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Abstract 

 

Ocular pathologies are among the most debilitating medical conditions affecting 

all segments of the population. Traditional treatment options are often 

ineffective, and gene therapy has the potential to become an alternative 

approach for the treatment of several pathologies. 

Methacrylate polymers have been described as highly biocompatible and are 

successfully used in medical applications. Due to their cationic nature, these 

polymers can be used to form polyplexes with DNA for its delivery. This work 

aims to study the potential of PDMAEMA (poly(2-(N,N’-dimethylamino)ethyl 

methacrylate)) as a non viral gene delivery system to the retina.  

The first part of this work aimed to study the potential for gene delivery of a 

previously synthesized PDMAEMA polymer of high molecular weight (354kDa). 

In the second part, we synthesized by RAFT a PDMAEMA with a lower 

molecular weight (103.3kDa) and similarly, evaluated its ability to act as a gene 

delivery vehicle.  

PDMAEMA/DNA polyplexes were prepared at 5, 7.5, 10, 12.5 and 20 

nitrogen/phosphorous (N/P) ratio for the 354kDa PDMAEMA and at 5 and 7.5 

for the 103.3kDa PDMAEMA. Dynamic light scattering and zeta potential 

measurements confirmed the nanosize and positive charge of polyplexes for all 

ratios and for both polymers. Both high and low Mw PDMAEMA were able to 

efficiently complex and protect DNA from DNase I degradation. Their 

cytotoxicity was evaluated using a non-retinal cell line (HEK293) and a retinal 

pigment epithelium (RPE) cell line (D407). We have found that cytotoxicity of 

the free polymer is concentration and time dependent, as expected, and 

negligible for all the concentrations of the PDMAEMA-DNA polyplexes. 

Furthermore, for the concentrations to be used in vivo, the 354kDa PDMAEMA 

showed no signs of inflammation upon injection in the intravitreal space of 

C57BL/6 mice.   

The transfection efficiency, as evaluated by fluorescence microscopy and flow 

cytometry, showed that the D407 retinal cells were transfected by polyplexes of 

both high and low Mw PDMAEMA, but with varied efficiency, which was 

dependent on the N/P ratio.  
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Althogether, these results suggest that PDMAEMA is a feasible candidate for 

non-viral gene delivery to the retina, and this work constitutes the basis of 

further studies to elucidate the bottleneck in transfection and further 

optimization of the material.  

Keywords: Gene therapy, Polymer, Polyplexes, Retina, RPE, D407  
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Resumo 

 

Desde o século passado que as doenças relacionadas com o genoma têm 

vindo a ganhar importância. O projecto de mapeamento do genoma humano 

permitiu descobrir a origem de muitas doenças. Várias abordagens 

terapêuticas têm sido objecto de estudo, sendo a terapia génica uma das mais 

promissoras. A terapia génica tem como objectivo usar material genético, em 

regra DNA, para manipular as células dos pacientes. Antes do aparecimento da 

terapia génica existia apenas tratamento dos sintomas ou terapia de 

substituição para várias patologias, e não uma verdadeira cura. Para as 

doenças oculares, que estão entre as doenças mais debilitantes que afectam 

todos os segmentos da população, esta realidade era sobretudo relevante. 

Em terapia génica existe a necessidade de desenvolver veículos para 

transporte de material genético, veículo este que tem que proteger o ácido 

nucleico de degradação, ter especificidade para células/órgão, permitir a 

expressão do gene de interesse ao longo do tempo e com níveis adequados, 

não desencadear resposta imunitária (excepto em caso de interesse como no 

cancro e vacinas) e que seja administrado por injecção sistémica. As duas 

principais estratégias para entrega de material genético usa vectores virais e 

não-virais. Os sistemas virais de entrega apresentam diversas vantagens, mas 

também várias limitações: imunogenicidade, baixa capacidade de 

empacotamento do material genético, potential inserção aleatória no genoma 

hospedeiro e toxicidade. Os vectores não virais, de entre os quais se destacam 

os polímeros, surgiram como uma alternativa para contornar esses problemas, 

pois estes apresentam maiores benefícios em termos de segurança, 

versatibilidade química e estrutural para a manipulação das propriedades fisico-

químicas, maior capacidade de empacotamento de genes e estabilidade 

durante o armazenamento.  

Dentro da classe dos polímeros, os polímeros naturais como o quitosano e 

alginato têm ganho importância devido à sua biocompatibilidade, mas são os 

polímeros sintéticos, como a poli(etilenimina) (PEI), a poli(L-lisina) (PLL) e o 

poli(2-dimetilamino)etil metacrilato (PDMAEMA), que tem maior relevância 
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devido ao controlo preciso da sua síntese e consequentemente das suas 

propriedades. A natureza catiónica de alguns polímeros, como os indicados 

acima, permite que estes sejam usados para formar poliplexos com material 

genético.  

O objectivo do nosso grupo de investigação é o desenvolvimento de novas 

estratégias baseadas em terapia génica para tratamento de patologias da 

retina. Dentro deste enquadramento, o presente trabalho tem como objectivo 

compreender o potencial do poli(2-dimetilamino)etil metacrilato (PDMAEMA) 

como sistema de entrega de material genético na retina. Na primeira parte 

deste trabalho um polímero PDMAEMA com 354kDa, que tinha sido 

previamente sintetizado, foi avaliado para o seu potencial como veículo para 

terapia génica. Na segunda parte, sintetizamos um PDMAEMA com um menor 

peso molecular (103.3kDa) via RAFT (Reversible addition-fragmentation chain-

transfer) para efectuar uma comparação entre a eficiência de transfecção de 

PDMAEMAs com diferentes pesos moleculares. 

Poliplexos de PDMAEMA/DNA foram preparados nos rácios 

amina(N)/fosfato(P) de 5, 7.5, 10, 12.5 e 20 com o PDMAEMA 354kDa e nos 

rácios 5 e 7.5 com o PDMAEMA 103.3kDa. Medições de DLS (Dynamic light 

scattering) e potencial zeta confirmam que foram preparados poliplexos à 

escala nanométrica com carga positiva, em todos os rácios. Ambos os 

polímeros PDMAEMA são capazes de complexar eficientemente e proteger o 

DNA da degradação por parte da DNAse I.  

A citoxicidade de ambos os polímeros foi avaliada usando duas linhas 

celulares: a HEK293 (linha celular de rim embriónico humano) e a D407 (linha 

celular de epitélio pigmentar da retina). Os resultados revelam que a 

citoxicidade do polimero livre (não-complexado) é dependente da concentração 

e do tempo de exposição, como esperado, e os poliplexos PDMAEMA/DNA 

não apresentam citoxicidade. Foi também observado que nas concentrações 

usadas in vivo a citoxicidade do PDMAEMA 354kDa é negligível, como 

demonstrado pela ausência de inflamação após a injecção no espaço 

intravítreo de ratinhos C57BL6. 
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A eficiência de transfecção foi avaliada qualitativamente por microscopia de 

fluorescência e quantitativamente por citometria de fluxo e mostrou que os 

poliplexos PDMAEMA/DNA são capazes de transfectar, e que a eficiência varia 

de acordo com o rácio N/P utilizado, para os polimeros de alto e baixo peso 

molecular. 

Em suma, estes resultados sugerem que o PDMAEMA é um candidato viável 

para a entrega de genes na retina, e este trabalho constitui a base de estudos 

futuros que visam elucidar o passo limitante na transfecção e desse modo 

permitir a optimização deste vector não-viral. 

Palavras-Chave: Terapia Génica, Polímero, Poliplexos, Retina, RPE, D407 
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Introduction 

 

 

The aim of gene therapy is treat diseases by delivering therapeutic genes to 

diseased cells or blocks the expression of a dysfunctional gene. This 

therapeutic strategy has been heralded as the next development in modern 

medicine [1, 2], since it has the potential to cure genetic diseases and other 

diseases such as cancer that are responsible for a large number of deaths and 

decreased quality of life. There are two very important components of gene 

therapy that are absolutely necessary for a successful gene therapy approach: 

an efficient and safe delivery system, coupled to an effective gene expression 

system that can be expressed over time at the target site [1].  

In gene therapy, there are two delivery approaches: viral and non-viral. The first 

one relies on modified virus to deliver the genetic material, since viruses have a 

natural capability to infect cells and to express their genes in the host. Viral 

gene delivery can be achieved by modifications in adenoviruses, retroviruses, 

lentiviruses and adeno-associated viruses (AAVs), among others. These viral 

vectors can be classified as nonlytic (i.e. virus that produce virions and leave 

the host cell intact) and lytic (i.e. virus that produce virions and cause death to 

the host cell) [3]. The modifications made on viruses aim to render them 

replication-deficient, which do not allow them to replicate and exit the cell as 

mature viral particles that can further infect other cells. Viral vectors have 

several advantages, such as sustained expression due to DNA integration into 

the host genome, some viruses have tropism for specific cell types, and high 

levels of gene expression [4]. However, there are some drawbacks, including 

immunogenicity, low capacity of gene packaging, random transgen insertion 

into the host genome, toxicity and limitations to large-scale production [1, 5]. 

Despite of these disadvantages, several viral vectors have reached the clinical 

trial stage (Clinicaltrials.gov NCT01024998, NCT00999609, NCT01461213) and 

a adenoviral based product – Gendicine® – has been approved in Chine and 

U.S. In Europe, glybera®, a product based on AAVs, has recently been 
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approved by EMA (European Medicines Agency) for the treatment of adults with 

lipoprotein lipase deficiency [6].  

Despite the success of viral vectors, the safety issues have motivated the 

search for safer, less immunogenic and pathogenic gene delivery alternatives, 

which include polymer and lipid-based vectors, and inorganic materials [1, 2]. 

Other approaches that are also being studied is the use of a physical mean to 

deliver the DNA, like electroporation or gene gun [7], which shows several 

limitations in clinical practice. 

The new potential delivery systems bring the promise of safety benefits, 

structural and chemical versatility for manipulating physicochemical properties, 

bigger gene capacity and vector stability upon storage. 

 

1. Non-viral vectors for gene therapy 
 
 

The non-viral approach to the development of a gene delivery system must 

surpass two main barriers before achieving therapeutic sucess: limited 

internalization into the cell and the nucleus and short term gene expression.  

 

 

2. Cellular barriers to non-viral gene delivery 

 
 
 
An efficient delivery system must accomplish several steps to be able to 

express the gene of interest (figure 1): (I) enter the cell by crossing the cell 

membrane; (II) escape the endo-lysosomal degradation pathway; (III) release 

the genetic material; (IV) traffic through the cytoplasm and enter the nucleus; 

and last (V), the gene expression has to occur for synthesis of the protein of 

interest [1]. 
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Figure 1 – Representation of the main barriers to gene delivery: (I) enter the cell 

membrane; (II) escape the endo-lysosomal pathway; (III) the genetic material must be 
released from the carrier; (IV) traffic through the cytoplasm and into the nucleus; and 
last (V), the gene expression has to occurred and expression of the protein of interest 
(Adapted from [1]). 
 
 
 
 

2.1. Crossing of the cell membrane 
 
 
 

The cell membrane has a negatively net charge, due to the presence of certain 

lipids and proteoglycans. Since DNA is a molecule with a negative charge, 

“naked” DNA cannot entry the cell by electrostatically interaction with the 

membrane [8]. Therefore, a positively charged system might electrostatically 

interact with the cellular membrane, and this will permit the entry in the cell by a 

well described process of endocytosis. 

 

Endocytosis is a process by which cells absorb extracellular molecules by 

forming invaginations in the cell membrane and the vesicles enter the 

cytoplasm [9]. This process exists in several forms: macropinocytosis, 

phagocytosis and receptor- mediated endocytosis. 
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- Macropinocytodis is the formation of large uncoated vesicles with, 

approximately 200 nm–5 mm; 

- Phagocytosis is normally carried out by specialized cells, such as 

macrophages and retinal pigment epithelium cells; 

- Receptor-mediated endocytosis (also called clathrin-dependent 

endocytosis) is believed to be the predominant process of polyplex 

uptake [8]. 

 

 

 

2.2. Endo- lysosomal escape 

 

 

 

The early endosomal escape of non-viral vectors is a critical step towards the 

delivery of a therapeutic gene. In order to explain this process, the proton 

sponge hypothesis (figure 2) was proposed for cationic polymers with buffering 

capacity, like PEI [10], and polyamidoamine (PAMAM) dendrimers [11]. The 

proton sponge effect states that after endocytosis, the membrane-bound 

ATPase proton (H+) pump starts to pump protons into the endosomes which 

leads to an acidification of these compartments. At this time, polymers with 

protonable amines will become protonated and resist the acidification. As a 

consequence, more protons (H+) will enter the endosome in an attempt to lower 

the pH. This leads to a passive entry of chloride ions (Cl-), which increases the 

ionic concentration and leading to a water influx. The osmotic pressure 

eventually causes swelling and endosomal rupture, delivering its content to the 

cytosol [10]. 

This effect has two main functions: inhibit the activity of lysosomal nucleases 

and change the osmolarity of acidic vesicles allowing endosomal swelling and 

burst. 

 

 

http://en.wikipedia.org/wiki/Clathrin
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Figure 2 - Proton Sponge Effect: A - Polymer is entrapped inside the endosome; B - 
ATPase pumps H+ from the cytosol and passive entry of Cl- ions; C - The increased 
ionic concentration leads to a influx of water which will lead to swelling and burst of 
endosomes  [12]. 
 

2.3. Vector/DNA dissociation 
 

 

Before gene expression can happen, the genetic content present in the delivery 

system must be released. Gene expression can be enhanced if the DNA 

dissociates from the vector insisde the nucleus, preventing the action of 

nucleolytic enzymes. Several strategies were devised toward this objective. 1) 

Researchers have demonstrated that thermoresponsive polymers like poly(N-

isopropylacrylamide) (NIPAM) can enhance transfection efficiency in a 

temperature-dependent manner [13, 14]. 2) The incorporation of disulfide bonds 

in polymers can improve the release of genetic material. These bonds can be 

reduced and cleaved in two thiol groups (-SH) through the action of a very 

common cytosolic peptide, glutathione [15]. 3) The reduction of the polymer 

backbone into smaller molecules promotes the release of the genetic content 

and the cytotoxicity is also reduced [16, 17]. 4) Conjugation of a hydrolytically-

sensitive ester bond as cross-linker inside the polymer structure. Since water 

molecules are the cleaving agents of these bonds, hydrolysis can happen on 

the first exposure to physiological conditions, thus releasing the DNA. In order 
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to promote a controlled and sustained release, efforts have been made to 

accomplish that (e.g. molecular weight and crosslinking density) [18, 19]. 

However, the requirements for an optimal release have yet to be fully 

determined [20, 21]. 

 

2.4. Cytosolic trafficking and nuclear import 
 

 

The cytosol is a metabolic and physical hostile environment for nucleic acids, 

since it is full of nucleolytic enzymes that degradate unprotected DNA. 

Microtubules, intermediate filaments and microfilaments are part of a dense 

network that forms the cytoskeleton [22]. Dauty et al showed that naked DNA 

with an extended linear length of approximately 85nm hardly diffuses to the 

nucleus [23]. This internal degradation barrier is a major obstacle to a free 

diffusion of polyplexes, with sizes up to 200nm. Another obstruction is the 

nuclear pore complexes (NPC) which enable the transport of macromolecules 

greater than 39 nm in diameter into the nuclear space [24]. 

 

In order to overcome this problem, researchers tried to use natural endogenous 

cytosolic factors to promote the nuclear import. One of the most studied factors 

is nuclear localization signals (NLS). These signals are a distinct short amino 

sequence present in cytosolic proteins destined to the nucleus, which are 

identified by import proteins promoting nuclear transport [25]. 

In addition, NLSs are cationic peptide sequences that can electrostatically 

interact with DNA or can be attached to a polymer that complex with DNA [26, 

27], which constitutes an interesting alternative to increase nuclear import of 

gene expression systems.  
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2.5. Gene expression 

 

 

As stated before, a fundamental characteristic for gene therapy to work is the 

existence of prolonged gene expression. The two major disadvantages of non-

viral systems are the loss of the plasmid during mitosis and gene silencing. 

Several advances have been made in this field to overcome these 

disadvantages, mostly in terms of expression systems. Minicircles [28, 29], 

MIDGE vectors [30, 31], pFARs [32] and optimized plasmids, such as pEPito, 

are some of the strategies used. The pEPito plasmid has a S/MARs sequence 

which allows the maintenance of the vector in a transcriptional active state 

where the plasmid is replicated during cell mitosis [33]. In “traditional“ plasmids, 

the existence of unmethylated CpG motifs that can be methylated leads to a 

decrease in gene expression, so this plasmid has been optimized to contain a 

low CpG content [34], thus reducing silencing events. 

 

In recent years, however advances have been made in the field of lipid- and 

polymer- strategies in an attempt to overcome these barriers.   

 

 

3. Lipossome-based vectors 
 

 

Liposomes are vesicular structures constituted by the assembly of cationic lipids 

with a hydrophilic tail and a positive hydrophobic head group, with similar 

structure to the cellular membrane [35]. Liposomes are also composed by 

neutral helper lipids such as dioleylphosphatidyl ethanolamine (DOPE) and 

dioleylphosphatidyl choline (DOPC) [36]. Due to the positive nature of 

liposomes, DNA can be complexed and constitute lipoplexes (cationic lipid/DNA 

complexes, figure 3). One of the earlier lipid-delivery system was based in a 

synthetic cationic lipid, N-[1-(2,3-dioleyloxy) propyl]-N,N,N-trimethylammonium 

chloride (DOTMA). Felgner et al showed that DOTMA can be more effective 

than calcium phosphate or DEAE-dextran in DNA delivery [37]. Since Felgner et 

al study, significant progress has been made in developing the perfect lipid-
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based system. New lipids are more efficient than the earlier cationic lipids in 

gene delivery [2], and lipoplexes have been studied in clinical trials for the 

treatment of cancer [38] (Clinicaltrials.gov NCT00059605) and cystic fibrosis 

[39] (Clinicaltrials.gov NCT00004471).  

 

 

 

 

 

 

 

 

 

Figure 3 - Schematic of cationic lipids (grey)/DNA (blue) complexes, adapted from [35]. 

 

 

 

4. Polymers 
 

 

 

Polymers are long chain structures composed by identical, several different 

monomers or two different monomers, so called homopolymers, heteropolymers 

and co-polymers, respectively. Cationic polymers have gained increasing 

importance through the years due to their capacity to form polyelectrolyte 

complexes with plasmid DNA due to the presence of primary, secondary, 

tertiary and quaternary amines in the polymer structure which interact 

electrostatically with the phosphates in the pDNA backbone (Figure 4).  

Polymers can be sorted in to two main categories: natural, such as chitosan, 

alginate and dextran; and synthetic, such as polyethylenimine (PEI), poly(2-

dimethylaminoethyl methacrylate) (PDMAEMA) and dendrimers, such as 

polyamidoamine (PAMAM) and polypropylenimine (PPI) [1, 3, 40].  
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Figure 4 – Representative schematic of polyplex formation, electrostatical interaction 
between a cationic polymer (red) and a plasmid DNA (blue). 
 
 

In an attempt to develop an efficient vector, Lehtinen et al used the polymer 

polyethylenimine (PEI) to complex DNA and then coated the complex with two 

lipids: DOPE and cholesteryl hemisuccinate (CHEMS). This system showed the 

ability to resist to extracellular polyanions, but revealed to be a poor transfectant 

compared with PEI, mainly due to a low cell uptake [41]. Another study 

developed a new system composed by PEI, DOTAP and cholesterol that show 

higher transfection efficiency than conventional lipid- and polymer- systems 

[42]. These studies showed that low doses of lipoplexes are safe when 

delivered locally. However, the low gene transfer efficiency in vivo has led the 

research into a more fundamental study: the molecular and cellular barriers to 

gene therapy, and the biological interaction between delivery systems and the 

host. 

 

 

 

4.1 Chitosan 
 
 
 

Chitosan is a natural carbohydrate polymer, derived from the deacetylation of 

chitin, formed by D-glucosamine (deacetylated unit) and N-acetyl-D-

glucosamine (acetylated unit) β-(1-4)-linked (figure 5) [43, 44]. 

 

 

http://en.wikipedia.org/wiki/D-glucosamine
http://en.wikipedia.org/wiki/N-Acetylglucosamine
http://en.wikipedia.org/wiki/N-Acetylglucosamine
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Figure 5- Chemical structure of chitosan, D-glucosamine and N-acetyl-D- 
glucosamine β--(1-4)-linked [44]. 
 
 
 

In the past few years, chitosan has been extensively studied for of gene 

delivery, due to its properties: biodegradability, biocompability and cationic 

nature [45, 46]. These characteristics make chitosan a very attractive polymer 

for gene therapy. Initial reports considered chitosan inefficient as a system 

deliver vector [35]. To overcome the low transfection efficiency modifications in 

the molecular weight were studied. Huang et al demonstrated that the 

transfection efficiency was dependent on the chitosan molecular weight i.e, 

higher Mw yielded higher transfection efficiency (213 kDa > 98 kDa > 48 kDa > 

17 kDa) [47]. Chemical modifications in order to increase the buffering capacity 

involved N-quartenization of chitosan terminal amines with the aim of increasing 

charge density, which resulted in improved transfection efficiency but with 

higher cytotoxicity [48, 49]. The conjugation with PEI is also a strategy to 

enhance the buffering capacity of chitosan. Zhao et al determined that 

chitosan/PEI/DNA complexes were capable of increased gene expression in 

HeLa cells compared with only chitosan. Additionally, the cytotoxicity of PEI was 

also reduced by the combination with chitosan [50, 51].  

Other strategies used include coating chitosan with other polymers, such as 

polyethylene glycol (PEG), which showed promise due to efficient transfection 

of and low cytotoxicity in MCF-7 cells (human breast adenocarcinoma cell line) 

[52]. Chitosan/DNA complexes  coated with poly(gamma-glutamic acid) can 

significantly enhance their cellular uptake via γ-glutamyl transpeptidase (GGT) 

present on cell membranes [53]. To achieve targeted delivery, chitosan was 

http://en.wikipedia.org/wiki/D-glucosamine
http://en.wikipedia.org/wiki/N-Acetylglucosamine
http://en.wikipedia.org/wiki/N-Acetylglucosamine
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conjugated with several cell-targeting ligands: for tumor cell-targeting, chitosan 

complexes were combined with folate [54], for hepatic cell-targeting, the sugars: 

galactose [55] and lactose [56] were used. 

Over the years chitosan has been tested in many animal models of genetic 

diseases. Several studies showed that chitosan-based systems transfect the 

lungs [57], the cornea [58] and other tissues. All studies discussed here show 

that chitosan has a great potential to constitute a non-viral gene delivery 

alternative. 

 

 

4.2 Polyethylenimine (PEI) 
 

 

 

Polyethylenimine is considered by many as the gold standard of gene delivery 

since it, is a great example of cationic polymers capable of transfecting cells. 

Behr et al led the first successful PEI-mediated gene transfer in 1995 [10]. 

Since then PEI has been extensively modified in order to improve the 

physicochemical and biological properties of polyplexes. There are two main 

structures for PEI: linear and branched (figure 6). The degree of branching was 

found to have a great influence in the complexation and stability of polyplexes. 

For similar molecular weights, branched-PEI is more effective at condensing 

DNA than linear-PEI. This happens due to the fact that branched-PEI contains a 

higher charge density than linear PEI [59]. The effect of the molecular weight of 

PEI in the ability to transfect cells was studied by Godbey et al, who observed 

that PEI with higher molecular weights has higher transfection efficiency than 

PEI with lower molecular weights [60]. However, it was also determined that 

high molecular weight polymers have high cytotoxicity [61]. Aggregation and 

adhesion to the cell membrane is the cause for the cytotoxic effects of PEI [62]. 

For polyplex formation, the optimum molecular weight is between 5 and 25 kDa 

[63]. 
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Figure 6- Schematic representation of PEI structure: linear (a) and branched (b). 
Adapted from [1]. 
 
 
 
 

An effort to improve the transfection efficiency and safety of the polymer has 

been made using an extensive set of chemical modifications. The most studied 

modification is probably PEGylation, which creates a hydrophilic barrier that 

reduces interactions between polyplexes and plasma proteins and erythrocytes. 

The transfection efficiency in vitro is influenced by the density and length of 

PEG chains conjugated to PEI: higher density with a shorter PEG is more 

effective in transfecting DNA [64, 65]. In vivo studies revealed that PEI-g-PEG 

polymers had reduced cytotoxicity and increased circulation time, but even with 

high doses of DNA no gene expression was detected [66]. 

In order to obtain a new type of polymers that is less toxic and more efficient in 

vivo, further studies on the relationship between structure and function of the 

polymer are necessary. 
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4.3 Poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) 

 

 

Poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) was first studied in 1996 

by Hennink et al, which showed that this polymer had potential as a gene 

delivery system [67]. This polymer is very versatile, with defined molecular 

weights, well-defined chain ends, and in different macromolecular architectures 

(such as block, star, and graft chain structures) can be made using 

polymerization techniques like atom transfer radical polymerization (ATRP) [68] 

and reversible addition fragmentation transfer (RAFT) [69]. Initial reports on 

PDMAEMA (figure 7) showed high transfection efficiency with acceptable 

cytotoxic effects in COS-7 (an african green monkey kidney cell line) and 

OVCAR-3 (a human ovarian cancer cell line) [70]. Van de Wetering 

demonstrated that PDMAEMA is an efficient transfectant in vitro and ex vivo 

[71]. When PDMAEMA polyplexes were injected intraperitoneally in mice, no 

transfected cells were detected. The authors of this study hyphotesized that the 

negatively charge components of the ascites fluid presence in the peritoneal 

cavity hindered the in vivo transfection [71]. When OVCAR-3 cells were 

trasnfected in vitro in the presence of ascites fluid, the transfection efficiency 

decreased significantly [71]. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7- Schematic representation of PDMAEMA monomer [70]. 
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For PDMAEMA, like most polymers, the transfection efficiency and toxicity are 

directly correlated to the molecular weight. High molecular weight PDMAEMA 

has higher transfection efficiency than low molecular weight. Subsequently, 

higher cytotoxicity was also observed for higher molecular PDMAEMA [70, 72, 

73]. Therefore, an optimum molecular weight showing acceptable efficiency and 

toxicity is required. 

To further improve the transfection efficiency of PDMAEMA, several 

modifications to his structure have been studied. Incorporation of an additional 

tertiary amino group in each monomer in order to promote the “proton sponge 

effect” have been tried by Hennink et al [74] and the results did not show a 

positive effect. 

In order to reduce cytotoxic effects, PDMAEMA was grafted to poly(ethylene 

glycol) (PEG) and results showed that cytotoxicity decreased in 293T cells [75]. 

Another investigated strategy was the synthesis of a reducible PDMAEMA 

(rPDMAEMA), in which disulfide bonds were incorporated, so that this polymer 

can be degraded in the reducing intracellular environment. The results in 

B16F10 cells (a mouse melanoma cell line) showed that rPDMAEMA was less 

cytotoxic than PDMAEMA, and was also a more efficient as a delivery vector 

than the non-reducible polymer [76]. 

The mechanism by which PDMAEMA polyplexes enter the cell has been 

suggested by van der Aa et al. This author proposes that both clathrin- and 

caveolae- dependent pathways are involved in the cellular uptake of this 

polyplexes, with the caveolae dependent pathway appearing to be essential for 

effective gene delivery by PDMAEMA [77]. 
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5. Polymer synthesis: Reversible Addition-Fragmentation chain 

Transfer (RAFT) 
 

Polymer synthesis is essential for the development of new polymers for 

biomedical applications, in particular gene therapy. One of the most commonly 

used polymerization techniques is reversible addition-fragmentation chain 

transfer. RAFT was first described by Chiefari et al, and it is a relatively, new 

controlled/”living”, free radical polymerization technique [78]. 

 

Figure 8- Proposed RAFT polymerization Mechanism as proposed by [79]. Briefly, 
initiation and propagation (a); RAFT pre-equilibrium (b); re-initiation (c); main RAFT 
equilibrium (d) and termination (e). 
 

The reaction can be initiated by thermal, redox or γ-irradiation methods. The 

mechanism is composed of several steps: 1) initiation, where the reaction is 

started by a free-radical source such as AIBN (azobisibutyronitrile). The initiator 

decomposes to form two fragments (I•) which react with a single monomer 

molecule in order to propagate a polymeric radical (Pn•) (figure 8a); 2) 

propagation, where propagating radical chains of length n in radical form (Pn•), 

add to monomer (M) in order to form longer propagating radicals (Pn+1•) (figure 

8a); 3) RAFT pre-equilibrium, where a polymeric radical with n monomer units 
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(Pn) reacts with the RAFT agent to form a RAFT adduct radical. This may 

undergo a fragmentation reaction in either direction to yield either the starting 

species or a radical (R•) and a polymeric RAFT agent. This is a reversible step 

in which the intermediate RAFT adduct radical is capable of losing either the R 

group (R•) or the polymeric species (Pn•) (figure 8b); 4) re-initiation, where the 

remaining radical group (R•) reacts with other monomer species, which starts 

another active chain (figure 8c); 5) main RAFT equilibrium, which is the most 

important step in RAFT, is a process of rapid interchange where the radicals 

present are shared among all species that have not yet undergone termination. 

The ideal situation is when the radicals are shared equally, causing chains to 

have equal opportunities for growth and therefore a narrow polydispersity index 

(PdI); and finally , 6) termination, where chains in their radical form react via a 

process known as bi-radical termination to form chains that cannot react further 

(Pn•+ Pm•), know as dead polymer [78, 79]. 

 

6. Therapeutic target 
 

 

 

The objective of this work is to evaluate the synthetic polymer poly(2-

dimethylaminoethyl methacrylate) (PDMAEMA) as non-viral delivery system for 

retinal gene therapy. The eye is a very attractive organ for gene therapy due to 

its small size and low diffusion of agents into systemic circulation due to the 

blood-retinal-barrier (BRB). Therefore, to obtain a significant therapeutic effect, 

only a small amount of drug is required. The location of the eye allows an easy 

access for the administration of drugs, which obviates the need for systemic 

delivery [4, 80]. 

The retina is the sensory tissue of the eye, and it is constituted mainly by three 

cell types: the retinal pigment epithelium (RPE), several types of nerve cells and 

photoreceptors (figure 4). Several genetic diseases cause retinal degeneration 

by affecting these different cell types, and therefore gene therapy is a potentially 

efficient therapeutic strategy. In our lab, we aim to develop non-viral gene 

therapy vectors for retinal pathologies. Within this framework, the present study 

has the following aim. 
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7. Aim of the work 

 

 

The objective of this is work to evaluate the synthetic polymer PDMAEMA as 

non-viral delivery system for retinal gene therapy.  

The first part of the work was testing a previously synthetized linear PDMAEMA 

with Mw of 354 kDa). We prepared PDMAEMA-DNA polyplexes in a broad 

range of N/P ratios (5/7.5/10/12.5/20) and characterized these in terms of size, 

polydispersity (PdI) and surface charge (zeta potencial), and the ability to 

encapsulate and protect the pDNA. The stability of the polyplexes was also 

evaluated over time in storage (4ºC) and physiological (37ºC) conditions.  

Next, we evaluated the polymer and polyplexes cytotoxicity in two different cell 

lines: a human embryonic kidney cell line (HEK293) and a human retinal 

pigment epithelial cell line (D407). In order to evaluate the transfection 

efficiency, both cell lines were transfected with polyplexes containing a plasmid 

which codified for the green fluorescent protein (GFP). The efficiency was 

assessed qualitatively by fluorescence microscopy and quantitatively by flow 

cytometry. Since, biocompability is a necessary requisite for an in vivo 

application, we evaluated the activation of the microglia by injecting PDMAEMA 

polyplexes in the eye of C57BL/6 mice. 

Based on the previous results, the aim of the second part of this work was to 

synthetize a new linear polymer with an expected size of 200 kDa in order to 

determine if the transfection efficiency could be modulated by variation in the 

molecular weight of the polymer. The polymer was characterized by GPC, and 

polyplexes in same N/P ratios as above produced. We then selected the two 

best ratios, in terms of size, PdI and surface charge to continue further into the 

characterization. The ability to encapsulate, protect the pDNA and stability in 

the presence of serum proteins was assessed. Due to time constraints for the 

200kDa polymer we only used D407 cells, to evaluate the polymer and 

polyplexes cytotoxicity, but in a larger range of concentrations than before. This 

study enabled a comparison between both Mw and the selection of the best two 

candidate condition for enhanced gene transfection.  
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Methods and Materials 

 

1. Synthesis of PDMAEMA by RAFT 
 

 

 

The polymer was synthesized by RAFT polymerization. Prior to the synthesis, 

DMAEMA was passed through a neutral alumina column (BDH) to remove the 

free radical inhibitor. DMAEMA (1 mL, 5,93x10-3 mol), 4-Cyano-4-

(phenylcarbonothioylthio) pentanoic acid (4,65 x10-6 mol, 279,38 g/mol Sigma-

Aldrich) and 2,2'-azobisisobutyronitrile (AIBN) (1 mol % of the monomer, 0,0097 

g) were added to tetrahydrofuran (THF, Panreac) (approximately 5 mL) in a 

Shleck flask. Previously to the polymerization, the reaction mixture was 

submitted to three freeze-pump-thaw cycles. The flask was then submerged in 

an oil bath preheated to 60 ºC and the polymerization was allowed to occur for 

24 h under magnetic stirring. The resulting polymer was precipitated by pouring 

the mixture into hexane and centrifuged at 10 000 rpm for 10 min. Afterwards, 

the supernatant was discarded and the pellet was resuspend in THF, this 

process was repeated two more times for the pellet. The polymer was then 

dried under vacuum at 40 ºC for 72 h. To the neutral PDMAEMA product 

obtained 12 M HCl were added under stirring until the polymer completely 

dissolved, due to its conversion into a hydrochloride salt. The PDMAEMA•HCl 

polyelectrolyte was then precipitated with acetone, the mixture was cooled at -

20 ºC for 10 min and then centrifuged at 10 000 rpm for 10 min. The white 

powder constituting the pellet was recovered and dried under vacuum at 60 ºC 

overnight.  

The exact amount of polymer was dissolved in water to reach the final 

concentration of 1 mg/ml. The polymer was then stored at 4ºC. 
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2. Gel permeation chromatography 

 

 

A triple detection GPC (SEC3) analysis was performed in a modular system 

constituted by a degasser, HPLC pump (K-1001) and RI detector (K-2300) are 

from Knauer; viscometer and RALLS from Viscotek (Trisec Dual Detector Model 

270), using two PL aquagel-OH mixed 8 µm 300 x 7.5 mm columns and using 

two PL aquagel-OH mixed columns. Eluent was 0,5 M NaNO3 in pH 2 

phosphate buffer (containing 0.1% sodium azide) at 1mL/min. The sample was 

dissolved at 10 mg/mL in 10-2 M HCl solution. 

 

3. Preparation of PDMAEMA/pDNA polyplexes 
 

 

In the first part of the work we used the plasmid pAAV2.1 CMV eGFP3 (5504bp) 

and for second part we used the plasmid pEPito-hCMV-eGFP (5245bp), both 

encoding an enhanced green fluorescent protein (GFP) to prepare the 

polyplexes with the  300 and 200 kDa PDMAEMA, respectively (figure 4). The 

pAAV-plasmid was amplified in Escherichia coli TOP10 competent cells and the 

pEPito-plasmid was amplified in Escherichia coli GT115 competent cells 

(Invivogen) in LB medium to sufficient quantities by using standard molecular 

biology techniques, including harvesting and purification via Quiagen’s Maxi-

Prep kit. pDNA concentration and quality were determined by A260/280 ratio 

(NanoDrop 2000, Thermo Scientific) and by agarose gel electrophoresis. 

Despite the different plasmid backbone, the sizes are very similar and the 

reporter gene very similar. 

 

The polyplexes were prepared in water in N/P (nitrogen/phosphorus) ratios of 

5/1; 7.5/1; 10/1; 12.5/1; 20/1 for the 354 kDa polymer and in the ratios 5/1; 

7.5/1; 10/1; 12.5/1; 20/1 for the new polymer (Mw 103.3kDa). To achieve the 

indicated N/P ratios, calculations were done according to equation below, where 

mp is the mass of polymer, mD is the mass of DNA, Mo,D is the average repeat 

unit molecular weight of DNA, and Mo,p is the repeat unit molecular weight of the 
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polymer. This equation assumes there is only one ionizable nitrogen group per 

repeat unit of the polymer. 

 

 

 

4. Determination of size and surface charge of polyplexes 
 

 

 

The determination of diameters of the polyplexes was perfomed by dynamic 

light scattering (DLS) using a Malvern Zetasizer Nanoseries instrument 

(Malvern Instruments, Malvern). Dynamic light scattering is also known as 

Photon Correlation Spectroscopy. This technique is one of the most popular 

methods used to determine the size of particles. Focusing a monochromatic 

light beam, such as a laser, a solution with spherical particles with Brownian 

motion causes a doppler shift when the light hits the moving particle, changing 

the wavelength of the incoming light. This change is related to the size of the 

particle. The Brownian motion is the random movement of the particles in a 

solution, where the smaller particles move faster than bigger particles [81, 82]. 

Scattered light was detected at 173º angle and a temperature of 25ºC. The 

surface charge of the polyplexes was estimated by zeta potential 

measurements using laser Doppler velocimetry and phase analysis light 

scattering (M3-PALS) technology. 

 

5. Morphologic analysis of PDMAEMA polyplexes by 

transmission electron microscopy 
 

 

Samples were deposited on copper grids coated with Formvar® films, stained 

with 2% (w/v) phosphotungstic acid and washed with water. The analysis was 

performed using a transmission electron microscopy (TEM) (JEOL JEM-1011 

electron microscope, Tokyo, Japan). 
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6. Stability assay over time 
 

 

The polyplexes (354kDa PDMAEMA) in 5/1; 10/1; 20/1 N/P ratios were 

prepared in triplicate for each temperature condition (4ºC and 37ºC), as 

described before. The samples were measured in the day of preparation and 

every two weeks to determine variations in size, polydispersity index (PdI) and 

surface charge, as described in the previously section. 

 

 

7. Electrophoretic mobility shift assay (EMSA) 
 

 

DNA complexation with the 354kDa PDMAEMA and the newly synthesized 

PDMAEMA was confirmed by gel electrophoresis. PDMAEMA/pDNA complexes 

were prepared at N/P ratios 5/1, 7.5/1, 10/1, 12.5/1 and 20/1, as described in 

section 3. As control, 0.4 μg of DNA were mixed with Green Safe Direct Load® 

and loaded onto a 1% agarose (Ultrapure agarose, Invitrogen) gel in Tris-

acetate-EDTA (TAE) buffer (pH 8.0). The gel was electrophoresed at 60V for 90 

minutes in 1x TAE buffer and then imaged in a transiluminator (Alpha Innotech). 

 

 

8. DNAse protection assay 

 

 

PDMAEMA polyplexes were incubated with DNAse I to assess the ability of the 

polyplexes to protect the DNA from enzymatic degradation. The polyplexes 

were prepared as described above, to digest the DNA, 10x reaction buffer 

(200mM Tris-HCl, pH 8.3, 20 mM MgCl2, Sigma-Aldrich) was added and then 

we used a proportion of 1U DNAse I ( 1unit/µl in 50% glycerol, 10 mM Tris-HCl, 

pH 7.5, 10 mM CaCl2, 10 mM MgCl2, Sigma-Aldrich) per 1µg of plasmid. This 

mixture was incubated for 5 min at 37ºC for the PDMAEMA 354kDa and 15 min 
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at 37ºC for the new PDMAEMA, and after was stop with the addition of 50 mM 

EDTA (Sigma-Aldrich). The samples were mixed with Green Safe Direct Load® 

and loaded onto a 1% agarose (Ultrapure agarose, Invitrogen) gel in Tris-

acetate-EDTA (TAE) buffer (pH 8.0). 

The gels were run at 60V for 90 minutes in TAE buffer and imaged in a 

transiluminator (Alpha Innotech). 

 

 

9. Stability assay in the presence of serum proteins 
 
 
 
 

To assess the stability of the polyplexes in the presence serum, the polyplexes 

were incubated at 37ºC and 150 rpm in DMEM w/ 5% FBS in a ratio of 1/4 

during 24h, 48h and 72h. To assess the stability, an electrophoretic mobility 

shift assay perfomed as described in section 7. 

 

10. Cell lines and culture conditions 
 

 

 

The HEK293 and D407 cell lines used in the in vitro experiments were 

maintained in DMEM (Sigma-Aldrich) cell culture medium supplemented with 

10% fetal bovine serum (FBS, PAA), 1% Penicilyn/Streptomicyn (Sigma-

Aldrich) and 1% Glutamine (Sigma-Aldrich), and 5% fetal bovine serum (FBS, 

Sigma), 1% Penicilyn/Streptomicyn (Sigma-Aldrich) and 1% Glutamine (Sigma-

Aldrich), respectively. Cells were maintained at 37ºC in a humidified 5% CO2 

atmosphere. 
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11. Cell viability assay for cytotoxicity evaluation 
 

 

 

The cytotoxicity of the polymer and polyplexes was evaluated up to 72 hours, 

with controls as follows: cells in standard cell culture conditions and cells 

treated with a latex solution, as positive (blank) and negative controls, 

respectively. Cell viability was determined using the MTT (3-[4,5-

dimethylthiazol-2-yl]2,5-diphenyltetrazolium bromide, Sigma-Aldrich) assay as 

described by [83].  

For these experiments, HEK293 and D407 cells were seeded at a density of 

2x104cells/well (48-well plate).  After 24h, cells were incubated with increasing 

concentrations of the free polymer (5, 7.5, 10, 12.5, 15 and 20 μg/mL). For the 

new polymer, D407 cells were incubated in a larger range of polymer 

concentrations (1, 3, 5, 7.5, 10, 12.5, 15, 20, 50, 100 μg/mL). To prepare each 

of the polymer solutions, 1 mg/ml polymer stock solution was diluted in cell 

culture medium and added to each well. 

 

For the polyplexes formed with either the 354kDa PDMAEMA and the new 

PDMAEMA, we have tested three concentrations for each polymer:DNA ratio. In 

the cytotoxicity evaluation we have chosen the final concentration of 0,1 µg, 0,2 

µg and 0,5 µg of DNA per 2x104cells to reflect future transfection conditions. 

The polyplexes were diluted in cell culture medium and added to each well. 

At each time point (24, 48 and 72 hours), 25 μL MTT solution (5mg/mL in PBS) 

were added to each well and incubated for 4 hours. The solution was removed 

and replaced with 250μL of isopropanol-HCl (0.04N) to dissolve the blue 

formazan crystals produced and left to incubate further for 1 hour at 37ºC, 5% 

CO2. Absorbance at 570nm and 630nm were measured for each well using an 

infiniteM200 (TECAN) microplate reader. The relative cell viability (%) was 

calculated by [abs]sample/[abs]controlx100 [84], with cells from the positive control 

representing 100% viability. 
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12. Transfection efficiency assay 
 

 

 

For the determination of the gene transfer efficiency of 354kDa PDMAEMA, 

cells were plated at 1x105 cells/well in clear 6-well tissue culture plates. 

FuGENE HD® (Promega, USA) was used as the transfection control and 

according to the manufacturer instructions. PDMAEMA-DNA polyplexes were 

added to the cells at a ratio of 1µg of pDNA per 1x105 cells and further 

incubated for 72 h. Cells cultured in standard culture conditions were used as a 

non transfection control. 

Transfection efficiency was evaluated qualitatively by fluorescence microscopy 

and quantitatively by flow cytometry. Imaging was performed in an inverted 

fluorescence microscope (LEICA DMIL-LEICA DC500). Green fluorescent 

protein (GFP) positive cells were scored by flow cytometry (FACSCalibur, BD 

Biosciences, USA) using the FL-1H green channel. A total of 1x104 events were 

counted for each sample and the percentage of positive events corresponds to 

the gated events minus the negative control, for transfection (non-transfected 

cells). 

For the determination of the gene transfer efficiency of the newly synthetized 

PDMAEMA, cells were plated at 1,5x105 cells/well in clear 6-well tissue culture 

plates. Cells were plated in higher number than before to ensure that we had 

enough cells to acquire a bigger number of events in the flow cytometry. 

FuGENE HD® (Promega, USA) was used as the transfection control and 

according to the manufacturer instructions. PDMAEMA: DNA polyplexes were 

added to the cells at a ratio of 1µg of pDNA per 1x105 cells in two conditions: 

directly added (non-diluted) and diluted in 100 μL of medium without FBS. After 

2 min complete medium was added and further incubated for 72 h. Cells 

cultured in standard culture conditions were used as a non transfection control. 

Transfection efficiency was evaluated qualitatively by fluorescence microscopy 

and quantitatively by flow cytometry. Imaging was performed in an inverted 

fluorescence microscope (Axiovert 40 CFL, Zeiss). Green fluorescent protein 

(GFP) positive cells were scored by flow cytometry (FACScan, BD Biosciences, 

USA) using the FL-1H green channel. A total of 1x105 events were counted for 
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each sample and the percentage of positive events corresponds to the gated 

events minus the negative control. 

 

13. Animals 
 

 

 

C57BL/6 mice (3 months old) were used as experimental animals, and housed 

in controlled temperature and 12 hour light/dark cycle with food and water ad 

libitum. All experimental procedures were carried out according to the 

Portuguese and European Union regulations (FELASA) for the use of animals 

and the Association for Research in Vision and Ophthalmology (ARVO) for the 

use of animals in ophthalmic and vision research. All procedures were 

performed under anesthesia with 2,2,2 tribromoethanol (Sigma-Aldrich) 

administered by intraperitoneal injection (250 mg/Kg dose). Animals were 

humanely sacrificed by anesthesia and death was confirmed by cervical 

dislocation. 

 

14. Activation of microglia after intravitreous injection in 

C57/BL6 mice 
 

 

 

In order to evaluate the compability of the PDMAEMA:DNA polyplexes in vivo, 3 

month old C57BL/6 mice were injected with polyplexes with a N/P ratio of 12.5 

by intravitreous injection in the right eye, under a stereomicroscope (Nikon 

Stereoscopic Microscope). The left eye was use as control. A injection 

procedure without administration of any vehicle was also performed (sham 

injection). The mice were sacrificed 14 days post-injection, the eyes enucleated 

and fixed in PFA 4%( Sigma-Aldrich), immersed in sucrose 30% (Sigma-

Aldrich), and after 24h were included in Optimal Cutting Temperature (OCT) 

compound (VWR). To eliminate the autofluorescence of the retina, sections 

were first washed with PBS 0.1% TritonX for 5 minutes, incubated in 0.25% 
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KMnO4 in PBS for 15 minutes, rinsed with PBS twice, and then incubated in 

0.1% oxalic acid in PBS for 20 minutes at room temperature. Treated sections 

were washed in PBS 0.1% TritonX three times. An immunofluorescence assay 

was performed, using an antibody against Iba-1, a marker of microglia 

activation. The primary antibody (Iba-1, Wako Pure Chemical Industries) was 

incubated overnight at 4ºC at a dilution of 1/1000. A secondary antibody, Alexa 

Fluor 594 (1/2000, Invitrogen), was used for detection of the signal. The 

secondary antibody was incubated for 1h at room temperature, and the samples 

were visualized in an Axio Observer Z2 Fluorescence microscope (Zeiss). 

 

15. Statistical analysis 
 

 

 

Statistical analysis was performed between the control and the tested 

conditions by a one-way ANOVA followed by a post hoc Dunnett’s Multiple 

Comparison Test for the cell viability and transfection assays, between the 

tested conditions an unpaired t-test was performed. For the polyplexes, 

analyses between different ratios were determined with one-way ANOVA 

followed by a post hoc Benferroni’s Multiple Comparison Test. 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 
 

Results and Discussion 

 

This section is divided in two parts: in part one, we have characterized a 

previously synthesized PDMAEMA with 354kDa and in part two, we describe 

the synthesis and characterization of a smaller Mw PDMAEMA (that was found 

to have 103.3kDa). 

 

Part one: 

 

1. Characterization of 354kDa PDMAEMA-DNA polyplexes 

 

 

1.1 PDMAEMA-DNA polyplexes have characteristics compatible 

with gene therapy 

 

 

 

Characterization of the polyplexes included the determination of size, 

polydispersity and zeta potential, as shown in table I.  

Ideally, polyplexes should present a size below 500 nm, an optimum 

polydispersity of 0.1, and a positive surface charge, which constitute favorable 

requisites for cellular uptake. 

 

Table I: Characterization of polyplexes by size, PdI and zeta potencial 

 

 

Formulation Size (nm) 
Polydispersity 
Index (PdI) 

Surface Charge 
(+mV) 

PDMAEMA 5 129.96±4.28 0.310±0.062 42.32±6.25 

PDMAEMA 7.5 123.0±15.36 0.301±0.090 37.26±9.06 

PDMAEMA 10 141.58±28.2 0.298±0.055 44.82±7.17 

PDMAEMA 12.5 164.4±49.83 0.290±0.048 25.74±5.79 

PDMAEMA 20 266.52±32.64 0.383±0.071 24.06±4.83 
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*There are only significant size differences between the ratio 20/1 and the other 

ratios 

*The ratios of 5/1, 7.5/1 and 10/1 are significantly different from the ratios 12.5/1 

and 20/1 in terms of zeta potential 

*There is no significant difference in the polydispersity index 

 

 

 

 

Figure 9- A analysis by transmission electron microscopy of PDMAEMA:DNA 
polyplexes at different ratios: 5(a), 7.5(b), 10(c), 12.5(d) and 20(e). Scale bar 
represents 200nm. 
 

In table I it is possible to observe that the size of PDMAEMA/pDNA polyplexes 

increases with the increase in N/P ratio from 5 to 20, but all ratios have 

diameters smaller than 300 nm. This trend correlates well with the 

morphological analysis performed by transmission electron microscopy (TEM) 

(figure 9). The polydispersity index, which evaluates the homogeneity, is below 

0.4, indicating a homogeneous population of particles, which is desirable for 

consistency of results regarding cellular penetration. As expected, the 

polyplexes have positive charge since there is an excess of polymer to DNA.  

 

However, whilst there is a clear trend of increase in size with increasing N/P 

ratio, zeta potential values present quite a random variation. In the literature, 

two opposite trends in size with N/P ratio, depending on Mw, were observed for 

PDMAEMA. For a polymer with 915 kDa, a behavior similar to that presented by 
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our polymer was observed, with a random but not very significant variation in 

polyplex diameter for small N/P ratios, and a significant increase when going 

from N/P = 16 to N/P = 20 [73]. PDMAEMA with 43 kDa referred in that study 

presented a completely different behavior from one of comparable Mw (39 kDa) 

described in a different study [85]. The former showed a size reduction with the 

increase of the N/P ratio, and the latter a random variation in size and a 

decrease in zeta potential. 

It seems, therefore, that size and surface charge are very sensitive to polymer 

molecular weight and, probably, to polyplex preparation conditions, rendering it 

difficult to establish a correlation between those parameters and the N/P ratio. 

In fact, there are indications that the polymer molecular weight may affect 

transfection more than the size of polyplexes [73]. 

 

 

 

1.2 PDMAEMA efficiently complexes pDNA 
 

 

The electrophoretic mobility shift assay is based on the behavior of pDNA in an 

agarose gel, which migrates from the negative to the positive end. Upon 

complexation with a cationic polymer, the DNA is retained in the well, unable to 

migrate through the gel. As observed in figure 10, for all N/P ratios the 

PDMAEMA polyplexes were able to complex and retain the DNA, and this is 

evidenced by the absence of DNA bands in the gel lanes, with all DNA retained 

in the wells. As expected, free DNA (lane 2) migrates towards the positive pole 

and PDMAEMA polymer (lane 3) shows no signal in the gel. 
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Figure 10- Electrophoretic mobility shift assay for polyplexes of different N/P ratios 
analyzed in a 1% agarose gel, with pDNA visualized by GreenSafe Direct Load: Lane 
1: Marker 1kb; Lane 2: Free pDNA; Lane 3: Free PDMAEMA; Lane 4: NPs 5/1; Lane 5: 
NPs 7,5/1; Lane 6: NPs 10/1; Lane 7: NPs 12,5/1; Lane 8: NPs 20/1 
 

 

1.3 PDMAEMA polyplexes protect DNA from DNAse 

degradation 
 

 

In addition to the capacity of DNA complexation by PDMAEMA, it is also 

important to assess if the polyplexes can protect DNA from degradation, both in 

the extracellular and intracellular millieu. The presence of nucleases is an 

important barrier that the polyplexes must overcome. In order to evaluate 

protection of DNA from degrading enzymes, PDMAEMA polyplexes were 

incubated with DNase for 5 min and as shown in figure 11, able to protect DNA 

from degradation, as evidenced by the DNA retained in the wells when 

compared with free DNA subjected to the action of DNAse (lane 3), which has 

been totally degraded, as expected 

. 
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Figure 11-  The PDMAEMA polyplexes can effectively protect the pDNA against the 
DNAse I as analyzed in a 1% agarose gel, with pDNA visualized by GreenSafe Direct 
Load: Lane 1: Marker 1kb; Lane 2: Free pDNA; Lane 3: Free pDNA with DNAse I; Lane 
4: NPs 5/1; Lane 5: NPs 5/1 with DNAse I; Lane 6: NPs 7,5/1; Lane 7: NPs 7,5/1 with 
DNAse I; Lane 8: NPs 10/1; Lane 9: NPs 10/1 with DNAse I; Lane 10: NPs 12,5/1; 
Lane 11: NPs 12,5/1 with DNAse I; Lane 12: NPs 20/1; Lane 13: NPs 20/1 with DNAse 
I. 
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1.4 Stability assay of polyplexes over time 

 

 

In order to assess the stability in storage (4ºC) and physiological conditions 

(37ºC), the polyplexes (N/P 5/10/20) were measured in terms of size, PdI and 

zeta potencial every 14 days (2 weeks) (figure 12). For the NPs 5 ratio in terms 

of size, at 37ºC the size appears to be pretty stable until around 25 days, after 

that the size starts to increase. At 4ºC, the polyplexes were very stable until 125 

days after preparation. The polyplexes are stable until 32 days at 37ºC, from 

this point the PdI increased. At 4ºC the polyplexes were stable up to 125 days. 

The zeta potential in both conditions remains stable.  

 

Figure 12- Measurements of size, PdI and zeta potencial of the stability assay of three 
polyplexes ratios (5/10/20). The polyplexes were aged in two conditions: 37ºC (red 
open circles) and 4ºC (black closed squares). 
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The increased size and PdI can be explained by the higher temperature, which 

increases the Brownian motion leading to the increased collision of the 

polyplexes, causing aggregation. This behavior was also observed with 

PDMAEMA polyplexes aged in 10% sucrose/aqueous solutions by Cherng et al. 

After 6 months of aging, the size of these polyplexes increased at 40ºC in 

comparison with lower temperatures of 4ºC and 20ºC [86]. This was also 

observed for other polymer, chitosan, that at a higher temperature (45ºC), its 

polyplexes also increased their size [87]. 

The ratios 10 and 20 were shown to maintain their size stable up to 125 days in 

both temperature conditions. In terms of PdI and zeta potential no major 

changes were observed great alterations. This could indicate that higher ratios 

of polymer/pDNA are more stable, which follows a logical trend that higher 

amounts of polymer to DNA can increase the complexation of DNA and thus 

promote stronger interaction and as consequence, resistance to temperature 

induced changes. 

 

2. Evaluation of the cytotoxicity of the PDMAEMA polymer and 

PDMAEMA-DNA polyplexes 
 

 

A critical feature in all materials to be used for biomedical applications, including 

gene therapy, is the biocompatibility of the material. The latter is first evaluated 

in vitro by testing the cytotoxicity on a cell culture setup. We have evaluated the 

cytotoxic profile of both the polymer and polymer-DNA complexes using two cell 

lines: a commonly used cell line for transfection studies - the HEK293 cells - 

and a retinal pigment epithelium cell line, D407, which is used as an in vitro 

model for evaluating potential gene therapy vectors for the retina. 
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We firstly evaluated the effect on cellular viability of the PDMAEMA-DNA 

polyplexes, as shown in figures 13 and 14. The results are presented in terms 

of mass of DNA, and for all the conditions tested (different polymer:DNA ratios 

and different quantities of polyplexes, there was no deleterious effect for cell 

viability both for HEK293 and D407 cells. Therefore, the polyplexes, even at 

concentrations more than two times higher than those to be used for 

transfection, are not cytotoxic for either cell line. 

 

 

 

´ 

 

 

 

 

 

Figure 13- HEK293 cell viability upon challenge with PDMAEMA:DNA polyplexes at 
different concentrations, in function of mass of DNA, up to 72h. Lowest acceptable 
threshold of cell viability indicated by red bar (80% cell viability). Statistical significance 
was determined with one-way ANOVA followed by a post hoc Dunnett’s Multiple 
Comparison Test and the statistical diference indicated by the star (*) symbol (* 
p<0.05, **p<0.01,  *** p<0.001 and ****p<0.0001). 
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Figure 14- D407 cell viability upon challenge with PDMAEMA:DNA polyplexes at 
different concentrations, in function of mass of DNA, up to 72h. Lowest acceptable 
threshold of cell viability indicated by red bar (80% cell viability). Statistical significance 
was determined with one-way ANOVA followed by a post hoc Dunnett’s Multiple 
Comparison Test and the statistical diference indicated by the star (*) symbol (* 
p<0.05, **p<0.01,  *** p<0.001 and ****p<0.0001). 

 

 

However, it is also important to test the cytotoxicity of the polymer after it 

releases its DNA load, since it is known that, for synthetic polymers such as PEI 

the free polymer shows toxicity towards cells [61]. 

Figures 15 and 16 show the results for the cytotoxicity profile of PDMAEMA, up 

to 72 hours, in HEK292 and D407 cells, respectively. For the HEK293 cells, 

concentrations of polymer higher than 10 µg/ml causes a significant decrease in 

cell viability, which is more pronounced after 48 hours. Concentrations below 10 

µg/ml do not affect cell viability, with values similar to control for all time points 

(24, 48 and 72 hours). 

For D407 cells, a similar pattern is observed to the one for HEK293 cells, but 

cellular viability values are higher than what is observed for HEK293 cells. 

Another difference is that at 72 h there is a significant increase in cell viability. 

This is most likely due to a cell density effect, since it is commonly known that 

cell density in a plate affects the proliferation rate of cells. For HEK293 cells the 

decrease in cellular viability was considerable, and the cell density in the plate 



50 
 

therefore did not permit a significant recovery of the proliferation, unlike what 

was observed for D407 cells, where the polymer affected much less the cellular 

viability. 

In summary, in the concentration range to be used for transfection studies, 

which is bellow 10 µg/ml, the free polymer has not shown a significant cytotoxic 

effect over both cell lines. 

 

 

 

 

 

 

 

 

 

Figure 15- HEK293 cell viability upon challenge with different PDMAEMA 
concentrations (5, 7.5, 10, 12.5, 15 and 20 µg/ml) up to 72h. Lowest acceptable 
threshold of cell viability indicated by red bar (80% cell viability). Results are averaged 
from three independent experiments. Vertical bars correspond to standard deviation. 
Statistical significance was determined with one-way ANOVA followed by a post hoc 
Dunnett’s Multiple Comparison Test and the statistical diference indicated by the star 
(*) symbol (* p<0.05, **p<0.01,  *** p<0.001 and ****p<0.0001). 
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Figure 16- D407 cell viability upon challenge with different PDMAEMA concentrations 
(5, 7.5, 10, 12.5, 15 and 20 µg/ml) up to 72h. Lowest acceptable threshold of cell 
viability indicated by red bar (80% cell viability). Results are averaged from three 
independent experiments. Vertical bars correspond to standard deviation. Statistical 
significance was determined with one-way ANOVA followed by a post hoc Dunnett’s 
Multiple Comparison Test and the statistical diference indicated by the star (*) symbol 
(* p<0.05, **p<0.01,  *** p<0.001 and ****p<0.0001). 

 

3. Transfection efficiency of PDMAEMA-DNA polyplexes 
 

 

We have evaluated the transfection efficiency of the different PDMAEMA 

polyplexes in the two cell lines (HEK293 and D407 cell lines) qualitatively by 

fluorescence microscopy (figures 17 and 18) and quantitatively by flow 

cytometry (figures 19a and 19b). The results for the HEK293 cell line (figure 

19a) show that the transfection efficiency of PDMAEMA polyplexes increases 

with the N/P ratio, with values for cell transfection ranging from 10% for the ratio 

of N/P 5 to 50% in the highest ratio, N/P 20.  

The results for the retinal cell line, D407 (figure 19b), show that the transfection 

efficiency for this cell line follows the same trend as the one observed for 

HEK203 cells, but with lower values. This is consistent with what has been 

reported in the literature [88], as D407 are cells difficult to transfect even with 
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commercial reagents, as observed by the value obtained for FuGene HD® 

(40% compared with the 80% observed for HEK293 cells).  

When compared with other reports in the literature, the transfection efficiency 

observed for PDMAEMA for other cells (CHO cells) follows a similar trend in 

terms of ratio [72] . 

 
Figure 17- GFP expression, obtained by fluorescence microscopy at 72h post-
transfection in HEK293, for positive control for transfection (FuGENE®) and the 
different polyplexes ratios (5/7.5/10/12.5/20). Scale bar represents 100 μm. Images are 
representative of three independent experiments. 
 

 

Figure 18- GFP expression, obtained by fluorescence microscopy at 72h post-
transfection in D407 cells, for positive control for transfection (FuGENE®) and the 
different polyplexes ratios (5/7.5/10/12.5/20). Scale bar represents 100 μm. Images are 
representative of three independent experiments. 
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Figure 19- Transfection efficiency represented as GFP-positive cells as function of 
polyplexes ratios in (a) HEK293 and (b) D407 cell line. Results are averaged from 
three independent experiments. Vertical bars correspond to standard deviation. 
Statistical significance was determined with one-way ANOVA followed by a post hoc 
Dunnett’s Multiple Comparison Test and the statistical diference indicated by the star 
(*) symbol (*** p<0.001) 
 

 

It has been previously observed that larger PDMAEMA polyplexes have lower 

transfection efficiencies [89]. In the present work, our polyplexes have sizes in 

the range of 100 to 300 nm, sizes below the maximum threshold acceptable for 

transfection, so it is unlikely that this can explain the different observations for 

transfection efficiencies. Compared with other PDMAEMA-based approaches 

found in the literature, our polymer has a size which has been reported to be 

more efficient transfecting cells, but much more toxic [73]. In this work, we have 

found that despite the fact that our polymer had a size around 300KDa, its 

cytotoxicity is reduced. 
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4. Activation of microglia after intravitreous injection in mice 

C57BL/6 

Figure 20- Immunohistochemistry for Iba1, a marker of active microglia. (a) Non-

injected eye (b) PDMAEMA injected eye; (c) Sham injected eye. Red color: Iba-1; blue 

colour:DAPI.  Scale bar represents 50 μm 

 

In order to assess the in vivo compatibility of the PDMAEMA polyplexes, we 

have injected these polyplexes intravitreously in the eyes of C57BL/6 wild type 

mice and analyzed the activation of the microglia as a signal for inflammation. 

We have performed three conditions: non-injected eyes (control, figure 20a), 

injection procedure without administration of any vehicle (sham injection, figure 

20c) and injection of polyplexes (figure 20b).  

Two weeks post-injection, we have observed that, as expected, there is 

activation of the microglia in the retina, which is a sign of inflammation, in the 

eyes injected with the polyplexes. However, the degree of microglia activation is 

similar with the one observed for sham injected eyes, which indicates that the 

inflammation is mostly due to the injection procedure rather than the polyplexes. 

In this work we describe the synthesis by RAFT and evaluation of PDMAEMA 

as a vector for retinal gene therapy. Our results show that a 300KDa polymer is 

capable of forming nanosized, stable polyplexes in the presence of DNA. These 

polyplexes have size, charge and morphology adequate for the transfection of 

retinal cells in vitro. In vivo administration has shown no further inflammation 

than the one caused by the administration procedure. Further studies regarding 

the capacity of in vivo transfection will determine the suitability of this system as 

a vehicle for gene therapy for retinal pathologies.  
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Part two: 

 

1. Synthesis and structural characterization of a 200kDa 

PDMAEMA 
 

 

 

For the synthesis of PDMAEMA, RAFT was chosen from the several 

polymerization methodologies, due to its versatility regarding monomers and 

reaction conditions, as well as the synthesis of polymers with controlled 

molecular weight and narrow polydispersities [78]. 4-Cyano-4-

(phenylcarbonothioylthio)pentanoic acid (figure 21) was selected as chain 

transfer agent (CTA), due to its commercial availability and good performance 

with a number of monomers [90].  A [M]0/[CTA]0 ration of 1500 was used, which 

would lead to a polymer with Mn = 200 kDa.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 21- Scheme of chemical synthesis of PDMAEMA.  
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GPC analysis showed a monomodal molecular weight distribution (figure 22), 

with a number-average molecular weight (Mn) of 98,63 kDa, a weight average 

molecular weight (Mw) of 103,3 kDa, and a PdI (Polydispersity Index) (Mw/Mn) of 

1,047. For the calculations, a value of dn/dC = 0.149 mL/g was used [73]. 

The polymer has a lower Mn value than expected, and also a low value of PDI 

indicating, that the chosen CTA produces polymers with a narrow chain 

distribution. In fact, PDMAEMA has recently been synthesized by RAFT and the 

same CTA and PdIs (below 1.20) were obtained, which are in agreement with 

our results, although for a different polymer size range (below 40 kDa) [85]. Due 

to some limitations of the GPC analysis equipment that did not allow an 

accurate analysis, these results will be further analyzed by other technologies 

such as 1HNMR. 

 

 

 

 

 

 

 

 

Figure 22- SEC3 chromatogram of PDMAEMA (RI – refractometer, DP – viscometer, 

and LS – light scattering traces). 
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2. The 103.3kDa PDMAEMA is able to form PDMAEMA-DNA 

polyplexes 

 

 

2.1 PDMAEMA-DNA polyplexes have characteristics compatible 

with gene therapy 
 

 

Characterization of the polyplexes, performed by photon correlation 

spectroscopy and laser Doppler anemometry, included the determination of 

size, polydispersity and zeta potential, as shown in table II.  

As stated before, polyplexes should ideally present a size below 500 nm, an 

optimum polydispersity of 0.1, and a positive zeta potential, favorable requisites 

for cellular uptake. 

 

Table II: Characterization of polyplexes by size, PdI and zeta potencial 

Formulation Size (nm) 
Polydispersity 
Index (PdI) 

Surface charge 
(+mV) 

PDMAEMA 5 159.73±8.27 0.237±0.061 39.2±4.73 

PDMAEMA 7,5 148.47±19.94 0.266±0.016 43±7.18 

PDMAEMA 10 307.87±181.7 0.401±0.129 27.6±7.45 

PDMAEMA 12,5 323.13±171.73 0.441±0.055 27.27±9.24 

PDMAEMA 20 587.7±193.64 0.582±0.059 24.57±9.87 
 

In table II it is possible to observe that the size of PDMAEMA/pDNA polyplexes 

increases with the increase in N/P ratio from 5 to 20, but only the ratios 5 and 

7,5 have diameters smaller than 500 nm. The polydispersity index is below 0.4 

in the lower ratios (5 and 7.5), indicating a homogeneous population of 

particles, which is desirable for consistency of results regarding cellular 

penetration. As expected, the polyplexes have positive charge. By TEM 

analysis we observed that the polyplexes have a spherical morphology (figure 

23). As expected, the polyplexes have positive charge. Based on these results, 

we have selected the ratios 5 and 7,5 for further studies. 
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Figure 23- Analysis by transmission electron microscopy of PDMAEMA-DNA 

polyplexes at ratios, 5(a) and 7.5(b). Polyplexes have sizes smaller than 200nm. Scale 

bar represents 200nm.  

 

 

 

2.2 PDMAEMA efficiently complexes pDNA 
 

 

As observed in figure 24, for all N/P ratios the PDMAEMA polyplexes were able 

to complex and retain the DNA, and this is evidenced by the absence of DNA 

bands in the gel lanes, lanes 4 (NPs 5) and 5 (NPs 7,5) with all DNA retained in 

the wells. As expected, free DNA (lane 2) migrates towards the positive pole 

and PDMAEMA polymer (lane 3) shows no signal in the gel, as expected. 

PDMAEMA efficiently complexes pDNA, which is retained in the well. 

 

 

 

 

 

 

Figure 24- Electrophoretic mobility shift assay for polyplexes of different N/P ratios 
analyzed in a 1% agarose gel, with pDNA visualized by GreenSafe Direct Load: Lane 
1: Marker 1kb; Lane 2: Free pDNA; Lane 3: Free PDMAEMA; Lane 4: NPs 5/1; Lane 5: 
NPs 7,5/1. 
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2.3 PDMAEMA polyplexes protect DNA from DNAse 

degradation 
 

 

In addition to the capacity of DNA complexation by PDMAEMA, it is also 

important to assess if the polyplexes formed with this smaller Mw polymer can 

protect DNA from degradation, both in the extracellular and intracellular millieu. 

In order to evaluate DNA protection from degrading enzymes, PDMAEMA 

polyplexes were incubated with DNase for a longer time period than the 354kDa 

polymer and as shown in figure 25, able to protect DNA after 15 min of 

exposure to DNAse I, evidenced by the DNA retained in the wells when 

compared with free DNA subjected to the action of DNAse I (lane 7 and 9), 

which has been fully degraded. 

 

 

 

 

 

 

 

Figure 25-  The PDMAEMA polyplexes can effectively protect the pDNA against the 
DNAse I as analyzed in a 1% agarose gel, with pDNA visualized by GreenSafe Direct 
Load: Lane 1: Marker 1kb; Lane 2: Free pDNA; Lane 3: Free pDNA with DNAse I; Lane 
4: Free PDMAEMA; Lane 5: Free PDMAEMA with DNAse I; Lane 6: NPs 5/1; Lane 7: 
NPs 5/1 with DNAse I; Lane 8: NPs 7,5/1; Lane 9: NPs 7,5/1 with DNAse I. 
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2.4 PDMAEMA-DNA polyplexes are stable in in vitro culture 

conditions 

 

 

In order to evaluate the behavior in culture conditions, the polyplexes were 

incubated in DMEM medium containing 5% FBS for different time periods: 24h, 

48h and 72h. After the incubation time the stability of the polyplexes was 

evaluated by the electrophoretic mobility shift assay (figure 26). 

 

 

 

 

 

 

 

Figure 26- PDMAEMA polyplexes are stable in the presence of serum proteins up to 
72h as analyzed in a 1% agarose gel, with pDNA visualized by GreenSafe Direct Load: 
Lane 1: Marker 1kb; Lane 2: Free pDNA; Lane 3: NPs 5/1; Lane 4: NPs 5/1 + 24h 
DMEM w/serum proteins; Lane 5: NPs 5/1 + 48h DMEM w/serum proteins; Lane 6: 
NPs 5/1 + 72h DMEM w/serum proteins; Lane 7: NPs 7,5/1; Lane 8: NPs 7,5/1 + 24h 
DMEM w/serum proteins; Lane 9: NPs 7,5/1 + 48h DMEM w/serum proteins; Lane 10: 
NPs 7,5/1 + 72h DMEM w/serum proteins. 

 

Lanes 3 and 7 are corresponding to polyplexes with ratios of NPs 5/1 and NPs 

7,5/1 respectively, without incubation with serum proteins. This assay 

demonstrates, the stability of these polyplexes in the presence of serum 

proteins up to 72h, since no pDNA migration was observed in the lanes 4, 5 and 

6 for the NPs 5/1 and the lanes 8, 9 and 10 for the NPs 7,5/1. This stability can 

be an advantage in a systemic delivery since it will not release its load while in 

circulation, but can also be a problem for pDNA release inside the cells. 
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3. Cytotoxicity of the PDMAEMA polymer and PDMAEMA-DNA 

polyplexes is concentration-dependent 
 

 

In this part of the work we have evaluated the cytotoxic profile of both the 

polymer and polymer-DNA complexes using only one cell line: a retinal pigment 

epithelium cell line, D407, which is used as an in vitro model for evaluating 

potential gene therapy vectors for the retina. 

We firstly evaluated the effect on cellular viability of the PDMAEMA:DNA 

polyplexes, as shown in figure 27. The results are presented in terms of mass of 

DNA, and for all the conditions tested (different polymer:DNA ratios and 

different quantities of polyplexes), there was no deleterious effect on cell 

viability for D407 cells. Therefore, the polyplexes, even at concentrations more 

than two times higher than those used for transfection. 

 

 

 

 

 

 

 

 

 

 

Figure 27- D407 cell viability upon challenge with PDMAEMA:DNA polyplexes at 

diferent concentrations, in function of mass of DNA, up to 72h. Lowest acceptable 

threshold of cell viability indicated by red bar (80% cell viability). Statistical significance 

was determined with one-way ANOVA followed by a post hoc Dunnett’s Multiple 

Comparison Test and the statistical diference indicated by the star (*) symbol (* 

p<0.05, **p<0.01,  *** p<0.001 and ****p<0.0001). 
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Figure 28- D407 cell viability upon challenge with different PDMAEMA concentrations 
(1, 3, 5, 7.5, 10, 12.5, 15, 20, 50 and 100 µg/ml) up to 72h. Lowest acceptable 
threshold of cell viability indicated by red bar (80% cell viability). Results are averaged 
from three independent experiments. Vertical bars correspond to standard deviation. 
Statistical significance was determined with one-way ANOVA followed by a post hoc 
Dunnett’s Multiple Comparison Test and the statistical diference indicated by the star 
(*) symbol (* p<0.05, **p<0.01,  *** p<0.001 and ****p<0.0001). 

 

 

However, it is also important to test the cytotoxicity of the polymer after it 

releases its DNA load, since it is known that as mentioned before, for synthetic 

polymers such as PEI, the free polymer shows toxicity towards cells [61]. So the 

free PDMAEMA polymer was tested in a wider range of concentrations than the 

polymer described in part one of this results section (1, 3, 5, 7.5, 10, 12.5, 15, 

20, 50 and 100 µg/ml). 

Figures 28 show the results for the cytotoxicity profile of PDMAEMA, up to 72 

hours, in D407 cells. Concentrations of polymer higher than 20 µg/ml cause a 

significant decrease in cell viability, which is more pronounced after 48 hours. 

Only with a higher PDMAEMA concentration of 50 µg/ml we observed a 

decreased cell viability of about 50% for all time points. With the highest 

concentration of 100 µg/ml, the cell viability only reaches around 10-15%. 

Concentrations below 20 µg/ml do not affect cell viability, with values similar to 

control for all time points (24, 48 and 72 hours). 
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Comparing the results of 103.3kDa PDMAEMA with the previously studied 

354kDa PDMAEMA, at the same concentrations of 5, 7.5, 10, 12.5 and 20 

µg/ml, the 103.3 kDa polymer showed to be less cytotoxic. Some reports 

showed that this reduction in cytotoxicity can be explained due to the molecular 

weight of the polymer [70, 73]. 

In summary, in the concentration range to be used for the transfection studies, 

which is bellow 20 µg/ml, the free polymer has not shown a significant cytotoxic 

effect over D407 cells. 

 

4. 103.3kDa PDMAEMA-DNA polyplexes transfect D407 cells 

 

 

 

For the 103.3kDa polymer, we only evaluated the transfection efficiency of the 

different ratios of PDMAEMA polyplexes in the D407 cell line. This was done 

qualitatively by fluorescence microscopy (figure 29) and quantitatively by flow 

cytometry (figure 30). We also evaluated if the administration method had 

influence on the transfection efficiency, by testing two different conditions: 

directly added to the cells (non-diluited) and diluited in 100 μL of medium 

without FBS. 

The results obtained in D407 (figure 30), showed that the transfection efficiency 

for this cell line follows the same trend as observed with the PDMAEMA 354kDa 

for HEK203 and D407 cells, but with lower values. This difference in values for 

HEK293 and D407 is consistent with what has been reported in the literature 

[88], as D407 are cells difficult to transfect even with commercial reagents, as 

observed by the value obtained for Fugene HD®. In terms of comparison of 

transfection values between the 354 and 103.3kDa polymers, it is also 

consistent with what has been described in the literature, that higher Mw 

PDMAEMA has higher transfection efficiency. Regarding the administration 

method, the results showed that there is no significant difference between the 

two administration conditions. 
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The ratio 7.5 showed to have significantly higher transfection efficiency than the 

ratio 5 in either administration condition (figure 30). When compared with other 

reports in the literature, the transfection efficiency observed for PDMAEMA for 

other cells (CHO cells) follows a similar trend in terms of ratio [72]. 

 

Figure 29- GFP expression, obtained by fluorescence microscopy at 72h post-
transfection in D407 cells, for positive control for transfection (FuGENE®), the two 
polyplexes ratios (5/ 7.5) and the two administration conditions: non-diluted (5/1 and 
7.5/1) and diluted (5/1 100µl and 7.5/1 100µl). Scale bar represents 100 μm. Images 
are representative of three independent experiments. 

 

 

It has been previously observed that larger PDMAEMA polyplexes have lower 

transfection efficiencies [89]. In the present work, our polyplexes have sizes in 

the range of 100 to 200 nm, sizes below the maximum threshold acceptable for 

transfection, so it is unlikely that this can explain the different observations for 

transfection efficiencies. Compared with other PDMAEMA-based approaches 

found in the literature, our polymer has a size which has been reported to be 

more efficient transfecting cells, but much more toxic [73]. In this work, we have 

found that our polymer with size around 100KDa compared with previously 

synthesized PDMAEMA with 354kDa, has reduced cytotoxicity. The low 

transfection efficiency can be the result of the high positive charge of the 

polymer, which does not allow the dissociation of the polyplexes and release of 

the pDNA within the cellular environment. Another possible explanation is that 
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the polyplexes are unable to enter the nucleus and therefore gene expression 

does not occur. 

 

 

 

 

 

 

 

 

 

 

 

Figure 30- Transfection efficiency represented as GFP-positive cells as function of 
polyplexes ratios in D407 cell line. Results are averaged from three independent 
experiments. Vertical bars correspond to standard deviation. Statistical significance 
was determined with one-way ANOVA followed by a post hoc Dunnett’s Multiple 
Comparison Test to compare the positive control with the tested conditions, unpaired t 
test was used to compare between conditions and the statistical diference indicated by 
the star (*) symbol (* p<0.05, **p<0.01,  *** p<0.001 and ****p<0.0001). 
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Conclusions 

 

The aim of the present study was two-fold:  1) characterize a previously 

synthesized PDMAEMA with a molecular weight of 354kDa as carrier for gene 

delivery in the eye and 2) synthetize a new PDMAEMA polymer by RAFT, with 

an Mw of 200kDa, to test if a variation in Mw could cause a variation in the gene 

efficiency. 

Our results show that the 354kDa polymer is capable of forming nanosized, 

stable polyplexes in the presence of DNA. These polyplexes have size, charge 

and morphology adequate for the transfection of cells. The cytotoxicity assays 

showed that the polymer, in the concentrations used in the transfection studies, 

is not cytotoxic. We found the transfection efficiency to be dependent of the 

polyplex molecular ratio, since higher ratios transfected better than lower ratios. 

The transfection efficiency was also dependent of the cell line. HEK293 cell line 

was more transfectable than D407 cell line. In vivo administration has shown no 

further inflammation than the one caused by the administration procedure.  

Based on these results a new polymer was synthesized by RAFT with a 

theoretical molecular weight of 200 kDa. What was obtained was a polymer with 

103.3kDa that was also able to form nanosized polyplexes, which are stable in 

the presence of serum proteins. These polyplexes have a size, charge and 

morphology suitable for transfection, but in D407 cells, this polymer had less 

cytotoxic effects than the PDMAEMA 354kDa. The transfection studies for the 

103.3kDa PDMAEMA showed that the polyplexes were able to transfect cells, 

despite the lower transfection efficiency than the one observed for the 354kDa 

polymers for the smaller ratios. Therefore, from this study we can conclude that 

higher Mw PDMAEMA has more potential for retinal gene therapy. 
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Future work 

 

For future work, we plan to evaluate the in vivo biocompability of the 103.3 kDa 

PDMAEMA by evaluation of the activation of microglia. In order to extensively 

evaluate this polymer, we will produce polyplexes of higher N/P ratios 

(10/12.5/20) because these are the ones that were more efficient in transfecting 

cells in the 354kDa PDMAEMA. 

In addition, we plan to conduct a series of experiments to elucidate the causes 

of low transfection efficiencies. For this purpose, we will evaluate what the rate 

limiting step in transfection is, by:  

- Inhibiting endocytosis; 

- Fluorescently tag the polymer and assess its intracellular path using 

endosomal markers; 

- Conjugate pDNA with a tagging kit for DNA and tracking its nuclear 

penetration. 

Althogether, these results will enable to identify the bottleneck in transfection 

and further optimize this polymer for improved gene delivery.   
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