CINTAL - Centro de Investigação Tecnológica do Algarve Universidade do Algarve

UAN - Telemetry unit

(Mooring Simulations)
L.Laib, F.Zabel, A.Silva

Rep 06/09-SiPLAB
July 27th 2009

[^0]tel: $+351-289244422$
fax: +351-289864258
cintal@ualg.pt
www.cintal.ualg.pt

Work requested by	CINTAL Universidade do Algarve, Campus de Gambelas, $8005-139$ Faro, Portugal tel: +351-289244422, cintal@ualg.pt, www.cintal.ualg.pt
Laboratory performing the work	Signal Processing Laboratory (SiPLAB) Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal tel: +351-289800949
Project	UAN
Title	UAN - telemetry unit (Mooring Simulations)
Authors	L.Laib, F.Zabel, A.Silva
Date	July 27th, 2009
Reference	06/09 - SiPLAB
Number of pages	26 (twenty-six)
Abstract	This is a report describing the results of the mooring simula- tions, for the UAN - subsurface telemetry unit (STU).
Clearance level	SiPLAB/CINTAL eyes only

Copyright Cintal@2009

Approved for publication

Sergio Jesus
President Administration Board

Contents

1 Introduction 2
2 Description 3
3 Buoy design 4
4 Equipment Modeling 5
4.1 Cables 5
4.2 Subsurface float 5
4.3 Array 5
4.4 Sphere 6
4.5 STU \& modem 6
4.6 Acoustic release 6
4.7 Anchor 6
4.8 Mooring elements and simulation charateristics 7
4.9 Draft 8
5 Dynamic behaviour of the mooring 9
5.1 Environmental conditions 9
5.2 Results 9
5.2.1 Angles 10
5.2.2 Height above ground 12
5.2.3 Tension on Anchor 12
6 Deployment Float 14
7 Conclusions 15
A STU/cage weight calculations 16
B Current vector calculations 18
C AR diameter calculations 19
D Hydrocable length calculations 20
E STU height calculations 21

List of Figures

1.1 UAN project: conceptual view (a) and UAN system components (b). 2
4.1 Draft of used mooring elements. 8
5.1 Mooring Angle relative to water current 10
5.2 Mooring Angle relative to water current 11
5.3 Mooring Height Above ground relative to water current 12
5.4 Mooring Tension on Anchor 13
6.1 Deployment and Mooring Setup 14

Abstract

This document describes the mooring simulations on the Subsurface Telemetry Unit (STU) which were performed for the Underwater Acoustic Network EU-FP7 project. Individual mooring equipment is described and modelized. Simulations were performed based on previous knowledge of marine conditions in the area of operation. Worst case scenarios are presented with a suggestion on the configuration.

Chapter 1

Introduction

The FP7 Underwater Acoustic Network (UAN) project's objective is to conceive, develop and test at sea an innovative wireless network integrating submerged, terrestrial and aerial sensors for the protection of off-shore and coastline critical infrastructures. In particular UAN focuses on a security oriented underwater wireless network infrastructure, realized by hydroacoustic communication. The following figure 1.1(a) presents a concept figure of the UAN network.

Figure 1.1: UAN project: conceptual view (a) and UAN system components (b).

Figure 1.1(b) presents the UAN components which include: the Subsurface Telemetry Unit (STU), a power and communications cable to shore and a base station (BS); the dedicated modem for testing purposes, composed of the Portable Acoustic Source Unit (PASU) and the Acoustic Emission and Receive Unit (AERU) and the autonomous Fixed Underwater Nodes (FNO).

The objective of this simulation was to define the requirements for the mooring of the subsurface telemetry unit with special regard to the stability and safety of the acoustic release and array, these are described in the following sections.

Chapter 2

Description

Nine different buoy configurations were developed to compare values critical to the safety of the acoustic release - an essential element for a successful recovery of the telemetry unit. Only the height of the acoustic release was changed, adding additional weight to the buoy because of the cable connecting the telemetry unit to the on-shore base station. To compare the dynamic behavior of the mooring all buoy configurations were simulated in six different currents from $0.1 \mathrm{~m} / \mathrm{s}$ to $0.5 \mathrm{~m} / \mathrm{s}$. For further details see section 5.1. The dynamic behaviour of the mooring was carried out with the Mooring Design \& Dynamics (MD\&D) Matlab package from Richard K. Dewey "Centre for Earth and Ocean Research" (University of Victoria, BC, Canada) ${ }^{1}$. For simulation proposes all the elements in the mooring were approximated by cylinders or spheres.

[^1]
Chapter 3

Buoy design

Sections 4.9 and 4.8 show the selected mooring equipment. The database used in all mooring configurations is called db_v2moorings.mat. It should be renamed to mdcodes.mat and loaded into the MD\&D program as a first step before simulation or building.

Naming conventions: The different buoy configurations were named by the length of the used bottom steel cable and the height of the STU above ground. This means a $<$ length $>$ of 10 m results in a steel cable length of 2 m , a <length $>$ of 11 m in a cable length of 3 m and so on.

Chapter 4

Equipment Modeling

4.1 Cables

Cables are made of $3 / 8 \mathrm{in}$. Kevlar, with the lengths specified by the modified draft of the mooring.

The cable connecting the anchor and the releaser is made of thicker steel (3/8 wire rope) and varies in each mooring design from 2 m to 10 m in steps of 1 m .

A cable connecting the STU to the base station was also clamped on to the bottom of the STU, adding additional weight. This weight depends on the length of the anchorreleaser cable (which varies from 15.71 m to 28.27 m in steps of 1.57 m). Its weight of $145 \mathrm{~kg} / \mathrm{km}$ and the diameter of 1.93 cm were taken from the Hydrocable manual, its drag coefficient assumed to be the same as with Kevlar cables (1.3). [4]

4.2 Subsurface float

The dimensions SUBS B3 subsurface float were estimated as a sphere of 39 cm vertical height and 37.5 cm diameter. It's buoyancy of 52 kg and its drag coefficient of 0.6 were taken from http://www.openseas.com/s_b3pict.htm.

4.3 Array

The specifications of the array were taken from the project plan (p. 43), with the example of the buoyancy. This value was taken from the SiPLAB report 03/06 as a negative buoyancy of 12 kg . The array is attached as a clamp-on device to the top Kevlar cable.

4.4 Sphere

A Vitrovex sphere 17 " / 14 with a depth rating of 6700 m was used. The technical specifications were taken from http://www.nautilus-gmbh.com/english/vitrovex.html and the drag coefficient of 0.95 was taken from the project plan (p. 43).

4.5 STU \& modem

The STU and the surrounding cage was estimated as a cylinder with a height of 120 cm and a diameter of 7 cm . Its drag coefficient of 1.3 was taken from the project plan. [5]

The buoyancy was calculated by its upward force of 18.827 kg (volume of cylinder multiplied with density of sea water, $1025 \mathrm{~kg} / \mathrm{m}^{3}$) minus the actual weight of the STU and the surrounding cage ($36.170 \mathrm{~kg}+9.453 \mathrm{~kg}$). This results in a negative buoyancy of 26.795 kg . [1]

The specifications of the modem were considered equal to a single Model 111 acoustic release (84 cm length, 10.2 cm diameter, drag coefficient 1.3). The modem is attached as a clamp-on device to the top of the STU.

4.6 Acoustic release

The negative buoyancy of the acoustic release was taken from the Model 111 manual (1 kg) as well as the dimensions (84 cm length, 14.4 cm diameter). The drag coefficient of 1.3 was taken from the project plan (p. 43). [3]

4.7 Anchor

The anchor was designed as a 1 Large St/C Tir with a negative buoyancy of 150 kg . Its shape was approached as a steel cylinder of 15 cm height and 50 cm diameter. Its drag coefficient (taken from the MD\&D program) was 1.3.

4.8 Mooring elements and simulation charateristics

Mooring	Simulation element						
	\# element	Shape	Buoyancy [kg]	Dimensions		Drag coefficient	Tension Material
				height or width [cm]	diameter [cm]		
$\begin{aligned} & \text { SUBS B3 } \\ & \text { subsurface } \\ & \text { buoy } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { SUBS B3 } \end{aligned}$	Sphere	52	39	37.5	0.6	Steel
$\begin{aligned} & 36 \mathrm{~m} \text { Kevlar } \\ & \text { rope } \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 3 / 8 \text { Kevlar } \end{aligned}$	Cylinder	-0.02	3600	0.9	1.3	Kevlar
Array	Clamp-on device \#1: Hydrophone Array	Cylinder	-12	3400	4	1.3	Kevlar
Sphere	3 Vitrovex Sphere	Sphere	26	43.2	43.2	0.95	Steel
0.5m Kevlar rope	$\begin{aligned} & 4 \\ & 3 / 8 \text { Kevlar } \end{aligned}$	Cylinder	-0.02	500	0.9	1.3	Kevlar
STU \& cage	$\begin{aligned} & 5 \\ & \text { STU/cage } \end{aligned}$	Cylinder	-26.8	120	7	1.3	Aluminium
STU Modem	Clamp-on device \#2: STU Modem	Cylinder	-0.5	84	10.2	1.3	Aluminium
$\begin{aligned} & 6 \mathrm{~m} \text { Kevlar } \\ & \text { rope } \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 3 / 8 \text { Kevlar } \end{aligned}$	Cylinder	-0.02	6000	0.9	1.3	Kevlar
Hydrocable	Clamp-on device \#3: Hydrocable	Cylinder	$\begin{aligned} & -2.278 \\ & \text { to }-4.1 \end{aligned}$	$\begin{aligned} & 1571 \text { to } \\ & 2827 \end{aligned}$	1.9	1.3	Kevlar
Releaser	$\begin{aligned} & 7 \\ & \text { Model111 AR } \end{aligned}$	Cylinder	-1	84	14.4	1.3	Aluminium
Steel rope	$\begin{aligned} & \hline 8 \\ & 3 / 8 \text { wire rope } \end{aligned}$	Cylinder	-0.33	$\begin{aligned} & \hline 2000 \text { to } \\ & 10000 \end{aligned}$	0.9	1.3	Steel
Anchor	$\begin{aligned} & 9 \\ & 1 \text { Large St/C } \\ & \text { Tir } \\ & \hline \end{aligned}$	Cylinder	-150	15	50	1.3	Steel

4.9 Draft

Figure 4.1: Draft of used mooring elements.

Chapter 5

Dynamic behaviour of the mooring

5.1 Environmental conditions

The present mooring is expected to be done in the same location as MREA'07. During MREA'07 the maximum currents measured by a waverider buoy were: from bottom to top smaller than $0.01 \mathrm{~m} / \mathrm{s}$, in north direction smaller than $0.2 \mathrm{~m} / \mathrm{s}$ and in east direction smaller than $0.07 \mathrm{~m} / \mathrm{s}$.

For simulation proposes six different currents were used to compare the resulting angles of the buoy elements. This was done by using vectors in x (east) and y (north) directions with a resulting vector in xy-direction of $0.5,0.4,0.3,0.25,0.2$ and $0.1 \mathrm{~m} / \mathrm{s}$. The velocities were associated to depths of $100 \mathrm{~m}, 60 \mathrm{~m}$ and 30 m (with the velocity independent to depth). Sea ground speed was $0 \mathrm{~m} / \mathrm{s}$. No vertical currents were used. [2]

As the considered buoy will be situated more than 50 m below sea level, no surface winds were simulated. Standard densities given by the MD\&D software were used (1024-1026 $\mathrm{kg} / \mathrm{m}^{3}$).

See files EnvCond_<current>mps.mat for all used environmental conditions.

5.2 Results

See files SimulatedMooring_Graph_res<current>.pdf, Positions+Angles_res<current>.pdf and Additional_AnchorDetails.pdf for results of each mooring design. See MooringElements.pdf and STU_mooring_<length>.mat for the used mooring configuration.

5.2.1 Angles

For each mooring configuration the angles of the bottom steel cable (connecting the anchor and the acoustic releaser) and of the acoustic array (measured via the top Kevlar cable) were taken into special consideration because of their importance to the whole buoy.

Different steel cable lengths and currents were used and a spreadsheet comparing the results was provided. See Angles.ods for further details and Angles.pdf for a graphical overview.

Figure 5.1: Mooring Angle relative to water current

5.2.2 Height above ground

For each mooring configuration the height of the acoustic release above sea ground was taken into special consideration because of its importance to the recovery of the buoy.

For each buoy configuration a worst case current of $0.5 \mathrm{~m} / \mathrm{s}$ was assumed and the resulting heights of the acoustic release were compared. See HaG. ods for further details and HaG.pdf for a graphical overview. As shown there is an effective loss of approx. 20 cm of the individual steel cable length because of currents.

Figure 5.3: Mooring Height Above ground relative to water current

5.2.3 Tension on Anchor

Another value of specific interest to the safety of the mooring is a sufficient anchor. For each buoy configuration a possible worst case current of $0.5 \mathrm{~m} / \mathrm{s}$ was assumed and the resulting total tensions on the anchor were compared. The results were also broken down to all configurations and currents from $0.1 \mathrm{~m} / \mathrm{s}$ to $0.5 \mathrm{~m} / \mathrm{s}$. See Tension_Anchor.ods for further details and Tension_Anchor.pdf for a graphical overview. Due to limitations of the MD\&D program no tensions higher than the weight of the anchor could be sufficiently simulated.

An additional weight to the planned anchor (150 kg) is strongly recommended.

Worst case tensions

Combined current: $0.5 \mathrm{~m} / \mathrm{s}$

Figure 5.4: Mooring Tension on Anchor

Chapter 6

Deployment Float

A surface float is needed for deployment of the subsurface buoy. Its buoyancy should be sufficient to keep the whole buoy including the anchor at the sea surface to make a safe deployment possible. The subsurface floats (SUBS B3 and the Vitrovex sphere) have a combined buoyancy of 78 kg , the equipment and cables have a combined weight of approx. 46 kg plus the weight of the chosen anchor. This results in a minimum buoyancy of the surface float of -32 kg plus the weight of the anchor. For example, if the anchor has a weight of 150 kg , the minimum surface buoyancy is 118 kg . Appropriate safety factors should be considered.

Figure 6.1: Deployment and Mooring Setup

Chapter 7

Conclusions

During the simulations various situations were modeled and the results presented in angle relative to sea floor, the resulting height above sea floor and tensions on the anchor. The range of water column current was simulated between $0.1 \mathrm{~m} / \mathrm{s}$ and $0.5 \mathrm{~m} / \mathrm{s}$, standard values obtained during a previous sea trial for the region of operation had a maximum of $0.2 \mathrm{~m} / \mathrm{s}$. The results show that for the value of $0.2 \mathrm{~m} / \mathrm{s}$ and the modelized equipment the mooring had a 20° declination from the vertical position which is an acceptable value, the simulations also show that an increase in the length of the bottom mooring cable results in an include in declination probably because of the weight of the steel cable. From the simulation of the tension the results presented a value of 150 kg in the worst case. It is so suggested to place at least a 200 kg weight as the anchor as the remainder of the equipment can not be varied for the current setup.

Appendix A

STU/cage weight calculations

The buoyancy of the STU and the cage was calculated as described below:
STU:

$$
\begin{aligned}
V & =\left[(16 \mathrm{~cm})^{2} * \pi * 60 \mathrm{~cm}\right]-\left[(15 \mathrm{~cm})^{2} * \pi * 60 \mathrm{~cm}\right] \\
& +6 *(1.3 \mathrm{~cm} * 1.6 \mathrm{~cm} * 60 \mathrm{~cm}) \\
& +2 *\left[(15.156 \mathrm{~cm})^{2} * \pi * 4.7 \mathrm{~cm}\right] \\
& +2 *(3 \mathrm{~cm} * 3 \mathrm{~cm} * 1.5 \mathrm{~cm}) \\
& =0.013396153181376 \mathrm{~m}^{3} \\
& m=0.013396153181376 \mathrm{~m}^{3} * 2700 \mathrm{~kg} / \mathrm{m}^{3} \\
& =36.1696135897152 \mathrm{~kg}
\end{aligned}
$$

Cage:

$$
\begin{aligned}
V & =7 *\left(\left[(24 \mathrm{~cm})^{2} * \pi * 0.6 \mathrm{~cm}\right]-\left[(22.8 \mathrm{~cm})^{2} * \pi * 0.6 \mathrm{~cm}\right]\right) \\
& +\left[(21.6 \mathrm{~cm})^{2} * \pi * 0.6 \mathrm{~cm}\right]-\left[(20.4 \mathrm{~cm})^{2} * \pi * 0.6 \mathrm{~cm}\right] \\
& +3 *(1.6 \mathrm{~cm} * 120 \mathrm{~cm} * 0.6 \mathrm{~cm}) \\
& =0.00118161550423208706 \mathrm{~m}^{3} \\
& \\
& m=0.00118161550423208706 \mathrm{~m}^{3} * 8000 \mathrm{~kg} / \mathrm{m}^{3} \\
& =9.45292403385669648 \mathrm{~kg}
\end{aligned}
$$

Water cylinder:

$$
\begin{aligned}
V & =\pi *(9.3 \mathrm{~cm})^{2} * 67.6 \mathrm{~cm} \\
& =0.01836802516597 \mathrm{~m} \\
m & =V * 1025 \mathrm{~kg} / \mathrm{m}^{3} \\
& =18.82722579511925 \mathrm{~kg}
\end{aligned}
$$

Buoyancy:

$$
\begin{aligned}
m & =18.82722579511925 \mathrm{~kg}-36.1696135897152 \mathrm{~kg}-9.45292403385669648 \mathrm{~kg} \\
& =-26.79531182845264648 \mathrm{~kg}
\end{aligned}
$$

Appendix B

Current vector calculations

$$
\begin{aligned}
|\vec{x}+\vec{y}| & =\sqrt{x^{2}+y^{2}} \\
\vec{x} & =\vec{y} \text { (identical currents in } \mathrm{x} \text { and } \mathrm{y} \text { direction) } \\
r & =\sqrt{2 * x^{2}} \text { (value of resulting current) } \\
x & =\sqrt{r^{2} / 2} \text { (current in x or y direction) }
\end{aligned}
$$

$$
\begin{aligned}
r=0.5 & \Rightarrow x \approx 0.35 \\
r=0.4 & \Rightarrow x \approx 0.28 \\
r=0.3 & \Rightarrow x \approx 0.21 \\
r=0.25 & \Rightarrow x \approx 0.18 \\
r=0.2 & \Rightarrow x \approx 0.14 \\
r=0.1 & \Rightarrow x \approx 0.07
\end{aligned}
$$

Appendix C

AR diameter calculations

$$
\begin{aligned}
& V_{1}=\pi * a^{2} * h(\mathrm{a}=\text { used mean diameter) } \\
& \quad V_{2}=2 *\left(\pi * r^{2} * h\right) \text { (Volume of both ARs) } \\
& V_{1}=V_{2} \Rightarrow a=r * \sqrt{2} \text { (solve equation) } \\
& r=10.2 \mathrm{~cm} \\
& a=14.42497833620557 \mathrm{~cm}
\end{aligned}
$$

Appendix D

Hydrocable length calculations

The length was considered as the quarter of the outline of an circle with a radius varying from 10 m to 18 m in steps of 1 m .

$$
\begin{aligned}
& l=0.25 *(2 * \pi * r)(\mathrm{l}=\text { cable length, } \mathrm{r}=\text { distance to ground }) \\
& b=l * 0.145 \mathrm{~kg} / m(\mathrm{~b}=\text { neg. buoyancy })
\end{aligned}
$$

$$
\begin{aligned}
& r=10 m \Rightarrow l=15.7079632679490 m \Rightarrow b=2.277654673852605 \mathrm{~kg} \\
& r=11 m \Rightarrow l=17.2787595947439 m \Rightarrow b=2.5054201412378655 \mathrm{~kg} \\
& r=12 m \Rightarrow l=18.8495559215388 m \Rightarrow b=2.733185608623126 \mathrm{~kg} \\
& r=13 m \Rightarrow l=20.4203522483337 m \Rightarrow b=2.9609510760083865 \mathrm{~kg} \\
& r=14 m \Rightarrow l=21.9911485751286 m \Rightarrow b=3.188716543393647 \mathrm{~kg} \\
& r=15 m \Rightarrow l=23.5619449019235 m \Rightarrow b=3.4164820107789075 \mathrm{~kg} \\
& r=16 m \Rightarrow l=25.1327412287184 m \Rightarrow b=3.644247478164168 \mathrm{~kg} \\
& r=17 m \Rightarrow l=26.7035375555133 m \Rightarrow b=3.8720129455494285 \mathrm{~kg} \\
& r=18 m \Rightarrow l=28.2743338823082 m \Rightarrow b=4.099778412934689 \mathrm{~kg}
\end{aligned}
$$

Appendix E

STU height calculations

The STU was approximated as a cylinder with the volume of the STU alone (see STU_drawings .pdf, p. 12), but with the height of the full cage. The resulting diameter was then calculated:

$$
\begin{aligned}
& V_{1}=r_{1}^{2} * \pi * h=(18.6 \mathrm{~cm} / 2)^{2} * \pi * 68 \mathrm{~cm} \text { (STU volume) } \\
& V_{2}=r_{2}^{2} * \pi * h=r_{2}^{2} * \pi * 120 \mathrm{~cm} \text { (new cylinder) } \\
& V_{1}=V_{2} \Rightarrow r_{2}=7.00077819824219 \mathrm{~cm}
\end{aligned}
$$

[^0]: University of Algarve
 Campus de Gambelas
 8005-139, Faro
 Portugal

[^1]: ${ }^{1}$ URL: http://canuck.seos.univ.ca/rkd/mooring/mdd/mdd.html

