentation, a new 
challenge faced is the separation between parts in an unorganized stacked parts scene. 
Although the background and parts have been effectively distinguished, the point cloud 
data obtained from the depth map transformation still contains small portions of point 
clouds of other parts. These stray point clouds may interfere with the subsequent part 
identification and position estimation processes. Therefore, a method is needed to further 
refine the point cloud data to ensure that each part is recognized and processed individually. 
Object point cloud segmentation methods based on Euclidean clustering are particularly 
important in this context. The essence of the Euclidean clustering segmentation method lies 
in utilizing the Euclidean distances between points in the point cloud to classify different 
objects. The principle of the cluster segmentation method can be briefly described as 
follows: first, for each point in the point cloud, the Euclidean distance between it and all 
other points is calculated. Then, if this distance is less than a predetermined threshold, these 
two points are considered to belong to the same object. This process can be represented by 
the following distance calculation formula: 

                  (2) 

where D (p,q) denotes the Euclidean distance between points p and q, , ,  and , , 
 are their coordinates in 3D space, respectively. 

3.3 Position estimation based on point cloud alignment 

The purpose of point cloud alignment is to find the best correspondence between two sets 
of point clouds, so as to determine the position of one object relative to another. Among the 
many point cloud alignment schemes, the use of a sequential alignment scheme, i.e., coarse 
alignment followed by fine alignment, is a common and effective strategy. The purpose of 
coarse alignment is to quickly obtain an approximate correspondence between two sets of 
point clouds, while the fine alignment criterion is dedicated to further refine this 
correspondence on this basis to achieve higher alignment accuracy. In this study, we choose 
to adopt Sample Consensus Initial Alignment (SAC-IA) as the coarse alignment step, 
followed by the refined alignment using the improved Iterative Closest Point (ICP) 
algorithm. 

SAC-IA is an algorithm for coarse alignment of point cloud data, which is based on the 
idea of Sample Consensus and the initial alignment strategy. The algorithm mainly realizes 
coarse alignment by iteratively selecting pairs of points in a point cloud, estimating the 
transformation matrix, and using this transformation matrix to align two sets of point clouds. 

3.3.1 Fine alignment based on improved ICP algorithm 

Aiming at the limitations of the original iterative closest point (ICP) algorithm in the point 
cloud alignment process, such as being highly sensitive to the initial estimation and easy to 
fall into the local optimal solution, this paper proposes an improved ICP algorithm scheme 
aiming at improving the accuracy and robustness of the point cloud alignment. The 
improved scheme is based on the introduction of an adaptive weighting mechanism and a 
global optimization strategy to optimize the point pair selection and alignment process. 
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The original ICP algorithm achieves alignment by iteratively finding the nearest point 
pairs between two sets of point clouds and minimizing the distance between these pairs. 
However, this process is often susceptible to outliers and is highly sensitive to the initial 
position estimation. To overcome these limitations, we propose the following improvement 
strategy: 

1. Adaptive weighting mechanism: for each pair of point pairs, different weights are 
assigned according to the size of their distances, and the smaller the distance, the greater the 
weight of the point pair, and vice versa. This can reduce the influence of anomalies on the 
alignment results and improve the robustness of the algorithm. 

2. Global optimization strategy: the global optimization algorithm Particle Swarm 
Optimization (PSO) algorithm is introduced during each iteration of ICP to avoid the 
algorithm from falling into the local optimal solution and to find a more global optimal 
solution. 

Suppose two sets of point clouds are P and Q, where P is the source point cloud and Q 
is the target point cloud. We define a weight function w(d), with d being the distance 
between pairs of points. The weight function can be defined as: 

                                   (10) 

where  is a parameter that controls the width of the function, which can be adaptively 
adjusted according to the distribution of the point cloud. 

In each iteration, for each point  in the source point cloud P, find the nearest point  
in the target point cloud Q, calculate the weighted distance sum between them, and then 
optimize the following objective function using the global optimization algorithm: 

                          (11) 

where R and t are the rotation matrix and translation vector, respectively, and n is the 
number of point pairs. 

The above objective function is optimized by iterating until the termination condition is 
satisfied and the maximum number of iterations is reached, so as to obtain the final rotation 
matrix R and translation vector t, and achieve the improved point cloud fine alignment. 

4 Experimental results and analysis 

4.1 Data set 

The dataset in this paper is derived from the publicly available dataset T-Less [11], which 
contains 30 industrial electrical parts that do not have a distinct texture, they have only 
minor differences in color and reflective properties, and they are extremely similar in shape 
and size. Similar industrial parts are common in industrial environments, from which we 
selected three representative parts in four different complex scenarios, totaling 3,500 
images, as recognition objects. 

The point cloud dataset for part position estimation contains a source point cloud dataset 
and a template point cloud dataset. The source point cloud dataset is the point cloud dataset 
containing the target part obtained by the method in Section 3.2 by aligning the inspection 
result map of YOLOv7 to the depth map provided by the T-Less dataset, and then 
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converted by the camera matrix. The template point cloud dataset is a point cloud dataset 
that converts the 3D model of the part into .ply format. 

4.2 Experimental parameters and evaluation indicators 

The experimental environment used was Windows 10 operating system, NVIDIA GeForce 
RTX3090 GPU, CUDA 11.1, Python 3.9 and PyTorch 1.13.1.  

The evaluation metrics of the part recognition experiments are mainly the detection 
average precision mAP (average precision) and the time performance of the algorithm FPS 
(frames per second). Among them, mAP is defined as follows: 

                                           (12) 

Important metrics for evaluating the performance of algorithms in point cloud alignment 
and position estimation experiments include root mean square error (RMSE) and rotational 
translation error. The RMSE is a commonly used metric to measure the accuracy of point 
cloud alignment, which is calculated as the square root of the mean of the sum of the 
squares of the differences in the corresponding positions of the points between the point 
clouds after alignment. The rotation translation error, on the other hand, more directly 
reflects the rotation and translation differences between the source and target point clouds 
after point cloud alignment. Compared with the single root mean square error, the rotational 
translation error provides more information about the alignment effect, which makes the 
performance evaluation more comprehensive and detailed, so the rotational translation error 
is chosen as the evaluation index in this experiment. The root mean square error is 
calculated as follows: 

                                   (13) 

where N is the overview of the corresponding point pairs after alignment, and are the 
corresponding points in the source and target point clouds, respectively, after alignment. 
The smaller the RMSE value, the higher the alignment accuracy. 

4.3 Parts recognition experiment 

In order to verify the superiority of YOLOv7's part recognition detection model, we 
comparatively trained five popular object detection algorithms including Faster R-CNN, 
SSD, YOLOv3, YOLOv5, and YOLOv7, which have the same parameters and datasets in 
the training phase.We randomly divide the dataset into training, validation and test data 
with 8:1:1, the batch size is set to 16, the initial learning rate is 0.01, the training cycle is 
300, and the size of the input image is 640×640. The results of the experiment are shown in 
table 1. 

Table 1. Comparison experiment of detection algorithms. 

Method Model size(M) mAP FPS 
Faster R-CNN 108 0.695 11 
SSD 92.6 0.707 46 
YOLOv3 117 0.771 62 
YOLOv5 51 0.893 66 
YOLOv7 46.5 0.908 73 
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First, it can be seen that the model parameter size of our proposed YOLOv7 model is 
46.5M, which is easier to deploy on industrial vision inspection terminals compared to 
algorithms such as Faster R-CNN, SSD, YOLOv3, and so on, and thus can be used for real-
time inspection of parts. Secondly, the mAP of YOLOv7 reaches 0.908, which is 
significantly higher than other models. Finally, comparing the FPS of the model, which is 
used as an index to evaluate the target detection speed, the FPS of YOLOv7's model 
reaches 73, which can satisfy the real-time requirements of detection, and the detection 
results of YOLOv7's model are shown in figure 2, from which it can be seen that when the 
parts are located in the complex background, or the parts are in the stacked situation, etc., 
the model can successfully recognize the different parts, and has a high accuracy rate, with 
almost no missed detections and false alarms. 

  
(a) Plot of similar part detection results on a clean 
background 

(b) Plot of part detection results in the stacked 
scenario 

Fig. 2. Plot of part detection results. 

4.4 Posture estimation experiment 

In order to verify the effectiveness of the improved ICP algorithm, experiments are 
conducted on previously prepared point cloud datasets to compare with the original ICP 
algorithm and other existing point cloud alignment algorithms, and the main evaluation 
metrics include alignment accuracy as well as computation time. 

Fifty images are selected from the test dataset, and the RGB images are inputted into the 
YOLOv7 network to obtain multiple ROI regions, and then through the mapping of the 2D 
ROI regions to the 3D point cloud space, the local point cloud data containing the target 
part is calculated, and then it is aligned with the corresponding template files in the 
template point cloud dataset, and the results of the point cloud alignment are visualized as 
in the figure 3. The original ICP algorithm, SAC-IA+ICP method and SAC-IA + improved 
ICP algorithm were used to align the extracted point cloud respectively, the RMSE value of 
each alignment was recorded, the alignment results of all the test samples were statistically 
analyzed, and the average RMSE value was calculated, the experimental results are shown 
in the table 2. 

 
(a) Using the ICP algorithm.          (b) Using the SAC-IA+ICP algorithm. 

(c) Using the SAC-IA+Improved ICP Algorithm. 
Fig. 3. Plot of point cloud alignment results (Red is the template point cloud, green is the source point 
cloud, and blue is the result after alignment). 
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Table 2. Statistics of alignment results for different parts using different methods. 

Part 
Type 

ICP SAC-IA+ICP SAC-IA+ Improved ICP 
Algorithm 

Er(▫) Et (mm) Time(s) Er(▫) Et (mm) Time(s) Er (▫) Et (mm) Time(s) 
Part A 3.46 4.496 40.7 2.58 2.586 21.1 0.38 0.739 22.0 
Part B 7.95 9.527 33.5 3.43 7.198 29.3 0.92 1.005 28.8 
Part C 4.02 4.06 62.5 2.92 1.6 45.1 0.32 0.278 45.7 

5 Summarize 
In this study, the YOLOv7 algorithm effectively realizes the fast identification and 
localization of texture-free stacked parts, and separates the target parts from the complex 
background by 2D to 3D mapping and depth thresholding and Euclidean clustering 
techniques. Using SAC-IA and the improved ICP algorithm for point cloud alignment, the 
introduced adaptive weights and global optimization strategies substantially improve the 
accuracy and robustness of the position estimation, ensuring accurate 6D position 
estimation of the parts to support robot gripping and automated assembly. Tests show that 
this method can quickly and accurately identify parts with different shapes and acquire 6D 
position to meet the requirements of industrial applications, marking a significant progress 
in this field, and algorithm optimization and application extensions will be explored in the 
future to enhance system versatility. 
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