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Abstract 

Environmental magnetism of speleothems is still in its early stage of development. Here we 

report on our investigation of the environmental and paleomagnetic information that has been 

recorded in speleothems, and what are the factors that control its preservation and reliability. 

To address these issues, we used a multidisciplinary approach, including rock magnetism, 

petrography, scanning electron microscopy, stable carbon and oxygen isotope compositions, 

and major and trace element concentrations. We applied this to a set of samples from 

different stages of speleothem evolution: present-day dripwater (glass plates), a weathered 

stalactite, a fresh stalagmite, cave sediments and terra rossa soils. These samples come from 

the Penico and Excentricas caves, located in two distinct aquifers of the Algarve region, 

South Portugal. Our results show that the main magnetic carriers of the speleothems under 

study are primary (detrital) and consist of maghemite (and magnetite?). Similarities in 

coercivity- and temperature-dependence of the studied set of samples suggest that iron oxides 

are inherited from the terra rossa soils that cap the cave and were transported to the 

speleothems by dripwater. Hence, they represent a regional environmental signature. 

Interestingly, a stable, and probably detrital remanent magnetization could be isolated in the 

fresh stalagmite, whereas the weathered stalactite yielded chaotic magnetic directions and 

very low remanent intensities. We propose that these low intensities can be the result from: i) 

different remanence acquisition mechanisms between stalagmite and stalactite and/or ii) iron 

dissolution by fungal activity. We also suggest that magnetic properties, color and the content 

in detrital elements in the fresh speleothem inform about environmental processes acting on 

the interface of rock (soil)-atmosphere, while oxygen isotope composition and alkaline-earth 

element concentrations inform about calcite-water interaction processes. These results 

provide a better understanding of how environmental information is recorded in speleothems 

and what the factors are that control the reliability of the paleomagnetic and 

paleoenvironmental signal. 
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1. Introduction 

Paleo- and environmental magnetism of speleothems is likely to be of increasing interest in 

the near future [Lascu and Feinberg, 2011; Liu et al., 2012; Osete et al., 2012]. Speleothems 

are excellent recorders of Quaternary climate and environmental changes. When underpinned 

by precise and accurate radiometric dating, the isotopic, geochemical and mineralogical 

signatures preserved in the thin laminations provide high-resolution climate-proxy time 

series, from sub-annual (i.e. seasonal) to millennial scales. Speleothems have been reported to 

host magnetic minerals in readily measurable concentrations using standard rock magnetic 

techniques. Magnetic direction conforming to those of the ambient Earth´s magnetic field (at 

the time of deposition) are preserved through a mechanism called detrital remanent 

magnetization (DRM) in possible combinations with a chemical remanent magnetization 

(CRM), acquired by in-situ precipitation of iron oxides. For a comprehensive review of the 

magnetism of speleothems, the reader is directed to Lascu and Feinberg (2011). Implicitly, 

magnetic studies of speleothems contribute information about two important areas of 

geosciences. First, speleothems can provide high-resolution records of short-term variations 

of the ancient geomagnetic field, or their converse, that allow the use of paleomagnetism as a 

dating tool of speleothems [Lascu and Feinberg, 2011; Latham et al., 1979; Lean et al., 1995; 

Morinaga et al., 1992; Openshaw et al., 1997; Osete et al., 2012; Pruner et al., 2010; Stock et 

al., 2005; Strauss et al., 2013]. Second, speleothems can provide a record of climate 

variability by linking rock magnetic properties to changes in detrital input driven by regional 

and global climate and environmental forcing parameters [Ellwood and Gose, 2006]. A 

prerequisite to ensuring the reliability of paleo- and rock magnetic data from speleothems, 

either as a dating tool or as an environmental parameter, is to demonstrate that the magnetic 

mineralogy is “primary” (i.e. the remanence acquisition was contemporaneous to deposition 

time) and has subsequently been preserved. A good understanding of the nature, origin and 

concentration of magnetic minerals preserved in speleothems and their link with the 

composition of the detrital supply and possible source areas is therefore essential. However, 

in a number of well documented speleothem studies, recording short-term geomagnetic field 

variations [e.g. Osete et al., 2012; Pruner et al., 2010], little attention has yet been given to 

their magnetic mineralogy. For example, the processes by which environmental information 

recorded in speleothems is still poorly constrained. This is so, even when stable isotope and 

rock magnetic data are included, as well as the effects of post-depositional alterations such as 

microbial activity on the reliability of the environmental and paleomagnetic signal. In this 
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study we address these issues by studying a set of samples from two caves from the Algarve 

region in southern Portugal, the Penico and Excentricas caves (Fig. 1). Their deposits cover 

different stages of speleothem evolution, including: i) glass plates positioned underneath drip 

sites (from January to March 2012); ii) a stalactite with visible alteration features, such as 

moon-milk from the Penico cave, and iii) a fresh stalagmite from anotheraquifer (Excentricas 

cave). In order to compare the magnetic mineralogy of the fresh speleothem with the 

surrounding detrital sources, we studied cave sediments inside the Excentricas cave and terra 

rossa soils lying above the cave.  

We first checked the composition and alteration processes using petrographic and scanning 

electron microscopy (SEM) analysis. We measured carbon and oxygen isotopic ratios in 

order to identify eventual diagenetic alterations. We analyzed iron phases by using SEM and 

rock magnetic techniques, such as thermomagnetic analysis, isothermal and anhysteretic 

remanence acquisition, hysteresis and First-Order Reversal Curve (FORC) diagrams. We then 

measured paleomagnetic directions of the speleothem samples in order to evaluate whether 

the paleomagnetic signal is preserved in the weathered stalactite. In the case of the fresh 

stalagmite, where stable natural remanent magnetization (NRM) directions were recorded, we 

conducted major and trace element analyses (X-ray fluorescence and inductively-coupled 

plasma mass spectrometry, ICPMS), as well as visible diffuse reflectance spectrophotometry. 

Lastly, we discuss the influence of microbial activity on the remanence intensities, and 

describe how magnetic properties, color, stable isotope composition and mineralogy can 

provide information about the speleothems and the environment in which they formed. 

 

2. Materials  

We selected one speleothem from each of two caves located in the Algarve Basin of southern 

Portugal (Fig. 1A). A fresh stalagmite (SPAII; Fig. 1B) was collected in situ in the 

Excentricas cave, located in the karstic aquifer of Peral-Moncarapacho (area of 44 km
2
). A 

weathered speleothem (SPA) fragment, which corresponds to a broken piece of stalactite 

collected from the ground, was taken from the Penico cave (aquifer of Querença-Silves, 318 

km
2
). Both aquifers are essentially developed in Jurassic carbonates and are separated by ~40 

km (Fig. 1A). Weathering in the SPA stalactite is visible at the naked eye by the presence of 

moon-milk, a disintegration product of calcite that is generally interpreted to result from 

microbial activity (Fig. 1C,D) [Barton and Northup, 2007; Braissant et al., 2012; Cañaveras 



©2014 American Geophysical Union. All rights reserved. 

et al., 2006; Cañaveras et al., 1999]. We also collected cave sediments (samples SG1) and 

terra rossa soils, developed on Jurassic limestones and located above the Excentricas cave 

(samples TR1, TR2 and TR3; Fig. 1A). 

Watch (convex up) glasses with a diameter of 7 cm were positioned underneath the drip sites 

of the Penico cave, where the weathered stalactite was found. These glass plates remained in 

the cave during three months, from January through March 2012. The convex side up shape 

of the glass plate was chosen to mimic the shape of a stalagmite tip and to avoid water 

accumulation and stagnation [Daeron et al., 2011; Riechelmann et al., 2013]. 

 

3. Sampling and methods 

For paleomagnetic analysis, the SPA (samples SPA_6 and SPA_10) and SPAII (SPAII_1 and 

SPAII_2) speleothems were cut into individual specimens of 2x2x2 cm (standard size of the 

JR6 magnetometer) by using a non-magnetic Dremel-saw. We referenced the magnetic 

directions relative to the vertical axis of the front side of the cubic samples because 

speleothems were not oriented in the field. In addition, we collected thin calcite growth 

laminae and filled them into standard 2x2x2 cm plastic boxes (samples SPAII_4 to 

SPAII_12) for subsequent bulk magnetic property measurements. Cave sediments and terra 

rossa were crushed by using an agate mortar for subsequent thermomagnetic analysis. 

Rock-magnetic measurements were performed in the Paleomagnetism Laboratory of the 

Instituto Dom Luís (IDL) of Lisbon, Portugal. Remanence was measured by using a JR6 

magnetometer (sensitivity of 2.4x10
-6

A/m). Demagnetization treatment included stepwise 

alternating field (AF) up to 100 mT. The measurements were subject to Principal Component 

Analysis (PCA) of the NRM. We also measured bulk magnetic properties by using 

concentration and coercivity dependent proxies. Magnetic susceptibility (MS) was measured 

with a MFK1 (AGICO) apparatus and reported relative to mass (m
3
/kg). Low and high 

temperature dependence of MS were conducted under Argon-controlled atmosphere. 

Minimizing the influence of magnetic interactions [Heslop et al. [2004] by limiting the AF 

steps to 100mT, samples were subsequently submitted to isothermal remanent magnetization 

(IRM) acquisition with an impulse magnetizer (model IM-10-30). We applied maximum 

fields of 1.2T following approximately 25 steps. Data were analyzed using a cumulative log-

Gaussian (CLG) function [Robertson and France, 1994] with the software developed by 

Kruiver et al. [2001]. The S-ratio was calculated with the formula -IRM-0.3T/IRM1T. For the 
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modified Lowrie-Fuller test [Johnson et al., 1975], anhysteretic remanent magnetization 

(ARM) was induced by a combination of an AF field of 100mT and a DC field of 0.05mT 

using a LDA-3A demagnetizer coupled to an AMU-1A anhysteretic magnetizer (AGICO).  

Hysteresis curves and FORC diagrams were measured using a magnetometer (µ-VSM) from 

Princeton Measurements Corporation within the IPGP-IMPMC Mineral Magnetism 

Analytical Facility. Since the magnetization of speleothems is very weak, each sample was 

crushed into a powder and tightly packed in a gelcap, in order to maximize the amount of 

material for the measurement, instead of using only a millimetric chip as it is usually done 

with the -VSM. Data are treated using the FORCInel software [Harrison and Feinberg, 

2008].  

Fresh rock fragments as well as glass plates were observed under a Hitachi S-3700N SEM 

microscope coupled to a Bruker XFlash® 5010 EDS detector at the Hercules laboratory 

(Évora, Portugal). The electron source for the SEM is a tungsten wire. The accelerate voltage 

is 20 keV. Qualitative compositional analysis is provided by energy dispersive spectra (EDS) 

by using the ESPRIT Software (Bruker).We also conducted Diffuse Reflectance 

Spectrophotometry (DRS) analysis, which is based on the percentage reflectance of a sample 

relative to white light and provides qualitative information about mineralogical variations. 

DRS data were represented in the CIE (1978) L*a*b* space where L* is the black/white 

reflectance, a* is the redness/greenness and b* is the yellowness-blueness. Data were 

obtained using a X-Rite® Colortron™ spectrophotometer from rock powders (in order to 

avoid grain size effect) using the mean value of three series of measurements.  

Contents in major elements, trace elements and loss on ignition (LOI) of 12 samples collected 

from the SPAII speleothem have been analyzed at the Geological Survey of Spain (IGME). 

The chemical analysis of Si, Al, Mg, Fe, K, Mn, Ti, P and Ca was performed by means of the 

MagiX X-ray fluorescence (XRF) spectrometer of PANalytical. Samples were analyzed after 

glass disc elaboration from molten mixture of sample with lithium tetraborate. The values of 

major elements are expressed as oxides weight percentage (%wt). Lost on ignition was 

determined at 950ºC. Trace element concentrations were determined by inductively coupled 

plasma spectrometry in both ICP-OES (OE=optical emission; As, Ba, Be, Co, Cr, Cu, Ni, Sr, 

V, Zn, Pb) and ICP-MS (Th, U) analytical instruments. Samples were analyzed in standard 

procedures by acid digestion (FH, HNO3 and HClO3). The values of trace elements are 

expressed in ppm.  
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C and O isotopic analysis of 13 samples were performed at the laboratories of the 

Interdepartmental Research Service (SIDI) of the Universidad Autónoma de Madrid. Carbon 

dioxide was evolved from each sample at 25 ºC using 100% H3PO4.  All samples were 

prepared and analyzed at least in duplicate. The analytical precision is generally ± 0.10‰ for 

carbon and ± 0.15‰ for oxygen. Both oxygen and carbon isotopic ratios are reported in δ and 

expressed in permil relative to Vienna Pee Dee Belemnite (VPDB).   

 

4. Petrographic and Scanning Electron Microscopy 

Glass plates (Penico cave) 

The convex up glass plates collected underneath the drip sites of the Penico cave (where the 

weathered stalactite was collected) revealed widespread microfungal activity in close relation 

to calcite crystals (Fig. 2A-D). These fungi have been identified by rRNA (ribosomal 

ribonucleic acid) sequenciation and correspond to the genus Mortierella (Fonseca, F., pers. 

comm.), from the order of Actinomycetales. This organism is known to develop in soils and 

organic material but it has also been described as occurring in caves [Cañaveras et al., 1999; 

Degawa and Gams, 2004; Vaughan et al., 2011]. An isolated spherical cell of more than 100 

m wide (flattened on the photograph due to vacuum; Fig. 2D) was also observed and 

assigned to be a sporangiospore produced by Mortierella [Wang et al., 2011]. From a 

mineralogical point of view, calcite crystals have an average size of the order of 100m and 

exhibit sub-euhedral and rounded shapes (Fig. 2C). Furthermore, crystals observed in an area 

where fungi are not present have euhedral shape suggesting that microorganisms are 

responsible for the calcite consumption/dissolution. Such interpretation is reinforced by 

Figure 2C in which calcite crystals seem to serve as an anchor for the development of the 

fungal hyphal tips and networks. Fungi penetrating a mineral grain have also been described 

in other environments such as soils [figure 3 in van Scholl et al., 2008]. 

In addition to fungi, rare Ti-bearing iron oxides were observed (Fig. 2E). A high ratio of 

Ti:Fe shown by EDS (Fig. 2E) suggests an Fe-bearing Ti-oxide (ilmenite or pseudo-

brookite). The size (~5m) and eroded borders of the crystal suggest a detrital origin. Detrital 

input is also evidenced by the presence of an isolated crystal of zoned zircon (Fig. 2F).  

The presence of zircon as well as the Ti-oxide argues for a detrital contribution of the 

magnetic carriers transported by present-day drip-waters in the Penico cave and suggests that 

magnetic iron oxides should have been originally present in the weathered stalactite under 
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study. The widespread development of fungi observed in the Penico cave make the SPA 

stalactite an excellent target to study the relation between iron oxide preservation and 

microbial activity.   

 

Weathered stalactite (Penico cave) 

Moon-milk of the weathered stalactite was observed under optical and electron microscope in 

thin sections and rock fragments, respectively (Fig. 3). A detailed search for iron oxides was 

unproductive due to the very low content of iron oxides. Under optical microscope, rare 

opaque minerals are found filling intergranular spaces (Fig. 3A) or as isolated crystals 

showing halo of iron oxidation (Fig. 3B). Under SEM, Ti-free iron compounds are 

represented by very fine (~3 m in length) severely oxidized aggregates of iron oxides (Fig. 

3C) and very fine (<5 m) Fe-Ti iron oxides associated to detrital material (Al and Si on EDS 

spectra) (Fig. 3D-E). Spheroidal concretions of unknown composition, due to the very small 

size, are locally observed (Fig. 3F) and are similar to biogenic concretions observed in other 

speleothems (see fig. 3 in Cañaveras et al. [1999]) or to cosmic spherules [Strauss et al., 

2013].  

Optical petrographic observations of the calcite fabrics reveal widespread recrystallization 

processes that disrupt the original calcite lamination (Fig. 3G-H). Under SEM microscope, 

these altered areas are consisting of spiky calcite (a destructive fabric formed by etching) and 

microcrystalline calcite partially associated to biocrystalline assemblages constituted of 

anhedral calcite crystals and needle-fiber calcite (Fig. 3I-L). Spiky calcite and needle-fiber 

calcite are common in moon-milk deposits and are generally interpreted to result from 

microbial activity [Barton and Northup, 2007; Braissant et al., 2012; Canaveras et al., 2006; 

Cañaveras et al., 2001; Cañaveras et al., 1999].  

 

Fresh stalagmite (SPAII, Excentricas cave) 

SEM-EDS analyses were conducted on specimen SPAII_7 that is composed of white and 

pink-brown laminations. A difference in the crystallography of the calcite layers is noted 

(Fig. 4A-C): A thin (~1m) level composed by columnar calcite (~20m wide) is oriented 

normal to the stratification plane. Columnar calcite is a common growth texture in 

stalagmites that grow in continuously wet environments from fluids at near-equilibrium 
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conditions [Frisia et al., 2000]. Multiple voids are ubiquitous on the surface of calcite 

crystals (Fig. 4D). Iron oxides were easily observable and essentially represented by small 

crystals of Ti-bearing iron oxides (Fig. 4E-G). Darker zones of the crystal correspond to 

higher titanium contents relative to iron (Fig. 4E). Morphologies are either cubic or semi-

hexagonal with grain size up to some ten of micrometers (<20m). The eroded aspects of the 

crystals together with the presence of titanium demonstrates the terrigenous and detrital 

origin of the main magnetic carriers of the preserved stalagmite.   

Based on SEM observations and EDS analyses, we suggest that detrital grains are identical 

between the two caves under study.  

 

5. C and O isotopes 

Carbon and oxygen isotope ratios were determined in five specimens from the weathered 

stalactite and eight specimens from the fresh stalagmite. Results are illustrated in Figure 5A 

and Table 1 and compared with the oxygen and carbon stable-isotope values of active fabrics 

(recently deposited calcite) from the Grotta del Calgeron (Alpes) and Crag Cave (Ireland) 

[Frisia et al., 2000]. The studied Portuguese speleothems show consistent stable isotope 

compositions within the sample collection (Fig. 5A, Table 1). Samples from the fresh 

stalagmite exhibit very narrow δ
13

C values close to -8.5 ‰, while the weathered stalactite 

show more scattered δ
13

C values varying from -2.9 to -5.7 ‰. The same is observed for δ
18

O 

values that range from -1.5 to -2.8 ‰ and -1.7 to -2.4‰ in the weathered and fresh 

speleothem, respectively. Such differences in stable isotope composition of the two 

speleothems (two neighbor caves) under study may reflect post-depositional calcite alteration 

and/or differences in calcite crystallinity and texture (dendritic, columnar, microcrystalline, 

fibrous) such as was also observed in the case of the Crag Cave and the Grotta del Calgeron 

[Frisia et al., 2000]. 

Variations in speleothem δ
18

O values generally result from the interplay of complicated 

natural processes in the ocean, atmosphere, soil zone, epikarst, and cave system, making the 

interpretation of δ
18

O data extremely complex [Lachniet, 2009]. Despite uncertainties in δ
18

O 

climate calibrations linked to regional and local factors (mean annual air temperature, 

precipitation, altitude, continentality and humidity that can vary in space and time), δ
18

O time 

series in speleothems provide unprecedented insight into environmental and climate studies. 

A recent compilation of δ
18

O composition from European speleothems show a striking spatial 
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distribution of the data as a function of longitude, interpreted to reflect the influence of the 

Atlantic moisture and continentality [McDermott et al., 2011] (Fig. 5B). These isotopes 

gradients can be used to recognize anomalous δ
18

O values in speleothems that could reflect 

local site-specific effects and/or systematic seasonal biases. When compared to the present-

day European δ
18

Ospeleothems compilation from McDermott et al. [2011], δ
18

O values of the 

Portuguese speleothems are close to the values expected for their corresponding longitude 

(~8ºW at Faro) (Fig. 5B), confirming the primary nature of the isotopic signal. The same 

interpretation is valid for the active fabrics of the Italian (Grotta di Ernesto and Grotta del 

Calgeron) and Irish (Crag Cave) caves studied by Frisia et al. [2000], which also show δ
18

O 

composition in agreement with their longitude (Fig. 5B).  However, slightly but significantly 

lower δ
18

O values of the Portuguese speleothems, compared to the Irish Crag results, may be 

linked to peculiar regional climatic conditions, because the Algarve region may have been 

influenced by Atlantic as well as Mediterranean climatic conditions.  

These results indicate that the oxygen isotopic composition of the speleothems under study is 

primary and has been preserved until now. Oxygen isotopic compositions of the weathered 

and fresh stalagmite can thus be used as a robust climatic and environmental proxy for 

southern Portuguese speleothems.   

 

6. Magnetic Mineralogy 

6.1. Thermomagnetic (-T) analysis 

Identification of the nature and composition of ferromagnetic (sensus lato) minerals can be 

first investigated through the determination of their Curie temperatures from the analysis of 

thermomagnetic curves ( vs. T). Out of twelve studied speleothem samples, only four 

(corresponding to brown-red laminations where higher IRM-NRM values were measured) 

gave reliable measurements, whereas the other samples presented very low values below 

the resolution of the equipment. We also conducted thermomagnetic analyses on terra rossa 

soils from three sites around the area of the Excentricas cave (SPAII), as well as from cave 

sediments. Figure 6 shows thermomagnetic curves of characteristic samples after 

normalization by mass and after subtracting holder values. All samples show a hump at 

around 200-300ºC characteristic of maghemite and another one at around 460-500ºC with a 

Curie temperature of 550-580ºC typical of magnetite (Fig 6-A-F). In the terra rossa and cave 

sediment samples, the hump at 250-300ºC is much more pronounced, probably due to higher 
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content of magnetic particles compared to the speleothems (Fig. 6-D-F). After heating up to 

700ºC, neoformation of magnetite is observed in all cooling cycles (Fig. 6). The newly 

formed magnetite has Curie temperatures comparable to those observed in the heating cycles 

and remains stable even after two successive heating cycles up to 700ºC (Fig. 6-G). 

The accurate determination of the nature of the original magnetic carriers through 

thermomagnetic analysis is not straightforward in this case, since important mineralogical 

transformations occur during the heating process. For example, the shapes of thermomagnetic 

curves are quite similar to those obtained from air/temperature oxidation of siderite, which 

typically produces maghemite, magnetite and hematite as transformation products [Pan et al., 

2000]. However, reversibility in heating and cooling curves in the case of siderite occurs at 

around 300ºC, while stepwise thermal heating/cooling cycles indicate that irreversibility (i.e. 

formation of new magnetic phases) occurs between 400-450ºC (Fig. 6-H). Moreover, siderite 

is rare in cave systems [Hill and Forti, 1997] and has thus far not been identified by X-ray 

diffraction or SEM analysis (see below). We thus exclude siderite as potential host for the 

magnetic phases identified in heating cycles.  

Detrital (pedogenic) maghemite and magnetite contained in soils and deposited in the calcite 

growth by drip-water are possible candidates. For example, thermomagnetic curves from 

paddy soil horizons from China and their corresponding dryland soils show the same pattern 

as those of the speleothems, soils and cave sediments under study [Lu et al., 2012]. These 

authors explain the increase in magnetic susceptibility (MS) values up to ~250ºC by the 

conversion of poorly crystallized ferric oxides, such as ferrihydrite to maghemite, or 

magnetite in the presence of soil organic matter [Hanesch et al., 2006; Lu et al., 2012]. 

However, ferrihydrite is superparamagnetic at room temperature [Cornell and Schwertmann, 

2003] and thus cannot be the magnetic carrier of the remanence measured during non-

destructive magnetic analyses (AF demagnetization and IRM). Another possible explanation 

of the hump at 250ºC is the conversion of antiferromagnetic pyrrhotite (Fe9S10) to 

ferromagnetic pyrrhotite (Fe7S8) by heating [Dunlop and Özdemir, 1997]. However, 

pyrrhotite is metastable and its occurrence in oxidized soils such as terra rossa is unlikely. We 

rather interpret the MS increase up to 250ºC as a gradual passing of the SD/SP threshold, as 

an analog of a very wide Hopkinson peak, and the subsequent  decrease up to 400ºC would 

then represent the transformation of maghemite into hematite. Maghemite has been 

ubiquitously described in terra rossa soils worldwide [Bellanca et al., 1996; Meert et al., 

2009] and inverts to hematite between 200ºC and 380ºC [Doubrovine and Tarduno, 2006; 
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Dunlop and Özdemir, 1997; Krása and Matzka, 2007; Özdemir, 1987]. During stepwise 

progressive heating/cooling cycles of the SPAII_12 speleothem sample, heating and cooling 

curves are almost reversible until ~400ºC, but maximum  values decrease progressively with 

successive heating/cooling cycles (at 200-250-300-350-400ºC), indicating that maghemite is 

being inverted to hematite (Fig. 6-H). Production of new magnetite occurs thereafter between 

400 and 450ºC as shown by the irreversibility of heating and cooling curves and a Curie 

temperature close to 550-580ºC. Conversely, the magnetite with a Curie temperature of 550-

580ºC observed in both heating and cooling cycles is probably formed during heating by the 

transformation of iron-bearing clay minerals and/or maghemite. The presence of pedogenic 

magnetite cannot be dismissed, but its contribution relative to the magnetite formed during 

heating is not resolvable through thermomagnetic analysis.  

Regardless of the exact composition of the ferromagnetic phases, a strong similarity in the 

shapes of warming and cooling curves between the speleothems (Fig. 6-A-C), terra rossa 

(Fig. 6-D-E) and cave sediments (Fig. 6-F) indicates that iron-bearing phases in these 

samples are identical. Such a similarity in magnetic phases between the caves of different 

aquifers and country rocks (terra rossa) suggests that the magnetic mineral assemblage of 

speleothems is of detrital nature and reflects the composition of the source rocks.  

 

6.2. Isothermal Remanent Magnetization analysis 

Isothermal Remanent Magnetization (IRM) was induced in 7 specimens from SPA and 15 

specimens from SPAII (Figs. 7-8). After treatment by the Cumulative Log-Gaussian function 

[Kruiver et al., 2001; Robertson and France, 1994], best fits of the raw IRM curves are 

obtained by considering three components (Figs. 7-8, Table 2). Results between the fresh and 

the weathered speleothems differ in the relative proportion of each component.  

The fresh stalagmite SPAII yields homogeneous and reproducible results independently of 

the color of the lamination (except for concentration-dependent magnetic proxies such as the 

saturation isothermal remanent magnetization, SIRM). All specimens are systematically 

characterized by a tri-modal association of coercivity spectra, namely a low coercive phase 

(comp. 1), thought to be magnetite/maghemite (B1/2~23 mT), and two higher coercive phases 

(comp. 2 and 3) with mean B1/2 ~120 mT and 580 mT. These values are in the range of 

hematite and goethite respectively [Abrajevitch and Kodama, 2011] (Fig. 7; Table 2). 

Component 2 and 3 have very low remanence intensities, leading to noisy CLG fits (Fig. 7-
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8). Therefore we have not considered their magnetic properties in our interpretation. 

Component 1 is dominant in all samples and contributes to more than 86% of the total 

remanence (Table 2). Mean acquisition fields (i.e. B1/2~Hcr) and dispersion parameter (DP) 

values of component 1 are similar to those of magnetite contained in continental flood basalts 

(CFB) [Font et al., 2011; E. Font, unpublished data] and speleothems [Lascu and Feinberg, 

2011] (Fig. 7D-E). Maghemite, a by-product of magnetite oxidation already described in 

speleothems [Brook et al., 2006; Lascu and Feinberg, 2011], also shares a comparable range 

of coercivity. DP shows very consistent values (0.20-0.30, Table 2) for all three components 

(Table 2) suggesting homogenous populations in term of grain size and composition [Egli, 

2004], probably due to efficient sorting during transport along the hydrological pathway. 

Furthermore, component 1 shows a striking clustering of the B1/2 values indicating strong 

compositional homogeneity of the magnetic carrier population (Fig. 7). The concentration of 

iron oxides, measured by the mass normalized SIRM values, is systematically higher in 

brown layers. These characteristics suggest that post-depositional oxidation has been minor in 

SPAII and did not significantly affect the original magnetic mineralogy (Fig. 4).  

Similarly to SPAII, IRM data of the weathered stalactite SPA show three distinct magnetic 

phases (Fig. 8, Table 2). The lowest coercive phase (comp. 1) contributes from 54 to 94% of 

the total remanence. B1/2 and DP values of component 1 are comparable to titanomagnetite 

from CFB (Fig. 8D-E), whereas component 2 and 3 are assigned to be hematite and goethite, 

respectively. Samples SPA3 and SPA9, which correspond to the reddish external rim of the 

stalactite, present IRM curves and cumulative log-gaussian (CLG) parameters very similar to 

the fresh SPAII stalagmite. However, all other samples affected by moon-milk 

recrystallization and influenced by widespread microbial activity show a drastic depletion in 

the relative contribution of component 1 in the total remanence (Fig. 8).  

The similarity of thermomagnetic curves and CLG parameters of the external rim of the 

weathered stalactite (samples SPA_3 and SPA_9) and those of the fresh stalagmite indicates 

that the nature and origin of the magnetic carriers (magnetite/maghemite, hematite and 

goethite) are the same in the two studied caves (40 km apart). In addition, systematically 

lower SIRM values in the most weathered samples argue for the loss of iron oxides by post-

depositional alteration (dissolution?).  
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6.3. The Lowrie-Fuller and Cisowski tests 

The modified Lowrie-Fuller test [Johnson et al., 1975] is based on the comparison of AF 

demagnetization curves of IRM and Anhysteretic Remanent Magnetization (ARM). The test 

was originally proposed to distinguish between single-domain (SD) and multi-domain (MD) 

magnetite grains, the ARM being harder to demagnetize than the IRM in SD grains. 

However, the reliability of the Lowrie-Fuller test has been challenged by contradictory results 

pointing out that the L-type (where ARM is harder to demagnetize than IRM, possibly being 

indicator of SD particles) and H-type (where IRM is harder to demagnetize than ARM, 

possibly being indicator of MD particles) may also be responses that are controlled by 

magnetic interactions between fine grained particles, the microcoercivity distribution, or a 

mixture of multicomponent grains [Bailey and Dunlop, 1983; Egli, 2004; Egli and Lowrie, 

2002; Halgedahl, 1998; Xu and Dunlop, 1995]. However for a single population of low 

coercivity particles such as magnetite, the test remains a good first-order indicator of relative 

grain size and likely paleomagnetic stability. SPA samples yielded a range from L-type to 

mixed results (Fig. 9, Table 2) suggesting SD or a mixture of SD and MD domain states for 

the low coercive phase (i.e. magnetite/maghemite). The similarity of the IRM and ARM 

shapes within all samples argues for homogeneous populations in terms of grain size and 

microcoercivities as previously pointed out in IRM analysis by small variations in DP values 

of component 1 (see section 6.2.). Mixed results can also be interpreted as the admixture of 

slightly harder magnetic phases, such as maghemite or secondary magnetite with distinct 

grain sizes. All specimens from the SPAII stalagmite gave L-type responses in the test (Fig. 

9, Table 2). Similarly, the reproducibility of the shape of IRM and ARM curves in all SPAII 

specimens corroborates IRM parameters obtained after CLG treatment (DP and B1/2) and 

suggests the presence of a single and homogenous population of fine grained 

magnetite/maghemite as the principal magnetic carrier in the preserved stalagmite.  

The Cisowski [1981] test helps to evaluate the degree of interaction of fine (SD) magnetic 

carriers. For the case of non-interacting SD particles the IRM acquisition and IRM 

demagnetization curves should be symmetrical. The point of intersection of the two curves is 

close to the remanent coercive force (Hcr) and its projection on the abscissa represents the 

degree of interaction, R. For all rock types, R values less than 0.5 indicate strong interaction 

of SD particles. However, it has been suggested that the R ratio is unable to differentiate 

between MD and interacting SD particles [Fanjat et al., 2012]. The values of R and Hcr are 

very similar in all SPA and SPAII samples. R varies from 0.20 to 0.28 suggesting strong 
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interactions between SD (or MD?) particles (Fig. 9, Table 2). Hcr varies from 10 to 20 mT 

indicating a low coercive magnetic phase compatible with the presence of 

magnetite/maghemite. Note that both the modified Lowrie-Fuller and Cisowski tests are 

restricted to the identification of low to medium coercive phases such as magnetite, 

maghemite and pyrrhotite, due to limitation on the AF demagnetization field, which generally 

does not exceed 100 mT.  

 

6.4. Hysteresis and FORC diagrams 

Hysteresis curves and FORC diagrams [e.g. Roberts et al., 2000] were determined in order to 

characterize the size of the magnetic carriers. Hysteresis loops were measured for every 

sample with an averaging time of 1 s. Most of the loops are dominated by diamagnetism, but 

once the diamagnetic contribution is removed, a small ferromagnetic contribution remains in 

some of the samples. Whenever this ferromagnetic contribution is not too small, we 

conducted FORC analysis with an averaging time between 3 and 4s and 80 reversal curves 

for one diagram (Fig. 10). Such an increase in the averaging time means that the measuring 

time is greatly increased, between 3 and 5 hours for one diagram, which also increases the 

risk of a possible drift in the loop measurement. The saturating field was set to 1T for all the 

FORC diagram measurements. The field step was set between 1.5 and 3.5 mT, depending on 

the Hu and Hc ranges that were chosen to obtain an optimized area for the most interesting 

features of the FORC diagrams. Hysteresis parameters are given in Table 2. Mrs values are on 

the order of 10
-4

-10
-5

 Am
2
/kg, which is very weak. Mr/Mrs values range between 0.007 and 

0.14. Coercivity fields are very low (lower than 5mT), and Hcr/Hc values are between 2.46 

and 5.42, with most values around 4-5. When plotted on a Day diagram with the mixing 

curves from Dunlop [2002], these hysteresis parameters fall between the SD-MD and the SD-

SP mixing curves (Fig. 10A).  

FORC diagrams were obtained for 6 samples from speleothem SPAII and 2 samples from 

speleothem SPA, which correspond to the more magnetized rim (SPA_3 and SPA_9; Table 

2) of the stalactite. FORC diagrams were processed with the FORCInel software [Harrison 

and Feinberg, 2008] using the VARIFORC option [Egli, 2013]. With this option, larger 

smoothing factors are applied to the background, while preserving the areas along the axes 

with relatively small smoothing factors. The minimum smoothing factors on both axis were 

set to 3 and increased by steps of 0.1. Nevertheless, and despite the very long averaging time, 



©2014 American Geophysical Union. All rights reserved. 

the FORC diagrams still contain a substantial amount of noise (Fig. 10B). Samples SPAII-11 

and SPAII-12 (not shown in Figure 10) are characterized by a single peak close to the origin 

of the diagram, and by contours that diverge slightly away from the Hu axis, but eventually 

intersect the axis (Fig. 10C). This is characteristic of PSD behaviour [Roberts et al., 2000]. 

Samples SPAII-4b and SPAII-6 (not shown in Figure 10) are similar to the previous two, but 

there is an extra high coercivity component with very little spreading on the vertical axis, 

extending up to about 30 mT. This could be the hallmark of stable SD particles with little 

interaction. Finally, sample SPAII-5b is characterized by a very narrow peak close to the 

origin that also extends up to 30 mT (Fig. 10C), which indicates the presence of a mixture of 

stable SD and SP particles with a relaxation time comparable to the measuring time. It is 

fairly similar to the Yucca Mountain ash flow tuff that contains a substantial SP component 

shown in Roberts et al [2000]. The FORC diagrams from speleothem SPA are also 

characteristic of a SD-SP mixture for sample SPA-3 (Fig. 10C) and a mixture of SD with 

either a PSD or a SP component for sample SPA-9. The mixture of SD and SP grains could 

be also identified by checking whether the hysteresis loop is wasp-waisted (Fig. 10B). In the 

present case, the loop is not very open, but it seems to be slightly wasp-waisted.  

These measurements indicate that the magnetic mineralogy in speleothem SPAII and in the 

reddish external rim of speleothem SPA is mostly dominated by fine grains ranging from SP 

to PSD. This is consistent with previous speleothem studies (see review by Lascu and 

Feinberg, 2011). It also seems that the grain size distribution varies significantly between the 

different laminations. However, results for the SPA are biased by the fact that only the outer 

altered layers were ferromagnetic enough to be measured.  

 

7. Natural Remanent Magnetization (NRM) 

In order to evaluate whether a paleomagnetic signal is preserved in fresh as well as weathered 

speleothems, we conducted paleomagnetic analysis. Samples from the weathered speleothem 

(SPA) are characterized by a very low NRM intensity (~10
-4

A/m) and yield chaotic and 

unreliable magnetic vectors after AF cleaning (Fig. 11). In contrast, the fresh stalagmite 

(SPAII) carries a relatively high-intensity NRM (~10
-2

 to 10
-3

 A/m) and shows well-defined 

magnetic vectors decaying to the origin with maximum angular deviations (MAD) varying 

from 2.2º to 3.8º (Fig. 11). Magnetic directions are located in the same region of the 

stereographs (NNE-NE directed with inclination of ~25-30º). The NRM intensity is one order 
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of magnitude higher in the brown (SPAII-2) than in the white (SPAII-1 and SPAII-3) 

laminations suggesting that the lamination color is partially linked to the concentration of 

iron oxides (Fig. 11). Orthogonal projections show mostly univectorial vectors pointing to the 

origin for samples SPAII_1 and SPAII_2 whereas SPAII_3 shows a bimodal distribution of 

magnetic vectors but for which directions are almost similar (Fig. 11). Values of mean 

demagnetizing fields are around 15mT suggesting low coercivity ferromagnetic particles as 

principal magnetic carriers. 

 

8. Visible Diffuse Reflectance Spectrophotometry (DRS) 

Visible DRS analyses were conducted on SPAII samples (fresh stalagmite). Color is 

represented by CIE *L (lightness/darkness), CIE a* (green/red) and CIE b* (blue/yellow) 

curves (CIE, 1978) that are illustrated in Figure 12. The visible changes from white and light-

brown (top) to dark-brown (base) color of the calcite laminae (see photographs in Fig. 12) 

correspond to a decrease in lightness (CIE L*) and a relative increase in redness (CIE a*) and 

yellowness (CIE b*). Because iron oxides adsorb strongly in the ultraviolet (UV) and blue 

spectral regions but are strongly reflecting in the red and infrared (IR) regions [Scheinost and 

Schwertmann, 1999; Scheinost et al., 1998; Torrent and Barrón, 2002], they are probably the 

main carriers of the CIE a* and CIE b* signal. This is illustrated by the positive correlation 

between CIE a* and CIE b* and the content in iron oxides estimated by SIRM values of 

components 1 (Fig. 12). Conversely, values of CIE*L, which are generally controlled by the 

content in organic matter and calcite [Adkins et al., 1997], show no correlation with CaO 

content (%wt) (Fig. 12). Instead, CIE*L varies concomitantly with concentration-dependent 

magnetic proxies (MS, SIRM) suggesting that iron oxides may also contribute to the darkness 

in this case. Indeed, opaque minerals such as magnetite/maghemite exhibit dark to brown 

color [Pan et al., 2000], and may thus partially contribute to the darkness of the laminae.  

 

9. Major and trace elements 

Content in major (in %wt) and trace (in ppm) elements of the fresh stalagmite are illustrated 

in Figure 12. Except for Ca, Mg, Si, Al, Na, Sr, Ba, V, Th and As, contents in all other major 

and trace elements are below the detection limit of the spectrometer (~<0.1; Table 3). 

Concerning measurable major elements, we distinguished chemical elements that originate 
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from water-rock interaction, such as Ca, Mg, and Sr (alkaline-earth elements), from those that 

reside in the detrital fraction such as Fe, Si, Al, V, Ni, As, Th and Ba (detrital elements).  

Regarding the calcium, contents in CaO vary slightly between 55.7 to 56.9%wt. A slight but 

significant increase in CaO content is noted in the brown lower part of the speleothem (from 

samples SPAII_11 up to SPAII_7 in Figure 12), whereas CaO contents are almost constant 

(or slightly decreasing) in the white upper part (samples SPAII_8, 9, 10). Loss on ignition 

(LOI) values, which generally depend on the content in water, organic matter and carbonates, 

are relatively high (42.3 to 42.9%wt). However, organic matter content is very low and under 

the detection level of the spectrometer (~<0.1%wt). This suggests that, in the present case, 

LOI values mostly informed about water and carbonates content in this case, as illustrated by 

the similar trends in the LOI, CaO (%wt) and δ
18

O curves in Figure 12. Sr and Mg contents 

are averaged to ~19ppm and 0.25%wt, respectively, and co-vary with CaO contents (Fig. 12; 

Table 3).  

Fe and Ti contents are below the detection limit of the spectrometer, except for darker 

samples (SPAII_4b and SPAII-11), (Table 3). However, there is a clear increase in detrital 

elements (Al, Si, V, As, Th and Ba) contents related to the increase in darkness (CIE*L) and 

concentration-dependent magnetic proxies (MS, SIRM). For example, Fe is only measurable 

in the most brownish layer where detrital elements are the most concentrated (Fig. 12). This 

suggests that iron oxides concentration, detrital input and color are controlled by the same 

(environmental) parameters.  

 

10. Discussion 

10.1. Magnetic mineralogy of fresh vs. weathered speleothems: factors controlling the 

reliability of paleomagnetic and environmental data 

Three main conditions are required to ensure reliable environmental and paleomagnetic data 

in speleothems: i) the magnetic carriers must be of a primary origin (i.e. detrital or chemical 

in the case that magnetic minerals precipitate at the same time as calcite growth); ii) the 

magnetic carrier content should be sufficient to yield measurable remanence intensities and 

iii) these magnetic minerals must have been preserved since their deposition. The present 

study shows two nice examples of stable versus unreliable magnetizations recorded in a fresh 

and in a weathered speleothem (Fig. 11), respectively, providing the opportunity to illustrate 
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and discuss the factors that control the reliability of paleomagnetic and environmental data in 

speleothems.  

 

Nature and origin of the magnetic carriers of the studied speleothems  

The main magnetic carrier of stable DRM in speleothems is thought to be detrital (titano)-

magnetite [Lascu and Feinberg, 2011; Latham et al., 1979; Lean et al., 1995; Morinaga et 

al., 1986; Openshaw et al., 1997; Osete et al., 2012; Perkins, 1996; Perkins and Maher, 

1993; Pruner et al., 2010; Zhu et al., 2012]. To a lesser extent maghemite has also been 

suggested [Brook et al., 2006; Herries et al., 2006; Latham et al., 1989] but its identification 

has remained ambiguous. Indeed, since magnetite and maghemite have overlapping 

coercivity spectra, their discrimination using classic coercivity-dependent magnetic proxies 

(IRM, ARM) is difficult.  

In the present study, the similarity in coercivity- and thermal-dependent magnetic properties 

observed when comparing speleothems, terra rossa soils and cave sediments, argues for a 

common origin of the magnetic carriers contained in these samples. The magnetic carriers are 

identified principally as maghemite and/or magnetite, and hematite and goethite. Median 

NRM, IRM and ARM demagnetization fields near 15-20 mT and S-ratio near 1 suggest the 

presence of maghemite/magnetite in the SPA and SPAII speleothems (Table 2; Figs. 5-8). 

The presence of maghemite is also deduced from thermomagnetic curves but the 

identification of primary magnetite is hampered by significant mineralogical transformations 

during the heating process. Hematite and goethite are identified by using unmixing IRM 

curves, whereas thermomagnetic and FORC experiments were unsuccessful because of the 

very low magnetic susceptibility and low saturation magnetization of hematite and goethite. 

Because of its much higher saturation magnetization, magnetite dominates in the majority of 

magnetic measurements, including hysteresis and FORC, even if hematite contributes up to 

90% in the mixture [Carvallo et al., 2006; Frank and Nowaczyk, 2008]. Grain sizes estimated 

by using FORC diagram and hysteresis parameters indicated a mixture of SP and SD/PSD. 

SD/PSD particles may correspond to the detrital Ti-bearing iron oxides observed under SEM 

and identified as maghemite/magnetite by magnetic properties. Similarly, SP particles may 

correspond to very fine grained detrital magnetite generally produced by pedogenic processes 

[Evans and Heller, 2003; Thompson and Oldfield, 1986], but its accurate identification is not 

resolvable by using SEM and temperature-dependence analysis.   
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The common and detrital origin of the iron oxides preserved in the studied set of samples is 

evidenced by: i) similar shapes of thermomagnetic curves from terra rossa soils, cave 

sediment and the fresh stalagmite from the Excentricas cave, as well as from the weathered 

stalactite from the Penico cave; ii) low dispersion of B1/2 and DP values of the IRM 

component 1 (maghemite/magnetite) indicating  a homogeneous population of grain size and 

coercivity spectra, probably resulting from an effective selection of detrital particles during 

transport or even at the source; iii) presence of zircon, and of Ti in iron oxides, deposited by 

drip-waters on the glass plates (Penico cave); iv) eroded shapes of the Ti-bearing iron oxide 

crystals in glass plates and speleothems observed under SEM microscope.  

Features observed in the Portuguese speleothems under study would thus fulfill one of the 

prerequisites to secure reliable environmental records and paleomagnetic data in speleothems, 

namely a primary and detrital origin of the magnetic carriers. On the other hand, the 

weathered stalactite showed unreliable paleomagnetic results suggesting that other factors 

may play a role in the quality of the magnetic signal recorded in the speleothems under study.  

 

Iron oxide alteration in speleothems: biotic or abiotic processes? 

Several hypotheses can be proposed to explain the chaotic character of the magnetic 

directions isolated in the weathered stalactite: i) different remanence acquisition mechanisms 

varying between stalagmite and stalactite; ii) abiotic post-depositional chemical weathering 

mediated by change in water chemistry and cave environment, and/or iii) microbially-induced 

alteration (bioweathering). Although both stalactites and stalagmites are considered as 

speleothems, their formation and internal structures are different [see review in Fairchild and 

Baker, 2012]. In the case of stalactites, their growth is due to the water transport through a 

central canal inside the structure. Accordingly, stalactites usually start as being a soda straw 

type stalactite evolving into common tapered or carrot-shaped stalactites generally due to 

either a partial or complete blockage of the canal. Such growth and structure should strongly 

influence the orientation of the magnetic minerals and the resulting remanence. However, this 

hypothesis cannot be tested here because we did not have authorization to collect fresh 

stalactites for comparison. The second and third hypotheses are discussed as follows.  

Factors controlling calcite dissolution in speleothems are well documented in the literature 

[e.g. Fairchild et al., 2006], but little is known about abiotic alteration of iron oxides in 

speleothems. For example, magnetite has very long residence times (several millions of 
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years) when subjected to present-day weathering conditions (pH=5.6) but can be almost 

totally dissolved in some thousands of years at lower pH [Symonds et al., 1992; White et al., 

1994]. On the other hand, whereas drip-waters often derive from epikarstic reservoirs of year-

round constant pCO2 [Fairchild et al., 2000; Fairchild et al., 2006], pCO2 (and thus pH) of 

cave air can show significant seasonal variations. In order to evaluate this possibility, we 

modeled the influence of cave pH variations in cave on the dissolution of iron oxides such as 

maghemite. We use the PHREEQC program [Parkhurst and Appelo, 1999] developed by the 

U.S. Geological Survey for modeling water-rock interactions, coupled with the Wateq4f 

database [Ball and Nordstrom, 1991] with the following assumptions: (1) chemical 

equilibrium is reached between gas (O2 and CO2), liquid phase and solids, liquid and solid 

phases; (2) temperature in the cave is supposed constant and equal to 15°C; (3) CO2 partial 

pressure varies between 10
-3.4

 bars corresponding to present day value and 10
-1.5

 bars similar 

to that of soils with biological activities [Berner and Berner, 1996]. Redox state (Eh) of the 

solution is controlled by the oxygen partial pressure. The chemical reactions involved in this 

system are: 

Fe2O3(s) [maghemite] + 3H
+
 = Fe

3+
 + 2H2O 

CaCO3(s) [calcite] + H
+
 = Ca

2+
 + HCO3

-
  

CO2(g) = CO2(aq) 

O2(g) =O2(aq) 

CO2(aq) + H2O = H
+
 + HCO3

- 

HCO3
-
 = H

+
 + CO3

2- 

Ca
2+

 + CO3
2-

 = CaCO3(s) 

where (s) stands for solid, (g) for gaseous and (aq) for aqueous. 

The reaction pathway is as follows: protons given by CO2 dissolution (weak acid) in water 

promote the dissolution of calcite and maghemite. Calculations show that the pH is buffered 

by calcite dissolution (lowest value is 6.98 for pCO2= 10
-1.5

). The results displayed in Figure 

13 show that the number of dissolved moles of maghemite needed to reach equilibrium 

increases with the pCO2, as expected because of the more acidic conditions. Nevertheless, 

because of the near neutral pH conditions, this quantity remains very low compared to the 

2.10
-3

 moles of maghemite in the SPA samples. Even for lower or greater temperatures (the 
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case corresponding to T=5°C), the quantity of dissolved maghemite remains very low (< 10
-8

 

moles).  

These results suggest that the chemical variations of the cave environment alone cannot 

explain the loss of iron oxides in the weathered speleothem and a microbial model is 

hypothesized. 

Influence of microbial activity in the Penico cave is evidenced here by the widespread 

development of fungi (Mortierella) communities in present-day active calcite fabrics (on the 

watch plate) and by the close association between moon-milk, spiky calcite and needle-fiber 

calcite observed in the weathered stalactite under SEM microscope (Figs. 2-3). Interestingly, 

except for the external rim (SPA3 and SPA9), which showed IRM intensities comparable to 

those of the fresh stalagmite, samples affected by calcite dissolution and recrystallization 

(moon-milk) systematically exhibit lower (one to two order lower) IRM intensities than the 

fresh stalagmite (Figs. 7-8). The same is observed in NRM intensities of the two samples 

treated by AF cleaning (SPA6 and SPA10; Fig. 11). Thermomagnetic analyses and SEM 

observations of these samples also proved to be unsuccessful because of extremely low 

ferromagnetic content. We thus hypothesized that the weak remanent intensities of the 

weathered stalactite result from iron oxide dissolution directly or indirectly induced by fungal 

activity.  

Interactions between fungi such as Mortierella and calcite fabrics (a field known as 

geomycology) are well documented in the literature [Barton and Northup, 2007; 

Bindschedler et al., 2012; Braissant et al., 2012; Canaveras et al., 2006; Cañaveras et al., 

2001; Gadd, 1999; Hoffland et al., 2004; Kostka and Nealson, 1995; van Scholl et al., 2008], 

but little is known about the role played by microorganisms in the dissolution and 

neoformation of iron oxide in speleothem. More specifically, iron is a metal required by most 

microorganisms and is prominently used in the transfer of electrons during metabolism 

[Howard, 2004]. The processes involved in fungal activity and growth of fungal hyphal tips 

can produce organic proton- or ligand-based agents, such as metal oxalates and citrates, 

which lower the free cation activity and promote mineral dissolution [Gadd, 1999]. This 

would explain the halo of iron oxidation surrounding iron oxide host observed under optical 

microscope (Fig. 3B). Such observations suggest that fungal activity is a possible mechanism 

to explain the apparent reduced level of iron oxides observed in the weathered stalactites and 

the concomitant low values of remanent magnetization. Despite that our study concerns only 
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two samples and thus cannot be taken as a rule, such aspects should be taken into 

consideration for future paleomagnetic and environmental magnetic studies in speleothems.  

 

10.2. Environmental magnetic records of the fresh stalagmite 

Here we discuss how the behavior of the magnetic properties relates to other environmental 

proxies such as stable isotopes, color and mineralogy, and how this environmental 

information is recorded in the fresh speleothem under study. 

As we discussed previously,  the main magnetic carriers of the analyzed speleothems are 

primary and detrital in origin, which means that, in the absence of any post-depositional 

alteration (bioweathering in the present case), their concentration and grain size can be linked 

to environmental and climatic processes acting on the rock-atmosphere interface 

(hydrological regime, vegetal cover, temperature, etc.). Interestingly, in the case of the fresh 

stalagmite (not affected by bioweathering), variations of concentration-dependent magnetic 

proxies (MS, SIRM comp. 1) show a similar trend as the color and content in detrital 

elements, whereas stable (C-O) isotope compositions and content in alkaline-earth elements 

vary independently (Fig. 12). This suggests that the two set of proxies are controlled by 

independent environmental factors.  

Stable C and O isotope compositions of the fresh and weathered speleothems show 

comparable values with other speleothems worldwide, and 
18

O compositions are coherent 

with the longitudinal location of the caves (Fig. 5). Like magnetic properties, stable isotopes 

compositions are thus considered as primary. Interpretation of δ
18

O data is generally complex 

but reflects regional and local factors (air temperature, precipitation, altitude, continentality 

and humidity) that also control calcite precipitation, under chemical equilibrium, in the cave. 

The covariation of δ
18

O and alkaline-earth elements (CaO, LOI, Sr, Mg) observed in the fresh 

stalagmite (Fig. 12) suggests this. To test this hypothesis, we used the Sr/Ca and Mg/Ca ratios 

(Fig. 12). Sr and Mg are mainly derived from bedrock dissolution and are further 

incorporated in the calcite lattice. They are thus excellent indicators of calcite-water 

interaction [Fairchild et al., 2006; Kaufman et al., 1998]. For example, positive covariations 

of Sr/Ca and Mg/Ca ratios, with slope of ~0.9, are commonly ascribed to prior calcite 

precipitation [Fairchild et al., 2000; Fairchild et al., 2006; McGillen and Fairchild, 2005; 

McMillan et al., 2005], and/or incongruent calcite dissolution [Sinclair, 2011]. Here we 

calculate the ratio of ln(Sr/Ca) over ln(Mg/Ca) and obtained a slope of 0.75. This suggests 
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that alkaline-earth elements and oxygen isotope composition of the fresh stalagmite are 

mainly controlled by calcite-water interaction (Fig. 12).  

Independently, iron oxides are assumed to be inherited from the Terra Rossa soil, and so, to 

inform about physico-chemical processes acting at the rock (or soils)-atmosphere interface. 

This is evidenced in Figure 12 by a positive correlation between coercivity-dependent 

magnetic proxies (MS, SIRM) and concentration in detrital elements. For example, 

comparison between MS (m
3
/kg), SIRM intensities and content in Si (%wt) yielded 

correlation factors of R
2
=0.71 and R

2
=0.74, respectively (by using a linear trend; Table 4). 

Interestingly, there is also a positive correlation between concentration-dependent magnetic 

proxies (MS and SIRM comp. 1) and the color (a* and b*) (Table 4).  

As a rule, annual laminae in speleothems are delineated by differences in the color of calcite, 

whereby a couplet of light and dark calcite indicates a year’s growth (note however that this 

aspect has recently been challenged by Shen et al. [2013]). The main agent responsible for 

the coloration of calcite speleothem is generally attributed to organic compounds (fulvic acids 

and humic material) [Gascoyne, 1977; Lauritzen et al., 1986; van Beynen et al., 2001; White, 

1997; White, 1981]. Speleothem color can thus represent a valuable environmental proxy. 

Accessorily, and depending on the regional conditions, other agents can contribute to the 

color, like the presence of different detrital elements contained in the calcite laminae 

including iron oxides, rare earth and metal transition elements, or calcite porosity [Genty, 

1992; Genty et al., 1997; Jex et al., 2008; van Beynen et al., 2001; White, 1997]. In the case 

of the fresh stalagmite under study, we have no accurate information about the contribution 

of organic compounds in the coloration of the calcite growths, because organic matter 

concentration is extremely low, i.e. below the detection level of the spectrometer. In 

counterpart, the covariation of CIE parameters and coercivity-dependent magnetic proxies 

suggests that, even if calcite speleothem coloration by iron oxides is rare, it may occur such 

as in the present case. This is particularly possible in the case of very low content in organic 

matter and in the case of “dirty” speleothems, i.e. those for which U-Th radiometric dating is 

ineffective due to high content in detrital elements, such as is the case here (Ghaleb et al., 

2014).  

In summary, the present case study shows that environmental magnetism is a promising tool 

to identify the nature and composition of the detrital source contributing to the magnetic 

mineralogy of speleothems and, indirectly, the processes acting at the rock-atmosphere 

interface.  
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11. Conclusions 

- The present work shows that detrital particles, including iron oxides, contribute to the 

magnetic properties and color of the speleothems under study. The similarity of 

coercivity- and temperature-dependent magnetic properties between the speleothems, the 

terra rossa soils and the cave sediments, as well as the presence of detrital Ti-bearing iron 

oxides and zircon contained in present-day drip-waters (glass plate) suggest a detrital 

origin and local source (i.e. terra rossa soils) for magnetic carriers. The color and 

magnetic properties of speleothems can thus be directly linked to the source composition 

and to the environmental context of the depositional settings. 

- Stable isotopic composition of South Portuguese speleothems is likely primary, and can 

thus be used as a robust climatic and environmental proxy. Color, concentration-

dependent magnetic proxies (MS, SIRM), and detrital element concentrations show a 

positive correlation, controlled by the source composition and processes acting at the 

rock-atmosphere interface. Oxygen isotope compositions and alkaline-earth elements co-

vary independently, probably reflecting calcite-water interaction processes in these caves.  

- Unlike the fresh stalagmite, the weathered stalactite provides unreliable NRM directions 

and yields very low remanent intensities. We suggest that these low intensities resulted 

either from different remanence acquisition mechanisms between stalagmite and stalactite 

and/or from iron dissolution by fungal activity. The presented numerical modeling 

suggests that chemical dissolution of maghemite is hard to achieve through abiotic 

processes in the case of the Penico Cave. However, the close association between moon-

milk, widespread needle-fiber calcite and dissolution features of iron oxides indicate that 

fungal activity may contribute to iron oxide dissolution and loss of remanence.  
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Figure 1. A) Geographic maps showing the location of the Algarve Basin (southern 

Portugal), the Querença-Silves and Peral-Moncarapacho aquifers and the corresponding 

caves (Penico and Excentricas) under study. SG and TR correspond to the cave sediments 

and terra rossa soils, respectively. B) Photographs of the fresh stalagmite (SPAII) showing 

the location of cubic samples (SPAII_1 and SPAII_2) extracted for paleomagnetic analysis 

and sub-samples (fragments of thin laminae; SPAII_4 to SPAII_12) collected for 

measurement of bulk magnetic properties. White arrows indicates the axial growth direction 

of calcite precipitation. C) Photographs of the weathered stalactite (SPA). The dark arrow 

indicates the direction from the ceiling (base) to the termination of the stalactite (top). D) 

Transversal section of SPA showing the location of cubic samples and sub-samples. The 

black arrows point to zones of calcite alteration (moon-milk).  
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Figure 2. Scanning Electron Microscopy photographs of the watch glasses from the Penico 

cave (same cave as SPA stalactite). A) After three months in the cave, a widespread network 

of calcite and organic filaments similar to hyphae developed; B) Mapping electron 

microscopy reveals carbon as principal constituent of the filament; C) A calcite crystal has a 

rounded shape and serves as an anchor for the development of the fungal hyphae; D) 

Sporangiospore (flattened due to vacuum); E) Rare detrital Ti-Fe iron oxides are observed as 

well as F) detrital zircon.  
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Figure 3. Petrographic and Scanning Electron Microscopy photographs of the weathered 

stalactite (SPA). A) Secondary iron filling intergranular spaces; B) Oxidized  iron oxides; C) 

Severely altered iron oxide; D-E) Fe-Ti iron oxides included in detrital material (the Au peak 

on EDS spectra is due to gold coating during sample preparation); F) Spheroidal concretion 

(biogenic or cosmogenic?); G-H) Petrographic image showing the fresh and well laminated 

calcite laminae, as well as altered zones; I) Scanning electron microscopic image (back 

scattered and secondary) of altered zones showing J) spiky calcite locally recovered by K) 

biogenic calcite needle of less than 5 m in length; L) Regions with microcrystalline calcite 

also affected by biomineralization and containing larger (~10 m in length) calcite needles. 
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Figure 4. Scanning Electron Microscopy photographs of the fresh stalagmite from the 

Excentricas cave. A-C) The stalagmite presents a distinct calcite texture, which alternates 

with massive microcrystalline calcite to columnar calcite; D) some voids are observed on the 

surface of the calcite crystal and are interpreted as the result of fungal activity (fixation of 

hyphae); E-G) Composition mapping and EDS spectra of detrital Fe-Ti iron oxide with 

moderate to rich content in titanium. 
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Figure 5. A) Carbon and oxygen stable isotopic composition of the weathered and fresh 

speleothems compared to speleothems from the Crag Cave (Ireland) and Grotta del Calgeron 

(Alpes) [modified from Frisia et al., 2000]. Moon-milk (SPA1) from the weathered stalactite 

has similar values to other crystalline calcite samples. B) Present-day δ
18

Ospeleothem values 

against the longitude of European cave [McDermott et al., 2011] and Portuguese speleothems 

(this study). Data from Frisia et al. [2000] are also shown.  
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Figure 6. Low and high temperature thermomagnetic curves of A-B) the fresh stalagmite 

(samples SPAII_11 and SPAII_12), C) the weathered stalactite (sample SPA9), D-E) the terra 

rossa soils capping the cave (TR_2, TR_3) and F) cave sediments (SG_1). All heating cycles 

show a systematic increase in MS values from -196ºC up to 250ºC, interpreted as a gradual 

passing of the SD/SP threshold, and an abrupt decrease up to ~400ºC, in turn interpreted as 

the inversion of maghemite into hematite; G) second subsequent heating/cooling cycles of 

SPAII_12 show magnetite as final transformation product; H) Stepwise progressive 

heating/cooling cycles of SPAII_12 showing maghemite inversion into hematite until 400ºC 

and magnetite authigenesis above 400ºC. Steps 1, 2, 3, 4, 5, 6 and 7 correspond to 

heating/cooling cycles at 200, 250, 300, 350, 400, 450 and 500ºC, respectively. 
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Figure 7. Isothermal remanent magnetization acquisition curves of the fresh stalagmite 

(SPAII) after treatment by the Cumulative Log-Gaussian function. A) Localization of 

samples; B) raw IRM/SIRM curves showing similar coercivity spectra; C) examples of linear 

(LAP) and gradient (GAP) acquisition plots; D) B1/2 versus Dispersion Parameter (DP); E) 

B1/2 versus Mass normalized SIRM. Shadowed grey and white circles in the background of 

graph (d) correspond to titanomagnetites from continental flood basalts (Font et al., 2011; 

Font E., unpublished data) and stalagmites (Lascu and Feinberg, 2011). 
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Figure 8. Isothermal remanent magnetization acquisition curves of the weathered SPA 

stalactite after treatment by the Cumulative Log-Gaussian function. A) Localization of 

samples; B) raw IRM/SIRM curves showing large variation in coercivity spectra; C) 

examples of linear (LAP) and gradient (GAP) acquisition plots; D) B1/2 versus Dispersion 

Parameter (DP); E) B1/2 versus SIRM/Mass. Shadowed grey and white circle in the 

background of graph (d) correspond to titanomagnetites from continental flood basalts (Font 

et al., 2011; Font E., unpublished data) and stalagmites (Lascu and Feinberg, 2011). 
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Figure 9. Results of the modified Lowrie-Fuller test. R is the interaction degree and Hrc is 

the remanent coercive force. Most samples gave a L-type result (ARM being harder to 

demagnetize than the IRM) in the Lowrie-Fuller test suggesting presence of monodomain 

(SD) magnetic particles. Coercivity (Hc) values estimated by using the Cisowski test are 

inferior to 20 mT indicating presence of low coercivity magnetic particles. R values are 

inferior to 0.5 indicating strong interaction of SD particles.  
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Figure 10. A) Hysteresis data from the weathered (SPA) and fresh (SPAII) speleothem under 

study plotted on the theoretical unmixing diagram of Dunlop [2002] and showing a typical 

SD+MD trend. Open/close symbols correspond to SPA/SPAII samples, respectively. B) 

Example of a wasp-waisted hysteresis loop (sample SPA-9). C) FORC diagrams of 

representative samples plotted with a variable smoothing factor (Egli et al., 2013). The Hc 

and Hu scales are the same for all the FORC diagrams. 
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Figure 11. Stereographic and orthogonal projections and remanence intensities during 

Alternating Field (AF) cleaning of A) the weathered stalactite and B) the fresh stalagmite. 

The weathered stalactite presents very low remanence intensities varying from 10
-5

 to 10
-4

 

A/m and an erratic behavior. The fresh stalagmite has remanence intensities superior to 10
-3

 

A/m and exhibits reliable magnetic directions.  
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Figure 12. Visible Diffuse reflectance spectrophotometry (CIE L*, a* and b*), rock magnetic 

(Mass Magnetic Susceptibility, SIRM of comp. 1 (i.e. magnetite/maghemite), B1/2 of comp. 

1-2-3; S-Ratio), geochemical (selected major and trace elements) and carbon and oxygen 

isotopic composition of the fresh SPAII stalagmite. Color, concentration-dependent magnetic 

proxies (MS, SIRM comp. 1) and contents in detrital elements covary, while oxygen isotope 

composition and alkaline-earth element concentrations are independent.  
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Figure 13. Number of dissolved moles of calcite (black line) and maghemite (grey line) 

needed to reach chemical equilibrium according to the CO2 partial pressure expressed in -log 

units. Two temperatures are considered: 15°C (solid line) and 5ºC (dotted line). 
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Table 1: Carbon and oxygen stable isotope composition of the weathered and fresh 

speleothems under study (see also Fig. 5). 

Sample 
13CVPDB 

18OVPDB

Weathered stalactite 
 SPA1 -4.02 -2.53 

SPA2 -4.15 -2.84 

SPA3 -4.91 -1.49 
SPA4 -2.93 -2.16 
SPA5 -5.71 -2.61 

Fresh stalagmite 
 SPAII-10 -8.51 -2.39 

SPAII-9 -8.65 -2.22 
SPAII-8 -8.49 -2.20 
SPAII-7 -8.41 -1.73 
SPAII-6 -8.42 -2.01 
SPAII-5B -8.55 -1.98 

SPAII-4B -8.77 -2.26 
SPAII-11 -8.48 -2.34 
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Table 3. Major elements content analyzed by X-ray fluorescence and minor elements 

analyzed by ICPMS of the fresh stalagmite (SPAII). CaCO3 (%) is calculated by multiplying 

LOI values by 2.27 (the ratio of atomic masses of CaCO3 and CO2). 

 
SPA II 11 SPA II 4B SPA II 5B SPA II 6 SPA II 7 SPA II 8 SPA II 9 SPA II 10 

Major elements (%wt) 

       CaO 55.93 55.73 55.92 56.18 56.33 56.82 56.98 56.75 

MgO 0.27 0.23 0.29 0.30 0.26 0.25 0.24 0.25 

SiO2 0.47 0.38 0.28 0.22 0.06 0.04 0.03 0.24 

Al2O3 0.34 0.33 0.18 0.15 0.07 <0.10 <0.10 0.20 

Fe2O3 0.12 0.08 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 

TiO2 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 

MnO <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 

K2O <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 

P2O5 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 

Na2O 0.04 0.04 0.03 0.03 0.03 0.03 0.04 0.04 

LOI 42.62 42.87 42.98 42.84 42.91 42.70 42.39 42.38 
CaCO3 

(%) 96.7474 97.3149 97.5646 97.2468 97.4057 96.929 96.2253 96.2026 

Trace elements (ppm) 
       Sr 20.40 23.10 22.80 19.00 17.90 17.70 19.00 17.60 

Be <  0.1 <  0.1 <  0.1 <  0.1 <  0.1 <  0.1 <  0.1 <  0.1 

V 2.10 1.29 0.84 0.76 0.40 0.25 0.58 2.60 

Cr < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 

Co < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 

Ni 2.86 0.67 < 0.1 2.38 2.53 < 0.1 0.21 1.38 

Cu < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 

Zn < 0.3 < 0.3 0.46 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 

As 0.38 0.26 0.14 0.17 0.12 < 0.1 0.16 0.44 

Mo < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 

Ag < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 

Cd < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 

Ba 6.74 5.28 3.02 3.86 2.55 6.65 4.38 6.60 

Pb < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 

Th 0.38 0.35 0.10 0.11 < 0.1 < 0.1 0.14 0.27 

U < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 
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Table 4. Correlation factors (R
2
) between concentration-dependent magnetic proxies (MS 

and SIRM comp. 1), detrital input (Si content in %wt) and color (a* and b*). 

 Si (%wt) a* b* 

MS (m3/kg) R2=0.711 R2=0.757 R2=0.772  

SIRM comp. 1 (Am2/kg) R2=0.7415 R2=0.768 R2=0.7415 

 


