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Abstract. After the next planned upgrades to the LHC, the luminosity it de-
livers will more than double, substantially increasing the already large demand
on computing resources. Therefore an efficient way to reconstruct physical ob-
jects is required. Recent studies show that one of the quantum computing tech-
niques, quantum annealing (QA), can be used to perform particle tracking with
efficiency higher than 90% in the high pileup region in the high luminosity envi-
ronment. The algorithm starts by determining the connection between the hits,
and classifies the topological objects with their pattern. The current study aims
to improve the pre-processing efficiency in the QA-based tracking algorithm by
implementing a graph neural network (GNN), which is expected to efficiently
generate the topological object needed for the annealing process. Tracking per-
formance with a different setup of the original algorithm is also studied with
data collected by the ATLAS experiment.

1 Introduction

The Large Hadron Collider (LHC) is planned to be upgraded into the High Luminosity LHC
(HL-LHC) between 2026 and 2028 and start taking data in 2029. The luminosity is expected
to reach L = 5 × 1034cm−2s−2 at the HL-LHC, resulting in a large number of collisions (pile-
up) per bunch crossing (⟨µ⟩ ∼ 200) and a high readout rate in the sub-detector systems [1].
In order to process such a huge amount of data, new techniques are required in the object
reconstruction and the physics analysis. Track pattern recognition (tracking) is one of the
challenging tasks in the large pile-up situation. This is because the current track reconstruc-
tion algorithm is based on a combinatorial algorithm and therefore the object reconstruction
time will increase logarithmically with the number of pileup [2].

A tracking algorithm based on one of the quantum computing techniques, quantum an-
nealing (QA), has been developed and it has been demonstrated that it can be used to perform
the tracking with efficiency higher than 90% in the dense environment of an HL-LHC tracker
[3]. In this algorithm, the track reconstruction starts by forming topological objects based on
the spatial positions of activated sensors, called hits. There are 2 types of topological objects
used in the algorithm: Doublets (D), a pair of hits; and Triplets (T ), formed by three hits. An-
other type of object, Quadruplet (four hits), has been used to check the quality of triplets, but
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not directly used in the reconstruction. In order to perform the annealing process, these topo-
logical objects are used to construct a Quadratic Unconstrained Binary Optimization (QUBO)
object, which is directly assigned to the qubit of the annealing machines.

In this paper, recent developments based on the tracking algorithm used in Ref.[3] are
presented. The first study attempted to apply graph neural network (GNN) techniques in the
QUBO formation. The second study applied the algorithm using a GPU-based annealing
machine in a realistic detector environment.

2 Methodology

2.1 Track pattern recognition

The purpose of track pattern recognition is to recognise the correct combination of hits left
by the charged particles. The consistency of hit positions and a possible trajectory is the
key to tracking. The correct combination of hits must be selected while rejecting all the
combinatorial random coincidences.

In the first study presented in this paper, the dataset prepared for the TrackML Particle
Tracking Challenge [4], which was a dataset created based on the HL-LHC pileup environ-
ment, is used. Corresponding to the HL-LHC environment, the number of tracks per bunch
crossing is about 10,000, and the total number of hits is about 100,000 per bunch crossing. In
this dataset, only the hits recorded in the barrel layers of an LHC-like inner tracking detector
are included. Only tracks with transverse-momentum (pT ) more than 1 GeV are retained.

In the second study, an ATLAS [6] dataset has been used to demonstrate annealing track-
ing in a realistic environment. The data was taken in 2017 by random triggers. Simulated
samples were generated with the ATLAS detector simulation [7]. Only doublets with |η| < 1.0
are allowed in this study.

The tracking reconstruction relies on 5 parameters. The trajectory left by the charged
particles is curved in the detector, which can be measured by 1/R, where R is a Menger
curvature. Other parameters are: polar angle (θ), azimuthal angle (ϕ), and the transverse and
longitudinal distance from the collision point, represented by d0 and z0, respectively.

2.2 Hamiltonian

Quantum annealing is an optimization process to find the global energy minimum of a given
Hamiltonian using quantum fluctuations [5]. In order to apply the annealing process in track-
ing, the Hamiltonian is implemented as a QUBO using topological objects like doublets or
triplets. The Hamiltonian used in Ref.[3] can be defined as follows:

E =
N∑
i

αiTi −
∑
i, j

S i jTiT j +
∑
i, j

ζi jTiT j, (1)

where Ti is the triplet assigned to the qubit. The first term gives a penalty if the triplets act
like a combinatorial fake, which is defined by the impact parameters of a triplet,

αi =
1
2

(1 − e−d0/Cd0 ) +
1
5

(1 − e−z0/Cz0 ), (2)

where Cd0 and Cz0 are normalization constants controlling the effect of the penalty. In Ref.[3]
the values are set to be Cd0 = 1.0 mm and Cz0 = 0.5 mm. The second term gives a reward
if two triplets tend to belong to the same trajectory. This is determined from their curvature,
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direction, and the presence of a missing hit (hole) in the triplet. The coefficient (S i j) is defined
as

S i j =
1 − 1

2 (PR
i, j + Pθi, j)

(1 + Hi + H j)2 , where PR
i, j =

∣∣∣∣∣(1/R)i − (1/R) j

∣∣∣∣∣
CR

and Pθi, j =
max(δθi, δθ j)

Cθ
, (3)

where Hi is the number of holes in the i-th triplet, (1/R)i is the curvature of the i-th triplet,
and δθi is the difference of polar angles between two doublets included in the i-th triplet. The
CR and Cθ are the normalization constants controlling how much inconsistency is allowed. In
Ref.[3], CR = 0.1 mm−1 and Cθ = 0.1 radians are considered. The third term gives a penalty
to a triplet pair if there are shared hits. A track having a shared hits tends to be a combinatorial
fake, since it is unusual for charged particles to share the same hit. The coefficient ζ = 1 if
shared hits exists, otherwise ζ = 0. Eq.1 can be written simply as:

O(a, b,T ) =
N∑
i

aiTi +

N∑
i

N∑
j<1

bi jTiT j, bi j =


−S i j Pair of triplets align in sequence
ζi j Pair of triplets share a hit
0 otherwise.

(4)
The coefficient ai is called the bias weight, and the coefficient bi j is called the coupling
strength. These terms are collectively called the QUBO strength, which gives the bias to
the initial state of the quantum system in the annealing process. The bias weight is the bias
applied on the individual qubit; while the coupling strength gives a bias to the connection
between 2 qubits. Fig.1 shows the distribution of the QUBO constructed using the algorithm
in Ref.[3] with 2708 hits from a single event.

Figure 1: The QUBO strength distribution of the QUBO constructed using the algorithm in
Ref.[3] with 2708 hits from a single event. The blue histogram represents the distribution of
coefficient ai in Eq.4 and the orange histogram represents the distribution of coefficient bi j in
Eq.4.

3 Application of graph neural network

The QUBO formation described in Eq.4 requires the pre-selection of triplets and triplet pairs.
This section introduces a study focus on this pre-selection process using graph neural network
(GNN). The study can be separated into 3 steps: 1) Graph generation, 2) GNN architecture
construction, and 3) model training and performance test.
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3.1 Graph generation

In the graph generation, the TrackML dataset is being used along with a target QUBO gener-
ated by the Ref.[3] algorithm. Hits being used in the target QUBO are first being extracted,
and defined as signal hits. The background hits are then extracted by searching for the nearest
hit to the signal hits along the same detector layer.

A graph is required to contain exact 4 hits and therefore 3 doublets. The Cartesian co-
ordinates of the hit are being used as the node features. The doublet selection requirements
described in Ref.[3] are being used as the edge features. A bi-directed graph has been con-
sidered in this study. Thus, 2 edges are being constructed between 2 hits, and the message
is passing into opposite directions along 2 edges. Therefore, 1 graph contains 4 hits, which
is embedding into 4 nodes, and 3 doublets, which is embedding into 6 edges. Two types of
graph are being generated based on the number of signal hits: Signal graph and background
graph. The signal graph only contains signal hits, and background graphs are constructed
by anything number of signal and background hits. Therefore, a background graph can ei-
ther contain both signal and background hits, or purely contain background hits. Eventually,
269550 graphs are generated, with 6% signal graphs and 94% of background graphs.

3.2 GNN architecture construction

The GNN architecture contains 2 fully connected graph modules, as shown in Fig.2. First, the
module transforms the node and edge features into their latent representations, then performs
message passing to update latent features, and finally computes edge classification scores.
The final output is the edge score calculated in the second graph module (eN

s ).

Figure 2: The Graph Neural Network architectures.

3.3 Results

The GNN is trained on an NVIDIA V100 GPU for 50 epochs, resulting in the performance
shown in Fig.3. The performance is examined by using the trained model with a test sam-
ple which contains 53910 graphs. In Fig.3 (a), the predicted score for each of the edges is
shown. the "Predict:TP" ("Predict:FP") edges represent the edges that are true positive (false
positive), which required a target edge score = 1 (0). In Fig.3(b), the sum of edge scores per
graph is shown. The target score, showing that one can expect the graph to have a total edge
score = 0, 2, 4, 6. This is the result of doublet embedding as described in Sec.3.1. However,
the distribution of predicted score suggested that the total edge score can be any integer from
0 and 6 for each graph. The difference between these distributions is originated from the leak
of information about the doublet embedding in the network. Therefore, during the training,
the score for each of the edges is calculated separately and being considered to be indepen-
dent of the physical doublet. In the future studies, this information has to be passing into the
network in order to have a physical result.
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(a) Edge score per edges (b) Total edge score per graph

Figure 3: Distribution of edge classification score per (a) edges and (b) graph. The per-
formance is examined by using the trained model with a test sample which contains 53910
graphs.

The coupling strength can be calculated using Eq.4. The distribution of −S i j for both
target and GNN-generated QUBO has been shown in Fig.4. In the GNN-generated QUBO,
triplet pairs belong to graph which have total edge score ≥ 4 are being selected. The target
QUBO has 2 peaks around -0.95 and -0.25. Similar distribution can also be observed in
the GNN-generated QUBO. However, most of the triplet pairs in the GNN-generated QUBO
have coupling strength within the range −0.25 < −S i j ≤ −0.85. This is because 94% of the
samples are background graphs. Thus, most of the triplet pairs in the GNN-generated QUBO
are background-like. Although only graphs with total edge score ≥ 4 are being considiered,
part of the GNN-generated QUBO is still constructed by the backgound-like triplet pairs. It is
expected to have a more signal-like distribution by increasing the signal-to-background ratio
during the graph generation stage.

Figure 4: The coupling strength of the target (blue) and GNN-generated (orange) QUBO.
The performance is examined by using the trained model with a test sample which contains
53910 graphs. In the GNN-generated QUBO, triplet pairs belong to graph which have total
edge score ≥ 4 are being selected.
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4 Application to the ATLAS dataset

The TrackML Particle Tracking Challenge [4] dataset simulates an ideal environment in HL-
LHC, but the tracking algorithm used in Ref.[3] needed to be verified in the realistic environ-
ment.

In this section, the result of verification in ATLAS dataset is shown without applying
any of the GNN techniques mentioned in the previous section. This study also modified the
original algorithm used in Ref.[3], replacing the quantum annealer by the GPU-based anneal-
ing machine, called Fixstars Amplify AE (Annealing Engine)[8], which uses the NVIDIA
A100 GPUs and has 131k fully connected bits. Another modification is that the QUBO is
constructed from doublets, instead of triplets. The Hamiltonian is therefore defined as:

H =
N∑
i

aiDi +

N∑
i

N∑
j<i

Wi jDiD j +

N∑
i

N∑
j<i

S i jDiD j +

N∑
i

N∑
j<i

ζi jDiD j, (5)

where D is the doublet. The first term is a penalty term which gives positive energy according
to the number of holes in the doublets using the coefficient ai, defined as:

ai = C1(Hi + 1)C2 , (6)

where Hi is the number of holes in the i-th doublet. Constants C1 and C2 are set to be 1 and 2,
respectively. The second term rewards cases where two doublets share a hit and form a triplet
along the same direction. The energy decreases along with the differences in the curvature in
the X-Y plane or the angle in the R-Z plane between the doublet pair, using the coefficient
Wi j, defined as:

Wi j = −C3{C4e−[ ∆(1/R)
CR

]C5
+ (1 −C4)e−(∆θ/Cθ)C5

}, (7)

where constants CR, Cθ, C3, C4 and C5 are set to be 0.002, 0.1, 1.5, 0.5 and 1, respectively.
The third term gives a penalty to doublet pairs which do not share a hit. If they have similar
curvature in X-Y plane or similar angles in the R-Z plane, the coefficient S i j is defined as:

S i j = −C6{C7(1 − PR
i j

C8 ) + (1 −C7)(1 − Pθi j
C8 )}, (8)

where PR
i j and Pθi j are the same as defined in Sec.1. Constants C6, C7 and C8 are set to be 0.6,

0.5 and 2, respectively. The fourth term is a penalty term if a doublet pair that shares a hit
and forms a V-shaped triplet. The coefficient ζi j is set to be 5.

The size of QUBO is optimised by geometrically divided into 16 sub-QUBOs in the ϕ
direction. Each pair of neighbouring sub-QUBOs has an overlapping region of 0.2 rad. Fig.5
shows a typical event display for 200 muons/event without a pileup MC sample generated
with the ATLAS software [7]. These muons are generated with 0.5 GeV < pT < 10 GeV in
1/pT flat distribution with |η| < 1.0. Since our current algorithm is applicable to only barrel
regions, the η cut restricts generation to barrel tracks. The result indicates that track finding
by annealing machines works successfully in a realistic environment.

The algorithm is then applied to real ATLAS data taken by non-physics random triggers
with the ATLAS detector in runtime within 2017 with LHC fill 6371 and ⟨µ⟩ = 21. Fig.6a
shows the reconstruction efficiency with respect to ATLAS offline tracks as a function of
the track pT . The matching to the ATLAS tracks is performed if tracks reconstructed with
annealing machines share more than 50% of hits with the ATLAS tracks. The efficiency
depends on track pT and it is worst in the low pT region. The potential efficiency loss might
come from the forbidden patterns in the current algorithm, such as shared hits between tracks.
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However, more investigations into the causes of inefficiency are needed. Considering this
study as a first demonstration of technical feasibility, the result already looks promising.

The annealing time, which is the time required to run one annealing, is also measured
and shown in Fig.6b. This measurement is comparing ATLAS data and a MC sample with
10 pions/event, and ⟨µ⟩ = 20. For the data, the average preprocessing time with a single core
of 11th Gen Intel(R) Core(TM) i9-11900K @ 3.50GHz is about 0.6 seconds. An average
QUBO size without slices for the dataset with ⟨µ⟩ = 20 is 109k bits.

The doublet-based QUBO typically needs 10 times longer annealing time than the triplet
one, while the preprocessing time is 10 times faster.
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Figure 5: Event display of reconstructed tracks for 200 muons/event in (a) X-Y plane and
(b) R-Z plane. Each point stands for a hit, and each line between points is a doublet. Re-
constructed true tracks are green, blue shows unreconstructed true tracks, and fake tracks are
represented by red. In (b) the 4 inner layers in the lower R region represents the pixel detec-
tors, and the larger R region represent the SCT detectors.
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Figure 6: (a) Efficiency as a function of track pT for the ATLAS data. (b) The minimum
annealing time for data (black) and MC samples (red). The MC sample with 10 pions/event,
and ⟨µ⟩ = 20 simulated with the ATLAS detector has been used.
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5 Conclusion

In this paper, recent developments based on the tracking algorithm used in Ref.[3] are
reported. The first study indicates that the implementation of GNN is a potential way to
improve the pre-processing efficiency. The second study shows that the algorithm with
doublet-based QUBO works well in a realistic environment, with both simulated ATLAS
MC samples and real ATLAS data. Together, these studies demonstrate the feasibility of this
approach, and improvements can be made in future developments.
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