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Abstract The issues of both system security and safety can be dissected integrally from
the perspective of behavioral appropriateness. That is, a system that is secure or safe can
be judged by whether the behavior of certain agent(s) is appropriate or not. Specifically, a
so-called appropriate behavior involves the right agent performing the right actions at the
right time under certain conditions. Then, according to different levels of appropriateness
and degrees of custodies, behavioral authentication can be graded into three levels, i.e., the
authentication of behavioral Identity, Conformity, and Benignity. In a broad sense, for the
security and safety issue, behavioral authentication is not only an innovative and promising
method due to its inherent advantages but also a critical and fundamental problem due to the
ubiquity of behavior generation and the necessity of behavior regulation in any system. By
this classification, this review provides a comprehensive examination of the background and
preliminaries of behavioral authentication. It further summarizes existing research based on
their respective focus areas and characteristics. The challenges confronted by current behav-
ioral authentication methods are analyzed, and potential research directions are discussed
to promote the diversified and integrated development of behavioral authentication.
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1 Introduction

The advantages of frictionlessness, continuousness, synthesizability, and inherence in behavioral authenti-
cation have attracted significant attention from the security research community [1–9]. Narrowly defined,
behavioral authentication usually refers to behavioral identity authentication [10, 11]. It is a technology
that has emerged as a result of the continuous development of the artificial intelligence industry and the
improvement of computing and storage capabilities in hardware, driven by the increasing dependence of
individuals on the convenience provided by devices. Behavioral authentication collects behavioral data
implicitly in the background and distinguishes them from others by analyzing unique behavior patterns,
as behavior patterns are the intrinsic properties of agents and naturally possess distinct characteris-
tics compared to others. Initially, research on behavioral identity authentication primarily focused on
utilizing collected behavioral data to address specific authentication scenarios and meet the essential
usability requirements [12–14]. As researchers gain a deeper understanding of behavior, they realize the
close correlation between security and behavior [15, 16]. The connotation of security can be described
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Figure 1. (a) illustrates the concept of security and safety can be seen as an “appropriate state” during the ongoing
detection, an “appropriate process” (sequence of states) in the ex-post evaluation, and an “appropriate situation” (trend

in the development of states) in the ex-ante awareness. The essence of studying security lies in examining whether the

changing states are secure and the factors inside and outside the state changes are referred to as behavior. (b) describes the
conceptual framework of behavioral authentication

from a behavioral perspective, where it involves the right agent performing the right actions at the right
time under certain conditions (e.g., scene and environment), as illustrated in Figure 1a. Therefore, the
study on security can be essentially implemented by the research on behavior, then the behavior is also
regarded as the object of security research [17, 18]. Behavioral identity authentication ensures protection
against external malicious attackers and safeguards security. As the scope of behavioral identity authen-
tication applications gradually expands, the importance of non-functional requirements is also increasing.
Researchers are paying more attention to the robustness, reliability, and timeliness aspects of behavioral
identity authentication [2, 18, 19], which is of great significance to safety.

In real-life business, after verifying the legitimacy of identity, there are still some behaviors that require
further behavioral authentication to evaluate their compliance. For example, in the scenario of credit loans
[20], some users use their genuine identities, but after being approved, they engage in malicious cash-
out activities. In the database system, users access the system through their own account, so the user’s
identity is normal, but when the user steals database information through this account, the behavior
is illegal for the system. We call this type of problem behavioral conformity authentication. Behavioral
conformity authentication refers to identifying whether behavior patterns conform to the rules within the
system during the process of using various intelligent information services under the precondition of a
user’s legitimate identity. In fact, some studies have already utilized behavioral data as a resource to solve
different cybersecurity issues, e.g., online payment anti-fraud [20–22], network system intrusion detection
[23], and social network compromised account detection [10, 24, 25].

Furthermore, security and safety issues may arise due to unknown risks and vulnerabilities associated
with an agent’s behavior, even if its identity is legitimate and its actions comply with regulations. For
instance, in the scenario of credit loans, there is the issue of multiple loans, where some users borrow from
different platforms using their genuine identities. Their identities are legitimate, and they repay the loans
on time initially. However, due to the limited repayment capacity of some borrowers, there is a higher
risk associated with borrowing from multiple platforms. In the short term, it may seem like there are no
issues, but when the last platform is unable to borrow, it leads to overdue payments and a mounting debt
burden, resulting in bankruptcy caused by a cycle of borrowing to repay existing debts. In an industrial
Internet scenario, the operational state of a device manifests as an uninterrupted flow of temporal data
and is occasionally accompanied by abnormal signals that do not trigger compliance alerts. These signals
do not originate from external intrusions upon the device, but the accumulation of occasional abnormal
signals over the long term can lead to systemic risks to the system [26–28]. These concerns are called
behavioral benignity authentication. It refers to detecting any potential risks in user behavior during the
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process of using various intelligent information services under the precondition of user identity legitimacy
and behavioral compliance.

Considering the aforementioned aspects, behavioral authentication encompasses three main compo-
nents: behavioral identity authentication, behavioral conformity authentication, and behavioral benignity
authentication. We propose the conceptual framework of behavioral authentication, which is shown in
Figure 1b. In this work, we first provide an overview of the background and preliminaries of behavioral
authentication. Next, we conduct a comprehensive review of existing research and categorize the studies
based on their respective focus areas and distinctive characteristics within each category. Moreover, we
highlight and discuss the challenges of the current behavioral authentication methods, and propose future
research directions to enhance the effectiveness and efficiency of behavioral authentication.

2 Background and preliminaries

2.1 Background

According to the 52nd Statistical Report on the Development of the Internet in China [29] released
by the China Internet Network Information Center in 2023, as of June 2023, China’s Internet user
base has reached 1.079 billion people, with an Internet penetration rate of 76.4%. The user base for
instant messaging, online video, and short video stands at 1.047 billion, 1.044 billion, and 1.026 billion,
respectively, with user adoption rates of 97.1%, 96.8%, and 95.2%. These new digital services have been
closely related to people’s lives. However, at the same time, digital transformation is also facing severe and
complex security and safety challenges, posing real threats to critical infrastructure, systems, and citizen
privacy [30, 31]. From the perspective of attack targets, the focus has shifted from networks and systems
to business and data, with an increasing number of ransomware and application-based attacks. In terms of
attack methods, the trends of automation, intelligence, and concealment in attack tools have become more
prominent. Additionally, cybercriminals further enhance the success rate of attacks by illegally acquiring
personal data, such as email and physical addresses, phone numbers, and other personally identifiable
information. All these factors pose significant challenges to traditional authentication methods. Driven
by the security and safety demands of the real world, there is a current need to adopt new technologies
to address these challenges. Behavioral authentication is one of the most promising methods, and this
innovative approach is moving towards a safer and more secure cyberspace.

The technique of behavior modeling is closely related to behavioral authentication. In fact, there is a
rich history of research focused on predicting user characteristics, including attributes, personality, and
behavior, through the utilization of behavior modeling techniques. In the years 2013 and 2015, Kosinski
et al. [32, 33] explored the feasibility of using user behavioral data to infer, predict, and model user
attributes, interests, and personality. In terms of user behavior prediction, as early as 2010, Song et al.
[34] conducted a three-month study and analysis of the travel records of 50 000 anonymous mobile phone
users in their publication in Science, and found that users’ historical travel behaviors followed specific
patterns, with an accuracy of up to 93% in predicting users’ potential travel behavior. There has been
extensive research on the specific application of behavior modeling requirements for internet services.
For example, personalized modeling has been implemented by mining users’ interests and hobbies based
on their behavioral characteristics [35–38]. Behavior trend analysis has been conducted by observing
changes in user behavior patterns [39–42]. Malicious accounts have been detected by analyzing account
behavioral characteristics [43, 44]. Risk assessment of default has been performed by analyzing user
transaction behavior records [45]. Social identity association across different platforms has been addressed
by matching user behavior patterns [46–48].

In the field of identity authentication, the majority of current online methods resemble access control
methods. Common methods include setting up alphanumeric or graphical passwords for accounts [49–54],
utilizing security tokens [53, 55–57], and employing biometric features such as facial and iris recognition
[58–62]. Setting passwords for accounts is the simplest and most widely used method of identity authen-
tication while linking mobile phones and emails serves as an effective measure for account protection
and recovery. Security tokens are physical devices employed as a means of identity authentication and
are currently extensively utilized. Biometric authentication refers to the utilization of unique biological
features of individuals to verify their identities. Biometric authentication is considered a relatively reli-
able method of identity verification. The above-mentioned methods primarily operate during the login
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authentication phase of an account. Because these methods typically require additional user operations,
they are regarded as intrusive authentication methods. These intrusive methods are hard to meet the high
requirements of users for authentication convenience and service experience. When confronted with the
issue of managing multiple account passwords, many users tend to adopt complete or partial password
reuse strategies, underestimating the threat of password reuse to account security [9, 63, 64]. Further-
more, certain risks exist with certain biometric-based authentication technologies. For instance, in facial
recognition, the replicability of facial data (obtainable and replicable in public environments), the insta-
bility of facial data (affected by makeup, allergies, injuries, and cosmetic surgeries leading to changes in
features), and the security of backend data should be taken seriously (a breach of backend data would
have devastating consequences for industries and society).

In the field of conformity authentication, the existing practices mainly rely on establishing conformity
authentication systems based on rules [65–69]. The process of setting up rule libraries is time-consuming
and incurs high manual costs [70]. Once authentication is granted through rule-based detection sys-
tems, these systems tend to persist in granting access to similar requests in the future. However, due to
the absence of timely updates to the rule library, identifying new instances of non-conformity becomes
challenging. In practical business scenarios, the limitations of rule-based construction have become
increasingly apparent. Conformity authentication models sometimes require the input of hundreds of
expert features. The manual construction of rules is also challenging to transfer and switch across dif-
ferent application scenarios, resulting in significant manual and time costs and impacting the efficiency
of model development and operation. This method is constrained by human expertise and may over-
look potential non-conformities, preventing the model from achieving excellent detection performance
[71]. Additionally, this time-consuming and labor-intensive approach to constructing conformity models,
which may overlook complex risks, no longer meets the requirements of secure, dynamically changing
conformity authentication systems. It is of great significance for the development of conformity authen-
tication models to effectively utilize and reuse knowledge, reduce manual and time costs, and establish
automated and efficient authentication models.

In terms of benignity authentication, existing methods mainly focus on the static benignity of entities,
with limited scalability in dynamic environments. These methods heavily rely on pre-established depen-
dency analysis, equivalence relationships, and protocol state specifications. The trusted formal modeling
employed in these methods is predominantly based on cryptographic techniques, which presents several
challenges in real-world business scenarios. Cryptographic modeling processes can be time-consuming and
hinder the efficiency of authentication procedures. The practicality of these cryptographic methods may
be limited due to high hardware requirements for deployment, affecting their efficiency and usability.
These methods lack the necessary adaptability and flexibility, which makes it challenging to promptly
capture potential risks. For example, coupon clippers may not initially violate regulations, but the large-
scale organization of coupon clippers’ activities is likely to increase overall transaction and credit costs,
ultimately hindering normal business activities. There is a pressing need for more adaptive and flexi-
ble approaches in benign authentication that can overcome these limitations and meet the demands of
dynamic environments in real-world business scenarios.

2.2 Preliminaries

Experts in the field of cybersecurity have paid attention to the importance of user behavior research
in addressing security issues. Dr. Douglas Maughan, the inaugural Office Head for the National Science
Foundation (NSF) Convergence Accelerator, and the former Director of the Cyber Security Division
at the Science and Technology Directorate of the U.S. Department of Homeland Security, believes that
researchers should prioritize viewing cybersecurity issues from a human factors perspective [72]. Professor
Angela Sasse of University College London, funded by the British government, is studying cybersecurity
issues in the business sector from a novel perspective of social and behavioral science [73]. Professor
Stefan Savage of the University of California, San Diego is also researching behavior analysis for the
prevention and control of network fraud [74]. Nature published an article titled How to Hack The Hackers:
The Human Side of Cybercrime, highlighting the progress made in representative research efforts and
emphasizing the importance of leveraging behavioral science to understand the behavior patterns of both
perpetrators and victims for enhancing cybersecurity [75].
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For behavioral identity authentication, devices typically collect behavioral data in the background.
The collected data is then utilized for training a machine learning model [76]. Features are extracted
through the trained machine-learning model based on the collected behavioral data, which form the users’
behavior profiles. The identity behavior profile is represented as a matrix U by the model. During the
process of behavioral identity authentication, the newly generated credential of the kth user is compared
against the stored identity behavior profile matrix to determine the authenticity of the user’s identity.
Verification involves comparing a provided behavior record with a stored template to determine a level
of similarity. It grants access to legitimate users if their presented behavior record exhibits a similarity
measure surpassing a predefined threshold. Let x, g(·) and dk denote the behavior record, the behavioral
identity authentication model, and the predefined threshold of user k, respectively. The result of the
behavioral identity authentication model R = True if g(x) > dk and False otherwise.

Behavioral conformity authentication, refers to the process of ensuring that the internal behavior
of users and business activities comply with relevant laws, regulations, and industry standards. Let
X = {x1, x2, · · · , xN} denote the set of behavior records. Behavioral conformity authentication aims to
learn a decision function φ(·): X → R that assigns behavioral conformity scores. The goal is to effectively
distinguish non-compliant behavior records from compliant behavior records in the space defined by the
behavioral conformity score decision function. By inputting behavioral data into φ(·), it can directly
infer the conformity scores. Larger outputs of φ(·) indicate a greater degree of non-compliance, which
requires the system to take appropriate actions timely to prevent or rectify such behaviors. Certainly,
it is necessary to characterize and map the original features of behavior records before inputting them,
which is beneficial for obtaining more accurate scores of behavioral compliance.

Researchers have already begun exploring security and safety issues within the scope of behavioral
benignity authentication. Relevant research works primarily focus on the following aspects, including
traceability of behavior, predictability of risk, consistency of execution, and integrity of record. The
traceability of behavior refers to the tracking of individual or entity behavior activities to obtain detailed
historical behavioral data, helps verify the legitimacy of user behavior. Predictability of risk involves a
comprehensive evaluation of individual or entity behavior activities to timely identify potentially risky
behaviors and update the scope of compliance. Consistency of execution evaluates the credibility and
detects potential risks without affecting consistent operations in cross-domain interactions over hetero-
geneous networks. Integrity of record entails protecting user privacy and ensuring consistency in the
certification process. These aspects of behavioral benignity authentication provide additional protection
for systems.

The behavioral authentication method has the following advantages based on its technical principles:

• Frictionlessness. This method operates as a backend program, eliminating the need for user inter-
vention. The collection of data and verification are seamlessly performed without requiring any
explicit actions from the user. This frictionlessness of behavioral authentication ensures a smooth
and convenient experience.

• Continuousness. The method transforms cybersecurity authentication from a one-time process to a
continuous one. It allows for ongoing analysis of user behavior over time, ensuring that access remains
granted as long as the behavior patterns align with the established user profile. This continuous
authentication approach enhances security by detecting any anomalous or suspicious behavior in real
time.

• Synthesizability. The method directly captures the projection of multiple subspaces of behavior,
which exhibits synthesizability among the subspaces. By capturing various dimensions of behavior,
it creates a comprehensive and reliable behavior profile. Synthesizability of behavior enhances the
accuracy and robustness of the authentication process.

• Inherence. The data used for behavioral authentication typically originates from users’ inherent
characteristics and patterns. Therefore, intruders are unlikely to perfectly mimic the user’s behavior
patterns, as individual behavior is unique and difficult to imitate convincingly. Furthermore, intruders
typically exhibit intrusive actions aimed at stealing benefits, which often deviate from the user’s normal
behavior.

We consider typical scenarios to illustrate the connections between different authentication methods.
For example, credit loan services are typical data-intensive services, and the synthetic and intrinsic char-
acteristics of behavioral authentication provide support for enhancing representational capabilities and
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Figure 2. A typical example demonstrates how different levels of behavioral authentication ensure the safety and security
of credit loan services. (a) shows criminals collect information from victims and submit loan applications, and it can be

addressed by behavioral identity authentication. (b) describes the illicit re-lending of funds activities that occur after the
loan has been approved and disbursed, which belongs to the level of behavioral conformity authentication. In the auditing

process, timely analyzing the flow of loans among different platforms and ensuring the predictability of lending risks, are the

key issues addressed by behavioral benignity authentication, as shown in (c). Behavioral authentication expands through
a progressive framework of sub-functions, i.e., identity, conformity, and benignity, to achieve gradual enhancement for the

safety and security of credit loan services

breaking down isolated data attributes of credit loan services. During the initial stages of a loan applica-
tion, some criminals may steal others’ information through illegal means for fraudulent loan applications.
The specific process is illustrated in Figure 2a. The evaluation of whether the information submitted by
a borrower matches the true circumstances falls under the level of behavioral identity authentication,
which protects the security of the loan application for financial institutions. While behavioral identity
authentication can ensure the legitimacy of a borrower’s identity, there are instances of non-compliant
behavior after the loan is approved. Diversion and re-lending of funds is one such non-compliant behavior
where the borrower does not use the loan funds as intended during the loan application. Instead, after
receiving the loan from a financial institution, the borrower engages in illegal lending activities. As shown
in Figure 2b, the fraudster further increases the loan interest rates approved by financial institutions and
lends the funds to others to profit from the interest rate differential. Detecting such fraud falls under
the level of behavioral conformity authentication. It uses methods like behavior tracking to ensure the
security of loan flows. Furthermore, in real business processes, there are cases where a borrower’s identity
is legitimate, and the borrower’s behavior complies with platform regulations, but failure to restrict such
behavior promptly can increase overall system risks. Figure 2c illustrates the concept of borrow-to-repay
activity, which is detrimental to the stable operation of the financial platform. Initially, the borrower only
applies for loans on a single platform and can adhere to the repayment policies of that platform. However,
later on, due to financial difficulties, the borrower cannot repay the loans on one platform on time. As a
result, the borrower applies for new loans on other platforms to repay the outstanding loans. In reality,
the borrower’s ability to repay loans has declined. The collaborative audit across multiple platforms to
promptly detect such behavior not only ensures the security of the business but also further ensures
platform safety by timely refining loan strategies and making the controllability of platform risks. They
are crucial aspects of behavioral benignity authentication. Safeguarding user identities from theft, mon-
itoring the compliant use of loans, and continuously improving the approval processes provide essential
protection for credit loan services. The progressive enhancement of financial market security and safety
through the expansion of behavioral authentication sub-functions with the level of identity, conformity,
and benignity promotes the development of inclusive finance.

Intelligent transportation information services also involve the extension of different levels of
behavioral authentication. As communication and computation-intensive services, the frictionless and con-
tinuous characteristics of behavioral authentication help address emerging security and safety challenges,
where entities’ access is dynamic, devices interact frequently, and cross-domain paths are concealed. Dur-
ing the access phase of different entities, behavioral identity authentication prevents different devices
from falling victim to phishing attacks and identity theft, ensuring data and access security for intelligent
devices, which is shown in Figure 3a. While some entities have successfully verified their legal identities
and registered successfully within the intelligent transportation system, during the process of hetero-
geneous entity interaction, some entities may not adhere to the standards and regulations of services.
Figure 3b illustrates typical non-compliant behavior in intelligent transportation information services.
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Figure 3. An example illustrating the security and safety issues that different levels of behavioral authentication need to
confront in intelligent transportation information services. (a) describes the entity access phase where various entities may

face threats such as identity theft and phishing attacks, and it belongs to the level of behavioral identity authentication.
(b) illustrates the monitoring of API interface traffic and blocking of non-compliant request entities during collaborative

interactions and communication process which falls under the level of behavioral conformity authentication. (c) shows

the functionality of behavioral benignity authentication, which identifies and rectifies high-risk paths within the system,
enabling internal information protection and proactive defense against malicious activities

During the collaborative development of intelligent transportation information systems, for the conve-
nience of information sharing and resource coordination, different entities open certain interfaces to other
interacting entities, based on additional standards. These entities must conform to the specified usage of
external cooperative entities’ API interfaces according to these additional standards to ensure efficient
and stable information sharing and resource allocation in the system. Some access entities have the legit-
imacy of their identity but generate traffic requests that exceed service standards. This directly leads
to network congestion and increases the system’s response time. Behavioral conformity authentication is
responsible for monitoring the traffic of API interfaces, promptly detecting non-compliant request entities,
and safeguarding the overall security and stability of the multi-entity collaborative process. Additionally,
some entities have legitimate identities and generate traffic that complies with standards when using
open API interfaces. However, in the process of cross-domain access, there may exist potential high-risk
access paths. These paths can give rise to undisclosed security vulnerabilities and potentially expose sen-
sitive internal system information. Such vulnerabilities might inadvertently offer attackers opportunities
to establish backdoors within the system, as shown in Figure 3c. Behavioral benignity authentication
uses traceability analysis to locate the minimum-cost repair points for high-risk access paths, achieving
proactive prevention. This further enhances the security of intelligent information networks and safe-
guards the safety of internal system information. Ensuring the legitimacy of access entities, promptly
blocking abnormal traffic, and repairing high-risk access paths, behavioral authentication continuously
addresses security and safety issues in various aspects of intelligent transportation information services.
This plays a critical supporting role in harnessing the efficiency of transportation infrastructure, improv-
ing the operational efficiency and management level of transportation systems, and facilitating smooth
public travel.

3 Studies on behavioral authentication

3.1 Behavioral identity authentication

According to the different characteristics of behavioral data, this part categorizes behavioral identity
authentication into five major types: keystroke, touch gesture, motion, intrinsic signaling behavior, and
user interaction behavior. In addition, in certain specific scenarios, the above different behavioral feature
types can be combined into a multi-factor approach to reflect the user behavior, as shown in Figure 4.

Keystroke-based authentication is one of the earlier behavioral identity authentication methods that
verifies a user’s identity by analyzing the characteristics of the user’s input characters on the keyboard,
such as keystroke force, keystroke speed, keystroke frequency, keystroke sequence, and keystroke time
intervals. Early research into keystroke-based authentication focused on analyzing keystroke force and
frequency. Zhu et al. [77] proposed a novel approach to authenticate users based on keystroke dynamics
while entering passwords. The proposed method leverages a keystroke feature vector which consists of the
user’s keystroke force and frequency to confirm the user’s identity. Subsequently, researchers introduced
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Figure 4. Components of behavioral identity authentication

extra keystroke features to continuously improve the accuracy and security of keystroke-based authenti-
cation. Primo et al. [78] investigated the effect of music on keystroke behavioral data using two validation
techniques: relative and absolute measurements. The researchers analyzed the data based on three dimen-
sions of keystroke behavior: key hold, key press, and inter-key intervals, to understand how music affects
user verification performance. Their findings confirmed that a music environment can improve the accu-
racy of user authentication based on keystroke dynamics. Ho et al. [79] introduced a user authentication
approach based on keystrokes, which integrates a one-class naive Bayes algorithm (ONENB) and a typ-
ing speed inspection in typing skills (SITS) algorithm. The ONENB algorithm computes the probability
of keystroke behavioral data, while the SITS algorithm incorporates keystroke patterns to define user
keystroke characteristics and builds an authentication model to differentiate legitimate users from impos-
tors. Lee et al. [17] designed a parameterized model that utilizes a feature selection method based on the
median and interquartile range to extract keystroke dynamics features. The model binds the calculated
security measure (FAR) obtained from these keystroke dynamics features for user identity verification.
Furthermore, with the development of understanding of keystroke dynamics, many input devices have
been used for authentication in similar ideas to ensure the security of user’s identity, such as mice, and
virtual keyboard. Mao et al. [80] developed an innovative real-time identity authentication technique using
mouse behavior learning. This approach entails collecting the mouse behavioral feature vectors of each
new user during their initial login, both in dynamic and static scenarios, and it compares them with the
feature vectors gathered during subsequent login authentication in simulated abnormal scenarios to attain
user identity verification. Shen et al. [81] proposed a user identification method that involves analyzing
mouse behavior. In a controlled environment, data collection is conducted on the mouse operations per-
formed by the user for specific mouse operations. Subsequently, the features are extracted and categorized
to accomplish user identity authentication by analyzing the results of the classification. Kang et al. [82]
expanded the applicability of a dynamic user authentication approach that relies on keystroke dynamics.
This approach now enables the authentication of users typing various textual strings across multiple input
devices while distinguishing between legitimate and potential imposter users. Inguanez et al. [83] devel-
oped a user authentication technique for smart touchscreen devices. This method utilizes a multilayer
perceptron (MLP) neural network to classify the graph of the user’s keystroke behavior and compares
it with the characteristics of the keystroke heatmap in order to achieve user authentication. However,
keystroke-based authentication still has certain environmental dependencies and limitations. Variable
factors such as different input devices and keyboard layouts may require re-establishing authentication
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models. The behavioral feature information provided by the keystroke patterns is relatively limited, so
more identity authentication methods using other behavioral features have been developed.

With the popularization of smartphones, touch gesture-based authentication methods have been pro-
posed, which make up for the shortcomings of the insufficient use of behavioral characteristics in the
keystroke-based authentication methods. Touch gesture refers to the interaction behavior between users
and devices through gestures or touches. Existing authentication schemes usually adopt finger trajectory,
touch pressure, sliding speed, touch area, and gesture pattern as behavioral features that need to be
extracted and analyzed. Cao et al. [84] devised a continuous user authentication scheme that uses vibra-
tion response as an implicit biometric feature. It applies a high-pass filter to remove noise and segments
the vibration data for each touch event to achieve accurate data matching and recognition and proposes
a novel centroid vector method to infer the touch position accurately. Shen et al. [85] proposed a method
to use gesture patterns, touch operation sequences, and other behavioral data for identity verification. It
uses a Markov classifier to model the motion sensor data sequence and capture the temporal and dynamic
features of the sensor events, which improves the security and applicability of identity verification. Mao et
al. [86] proposed an implicit continuous authentication model for user authentication on mobile devices
through touch behavior. The model uses data from sensors such as accelerometers and gyroscopes to
create feature vectors that include both macroscopic and microscopic features. Yang et al. [19] designed a
touch-based behavioral biometric recognition technique using a single-class support vector machine and
independent random forest training models. The technique evaluates the accuracy of each type and then
applies Bayes’ theorem to estimate the confidence level of each type, which provides a safe and continuous
authentication method for mobile applications. Xu et al. [3] combined the physical features of finger touch
and the biometric features of touch behavior with a feature fusion authentication framework. It utilizes
a particular training sample selection strategy to convert signal features into behavior-agnostic features
and subsequently applies knowledge distillation in constructing a touch user authentication scheme. Yang
et al. [87] presented an integrated identity verification scheme that combines passwords and touch behav-
ioral factors which include touch pressure and sliding speed. The scheme utilizes a novel algorithm to
differentiate fine-grained finger input and supports different forms of passwords in the frequency domain,
which improves the security of authentication. The above-mentioned methods, without exception, are
only for the authentication of a single user. In actual scenarios, there may be multiple users on the same
device. The aforementioned studies struggle to address this type of authentication issue.

In contrast to keystroke-based and touch gesture-based authentication, motion-based authentication
methods emerged later due to the requirement for a multitude of sensors to collect user motion data for
analysis. With the development of wearable and mobile devices, more sensors, such as accelerometers and
gyroscopes, are built into the devices to meet the needs of users, which also meets the basic conditions
of motion-based authentication methods. Existing motion-based authentication schemes typically utilize
motion features such as gait, limb movement, acceleration, and orientation to perform identity verifica-
tion to ensure the security of users’ identities. Chen et al. [88] proposed a framework for continuous user
authentication based on motion behavioral characteristics, including direction, acceleration, and angu-
lar velocity. The framework utilizes smartphones’ built-in sensors to collect typical daily motion data of
users such as time, frequency, and wavelet domains, which achieves relatively accurate user authentication.
Lee et al. [89] introduced an advanced smartphone authentication system called iAuth, which leverages
the capabilities of multiple sensors embedded within smartphones, Bluetooth connectivity, and wearable
devices equipped with sensors. By utilizing machining learning methods to capture the user’s unique gait
behavior pattern in sensor data from different devices, iAuth enables seamless and ongoing authentica-
tion of end-users. Zou et al. [18] developed a hybrid deep neural network method for identity verification
that extracts robust gait features from time series data. The network combines the convolutional output
features with the temporal properties of the data, which enhances the gait features and increases the
authentication accuracy. He et al. [1] developed a gait feature extractor using transfer learning to reduce
time costs and enhance the model’s robustness. The extractor has undergone pre-training for user iden-
tification tasks. Song et al. [90] developed an authentication system based on eye movement. The system
verifies the user’s identity by capturing the features of human eye movement from the front camera of the
smartphone. In terms of multi-user authentication, the authentication schemes need to solve the prob-
lem of changing motion features to ensure the system’s safety. Kong et al. [91] presented an optimized
method for user identification based on gait features. To accurately capture the behavioral characteristics
of gait data, their method employs a spatial transformation algorithm to optimize coordinate drift and
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utilizes a support vector machine algorithm to address the issue of gait feature changes when switching
between users. Compared to keystroke-based authentication methods, motion-based authentication meth-
ods involve multiple sensor data that may be leaked during transmission, thereby compromising the safety
of the system. Wang et al. [4] proposed a novel behavioral authentication framework for user motion char-
acteristics to address issues including behavioral dynamics, data privacy, and side-channel leakage. The
framework accelerates feature transfer speed on mobile devices mitigates potential side-channel leakage,
and improves security during transmission. In summary, motion-based authentication schemes introduce
more sensors to capture behavioral features, which makes full use of user behavioral features but also
brings greater computational overhead and sensor data leakage problems that necessitate optimization
and resolution.

Compared with touch gesture and motion, intrinsic signals, such as EEG, EMG, ECG, breath, facial
expression, voice, and others, are highly unique in behavioral recognition, making it more difficult for
attackers to accurately replicate. Moreover, existing research also focuses on these sequences of behav-
ioral signals which typically reflect an individual’s behavior patterns. Chauhan et al. [92] proposed the
ContAuth system, which targets inherent behavioral signals of users, such as breath and EEG, obtained
from sensors using a class-incremental learning method. It combines deep learning models with online
learning models to enhance the robustness of behavior-based authentication. Perera et al. [15] designed
a sparse representation-based multi-user mobile active authentication scheme according to the dynamic
facial expressions of users that automatically adjusts the parameters using the extremum distribution
mechanism. It also includes an extension algorithm for applying the scheme in a single-user scenario.
Lu et al. [93] studied the acoustic Doppler effect of user speech and created a lip-reading-based user
authentication system called LipPass that operates in noisy environments. Ji et al. [94] introduced a
position-sensitive identity verification mechanism called NAuth with nonlinear enhancement. This veri-
fication scheme ensures consistent device identity verification by extracting acoustic nonlinear patterns
(ANP). Implementing intrinsic signal authentication often requires specialized hardware, which may not
be available on all devices. Also, acquiring these signals often requires stable physical and emotional
states, and changes in signals caused by emotions or illness may affect the performance of the system.

In addition to the above-mentioned methods relying on devices or sensors for identity authentica-
tion, some methods can achieve identity authentication only through user interaction data. With the
advancement of big data, machine learning, artificial intelligence, and other technologies, these methods
have received more and more attention and research. User interaction behavior, such as social network-
ing, financial transactions, and information browsing has generated a series of data that includes but
is not limited to search history data, transaction data, user profile data, sensitive behaviors, and social
behaviors. Ruan et al. [95] introduced a user authentication scheme that relies on social behavioral char-
acteristics. They extracted and classified social behavioral features such as user browsing and clicking on
OSN websites, determined metrics for each feature, and constructed user behavior profiles. Finally, they
validated the accuracy of distinguishing genuine users from impostors using user behavior profiles. Shi
et al. [96] presented an implicit identity verification scheme based on user behavior patterns, leveraging
history data on smartphones and movement data collected by sensors to extract behavioral features for
user authentication. Skravcic et al. [97] presented an implicit authentication scheme centered around user
behavior patterns. This approach employs classification models that are built using vast amounts of user
transaction data, call records, and email correspondences from various systems, such as banking and social
networks, to identify legitimate and malicious users. By leveraging these behavior patterns, the scheme
effectively distinguishes between these two user categories. Yang et al. [12] designed a wind vane module
to achieve lightweight implicit authentication. This module determines the amount of data needed to be
collected at different times based on the user’s identity legitimacy and interactive behavior habit and
adjusts the sampling rate accordingly, which provides an energy-efficient solution for real-time implicit
authentication on mobile devices. Shi et al. [13] developed an end-point identity authentication technol-
ogy based on the analysis of user-associated behaviors. The approach employs an interactive behavior
common-subsequence similarity algorithm, which extends the traditional behavior common-subsequence
(BCS) sequence pattern, and considers the maximum overlap of user behavior sequences and the short
sequence overlaps at different time intervals to better identify any anomalies during each user’s login
session. Wu et al. [14] proposed a Hidden Markov Model (HMM) to detect malicious user interactive
behavior in network systems by extracting relevant features and defining the observation symbols and
hidden states based on the user’s access behavior patterns. It maps the user’s behavior to an HMM chain
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Table 1. Summary of behavioral identity authentication

Object Description Characteristics Issues

Keystroke

[17, 77–83]

Keystroke refers to the

action of a user inputting

information through a key-

board, a keypad, or even a

mouse.

(1) Without reliance on

additional devices.

(2) Extra layer of security for

password. (3) Non-invasive

continuous authentication.

Data quality easily affected by

environmental and user condi-

tions.

Touch gesture

[3, 19, 84–87]

Touch gesture refers to the

interaction between users

and devices through gesture

or touch.

(1) Covering multiple dimen-

sional features to improve

the security of verification.

(2) Ensuring frictionless

authentication.

(1) Difficulty in distinguishing

and identifying multiple behav-

ior patterns. (2) Cross-platform

versatility limited by inconsis-

tent behavioral

data formats.

Motion

[1, 4, 18, 88–91]

Motion refers to the vari-

ous postures and movements

made by users while using

wearable or mobile devices.

(1) Utilization of broader

behavioral features. (2) Non-

invasive continuous authen-

tication. (3) Less prone to

variation caused by external

factors.

(1) Multi-device dependency.

(2) Privacy risks posed by

sensor attacks.

Intrinsic signaling

behavior [15, 92–94]

Intrinsic signaling behavior

refers to the signals emit-

ted by human organs dur-

ing the interaction between

users and devices.

High biometric uniqueness.

(1) High device dependency.

(2) Data quality largely

affected by emotions, diseases,

etc.

User interaction

behavior

[12–14, 95–97]

User interaction behavior

refers to the behavior of

users interacting with appli-

cations.

(1) No requirement for sen-

sor data collection and con-

version. (2) A wider range of

behaviors beyond keystroke

or motion.

(1) Suffering from data privacy

problem and breach risk. (2)

The increasing probability of

misjudgments of the model due

to adversarial attacks.

Multi-factor

[2, 98–100]

Multi-factor refers to the

use of multiple categories of

behavioral data or a combi-

nation of conventional meth-

ods with behavioral authen-

tication to verify a users

identity.

(1) Flexible combination

of authentication methods.

(2) The addition of cross-

validation for an extra layer

of security. (3) Reducing

reliance on a single piece of

sensitive data.

(1) The challenge of seamlessly

integrating various behavioral

features and authentication

technologies. (2) Imbalanced

data from various behavioral

features.

and identifies any abnormal or harmful actions to ensure the security of network systems. Such methods
need to collect, analyze, and store user interaction behavioral data, especially for behaviors containing
sensitive data, which may involve privacy issues. Furthermore, such methods are prone to adversarial
attacks. When the attacker adds fake historical data to the training samples, the model will not be able
to perform correct authentication.

With the further development of authentication technology, some studies realized that multi-factor
authentication systems, which rely on multiple factors to provide robust and accurate results, have
stronger security compared with systems that only consider a single behavioral feature. Dasgupta et
al. [98] proposed a multi-factor authentication system that considers various combinations of different
data features through a subset of available authentication modalities, which ensures efficiency in dynamic
environments. They conducted tests on one-time and continuous authentication for smartphone users and
confirmed that there is complementarity between different signals, which can enhance the performance
of the authentication system. Zhang et al. [2] designed a multi-modal biometric authentication system
that combines EEG and gait data and leverages their unreplicated characteristic. This system uses a
doubly authenticated method to improve the anti-counterfeiting and security of the authentication pro-
cess. Wazzeh et al. [99] devised an authentication scheme for mobile devices utilizing federated learning
(FL). This scheme allows each user to keep their private data locally for safety and trains models to
capture their multi-modal behavioral data with a server for global aggregation. Liu et al. [100] presented
a user authentication method for smartphones by analyzing user interaction behavior. The approach
establishes a behavioral characteristic classification model using data such as the user’s touchscreen
interaction method, motion, and phone power consumption to enable continuous user identity verifica-
tion. However, when designing multi-factor authentication methods, suitable algorithms are needed to
solve problems such as multi-factor data fusion and data imbalance, and it is technically challenging to
seamlessly integrate various factors.
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Based on the aforementioned analysis, characteristics and issues of different objects of behavioral
identity authentication are summarized in Table 1.

3.2 Behavioral conformity authentication

Behavioral conformity authentication aims to identify potential security and safety risks within a system
that fall outside the scope of behavioral identity authentication. The risky objects detected by behavioral
conformity authentication mainly include five typical categories, i.e., fraud, malicious intrusion, insider
threat, unfair discrimination, and privacy leakage, as shown in Figure 5.

Fraud risks commonly occur in industries such as telecommunications, healthcare, and finance, with a
particularly significant impact observed in the financial field. In the financial domain, user identity authen-
tication is typically subjected to heightened scrutiny. This is attributed to the involvement of substantial
funds and sensitive information in financial transactions, necessitating the assurance of transactional
security and accuracy. Despite the stringent measures, instances of loan fraud still occur, even when iden-
tity authentication processes are in place. For fraudulent behavior in the financial sector, some methods
can detect non-compliant activities and transactions by monitoring customer transactions and behavior
patterns. Jiang et al. [101] developed a more comprehensive network for embedding location information,
called the Fuller Location Information Embedding Network. The network employs self-supervised learning
to characterize the address features of users, with a focus on analyzing the relationship between address
information, behavioral information, and customer fraudulent behavior in loan applications, effectively
improving the performance of loan fraud detection models. Wu et al. [102] proposed a two-stage detec-
tion model for identifying fraudulent agents on online large-scale loan platforms. The model extracts 26
features from activity records such as communication logs and application activity histories of agents
and borrowers, as well as loan histories. Based on these 26 features, the model characterizes the behavior
patterns of the classification objects in detail and achieves high accuracy in identifying fraudulent agents.
Awotunde et al. [103] proposed an artificial neural network-based detection method for fraud in bank loan
management. They extracted a series of borrower-related and loan-related information data as features
for identification and classification, in order to detect fraudulent behavior in loan transactions. Chang
et al. [104] presented a general model for detecting financial fraud using natural language processing
technology to accurately detect and classify fraud. As an instance of the model, they implemented an
anti-fraud chatbot on a widely used social network service. Nevertheless, certain advanced fraudulent
activities transcend the actions of solitary individuals, involving collaboration among multiple users or
intermediary agents. In view of these scenarios, a number of research studies have been dedicated to
investigating the correlations within the behaviors of multiple users. Xu et al. [105] proposed a novel
graph neural network with a role-constrained conditional random field (GRC) for loan fraud detection.
The model utilizes a graph neural network to detect individual user loan fraud and collusion fraud based
on borrower role information and network social relationships. Experimental results demonstrate that
the model performs well in detecting loan fraud on Alipay. Wang et al. [23] proposed a graph-based
approach for behavior modeling called behavior identification graph (BIG). This method delves into the
property-level associations in behavioral data and integrates the inter and intra-behavioral correlations
into a unified space. Furthermore, they introduced a property graph to describe fine-grained correlations
between properties, where the structure of the graph corresponds to the topology information of behavior
events. Based on the property graph, they designed an event-property composite model and used network
representation learning algorithms to extract fine-grained associations at the behavioral property level.
The behavior patterns are represented in a multidimensional spatial distribution of behavioral properties.
The effectiveness of this method has been verified in various network threat detection scenarios, partic-
ularly in the fraud detection scenario. In addition, some research has focused on purchase fraud and
misinformation. He et al. [106] proposed a novel malicious user detection system, called Datingswc, that
aims to address fraudulent activities such as misinformation or illegal information on dating applications.
The system utilizes user profiles, comments, and other relevant information to establish behavior patterns
using machine learning models, such as MLP and LSTM. These behavior patterns are then combined and
inputted into an attention module to automatically detect suspicious activities following these behavior
patterns. Wang et al. [107] designed a novel graph-based fraud detection framework to detect fraudulent
orders placed by employment fraud teams. The framework comprises two parts: the DPP module, which
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Figure 5. Components of behavioral conformity authentication

extracts feature sequences of user click locations from the website, and the GSR module, which performs
neighborhood sampling and information aggregation. The effectiveness of this framework has been vali-
dated through purchase fraud detection on the JD platform. Wang et al. [5] developed an interactive fraud
detection dialogue system, which actively engages in conversations with clients by means of intelligent
voice interactions. The system employs imitation learning to master the dialogue strategy and accurately
assesses the risk of actual payment, thereby reducing the likelihood of misjudging payment behavior with-
out actual risk. However, behavior-based fraud detection methods still exhibit certain shortcomings and
face a set of challenges. Constructing a fraud model necessitates the inclusion of user privacy data, which
requires the consent and authorization of both the regulatory platform and the user. Once privacy data
is acquired, the model confronts the difficulty of addressing the inherent imbalance between instances of
fraudulent and normal behavior during the training phase. Furthermore, the trained model must contend
with the ever-evolving deceptive techniques, thereby necessitating regular updates to accommodate the
identification of emerging fraud patterns.

Different from fraud with deceptive features, the malicious intrusion has evident attack-oriented
features. This type of behavior poses substantial risks, not only to personal computers but also to smart-
phones, Internet of Things (IoT) devices, and even to network security as a whole. The category of
malicious intrusion spans a broad spectrum, including trojans, ransomware, spyware, phishing attacks,
and cyberattacks. Existing intrusion detection frameworks often utilize machine learning algorithms to
extract features from network behavior, aiding in the differentiation between normal and malicious activ-
ities. Chen et al. [108] presented an efficient Network-Based Anomaly Detection (NBAD) algorithm
using a combination of Deep Belief Network (DBN) and Long Short-Term Memory (LSTM) network for
cyberattack detection. Firstly, on the premise of maintaining accuracy, the DBN method is utilized to
automatically extract the features of the original data nonlinearly, so as to express the features of the
original data with a lower dimension. Furthermore, the classification results, as the basis for identifying
anomalous network behavior, are obtained through a lightweight LSTM network. Chen et al. [109] pre-
sented an automated ransomware pattern extraction and early detection tool. The tool analyzes discovered
malware samples and generates a log, from which it extracts sequences of events triggered by ransomware.
It also ranks the features of ransomware and detects malicious activity from the learned behavior, which
effectively enhances the security of infrastructures. Hamid et al. [110] designed a hybrid feature selec-
tion method for detecting phishing attack behavior, which combines content-based and behavior-based
analysis. The method analyzes the content and ID tags of phishing emails to identify characteristics of
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attacker behavior and subsequently detects phishing attacks. Qin et al. [111] devised a novel unsuper-
vised network behavior anomaly detection framework, which combines real-time high-order host state
in a dynamic interactive environment with dialogue patterns between hosts. It automatically generates
high-order features from a series of basic features extracted from the graph neural network (GNN) and
identifies various cyberattack behaviors more effectively. Jiang et al. [112] proposed a behavior-based
method for intelligent recognition and security supervision of unmanned aerial vehicles (UAVs). The
method uses location tracking and flight data from the onboard black box to collect real-time behavioral
data on UAVs. Then, it identifies suspected intrusion and attack behaviors of UAVs through behavior
modeling and issues warnings in potential illegal situations. Garg et al. [8] addressed the issue of high false
alarm rates in existing real-time anomaly detection by proposing a hybrid detection model that utilizes
grey wolf optimization (GWO) and convolutional neural networks (CNN). The model improves the fea-
ture selection and anomaly classification capabilities. In the first stage, improved grey wolf optimization
(ImGWO) is used for feature selection to minimize the feature set. In the second stage, an optimized
convolutional neural network (ImCNN) is used for more effective anomaly classification. Pajouh et al.
[113] devised a novel intrusion detection model that uses two layers of dimensionality reduction and two
layers of classification modules to identify malicious activities such as User to Root and Remote Local
attacks. The model uses Naive Bayes and the Deterministic-KNN version to detect suspicious behav-
ior. Wang et al. [114] proposed a security detection system (IoT-Praetor) for malicious attacks on IoT
devices. The system uses a novel DUD model to construct norms for the interaction and communica-
tion behavior of IoT devices. A behavior rule engine is employed to detect device behavior in real time,
enabling the identification of behaviors that damage devices through malicious network communication.
Some studies also consider the security of data privacy and the safety of the detection framework while
striving for accurate detection of malicious behavior. Pei et al. [115] devised a personalized federated
anomaly detection framework in order to take into account privacy protection in the process of detecting
anomalous network traffic. It archives a personalized detection model by fine-tuning the model structure
of different systems, which improves the data utility on the premise of protecting privacy and takes into
account the safety of the method while improving efficiency. Mothukuri et al. [116] presented a federated
learning-based method for detecting malicious attacks in IoT. The method utilizes decentralized device
data to proactively identify intrusion behaviors in IoT networks, achieves privacy preservation of termi-
nal devices, and performs better in attack detection than non-federated learning methods. Kurt et al. [6]
devised a data-driven method to detect UDP flooding and spam attacks in IoT networks. To ensure the
privacy of node data, the scores are encrypted and perturbed before being sent to the network operator for
aggregation of statistical information, followed by anomaly detection through generalized accumulation
and algorithms. Intrusion detection methods still have some deficiencies and challenges. Similar to fraud
detection, the model of intrusion detection also has the problem of imbalanced training data. When the
intrusion detection model needs to be deployed on multiple devices, the problem of heterogeneous data
fusion is also considered.

The above-mentioned fraud and malicious intrusion are both behaviors that occur outside the system,
while insider threats are relatively intuitive risk behaviors inside the system, which may also lead to system
collapse or huge economic losses. System backdoors and equipment failures are relatively common insider
threats. Ji et al. [117] designed an active anomaly detection network for mobile robots to address system
malfunctions caused by outdoor environmental factors. The network effectively integrates multiple sensor
signals to ensure robust anomaly detection even in the presence of sensor obstruction in the field environ-
ment. Cui et al. [118] introduced a blockchain-supported decentralized and asynchronous FL framework
for anomaly detection in IoT systems. This framework ensures data integrity, avoids single-point failures,
and improves the security of the system. Luo et al. [119] first introduced autoencoder neural networks to
solve anomaly detection problems in wireless sensor networks. By constructing a three-layer autoencoder
neural network, they overcame the huge demands for network resources that deep learning requires. This
method is mainly used to detect IoT device failures and changes in the environment. Li et al. [120] pro-
posed an active learning and contrastive-based detection model, which monitors the system performance
indicators such as CPU utilization, and latency to form a multivariate time series. It models the abnormal
and normal sequences based on the VAE model to recognize the abnormal sequences and discover the
potential security backdoors in the system. In addition, information theft, unauthorized activity, and even
sabotage activity by system insiders are also insider threats. Modell et al. [121] devised an incremental
approach to analyze anomalous user behavior in event logs. It employs graph embedding to acquire a
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vector representation of the users, which is updated over time and utilized to model the configuration
profiles of user-accessed resources and builds the formation of a dynamic, interactive network comprising
users and resources. The method is applicable for identifying suspicious or unauthorized user behavior
in enterprise networks. Hou et al. [7] proposed a lightweight framework for detecting abnormal driving
behavior. The framework utilizes IoT devices as carriers and captures video and image data using cam-
eras. Based on the analysis of this data, the framework identifies dangerous behaviors such as fatigued
driving and erratic driving. Mazzawi et al. [122] proposed a machine learning algorithm for detecting
malicious user activity in databases, which is used to detect suspicious behaviors, such as information
theft and unauthorized activity. The algorithm consists of two primary components: one is responsible
for generating models using user behavior, and the other focuses on clustering similar behaviors to detect
abnormal patterns that might be shared among a group of users. The current detection methods rely on
high-quality behavioral data to ensure models’ performance. When encountering sporadic zero-day back-
doors or highly covert unauthorized activities, these existing detection methods have difficulty adapting
rapidly to newly emerging threats due to a lack of behavioral data.

Unlike insider threats, the risk of unfair discrimination might not be immediately apparent, but
rather, it accumulates gradually within the system over time. For instance, within certain machine learn-
ing models, data bias could propagate unfairness to model decisions. In cloud environments, resources
might be unfairly distributed due to scheduling or allocation mechanisms. If the resources allocated to
maintain the security of the environment fall short, the environment will gradually fall into a perilous
situation. Additionally, on some network platforms, there may be unfair user clauses. Existing research
mainly focuses on detecting or optimizing problems such as data bias, imbalanced distribution, and unfair
clauses. Li et al. [123] designed a q-Fair Federated Learning (q-FFL) optimization method that enables
fairer performance allocation among devices in large-scale federated networks. This method can also be
applied to other related problems such as meta-learning, which helps in fair initialization across multiple
tasks. Mohri et al. [124] developed a novel unbiased Federated Learning framework to address the issue of
model bias among different clients in Federated Learning scenarios. This framework is also applicable to
learning scenarios such as cloud computing, domain adaptation, and data drift. Wei et al. [125] designed
a method for optimizing resource balance distribution in cloud services. First, they employed a binary
integer programming approach to address the resource allocation optimization problem among indepen-
dent applicants. Second, they used evolutionary programming to modify the reuse strategy of initial
optimal solutions of different applicants. This method provides a solution for resolving the complex issue
of resource balance distribution in cloud computing. Lin et al. [126] proposed a combined approach of
single-layer dominant and max-min fair (SDMMF) allocation and multilayer dominant and max-min fair
(MDMMF) allocation to address the issue of fair resource allocation in Intrusion Detection Systems (IDS)
in edge computing. The IDS architecture is divided into six layers, and SDMMF allocation is executed
recursively starting from the first layer until resources are assigned to the bottom layer, resulting in the
equitable allocation of resources that achieves both single-layer and multi-layer fairness in terms of mul-
tiple resources. Lippi et al. [127] proposed a machine learning and natural language method for detecting
unfair clauses in applications or websites. They defined unfair terms and expanded the corpus of clauses
in order to better train the model. In addition, the model can not only perform classification tasks but
can also identify more information in the clauses and detect and classify the implicit unfair semantics of
clauses in the terms. Dolly et al. [128] designed a scheme for detecting unfair reviews. This scheme uses
sentiment analysis algorithms and supervised techniques to determine the overall semantics of customer
comments based on the positive or negative emotions reflected in them. All of the above detection or
optimization methods do reduce the unfairness of the target, but the selection of fairness indicators, such
as α-fairness [123], has certain subjectivity. The fairness indicators vary depending on different models
and scenarios. Therefore, universally applicable fairness indicators should be further studied to promote
the formulation of universal fairness clauses.

With the emergence of privacy protection standards such as CCPA [137] and GPDR [138], people
pay more attention to the security of private data. Privacy leakage has become a prevalent security con-
cern. Specifically, privacy leakage may arise not only due to malicious intrusion or insider threat but
also user disclosure. All these activities will lead to the result of system or user privacy leakage. Current
research predominantly centers on two key aspects: the detection of privacy leakage and the enhance-
ment of privacy protection measures. In terms of detection, several studies have explored issues related
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Table 2. Summary of behavioral conformity authentication

Object Description Characteristics Issues

Fraud

[5, 23, 101–107]

Fraud refers to the behavior

of fraudsters for obtaining ille-

gal benefits through fraudu-

lent means, such as concealing

facts and stealing information.

(1) Ensuring process secu-

rity by detecting suspicious

activity during transactions.

(2) Uncovering hidden fraud

networks through behavioral

correlation analysis.

(1) Possible leakage and

illegal use of user privacy

data. (2) Imbalanced train-

ing data. (3) Hard to deal

with new fraud patterns

timely.

Malicious intrusion

[6, 8, 108–116]

Malicious intrusion refers

to attacks from outside the

system, posing threats to

personal computers, mobile

phones and even the entire

network.

(1) Ensuring system security

by detecting malicious activ-

ity. (2) Timely alerts and

responses.

(1) Difficulty in detecting

advanced persistent threats.

(2) Imbalanced training

data.

Insider threat

[7, 117–122]

Insider threat refers to the

risks existing in the system,

affecting the safety of the sys-

tem from the inside.

(1) Enhancing network

safety and system availabil-

ity. (2) Strengthening the

compliance of systems, such

as enterprise networks.

(1) Dependencies on high-

quality behavioral data. (2)

Difficult to address zero-day

backdoors.

Unfair discrimination

[123–128]

Unfair discrimination refers to

unfairness or imbalance within

a system, which gradually

become apparent as the sys-

tem

runs.

Detecting patterns of unfair

discrimination at an early

stage allows system person-

nel to intervene and correct

such practices timely, which

avoids the cumulative risk of

unfair discrimination.

The scarcity of data com-

plicates the comprehensive

selection of fairness indica-

tors and hinders the estab-

lishment of universally appli-

cable fairness metrics.

Privacy leakage

[129–136]

Privacy leakage usually refers

to the exposure of users’ pri-

vate data due to security

issues, but it also includes

disclosure by a second party, a

third party, or even other

users.

(1) The discovery of exter-

nal threats and enhancement

of system security through

privacy leak detection. (2)

The improvement of privacy

safety through privacy pro-

tection measures.

Under data constraints, such

as scenarios where there are

no clearly defined levels of

privacy data, establishing an

efficient detection model is a

subsequent challenge.

to privacy leakage. Li et al. [129] proposed a static taint analyzer for detecting sensitive data leaks dur-
ing data propagation between application components. This method focuses on contextual information
regarding data propagation between multiple components, which allows for higher performance. Liu et
al. [130] conducted a study on the problem of privacy leakage caused by background access to location in
location-based service applications. Their research shows that accessing locations in the background of
an application can generate user movement trajectory data, thereby identifying personal information and
resulting in privacy leakage. Mehdy et al. [131] proposed a hybrid neural network model with multiple
inputs and outputs for detecting privacy leaks. The model incorporates pre-trained language models,
semantic analysis, linguistics, and other knowledge to accurately identify personal information related
to health, finance, and social relationships that Twitter users may disclose when posting tweets. This
enables the detection of privacy disclosures by users. Shokri et al. [132] conducted a study on the pri-
vacy implications of machine learning models, specifically focusing on membership inference attacks that
can lead to data leakage. They conducted experiments using a dataset that contained hospital-related
information and analyzed various factors that influence privacy leakage. Additionally, they evaluated dif-
ferent strategies to mitigate these privacy risks. Karimi et al. [133] proposed an automated method for
detecting privacy violations on Twitter. The approach utilizes contextualized string embedding to detect
sensitive information in tweets, specifically targeting second-party and third-party doxing and malicious
information disclosure, while excluding instances of self-disclosure by users and privacy disclosures not
targeting any specific identity. In addition, some researches are dedicated to the improvement of pri-
vacy protection. Wang et al. [134] developed a new solution for the challenges faced in the collection of
multidimensional data under Local Differential Privacy (LDP), including high communication costs and
noise issues. The solution includes a Multivariate k-ary Randomized Response (kRR) mechanism called
multi-kRR to reduce communication cost, a Markov-based dynamic privacy budget allocation mechanism
called Markov-kRR to mitigate the impact of noise, and an improvement on Markov-kRR flipping times
threshold to optimize data utility. Rahat et al. [135] developed a convolutional neural network-based pri-
vacy policy classification model to assess compliance with the privacy policies of various websites. They
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used the General Data Protection Regulation (GDPR) as a standard and identified 18 labels from it to
annotate and classify the privacy policy dataset. Their experiments demonstrated that very few source
websites in the dataset strictly followed the GDPR standards. Li et al. [136] proposed a mobile cloud
framework to prevent applications from over-collecting user data. This framework stores all user data
in the cloud and restricts application access to user data in the cloud, proactively eliminating instances
of data over-collection. However, different application services have different protection levels for private
information, and the existing privacy leakage detection models are only established for specific scenarios
and lack of sufficient scenario transferability. Confronted with scenarios where there are no clearly defined
levels of privacy data, the detection model may struggle to yield satisfactory outcomes. Establishing an
efficient detection model under such data constraints is a subsequent challenge.

From the above analysis, characteristics and issues of different objects of behavioral conformity
authentication are summarized in Table 2.

3.3 Behavioral benignity authentication

The study of behavioral benignity authentication can be mainly divided into the following four aspects:
predictability of risk, consistency of execution, traceability of behavior, and integrity of record, as shown
in Figure 6.

Predictability of risks is one of the important attributes of a secure network or system. By analyzing
and assessing potential risks, the system can identify possible threats and vulnerabilities in advance and
take preventive measures. Even in cases where risk threats cannot be entirely mitigated, early warnings
can significantly reduce the impact of risk events. Many studies, aimed at risk prediction, have introduced
methodologies encompassing risk quantification and credibility assessment. Hu et al. [139] proposed a
new threat identification method and risk quantification model for predicting threats in multimedia
communication networks. The threat recognition method uses a dynamic Bayesian attack graph-based
threat prediction algorithm, which aims to predict threat scenarios using complete information. The risk
quantification model quantifies the risk status of the entire network and individual hosts by analyzing
the security risks at the host and network levels. Wang et al. [140] proposed a network behavior risk
measurement method by analyzing network traffic. They considered traffic data as network behavior
and characterized the network traffic and network topology information. Additionally, they introduced
the theory of differential manifolds to measure the behavior risk of the network system. Li et al. [141]
developed a trust-based model for detecting suspicious behavior in network groups. Firstly, the model
constructs a trust matrix between network nodes utilizing network topology information. Secondly, it
calculates the similarity matrix of nodes based on their trust levels. Finally, the model clusters the nodes
utilizing the similarity matrix to identify potential malicious groups. This approach has a high distinction
rate for hidden risks in the network. There are also some studies that indirectly conduct risk prediction
through network situation prediction methods. Yang et al. [142] proposed a network security situational
assessment method based on attack intent distinction. They analyzed the correlation between the attack
phase, network configuration information, and attack intent. The method distinguishes the attacking
intent and predicts the next attack, which does not rely on historical sequences and is more effective in
predicting network security situational assessments. Ghazel et al. [143] proposed a global model involving
the LC (Logistics Center) region’s railway and road transportation, where each model describes the
behavior of components throughout the LC environment. By employing the Monte Carlo principle, the
global system behavior can be simulated. They also give some solutions for risk mitigation according to
the simulation. Vulnerability discovery plays a crucial role in mitigating potential risks within a system,
and it has witnessed significant advancements with the progress of detection technologies. Liu et al.
[144] introduced a software vulnerability detection system, which leverages deep learning and domain
adaptation techniques to address the challenge of software vulnerability detection. The system harnesses
the automatic feature representation capabilities of deep learning and the domain adaptation framework
to discover various vulnerabilities in heterogeneous projects and reduce software security risks. Wan
et al. [145] proposed a dynamic testing method for semantic denial-of-service vulnerabilities and accurately
discovered nine unknown vulnerabilities in the planning of the actual open-source autonomous driving
system. Code reuse leads to the propagation of vulnerabilities. Luo et al. [146] developed an intermediate
representation function model to achieve cross-architecture binary code search through an entropy-based
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Figure 6. Components of behavioral benignity authentication

adapter and progressive search strategy and tested it on seven different tasks to prove the robustness of
the model. Cui et al. [147] proposed an automated vulnerability detection framework VRust for Solana
smart contracts. The framework automatically detects potential vulnerabilities in contracts by analyzing
the intermediate representation of translated Rust source code and program data flow. However, in real
scenarios, network or system risk prediction faces more difficulties and challenges, and it is necessary to
enhance the robustness of risk prediction in terms of consistency of execution, traceability of behavior,
and integrity of record. These aspects can significantly improve the reliability and effectiveness of network
or system risk prediction.

Consistency of execution helps ensure smooth collaboration among multiple systems or entities
involved in cross-domain risk detection. In real scenarios, achieving unified execution operations in cross-
domain interactions over heterogeneous networks contributes to informed risk management and resource
optimization. Ding et al. [148] designed a resource management algorithm for heterogeneous integrated
networks. During the process of collecting and managing heterogeneous resources in the heterogeneous
network, the algorithm uses information security transmission technology to ensure the safe collection of
resources and uses the improved management algorithm of heterogeneous resources to realize the security
management of heterogeneous integrated network resources. Guo et al. [149] introduced a reliable cross-
domain authentication mechanism applied to the IoT. To achieve cross-domain authentication between
heterogeneous IoT domains, the mechanism uses a master-slave blockchain architecture to ensure cross-
domain privacy security. To achieve trusted authentication, an improved Byzantine fault-tolerant device
based on the reputation value model (RIBFT) is used to conduct a credible assessment. Xuan et al.
[150] devised a certificate-less cross-domain authentication scheme that possesses the capability to dis-
tinguish parameters. The scheme relies on the principles of certificate-less public key cryptography and
smart contract technology, which allows for the use of differentiated cryptographic system parameters
for authentication between heterogeneous IoT networks, thus enhancing the security of cross-domain
authentication for heterogeneous IoT networks. Hao et al. [151] proposed a lightweight architecture for
consortium blockchain. The architecture utilizes a token accumulation mechanism for authentication of
data access control and trust evaluation of requesting nodes. It supports cross-domain data sharing among
Internet of Things users from different geographical locations. Li et al. [152] introduced a trust mechanism
hierarchy that relies on cooperative detection among blockchain nodes. Firstly, they employed federated
learning to train a cross-domain unified behavior detection model which broke down data barriers and
achieved cross-domain unified evaluation of device behavior trust. Based on this, they designed a layered
trust mechanism based on federated detection combined with the transaction performance of blockchain.
By dynamically evaluating devices based on behavior detection and blockchain transaction detection,
graded trust management of devices is implemented. Sheff et al. [153] aimed at the problem of safe
scheduling in a federated environment and implemented a static detection compiler and a system that
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introduced a phased commit protocol to ensure the consistency and security of scheduling. Chen et al.
[154] proposed an efficient and privacy-preserving cross-domain authentication scheme, named XAuth,
to address the cross-domain authentication issue in Public Key Infrastructure (PKI). The scheme uti-
lizes Multiple Merkle Hash Trees to ensure the responsiveness of cross-domain data management and
employs zero-knowledge proof algorithms to ensure privacy in cross-domain authentication. Lin et al.
[155] designed a time-aware cross-scenario keystroke dynamic authentication mechanism to address the
issue of collecting a large amount of data every time the authentication scenario switches. The method
improves the quality of data by selectively learning and encoding time information to achieve efficient
behavior pattern transfer across scenarios. The method improves data diversity and cross-scenario appli-
cability through a local Gaussian data augmentation method to enable consistent authentication across
different scenarios. However, objectives such as cross-domain communication and heterogeneous inte-
gration still face several challenges. Cross-domain and heterogeneous networks typically entail distinct
security policies and mechanisms. Achieving unified execution operations necessitates overcoming con-
flicts between diverse security requirements while ensuring that cross-domain operations do not introduce
novel security vulnerabilities.

Traceability of behavior plays a key role in risk detection. There is a great deal of uncertainty in
the task of risk prediction. In instances of prediction failure, it is necessary to promptly trace the risk
behavior to address vulnerabilities and minimize losses. The traceability of behavior is mainly categorized
into two types: internal traceability and relation traceability. Internal traceability involves tracing user
behavior within the network environment to distinguish potential risk behaviors or to trace the source
of suspicious behavior that has already occurred. Relation traceability refers to analyzing a series of
behaviors within the network environment, tracing suspicious associated behaviors, or tracing attacks
from outside the network environment. Zhang et al. [156] presented a secure s-health system designed for
cloud service environments. The system introduces a decryption component that is integrated with the
user’s information during key retrieval. Once integrated, the component remains fixed and prevents key
owners from re-randomizing, thereby establishing a binding between the user’s information and enabling
the tracking of a series of user behaviors. Lin et al. [157] proposed a method for detecting internal threats
in cloud environments based on behavior traceability. First, the method analyzes the call rules of the
cloud service interface to construct the complete behavior process of the call. Then, it uses the behav-
ior tree construction algorithm to generate a legitimate behavior tree describing the behavior of cloud
users. Subsequently, behavior trace points are set up to capture call behavior information on the service
invocation interface of cloud services. Finally, user interface call information is matched with legitimate
behavior trees through keyword matching to trace the source of malicious user behavior. Yu et al. [158]
proposed a blockchain-enhanced security access control scheme to support traceability and revocability
in IoT. Specifically, the scheme involves blockchain-based authentication to store all user information
and public keys. Subsequently, system parameters are issued by administrators to users, along with a
unique parameter embedded in private keys. The scheme enables tracing malicious behavior by utilizing
the parameter in private keys and revoking malicious users accordingly. Wang et al. [159] proposed a
method for tracing associated events using a composite blockchain structure. Firstly, a storage structure
model for the composite blockchain was constructed to achieve data association storage. Secondly, by
obtaining the source entity block, an event association graph was constructed by using a source tracing
method based on the Apriori algorithm. Finally, the entities were subjected to risk assessment using
reinforcement learning. Zhu et al. [160] proposed an Ethereum attack traceability method based on graph
analysis. They applied graph analysis techniques to analyze the behavioral characteristics of attackers
and the relationships among them. Additionally, they used RPC mechanisms to trace the related attack-
ers and attack sources. Behavioral tracing also encounters several challenges. More sophisticated attack
behaviors excel at concealing their attack features, rendering themselves indistinguishable from normal
behavior patterns. As a result, these behaviors can lurk within the system for an extended duration,
which is currently difficult to trace.

Integrity of record can provide a reliability and accuracy guarantee for risk prediction and behav-
ior traceability. Integrity of record includes integrity, accuracy, and tamper resistance of data. Current
research is mainly focused on data integrity protection and tamper resistance. Li et al. [161] integrated
the trusted execution environment SGX with blockchain technology to construct a privacy-preserving
multimedia authentication system. The system utilizes SGX to create a trusted execution environment
and employs PhotoChain’s hybrid storage mode to only store the hash values of the photos on the
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Table 3. Summary of behavioral benignity authentication

Object Description Characteristics Issues

Predictability
of risk
[139–147]

Predictability of risk refers
to the distinction of potential
behavioral risks in the network
environment.

(1) Prevention of poten-
tial attacks. (2) Remedia-
tion of exploitable vulner-
abilities. (3) Reduction of
losses through early
warning.

Due to the inherent uncer-
tainty of evolving threats,
ensuring the robustness of
risk prediction needs to be
complemented with other
security technologies.

Consistency of
execution
[148–155]

Consistency of execution pri-
marily refers to the method
of credibility evaluation and
potential risk detection that
can perform consistent oper-
ations across complex and
diverse networks.

Ensuring the seamless exe-
cution of operations across
various domains and hetero-
geneous networks in multi-
ple scenarios facilitates uni-
fied risk management and
resource optimization.

Achieving consistency
of execution requires
compatibility with differ-
ent resource forms and
operating mechanisms in
cross-domain interactions
over heterogeneous net-
works.

Traceability of
behavior
[156–160]

Traceability of behavior refers
to the traceability of potential
risks or suspicious behaviors in
the network environment.

(1) Tracing suspicious
behavior before it becomes
a threat. (2) Tracing mali-
cious behavior back to its
source and close loopholes.
(3) Tracing the source of
related behaviors to reveal
hidden attack chains.

More sophisticated attack-
ers excel at hiding their
attack signatures and mak-
ing attack behaviors indis-
tinguishable from normal
behaviors so that they lurk
in systems for extended
periods of time to carry out
continuous attacks.

Integrity of
record
[161–165]

Integrity of record means that
user data in a trusted network
environment should remain
complete, accurate, and non-
tamperable.

(1) Improvement of risk
prediction accuracy through
complete and accurate data.
(2) Enhancement of trace-
ability analysis reliability.

Protecting record integrity
faces multiple data tam-
pering attacks and intro-
duces performance over-
head and system complex-
ity like data protection in
distributed systems.

blockchain. By using blockchain to ensure data integrity, the system does not add a storage burden to the
blockchain. Javaid et al. [162] proposed a solution based on Physically Unclonable Functions (PUFs) and
blockchain, known as BlockPro, for enhancing the security of data sources and ensuring data integrity
in IoT environments. Specifically, the characteristics of PUFs can be used to establish a data source to
ensure a unique source, and the data storage method of Ethereum ensures data integrity. Patil et al.
[163] proposed an efficient privacy-protecting authentication protocol that combines blockchain technol-
ogy and PUFs. The protocol employs a decentralized digital ledger using blockchain smart contracts to
resist attacks from data tampering, thereby ensuring security in an IoT environment. Additionally, by
integrating the uniqueness and tamper-proof properties of PUFs with blockchain, the protocol ensures
unique device IDs and data integrity in the IoT. Barbareschi et al. [164] proposed a mutual authentica-
tion scheme relying on the use of PUFs. The scheme employs PUFs’ characteristics of being unclonable,
unique, and tamper-evident to protect edge nodes in IoT from physical attacks and data tampering.
Wei et al. [165] proposed a solution to address data security concerns in cloud computing by integrating
blockchain technology. The approach involves deploying a distributed virtual machine proxy model in the
cloud through the use of mobile agents, which ensures reliable data storage. Furthermore, the solution
leverages a blockchain-based data integrity protection framework and generates hash values for corre-
sponding files using the Merkle hash tree. Data alterations are then monitored via smart contracts and
alerts are triggered in case of any tampering. In the process of data integrity protection for cross-domain
transmission, researchers need to find a balance between security and efficiency, so as to provide more
reliable support for risk prediction and behavior traceability.

Based on the aforementioned analysis, characteristics and issues of different objects of behavioral
benignity authentication are summarized in Table 3.
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Figure 7. Overview of main challenges and future research directions for behavioral authentication

4 Challenges and future research directions

We thoroughly examine the main limitations associated with existing behavioral authentication methods
and discuss innovative research directions that have the potential to significantly augment the applica-
bility and effectiveness of behavioral authentication. A comprehensive overview of limitations and future
research directions is shown in Figure 7.

4.1 Challenges of behavioral authentication

4.1.1 The limited quality of behavioral data

How to overcome the limitations of behavioral data quality in the modeling process remains a primary
concern. These limitations can be generally attributed to three factors: behavioral data collection and
processing, privacy protection, and business attributes. In terms of data collection and processing, inherent
difficulties in behavioral data collection or processing can result in low data quality [166]. For example,
during the collection of behavioral data, issues such as duplicate or missing data may arise due to
unreliability in collection equipment or inconsistencies in data sources, leading to inaccurate or even
erroneous results in behavioral data analysis. These undesirable results have a direct impact on the quality
and effectiveness of behavior modeling. Therefore, to guarantee the high quality of behavior modeling, it
is imperative to have a rigorous process of data cleaning and validation. In terms of business attributes,
the inherent characteristics of commercial activities pose challenges in effectively modeling user behavior
[167, 168]. In scenarios such as online payment services, the highly imbalanced ratio of fraudulent accounts
to legitimate accounts presents significant difficulties in behavior modeling. For interaction data across
diverse terminal devices, the distinction between normal and abnormal data is frequently ambiguous.
Relying solely on attribute data has limited effectiveness. Designing feasible data augmentation methods
is a key prerequisite for achieving effective behavioral authentication and aims to establish high-quality
behavior models using low-quality behavioral data.
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4.1.2 The insufficient behavioral data quantity

Behavioral authentication is also data-driven, and insufficient behavioral data quantity may influence the
effectiveness of behavioral authentication systems. With limited behavioral data available for training, it
becomes difficult to create robust behavioral authentication models capable of accurately distinguishing
between legitimate and malicious behaviors. This scarcity also increases the risk of biased or unfair models,
as they may learn from a narrow subset of behaviors, leading to decreased reliability in authentication
performance. Furthermore, the attackers may not repeat previously detected or blocked methods to attack
the system, which also intensifies the risks associated with the system [169]. The lack of behavioral data
inhibits the generalizability of authentication systems, as models may struggle to adapt to new or evolving
threats without comprehensive training data. Therefore, addressing the challenge of insufficient behavioral
data quantity is crucial for the development of highly reliable behavioral authentication systems.

4.1.3 Privacy concerns and communication costs

Under stricter privacy protection regulatory constraints, such as CCPA, GPDR, and DSL [137, 138, 170],
behavioral data are more tightly controlled. People are also increasingly valuing privacy as they become
more aware of the risks associated with data breaches and unauthorized surveillance. Heightened con-
cerns about personal information security have motivated individuals to demand greater transparency
and control over how their data is collected and used. These changes directly lead to the difficulty of
implementing existing centralized authentication methods for collecting behavioral data from different
agents. Despite the advancements in hardware technology and the development of 5G technology, the
current computational resources and latency in behavioral authentication also face significant challenges.
Behavioral data exists in various forms such as text, voice, and video, and the required models for train-
ing are of high complexity [171]. This leads to excessive consumption of computational resources and
significant communication costs. For example, when there is a change in the existing behavioral authen-
tication patterns, it becomes necessary to update the entire model, which not only affects the usability of
authentication but also results in unnecessary waste of computational resources. It is of great significance
to determine models that are compatible with resource constraints and establish an efficient knowledge
transfer mechanism of multimodal behavioral data. Regarding authentication latency, current mainstream
authentication schemes still rely on the transmission of frequent behavioral data packets to achieve cen-
tralized behavior modeling. However, there is distance between different terminal devices, and centralized
collection takes time to transmit behavioral data. Even a delay of a few milliseconds, while browsing the
internet or attempting to connect to a smart refrigerator, may only affect user experience. Addition-
ally, the centralized authentication relies on a single centralized entity, leading to excessive concentration
of authority, and single-point failures can result in severe system issues. However, in scenarios such as
automated remote surgery or autonomous driving [172, 173], a few milliseconds of latency could lead to
fatal accidents. Therefore, establishing more flexible deployment schemes for behavioral authentication
not only ensures lower latency but also avoids unnecessary network congestion and reduces unnecessary
bandwidth costs.

4.1.4 Lack of theoretical analysis basic

The existing foundational theoretical efforts primarily focus on conducting specialized theoretical analysis
from specific perspectives, considering the constrained conditions of user behavioral data. On one hand,
these studies excessively rely on the employed models, making it hard to perform prior evaluation and
analysis of data utility. This circumstance prevents accurate anticipation of model performance before
data utilization and hinders the determination of whether the chosen models possess sufficient applica-
bility for particular tasks or applications. On the other hand, the data-driven paradigm is difficult to
cover or traverse all possible scenarios, consequently impeding the attainability of a general applicable
theoretical framework. The diverse requirements arising from different data sources and tasks may neces-
sitate distinct methods and models for conducting behavioral authentication. In summary, the existing
relevant research lacks theoretical analysis basic of behavioral authentication, which makes it difficult to
evaluate the performance of behavioral authentication in practical applications and hampers the provi-
sion of theoretical guidance for optimizing approaches. Hence, the exploration of the formalization for
behavioral authentication holds significant significance, akin to the guiding role of information theory’s
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Figure 8. The fine-grained behavior modeling framework consists of the subject correlation layer, behavior sequence layer,

and attribute distribution layer. The subject correlation layer reflects the association between subjects and is coupled with

a mapping relationship to the behavior sequence layer. There is a time-annotated edge with time information T = (to, td)
between each subject and behavior, where time T indicates the starting time to and ending time td when the subject initiates

the behavior. In the behavior sequence layer, different behaviors occur in a clear sequence, and we denote ∆t = σ(T1, T2)

as the time difference between two behaviors T1 and T2. A behavior is described in detail by several attributes, and their
associations are reflected as the coupling mapping between the behavior sequence layer and the attribute distribution layer

fundamental limits in digital communication technology. It will not only offer architectural guidance for
high-performance models and algorithm design in behavioral authentication but will also provide system-
atic metrics for evaluating specific performances. Simultaneously, it will provide a theoretical foundation
and analytical methodologies for understanding the mechanisms of behavior modeling in typical services,
holding particular importance for estimating data utility in the data handover phase. Efforts towards
addressing this issue contribute to a better comprehension of essential issues and drive the advancement
and progress of the entire field.

4.2 Future research directions of behavioral authentication

4.2.1 Fine-grained behavior modeling

Future research should focus on developing a behavior modeling method that fully utilizes limited data,
taking into account the interaction and collaboration between behaviors from a fine-grained perspective.
Fine-grained behavior modeling leverages deep and rich information from the behavior data, which can
provide accurate and reliable behavior distribution for behavioral identity, conformity, and benignity
authentication.

We are committed to proposing a fine-grained behavior modeling framework to enhance the limited
behavior data. It considers the associations of behavior across multiple dimensions such as behavior
sequences, subject correlations, and attribute distributions from complex and diverse behavioral data in
both virtual and real spaces. Through holistic learning of abundant behavioral information, we can better
understand the underlying semantic meanings in behavioral data, and subsequently apply the learned
semantics to enhancing the authentication performance.

Correspondingly, as shown in Figure 8, a potential solution is to establish a three-layer knowledge
graph structure, including the subject correlation layer, behavior sequence layer, and attribute distribu-
tion layer. In the subject correlation layer, subject correlation associations are modeled by introducing
the similarity between subjects and their social relevancies. Specifically, the behavior sequence layer
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and attribute distribution layer provide a characterization of the latent behavior space encompassing all
behaviors, allowing the generalization of subjects from instantiated modeling objects in network services
to any behavioral attributes (such as population, individual, and class-based subjects). Multi-dimensional
intelligent synthesis strategies are designed to cooperatively generalize the distribution of subject models,
thereby mitigating the technical bottleneck of insufficient data in security and safety authentication. In
the behavior sequence layer, the temporal relationships of behaviors, such as the order in which behaviors
occur, are modeled. We aim to propose a variable-length sequences modeling solution that specifically
can be divided into prefix, infix, and suffix partitions based on behavioral order, and adaptive parti-
tions based on behavioral windows. Compared to traditional sequence modeling techniques, it combines
behavior intent recognition and time dependency learning. By Extracting information from behavioral
context and intent alleviates the inefficiency issues of authentication techniques on limited data. In the
attribute distribution layer, co-occurrence associations between attributes from the same behavior are
extracted. For example, multiple attributes that appear together in a behavior can serve as co-occurrence
relationships between attributes. We conceptualize behavior as a stable system composed of internal
associations at the topological level. By designing customized behavioral scanners, we quantify the asso-
ciations between fine-grained behavioral attributes as measurable graph objects. It excludes confounding
information arising from knowledge-driven interference within behaviors, focusing instead on potentially
internal associations between fine-grained behavioral attributes as driven by the data. So it can eliminate
behavioral noise caused by erroneous or outdated human annotation. Based on the three customized lay-
ers, two types of coupled mapping, i.e., subject behavior mapping and behavior attribute mapping, are
devised. The former realizes the effect of subject-collaborative filtering through the interaction between
subjects and behaviors. Subjects with similar preferences are reflected in the subject correlation layer.
The correlations between subjects are further described by the interaction with time between subjects and
behaviors. The latter realizes the effect of content collaborative filtering through the interaction between
behaviors and attributes, which reflects behaviors with similar attributes in the behavior sequence layer.
Through hierarchical modeling of behavior, in addition to introducing more associations to enrich the
description of behavior, we can perform customized behavioral authentication based on specific associa-
tions within each layer. The coupled mapping between layers further allows aggregating information from
other layers into a single layer, thereby obtaining high-density behavioral semantics (information stack-
ing and reduced information carriers jointly improve density) under limited behavioral data to support
different authentication tasks.

4.2.2 Behavioral data synthesis or simulation

The challenge of insufficient behavioral data consists of two parts. On the one hand, in scenarios with a
defined process, behavioral data synthesis methods are required to supplement the datasets, especially
samples of illegal behavior. Data synthesis methods can be utilized to expand existing datasets with
data of the same distribution, and the gap between normal behavior samples and illegal behavior samples
could be narrowed. On the other hand, in scenarios with complex interactive processes, the interactions of
individuals lead to chaos so that there does not exist a fixed distribution of illegal behaviors. Therefore,
synthesis methods creating behavioral data of the same distribution no longer work, and we suggest
behavioral simulation as an effective resolution.

For the synthesis of behavioral data, the existing methods exhibit sensitivity to outliers, which may
compromise the quality of generated samples in the latent space. A potential approach to address these
limitations is to combine a generator and two discriminators. The generator incorporates an autoencoder
to map the data into a high-dimensional space, where the outlier characteristics of abnormal behavior
are accentuated through a specially designed mapping function. The interaction between the generator
and the first discriminator enhances the similarity between the generated data distribution and the real
data distribution, while the interaction between the generator and the second discriminator enhances the
separation between the distributions of normal and illegal behaviors. The adversarial training between
the first discriminator and the second discriminator further enhances the distinction of illegal behaviors.
Simulation technologies have developed for many decades, consistently regarded as a powerful tool for
analyzing complex systems. Agent-based modeling simulation (ABMS) represents an advanced simulation
approach, characterized by the generation of individual-level behaviors for both items and agents [174]. In
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Figure 9. The illustration of behavioral data simulation. First, agents with open-domain reasoning ability and detailed

profiles are launched in an ABMS system. Second, the interactions between agents are converted into interaction graphs.

Third, these graphs are formatted into the required form through a data formatter. Finally, these data are regarded as
simulated behavioral data to supplement the origin dataset

the era of data science, deep learning models have been harnessed to enhance the authenticity of individ-
ual behavior generation. This paradigm falls short in addressing the challenge of dynamic distributions,
as agents empowered by deep learning models remain constrained by historical data and limited behavior
sets. To enhance ABMS for simulating diverse behavioral data, we suggest a novel simulation framework
centered around agents endowed with reasoning and learning capabilities. Notably, large language mod-
els (LLMs) have demonstrated open-domain reasoning abilities as agents. Leveraging these agents for
simulating security scenarios (as depicted in Figure 9), we provide them with security-related knowledge
and detailed profiles encompassing motivation, behavior preferences, and other relevant factors, using a
variety of models. Through the combination of foundational models with smaller-scale models, each agent
is effectively characterized to respond thoughtfully to situational cues. Furthermore, these agents possess
learning abilities, enabling them to devise novel strategies beyond historical data, similar to real-world
attackers and defenders. In summary, an ABMS built upon this new type of agent equipped with hierar-
chical knowledge structures and adaptive learning mechanisms offers a promising resolution for simulating
behavioral data in complex scenarios.

4.2.3 Distributed behavioral authentication

In general, the effectiveness of behavioral authentication methods often relies on centralized data collection
to construct classification models. However, with the increasing emphasis on stricter privacy protection
regulations and the need for local data processing in distributed environment, the control and trans-
mission of behavioral data become more challenging. It is necessary to develop distributed behavioral
authentication models across different devices while minimizing the costs associated with transmitting
privacy-sensitive behavioral data between devices. The concept of a computing power network has been
implemented as the infrastructure continues to improve, enabling behavioral data to transition from
single central deployment to diverse distributed deployment. This shift from centralized scheduling to
distributed collaborative scheduling has provided a favorable opportunity for the advancement of behav-
ioral authentication in near-real-time processing. Sensitive behavioral data can be processed and stored
locally, while other behavioral data can be decoupled, allowing for selective interaction with servers in
different physical locations. Even if the parties involved in data sharing do not have identical definitions
of sensitive behavioral information, negotiations can be conducted to determine the optimal approach for
decoupling the sensitivity levels of behavioral information. Distributed behavioral authentication systems
can bring enhanced processing capabilities and reduce response time, which improves the effectiveness
and reliability of the authentication process significantly.

Therefore, as an essential computational paradigm, distributed learning holds great potential in
designing viable architectures for behavioral authentication to achieve a balance among authentication
performance, user privacy, and communication costs. An objective is to improve cloud-edge-terminal col-
laboration to fully leverage the centralized and intensive deployment capabilities of the central cloud, the
low latency and high flexibility of edge servers, and the local processing power of the terminal devices.
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Figure 10. The overall architecture of distributed behavioral authentication. The central server is responsible for collab-
orating with the terminals to construct feature extractors and coordinating the unified scheduling of edge servers. Edge

servers are responsible for deploying specific authentication credentials and partitioning user clusters, as well as respond-

ing to specific authentication requests. Terminals are responsible for storing private sensitive data and initiating relevant
requests during the verification process

The collaboration approach enhances the safety of behavioral data interactions. Through the collabora-
tion of cloud computing, edge verification, and local data processing, it reduces the processing burden
on the cloud center, lowers bandwidth load and authentication latency, and mitigates behavioral data
transmission costs.

Correspondingly, as shown in Figure 10, a distributed behavioral authentication framework that lever-
ages cloud-edge-device collaboration has been established, further expanding the application scenarios of
behavioral authentication. Specifically, the central server and devices work together to construct a feature
extractor. To achieve this, an auxiliary task is defined to obtain behavioral embedding vectors based on
a deep neural network. During this process, terminal data remains to be stored locally without the risk
of privacy leakage. The local devices share the partial model parameters with the central server to ensure
the measurability of different behavioral embedding vectors. If the learning rate of the device is l when
the global parameters are updated in the t round, each device will perform parameters updates locally
through wt+1

k = wtg − l∇gk. The central server uses the operation of wt+1
g =

∑K
k=1

nk∑K
k=1 nk

· wt+1
k to

aggregate parameters, and returns wt+1
g to different devices. The device updates the local model with

the new parameters for the next training round. Once the feature extractor has been built and deployed
to various devices, corresponding behavioral vectors are generated locally by different devices, and then
different devices send these vectors to the central server. When the central server receives behavioral
representation vectors from various terminals, it calculates the similarity between these vectors. Sub-
sequently, the authentication service is deployed to the optimal edge locations based on demand. For
the deployment of edge servers, the optimization objective is centered around minimizing latency by:
minL(r) =

∑
sk∈S

∑
ai∈Zk

q(ai, sk; r), where r represents one certain feasible edge deployment scheme,
Zk represents all base stations covered by current authentication server sk, S represents all edge authen-
tication servers, and q(ai, sk) signifies the latency from base station ai to edge authentication server
sk. Furthermore, each edge server establishes a topological graph. For terminals with similar patterns,
corresponding behavior profiles are created, and based on the results, a topological graph G = (V,E)
is constructed. The node set is denoted as V = {x|x ∈ X}, where X represents the terminals within
that cluster, and E = {(x, y)|x, y ∈ V }, where (x, y) represents an edge between two terminals. The
connection strength of credentials between different terminals is calculated and stored on the edge server.
During the verification phase, the k-th terminal generates new behavioral data. For the privacy-sensitive
data of this terminal, the input data is processed through the trained feature extractor to generate a
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vector representation, denoted as Φki
, which is then sent to the edge server. The final authentication

result is returned by the edge server. This approach achieves distributed behavioral authentication by
the collaboration of cloud, edge, and devices, which significantly reduces authentication latency while
ensuring authentication performance.

The proposed framework represents initial efforts towards enabling distributed behavioral authentica-
tion, which possesses good flexibility and compatibility. In scenarios where datasets from different clients
are highly heterogeneous and non-independently distributed, local model structures and model training
strategies can be replaced in our framework. Personalized feature extractors can be trained through tech-
niques such as model decoupling and global model personalization [175, 176]. Additionally, the framework
can be used in conjunction with many other technologies. When addressing privacy concerns, our frame-
work can employ technologies such as differential privacy [177] to alleviate privacy issues. Simultaneously,
it can utilize existing robust adversarial defense techniques [178, 179] to defend against security threats
during the behavior modeling process. Furthermore, when there is distrust among multiple clients, our
framework can address this issue by introducing blockchain technology [180, 181]. It is orthogonal to our
framework, and thus can be incorporated into our framework for storing behavior profiles.

4.2.4 Formalization for behavioral authentication

Inspired by the formal hypotheses and principles in information theory, we analogize behavioral authen-
tication to concurrent network communication since both the problems of behavioral authentication and
concurrent network communication share the common goal of eliminating uncertainty. The fundamental
problem in communication is for one end of communication to accurately or approximately reproduce
the message selected by the other end.

We give the formalization method for behavioral authentication, which satisfies the formal hypotheses.
As shown in Figure 11, we encode the complex features of data to obtain behavior representations, which
extract meaningful information and behavior event structures. Ultimately, behavioral authentication aims
to eliminate the uncertainty of behaviors. Similar to the Signal-to-Interference-plus-Noise Ratio (SINR)
in communication, this uncertainty can be measured as follows:

SINR(b, PI) =

∑
pi∈PI

Sim(b, pi)−α · exp(−Hpi)
N0 +

∑
pj∈P−PI

Sim(b, pj)−α · exp(−Hpj )
,

where PI denotes the set of behavior patterns of the user to be verified, P represents the set of all
behavior patterns, and Hpi represents the behavior entropy of the current matched user. The function
Sim() measures the similarity between behaviors. The impact on behavioral authentication performance
arises from interference by users with similar behavior patterns and the noise inherent in the data itself.
For different levels of behavioral authentication, the elements contained in PI have distinct meanings.
Taking behavioral identity authentication as an example, the set PI degenerates into a singleton set,
containing only the user with a deterministic behavior pattern. The signal strength of behavioral identity
authentication can be measured by calculating the stability and similarity between the given behavior
and the behavior pattern of the user to be verified.

Building upon the formalization for behavioral authentication described above, we conduct a prelimi-
nary exploration of the fundamental limits of data utility for behavioral authentication [182]. Specifically,
from the perspective of data distribution, we introduce a data utility function based on conditional
entropy. We analogize behavioral authentication to the problem of signal transmission in communica-
tion channels. By establishing the relationship between conditional entropy and authentication accuracy,
we derive upper bounds on accuracy for behavioral authentication: the Shannon upper bound and Rényi
upper bound. The former is based on Shannon entropy and is obtained by transforming the Fano inequal-
ity; the latter utilizes conditional entropy defined on Rényi entropy and is derived by applying Jensen’s
inequality and the principle of maximum discrete entropy. When the order of Rényi entropy is greater
than 1, the Rényi upper bound can be expressed as follows: where X denotes the attribute combination,
N refers to the number of categories of the label Y , e denotes the average authentication error proba-
bility, Hα denotes the Rényi entropy, and HS denotes the Shannon entropy. When the order of Rényi
entropy tends to 1, the Rényi upper bound degenerates to the Shannon upper bound. On the real-world
business dataset after privacy protection, we obtain the achievable bounds on accuracy for behavioral
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Figure 11. The formalization for behavioral authentication. Inspired by the formal hypotheses and principles in information
theory, the ultimate essence of behavioral authentication is the elimination of behavioral uncertainty. This uncertainty can be

quantified using a metric similar to the Signal-to-Interference-plus-Noise Ratio (SINR) commonly found in communication.
The impact on behavioral authentication performance arises from interference by users with similar behavior patterns and

the noise inherent in the data itself

authentication using state-of-the-art and representative ensemble learning and deep learning models. By
comparing the theoretical upper bound with the achievable bound, we observe that the theoretical upper
bound is higher than the achievable bound, and they are very close to each other. This indicates that the
theoretical upper bound provides valuable insights for optimizing the achievable bound.

Furthermore, in the field of communication, there have been initial advancements in semantic com-
munication paradigms [183, 184], which improve the transmission efficiency and reduce the latency of
communication systems. In the future, incorporating semantic information into our proposed formaliza-
tion method for behavioral authentication holds the potential to push the fundamental limits of behavioral
authentication.

5 Discussions and conclusion

5.1 Applications

Behavioral authentication has already been applied in practical applications such as financial risk control,
healthcare, and intelligent transportation.

In financial transaction services, behavioral authentication can deduce invariant behavioral patterns
from changing behavioral data. By integrating multiple factors such as the financial chain, consump-
tion patterns, timing, and location of ordinary consumers, fragmented information is used to accomplish
behavioral modeling of consumers. This forms the basis for constructing a comprehensive risk prevention
and control system. Behavioral authentication technologies have been implemented in the risk preven-
tion systems of banks and Ant Group [23, 185]. It enables early detection and prevention of fraudulent
activities.

In healthcare applications, smart wearable devices from companies like Apple and Huawei use your
behavioral data to assess your physical health status [186, 187]. Behavioral authentication provides contin-
uous monitoring and important guidance for the user’s health. The industry has witnessed the emergence
of behavioral capture and analysis products, such as fall detection vests for the elderly. When the walking
patterns, accelerations, and other behavioral features of elderly individuals deviate from their normal
patterns, the vest automatically activates a protective mode to mitigate the impact of a potential fall
and prevent injuries [188, 189].

In intelligent transportation services, leading automotive companies such as Byd and Tesla have
implemented real-time behavior detection of drivers in their onboard systems [190, 191]. When non-
benign behaviors are detected, such as abrupt lane changes without signaling or tailgating at an unsafe
distance, the onboard system intervenes to mitigate potential risks. This intervention can take the form of
audible warnings, visual alerts, or even automated corrective actions, such as gentle steering corrections
or adaptive cruise control adjustments. The implementation of behavioral authentication in intelligent
transportation services helps to cultivate safer driving habits and reduce the likelihood of accidents.
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5.2 Conclusion

Technological advancements have ushered humanity into an unprecedented era of artificial intelligence.
Behavioral authentication has emerged as a promising authentication solution in many scenarios and has
been successfully and widely applied in practice. It has gradually become a fundamental problem in the
field of authentication. This work summarizes the background and applications of behavioral authenti-
cation. In particular, it introduces the concept of behavioral authentication including behavioral identity
authentication, behavioral conformity authentication, and behavioral benignity authentication. The paper
presents a comprehensive review of work conducted in these three levels of behavioral authentication,
establishes a clear framework for categorization, and summarizes their corresponding characteristics and
issues. The main challenges in current behavioral authentication are analyzed, and key research directions
for the future are pointed out including fine-grained behavior modeling, distributed behavioral authenti-
cation, and formalization for behavioral authentication. Obviously, with the increasing sophistication of
artificial intelligence in various fields and a greater emphasis on user experience, behavioral authentication
will display even stronger vitality and play an increasingly important role.
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