
Towards a distributed heterogeneous task scheduler for
the ATLAS offline software framework ∗

Paolo Calafiura1,, Julien Esseiva1,, Xiangyang Ju1,, Charles Leggett1,, Beojan Stanislaus1,,
and Vakho Tsulaia1,

1Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA

Abstract. With the increased data volumes expected to be delivered by the HL-
LHC, it becomes critical for the ATLAS experiment to maximize the utiliza-
tion of available computing resources ranging from conventional GRID clus-
ters to supercomputers and cloud computing platforms. To run its data pro-
cessing applications on these resources, the ATLAS software framework must
be capable of efficiently executing data processing tasks in heterogeneous dis-
tributed computing environments. Today, using the Gaudi Avalanche Sched-
uler, whose implementation is based on Intel TBB, we can efficiently schedule
Athena algorithms to multiple threads within a single compute node. We aim to
develop a new framework scheduler capable of supporting distributed heteroge-
neous environments, based on technologies like HPX or Ray. After the initial
evaluation phase of these technologies, we began the development of a proto-
type distributed task scheduler for the Athena framework. This contribution
describes this prototype scheduler and the preliminary results of performance
studies within ATLAS data processing applications.

1 Introduction

The ATLAS [1] experiment operates one of the detectors at the LHC at CERN. To carry out
physics analysis, a lot of data is generated, both by the ATLAS detector as well as Monte
Carlo simulations.

Athena [2] is the software framework used by ATLAS to process data. It is built on Gaudi
[3], a cross-experiment data processing framework for HEP. ATLAS currently uses either a
multi-process (AthenaMP) or multithreaded (AthenaMT) version of Athena depending on the
task to handle parallelism within a node.

The majority of ATLAS computing resources are provided by the Worldwide LHC com-
puting grid (WLCG). HEP is a high-throughput computing domain, that is, we care about
how many decoupled tasks can be processed over a long period. The WLCG fulfills that
need very well by providing access to many independent resources. PanDA [4] is the ATLAS
distributed management system, responsible for assigning jobs to different sites on the grid.

Recently, High-performance computing (HPC) resources have been integrated with AT-
LAS. With the significant paradigm shift - HPC is optimized for short, parallel, and coupled
jobs requiring low communication latency - this has proven challenging. Some of these chal-
lenges include
∗Copyright 2023 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.

EPJ Web of Conferences 295, 03041 (2024) https://doi.org/10.1051/epjconf/202429503041
CHEP 2023

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

• Load balancing the work across nodes as HPCs expect multi-node jobs and Athena is de-
signed to run on a single node.

• Utilization of GPUs and other accelerators, where the majority of the FLOPS of the newest
generation of HPCs comes from.

As an intermediate step, we have implemented Raythena [5] a task farm managing mul-
tiple AthenaMP processes within a single HPC allocation. This layer of scheduling requires
a lot of boilerplate components to stay compatible with the WLCG. In addition, Athena still
being a single-node application does not allow for a fine-tuned control of work scheduling
across nodes. We, therefore, started exploring different frameworks for implementing a dis-
tributed version of Athena. The initial results were presented at ACAT2022 [6].

We present here the prototype implementation of Gaudi with extended distributed ca-
pabilities using HPX, in Section 2 and 3, Gaudi and HPX are briefly presented to give the
necessary understanding of the distributed Gaudi-HPX implementation presented in 4. We
then present scaling obtained with the current implementation, discussing potential bottle-
necks and the next step towards a production version of a distributed version of Athena.

2 Gaudi

Gaudi [3] is a cross-experiment event processing framework on which Athena is built. Fig-
ure 1 illustrates the relationship between components. A core component of Gaudi is the
Algorithm, responsible for transforming data. Processing one event will require the ex-
ecution of many algorithms. Algorithms read and write data in a shared event store, the
whiteboard. They declare their dependencies by having read / write key handles to the event
store as class data members. The scheduler maintains a pool of Algorithm instances and
several events in flight. It is responsible for solving the dependency graph of algorithms and
scheduling them onto cores using Intel Thread Building Blocks (TBB) [7]. Usually, a sin-
gle instance of a given algorithm exists and the event to process is passed as a parameter to
the execute function of the algorithm. Algorithms can be declared as either reentrant, in
which case many threads can call the algorithm concurrently, or cloneable, allowing different
instances to be scheduled on different threads. The event loop manager is responsible for
pushing events to the scheduler.

3 HPX

HPX [8] is a C++ library for concurrency and parallelism. It presents an API conforming to
the C++ standard, implementing parts of the standard library such as parallel algorithms and
execution policies, control objects such as futures, latch, barriers, or future proposals such as
Concurrency TS and P2300. More importantly, HPX extends these APIs with asynchronous
and distributed implementations, allowing library users to run their applications in both a
distributed and a multi-threaded environment in the same way. HPX follows a cooperative
multithreading model; a future scheduled on the HPX threading subsystem will execute until
it finishes or yields control by synchronizing with other tasks. It also integrates with GPUs,
allowing execution and synchronization between CPU and GPU code.

The distributed features of HPX use either TCP, MPI, or libfabric as the networking back-
end. Serialization of data between nodes, both native and user-defined types, is supported
following the Boost serialization API. HPX also provides a global address space supporting
distributed objects called components. Remote procedures are called actions and can be
either a free function or a member function on an HPX component. HPX provides different
semantics for applying actions such as fire-and-forget, synchronous, or asynchronous calls.

EPJ Web of Conferences 295, 03041 (2024) https://doi.org/10.1051/epjconf/202429503041
CHEP 2023

2

Figure 1. Gaudi architecture and interaction between different components.

HPX also defines localities which are remote processes. When applying an action or instan-
tiating a component, a locality identifier is needed to specify where the procedure should be
executed.

4 Gaudi-HPX Integration

Our HPX integration within Gaudi tries to keep the changes to a minimum [9]. Figure 2
illustrates the changes in architecture. They can be summarized in two main changes:

• Replace the TBB task arena with an HPX arena using fire-and-forget futures.

• Implement actions as free functions. They are remotely called by locality 0’s
EventLoopMgr to push events to schedulers on remote processes.

Unless we bind threads to specific cores or NUMA domains, TBB and HPX do not play
well with each other as they would be competing for resources. To minimize the changes
required in Gaudi, we swapped out the TBB task arena with a thread arena implementation
using HPX as the backend, exposing the same API as TBB’s task arena. The Gaudi sched-
uler queues a future representing the algorithm to execute within the HPX thread pool using
hpx::apply, i.e. fire-and-forget semantics. HPX is responsible for scheduling the algorithm
for execution on hardware resources. The Gaudi scheduler is still responsible for resolving
algorithm dependencies; it will only offload algorithms that are ready to be executed and have
their dependencies resolved. From HPX’s point of view, algorithms have no dependencies;
they can be scheduled for execution as soon as received. Events are still processed within
a single locality. Once an event ID is assigned to a given locality by locality 0’s distributed
EventLoopMgr, the local scheduler will only schedule work within the same process. Chang-
ing this behavior would require significant architectural changes because of the whiteboard
communication model.

The EventLoopMgr has been extended to work in distributed environments. The imple-
mentation follows a controller/worker architecture. One process will be started per node or

EPJ Web of Conferences 295, 03041 (2024) https://doi.org/10.1051/epjconf/202429503041
CHEP 2023

3

NUMA domain, the locality 0 will take the role of the controller while all the other instances
will be workers as illustrated in Figure 2. The only difference between the controller and
workers is the work done by the EventLoopMgr. The worker’s EventLoopMgr is disabled,
it doesn’t push events to the local scheduler. However, it still exists in memory to keep the
application alive.

The controller’s EventLoopMgr retrieves the processes within the cluster using HPX’s
API. Then, instead of pushing events to the local scheduler, it does remote procedure calls
(RPC); calling the HPX action (free functions) to schedule all the events on workers. The
only information exchanged is an event index; each process reads event data from files. Once
all the events are scheduled, it queues calls to drain each scheduler, i.e., waiting for all events
to complete. Finally, it notifies each worker that the work is done, resuming the disabled
event loop on each worker that will simply return without doing anything, causing workers
to terminate

The action to dispatch the event executes on the worker. It has a reference to the local, dis-
abled, EventLoopMgr, which is used to push the event to the scheduler as the EventLoopMgr
would normally do in the non-distributed scenario. One caveat is that the scheduler is not
reentrant; to make sure that actions are not concurrently pushing events to the scheduler,
execution on each worker is serialized by a mutex.

Figure 3 illustrates in more detail how events are distributed to workers. Each scheduler
has a given number of event slots, i.e., the number of events in flight. The distributed event
loop will iterate over the workers and try to schedule an event. The action on the worker will
check if the scheduler has an event slot available. If it does, it schedules the event and returns.
If no event slots are available, it will asynchronously schedule a task to drain the scheduler to
clear up slots of finished events and return. In cases where the event can not be scheduled on
a worker, the main event loop will try to schedule it on the next worker until it finds an empty
slot. The remote call within the event loop to schedule the event on a worker is synchronous,
however, all the work happening within that call (on the worker) is asynchronous so it is fast
but still incurs network latency on which the event loop has to wait before moving to the next
event.

Figure 2. Modifications to the Gaudi architecture for HPX integration.

EPJ Web of Conferences 295, 03041 (2024) https://doi.org/10.1051/epjconf/202429503041
CHEP 2023

4

Figure 3. Events scheduling policy between controller and workers.

5 Results

We measured the weak scaling of the HPX-Gaudi implementation. The problem size is con-
figured to be 3200 events per node, with a minimum of 12800 events. Measurements were
done on the Cori KNL partition using 128 cores per node, and HPX was configured to use
TCP as the networking backend. Events were configured to take around 15 s of processing
time and are purely CPU-bound, i.e. they do not require file system I/O.

Figure 4 shows that the throughput does not scale beyond 10 nodes. We demonstrated in
[6] that HPX was linearly scaling up to at least 30 nodes for much shorter tasks of hundreds
of milliseconds. Knowing the average time of the tasks, the number of processors available,
and the scheduling policy presented in Section 4, we can easily estimate that, for the breaking
points of 10 nodes, one iteration of the event loop in the controller process can spend approx-
imately 10 ms scheduling an event on a node. If we are not providing work to cores within
that time constraint, some will sit idle.

We measured that it takes the event loop 30 ms on average to schedule an event. We
identified two main contributors to this latency. The first is that we are using TCP instead of
the recommended high-speed MPI network. The second is that HPX uses the same thread
pool for processing algorithms offloaded by the local scheduler and executing actions called
by the main event loop which pushes events to the scheduler. This means that if a node is
full it can block the main event loop trying to schedule an event on that node since the call to
schedule events is synchronous leading to the potential starvation of other nodes.

6 Conclusion and Future Work

Our initial standalone evaluation of HPX showed a promising outcome for HPX, we were
able to work around the identified challenges. The integration with Gaudi revealed new
bottlenecks. It would require a major redesign of the Gaudi scheduler to solve them. The
challenge is not only technical but also organizational; Gaudi is used by experiments other

EPJ Web of Conferences 295, 03041 (2024) https://doi.org/10.1051/epjconf/202429503041
CHEP 2023

5

Figure 4. Event throughput measured on Cori KNL nodes.

than ATLAS. While this might be inevitable as a distributed scheduler and a local scheduler
are very different, we still want to consider and have started work on, a pure MPI implemen-
tation. The MPI implementation follows a pull architecture; workers request events from the
controller’s event loop instead of having them pushed. The initial performance measurements
are promising and show perfect scaling up to 40 nodes so far.

EPJ Web of Conferences 295, 03041 (2024) https://doi.org/10.1051/epjconf/202429503041
CHEP 2023

6

References

[1] ATLAS Collaboration 2008 The ATLAS Experiment at the CERN Large Hadron Collider
J. Inst. 3 S08003, 10.1088/1748-0221/3/08/S08003

[2] ATLAS Collaboration. (2019). Athena (22.0.1). Zenodo. 10.5281/zenodo.2641997
[3] G. Barrand et al., GAUDI — A software architecture and framework for building HEP

data processing applications, 2001, url: https://gitlab.cern.ch/gaudi/Gaudi
[4] De K et al. 2015 The future of PanDA in ATLAS distributed computing J. Phys. Conf.

Ser. 664 062035, 10.1088/1742-6596/664/6/062035
[5] Miha Muškinja, Paolo Calafiura, Charles Leggett, Illya Shapoval, Vakho Tsulaia

Raythena: a vertically integrated scheduler for ATLAS applications on heterogeneous dis-
tributed resources EPJ Web Conf. 245 05042 (2020), 10.1051/epjconf/202024505042

[6] Paolo Calafiura, Julien Esseiva, Xiangyang Ju, Charles Leggett, Beojan Stanislaus,
Vakho Tsulaia, Next generation task scheduler for ATLAS software framework, url:
https://indico.cern.ch/event/1106990/contributions/4991224

[7] Intel Threading Building Blocks, url: https://github.com/oneapi-src/oneTBB
[8] Kaiser et al., (2020). HPX - The C++ Standard Library for Parallelism and Concurrency.

Journal of Open Source Software, 5(53), 2352, 10.21105/joss.02352
[9] HPXGaudi implementation, url: https://gitlab.cern.ch/hpxgaudi/Gaudi

EPJ Web of Conferences 295, 03041 (2024) https://doi.org/10.1051/epjconf/202429503041
CHEP 2023

7

https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.5281/zenodo.2641997
https://gitlab.cern.ch/gaudi/Gaudi
https://doi.org/10.1088/1742-6596/664/6/062035
https://doi.org/10.1051/epjconf/202024505042
https://indico.cern.ch/event/1106990/contributions/4991224
https://github.com/oneapi-src/oneTBB
https://doi.org/10.21105/joss.02352
https://gitlab.cern.ch/hpxgaudi/Gaudi

	Introduction
	Gaudi
	HPX
	Gaudi-HPX Integration
	Results
	Conclusion and Future Work

