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Abstract: Travel time inversion is a fundamental method of Ocean Acoustic Tomo-
graphy, for the estimation of perturbations in sound speed. By discretizing the watercolumn
into a system of layers, the method allows to introduce a system of linear equations, relat-
ing a known vector of perturbations in travel time, to an unknown vector of perturbations
in sound speed, through the so-called “observation matrix”. Inverting the system allows to
determine a solution, which estimates the perturbation in sound speed in each layer of the
watercolumn. However, in most problems of practical interest, the number of unknowns
(i.e. the perturbations in sound speed) is larger that the number of equations (which cor-
respond to the number of delays in travel time), which implies that inverting the system
of linear equations can be viewed as an ill-posed problem. The discussion presented in
this paper illustrates an approach to the problem of inversion, which is based on the us-
age of theoretical modes. Further, it is shown that for a range-dependent perturbation in
sound speed, which corresponds to a superposition of plane waves, the inversion problem
can be regularized (i.e. the system of linear equations can be rewritten in order to deal
with more equations than unknowns) by estimating only the amplitudes and phases of the
linear waves. Particular examples are given for simulated and real data.

1 INTRODUCTION

Travel time inversion is a fundamental method of Ocean Acoustic Tomography, that
allows to introduce a system of linear equations, relating a known vector of perturbations
in travel time (called “travel time delays”), to an unknown vector of perturbations in
sound speed, through the so-called “observation matrix”, which can be calculated from a
system of stable eigenrays. Inverting the system allows to determine the pertubations in
sound speed, by estimating it in each layer of the watercolumn. In most cases inverting
the system of linear equations can be viewed as an ill-posed problem since the number of
unknowns (i.e. the perturbations in sound speed) uses to be larger that the number of
equations, which correspond to the number of travel time delays. It can be shown that
theoretical modes can be used efficiently to regularize the problem of inversion, by allowing
to rewrite the system of linear equations obtaining more equations than unknowns, and
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that regularization proved to be robust when applied to real acoustic data [1]. The
discussion presented in this paper explores further the regularization based on theoretical
modes by developing a range-dependent inversion of the sound speed field, for the case
of internal plane-wave propagation. In this case one estimates the amplitudes and phases
of the plane waves. The proposed method is tested on both simulated and real acoustic
data.

2 THEORETICAL BACKGROUND

2.1 Travel time inversion

A detailed description of travel time inversion can be found in [2]. Briefly, the
method is based on the fundamental assumption that, for a small change of sound speed,
δc(z) = c(z)− c0(z)� c0(z), the perturbation in travel time of an acoustic pulse can be
written as

∆τj = τj − τ 0
j =

∫
Γj

ds

c(z)
−
∫
Γj

ds

c0(z)
≈ −

∫
Γj

δc(z)

c2
0(z)

ds , (1)

where the integral Eq.(1) is taken along the unperturbed eigenray Γj. For a set of T
perturbations in travel time, and discretizing the watercolumn into a system composed
by L layers, one can relate a vector of delays, ∆τ , to a vector of perturbations in sound
speed, δc, through a linear system of equations:

∆τ = Eδc + n , (2)

where ∆τ = [ ∆τ1 , ∆τ2 , . . . , ∆τT ]t, δc = [ δc1 , δc2 , . . . , δcL ]t, and each δcl
corresponds to an average of δc(z), in the lth layer; [. . .]t represents the transpose of vector
[. . .]. In Eq.(2) n accounts for rounding errors, and also for statistic contributions from
noise sources. Matrix E, dimension T × L, is known as the Observation Matrix and can
be calculated from unperturbed eigenrays. In most cases of practical interest L � T, so
Eq.(2) corresponds to an undetermined system of equations and therefore has an infinite
number of solutions. Providing that rankE = T one can select the solution that has a
minimum norm, which is given by the expression [3]:

δc# = Et
(
EEt

)−1
∆τ . (3)

2.2 Multiple hydrophones

The treatment of the system of independent equations for a set of N hydrophones
∆τ 1 = E1δc + n1, ∆τ 2 = E2δc + n2, . . ., ∆τN = ENδc + nN, sharing a common
vector of perturbations in sound speed, δc, can be handled by introducing the following
concatenated vectors and matrices:

∆τ =


∆τ 1

∆τ 2
...

∆τN

 , E =


E1

E2
...

EN

 and n =


n1

n2
...

nN

 , (4)

and further applying the solution Eq.(3).
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2.3 Theoretical modes

For the hydrostatic linear rotationless case the set of theoretical modes, Ψm, can be
calculated by solving a Sturm-Liouville problem of the form [4]:

d2Ψm

dz2
+
N2

C2
m

Ψm = 0 + Boundary Conditions , (5)

where N2(z) represents the buoyancy frequency. N2(z) can be calculated from tempera-
ture T and salinity S [4], although a satisfactory approximation can be obtained using
only temperature [5]. In Eq.(5) Cm represents the propagation velocity of the linear
wave associated to each Ψm; for a fixed frequency of internal wave propagation, ω, the
wavenumber will be given by km = ω/Cm. Under homogeneous top and bottom bound-
ary conditions the Ψm(z) form an orthogonal basis of functions, i.e. 〈Ψm |N2|Ψn〉 = 0 for

m 6= n, where the “inner product” is defined as 〈f1 |f2| f3〉 =

D∫
0

f1f2f3 dz.

2.4 Plave wave propagation

For internal plane wave propagation the range-dependent field of perturbation on
sound speed can be represented as

δc (z, r) =
dc0

dz

M∑
m=1

Ψm(z) [αm sin (kmr cos θ) + βm cos (kmr cos θ)] (6)

where θ represents the direction of propagation related to the acoustic path (see Fig.1(a)).
In Eq.(6) M represents the number of relevant theoretical modes.

2.5 Regularization using theoretical modes

Substituting Eq.(6) into Eq.(1) one can obtain a system of linear equations of the
form

∆τ = Px + n , (7)

where

P = [S R] , S =


St

1

St
2

...
St

T

 , R =


Rt

1

Rt
2

...
Rt

T

 ,

x =

[
α
β

]
, α =


α1

α2
...
αM

 , β =


β1

β2
...
βM

 ,

(8)

St
j = [ Sj1 , Sj2 , . . . , SjM ] ,

Rt
j = [ Rj1 , Rj2 , . . . , RjM ] ,

(9)
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and [
Sjm
Rjm

]
= −

∫
Γj

dc0

dz

Ψm(z)

c2
0

ds

[
sin (kmr cos θ)
cos (kmr cos θ)

]
. (10)

Providing that 2M < T one can regularize the original system of equations, Eq.(2), and
write the solution of the system Eq.(7) as [3]

x# = (PtP)
−1

Pt∆τ . (11)

The solution given by Eq.(11) allows to determine the modal amplitudes x, made of two
components α and β, which determine uniquely the range-dependent field of sound speed
c(z, r) = c0(z) + δc(z, r) through Eq.(6). A multiple hydrophone system can be efficiently
handled concatenating once more the corresponding systems of equations.

3 SIMULATIONS

The range-dependent regularization of travel time inversion was tested on simulated
data, following the experimental scenarion of the INTIMATE’96 experiment, described
in detail in [1]. Theoretical modes were calculated from temperature records acquired
during the experiment (see Fig.1(b)). Further, as discussed in that reference analysis of
hydrographic data acquired near the Vertical Line Array (hereafter VLA) allow to consider
that in average M = 3. The propagation geometry for simulations correspondend to a
source at depth of 90 m, a VLA with three hydrophones (at depths of 35, 105 and
115 m), a transmission distance R = 5,6 km and a bottom depth D = 135 m. Stable
eigenrays were calculated using the background sound speed profile c0(z), derived from
CTD records. The range-dependent field c(z, r) = c0(z) + δc(z, r) was calculated for
an arbitrary set of realistic modal amplitudes αm and βm, and with θ = 75◦, which is
an estimate of the direction of propapagation of the internal tide in the INTIMATE’96
scenario [5]. Perturbed travel times were calculated using a range-dependent ray-tracing
procedure, which used a discretized distribution of c(z, r) along range, with a reduced
number of intervals. The first test of inversion using Eq.(11) failed providing unrealistic
values of x, which in part can be related to a mismatch between “truth” perturbed arrivals,
and the arrivals obtained with the mentioned procedure. Additional tests optimized the
solution Eq.(11), using different range discretizations, and calculating the matrix P over
a commom range interval for each discretization. This optimization provided different
solutions x#, most of which were unrealistic, except the one that corresponded to the
reliable estimation of x.

4 APPLICATION TO REAL DATA

Tests with real data were based on a particular set of simultaneous data on both
acoustic records and hydrographic measurements taken near the acoustic source and the
VLA. Due to synchronization problems during the experiment absolute arrivals were not
available directly. The lack of synchronization could be compensated through an accurate
estimation of waveguide geometry, and by developing an accurate match of the inverse

solution with direct observations taken near the VLA, i.e. by minimizing
∣∣∣∣∣∣δc# − δc

∣∣∣∣∣∣,
where δc# represented a range-independent estimate of the truth solution, δc (see [1]).
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This matching was repeated once more for the set of simultaneous data, but based on
range dependent regularization and taking θ = 75◦. As indicated by simulations different
range discretizations allowed to optimize the matching. However, it was also noticed that
the accuracy could be significantly improved by taking M = 4. The optimized match can
be seen on Fig.2(a). In fact it corresponds to an accurate estimation of β, but not of α.
Additional tests of optimization for slight variations of θ around 75◦ provided unrealistic
estimates of both α and β. Additionally, a realistic estimate of α was found by optimizing
once more the estimate

α# = (StS)
−1St

(
∆τ −Rβ#

)
, (12)

for different range discretizations, and choosing the estimate with a minimum norm. The
expected profile δc(z, R), calculated using α# and β#, can be seen on Fig.2(b), and reveals
a good agreement with the direct estimation of the sound speed perturbation, calculated
from a temperature record acquired near the position of the acoustic source.

5 CONCLUSIONS

The feasibility of range dependent regularization based on theoretical modes was
tested on simulated and real data for the case of internal plane-wave propagation in a
shallow water environment. Inversion results proved to be accurate, and the inversion
procedure was found to be robust to the presence of noise in real data, and able to resolve
high order theoretical modes present in the sound speed field. However, the accurate
numerical evaluation of the range-dependent matrix P still remains an open question,
and the inversion procedure can be only applied to the propagation of internal plane-
waves, at a fixed direction, across the scenario of acoustic propagation.
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Figure 1: (a) Propagating direction of the linear internal wave related to the acoustic
path; (b) theoretical modes.

(a) (b)

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4

0

20

40

60

80

100

120

140

D
e

p
th

 (
m

)

Perturbation on sound speed (m/s)
−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

20

40

60

80

100

120

140

D
e

p
th

 (
m

)

Perturbation on sound speed (m/s)

Figure 2: (a) Best match of sound speed perturbations near the Vertical Line Arrray
(VLA); (b) extrapolated profile of sound speed perturbations near the position of the
acoustic source. In both cases the continues line corresponds to the estimated value,
while the dashed line represents direct measurements.
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