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Abstract

This document describes the mooring simulations on the Subsurface Telemetry Unit
(STU) which were performed for the Underwater Acoustic Network EU-FP7 project.
Individual mooring equipment is described and modelized. Simulations were performed
based on previous knowledge of marine conditions in the area of operation. Worst case
scenarios are presented with a suggestion on the configuration.



Chapter 1

Introduction

The FP7 Underwater Acoustic Network (UAN) project’s objective is to conceive, develop
and test at sea an innovative wireless network integrating submerged, terrestrial and aerial
sensors for the protection of off-shore and coastline critical infrastructures. In particular
UAN focuses on a security oriented underwater wireless network infrastructure, realized
by hydroacoustic communication.The following figure 1.1(a) presents a concept figure of
the UAN network.

(a) Concept (b) Setup

Figure 1.1: UAN project: conceptual view (a) and UAN system components (b).

Figure 1.1(b) presents the UAN components which include: the Subsurface Telemetry
Unit (STU), a power and communications cable to shore and a base station (BS); the
dedicated modem for testing purposes, composed of the Portable Acoustic Source Unit
(PASU) and the Acoustic Emission and Receive Unit (AERU) and the autonomous Fixed
Underwater Nodes (FNO).

The objective of this simulation was to define the requirements for the mooring of the
subsurface telemetry unit with special regard to the stability and safety of the acoustic
release and array, these are described in the following sections.



Chapter 2

Description

Nine different buoy configurations were developed to compare values critical to the safety
of the acoustic release - an essential element for a successful recovery of the telemetry
unit. Only the height of the acoustic release was changed, adding additional weight to
the buoy because of the cable connecting the telemetry unit to the on-shore base station.
To compare the dynamic behavior of the mooring all buoy configurations were simulated
in six different currents from 0.1m/s to 0.5m/s. For further details see section 5.1. The
dynamic behaviour of the mooring was carried out with the Mooring Design & Dynamics
(MD&D) Matlab package from Richard K. Dewey “Centre for Earth and Ocean Research”
(University of Victoria, BC, Canada) !. For simulation proposes all the elements in the
mooring were approximated by cylinders or spheres.

Y'URL: http://canuck.seos.univ.ca/rkd/mooring/mdd/mdd.html


http://canuck.seos.univ.ca/rkd/mooring/mdd/mdd.html

Chapter 3
Buoy design

Sections 4.9 and 4.8 show the selected mooring equipment. The database used in all moor-
ing configurations is called db_v2moorings.mat. It should be renamed to mdcodes.mat
and loaded into the MD&D program as a first step before simulation or building.

Naming conventions: The different buoy configurations were named by the length
of the used bottom steel cable and the height of the STU above ground. This means a
<length> of 10m results in a steel cable length of 2m, a <length> of 11m in a cable
length of 3m and so on.



Chapter 4

Equipment Modeling

4.1 Cables

Cables are made of 3/8 in. Kevlar, with the lengths specified by the modified draft of the
mooring.

The cable connecting the anchor and the releaser is made of thicker steel (3/8 wire
rope) and varies in each mooring design from 2m to 10m in steps of 1m.

A cable connecting the STU to the base station was also clamped on to the bottom
of the STU, adding additional weight. This weight depends on the length of the anchor-
releaser cable (which varies from 15.71 m to 28.27 m in steps of 1.57 m). Its weight of
145 kg/km and the diameter of 1.93cm were taken from the Hydrocable manual, its drag
coefficient assumed to be the same as with Kevlar cables (1.3). [4]

4.2 Subsurface float

The dimensions SUBS B3 subsurface float were estimated as a sphere of 39cm vertical
height and 37.5cm diameter. It’s buoyancy of 52kg and its drag coefficient of 0.6 were
taken from http://www.openseas.com/s_b3pict.htm.

4.3 Array

The specifications of the array were taken from the project plan (p. 43), with the example
of the buoyancy. This value was taken from the SiPLAB report 03/06 as a negative
buoyancy of 12 kg. The array is attached as a clamp-on device to the top Kevlar cable.

5
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6 CHAPTER 4. EQUIPMENT MODELING

4.4 Sphere

A Vitrovex sphere 177 /14 with a depth rating of 6700m was used. The technical specifi-
cations were taken from http://www.nautilus-gmbh.com/english/vitrovex.html and
the drag coefficient of 0.95 was taken from the project plan (p. 43).

4.5 STU & modem

The STU and the surrounding cage was estimated as a cylinder with a height of 120cm
and a diameter of 7Tem. Its drag coefficient of 1.3 was taken from the project plan. [5]

The buoyancy was calculated by its upward force of 18.827 kg (volume of cylinder
multiplied with density of sea water, 1025 kg/m?) minus the actual weight of the STU
and the surrounding cage (36.170 kg + 9.453 kg). This results in a negative buoyancy of
26.795 kg. [1]

The specifications of the modem were considered equal to a single Model 111 acoustic
release (84cm length, 10.2cm diameter, drag coefficient 1.3). The modem is attached as
a clamp-on device to the top of the STU.

4.6 Acoustic release

The negative buoyancy of the acoustic release was taken from the Model 111 manual (1kg)
as well as the dimensions (84cm length, 14.4cm diameter). The drag coefficient of 1.3 was
taken from the project plan (p. 43). [3]

4.7 Anchor

The anchor was designed as a 1 Large St/C Tir with a negative buoyancy of 150kg. Its
shape was approached as a steel cylinder of 15cm height and 50cm diameter. Its drag
coefficient (taken from the MD&D program) was 1.3.

SiPLAB/CINTAL eyes only
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4.8. MOORING ELEMENTS AND SIMULATION CHARATERISTICS 7
4.8 Mooring elements and simulation charateristics
Mooring Simulation element
elements
# Shape Buoy- | Dimensions Drag Tension
element ancy coeffi- | Mate-
[kg] cient rial
height diameter
or width | [cm]
[cm]
SUBS B3 |1 Sphere | 52 39 37.5 0.6 Steel
subsurface SUBS B3
buoy
36m Kevlar | 2 Cylinder | -0.02 3600 0.9 1.3 Kevlar
rope 3/8 Kevlar
Array Clamp-on Cylinder | -12 3400 4 1.3 Kevlar
device #1:
Hydrophone
Array
Sphere 3 Sphere | 26 43.2 43.2 0.95 Steel
Vitrovex
Sphere
0.5m Kevlar | 4 Cylinder | -0.02 500 0.9 1.3 Kevlar
rope 3/8 Kevlar
STU & cage | b Cylinder | -26.8 120 7 1.3 Alumini-
STU /cage um
STU Modem | Clamp-on de- | Cylinder | -0.5 84 10.2 1.3 Alumini-
vice #2: um
STU Modem
6m Kevlar | 6 Cylinder | -0.02 6000 0.9 1.3 Kevlar
rope 3/8 Kevlar
Hydrocable | Clamp-on de- | Cylinder | -2.278 | 1571 to | 1.9 1.3 Kevlar
vice #3: to-4.1 | 2827
Hydrocable
Releaser 7 Cylinder | -1 84 14.4 1.3 Alumini-
Modell11l AR um
Steel rope 8 Cylinder | -0.33 2000 to | 0.9 1.3 Steel
3/8 wire rope 10000
Anchor 9 Cylinder | -150 15 50 1.3 Steel
1 Large St/C
Tir

SiPLAB/CINTAL eyes only




8 CHAPTER 4. EQUIPMENT MODELING

4.9 Draft

SUBS B3 Float

36m 3/8in Kevlar cable
{Hydrophone array attached)

Vitrovex glass sphere
8.5m 3/8in Kevlar cable

STU & surrounding cage
(5TU modem attached)

&m 3/8in Kevlar cable

Model 111 Acoustic release

DC/0ptical Cable to base station

2-18m steel cable
Anchor

Figure 4.1: Draft of used mooring elements.

SiPLAB/CINTAL eyes only



Chapter 5

Dynamic behaviour of the mooring

5.1 Environmental conditions

The present mooring is expected to be done in the same location as MREA’07. During
MREA’07 the maximum currents measured by a waverider buoy were: from bottom to
top smaller than 0.01m/s, in north direction smaller than 0.2m/s and in east direction
smaller than 0.07m/s.

For simulation proposes six different currents were used to compare the resulting angles
of the buoy elements. This was done by using vectors in x (east) and y (north) directions
with a resulting vector in xy-direction of 0.5, 0.4, 0.3, 0.25, 0.2 and 0.1 m/s. The velocities
were associated to depths of 100m, 60m and 30m (with the velocity independent to depth).
Sea ground speed was 0 m/s. No vertical currents were used. [2]

As the considered buoy will be situated more than 50m below sea level, no surface winds
were simulated. Standard densities given by the MD&D software were used (1024-1026

kg/m?).

See files EnvCond_<current>mps.mat for all used environmental conditions.

5.2 Results

See files SimulatedMooring Graph res<current>.pdf, Positions+Angles_res<current>.pdf
and Additional_AnchorDetails.pdf for results of each mooring design. See MooringElements.pdf
and STU_mooring <length>.mat for the used mooring configuration.



10 CHAPTER 5. DYNAMIC BEHAVIOUR OF THE MOORING

5.2.1 Angles

For each mooring configuration the angles of the bottom steel cable (connecting the anchor
and the acoustic releaser) and of the acoustic array (measured via the top Kevlar cable)
were taken into special consideration because of their importance to the whole buoy.

Different steel cable lengths and currents were used and a spreadsheet comparing the
results was provided. See Angles.ods for further details and Angles.pdf for a graphical
overview.

Angles (10m) Angles (11m)
= =
70 70
g0 g0
50 50
wn wn
@ 40 B Steel rope ﬁ 40 & Steel rope
o ATy =z = Array
8 a0 8 a0
20 20
10 10
a a
0 01 02 03 04 05 06 0 01 02 03 04 05 06
Combined cumrent (m/s) Combined cumrent (m/s)
Angles (12m) Angdles (13m)
= 80
70 70
g0 60
50 50
w
% 40 B Steel rope ﬁ 40 ok Sfeel rope
é” 20 - Array é" 30 = Array
20 20
10 10
] 0
0 01 02 03 04 05 08 o0 071 02 03 04 05 06
Combined cumrent (m/s) Combined current (m/s)

Figure 5.1: Mooring Angle relative to water current

SiPLAB/CINTAL eyes only



5.2. RESULTS 11
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Figure 5.2: Mooring Angle relative to water current
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12 CHAPTER 5. DYNAMIC BEHAVIOUR OF THE MOORING

5.2.2 Height above ground

For each mooring configuration the height of the acoustic release above sea ground was
taken into special consideration because of its importance to the recovery of the buoy.

For each buoy configuration a worst case current of 0.5m/s was assumed and the re-
sulting heights of the acoustic release were compared. See HaG. ods for further details and
HaG.pdf for a graphical overview. As shown there is an effective loss of approx. 20cm of
the individual steel cable length because of currents.

Steel rope angle Height above ground
Combined current: 0.5 m/s Combined current: 0.5 m/s
20 12
78
10
76
74 8 -
Height
@ W Sted
o T2 Enzempe 8 above
;ﬁjn E ground
o 70
4
68
- i
64 0
123 456 789 1011 1 2345687291011
Steel cable length {m) Steel cable length (m)

Figure 5.3: Mooring Height Above ground relative to water current

5.2.3 Tension on Anchor

Another value of specific interest to the safety of the mooring is a sufficient anchor. For
each buoy configuration a possible worst case current of 0.5m/s was assumed and the
resulting total tensions on the anchor were compared. The results were also broken down
to all configurations and currents from 0.1m/s to 0.5m/s. See Tension_Anchor.ods for
further details and Tension_ Anchor.pdf for a graphical overview. Due to limitations of
the MD&D program no tensions higher than the weight of the anchor could be sufficiently
simulated.

An additional weight to the planned anchor (150kg) is strongly recommended.

SiPLAB/CINTAL eyes only
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Figure 5.4: Mooring Tension on Anchor
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Chapter 6

Deployment Float

A surface float is needed for deployment of the subsurface buoy. Its buoyancy should be
sufficient to keep the whole buoy including the anchor at the sea surface to make a safe
deployment possible. The subsurface floats (SUBS B3 and the Vitrovex sphere) have a
combined buoyancy of 78kg, the equipment and cables have a combined weight of approx.
46kg plus the weight of the chosen anchor. This results in a minimum buoyancy of the
surface float of -32kg plus the weight of the anchor. For example, if the anchor has a
weight of 150kg, the minimum surface buoyancy is 118kg. Appropriate safety factors
should be considered.

Example:
==
Buoyancy: : Surface float
>118kg @ (buoyancy: weight of anchor - 32kg)
Acouslic release
(weight: 1kg)
Subsurface buoy
(buoyancy: 33kg)
Weight: Anchor (weight to be specified)
150kg

Figure 6.1: Deployment and Mooring Setup

14



Chapter 7

Conclusions

During the simulations various situations were modeled and the results presented in angle
relative to sea floor, the resulting height above sea floor and tensions on the anchor. The
range of water column current was simulated between 0.1 m/s and 0.5 m/s, standard
values obtained during a previous sea trial for the region of operation had a maximum of
0.2 m/s. The results show that for the value of 0.2 m/s and the modelized equipment the
mooring had a 20° declination from the vertical position which is an acceptable value, the
simulations also show that an increase in the length of the bottom mooring cable results
in an include in declination probably because of the weight of the steel cable. From the
simulation of the tension the results presented a value of 150 kg in the worst case. It
is so suggested to place at least a 200kg weight as the anchor as the remainder of the
equipment can not be varied for the current setup.

15



Appendix A

STU /cage weight calculations

The buoyancy of the STU and the cage was calculated as described below:
STU:

V = [(16¢m)? * 7 % 60cm] — [(15cm)? * 7 * 60cm]
+ 6% (1.3cm * 1.6cm * 60cm)
+ 2% [(15.156¢cm)? * 7 4.7cm]
+ 2 % (3em x 3em x 1.5¢m)
= 0.013396153181376m*

m = 0.013396153181376m> x 2700kg/m?
= 36.1696135807152kg

Cage:

V = 7% ([(24cm)? % 7 % 0.6cm] — [(22.8cm)? * 7 % 0.6cm))
+ [(21.6¢m)? * 7 * 0.6cm] — [(20.4cm)? * 7 % 0.6¢m)]
+ 3 % (1.6cm x 120cm * 0.6¢m)
= 0.00118161550423208706m>

m = 0.00118161550423208706m> * 8000kg/m*
= 9.45292403385669648kg

Water cylinder:

V =7 % (9.3cm)? % 67.6cm
= 0.01836802516597m

m =V % 1025kg/m*
= 18.82722579511925kg

16
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Buoyancy:

m = 18.82722579511925kg — 36.1696135897152kg — 9.45292403385669648k g
= —26.79531182845264648kg

SiPLAB/CINTAL eyes only



Appendix B

Current vector calculations

7+ = /2T
7 = ¥ (identical currents in x and y direction)

r =v2xz? (value of resulting current)

xr = \/r?/2 (current in x or y direction)

r=0.5=x~0.35
r=04=x~0.28
r=03=x~021
r=0.25=1x~0.18
r=02=x~0.14
r=0.1=2~0.07

18



Appendix C

AR diameter calculations

Vi =7 xa*x h (a = used mean diameter)
Vo = 2% (m* 12 % h) (Volume of both ARs)
Vi =V, = a =1 /2 (solve equation)
r =10.2ecm

a = 14.42497833620557cm

19



Appendix D

Hydrocable length calculations

The length was considered as the quarter of the outline of an circle with a radius varying
from 10m to 18m in steps of 1m.

[ =0.25%(2xm*7) (1 = cable length, r = distance to ground)
b=1%0.145kg/m (b = neg. buoyancy)

r =10m = [ = 15.7079632679490m = b = 2.277654673852605kg
r=11m = = 17.2787595947439m = b = 2.5054201412378655kg
r =12m = [ = 18.8495559215388m = b = 2.733185608623126k¢g
r = 13m = [ = 20.4203522483337m = b = 2.9609510760083865k g
r = 14m = [ = 21.9911485751286m = b = 3.188716543393647kg
r = 16m = | = 23.5619449019235m = b = 3.4164820107789075kg
r=16m = [ = 25.1327412287184m = b = 3.644247478164168kg
r=17Tm = [ = 26.7035375555133m = b = 3.8720129455494285kg
r = 18m = [ = 28.2743338823082m = b = 4.099778412934689kg

20



Appendix E

STU height calculations

The STU was approximated as a cylinder with the volume of the STU alone (see STU_drawings . pdf,
p. 12), but with the height of the full cage. The resulting diameter was then calculated:

Vi =rixm*h=(18.6cm/2)% x m* 68cm (STU volume)
Vo =r3%m*h=r3*7m*120cm (new cylinder)

Vi =V, = 1y = 7.00077819824219¢cm

21
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